1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 173 { 174 enum ice_vsi_type vsi_type = vsi->type; 175 struct ice_pf *pf = vsi->back; 176 struct ice_vf *vf = vsi->vf; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of PRs 216 * Each ring is associated to the corresponding VF_PR netdev. 217 * Tx and Rx rings are always equal 218 */ 219 if (vsi->req_txq && vsi->req_rxq) { 220 vsi->alloc_txq = vsi->req_txq; 221 vsi->alloc_rxq = vsi->req_rxq; 222 } else { 223 vsi->alloc_txq = 1; 224 vsi->alloc_rxq = 1; 225 } 226 227 vsi->num_q_vectors = 1; 228 break; 229 case ICE_VSI_VF: 230 if (vf->num_req_qs) 231 vf->num_vf_qs = vf->num_req_qs; 232 vsi->alloc_txq = vf->num_vf_qs; 233 vsi->alloc_rxq = vf->num_vf_qs; 234 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 235 * data queue interrupts). Since vsi->num_q_vectors is number 236 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 237 * original vector count 238 */ 239 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF; 240 break; 241 case ICE_VSI_CTRL: 242 vsi->alloc_txq = 1; 243 vsi->alloc_rxq = 1; 244 vsi->num_q_vectors = 1; 245 break; 246 case ICE_VSI_CHNL: 247 vsi->alloc_txq = 0; 248 vsi->alloc_rxq = 0; 249 break; 250 case ICE_VSI_LB: 251 vsi->alloc_txq = 1; 252 vsi->alloc_rxq = 1; 253 break; 254 default: 255 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 256 break; 257 } 258 259 ice_vsi_set_num_desc(vsi); 260 } 261 262 /** 263 * ice_get_free_slot - get the next non-NULL location index in array 264 * @array: array to search 265 * @size: size of the array 266 * @curr: last known occupied index to be used as a search hint 267 * 268 * void * is being used to keep the functionality generic. This lets us use this 269 * function on any array of pointers. 270 */ 271 static int ice_get_free_slot(void *array, int size, int curr) 272 { 273 int **tmp_array = (int **)array; 274 int next; 275 276 if (curr < (size - 1) && !tmp_array[curr + 1]) { 277 next = curr + 1; 278 } else { 279 int i = 0; 280 281 while ((i < size) && (tmp_array[i])) 282 i++; 283 if (i == size) 284 next = ICE_NO_VSI; 285 else 286 next = i; 287 } 288 return next; 289 } 290 291 /** 292 * ice_vsi_delete_from_hw - delete a VSI from the switch 293 * @vsi: pointer to VSI being removed 294 */ 295 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 296 { 297 struct ice_pf *pf = vsi->back; 298 struct ice_vsi_ctx *ctxt; 299 int status; 300 301 ice_fltr_remove_all(vsi); 302 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 303 if (!ctxt) 304 return; 305 306 if (vsi->type == ICE_VSI_VF) 307 ctxt->vf_num = vsi->vf->vf_id; 308 ctxt->vsi_num = vsi->vsi_num; 309 310 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 311 312 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 313 if (status) 314 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 315 vsi->vsi_num, status); 316 317 kfree(ctxt); 318 } 319 320 /** 321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 322 * @vsi: pointer to VSI being cleared 323 */ 324 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 325 { 326 struct ice_pf *pf = vsi->back; 327 struct device *dev; 328 329 dev = ice_pf_to_dev(pf); 330 331 bitmap_free(vsi->af_xdp_zc_qps); 332 vsi->af_xdp_zc_qps = NULL; 333 /* free the ring and vector containers */ 334 devm_kfree(dev, vsi->q_vectors); 335 vsi->q_vectors = NULL; 336 devm_kfree(dev, vsi->tx_rings); 337 vsi->tx_rings = NULL; 338 devm_kfree(dev, vsi->rx_rings); 339 vsi->rx_rings = NULL; 340 devm_kfree(dev, vsi->txq_map); 341 vsi->txq_map = NULL; 342 devm_kfree(dev, vsi->rxq_map); 343 vsi->rxq_map = NULL; 344 } 345 346 /** 347 * ice_vsi_free_stats - Free the ring statistics structures 348 * @vsi: VSI pointer 349 */ 350 static void ice_vsi_free_stats(struct ice_vsi *vsi) 351 { 352 struct ice_vsi_stats *vsi_stat; 353 struct ice_pf *pf = vsi->back; 354 int i; 355 356 if (vsi->type == ICE_VSI_CHNL) 357 return; 358 if (!pf->vsi_stats) 359 return; 360 361 vsi_stat = pf->vsi_stats[vsi->idx]; 362 if (!vsi_stat) 363 return; 364 365 ice_for_each_alloc_txq(vsi, i) { 366 if (vsi_stat->tx_ring_stats[i]) { 367 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 368 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 369 } 370 } 371 372 ice_for_each_alloc_rxq(vsi, i) { 373 if (vsi_stat->rx_ring_stats[i]) { 374 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 375 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 376 } 377 } 378 379 kfree(vsi_stat->tx_ring_stats); 380 kfree(vsi_stat->rx_ring_stats); 381 kfree(vsi_stat); 382 pf->vsi_stats[vsi->idx] = NULL; 383 } 384 385 /** 386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 387 * @vsi: VSI which is having stats allocated 388 */ 389 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 390 { 391 struct ice_ring_stats **tx_ring_stats; 392 struct ice_ring_stats **rx_ring_stats; 393 struct ice_vsi_stats *vsi_stats; 394 struct ice_pf *pf = vsi->back; 395 u16 i; 396 397 vsi_stats = pf->vsi_stats[vsi->idx]; 398 tx_ring_stats = vsi_stats->tx_ring_stats; 399 rx_ring_stats = vsi_stats->rx_ring_stats; 400 401 /* Allocate Tx ring stats */ 402 ice_for_each_alloc_txq(vsi, i) { 403 struct ice_ring_stats *ring_stats; 404 struct ice_tx_ring *ring; 405 406 ring = vsi->tx_rings[i]; 407 ring_stats = tx_ring_stats[i]; 408 409 if (!ring_stats) { 410 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 411 if (!ring_stats) 412 goto err_out; 413 414 WRITE_ONCE(tx_ring_stats[i], ring_stats); 415 } 416 417 ring->ring_stats = ring_stats; 418 } 419 420 /* Allocate Rx ring stats */ 421 ice_for_each_alloc_rxq(vsi, i) { 422 struct ice_ring_stats *ring_stats; 423 struct ice_rx_ring *ring; 424 425 ring = vsi->rx_rings[i]; 426 ring_stats = rx_ring_stats[i]; 427 428 if (!ring_stats) { 429 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 430 if (!ring_stats) 431 goto err_out; 432 433 WRITE_ONCE(rx_ring_stats[i], ring_stats); 434 } 435 436 ring->ring_stats = ring_stats; 437 } 438 439 return 0; 440 441 err_out: 442 ice_vsi_free_stats(vsi); 443 return -ENOMEM; 444 } 445 446 /** 447 * ice_vsi_free - clean up and deallocate the provided VSI 448 * @vsi: pointer to VSI being cleared 449 * 450 * This deallocates the VSI's queue resources, removes it from the PF's 451 * VSI array if necessary, and deallocates the VSI 452 */ 453 static void ice_vsi_free(struct ice_vsi *vsi) 454 { 455 struct ice_pf *pf = NULL; 456 struct device *dev; 457 458 if (!vsi || !vsi->back) 459 return; 460 461 pf = vsi->back; 462 dev = ice_pf_to_dev(pf); 463 464 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 465 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 466 return; 467 } 468 469 mutex_lock(&pf->sw_mutex); 470 /* updates the PF for this cleared VSI */ 471 472 pf->vsi[vsi->idx] = NULL; 473 pf->next_vsi = vsi->idx; 474 475 ice_vsi_free_stats(vsi); 476 ice_vsi_free_arrays(vsi); 477 mutex_unlock(&pf->sw_mutex); 478 devm_kfree(dev, vsi); 479 } 480 481 void ice_vsi_delete(struct ice_vsi *vsi) 482 { 483 ice_vsi_delete_from_hw(vsi); 484 ice_vsi_free(vsi); 485 } 486 487 /** 488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 489 * @irq: interrupt number 490 * @data: pointer to a q_vector 491 */ 492 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 493 { 494 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 495 496 if (!q_vector->tx.tx_ring) 497 return IRQ_HANDLED; 498 499 #define FDIR_RX_DESC_CLEAN_BUDGET 64 500 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 501 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 502 503 return IRQ_HANDLED; 504 } 505 506 /** 507 * ice_msix_clean_rings - MSIX mode Interrupt Handler 508 * @irq: interrupt number 509 * @data: pointer to a q_vector 510 */ 511 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 512 { 513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 514 515 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 516 return IRQ_HANDLED; 517 518 q_vector->total_events++; 519 520 napi_schedule(&q_vector->napi); 521 522 return IRQ_HANDLED; 523 } 524 525 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 526 { 527 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 528 struct ice_pf *pf = q_vector->vsi->back; 529 struct ice_repr *repr; 530 unsigned long id; 531 532 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 533 return IRQ_HANDLED; 534 535 xa_for_each(&pf->eswitch.reprs, id, repr) 536 napi_schedule(&repr->q_vector->napi); 537 538 return IRQ_HANDLED; 539 } 540 541 /** 542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 543 * @vsi: VSI pointer 544 */ 545 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 546 { 547 struct ice_vsi_stats *vsi_stat; 548 struct ice_pf *pf = vsi->back; 549 550 if (vsi->type == ICE_VSI_CHNL) 551 return 0; 552 if (!pf->vsi_stats) 553 return -ENOENT; 554 555 if (pf->vsi_stats[vsi->idx]) 556 /* realloc will happen in rebuild path */ 557 return 0; 558 559 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 560 if (!vsi_stat) 561 return -ENOMEM; 562 563 vsi_stat->tx_ring_stats = 564 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 565 GFP_KERNEL); 566 if (!vsi_stat->tx_ring_stats) 567 goto err_alloc_tx; 568 569 vsi_stat->rx_ring_stats = 570 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 571 GFP_KERNEL); 572 if (!vsi_stat->rx_ring_stats) 573 goto err_alloc_rx; 574 575 pf->vsi_stats[vsi->idx] = vsi_stat; 576 577 return 0; 578 579 err_alloc_rx: 580 kfree(vsi_stat->rx_ring_stats); 581 err_alloc_tx: 582 kfree(vsi_stat->tx_ring_stats); 583 kfree(vsi_stat); 584 pf->vsi_stats[vsi->idx] = NULL; 585 return -ENOMEM; 586 } 587 588 /** 589 * ice_vsi_alloc_def - set default values for already allocated VSI 590 * @vsi: ptr to VSI 591 * @ch: ptr to channel 592 */ 593 static int 594 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 595 { 596 if (vsi->type != ICE_VSI_CHNL) { 597 ice_vsi_set_num_qs(vsi); 598 if (ice_vsi_alloc_arrays(vsi)) 599 return -ENOMEM; 600 } 601 602 switch (vsi->type) { 603 case ICE_VSI_SWITCHDEV_CTRL: 604 /* Setup eswitch MSIX irq handler for VSI */ 605 vsi->irq_handler = ice_eswitch_msix_clean_rings; 606 break; 607 case ICE_VSI_PF: 608 /* Setup default MSIX irq handler for VSI */ 609 vsi->irq_handler = ice_msix_clean_rings; 610 break; 611 case ICE_VSI_CTRL: 612 /* Setup ctrl VSI MSIX irq handler */ 613 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 614 break; 615 case ICE_VSI_CHNL: 616 if (!ch) 617 return -EINVAL; 618 619 vsi->num_rxq = ch->num_rxq; 620 vsi->num_txq = ch->num_txq; 621 vsi->next_base_q = ch->base_q; 622 break; 623 case ICE_VSI_VF: 624 case ICE_VSI_LB: 625 break; 626 default: 627 ice_vsi_free_arrays(vsi); 628 return -EINVAL; 629 } 630 631 return 0; 632 } 633 634 /** 635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 636 * @pf: board private structure 637 * 638 * Reserves a VSI index from the PF and allocates an empty VSI structure 639 * without a type. The VSI structure must later be initialized by calling 640 * ice_vsi_cfg(). 641 * 642 * returns a pointer to a VSI on success, NULL on failure. 643 */ 644 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 645 { 646 struct device *dev = ice_pf_to_dev(pf); 647 struct ice_vsi *vsi = NULL; 648 649 /* Need to protect the allocation of the VSIs at the PF level */ 650 mutex_lock(&pf->sw_mutex); 651 652 /* If we have already allocated our maximum number of VSIs, 653 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 654 * is available to be populated 655 */ 656 if (pf->next_vsi == ICE_NO_VSI) { 657 dev_dbg(dev, "out of VSI slots!\n"); 658 goto unlock_pf; 659 } 660 661 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 662 if (!vsi) 663 goto unlock_pf; 664 665 vsi->back = pf; 666 set_bit(ICE_VSI_DOWN, vsi->state); 667 668 /* fill slot and make note of the index */ 669 vsi->idx = pf->next_vsi; 670 pf->vsi[pf->next_vsi] = vsi; 671 672 /* prepare pf->next_vsi for next use */ 673 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 674 pf->next_vsi); 675 676 unlock_pf: 677 mutex_unlock(&pf->sw_mutex); 678 return vsi; 679 } 680 681 /** 682 * ice_alloc_fd_res - Allocate FD resource for a VSI 683 * @vsi: pointer to the ice_vsi 684 * 685 * This allocates the FD resources 686 * 687 * Returns 0 on success, -EPERM on no-op or -EIO on failure 688 */ 689 static int ice_alloc_fd_res(struct ice_vsi *vsi) 690 { 691 struct ice_pf *pf = vsi->back; 692 u32 g_val, b_val; 693 694 /* Flow Director filters are only allocated/assigned to the PF VSI or 695 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 696 * add/delete filters so resources are not allocated to it 697 */ 698 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 699 return -EPERM; 700 701 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 702 vsi->type == ICE_VSI_CHNL)) 703 return -EPERM; 704 705 /* FD filters from guaranteed pool per VSI */ 706 g_val = pf->hw.func_caps.fd_fltr_guar; 707 if (!g_val) 708 return -EPERM; 709 710 /* FD filters from best effort pool */ 711 b_val = pf->hw.func_caps.fd_fltr_best_effort; 712 if (!b_val) 713 return -EPERM; 714 715 /* PF main VSI gets only 64 FD resources from guaranteed pool 716 * when ADQ is configured. 