1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 ctxt->info.outer_vlan_flags |= 891 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 892 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 893 } 894 /* Have 1:1 UP mapping for both ingress/egress tables */ 895 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 896 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 897 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 898 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 899 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 900 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 901 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 902 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 903 ctxt->info.ingress_table = cpu_to_le32(table); 904 ctxt->info.egress_table = cpu_to_le32(table); 905 /* Have 1:1 UP mapping for outer to inner UP table */ 906 ctxt->info.outer_up_table = cpu_to_le32(table); 907 /* No Outer tag support outer_tag_flags remains to zero */ 908 } 909 910 /** 911 * ice_vsi_setup_q_map - Setup a VSI queue map 912 * @vsi: the VSI being configured 913 * @ctxt: VSI context structure 914 */ 915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 916 { 917 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 918 u16 num_txq_per_tc, num_rxq_per_tc; 919 u16 qcount_tx = vsi->alloc_txq; 920 u16 qcount_rx = vsi->alloc_rxq; 921 u8 netdev_tc = 0; 922 int i; 923 924 if (!vsi->tc_cfg.numtc) { 925 /* at least TC0 should be enabled by default */ 926 vsi->tc_cfg.numtc = 1; 927 vsi->tc_cfg.ena_tc = 1; 928 } 929 930 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 931 if (!num_rxq_per_tc) 932 num_rxq_per_tc = 1; 933 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 934 if (!num_txq_per_tc) 935 num_txq_per_tc = 1; 936 937 /* find the (rounded up) power-of-2 of qcount */ 938 pow = (u16)order_base_2(num_rxq_per_tc); 939 940 /* TC mapping is a function of the number of Rx queues assigned to the 941 * VSI for each traffic class and the offset of these queues. 942 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 943 * queues allocated to TC0. No:of queues is a power-of-2. 944 * 945 * If TC is not enabled, the queue offset is set to 0, and allocate one 946 * queue, this way, traffic for the given TC will be sent to the default 947 * queue. 948 * 949 * Setup number and offset of Rx queues for all TCs for the VSI 950 */ 951 ice_for_each_traffic_class(i) { 952 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 953 /* TC is not enabled */ 954 vsi->tc_cfg.tc_info[i].qoffset = 0; 955 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 956 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 957 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 958 ctxt->info.tc_mapping[i] = 0; 959 continue; 960 } 961 962 /* TC is enabled */ 963 vsi->tc_cfg.tc_info[i].qoffset = offset; 964 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 965 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 966 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 967 968 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 969 ICE_AQ_VSI_TC_Q_OFFSET_M) | 970 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 971 ICE_AQ_VSI_TC_Q_NUM_M); 972 offset += num_rxq_per_tc; 973 tx_count += num_txq_per_tc; 974 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 975 } 976 977 /* if offset is non-zero, means it is calculated correctly based on 978 * enabled TCs for a given VSI otherwise qcount_rx will always 979 * be correct and non-zero because it is based off - VSI's 980 * allocated Rx queues which is at least 1 (hence qcount_tx will be 981 * at least 1) 982 */ 983 if (offset) 984 vsi->num_rxq = offset; 985 else 986 vsi->num_rxq = num_rxq_per_tc; 987 988 if (vsi->num_rxq > vsi->alloc_rxq) { 989 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 990 vsi->num_rxq, vsi->alloc_rxq); 991 return -EINVAL; 992 } 993 994 vsi->num_txq = tx_count; 995 if (vsi->num_txq > vsi->alloc_txq) { 996 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 997 vsi->num_txq, vsi->alloc_txq); 998 return -EINVAL; 999 } 1000 1001 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1002 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1003 /* since there is a chance that num_rxq could have been changed 1004 * in the above for loop, make num_txq equal to num_rxq. 1005 */ 1006 vsi->num_txq = vsi->num_rxq; 1007 } 1008 1009 /* Rx queue mapping */ 1010 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1011 /* q_mapping buffer holds the info for the first queue allocated for 1012 * this VSI in the PF space and also the number of queues associated 1013 * with this VSI. 1014 */ 1015 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1016 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1023 * @ctxt: the VSI context being set 1024 * @vsi: the VSI being configured 1025 */ 1026 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1027 { 1028 u8 dflt_q_group, dflt_q_prio; 1029 u16 dflt_q, report_q, val; 1030 1031 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1032 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1033 return; 1034 1035 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1036 ctxt->info.valid_sections |= cpu_to_le16(val); 1037 dflt_q = 0; 1038 dflt_q_group = 0; 1039 report_q = 0; 1040 dflt_q_prio = 0; 1041 1042 /* enable flow director filtering/programming */ 1043 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1044 ctxt->info.fd_options = cpu_to_le16(val); 1045 /* max of allocated flow director filters */ 1046 ctxt->info.max_fd_fltr_dedicated = 1047 cpu_to_le16(vsi->num_gfltr); 1048 /* max of shared flow director filters any VSI may program */ 1049 ctxt->info.max_fd_fltr_shared = 1050 cpu_to_le16(vsi->num_bfltr); 1051 /* default queue index within the VSI of the default FD */ 1052 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1053 ICE_AQ_VSI_FD_DEF_Q_M); 1054 /* target queue or queue group to the FD filter */ 1055 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1056 ICE_AQ_VSI_FD_DEF_GRP_M); 1057 ctxt->info.fd_def_q = cpu_to_le16(val); 1058 /* queue index on which FD filter completion is reported */ 1059 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1060 ICE_AQ_VSI_FD_REPORT_Q_M); 1061 /* priority of the default qindex action */ 1062 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1063 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1064 ctxt->info.fd_report_opt = cpu_to_le16(val); 1065 } 1066 1067 /** 1068 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1069 * @ctxt: the VSI context being set 1070 * @vsi: the VSI being configured 1071 */ 1072 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1073 { 1074 u8 lut_type, hash_type; 1075 struct device *dev; 1076 struct ice_pf *pf; 1077 1078 pf = vsi->back; 1079 dev = ice_pf_to_dev(pf); 1080 1081 switch (vsi->type) { 1082 case ICE_VSI_CHNL: 1083 case ICE_VSI_PF: 1084 /* PF VSI will inherit RSS instance of PF */ 1085 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1086 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1087 break; 1088 case ICE_VSI_VF: 1089 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1090 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1091 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1092 break; 1093 default: 1094 dev_dbg(dev, "Unsupported VSI type %s\n", 1095 ice_vsi_type_str(vsi->type)); 1096 return; 1097 } 1098 1099 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1100 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1101 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1102 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1103 } 1104 1105 static void 1106 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1107 { 1108 struct ice_pf *pf = vsi->back; 1109 u16 qcount, qmap; 1110 u8 offset = 0; 1111 int pow; 1112 1113 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1114 1115 pow = order_base_2(qcount); 1116 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1117 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1118 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1119 ICE_AQ_VSI_TC_Q_NUM_M); 1120 1121 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1122 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1123 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1124 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1125 } 1126 1127 /** 1128 * ice_vsi_init - Create and initialize a VSI 1129 * @vsi: the VSI being configured 1130 * @init_vsi: is this call creating a VSI 1131 * 1132 * This initializes a VSI context depending on the VSI type to be added and 1133 * passes it down to the add_vsi aq command to create a new VSI. 1134 */ 1135 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1136 { 1137 struct ice_pf *pf = vsi->back; 1138 struct ice_hw *hw = &pf->hw; 1139 struct ice_vsi_ctx *ctxt; 1140 struct device *dev; 1141 int ret = 0; 1142 1143 dev = ice_pf_to_dev(pf); 1144 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1145 if (!ctxt) 1146 return -ENOMEM; 1147 1148 switch (vsi->type) { 1149 case ICE_VSI_CTRL: 1150 case ICE_VSI_LB: 1151 case ICE_VSI_PF: 1152 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1153 break; 1154 case ICE_VSI_SWITCHDEV_CTRL: 1155 case ICE_VSI_CHNL: 1156 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1157 break; 1158 case ICE_VSI_VF: 1159 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1160 /* VF number here is the absolute VF number (0-255) */ 1161 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1162 break; 1163 default: 1164 ret = -ENODEV; 1165 goto out; 1166 } 1167 1168 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1169 * prune enabled 1170 */ 1171 if (vsi->type == ICE_VSI_CHNL) { 1172 struct ice_vsi *main_vsi; 1173 1174 main_vsi = ice_get_main_vsi(pf); 1175 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1176 ctxt->info.sw_flags2 |= 1177 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1178 else 1179 ctxt->info.sw_flags2 &= 1180 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1181 } 1182 1183 ice_set_dflt_vsi_ctx(hw, ctxt); 1184 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1185 ice_set_fd_vsi_ctx(ctxt, vsi); 1186 /* if the switch is in VEB mode, allow VSI loopback */ 1187 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1188 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1189 1190 /* Set LUT type and HASH type if RSS is enabled */ 1191 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1192 vsi->type != ICE_VSI_CTRL) { 1193 ice_set_rss_vsi_ctx(ctxt, vsi); 1194 /* if updating VSI context, make sure to set valid_section: 1195 * to indicate which section of VSI context being updated 1196 */ 1197 if (!init_vsi) 1198 ctxt->info.valid_sections |= 1199 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1200 } 1201 1202 ctxt->info.sw_id = vsi->port_info->sw_id; 1203 if (vsi->type == ICE_VSI_CHNL) { 1204 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1205 } else { 1206 ret = ice_vsi_setup_q_map(vsi, ctxt); 1207 if (ret) 1208 goto out; 1209 1210 if (!init_vsi) /* means VSI being updated */ 1211 /* must to indicate which section of VSI context are 1212 * being modified 1213 */ 1214 ctxt->info.valid_sections |= 1215 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1216 } 1217 1218 /* Allow control frames out of main VSI */ 1219 if (vsi->type == ICE_VSI_PF) { 1220 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1221 ctxt->info.valid_sections |= 1222 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1223 } 1224 1225 if (init_vsi) { 1226 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1227 if (ret) { 1228 dev_err(dev, "Add VSI failed, err %d\n", ret); 1229 ret = -EIO; 1230 goto out; 1231 } 1232 } else { 1233 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1234 if (ret) { 1235 dev_err(dev, "Update VSI failed, err %d\n", ret); 1236 ret = -EIO; 1237 goto out; 1238 } 1239 } 1240 1241 /* keep context for update VSI operations */ 1242 vsi->info = ctxt->info; 1243 1244 /* record VSI number returned */ 1245 vsi->vsi_num = ctxt->vsi_num; 1246 1247 out: 1248 kfree(ctxt); 1249 return ret; 1250 } 1251 1252 /** 1253 * ice_free_res - free a block of resources 1254 * @res: pointer to