717 */ 718 #define ICE_PF_VSI_GFLTR 64 719 720 /* determine FD filter resources per VSI from shared(best effort) and 721 * dedicated pool 722 */ 723 if (vsi->type == ICE_VSI_PF) { 724 vsi->num_gfltr = g_val; 725 /* if MQPRIO is configured, main VSI doesn't get all FD 726 * resources from guaranteed pool. PF VSI gets 64 FD resources 727 */ 728 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 729 if (g_val < ICE_PF_VSI_GFLTR) 730 return -EPERM; 731 /* allow bare minimum entries for PF VSI */ 732 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 733 } 734 735 /* each VSI gets same "best_effort" quota */ 736 vsi->num_bfltr = b_val; 737 } else if (vsi->type == ICE_VSI_VF) { 738 vsi->num_gfltr = 0; 739 740 /* each VSI gets same "best_effort" quota */ 741 vsi->num_bfltr = b_val; 742 } else { 743 struct ice_vsi *main_vsi; 744 int numtc; 745 746 main_vsi = ice_get_main_vsi(pf); 747 if (!main_vsi) 748 return -EPERM; 749 750 if (!main_vsi->all_numtc) 751 return -EINVAL; 752 753 /* figure out ADQ numtc */ 754 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 755 756 /* only one TC but still asking resources for channels, 757 * invalid config 758 */ 759 if (numtc < ICE_CHNL_START_TC) 760 return -EPERM; 761 762 g_val -= ICE_PF_VSI_GFLTR; 763 /* channel VSIs gets equal share from guaranteed pool */ 764 vsi->num_gfltr = g_val / numtc; 765 766 /* each VSI gets same "best_effort" quota */ 767 vsi->num_bfltr = b_val; 768 } 769 770 return 0; 771 } 772 773 /** 774 * ice_vsi_get_qs - Assign queues from PF to VSI 775 * @vsi: the VSI to assign queues to 776 * 777 * Returns 0 on success and a negative value on error 778 */ 779 static int ice_vsi_get_qs(struct ice_vsi *vsi) 780 { 781 struct ice_pf *pf = vsi->back; 782 struct ice_qs_cfg tx_qs_cfg = { 783 .qs_mutex = &pf->avail_q_mutex, 784 .pf_map = pf->avail_txqs, 785 .pf_map_size = pf->max_pf_txqs, 786 .q_count = vsi->alloc_txq, 787 .scatter_count = ICE_MAX_SCATTER_TXQS, 788 .vsi_map = vsi->txq_map, 789 .vsi_map_offset = 0, 790 .mapping_mode = ICE_VSI_MAP_CONTIG 791 }; 792 struct ice_qs_cfg rx_qs_cfg = { 793 .qs_mutex = &pf->avail_q_mutex, 794 .pf_map = pf->avail_rxqs, 795 .pf_map_size = pf->max_pf_rxqs, 796 .q_count = vsi->alloc_rxq, 797 .scatter_count = ICE_MAX_SCATTER_RXQS, 798 .vsi_map = vsi->rxq_map, 799 .vsi_map_offset = 0, 800 .mapping_mode = ICE_VSI_MAP_CONTIG 801 }; 802 int ret; 803 804 if (vsi->type == ICE_VSI_CHNL) 805 return 0; 806 807 ret = __ice_vsi_get_qs(&tx_qs_cfg); 808 if (ret) 809 return ret; 810 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 811 812 ret = __ice_vsi_get_qs(&rx_qs_cfg); 813 if (ret) 814 return ret; 815 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 816 817 return 0; 818 } 819 820 /** 821 * ice_vsi_put_qs - Release queues from VSI to PF 822 * @vsi: the VSI that is going to release queues 823 */ 824 static void ice_vsi_put_qs(struct ice_vsi *vsi) 825 { 826 struct ice_pf *pf = vsi->back; 827 int i; 828 829 mutex_lock(&pf->avail_q_mutex); 830 831 ice_for_each_alloc_txq(vsi, i) { 832 clear_bit(vsi->txq_map[i], pf->avail_txqs); 833 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 834 } 835 836 ice_for_each_alloc_rxq(vsi, i) { 837 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 838 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 839 } 840 841 mutex_unlock(&pf->avail_q_mutex); 842 } 843 844 /** 845 * ice_is_safe_mode 846 * @pf: pointer to the PF struct 847 * 848 * returns true if driver is in safe mode, false otherwise 849 */ 850 bool ice_is_safe_mode(struct ice_pf *pf) 851 { 852 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 853 } 854 855 /** 856 * ice_is_rdma_ena 857 * @pf: pointer to the PF struct 858 * 859 * returns true if RDMA is currently supported, false otherwise 860 */ 861 bool ice_is_rdma_ena(struct ice_pf *pf) 862 { 863 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 864 } 865 866 /** 867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 868 * @vsi: the VSI being cleaned up 869 * 870 * This function deletes RSS input set for all flows that were configured 871 * for this VSI 872 */ 873 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 874 { 875 struct ice_pf *pf = vsi->back; 876 int status; 877 878 if (ice_is_safe_mode(pf)) 879 return; 880 881 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 882 if (status) 883 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 884 vsi->vsi_num, status); 885 } 886 887 /** 888 * ice_rss_clean - Delete RSS related VSI structures and configuration 889 * @vsi: the VSI being removed 890 */ 891 static void ice_rss_clean(struct ice_vsi *vsi) 892 { 893 struct ice_pf *pf = vsi->back; 894 struct device *dev; 895 896 dev = ice_pf_to_dev(pf); 897 898 devm_kfree(dev, vsi->rss_hkey_user); 899 devm_kfree(dev, vsi->rss_lut_user); 900 901 ice_vsi_clean_rss_flow_fld(vsi); 902 /* remove RSS replay list */ 903 if (!ice_is_safe_mode(pf)) 904 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 905 } 906 907 /** 908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 909 * @vsi: the VSI being configured 910 */ 911 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 912 { 913 struct ice_hw_common_caps *cap; 914 struct ice_pf *pf = vsi->back; 915 u16 max_rss_size; 916 917 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 918 vsi->rss_size = 1; 919 return; 920 } 921 922 cap = &pf->hw.func_caps.common_cap; 923 max_rss_size = BIT(cap->rss_table_entry_width); 924 switch (vsi->type) { 925 case ICE_VSI_CHNL: 926 case ICE_VSI_PF: 927 /* PF VSI will inherit RSS instance of PF */ 928 vsi->rss_table_size = (u16)cap->rss_table_size; 929 if (vsi->type == ICE_VSI_CHNL) 930 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 931 else 932 vsi->rss_size = min_t(u16, num_online_cpus(), 933 max_rss_size); 934 vsi->rss_lut_type = ICE_LUT_PF; 935 break; 936 case ICE_VSI_SWITCHDEV_CTRL: 937 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 938 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); 939 vsi->rss_lut_type = ICE_LUT_VSI; 940 break; 941 case ICE_VSI_VF: 942 /* VF VSI will get a small RSS table. 943 * For VSI_LUT, LUT size should be set to 64 bytes. 944 */ 945 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 946 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 947 vsi->rss_lut_type = ICE_LUT_VSI; 948 break; 949 case ICE_VSI_LB: 950 break; 951 default: 952 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 953 ice_vsi_type_str(vsi->type)); 954 break; 955 } 956 } 957 958 /** 959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 960 * @hw: HW structure used to determine the VLAN mode of the device 961 * @ctxt: the VSI context being set 962 * 963 * This initializes a default VSI context for all sections except the Queues. 964 */ 965 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 966 { 967 u32 table = 0; 968 969 memset(&ctxt->info, 0, sizeof(ctxt->info)); 970 /* VSI's should be allocated from shared pool */ 971 ctxt->alloc_from_pool = true; 972 /* Src pruning enabled by default */ 973 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 974 /* Traffic from VSI can be sent to LAN */ 975 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 976 /* allow all untagged/tagged packets by default on Tx */ 977 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M, 978 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL); 979 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 980 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 981 * 982 * DVM - leave inner VLAN in packet by default 983 */ 984 if (ice_is_dvm_ena(hw)) { 985 ctxt->info.inner_vlan_flags |= 986 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M, 987 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING); 988 ctxt->info.outer_vlan_flags = 989 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M, 990 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL); 991 ctxt->info.outer_vlan_flags |= 992 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M, 993 ICE_AQ_VSI_OUTER_TAG_VLAN_8100); 994 ctxt->info.outer_vlan_flags |= 995 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 996 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 997 } 998 /* Have 1:1 UP mapping for both ingress/egress tables */ 999 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 1000 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 1001 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 1002 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 1003 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 1004 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 1005 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 1006 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 1007 ctxt->info.ingress_table = cpu_to_le32(table); 1008 ctxt->info.egress_table = cpu_to_le32(table); 1009 /* Have 1:1 UP mapping for outer to inner UP table */ 1010 ctxt->info.outer_up_table = cpu_to_le32(table); 1011 /* No Outer tag support outer_tag_flags remains to zero */ 1012 } 1013 1014 /** 1015 * ice_vsi_setup_q_map - Setup a VSI queue map 1016 * @vsi: the VSI being configured 1017 * @ctxt: VSI context structure 1018 */ 1019 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1020 { 1021 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1022 u16 num_txq_per_tc, num_rxq_per_tc; 1023 u16 qcount_tx = vsi->alloc_txq; 1024 u16 qcount_rx = vsi->alloc_rxq; 1025 u8 netdev_tc = 0; 1026 int i; 1027 1028 if (!vsi->tc_cfg.numtc) { 1029 /* at least TC0 should be enabled by default */ 1030 vsi->tc_cfg.numtc = 1; 1031 vsi->tc_cfg.ena_tc = 1; 1032 } 1033 1034 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1035 if (!num_rxq_per_tc) 1036 num_rxq_per_tc = 1; 1037 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1038 if (!num_txq_per_tc) 1039 num_txq_per_tc = 1; 1040 1041 /* find the (rounded up) power-of-2 of qcount */ 1042 pow = (u16)order_base_2(num_rxq_per_tc); 1043 1044 /* TC mapping is a function of the number of Rx queues assigned to the 1045 * VSI for each traffic class and the offset of these queues. 1046 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1047 * queues allocated to TC0. No:of queues is a power-of-2. 1048 * 1049 * If TC is not enabled, the queue offset is set to 0, and allocate one 1050 * queue, this way, traffic for the given TC will be sent to the default 1051 * queue. 1052 * 1053 * Setup number and offset of Rx queues for all TCs for the VSI 1054 */ 1055 ice_for_each_traffic_class(i) { 1056 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1057 /* TC is not enabled */ 1058 vsi->tc_cfg.tc_info[i].qoffset = 0; 1059 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1060 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1061 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1062 ctxt->info.tc_mapping[i] = 0; 1063 continue; 1064 } 1065 1066 /* TC is enabled */ 1067 vsi->tc_cfg.tc_info[i].qoffset = offset; 1068 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1069 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1070 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1071 1072 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1073 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1074 offset += num_rxq_per_tc; 1075 tx_count += num_txq_per_tc; 1076 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1077 } 1078 1079 /* if offset is non-zero, means it is calculated correctly based on 1080 * enabled TCs for a given VSI otherwise qcount_rx will always 1081 * be correct and non-zero because it is based off - VSI's 1082 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1083 * at least 1) 1084 */ 1085 if (offset) 1086 rx_count = offset; 1087 else 1088 rx_count = num_rxq_per_tc; 1089 1090 if (rx_count > vsi->alloc_rxq) { 1091 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1092 rx_count, vsi->alloc_rxq); 1093 return -EINVAL; 1094 } 1095 1096 if (tx_count > vsi->alloc_txq) { 1097 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1098 tx_count, vsi->alloc_txq); 1099 return -EINVAL; 1100 } 1101 1102 vsi->num_txq = tx_count; 1103 vsi->num_rxq = rx_count; 1104 1105 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1106 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1107 /* since there is a chance that num_rxq could have been changed 1108 * in the above for loop, make num_txq equal to num_rxq. 1109 */ 1110 vsi->num_txq = vsi->num_rxq; 1111 } 1112 1113 /* Rx queue mapping */ 1114 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1115 /* q_mapping buffer holds the info for the first queue allocated for 1116 * this VSI in the PF space and also the number of queues associated 1117 * with this VSI. 1118 */ 1119 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1120 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1127 * @ctxt: the VSI context being set 1128 * @vsi: the VSI being configured 1129 */ 1130 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1131 { 1132 u8 dflt_q_group, dflt_q_prio; 1133 u16 dflt_q, report_q, val; 1134 1135 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1136 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1137 return; 1138 1139 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1140 ctxt->info.valid_sections |= cpu_to_le16(val); 1141 dflt_q = 0; 1142 dflt_q_group = 0; 1143 report_q = 0; 1144 dflt_q_prio = 0; 1145 1146 /* enable flow director filtering/programming */ 1147 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1148 ctxt->info.fd_options = cpu_to_le16(val); 1149 /* max of allocated flow director filters */ 1150 ctxt->info.max_fd_fltr_dedicated = 1151 cpu_to_le16(vsi->num_gfltr); 1152 /* max of shared flow director filters any VSI may program */ 1153 ctxt->info.max_fd_fltr_shared = 1154 cpu_to_le16(vsi->num_bfltr); 1155 /* default queue index within the VSI of the default FD */ 1156 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q); 1157 /* target queue or queue group to the FD filter */ 1158 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group); 1159 ctxt->info.fd_def_q = cpu_to_le16(val); 1160 /* queue index on which FD filter completion is reported */ 1161 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q); 1162 /* priority of the default qindex action */ 1163 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio); 1164 ctxt->info.fd_report_opt = cpu_to_le16(val); 1165 } 1166 1167 /** 1168 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1169 * @ctxt: the VSI context being set 1170 * @vsi: the VSI being configured 1171 */ 1172 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1173 { 1174 u8 lut_type, hash_type; 1175 struct device *dev; 1176 struct ice_pf *pf; 1177 1178 pf = vsi->back; 1179 dev = ice_pf_to_dev(pf); 1180 1181 switch (vsi->type) { 1182 case ICE_VSI_CHNL: 1183 case ICE_VSI_PF: 1184 /* PF VSI will inherit RSS instance of PF */ 1185 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1186 break; 1187 case ICE_VSI_VF: 1188 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1189 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1190 break; 1191 default: 1192 dev_dbg(dev, "Unsupported VSI type %s\n", 1193 ice_vsi_type_str(vsi->type)); 1194 return; 1195 } 1196 1197 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1198 vsi->rss_hfunc = hash_type; 1199 1200 ctxt->info.q_opt_rss = 1201 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 1202 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 1203 } 1204 1205 static void 1206 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1207 { 1208 struct ice_pf *pf = vsi->back; 1209 u16 qcount, qmap; 1210 u8 offset = 0; 1211 int pow; 1212 1213 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1214 1215 pow = order_base_2(qcount); 1216 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1217 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1218 1219 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1220 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1221 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1222 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1223 } 1224 1225 /** 1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1227 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1228 * 1229 * returns true if Rx VLAN pruning is enabled and false otherwise. 