the resource 1255 * @index: starting index previously returned by ice_get_res 1256 * @id: identifier to track owner 1257 * 1258 * Returns number of resources freed 1259 */ 1260 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1261 { 1262 int count = 0; 1263 int i; 1264 1265 if (!res || index >= res->end) 1266 return -EINVAL; 1267 1268 id |= ICE_RES_VALID_BIT; 1269 for (i = index; i < res->end && res->list[i] == id; i++) { 1270 res->list[i] = 0; 1271 count++; 1272 } 1273 1274 return count; 1275 } 1276 1277 /** 1278 * ice_search_res - Search the tracker for a block of resources 1279 * @res: pointer to the resource 1280 * @needed: size of the block needed 1281 * @id: identifier to track owner 1282 * 1283 * Returns the base item index of the block, or -ENOMEM for error 1284 */ 1285 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1286 { 1287 u16 start = 0, end = 0; 1288 1289 if (needed > res->end) 1290 return -ENOMEM; 1291 1292 id |= ICE_RES_VALID_BIT; 1293 1294 do { 1295 /* skip already allocated entries */ 1296 if (res->list[end++] & ICE_RES_VALID_BIT) { 1297 start = end; 1298 if ((start + needed) > res->end) 1299 break; 1300 } 1301 1302 if (end == (start + needed)) { 1303 int i = start; 1304 1305 /* there was enough, so assign it to the requestor */ 1306 while (i != end) 1307 res->list[i++] = id; 1308 1309 return start; 1310 } 1311 } while (end < res->end); 1312 1313 return -ENOMEM; 1314 } 1315 1316 /** 1317 * ice_get_free_res_count - Get free count from a resource tracker 1318 * @res: Resource tracker instance 1319 */ 1320 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1321 { 1322 u16 i, count = 0; 1323 1324 for (i = 0; i < res->end; i++) 1325 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1326 count++; 1327 1328 return count; 1329 } 1330 1331 /** 1332 * ice_get_res - get a block of resources 1333 * @pf: board private structure 1334 * @res: pointer to the resource 1335 * @needed: size of the block needed 1336 * @id: identifier to track owner 1337 * 1338 * Returns the base item index of the block, or negative for error 1339 */ 1340 int 1341 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1342 { 1343 if (!res || !pf) 1344 return -EINVAL; 1345 1346 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1347 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1348 needed, res->num_entries, id); 1349 return -EINVAL; 1350 } 1351 1352 return ice_search_res(res, needed, id); 1353 } 1354 1355 /** 1356 * ice_get_vf_ctrl_res - Get VF control VSI resource 1357 * @pf: pointer to the PF structure 1358 * @vsi: the VSI to allocate a resource for 1359 * 1360 * Look up whether another VF has already allocated the control VSI resource. 1361 * If so, re-use this resource so that we share it among all VFs. 1362 * 1363 * Otherwise, allocate the resource and return it. 1364 */ 1365 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1366 { 1367 struct ice_vf *vf; 1368 unsigned int bkt; 1369 int base; 1370 1371 rcu_read_lock(); 1372 ice_for_each_vf_rcu(pf, bkt, vf) { 1373 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1374 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1375 rcu_read_unlock(); 1376 return base; 1377 } 1378 } 1379 rcu_read_unlock(); 1380 1381 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1382 ICE_RES_VF_CTRL_VEC_ID); 1383 } 1384 1385 /** 1386 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1387 * @vsi: ptr to the VSI 1388 * 1389 * This should only be called after ice_vsi_alloc() which allocates the 1390 * corresponding SW VSI structure and initializes num_queue_pairs for the 1391 * newly allocated VSI. 1392 * 1393 * Returns 0 on success or negative on failure 1394 */ 1395 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1396 { 1397 struct ice_pf *pf = vsi->back; 1398 struct device *dev; 1399 u16 num_q_vectors; 1400 int base; 1401 1402 dev = ice_pf_to_dev(pf); 1403 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1404 if (vsi->type == ICE_VSI_VF) 1405 return 0; 1406 if (vsi->type == ICE_VSI_CHNL) 1407 return 0; 1408 1409 if (vsi->base_vector) { 1410 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1411 vsi->vsi_num, vsi->base_vector); 1412 return -EEXIST; 1413 } 1414 1415 num_q_vectors = vsi->num_q_vectors; 1416 /* reserve slots from OS requested IRQs */ 1417 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1418 base = ice_get_vf_ctrl_res(pf, vsi); 1419 } else { 1420 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1421 vsi->idx); 1422 } 1423 1424 if (base < 0) { 1425 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1426 ice_get_free_res_count(pf->irq_tracker), 1427 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1428 return -ENOENT; 1429 } 1430 vsi->base_vector = (u16)base; 1431 pf->num_avail_sw_msix -= num_q_vectors; 1432 1433 return 0; 1434 } 1435 1436 /** 1437 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1438 * @vsi: the VSI having rings deallocated 1439 */ 1440 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1441 { 1442 int i; 1443 1444 /* Avoid stale references by clearing map from vector to ring */ 1445 if (vsi->q_vectors) { 1446 ice_for_each_q_vector(vsi, i) { 1447 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1448 1449 if (q_vector) { 1450 q_vector->tx.tx_ring = NULL; 1451 q_vector->rx.rx_ring = NULL; 1452 } 1453 } 1454 } 1455 1456 if (vsi->tx_rings) { 1457 ice_for_each_alloc_txq(vsi, i) { 1458 if (vsi->tx_rings[i]) { 1459 kfree_rcu(vsi->tx_rings[i], rcu); 1460 WRITE_ONCE(vsi->tx_rings[i], NULL); 1461 } 1462 } 1463 } 1464 if (vsi->rx_rings) { 1465 ice_for_each_alloc_rxq(vsi, i) { 1466 if (vsi->rx_rings[i]) { 1467 kfree_rcu(vsi->rx_rings[i], rcu); 1468 WRITE_ONCE(vsi->rx_rings[i], NULL); 1469 } 1470 } 1471 } 1472 } 1473 1474 /** 1475 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1476 * @vsi: VSI which is having rings allocated 1477 */ 1478 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1479 { 1480 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1481 struct ice_pf *pf = vsi->back; 1482 struct device *dev; 1483 u16 i; 1484 1485 dev = ice_pf_to_dev(pf); 1486 /* Allocate Tx