1230 */ 1231 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1232 { 1233 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1234 } 1235 1236 /** 1237 * ice_vsi_init - Create and initialize a VSI 1238 * @vsi: the VSI being configured 1239 * @vsi_flags: VSI configuration flags 1240 * 1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1242 * reconfigure an existing context. 1243 * 1244 * This initializes a VSI context depending on the VSI type to be added and 1245 * passes it down to the add_vsi aq command to create a new VSI. 1246 */ 1247 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1248 { 1249 struct ice_pf *pf = vsi->back; 1250 struct ice_hw *hw = &pf->hw; 1251 struct ice_vsi_ctx *ctxt; 1252 struct device *dev; 1253 int ret = 0; 1254 1255 dev = ice_pf_to_dev(pf); 1256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1257 if (!ctxt) 1258 return -ENOMEM; 1259 1260 switch (vsi->type) { 1261 case ICE_VSI_CTRL: 1262 case ICE_VSI_LB: 1263 case ICE_VSI_PF: 1264 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1265 break; 1266 case ICE_VSI_SWITCHDEV_CTRL: 1267 case ICE_VSI_CHNL: 1268 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1269 break; 1270 case ICE_VSI_VF: 1271 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1272 /* VF number here is the absolute VF number (0-255) */ 1273 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1274 break; 1275 default: 1276 ret = -ENODEV; 1277 goto out; 1278 } 1279 1280 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1281 * prune enabled 1282 */ 1283 if (vsi->type == ICE_VSI_CHNL) { 1284 struct ice_vsi *main_vsi; 1285 1286 main_vsi = ice_get_main_vsi(pf); 1287 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1288 ctxt->info.sw_flags2 |= 1289 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1290 else 1291 ctxt->info.sw_flags2 &= 1292 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1293 } 1294 1295 ice_set_dflt_vsi_ctx(hw, ctxt); 1296 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1297 ice_set_fd_vsi_ctx(ctxt, vsi); 1298 /* if the switch is in VEB mode, allow VSI loopback */ 1299 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1300 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1301 1302 /* Set LUT type and HASH type if RSS is enabled */ 1303 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1304 vsi->type != ICE_VSI_CTRL) { 1305 ice_set_rss_vsi_ctx(ctxt, vsi); 1306 /* if updating VSI context, make sure to set valid_section: 1307 * to indicate which section of VSI context being updated 1308 */ 1309 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1310 ctxt->info.valid_sections |= 1311 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1312 } 1313 1314 ctxt->info.sw_id = vsi->port_info->sw_id; 1315 if (vsi->type == ICE_VSI_CHNL) { 1316 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1317 } else { 1318 ret = ice_vsi_setup_q_map(vsi, ctxt); 1319 if (ret) 1320 goto out; 1321 1322 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1323 /* means VSI being updated */ 1324 /* must to indicate which section of VSI context are 1325 * being modified 1326 */ 1327 ctxt->info.valid_sections |= 1328 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1329 } 1330 1331 /* Allow control frames out of main VSI */ 1332 if (vsi->type == ICE_VSI_PF) { 1333 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1334 ctxt->info.valid_sections |= 1335 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1336 } 1337 1338 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1339 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1340 if (ret) { 1341 dev_err(dev, "Add VSI failed, err %d\n", ret); 1342 ret = -EIO; 1343 goto out; 1344 } 1345 } else { 1346 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1347 if (ret) { 1348 dev_err(dev, "Update VSI failed, err %d\n", ret); 1349 ret = -EIO; 1350 goto out; 1351 } 1352 } 1353 1354 /* keep context for update VSI operations */ 1355 vsi->info = ctxt->info; 1356 1357 /* record VSI number returned */ 1358 vsi->vsi_num = ctxt->vsi_num; 1359 1360 out: 1361 kfree(ctxt); 1362 return ret; 1363 } 1364 1365 /** 1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1367 * @vsi: the VSI having rings deallocated 1368 */ 1369 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1370 { 1371 int i; 1372 1373 /* Avoid stale references by clearing map from vector to ring */ 1374 if (vsi->q_vectors) { 1375 ice_for_each_q_vector(vsi, i) { 1376 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1377 1378 if (q_vector) { 1379 q_vector->tx.tx_ring = NULL; 1380 q_vector->rx.rx_ring = NULL; 1381 } 1382 } 1383 } 1384 1385 if (vsi->tx_rings) { 1386 ice_for_each_alloc_txq(vsi, i) { 1387 if (vsi->tx_rings[i]) { 1388 kfree_rcu(vsi->tx_rings[i], rcu); 1389 WRITE_ONCE(vsi->tx_rings[i], NULL); 1390 } 1391 } 1392 } 1393 if (vsi->rx_rings) { 1394 ice_for_each_alloc_rxq(vsi, i) { 1395 if (vsi->rx_rings[i]) { 1396 kfree_rcu(vsi->rx_rings[i], rcu); 1397 WRITE_ONCE(vsi->rx_rings[i], NULL); 1398 } 1399 } 1400 } 1401 } 1402 1403 /** 1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1405 * @vsi: VSI which is having rings allocated 1406 */ 1407 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1408 { 1409 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1410 struct ice_pf *pf = vsi->back; 1411 struct device *dev; 1412 u16 i; 1413 1414 dev = ice_pf_to_dev(pf); 1415 /* Allocate Tx rings */ 1416 ice_for_each_alloc_txq(vsi, i) { 1417 struct ice_tx_ring *ring; 1418 1419 /* allocate with kzalloc(), free with kfree_rcu() */ 1420 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1421 1422 if (!ring) 1423 goto err_out; 1424 1425 ring->q_index = i; 1426 ring->reg_idx = vsi->txq_map[i]; 1427 ring->vsi = vsi; 1428 ring->tx_tstamps = &pf->ptp.port.tx; 1429 ring->dev = dev; 1430 ring->count = vsi->num_tx_desc; 1431 ring->txq_teid = ICE_INVAL_TEID; 1432 if (dvm_ena) 1433 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1434 else 1435 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1436 WRITE_ONCE(vsi->tx_rings[i], ring); 1437 } 1438 1439 /* Allocate Rx rings */ 1440 ice_for_each_alloc_rxq(vsi, i) { 1441 struct ice_rx_ring *ring; 1442 1443 /* allocate with kzalloc(), free with kfree_rcu() */ 1444 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1445 if (!ring) 1446 goto err_out; 1447 1448 ring->q_index = i; 1449 ring->reg_idx = vsi->rxq_map[i]; 1450 ring->vsi = vsi; 1451 ring->netdev = vsi->netdev; 1452 ring->dev = dev; 1453 ring->count = vsi->num_rx_desc; 1454 ring->cached_phctime = pf->ptp.cached_phc_time; 1455 WRITE_ONCE(vsi->rx_rings[i], ring); 1456 } 1457 1458 return 0; 1459 1460 err_out: 1461 ice_vsi_clear_rings(vsi); 1462 return -ENOMEM; 1463 } 1464 1465 /** 1466 * ice_vsi_manage_rss_lut - disable/enable RSS 1467 * @vsi: the VSI being changed 1468 * @ena: boolean value indicating if this is an enable or disable request 1469 * 1470 * In the event of disable request for RSS, this function will zero out RSS 1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1472 * LUT. 1473 */ 1474 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1475 { 1476 u8 *lut; 1477 1478 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1479 if (!lut) 1480 return; 1481 1482 if (ena) { 1483 if (vsi->rss_lut_user) 1484 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1485 else 1486 ice_fill_rss_lut(lut, vsi->rss_table_size, 1487 vsi->rss_size); 1488 } 1489 1490 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1491 kfree(lut); 1492 } 1493 1494 /** 1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1496 * @vsi: VSI to be configured 1497 * @disable: set to true to have FCS / CRC in the frame data 1498 */ 1499 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1500 { 1501 int i; 1502 1503 ice_for_each_rxq(vsi, i) 1504 if (disable) 1505 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1506 else 1507 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1508 } 1509 1510 /** 1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1512 * @vsi: VSI to be configured 1513 */ 1514 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1515 { 1516 struct ice_pf *pf = vsi->back; 1517 struct device *dev; 1518 u8 *lut, *key; 1519 int err; 1520 1521 dev = ice_pf_to_dev(pf); 1522 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1523 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1524 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1525 } else { 1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1527 1528 /* If orig_rss_size is valid and it is less than determined 1529 * main VSI's rss_size, update main VSI's rss_size to be 1530 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1531 * RSS table gets programmed to be correct (whatever it was 1532 * to begin with (prior to setup-tc for ADQ config) 1533 */ 1534 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1535 vsi->orig_rss_size <= vsi->num_rxq) { 1536 vsi->rss_size = vsi->orig_rss_size; 1537 /* now orig_rss_size is used, reset it to zero */ 1538 vsi->orig_rss_size = 0; 1539 } 1540 } 1541 1542 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1543 if (!lut) 1544 return -ENOMEM; 1545 1546 if (vsi->rss_lut_user) 1547 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1548 else 1549 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1550 1551 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1552 if (err) { 1553 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1554 goto ice_vsi_cfg_rss_exit; 1555 } 1556 1557 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1558 if (!key) { 1559 err = -ENOMEM; 1560 goto ice_vsi_cfg_rss_exit; 1561 } 1562 1563 if (vsi->rss_hkey_user) 1564 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1565 else 1566 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1567 1568 err = ice_set_rss_key(vsi, key); 1569 if (err) 1570 dev_err(dev, "set_rss_key failed, error %d\n", err); 1571 1572 kfree(key); 1573 ice_vsi_cfg_rss_exit: 1574 kfree(lut); 1575 return err; 1576 } 1577 1578 /** 1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1580 * @vsi: VSI to be configured 1581 * 1582 * This function will only be called during the VF VSI setup. Upon successful 1583 * completion of package download, this function will configure default RSS 1584 * input sets for VF VSI. 1585 */ 1586 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1587 { 1588 struct ice_pf *pf = vsi->back; 1589 struct device *dev; 1590 int status; 1591 1592 dev = ice_pf_to_dev(pf); 1593 if (ice_is_safe_mode(pf)) { 1594 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1595 vsi->vsi_num); 1596 return; 1597 } 1598 1599 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA); 1600 if (status) 1601 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1602 vsi->vsi_num, status); 1603 } 1604 1605 static const struct ice_rss_hash_cfg default_rss_cfgs[] = { 1606 /* configure RSS for IPv4 with input set IP src/dst */ 1607 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false}, 1608 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1609 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false}, 1610 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1611 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4, 1612 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1613 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1614 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4, 1615 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1616 /* configure RSS for sctp4 with input set IP src/dst - only support 1617 * RSS on SCTPv4 on outer headers (non-tunneled) 1618 */ 1619 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4, 1620 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1621 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1622 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6, 1623 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1624 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1625 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6, 1626 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1627 /* configure RSS for sctp6 with input set IPv6 src/dst - only support 1628 * RSS on SCTPv6 on outer headers (non-tunneled) 1629 */ 1630 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6, 1631 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1632 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */ 1633 {ICE_FLOW_SEG_HDR_ESP, 1634 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false}, 1635 }; 1636 1637 /** 1638 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1639 * @vsi: VSI to be configured 1640 * 1641 * This function will only be called after successful download package call 1642 * during initialization of PF. Since the downloaded package will erase the 1643 * RSS section, this function will configure RSS input sets for different 1644 * flow types. The last profile added has the highest priority, therefore 2 1645 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1646 * (i.e. IPv4 src/dst TCP src/dst port). 