rings */ 1487 ice_for_each_alloc_txq(vsi, i) { 1488 struct ice_tx_ring *ring; 1489 1490 /* allocate with kzalloc(), free with kfree_rcu() */ 1491 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1492 1493 if (!ring) 1494 goto err_out; 1495 1496 ring->q_index = i; 1497 ring->reg_idx = vsi->txq_map[i]; 1498 ring->vsi = vsi; 1499 ring->tx_tstamps = &pf->ptp.port.tx; 1500 ring->dev = dev; 1501 ring->count = vsi->num_tx_desc; 1502 ring->txq_teid = ICE_INVAL_TEID; 1503 if (dvm_ena) 1504 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1505 else 1506 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1507 WRITE_ONCE(vsi->tx_rings[i], ring); 1508 } 1509 1510 /* Allocate Rx rings */ 1511 ice_for_each_alloc_rxq(vsi, i) { 1512 struct ice_rx_ring *ring; 1513 1514 /* allocate with kzalloc(), free with kfree_rcu() */ 1515 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1516 if (!ring) 1517 goto err_out; 1518 1519 ring->q_index = i; 1520 ring->reg_idx = vsi->rxq_map[i]; 1521 ring->vsi = vsi; 1522 ring->netdev = vsi->netdev; 1523 ring->dev = dev; 1524 ring->count = vsi->num_rx_desc; 1525 ring->cached_phctime = pf->ptp.cached_phc_time; 1526 WRITE_ONCE(vsi->rx_rings[i], ring); 1527 } 1528 1529 return 0; 1530 1531 err_out: 1532 ice_vsi_clear_rings(vsi); 1533 return -ENOMEM; 1534 } 1535 1536 /** 1537 * ice_vsi_manage_rss_lut - disable/enable RSS 1538 * @vsi: the VSI being changed 1539 * @ena: boolean value indicating if this is an enable or disable request 1540 * 1541 * In the event of disable request for RSS, this function will zero out RSS 1542 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1543 * LUT. 1544 */ 1545 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1546 { 1547 u8 *lut; 1548 1549 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1550 if (!lut) 1551 return; 1552 1553 if (ena) { 1554 if (vsi->rss_lut_user) 1555 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1556 else 1557 ice_fill_rss_lut(lut, vsi->rss_table_size, 1558 vsi->rss_size); 1559 } 1560 1561 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1562 kfree(lut); 1563 } 1564 1565 /** 1566 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1567 * @vsi: VSI to be configured 1568 */ 1569 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1570 { 1571 struct ice_pf *pf = vsi->back; 1572 struct device *dev; 1573 u8 *lut, *key; 1574 int err; 1575 1576 dev = ice_pf_to_dev(pf); 1577 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1578 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1579 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1580 } else { 1581 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1582 1583 /* If orig_rss_size is valid and it is less than determined 1584 * main VSI's rss_size, update main VSI's rss_size to be 1585 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1586 * RSS table gets programmed to be correct (whatever it was 1587 * to begin with (prior to setup-tc for ADQ config) 1588 */ 1589 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1590 vsi->orig_rss_size <= vsi->num_rxq) { 1591 vsi->rss_size = vsi->orig_rss_size; 1592 /* now orig_rss_size is used, reset it to zero */ 1593 vsi->orig_rss_size = 0; 1594 } 1595 } 1596 1597 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1598 if (!lut) 1599 return -ENOMEM; 1600 1601 if (vsi->rss_lut_user) 1602 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1603 else 1604 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1605 1606 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1607 if (err) { 1608 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1609 goto ice_vsi_cfg_rss_exit; 1610 } 1611 1612 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1613 if (!key) { 1614 err = -ENOMEM; 1615 goto ice_vsi_cfg_rss_exit; 1616 } 1617 1618 if (vsi->rss_hkey_user) 1619 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1620 else 1621 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1622 1623 err = ice_set_rss_key(vsi, key); 1624 if (err) 1625 dev_err(dev, "set_rss_key failed, error %d\n", err); 1626 1627 kfree(key); 1628 ice_vsi_cfg_rss_exit: 1629 kfree(lut); 1630 return err; 1631 } 1632 1633 /** 1634 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1635 * @vsi: VSI to be configured 1636 * 1637 * This function will only be called during the VF VSI setup. Upon successful 1638 * completion of package download, this function will configure default RSS 1639 * input sets for VF VSI. 1640 */ 1641 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1642 { 1643 struct ice_pf *pf = vsi->back; 1644 struct device *dev; 1645 int status; 1646 1647 dev = ice_pf_to_dev(pf); 1648 if (ice_is_safe_mode(pf)) { 1649 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1650 vsi->vsi_num); 1651 return; 1652 } 1653 1654 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1655 if (status) 1656 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1657 vsi->vsi_num, status); 1658 } 1659 1660 /** 1661 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1662 * @vsi: VSI to be configured 1663 * 1664 * This function will only be called after successful download package call 1665 * during initialization of PF. Since the downloaded package will erase the 1666 * RSS section, this function will configure RSS input sets for different 1667 * flow types. The last profile added has the highest priority, therefore 2 1668 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1669 * (i.e. IPv4 src/dst TCP src/dst port). 