1647 */ 1648 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1649 { 1650 u16 vsi_num = vsi->vsi_num; 1651 struct ice_pf *pf = vsi->back; 1652 struct ice_hw *hw = &pf->hw; 1653 struct device *dev; 1654 int status; 1655 u32 i; 1656 1657 dev = ice_pf_to_dev(pf); 1658 if (ice_is_safe_mode(pf)) { 1659 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1660 vsi_num); 1661 return; 1662 } 1663 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) { 1664 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i]; 1665 1666 status = ice_add_rss_cfg(hw, vsi, cfg); 1667 if (status) 1668 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n", 1669 cfg->addl_hdrs, cfg->hash_flds, 1670 cfg->hdr_type, cfg->symm); 1671 } 1672 } 1673 1674 /** 1675 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1676 * @vsi: VSI 1677 */ 1678 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1679 { 1680 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1681 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 1682 vsi->rx_buf_len = ICE_RXBUF_1664; 1683 #if (PAGE_SIZE < 8192) 1684 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1685 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1686 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1687 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1688 #endif 1689 } else { 1690 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1691 vsi->rx_buf_len = ICE_RXBUF_3072; 1692 } 1693 } 1694 1695 /** 1696 * ice_pf_state_is_nominal - checks the PF for nominal state 1697 * @pf: pointer to PF to check 1698 * 1699 * Check the PF's state for a collection of bits that would indicate 1700 * the PF is in a state that would inhibit normal operation for 1701 * driver functionality. 1702 * 1703 * Returns true if PF is in a nominal state, false otherwise 1704 */ 1705 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1706 { 1707 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1708 1709 if (!pf) 1710 return false; 1711 1712 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1713 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1714 return false; 1715 1716 return true; 1717 } 1718 1719 /** 1720 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1721 * @vsi: the VSI to be updated 1722 */ 1723 void ice_update_eth_stats(struct ice_vsi *vsi) 1724 { 1725 struct ice_eth_stats *prev_es, *cur_es; 1726 struct ice_hw *hw = &vsi->back->hw; 1727 struct ice_pf *pf = vsi->back; 1728 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1729 1730 prev_es = &vsi->eth_stats_prev; 1731 cur_es = &vsi->eth_stats; 1732 1733 if (ice_is_reset_in_progress(pf->state)) 1734 vsi->stat_offsets_loaded = false; 1735 1736 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1737 &prev_es->rx_bytes, &cur_es->rx_bytes); 1738 1739 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1740 &prev_es->rx_unicast, &cur_es->rx_unicast); 1741 1742 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1743 &prev_es->rx_multicast, &cur_es->rx_multicast); 1744 1745 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1746 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1747 1748 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1749 &prev_es->rx_discards, &cur_es->rx_discards); 1750 1751 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1752 &prev_es->tx_bytes, &cur_es->tx_bytes); 1753 1754 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1755 &prev_es->tx_unicast, &cur_es->tx_unicast); 1756 1757 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1758 &prev_es->tx_multicast, &cur_es->tx_multicast); 1759 1760 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1761 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1762 1763 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1764 &prev_es->tx_errors, &cur_es->tx_errors); 1765 1766 vsi->stat_offsets_loaded = true; 1767 } 1768 1769 /** 1770 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1771 * @hw: HW pointer 1772 * @pf_q: index of the Rx queue in the PF's queue space 1773 * @rxdid: flexible descriptor RXDID 1774 * @prio: priority for the RXDID for this queue 1775 * @ena_ts: true to enable timestamp and false to disable timestamp 1776 */ 1777 void 1778 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1779 bool ena_ts) 1780 { 1781 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1782 1783 /* clear any previous values */ 1784 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1785 QRXFLXP_CNTXT_RXDID_PRIO_M | 1786 QRXFLXP_CNTXT_TS_M); 1787 1788 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid); 1789 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio); 1790 1791 if (ena_ts) 1792 /* Enable TimeSync on this queue */ 1793 regval |= QRXFLXP_CNTXT_TS_M; 1794 1795 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1796 } 1797 1798 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1799 { 1800 if (q_idx >= vsi->num_rxq) 1801 return -EINVAL; 1802 1803 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1804 } 1805 1806 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1807 { 1808 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 1809 1810 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1811 return -EINVAL; 1812 1813 qg_buf->num_txqs = 1; 1814 1815 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1816 } 1817 1818 /** 1819 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1820 * @vsi: the VSI being configured 1821 * 1822 * Return 0 on success and a negative value on error 1823 * Configure the Rx VSI for operation. 1824 */ 1825 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1826 { 1827 u16 i; 1828 1829 if (vsi->type == ICE_VSI_VF) 1830 goto setup_rings; 1831 1832 ice_vsi_cfg_frame_size(vsi); 1833 setup_rings: 1834 /* set up individual rings */ 1835 ice_for_each_rxq(vsi, i) { 1836 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1837 1838 if (err) 1839 return err; 1840 } 1841 1842 return 0; 1843 } 1844 1845 /** 1846 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1847 * @vsi: the VSI being configured 1848 * @rings: Tx ring array to be configured 1849 * @count: number of Tx ring array elements 1850 * 1851 * Return 0 on success and a negative value on error 1852 * Configure the Tx VSI for operation. 1853 */ 1854 static int 1855 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1856 { 1857 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 1858 int err = 0; 1859 u16 q_idx; 1860 1861 qg_buf->num_txqs = 1; 1862 1863 for (q_idx = 0; q_idx < count; q_idx++) { 1864 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1865 if (err) 1866 break; 1867 } 1868 1869 return err; 1870 } 1871 1872 /** 1873 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1874 * @vsi: the VSI being configured 1875 * 1876 * Return 0 on success and a negative value on error 1877 * Configure the Tx VSI for operation. 1878 */ 1879 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1880 { 1881 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1882 } 1883 1884 /** 1885 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1886 * @vsi: the VSI being configured 1887 * 1888 * Return 0 on success and a negative value on error 1889 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1890 */ 1891 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1892 { 1893 int ret; 1894 int i; 1895 1896 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1897 if (ret) 1898 return ret; 1899 1900 ice_for_each_rxq(vsi, i) 1901 ice_tx_xsk_pool(vsi, i); 1902 1903 return 0; 1904 } 1905 1906 /** 1907 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1908 * @intrl: interrupt rate limit in usecs 1909 * @gran: interrupt rate limit granularity in usecs 1910 * 1911 * This function converts a decimal interrupt rate limit in usecs to the format 1912 * expected by firmware. 1913 */ 1914 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1915 { 1916 u32 val = intrl / gran; 1917 1918 if (val) 1919 return val | GLINT_RATE_INTRL_ENA_M; 1920 return 0; 1921 } 1922 1923 /** 1924 * ice_write_intrl - write throttle rate limit to interrupt specific register 1925 * @q_vector: pointer to interrupt specific structure 1926 * @intrl: throttle rate limit in microseconds to write 1927 */ 1928 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1929 { 1930 struct ice_hw *hw = &q_vector->vsi->back->hw; 1931 1932 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1933 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1934 } 1935 1936 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1937 { 1938 switch (rc->type) { 1939 case ICE_RX_CONTAINER: 1940 if (rc->rx_ring) 1941 return rc->rx_ring->q_vector; 1942 break; 1943 case ICE_TX_CONTAINER: 1944 if (rc->tx_ring) 1945 return rc->tx_ring->q_vector; 1946 break; 1947 default: 1948 break; 1949 } 1950 1951 return NULL; 1952 } 1953 1954 /** 1955 * __ice_write_itr - write throttle rate to register 1956 * @q_vector: pointer to interrupt data structure 1957 * @rc: pointer to ring container 1958 * @itr: throttle rate in microseconds to write 1959 */ 1960 static void __ice_write_itr(struct ice_q_vector *q_vector, 1961 struct ice_ring_container *rc, u16 itr) 1962 { 1963 struct ice_hw *hw = &q_vector->vsi->back->hw; 1964 1965 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1966 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1967 } 1968 1969 /** 1970 * ice_write_itr - write throttle rate to queue specific register 1971 * @rc: pointer to ring container 1972 * @itr: throttle rate in microseconds to write 1973 */ 1974 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1975 { 1976 struct ice_q_vector *q_vector; 1977 1978 q_vector = ice_pull_qvec_from_rc(rc); 1979 if (!q_vector) 1980 return; 1981 1982 __ice_write_itr(q_vector, rc, itr); 1983 } 1984 1985 /** 1986 * ice_set_q_vector_intrl - set up interrupt rate limiting 1987 * @q_vector: the vector to be configured 1988 * 1989 * Interrupt rate limiting is local to the vector, not per-queue so we must 1990 * detect if either ring container has dynamic moderation enabled to decide 1991 * what to set the interrupt rate limit to via INTRL settings. In the case that 1992 * dynamic moderation is disabled on both, write the value with the cached 1993 * setting to make sure INTRL register matches the user visible value. 1994 */ 1995 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 1996 { 1997 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 1998 /* in the case of dynamic enabled, cap each vector to no more 1999 * than (4 us) 250,000 ints/sec, which allows low latency 2000 * but still less than 500,000 interrupts per second, which 2001 * reduces CPU a bit in the case of the lowest latency 2002 * setting. The 4 here is a value in microseconds. 2003 */ 2004 ice_write_intrl(q_vector, 4); 2005 } else { 2006 ice_write_intrl(q_vector, q_vector->intrl); 2007 } 2008 } 2009 2010 /** 2011 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2012 * @vsi: the VSI being configured 2013 * 2014 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2015 * for the VF VSI. 2016 */ 2017 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2018 { 2019 struct ice_pf *pf = vsi->back; 2020 struct ice_hw *hw = &pf->hw; 2021 u16 txq = 0, rxq = 0; 2022 int i, q; 2023 2024 ice_for_each_q_vector(vsi, i) { 2025 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2026 u16 reg_idx = q_vector->reg_idx; 2027 2028 ice_cfg_itr(hw, q_vector); 2029 2030 /* Both Transmit Queue Interrupt Cause Control register 2031 * and Receive Queue Interrupt Cause control register 2032 * expects MSIX_INDX field to be the vector index 2033 * within the function space and not the absolute 2034 * vector index across PF or across device. 2035 * For SR-IOV VF VSIs queue vector index always starts 2036 * with 1 since first vector index(0) is used for OICR 2037 * in VF space. Since VMDq and other PF VSIs are within 2038 * the PF function space, use the vector index that is 2039 * tracked for this PF. 2040 */ 2041 for (q = 0; q < q_vector->num_ring_tx; q++) { 2042 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2043 q_vector->tx.itr_idx); 2044 txq++; 2045 } 2046 2047 for (q = 0; q < q_vector->num_ring_rx; q++) { 2048 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2049 q_vector->rx.itr_idx); 2050 rxq++; 2051 } 2052 } 2053 } 2054 2055 /** 2056 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2057 * @vsi: the VSI whose rings are to be enabled 2058 * 2059 * Returns 0 on success and a negative value on error 2060 */ 2061 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2062 { 2063 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2064 } 2065 2066 /** 2067 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2068 * @vsi: the VSI whose rings are to be disabled 2069 * 2070 * Returns 0 on success and a negative value on error 2071 */ 2072 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2073 { 2074 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2075 } 2076 2077 /** 2078 * ice_vsi_stop_tx_rings - Disable Tx rings 2079 * @vsi: the VSI being configured 2080 * @rst_src: reset source 2081 * @rel_vmvf_num: Relative ID of VF/VM 2082 * @rings: Tx ring array to be stopped 2083 * @count: number of Tx ring array elements 2084 */ 2085 static int 2086 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2087 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2088 { 2089 u16 q_idx; 2090 2091 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2092 return -EINVAL; 2093 2094 for (q_idx = 0; q_idx < count; q_idx++) { 2095 struct ice_txq_meta txq_meta = { }; 2096 int status; 2097 2098 if (!rings || !rings[q_idx]) 2099 return -EINVAL; 2100 2101 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2102 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2103 rings[q_idx], &txq_meta); 2104 2105 if (status) 2106 return status; 2107 } 2108 2109 return 0; 2110 } 2111 2112 /** 2113 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2114 * @vsi: the VSI being configured 2115 * @rst_src: reset source 2116 * @rel_vmvf_num: Relative ID of VF/VM 2117 */ 2118 int 2119 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2120 u16 rel_vmvf_num) 2121 { 2122 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2123 } 2124 2125 /** 2126 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2127 * @vsi: the VSI being configured 2128 */ 2129 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2130 { 2131 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2132 } 2133 2134 /** 2135 * ice_vsi_is_rx_queue_active 2136 * @vsi: the VSI being configured 2137 * 2138 * Return true if at least one queue is active. 