1670 */ 1671 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1672 { 1673 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1674 struct ice_pf *pf = vsi->back; 1675 struct ice_hw *hw = &pf->hw; 1676 struct device *dev; 1677 int status; 1678 1679 dev = ice_pf_to_dev(pf); 1680 if (ice_is_safe_mode(pf)) { 1681 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1682 vsi_num); 1683 return; 1684 } 1685 /* configure RSS for IPv4 with input set IP src/dst */ 1686 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1687 ICE_FLOW_SEG_HDR_IPV4); 1688 if (status) 1689 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1690 vsi_num, status); 1691 1692 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1693 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1694 ICE_FLOW_SEG_HDR_IPV6); 1695 if (status) 1696 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1697 vsi_num, status); 1698 1699 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1700 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1701 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1702 if (status) 1703 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1704 vsi_num, status); 1705 1706 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1707 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1708 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1709 if (status) 1710 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1711 vsi_num, status); 1712 1713 /* configure RSS for sctp4 with input set IP src/dst */ 1714 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1715 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1716 if (status) 1717 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1718 vsi_num, status); 1719 1720 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1721 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1722 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1723 if (status) 1724 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1725 vsi_num, status); 1726 1727 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1728 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1729 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1730 if (status) 1731 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1732 vsi_num, status); 1733 1734 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1735 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1736 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1737 if (status) 1738 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1739 vsi_num, status); 1740 1741 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1742 ICE_FLOW_SEG_HDR_ESP); 1743 if (status) 1744 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1745 vsi_num, status); 1746 } 1747 1748 /** 1749 * ice_pf_state_is_nominal - checks the PF for nominal state 1750 * @pf: pointer to PF to check 1751 * 1752 * Check the PF's state for a collection of bits that would indicate 1753 * the PF is in a state that would inhibit normal operation for 1754 * driver functionality. 1755 * 1756 * Returns true if PF is in a nominal state, false otherwise 1757 */ 1758 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1759 { 1760 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1761 1762 if (!pf) 1763 return false; 1764 1765 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1766 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1767 return false; 1768 1769 return true; 1770 } 1771 1772 /** 1773 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1774 * @vsi: the VSI to be updated 1775 */ 1776 void ice_update_eth_stats(struct ice_vsi *vsi) 1777 { 1778 struct ice_eth_stats *prev_es, *cur_es; 1779 struct ice_hw *hw = &vsi->back->hw; 1780 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1781 1782 prev_es = &vsi->eth_stats_prev; 1783 cur_es = &vsi->eth_stats; 1784 1785 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1786 &prev_es->rx_bytes, &cur_es->rx_bytes); 1787 1788 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1789 &prev_es->rx_unicast, &cur_es->rx_unicast); 1790 1791 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1792 &prev_es->rx_multicast, &cur_es->rx_multicast); 1793 1794 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1795 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1796 1797 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1798 &prev_es->rx_discards, &cur_es->rx_discards); 1799 1800 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1801 &prev_es->tx_bytes, &cur_es->tx_bytes); 1802 1803 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1804 &prev_es->tx_unicast, &cur_es->tx_unicast); 1805 1806 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1807 &prev_es->tx_multicast, &cur_es->tx_multicast); 1808 1809 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1810 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1811 1812 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1813 &prev_es->tx_errors, &cur_es->tx_errors); 1814 1815 vsi->stat_offsets_loaded = true; 1816 } 1817 1818 /** 1819 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1820 * @vsi: VSI 1821 */ 1822 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1823 { 1824 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1825 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1826 vsi->rx_buf_len = ICE_RXBUF_2048; 1827 #if (PAGE_SIZE < 8192) 1828 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1829 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1830 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1831 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1832 #endif 1833 } else { 1834 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1835 #if (PAGE_SIZE < 8192) 1836 vsi->rx_buf_len = ICE_RXBUF_3072; 1837 #else 1838 vsi->rx_buf_len = ICE_RXBUF_2048; 1839 #endif 1840 } 1841 } 1842 1843 /** 1844 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1845 * @hw: HW pointer 1846 * @pf_q: index of the Rx queue in the PF's queue space 1847 * @rxdid: flexible descriptor RXDID 1848 * @prio: priority for the RXDID for this queue 1849 * @ena_ts: true to enable timestamp and false to disable timestamp 1850 */ 1851 void 1852 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1853 bool ena_ts) 1854 { 1855 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1856 1857 /* clear any previous values */ 1858 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1859 QRXFLXP_CNTXT_RXDID_PRIO_M | 1860 QRXFLXP_CNTXT_TS_M); 1861 1862 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1863 QRXFLXP_CNTXT_RXDID_IDX_M; 1864 1865 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1866 QRXFLXP_CNTXT_RXDID_PRIO_M; 1867 1868 if (ena_ts) 1869 /* Enable TimeSync on this queue */ 1870 regval |= QRXFLXP_CNTXT_TS_M; 1871 1872 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1873 } 1874 1875 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1876 { 1877 if (q_idx >= vsi->num_rxq) 1878 return -EINVAL; 1879 1880 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1881 } 1882 1883 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1884 { 1885 struct ice_aqc_add_tx_qgrp *qg_buf; 1886 int err; 1887 1888 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1889 return -EINVAL; 1890 1891 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1892 if (!qg_buf) 1893 return -ENOMEM; 1894 1895 qg_buf->num_txqs = 1; 1896 1897 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1898 kfree(qg_buf); 1899 return err; 1900 } 1901 1902 /** 1903 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1904 * @vsi: the VSI being configured 1905 * 1906 * Return 0 on success and a negative value on error 1907 * Configure the Rx VSI for operation. 1908 */ 1909 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1910 { 1911 u16 i; 1912 1913 if (vsi->type == ICE_VSI_VF) 1914 goto setup_rings; 1915 1916 ice_vsi_cfg_frame_size(vsi); 1917 setup_rings: 1918 /* set up individual rings */ 1919 ice_for_each_rxq(vsi, i) { 1920 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1921 1922 if (err) 1923 return err; 1924 } 1925 1926 return 0; 1927 } 1928 1929 /** 1930 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1931 * @vsi: the VSI being configured 1932 * @rings: Tx ring array to be configured 1933 * @count: number of Tx ring array elements 1934 * 1935 * Return 0 on success and a negative value on error 1936 * Configure the Tx VSI for operation. 1937 */ 1938 static int 1939 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1940 { 1941 struct ice_aqc_add_tx_qgrp *qg_buf; 1942 u16 q_idx = 0; 1943 int err = 0; 1944 1945 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1946 if (!qg_buf) 1947 return -ENOMEM; 1948 1949 qg_buf->num_txqs = 1; 1950 1951 for (q_idx = 0; q_idx < count; q_idx++) { 1952 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1953 if (err) 1954 goto err_cfg_txqs; 1955 } 1956 1957 err_cfg_txqs: 1958 kfree(qg_buf); 1959 return err; 1960 } 1961 1962 /** 1963 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1964 * @vsi: the VSI being configured 1965 * 1966 * Return 0 on success and a negative value on error 1967 * Configure the Tx VSI for operation. 1968 */ 1969 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1970 { 1971 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1972 } 1973 1974 /** 1975 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1976 * @vsi: the VSI being configured 1977 * 1978 * Return 0 on success and a negative value on error 1979 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1980 */ 1981 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1982 { 1983 int ret; 1984 int i; 1985 1986 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1987 if (ret) 1988 return ret; 1989 1990 ice_for_each_xdp_txq(vsi, i) 1991 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1992 1993 return ret; 1994 } 1995 1996 /** 1997 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1998 * @intrl: interrupt rate limit in usecs 1999 * @gran: interrupt rate limit granularity in usecs 2000 * 2001 * This function converts a decimal interrupt rate limit in usecs to the format 2002 * expected by firmware. 2003 */ 2004 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2005 { 2006 u32 val = intrl / gran; 2007 2008 if (val) 2009 return val | GLINT_RATE_INTRL_ENA_M; 2010 return 0; 2011 } 2012 2013 /** 2014 * ice_write_intrl - write throttle rate limit to interrupt specific register 2015 * @q_vector: pointer to interrupt specific structure 2016 * @intrl: throttle rate limit in microseconds to write 2017 */ 2018 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2019 { 2020 struct ice_hw *hw = &q_vector->vsi->back->hw; 2021 2022 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2023 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2024 } 2025 2026 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2027 { 2028 switch (rc->type) { 2029 case ICE_RX_CONTAINER: 2030 if (rc->rx_ring) 2031 return rc->rx_ring->q_vector; 2032 break; 2033 case ICE_TX_CONTAINER: 2034 if (rc->tx_ring) 2035 return rc->tx_ring->q_vector; 2036 break; 2037 default: 2038 break; 2039 } 2040 2041 return NULL; 2042 } 2043 2044 /** 2045 * __ice_write_itr - write throttle rate to register 2046 * @q_vector: pointer to interrupt data structure 2047 * @rc: pointer to ring container 2048 * @itr: throttle rate in microseconds to write 2049 */ 2050 static void __ice_write_itr(struct ice_q_vector *q_vector, 2051 struct ice_ring_container *rc, u16 itr) 2052 { 2053 struct ice_hw *hw = &q_vector->vsi->back->hw; 2054 2055 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2056 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2057 } 2058 2059 /** 2060 * ice_write_itr - write throttle rate to queue specific register 2061 * @rc: pointer to ring container 2062 * @itr: throttle rate in microseconds to write 2063 */ 2064 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2065 { 2066 struct ice_q_vector *q_vector; 2067 2068 q_vector = ice_pull_qvec_from_rc(rc); 2069 if (!q_vector) 2070 return; 2071 2072 __ice_write_itr(q_vector, rc, itr); 2073 } 2074 2075 /** 2076 * ice_set_q_vector_intrl - set up interrupt rate limiting 2077 * @q_vector: the vector to be configured 2078 * 2079 * Interrupt rate limiting is local to the vector, not per-queue so we must 2080 * detect if either ring container has dynamic moderation enabled to decide 2081 * what to set the interrupt rate limit to via INTRL settings. In the case that 2082 * dynamic moderation is disabled on both, write the value with the cached 2083 * setting to make sure INTRL register matches the user visible value. 2084 */ 2085 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2086 { 2087 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2088 /* in the case of dynamic enabled, cap each vector to no more 2089 * than (4 us) 250,000 ints/sec, which allows low latency 2090 * but still less than 500,000 interrupts per second, which 2091 * reduces CPU a bit in the case of the lowest latency 2092 * setting. The 4 here is a value in microseconds. 