2139 */ 2140 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2141 { 2142 struct ice_pf *pf = vsi->back; 2143 struct ice_hw *hw = &pf->hw; 2144 int i; 2145 2146 ice_for_each_rxq(vsi, i) { 2147 u32 rx_reg; 2148 int pf_q; 2149 2150 pf_q = vsi->rxq_map[i]; 2151 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2152 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2153 return true; 2154 } 2155 2156 return false; 2157 } 2158 2159 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2160 { 2161 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2162 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2163 vsi->tc_cfg.numtc = 1; 2164 return; 2165 } 2166 2167 /* set VSI TC information based on DCB config */ 2168 ice_vsi_set_dcb_tc_cfg(vsi); 2169 } 2170 2171 /** 2172 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2173 * @vsi: the VSI being configured 2174 * @tx: bool to determine Tx or Rx rule 2175 * @create: bool to determine create or remove Rule 2176 */ 2177 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2178 { 2179 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2180 enum ice_sw_fwd_act_type act); 2181 struct ice_pf *pf = vsi->back; 2182 struct device *dev; 2183 int status; 2184 2185 dev = ice_pf_to_dev(pf); 2186 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2187 2188 if (tx) { 2189 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2190 ICE_DROP_PACKET); 2191 } else { 2192 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2193 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2194 create); 2195 } else { 2196 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2197 ICE_FWD_TO_VSI); 2198 } 2199 } 2200 2201 if (status) 2202 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2203 create ? "adding" : "removing", tx ? "TX" : "RX", 2204 vsi->vsi_num, status); 2205 } 2206 2207 /** 2208 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2209 * @vsi: pointer to the VSI 2210 * 2211 * This function will allocate new scheduler aggregator now if needed and will 2212 * move specified VSI into it. 2213 */ 2214 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2215 { 2216 struct device *dev = ice_pf_to_dev(vsi->back); 2217 struct ice_agg_node *agg_node_iter = NULL; 2218 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2219 struct ice_agg_node *agg_node = NULL; 2220 int node_offset, max_agg_nodes = 0; 2221 struct ice_port_info *port_info; 2222 struct ice_pf *pf = vsi->back; 2223 u32 agg_node_id_start = 0; 2224 int status; 2225 2226 /* create (as needed) scheduler aggregator node and move VSI into 2227 * corresponding aggregator node 2228 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2229 * - VF aggregator nodes will contain VF VSI 2230 */ 2231 port_info = pf->hw.port_info; 2232 if (!port_info) 2233 return; 2234 2235 switch (vsi->type) { 2236 case ICE_VSI_CTRL: 2237 case ICE_VSI_CHNL: 2238 case ICE_VSI_LB: 2239 case ICE_VSI_PF: 2240 case ICE_VSI_SWITCHDEV_CTRL: 2241 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2242 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2243 agg_node_iter = &pf->pf_agg_node[0]; 2244 break; 2245 case ICE_VSI_VF: 2246 /* user can create 'n' VFs on a given PF, but since max children 2247 * per aggregator node can be only 64. Following code handles 2248 * aggregator(s) for VF VSIs, either selects a agg_node which 2249 * was already created provided num_vsis < 64, otherwise 2250 * select next available node, which will be created 2251 */ 2252 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2253 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2254 agg_node_iter = &pf->vf_agg_node[0]; 2255 break; 2256 default: 2257 /* other VSI type, handle later if needed */ 2258 dev_dbg(dev, "unexpected VSI type %s\n", 2259 ice_vsi_type_str(vsi->type)); 2260 return; 2261 } 2262 2263 /* find the appropriate aggregator node */ 2264 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2265 /* see if we can find space in previously created 2266 * node if num_vsis < 64, otherwise skip 2267 */ 2268 if (agg_node_iter->num_vsis && 2269 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2270 agg_node_iter++; 2271 continue; 2272 } 2273 2274 if (agg_node_iter->valid && 2275 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2276 agg_id = agg_node_iter->agg_id; 2277 agg_node = agg_node_iter; 2278 break; 2279 } 2280 2281 /* find unclaimed agg_id */ 2282 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2283 agg_id = node_offset + agg_node_id_start; 2284 agg_node = agg_node_iter; 2285 break; 2286 } 2287 /* move to next agg_node */ 2288 agg_node_iter++; 2289 } 2290 2291 if (!agg_node) 2292 return; 2293 2294 /* if selected aggregator node was not created, create it */ 2295 if (!agg_node->valid) { 2296 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2297 (u8)vsi->tc_cfg.ena_tc); 2298 if (status) { 2299 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2300 agg_id); 2301 return; 2302 } 2303 /* aggregator node is created, store the needed info */ 2304 agg_node->valid = true; 2305 agg_node->agg_id = agg_id; 2306 } 2307 2308 /* move VSI to corresponding aggregator node */ 2309 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2310 (u8)vsi->tc_cfg.ena_tc); 2311 if (status) { 2312 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2313 vsi->idx, agg_id); 2314 return; 2315 } 2316 2317 /* keep active children count for aggregator node */ 2318 agg_node->num_vsis++; 2319 2320 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2321 * to aggregator node 2322 */ 2323 vsi->agg_node = agg_node; 2324 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2325 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2326 vsi->agg_node->num_vsis); 2327 } 2328 2329 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2330 { 2331 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2332 struct device *dev = ice_pf_to_dev(pf); 2333 int ret, i; 2334 2335 /* configure VSI nodes based on number of queues and TC's */ 2336 ice_for_each_traffic_class(i) { 2337 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2338 continue; 2339 2340 if (vsi->type == ICE_VSI_CHNL) { 2341 if (!vsi->alloc_txq && vsi->num_txq) 2342 max_txqs[i] = vsi->num_txq; 2343 else 2344 max_txqs[i] = pf->num_lan_tx; 2345 } else { 2346 max_txqs[i] = vsi->alloc_txq; 2347 } 2348 2349 if (vsi->type == ICE_VSI_PF) 2350 max_txqs[i] += vsi->num_xdp_txq; 2351 } 2352 2353 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2354 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2355 max_txqs); 2356 if (ret) { 2357 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2358 vsi->vsi_num, ret); 2359 return ret; 2360 } 2361 2362 return 0; 2363 } 2364 2365 /** 2366 * ice_vsi_cfg_def - configure default VSI based on the type 2367 * @vsi: pointer to VSI 2368 * @params: the parameters to configure this VSI with 2369 */ 2370 static int 2371 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2372 { 2373 struct device *dev = ice_pf_to_dev(vsi->back); 2374 struct ice_pf *pf = vsi->back; 2375 int ret; 2376 2377 vsi->vsw = pf->first_sw; 2378 2379 ret = ice_vsi_alloc_def(vsi, params->ch); 2380 if (ret) 2381 return ret; 2382 2383 /* allocate memory for Tx/Rx ring stat pointers */ 2384 ret = ice_vsi_alloc_stat_arrays(vsi); 2385 if (ret) 2386 goto unroll_vsi_alloc; 2387 2388 ice_alloc_fd_res(vsi); 2389 2390 ret = ice_vsi_get_qs(vsi); 2391 if (ret) { 2392 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2393 vsi->idx); 2394 goto unroll_vsi_alloc_stat; 2395 } 2396 2397 /* set RSS capabilities */ 2398 ice_vsi_set_rss_params(vsi); 2399 2400 /* set TC configuration */ 2401 ice_vsi_set_tc_cfg(vsi); 2402 2403 /* create the VSI */ 2404 ret = ice_vsi_init(vsi, params->flags); 2405 if (ret) 2406 goto unroll_get_qs; 2407 2408 ice_vsi_init_vlan_ops(vsi); 2409 2410 switch (vsi->type) { 2411 case ICE_VSI_CTRL: 2412 case ICE_VSI_SWITCHDEV_CTRL: 2413 case ICE_VSI_PF: 2414 ret = ice_vsi_alloc_q_vectors(vsi); 2415 if (ret) 2416 goto unroll_vsi_init; 2417 2418 ret = ice_vsi_alloc_rings(vsi); 2419 if (ret) 2420 goto unroll_vector_base; 2421 2422 ret = ice_vsi_alloc_ring_stats(vsi); 2423 if (ret) 2424 goto unroll_vector_base; 2425 2426 ice_vsi_map_rings_to_vectors(vsi); 2427 2428 /* Associate q_vector rings to napi */ 2429 ice_vsi_set_napi_queues(vsi, true); 2430 2431 vsi->stat_offsets_loaded = false; 2432 2433 if (ice_is_xdp_ena_vsi(vsi)) { 2434 ret = ice_vsi_determine_xdp_res(vsi); 2435 if (ret) 2436 goto unroll_vector_base; 2437 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2438 if (ret) 2439 goto unroll_vector_base; 2440 } 2441 2442 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2443 if (vsi->type != ICE_VSI_CTRL) 2444 /* Do not exit if configuring RSS had an issue, at 2445 * least receive traffic on first queue. Hence no 2446 * need to capture return value 2447 */ 2448 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2449 ice_vsi_cfg_rss_lut_key(vsi); 2450 ice_vsi_set_rss_flow_fld(vsi); 2451 } 2452 ice_init_arfs(vsi); 2453 break; 2454 case ICE_VSI_CHNL: 2455 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2456 ice_vsi_cfg_rss_lut_key(vsi); 2457 ice_vsi_set_rss_flow_fld(vsi); 2458 } 2459 break; 2460 case ICE_VSI_VF: 2461 /* VF driver will take care of creating netdev for this type and 2462 * map queues to vectors through Virtchnl, PF driver only 2463 * creates a VSI and corresponding structures for bookkeeping 2464 * purpose 2465 */ 2466 ret = ice_vsi_alloc_q_vectors(vsi); 2467 if (ret) 2468 goto unroll_vsi_init; 2469 2470 ret = ice_vsi_alloc_rings(vsi); 2471 if (ret) 2472 goto unroll_alloc_q_vector; 2473 2474 ret = ice_vsi_alloc_ring_stats(vsi); 2475 if (ret) 2476 goto unroll_vector_base; 2477 2478 vsi->stat_offsets_loaded = false; 2479 2480 /* Do not exit if configuring RSS had an issue, at least 2481 * receive traffic on first queue. Hence no need to capture 2482 * return value 2483 */ 2484 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2485 ice_vsi_cfg_rss_lut_key(vsi); 2486 ice_vsi_set_vf_rss_flow_fld(vsi); 2487 } 2488 break; 2489 case ICE_VSI_LB: 2490 ret = ice_vsi_alloc_rings(vsi); 2491 if (ret) 2492 goto unroll_vsi_init; 2493 2494 ret = ice_vsi_alloc_ring_stats(vsi); 2495 if (ret) 2496 goto unroll_vector_base; 2497 2498 break; 2499 default: 2500 /* clean up the resources and exit */ 2501 ret = -EINVAL; 2502 goto unroll_vsi_init; 2503 } 2504 2505 return 0; 2506 2507 unroll_vector_base: 2508 /* reclaim SW interrupts back to the common pool */ 2509 unroll_alloc_q_vector: 2510 ice_vsi_free_q_vectors(vsi); 2511 unroll_vsi_init: 2512 ice_vsi_delete_from_hw(vsi); 2513 unroll_get_qs: 2514 ice_vsi_put_qs(vsi); 2515 unroll_vsi_alloc_stat: 2516 ice_vsi_free_stats(vsi); 2517 unroll_vsi_alloc: 2518 ice_vsi_free_arrays(vsi); 2519 return ret; 2520 } 2521 2522 /** 2523 * ice_vsi_cfg - configure a previously allocated VSI 2524 * @vsi: pointer to VSI 2525 * @params: parameters used to configure this VSI 2526 */ 2527 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2528 { 2529 struct ice_pf *pf = vsi->back; 2530 int ret; 2531 2532 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2533 return -EINVAL; 2534 2535 vsi->type = params->type; 2536 vsi->port_info = params->pi; 2537 2538 /* For VSIs which don't have a connected VF, this will be NULL */ 2539 vsi->vf = params->vf; 2540 2541 ret = ice_vsi_cfg_def(vsi, params); 2542 if (ret) 2543 return ret; 2544 2545 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2546 if (ret) 2547 ice_vsi_decfg(vsi); 2548 2549 if (vsi->type == ICE_VSI_CTRL) { 2550 if (vsi->vf) { 2551 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2552 vsi->vf->ctrl_vsi_idx = vsi->idx; 2553 } else { 2554 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2555 pf->ctrl_vsi_idx = vsi->idx; 2556 } 2557 } 2558 2559 return ret; 2560 } 2561 2562 /** 2563 * ice_vsi_decfg - remove all VSI configuration 2564 * @vsi: pointer to VSI 2565 */ 2566 void ice_vsi_decfg(struct ice_vsi *vsi) 2567 { 2568 struct ice_pf *pf = vsi->back; 2569 int err; 2570 2571 /* The Rx rule will only exist to remove if the LLDP FW 2572 * engine is currently stopped 2573 */ 2574 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2575 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2576 ice_cfg_sw_lldp(vsi, false, false); 2577 2578 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2579 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2580 if (err) 2581 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2582 vsi->vsi_num, err); 2583 2584 if (ice_is_xdp_ena_vsi(vsi)) 2585 /* return value check can be skipped here, it always returns 2586 * 0 if reset is in progress 2587 */ 2588 ice_destroy_xdp_rings(vsi); 2589 2590 ice_vsi_clear_rings(vsi); 2591 ice_vsi_free_q_vectors(vsi); 2592 ice_vsi_put_qs(vsi); 2593 ice_vsi_free_arrays(vsi); 2594 2595 /* SR-IOV determines needed MSIX resources all at once instead of per 2596 * VSI since when VFs are spawned we know how many VFs there are and how 2597 * many interrupts each VF needs. SR-IOV MSIX resources are also 2598 * cleared in the same manner. 2599 */ 2600 2601 if (vsi->type == ICE_VSI_VF && 2602 vsi->agg_node && vsi->agg_node->valid) 2603 vsi->agg_node->num_vsis--; 2604 } 2605 2606 /** 2607 * ice_vsi_setup - Set up a VSI by a given type 2608 * @pf: board private structure 2609 * @params: parameters to use when creating the VSI 2610 * 2611 * This allocates the sw VSI structure and its queue resources. 2612 * 2613 * Returns pointer to the successfully allocated and configured VSI sw struct on 2614 * success, NULL on failure. 2615 */ 2616 struct ice_vsi * 2617 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2618 { 2619 struct device *dev = ice_pf_to_dev(pf); 2620 struct ice_vsi *vsi; 2621 int ret; 2622 2623 /* ice_vsi_setup can only initialize a new VSI, and we must have 2624 * a port_info structure for it. 2625 */ 2626 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2627 WARN_ON(!params->pi)) 2628 return NULL; 2629 2630 vsi = ice_vsi_alloc(pf); 2631 if (!vsi) { 2632 dev_err(dev, "could not allocate VSI\n"); 2633 return NULL; 2634 } 2635 2636 ret = ice_vsi_cfg(vsi, params); 2637 if (ret) 2638 goto err_vsi_cfg; 2639 2640 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2641 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2642 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2643 * The rule is added once for PF VSI in order to create appropriate 2644 * recipe, since VSI/VSI list is ignored with drop action... 