2093 */ 2094 ice_write_intrl(q_vector, 4); 2095 } else { 2096 ice_write_intrl(q_vector, q_vector->intrl); 2097 } 2098 } 2099 2100 /** 2101 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2102 * @vsi: the VSI being configured 2103 * 2104 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2105 * for the VF VSI. 2106 */ 2107 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2108 { 2109 struct ice_pf *pf = vsi->back; 2110 struct ice_hw *hw = &pf->hw; 2111 u16 txq = 0, rxq = 0; 2112 int i, q; 2113 2114 ice_for_each_q_vector(vsi, i) { 2115 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2116 u16 reg_idx = q_vector->reg_idx; 2117 2118 ice_cfg_itr(hw, q_vector); 2119 2120 /* Both Transmit Queue Interrupt Cause Control register 2121 * and Receive Queue Interrupt Cause control register 2122 * expects MSIX_INDX field to be the vector index 2123 * within the function space and not the absolute 2124 * vector index across PF or across device. 2125 * For SR-IOV VF VSIs queue vector index always starts 2126 * with 1 since first vector index(0) is used for OICR 2127 * in VF space. Since VMDq and other PF VSIs are within 2128 * the PF function space, use the vector index that is 2129 * tracked for this PF. 2130 */ 2131 for (q = 0; q < q_vector->num_ring_tx; q++) { 2132 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2133 q_vector->tx.itr_idx); 2134 txq++; 2135 } 2136 2137 for (q = 0; q < q_vector->num_ring_rx; q++) { 2138 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2139 q_vector->rx.itr_idx); 2140 rxq++; 2141 } 2142 } 2143 } 2144 2145 /** 2146 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2147 * @vsi: the VSI whose rings are to be enabled 2148 * 2149 * Returns 0 on success and a negative value on error 2150 */ 2151 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2152 { 2153 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2154 } 2155 2156 /** 2157 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2158 * @vsi: the VSI whose rings are to be disabled 2159 * 2160 * Returns 0 on success and a negative value on error 2161 */ 2162 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2163 { 2164 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2165 } 2166 2167 /** 2168 * ice_vsi_stop_tx_rings - Disable Tx rings 2169 * @vsi: the VSI being configured 2170 * @rst_src: reset source 2171 * @rel_vmvf_num: Relative ID of VF/VM 2172 * @rings: Tx ring array to be stopped 2173 * @count: number of Tx ring array elements 2174 */ 2175 static int 2176 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2177 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2178 { 2179 u16 q_idx; 2180 2181 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2182 return -EINVAL; 2183 2184 for (q_idx = 0; q_idx < count; q_idx++) { 2185 struct ice_txq_meta txq_meta = { }; 2186 int status; 2187 2188 if (!rings || !rings[q_idx]) 2189 return -EINVAL; 2190 2191 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2192 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2193 rings[q_idx], &txq_meta); 2194 2195 if (status) 2196 return status; 2197 } 2198 2199 return 0; 2200 } 2201 2202 /** 2203 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2204 * @vsi: the VSI being configured 2205 * @rst_src: reset source 2206 * @rel_vmvf_num: Relative ID of VF/VM 2207 */ 2208 int 2209 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2210 u16 rel_vmvf_num) 2211 { 2212 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2213 } 2214 2215 /** 2216 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2217 * @vsi: the VSI being configured 2218 */ 2219 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2220 { 2221 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2222 } 2223 2224 /** 2225 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2226 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2227 * 2228 * returns true if Rx VLAN pruning is enabled and false otherwise. 2229 */ 2230 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2231 { 2232 if (!vsi) 2233 return false; 2234 2235 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2236 } 2237 2238 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2239 { 2240 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2241 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2242 vsi->tc_cfg.numtc = 1; 2243 return; 2244 } 2245 2246 /* set VSI TC information based on DCB config */ 2247 ice_vsi_set_dcb_tc_cfg(vsi); 2248 } 2249 2250 /** 2251 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2252 * @vsi: VSI to set the q_vectors register index on 2253 */ 2254 static int 2255 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2256 { 2257 u16 i; 2258 2259 if (!vsi || !vsi->q_vectors) 2260 return -EINVAL; 2261 2262 ice_for_each_q_vector(vsi, i) { 2263 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2264 2265 if (!q_vector) { 2266 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2267 i, vsi->vsi_num); 2268 goto clear_reg_idx; 2269 } 2270 2271 if (vsi->type == ICE_VSI_VF) { 2272 struct ice_vf *vf = vsi->vf; 2273 2274 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2275 } else { 2276 q_vector->reg_idx = 2277 q_vector->v_idx + vsi->base_vector; 2278 } 2279 } 2280 2281 return 0; 2282 2283 clear_reg_idx: 2284 ice_for_each_q_vector(vsi, i) { 2285 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2286 2287 if (q_vector) 2288 q_vector->reg_idx = 0; 2289 } 2290 2291 return -EINVAL; 2292 } 2293 2294 /** 2295 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2296 * @vsi: the VSI being configured 2297 * @tx: bool to determine Tx or Rx rule 2298 * @create: bool to determine create or remove Rule 2299 */ 2300 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2301 { 2302 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2303 enum ice_sw_fwd_act_type act); 2304 struct ice_pf *pf = vsi->back; 2305 struct device *dev; 2306 int status; 