2645 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2646 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2647 * settings in the HW. 2648 */ 2649 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2650 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2651 ICE_DROP_PACKET); 2652 ice_cfg_sw_lldp(vsi, true, true); 2653 } 2654 2655 if (!vsi->agg_node) 2656 ice_set_agg_vsi(vsi); 2657 2658 return vsi; 2659 2660 err_vsi_cfg: 2661 ice_vsi_free(vsi); 2662 2663 return NULL; 2664 } 2665 2666 /** 2667 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2668 * @vsi: the VSI being cleaned up 2669 */ 2670 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2671 { 2672 struct ice_pf *pf = vsi->back; 2673 struct ice_hw *hw = &pf->hw; 2674 u32 txq = 0; 2675 u32 rxq = 0; 2676 int i, q; 2677 2678 ice_for_each_q_vector(vsi, i) { 2679 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2680 2681 ice_write_intrl(q_vector, 0); 2682 for (q = 0; q < q_vector->num_ring_tx; q++) { 2683 ice_write_itr(&q_vector->tx, 0); 2684 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2685 if (ice_is_xdp_ena_vsi(vsi)) { 2686 u32 xdp_txq = txq + vsi->num_xdp_txq; 2687 2688 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2689 } 2690 txq++; 2691 } 2692 2693 for (q = 0; q < q_vector->num_ring_rx; q++) { 2694 ice_write_itr(&q_vector->rx, 0); 2695 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2696 rxq++; 2697 } 2698 } 2699 2700 ice_flush(hw); 2701 } 2702 2703 /** 2704 * ice_vsi_free_irq - Free the IRQ association with the OS 2705 * @vsi: the VSI being configured 2706 */ 2707 void ice_vsi_free_irq(struct ice_vsi *vsi) 2708 { 2709 struct ice_pf *pf = vsi->back; 2710 int i; 2711 2712 if (!vsi->q_vectors || !vsi->irqs_ready) 2713 return; 2714 2715 ice_vsi_release_msix(vsi); 2716 if (vsi->type == ICE_VSI_VF) 2717 return; 2718 2719 vsi->irqs_ready = false; 2720 ice_free_cpu_rx_rmap(vsi); 2721 2722 ice_for_each_q_vector(vsi, i) { 2723 int irq_num; 2724 2725 irq_num = vsi->q_vectors[i]->irq.virq; 2726 2727 /* free only the irqs that were actually requested */ 2728 if (!vsi->q_vectors[i] || 2729 !(vsi->q_vectors[i]->num_ring_tx || 2730 vsi->q_vectors[i]->num_ring_rx)) 2731 continue; 2732 2733 /* clear the affinity notifier in the IRQ descriptor */ 2734 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2735 irq_set_affinity_notifier(irq_num, NULL); 2736 2737 /* clear the affinity_mask in the IRQ descriptor */ 2738 irq_set_affinity_hint(irq_num, NULL); 2739 synchronize_irq(irq_num); 2740 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2741 } 2742 } 2743 2744 /** 2745 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2746 * @vsi: the VSI having resources freed 2747 */ 2748 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2749 { 2750 int i; 2751 2752 if (!vsi->tx_rings) 2753 return; 2754 2755 ice_for_each_txq(vsi, i) 2756 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2757 ice_free_tx_ring(vsi->tx_rings[i]); 2758 } 2759 2760 /** 2761 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2762 * @vsi: the VSI having resources freed 2763 */ 2764 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2765 { 2766 int i; 2767 2768 if (!vsi->rx_rings) 2769 return; 2770 2771 ice_for_each_rxq(vsi, i) 2772 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2773 ice_free_rx_ring(vsi->rx_rings[i]); 2774 } 2775 2776 /** 2777 * ice_vsi_close - Shut down a VSI 2778 * @vsi: the VSI being shut down 2779 */ 2780 void ice_vsi_close(struct ice_vsi *vsi) 2781 { 2782 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2783 ice_down(vsi); 2784 2785 ice_vsi_free_irq(vsi); 2786 ice_vsi_free_tx_rings(vsi); 2787 ice_vsi_free_rx_rings(vsi); 2788 } 2789 2790 /** 2791 * ice_ena_vsi - resume a VSI 2792 * @vsi: the VSI being resume 2793 * @locked: is the rtnl_lock already held 2794 */ 2795 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2796 { 2797 int err = 0; 2798 2799 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2800 return 0; 2801 2802 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2803 2804 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2805 if (netif_running(vsi->netdev)) { 2806 if (!locked) 2807 rtnl_lock(); 2808 2809 err = ice_open_internal(vsi->netdev); 2810 2811 if (!locked) 2812 rtnl_unlock(); 2813 } 2814 } else if (vsi->type == ICE_VSI_CTRL) { 2815 err = ice_vsi_open_ctrl(vsi); 2816 } 2817 2818 return err; 2819 } 2820 2821 /** 2822 * ice_dis_vsi - pause a VSI 2823 * @vsi: the VSI being paused 2824 * @locked: is the rtnl_lock already held 2825 */ 2826 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2827 { 2828 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2829 return; 2830 2831 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2832 2833 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2834 if (netif_running(vsi->netdev)) { 2835 if (!locked) 2836 rtnl_lock(); 2837 2838 ice_vsi_close(vsi); 2839 2840 if (!locked) 2841 rtnl_unlock(); 2842 } else { 2843 ice_vsi_close(vsi); 2844 } 2845 } else if (vsi->type == ICE_VSI_CTRL || 2846 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2847 ice_vsi_close(vsi); 2848 } 2849 } 2850 2851 /** 2852 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2853 * @vsi: the VSI being un-configured 2854 */ 2855 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2856 { 2857 struct ice_pf *pf = vsi->back; 2858 struct ice_hw *hw = &pf->hw; 2859 u32 val; 2860 int i; 2861 2862 /* disable interrupt causation from each queue */ 2863 if (vsi->tx_rings) { 2864 ice_for_each_txq(vsi, i) { 2865 if (vsi->tx_rings[i]) { 2866 u16 reg; 2867 2868 reg = vsi->tx_rings[i]->reg_idx; 2869 val = rd32(hw, QINT_TQCTL(reg)); 2870 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2871 wr32(hw, QINT_TQCTL(reg), val); 2872 } 2873 } 2874 } 2875 2876 if (vsi->rx_rings) { 2877 ice_for_each_rxq(vsi, i) { 2878 if (vsi->rx_rings[i]) { 2879 u16 reg; 2880 2881 reg = vsi->rx_rings[i]->reg_idx; 2882 val = rd32(hw, QINT_RQCTL(reg)); 2883 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2884 wr32(hw, QINT_RQCTL(reg), val); 2885 } 2886 } 2887 } 2888 2889 /* disable each interrupt */ 2890 ice_for_each_q_vector(vsi, i) { 2891 if (!vsi->q_vectors[i]) 2892 continue; 2893 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2894 } 2895 2896 ice_flush(hw); 2897 2898 /* don't call synchronize_irq() for VF's from the host */ 2899 if (vsi->type == ICE_VSI_VF) 2900 return; 2901 2902 ice_for_each_q_vector(vsi, i) 2903 synchronize_irq(vsi->q_vectors[i]->irq.virq); 2904 } 2905 2906 /** 2907 * ice_queue_set_napi - Set the napi instance for the queue 2908 * @dev: device to which NAPI and queue belong 2909 * @queue_index: Index of queue 2910 * @type: queue type as RX or TX 2911 * @napi: NAPI context 2912 * @locked: is the rtnl_lock already held 2913 * 2914 * Set the napi instance for the queue 2915 */ 2916 static void 2917 ice_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2918 enum netdev_queue_type type, struct napi_struct *napi, 2919 bool locked) 2920 { 2921 if (!locked) 2922 rtnl_lock(); 2923 netif_queue_set_napi(dev, queue_index, type, napi); 2924 if (!locked) 2925 rtnl_unlock(); 2926 } 2927 2928 /** 2929 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi 2930 * @q_vector: q_vector pointer 2931 * @locked: is the rtnl_lock already held 2932 * 2933 * Associate the q_vector napi with all the queue[s] on the vector 2934 */ 2935 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked) 2936 { 2937 struct ice_rx_ring *rx_ring; 2938 struct ice_tx_ring *tx_ring; 2939 2940 ice_for_each_rx_ring(rx_ring, q_vector->rx) 2941 ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index, 2942 NETDEV_QUEUE_TYPE_RX, &q_vector->napi, 2943 locked); 2944 2945 ice_for_each_tx_ring(tx_ring, q_vector->tx) 2946 ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index, 2947 NETDEV_QUEUE_TYPE_TX, &q_vector->napi, 2948 locked); 2949 /* Also set the interrupt number for the NAPI */ 2950 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); 2951 } 2952 2953 /** 2954 * ice_vsi_set_napi_queues 2955 * @vsi: VSI pointer 2956 * @locked: is the rtnl_lock already held 2957 * 2958 * Associate queue[s] with napi for all vectors 2959 */ 2960 void ice_vsi_set_napi_queues(struct ice_vsi *vsi, bool locked) 2961 { 2962 int i; 2963 2964 if (!vsi->netdev) 2965 return; 2966 2967 ice_for_each_q_vector(vsi, i) 2968 ice_q_vector_set_napi_queues(vsi->q_vectors[i], locked); 2969 } 2970 2971 /** 2972 * ice_vsi_release - Delete a VSI and free its resources 2973 * @vsi: the VSI being removed 2974 * 2975 * Returns 0 on success or < 0 on error 2976 */ 2977 int ice_vsi_release(struct ice_vsi *vsi) 2978 { 2979 struct ice_pf *pf; 2980 2981 if (!vsi->back) 2982 return -ENODEV; 2983 pf = vsi->back; 2984 2985 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2986 ice_rss_clean(vsi); 2987 2988 ice_vsi_close(vsi); 2989 ice_vsi_decfg(vsi); 2990 2991 /* retain SW VSI data structure since it is needed to unregister and 2992 * free VSI netdev when PF is not in reset recovery pending state,\ 2993 * for ex: during rmmod. 2994 */ 2995 if (!ice_is_reset_in_progress(pf->state)) 2996 ice_vsi_delete(vsi); 2997 2998 return 0; 2999 } 3000 3001 /** 3002 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3003 * @vsi: VSI connected with q_vectors 3004 * @coalesce: array of struct with stored coalesce 3005 * 3006 * Returns array size. 3007 */ 3008 static int 3009 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3010 struct ice_coalesce_stored *coalesce) 3011 { 3012 int i; 3013 3014 ice_for_each_q_vector(vsi, i) { 3015 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3016 3017 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3018 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3019 coalesce[i].intrl = q_vector->intrl; 3020 3021 if (i < vsi->num_txq) 3022 coalesce[i].tx_valid = true; 3023 if (i < vsi->num_rxq) 3024 coalesce[i].rx_valid = true; 3025 } 3026 3027 return vsi->num_q_vectors; 3028 } 3029 3030 /** 3031 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3032 * @vsi: VSI connected with q_vectors 3033 * @coalesce: pointer to array of struct with stored coalesce 3034 * @size: size of coalesce array 3035 * 3036 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3037 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3038 * to default value. 3039 */ 3040 static void 3041 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3042 struct ice_coalesce_stored *coalesce, int size) 3043 { 3044 struct ice_ring_container *rc; 3045 int i; 3046 3047 if ((size && !coalesce) || !vsi) 3048 return; 3049 3050 /* There are a couple of cases that have to be handled here: 3051 * 1. The case where the number of queue vectors stays the same, but 3052 * the number of Tx or Rx rings changes (the first for loop) 3053 * 2. The case where the number of queue vectors increased (the 3054 * second for loop) 3055 */ 3056 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3057 /* There are 2 cases to handle here and they are the same for 3058 * both Tx and Rx: 3059 * if the entry was valid previously (coalesce[i].[tr]x_valid 3060 * and the loop variable is less than the number of rings 3061 * allocated, then write the previous values 3062 * 3063 * if the entry was not valid previously, but the number of 3064 * rings is less than are allocated (this means the number of 3065 * rings increased from previously), then write out the 3066 * values in the first element 3067 * 3068 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3069 * as there is no harm because the dynamic algorithm 3070 * will just overwrite. 3071 */ 3072 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3073 rc = &vsi->q_vectors[i]->rx; 3074 rc->itr_settings = coalesce[i].itr_rx; 3075 ice_write_itr(rc, rc->itr_setting); 3076 } else if (i < vsi->alloc_rxq) { 3077 rc = &vsi->q_vectors[i]->rx; 3078 rc->itr_settings = coalesce[0].itr_rx; 3079 ice_write_itr(rc, rc->itr_setting); 3080 } 3081 3082 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3083 rc = &vsi->q_vectors[i]->tx; 3084 rc->itr_settings = coalesce[i].itr_tx; 3085 ice_write_itr(rc, rc->itr_setting); 3086 } else if (i < vsi->alloc_txq) { 3087 rc = &vsi->q_vectors[i]->tx; 3088 rc->itr_settings = coalesce[0].itr_tx; 3089 ice_write_itr(rc, rc->itr_setting); 3090 } 3091 3092 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3093 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3094 } 3095 3096 /* the number of queue vectors increased so write whatever is in 3097 * the first element 3098 */ 3099 for (; i < vsi->num_q_vectors; i++) { 3100 /* transmit */ 3101 rc = &vsi->q_vectors[i]->tx; 3102 rc->itr_settings = coalesce[0].itr_tx; 3103 ice_write_itr(rc, rc->itr_setting); 3104 3105 /* receive */ 3106 rc = &vsi->q_vectors[i]->rx; 3107 rc->itr_settings = coalesce[0].itr_rx; 3108 ice_write_itr(rc, rc->itr_setting); 3109 3110 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3111 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3112 } 3113 } 3114 3115 /** 3116 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones 3117 * @vsi: VSI pointer 3118 */ 3119 static int 3120 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) 3121 { 3122 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; 3123 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; 3124 struct ice_ring_stats **tx_ring_stats; 3125 struct ice_ring_stats **rx_ring_stats; 3126 struct ice_vsi_stats *vsi_stat; 3127 struct ice_pf *pf = vsi->back; 3128 u16 prev_txq = vsi->alloc_txq; 3129 u16 prev_rxq = vsi->alloc_rxq; 3130 int i; 3131 3132 vsi_stat = pf->vsi_stats[vsi->idx]; 3133 3134 if (req_txq < prev_txq) { 3135 for (i = req_txq; i < prev_txq; i++) { 3136 if (vsi_stat->tx_ring_stats[i]) { 3137 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3138 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3139 } 3140 } 3141 } 3142 3143 tx_ring_stats = vsi_stat->rx_ring_stats; 3144 vsi_stat->tx_ring_stats = 3145 krealloc_array(vsi_stat->tx_ring_stats, req_txq, 3146 sizeof(*vsi_stat->tx_ring_stats), 3147 GFP_KERNEL | __GFP_ZERO); 3148 if (!vsi_stat->tx_ring_stats) { 3149 vsi_stat->tx_ring_stats = tx_ring_stats; 3150 return -ENOMEM; 3151 } 3152 3153 if (req_rxq < prev_rxq) { 3154 for (i = req_rxq; i < prev_rxq; i++) { 3155 if (vsi_stat->rx_ring_stats[i]) { 3156 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3157 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3158 } 3159 } 3160 } 3161 3162 rx_ring_stats = vsi_stat->rx_ring_stats; 3163 vsi_stat->rx_ring_stats = 3164 krealloc_array(vsi_stat->rx_ring_stats, req_rxq, 3165 sizeof(*vsi_stat->rx_ring_stats), 3166 GFP_KERNEL | __GFP_ZERO); 3167 if (!vsi_stat->rx_ring_stats) { 3168 vsi_stat->rx_ring_stats = rx_ring_stats; 3169 return -ENOMEM; 3170 } 3171 3172 return 0; 3173 } 3174 3175 /** 3176 * ice_vsi_rebuild - Rebuild VSI after reset 3177 * @vsi: VSI to be rebuild 3178 * @vsi_flags: flags used for VSI rebuild flow 3179 * 3180 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3181 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3182 * 3183 * Returns 0 on success and negative value on failure 3184 */ 3185 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3186 { 3187 struct ice_vsi_cfg_params params = {}; 3188 struct ice_coalesce_stored *coalesce; 3189 int prev_num_q_vectors = 0; 3190 struct ice_pf *pf; 3191 int ret; 3192 3193 if (!vsi) 3194 return -EINVAL; 3195 3196 params = ice_vsi_to_params(vsi); 3197 params.flags = vsi_flags; 3198 3199 pf = vsi->back; 3200 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3201 return -EINVAL; 3202 3203 coalesce = kcalloc(vsi->num_q_vectors, 3204 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3205 if (!coalesce) 3206 return -ENOMEM; 3207 3208 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3209 3210 ret = ice_vsi_realloc_stat_arrays(vsi); 3211 if (ret) 3212 goto err_vsi_cfg; 3213 3214 ice_vsi_decfg(vsi); 3215 ret = ice_vsi_cfg_def(vsi, ¶ms); 3216 if (ret) 3217 goto err_vsi_cfg; 3218 3219 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3220 if (ret) { 3221 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3222 ret = -EIO; 3223 goto err_vsi_cfg_tc_lan; 3224 } 3225 3226 kfree(coalesce); 3227 return ice_schedule_reset(pf, ICE_RESET_PFR); 3228 } 3229 3230 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3231 kfree(coalesce); 3232 3233 return 0; 3234 3235 err_vsi_cfg_tc_lan: 3236 ice_vsi_decfg(vsi); 3237 err_vsi_cfg: 3238 kfree(coalesce); 3239 return ret; 3240 } 3241 3242 /** 3243 * ice_is_reset_in_progress - check for a reset in progress 3244 * @state: PF state field 3245 */ 3246 bool ice_is_reset_in_progress(unsigned long *state) 3247 { 3248 return test_bit(ICE_RESET_OICR_RECV, state) || 3249 test_bit(ICE_PFR_REQ, state) || 3250 test_bit(ICE_CORER_REQ, state) || 3251 test_bit(ICE_GLOBR_REQ, state); 3252 } 3253 3254 /** 3255 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3256 * @pf: pointer to the PF structure 3257 * @timeout: length of time to wait, in jiffies 3258 * 3259 * Wait (sleep) for a short time until the driver finishes cleaning up from 3260 * a device reset. The caller must be able to sleep. Use this to delay 3261 * operations that could fail while the driver is cleaning up after a device 3262 * reset. 3263 * 3264 * Returns 0 on success, -EBUSY if the reset is not finished within the 3265 * timeout, and -ERESTARTSYS if the thread was interrupted. 3266 */ 3267 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3268 { 3269 long ret; 3270 3271 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3272 !ice_is_reset_in_progress(pf->state), 3273 timeout); 3274 if (ret < 0) 3275 return ret; 3276 else if (!ret) 3277 return -EBUSY; 3278 else 3279 return 0; 3280 } 3281 3282 /** 3283 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3284 * @vsi: VSI being configured 3285 * @ctx: the context buffer returned from AQ VSI update command 3286 */ 3287 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3288 { 3289 vsi->info.mapping_flags = ctx->info.mapping_flags; 3290 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3291 sizeof(vsi->info.q_mapping)); 3292 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3293 sizeof(vsi->info.tc_mapping)); 3294 } 3295 3296 /** 3297 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3298 * @vsi: the VSI being configured 3299 * @ena_tc: TC map to be enabled 3300 */ 3301 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3302 { 3303 struct net_device *netdev = vsi->netdev; 3304 struct ice_pf *pf = vsi->back; 3305 int numtc = vsi->tc_cfg.numtc; 3306 struct ice_dcbx_cfg *dcbcfg; 3307 u8 netdev_tc; 3308 int i; 3309 3310 if (!netdev) 3311 return; 3312 3313 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3314 if (vsi->type == ICE_VSI_CHNL) 3315 return; 3316 3317 if (!ena_tc) { 3318 netdev_reset_tc(netdev); 3319 return; 3320 } 3321 3322 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3323 numtc = vsi->all_numtc; 3324 3325 if (netdev_set_num_tc(netdev, numtc)) 3326 return; 3327 3328 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3329 3330 ice_for_each_traffic_class(i) 3331 if (vsi->tc_cfg.ena_tc & BIT(i)) 3332 netdev_set_tc_queue(netdev, 3333 vsi->tc_cfg.tc_info[i].netdev_tc, 3334 vsi->tc_cfg.tc_info[i].qcount_tx, 3335 vsi->tc_cfg.tc_info[i].qoffset); 3336 /* setup TC queue map for CHNL TCs */ 3337 ice_for_each_chnl_tc(i) { 3338 if (!(vsi->all_enatc & BIT(i))) 3339 break; 3340 if (!vsi->mqprio_qopt.qopt.count[i]) 3341 break; 3342 netdev_set_tc_queue(netdev, i, 3343 vsi->mqprio_qopt.qopt.count[i], 3344 vsi->mqprio_qopt.qopt.offset[i]); 3345 } 3346 3347 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3348 return; 3349 3350 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3351 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3352 3353 /* Get the mapped netdev TC# for the UP */ 3354 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3355 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3356 } 3357 } 3358 3359 /** 3360 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3361 * @vsi: the VSI being configured, 3362 * @ctxt: VSI context structure 3363 * @ena_tc: number of traffic classes to enable 3364 * 3365 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3366 */ 3367 static int 3368 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3369 u8 ena_tc) 3370 { 3371 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3372 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3373 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3374 u16 new_txq, new_rxq; 3375 u8 netdev_tc = 0; 3376 int i; 3377 3378 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3379 3380 pow = order_base_2(tc0_qcount); 3381 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset); 3382 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 3383 3384 ice_for_each_traffic_class(i) { 3385 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3386 /* TC is not enabled */ 3387 vsi->tc_cfg.tc_info[i].qoffset = 0; 3388 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3389 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3390 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3391 ctxt->info.tc_mapping[i] = 0; 3392 continue; 3393 } 3394 3395 offset = vsi->mqprio_qopt.qopt.offset[i]; 3396 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3397 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3398 vsi->tc_cfg.tc_info[i].qoffset = offset; 3399 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3400 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3401 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3402 } 3403 3404 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3405 ice_for_each_chnl_tc(i) { 3406 if (!(vsi->all_enatc & BIT(i))) 3407 continue; 3408 offset = vsi->mqprio_qopt.qopt.offset[i]; 3409 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3410 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3411 } 3412 } 3413 3414 new_txq = offset + qcount_tx; 3415 if (new_txq > vsi->alloc_txq) { 3416 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3417 new_txq, vsi->alloc_txq); 3418 return -EINVAL; 3419 } 3420 3421 new_rxq = offset + qcount_rx; 3422 if (new_rxq > vsi->alloc_rxq) { 3423 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3424 new_rxq, vsi->alloc_rxq); 3425 return -EINVAL; 3426 } 3427 3428 /* Set actual Tx/Rx queue pairs */ 3429 vsi->num_txq = new_txq; 3430 vsi->num_rxq = new_rxq; 3431 3432 /* Setup queue TC[0].qmap for given VSI context */ 3433 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3434 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3435 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3436 3437 /* Find queue count available for channel VSIs and starting offset 3438 * for channel VSIs 3439 */ 3440 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3441 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3442 vsi->next_base_q = tc0_qcount; 3443 } 3444 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3445 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3446 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3447 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3448 3449 return 0; 3450 } 3451 3452 /** 3453 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3454 * @vsi: VSI to be configured 3455 * @ena_tc: TC bitmap 3456 * 3457 * VSI queues expected to be quiesced before calling this function 3458 */ 3459 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3460 { 3461 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3462 struct ice_pf *pf = vsi->back; 3463 struct ice_tc_cfg old_tc_cfg; 3464 struct ice_vsi_ctx *ctx; 3465 struct device *dev; 3466 int i, ret = 0; 3467 u8 num_tc = 0; 3468 3469 dev = ice_pf_to_dev(pf); 3470 if (vsi->tc_cfg.ena_tc == ena_tc && 3471 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3472 return 0; 3473 3474 ice_for_each_traffic_class(i) { 3475 /* build bitmap of enabled TCs */ 3476 if (ena_tc & BIT(i)) 3477 num_tc++; 3478 /* populate max_txqs per TC */ 3479 max_txqs[i] = vsi->alloc_txq; 3480 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3481 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3482 */ 3483 if (vsi->type == ICE_VSI_CHNL && 3484 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3485 max_txqs[i] = vsi->num_txq; 3486 } 3487 3488 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3489 vsi->tc_cfg.ena_tc = ena_tc; 3490 vsi->tc_cfg.numtc = num_tc; 3491 3492 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3493 if (!ctx) 3494 return -ENOMEM; 3495 3496 ctx->vf_num = 0; 3497 ctx->info = vsi->info; 3498 3499 if (vsi->type == ICE_VSI_PF && 3500 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3501 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3502 else 3503 ret = ice_vsi_setup_q_map(vsi, ctx); 3504 3505 if (ret) { 3506 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3507 goto out; 3508 } 3509 3510 /* must to indicate which section of VSI context are being modified */ 3511 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3512 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3513 if (ret) { 3514 dev_info(dev, "Failed VSI Update\n"); 3515 goto out; 3516 } 3517 3518 if (vsi->type == ICE_VSI_PF && 3519 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3520 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3521 else 3522 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3523 vsi->tc_cfg.ena_tc, max_txqs); 3524 3525 if (ret) { 3526 dev_err(dev, "VSI %d failed TC config, error %d\n", 3527 vsi->vsi_num, ret); 3528 goto out; 3529 } 3530 ice_vsi_update_q_map(vsi, ctx); 3531 vsi->info.valid_sections = 0; 3532 3533 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3534 out: 3535 kfree(ctx); 3536 return ret; 3537 } 3538 3539 /** 3540 * ice_update_ring_stats - Update ring statistics 3541 * @stats: stats to be updated 3542 * @pkts: number of processed packets 3543 * @bytes: number of processed bytes 3544 * 3545 * This function assumes that caller has acquired a u64_stats_sync lock. 3546 */ 3547 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3548 { 3549 stats->bytes += bytes; 3550 stats->pkts += pkts; 3551 } 3552 3553 /** 3554 * ice_update_tx_ring_stats - Update Tx ring specific counters 3555 * @tx_ring: ring to update 3556 * @pkts: number of processed packets 3557 * @bytes: number of processed bytes 3558 */ 3559 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3560 { 3561 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3562 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3563 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3564 } 3565 3566 /** 3567 * ice_update_rx_ring_stats - Update Rx ring specific counters 3568 * @rx_ring: ring to update 3569 * @pkts: number of processed packets 3570 * @bytes: number of processed bytes 3571 */ 3572 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3573 { 3574 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3575 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3576 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3577 } 3578 3579 /** 3580 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3581 * @pi: port info of the switch with default VSI 3582 * 3583 * Return true if the there is a single VSI in default forwarding VSI list 3584 */ 3585 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3586 { 3587 bool exists = false; 3588 3589 ice_check_if_dflt_vsi(pi, 0, &exists); 3590 return exists; 3591 } 3592 3593 /** 3594 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3595 * @vsi: VSI to compare against default forwarding VSI 3596 * 3597 * If this VSI passed in is the default forwarding VSI then return true, else 3598 * return false 3599 */ 3600 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3601 { 3602 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3603 } 3604 3605 /** 3606 * ice_set_dflt_vsi - set the default forwarding VSI 3607 * @vsi: VSI getting set as the default forwarding VSI on the switch 3608 * 3609 * If the VSI passed in is already the default VSI and it's enabled just return 3610 * success. 3611 * 3612 * Otherwise try to set the VSI passed in as the switch's default VSI and 3613 * return the result. 3614 */ 3615 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3616 { 3617 struct device *dev; 3618 int status; 3619 3620 if (!vsi) 3621 return -EINVAL; 3622 3623 dev = ice_pf_to_dev(vsi->back); 3624 3625 if (ice_lag_is_switchdev_running(vsi->back)) { 3626 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3627 vsi->vsi_num); 3628 return 0; 3629 } 3630 3631 /* the VSI passed in is already the default VSI */ 3632 if (ice_is_vsi_dflt_vsi(vsi)) { 3633 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3634 vsi->vsi_num); 3635 return 0; 3636 } 3637 3638 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3639 if (status) { 3640 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3641 vsi->vsi_num, status); 3642 return status; 3643 } 3644 3645 return 0; 3646 } 3647 3648 /** 3649 * ice_clear_dflt_vsi - clear the default forwarding VSI 3650 * @vsi: VSI to remove from filter list 3651 * 3652 * If the switch has no default VSI or it's not enabled then return error. 3653 * 3654 * Otherwise try to clear the default VSI and return the result. 3655 */ 3656 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3657 { 3658 struct device *dev; 3659 int status; 3660 3661 if (!vsi) 3662 return -EINVAL; 3663 3664 dev = ice_pf_to_dev(vsi->back); 3665 3666 /* there is no default VSI configured */ 3667 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3668 return -ENODEV; 3669 3670 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3671 ICE_FLTR_RX); 3672 if (status) { 3673 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3674 vsi->vsi_num, status); 3675 return -EIO; 3676 } 3677 3678 return 0; 3679 } 3680 3681 /** 3682 * ice_get_link_speed_mbps - get link speed in Mbps 3683 * @vsi: the VSI whose link speed is being queried 3684 * 3685 * Return current VSI link speed and 0 if the speed is unknown. 3686 */ 3687 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3688 { 3689 unsigned int link_speed; 3690 3691 link_speed = vsi->port_info->phy.link_info.link_speed; 3692 3693 return (int)ice_get_link_speed(fls(link_speed) - 1); 3694 } 3695 3696 /** 3697 * ice_get_link_speed_kbps - get link speed in Kbps 3698 * @vsi: the VSI whose link speed is being queried 3699 * 3700 * Return current VSI link speed and 0 if the speed is unknown. 3701 */ 3702 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3703 { 3704 int speed_mbps; 3705 3706 speed_mbps = ice_get_link_speed_mbps(vsi); 3707 3708 return speed_mbps * 1000; 3709 } 3710 3711 /** 3712 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3713 * @vsi: VSI to be configured 3714 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3715 * 3716 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3717 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3718 * on TC 0. 3719 */ 3720 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3721 { 3722 struct ice_pf *pf = vsi->back; 3723 struct device *dev; 3724 int status; 3725 int speed; 3726 3727 dev = ice_pf_to_dev(pf); 3728 if (!vsi->port_info) { 3729 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3730 vsi->idx, vsi->type); 3731 return -EINVAL; 3732 } 3733 3734 speed = ice_get_link_speed_kbps(vsi); 3735 if (min_tx_rate > (u64)speed) { 3736 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3737 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3738 speed); 3739 return -EINVAL; 3740 } 3741 3742 /* Configure min BW for VSI limit */ 3743 if (min_tx_rate) { 3744 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3745 ICE_MIN_BW, min_tx_rate); 3746 if (status) { 3747 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3748 min_tx_rate, ice_vsi_type_str(vsi->type), 3749 vsi->idx); 3750 return status; 3751 } 3752 3753 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3754 min_tx_rate, ice_vsi_type_str(vsi->type)); 3755 } else { 3756 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3757 vsi->idx, 0, 3758 ICE_MIN_BW); 3759 if (status) { 3760 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3761 ice_vsi_type_str(vsi->type), vsi->idx); 3762 return status; 3763 } 3764 3765 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3766 ice_vsi_type_str(vsi->type), vsi->idx); 3767 } 3768 3769 return 0; 3770 } 3771 3772 /** 3773 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3774 * @vsi: VSI to be configured 3775 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3776 * 3777 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3778 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3779 * on TC 0. 3780 */ 3781 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3782 { 3783 struct ice_pf *pf = vsi->back; 3784 struct device *dev; 3785 int status; 3786 int speed; 3787 3788 dev = ice_pf_to_dev(pf); 3789 if (!vsi->port_info) { 3790 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3791 vsi->idx, vsi->type); 3792 return -EINVAL; 3793 } 3794 3795 speed = ice_get_link_speed_kbps(vsi); 3796 if (max_tx_rate > (u64)speed) { 3797 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3798 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3799 speed); 3800 return -EINVAL; 3801 } 3802 3803 /* Configure max BW for VSI limit */ 3804 if (max_tx_rate) { 3805 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3806 ICE_MAX_BW, max_tx_rate); 3807 if (status) { 3808 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3809 max_tx_rate, ice_vsi_type_str(vsi->type), 3810 vsi->idx); 3811 return status; 3812 } 3813 3814 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3815 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3816 } else { 3817 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3818 vsi->idx, 0, 3819 ICE_MAX_BW); 3820 if (status) { 3821 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3822 ice_vsi_type_str(vsi->type), vsi->idx); 3823 return status; 3824 } 3825 3826 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3827 ice_vsi_type_str(vsi->type), vsi->idx); 3828 } 3829 3830 return 0; 3831 } 3832 3833 /** 3834 * ice_set_link - turn on/off physical link 3835 * @vsi: VSI to modify physical link on 3836 * @ena: turn on/off physical link 3837 */ 3838 int ice_set_link(struct ice_vsi *vsi, bool ena) 3839 { 3840 struct device *dev = ice_pf_to_dev(vsi->back); 3841 struct ice_port_info *pi = vsi->port_info; 3842 struct ice_hw *hw = pi->hw; 3843 int status; 3844 3845 if (vsi->type != ICE_VSI_PF) 3846 return -EINVAL; 3847 3848 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3849 3850 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3851 * this is not a fatal error, so print a warning message and return 3852 * a success code. Return an error if FW returns an error code other 3853 * than ICE_AQ_RC_EMODE 3854 */ 3855 if (status == -EIO) { 3856 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3857 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3858 (ena ? "ON" : "OFF"), status, 3859 ice_aq_str(hw->adminq.sq_last_status)); 3860 } else if (status) { 3861 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3862 (ena ? "ON" : "OFF"), status, 3863 ice_aq_str(hw->adminq.sq_last_status)); 3864 return status; 3865 } 3866 3867 return 0; 3868 } 3869 3870 /** 3871 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3872 * @vsi: VSI used to add VLAN filters 3873 * 3874 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3875 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3876 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3877 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3878 * 3879 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3880 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3881 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3882 * 3883 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3884 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3885 * part of filtering. 3886 */ 3887 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3888 { 3889 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3890 struct ice_vlan vlan; 3891 int err; 3892 3893 vlan = ICE_VLAN(0, 0, 0); 3894 err = vlan_ops->add_vlan(vsi, &vlan); 3895 if (err && err != -EEXIST) 3896 return err; 3897 3898 /* in SVM both VLAN 0 filters are identical */ 3899 if (!ice_is_dvm_ena(&vsi->back->hw)) 3900 return 0; 3901 3902 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3903 err = vlan_ops->add_vlan(vsi, &vlan); 3904 if (err && err != -EEXIST) 3905 return err; 3906 3907 return 0; 3908 } 3909 3910 /** 3911 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3912 * @vsi: VSI used to add VLAN filters 3913 * 3914 * Delete the VLAN 0 filters in the same manner that they were added in 3915 * ice_vsi_add_vlan_zero. 3916 */ 3917 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3918 { 3919 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3920 struct ice_vlan vlan; 3921 int err; 3922 3923 vlan = ICE_VLAN(0, 0, 0); 3924 err = vlan_ops->del_vlan(vsi, &vlan); 3925 if (err && err != -EEXIST) 3926 return err; 3927 3928 /* in SVM both VLAN 0 filters are identical */ 3929 if (!ice_is_dvm_ena(&vsi->back->hw)) 3930 return 0; 3931 3932 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3933 err = vlan_ops->del_vlan(vsi, &vlan); 3934 if (err && err != -EEXIST) 3935 return err; 3936 3937 /* when deleting the last VLAN filter, make sure to disable the VLAN 3938 * promisc mode so the filter isn't left by accident 3939 */ 3940 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3941 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3942 } 3943 3944 /** 3945 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3946 * @vsi: VSI used to get the VLAN mode 3947 * 3948 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3949 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3950 */ 3951 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3952 { 3953 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3954 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3955 /* no VLAN 0 filter is created when a port VLAN is active */ 3956 if (vsi->type == ICE_VSI_VF) { 3957 if (WARN_ON(!vsi->vf)) 3958 return 0; 3959 3960 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3961 return 0; 3962 } 3963 3964 if (ice_is_dvm_ena(&vsi->back->hw)) 3965 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3966 else 3967 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3968 } 3969 3970 /** 3971 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3972 * @vsi: VSI used to determine if any non-zero VLANs have been added 3973 */ 3974 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3975 { 3976 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3977 } 3978 3979 /** 3980 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3981 * @vsi: VSI used to get the number of non-zero VLANs added 3982 */ 3983 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3984 { 3985 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 3986 } 3987 3988 /** 3989 * ice_is_feature_supported 3990 * @pf: pointer to the struct ice_pf instance 3991 * @f: feature enum to be checked 3992 * 3993 * returns true if feature is supported, false otherwise 3994 */ 3995 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3996 { 3997 if (f < 0 || f >= ICE_F_MAX) 3998 return false; 3999 4000 return test_bit(f, pf->features); 4001 } 4002 4003 /** 4004 * ice_set_feature_support 4005 * @pf: pointer to the struct ice_pf instance 4006 * @f: feature enum to set 4007 */ 4008 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4009 { 4010 if (f < 0 || f >= ICE_F_MAX) 4011 return; 4012 4013 set_bit(f, pf->features); 4014 } 4015 4016 /** 4017 * ice_clear_feature_support 4018 * @pf: pointer to the struct ice_pf instance 4019 * @f: feature enum to clear 4020 */ 4021 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4022 { 4023 if (f < 0 || f >= ICE_F_MAX) 4024 return; 4025 4026 clear_bit(f, pf->features); 4027 } 4028 4029 /** 4030 * ice_init_feature_support 4031 * @pf: pointer to the struct ice_pf instance 4032 * 4033 * called during init to setup supported feature 4034 */ 4035 void ice_init_feature_support(struct ice_pf *pf) 4036 { 4037 switch (pf->hw.device_id) { 4038 case ICE_DEV_ID_E810C_BACKPLANE: 4039 case ICE_DEV_ID_E810C_QSFP: 4040 case ICE_DEV_ID_E810C_SFP: 4041 case ICE_DEV_ID_E810_XXV_BACKPLANE: 4042 case ICE_DEV_ID_E810_XXV_QSFP: 4043 case ICE_DEV_ID_E810_XXV_SFP: 4044 ice_set_feature_support(pf, ICE_F_DSCP); 4045 if (ice_is_phy_rclk_in_netlist(&pf->hw)) 4046 ice_set_feature_support(pf, ICE_F_PHY_RCLK); 4047 /* If we don't own the timer - don't enable other caps */ 4048 if (!ice_pf_src_tmr_owned(pf)) 4049 break; 4050 if (ice_is_cgu_in_netlist(&pf->hw)) 4051 ice_set_feature_support(pf, ICE_F_CGU); 4052 if (ice_is_clock_mux_in_netlist(&pf->hw)) 4053 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4054 if (ice_gnss_is_gps_present(&pf->hw)) 4055 ice_set_feature_support(pf, ICE_F_GNSS); 4056 break; 4057 default: 4058 break; 4059 } 4060 } 4061 4062 /** 4063 * ice_vsi_update_security - update security block in VSI 4064 * @vsi: pointer to VSI structure 4065 * @fill: function pointer to fill ctx 4066 */ 4067 int 4068 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4069 { 4070 struct ice_vsi_ctx ctx = { 0 }; 4071 4072 ctx.info = vsi->info; 4073 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4074 fill(&ctx); 4075 4076 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4077 return -ENODEV; 4078 4079 vsi->info = ctx.info; 4080 return 0; 4081 } 4082 4083 /** 4084 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4085 * @ctx: pointer to VSI ctx structure 4086 */ 4087 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4088 { 4089 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4090 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4091 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4092 } 4093 4094 /** 4095 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4096 * @ctx: pointer to VSI ctx structure 4097 */ 4098 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4099 { 4100 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4101 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4102 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4103 } 4104 4105 /** 4106 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4107 * @ctx: pointer to VSI ctx structure 4108 */ 4109 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4110 { 4111 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4112 } 4113 4114 /** 4115 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4116 * @ctx: pointer to VSI ctx structure 4117 */ 4118 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4119 { 4120 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4121 } 4122 4123 /** 4124 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 4125 * @vsi: pointer to VSI structure 4126 * @set: set or unset the bit 4127 */ 4128 int 4129 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 4130 { 4131 struct ice_vsi_ctx ctx = { 4132 .info = vsi->info, 4133 }; 4134 4135 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4136 if (set) 4137 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4138 else 4139 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4140 4141 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4142 return -ENODEV; 4143 4144 vsi->info = ctx.info; 4145 return 0; 4146 } 4147