2307 2308 dev = ice_pf_to_dev(pf); 2309 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2310 2311 if (tx) { 2312 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2313 ICE_DROP_PACKET); 2314 } else { 2315 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2316 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2317 create); 2318 } else { 2319 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2320 ICE_FWD_TO_VSI); 2321 } 2322 } 2323 2324 if (status) 2325 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2326 create ? "adding" : "removing", tx ? "TX" : "RX", 2327 vsi->vsi_num, status); 2328 } 2329 2330 /** 2331 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2332 * @vsi: pointer to the VSI 2333 * 2334 * This function will allocate new scheduler aggregator now if needed and will 2335 * move specified VSI into it. 2336 */ 2337 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2338 { 2339 struct device *dev = ice_pf_to_dev(vsi->back); 2340 struct ice_agg_node *agg_node_iter = NULL; 2341 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2342 struct ice_agg_node *agg_node = NULL; 2343 int node_offset, max_agg_nodes = 0; 2344 struct ice_port_info *port_info; 2345 struct ice_pf *pf = vsi->back; 2346 u32 agg_node_id_start = 0; 2347 int status; 2348 2349 /* create (as needed) scheduler aggregator node and move VSI into 2350 * corresponding aggregator node 2351 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2352 * - VF aggregator nodes will contain VF VSI 2353 */ 2354 port_info = pf->hw.port_info; 2355 if (!port_info) 2356 return; 2357 2358 switch (vsi->type) { 2359 case ICE_VSI_CTRL: 2360 case ICE_VSI_CHNL: 2361 case ICE_VSI_LB: 2362 case ICE_VSI_PF: 2363 case ICE_VSI_SWITCHDEV_CTRL: 2364 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2365 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2366 agg_node_iter = &pf->pf_agg_node[0]; 2367 break; 2368 case ICE_VSI_VF: 2369 /* user can create 'n' VFs on a given PF, but since max children 2370 * per aggregator node can be only 64. Following code handles 2371 * aggregator(s) for VF VSIs, either selects a agg_node which 2372 * was already created provided num_vsis < 64, otherwise 2373 * select next available node, which will be created 2374 */ 2375 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2376 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2377 agg_node_iter = &pf->vf_agg_node[0]; 2378 break; 2379 default: 2380 /* other VSI type, handle later if needed */ 2381 dev_dbg(dev, "unexpected VSI type %s\n", 2382 ice_vsi_type_str(vsi->type)); 2383 return; 2384 } 2385 2386 /* find the appropriate aggregator node */ 2387 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2388 /* see if we can find space in previously created 2389 * node if num_vsis < 64, otherwise skip 2390 */ 2391 if (agg_node_iter->num_vsis && 2392 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2393 agg_node_iter++; 2394 continue; 2395 } 2396 2397 if (agg_node_iter->valid && 2398 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2399 agg_id = agg_node_iter->agg_id; 2400 agg_node = agg_node_iter; 2401 break; 2402 } 2403 2404 /* find unclaimed agg_id */ 2405 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2406 agg_id = node_offset + agg_node_id_start; 2407 agg_node = agg_node_iter; 2408 break; 2409 } 2410 /* move to next agg_node */ 2411 agg_node_iter++; 2412 } 2413 2414 if (!agg_node) 2415 return; 2416 2417 /* if selected aggregator node was not created, create it */ 2418 if (!agg_node->valid) { 2419 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2420 (u8)vsi->tc_cfg.ena_tc); 2421 if (status) { 2422 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2423 agg_id); 2424 return; 2425 } 2426 /* aggregator node is created, store the needed info */ 2427 agg_node->valid = true; 2428 agg_node->agg_id = agg_id; 2429 } 2430 2431 /* move VSI to corresponding aggregator node */ 2432 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2433 (u8)vsi->tc_cfg.ena_tc); 2434 if (status) { 2435 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2436 vsi->idx, agg_id); 2437 return; 2438 } 2439 2440 /* keep active children count for aggregator node */ 2441 agg_node->num_vsis++; 2442 2443 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2444 * to aggregator node 2445 */ 2446 vsi->agg_node = agg_node; 2447 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2448 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2449 vsi->agg_node->num_vsis); 2450 } 2451 2452 /** 2453 * ice_vsi_setup - Set up a VSI by a given type 2454 * @pf: board private structure 2455 * @pi: pointer to the port_info instance 2456 * @vsi_type: VSI type 2457 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2458 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2459 * @ch: ptr to channel 2460 * 2461 * This allocates the sw VSI structure and its queue resources. 2462 * 2463 * Returns pointer to the successfully allocated and configured VSI sw struct on 2464 * success, NULL on failure. 2465 */ 2466 struct ice_vsi * 2467 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2468 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2469 struct ice_channel *ch) 2470 { 2471 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2472 struct device *dev = ice_pf_to_dev(pf); 2473 struct ice_vsi *vsi; 2474 int ret, i; 2475 2476 if (vsi_type == ICE_VSI_CHNL) 2477 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2478 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2479 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2480 else 2481 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2482 2483 if (!vsi) { 2484 dev_err(dev, "could not allocate VSI\n"); 2485 return NULL; 2486 } 2487 2488 vsi->port_info = pi; 2489 vsi->vsw = pf->first_sw; 2490 if (vsi->type == ICE_VSI_PF) 2491 vsi->ethtype = ETH_P_PAUSE; 2492 2493 ice_alloc_fd_res(vsi); 2494 2495 if (vsi_type != ICE_VSI_CHNL) { 2496 if (ice_vsi_get_qs(vsi)) { 2497 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2498 vsi->idx); 2499 goto unroll_vsi_alloc; 2500 } 2501 } 2502 2503 /* set RSS capabilities */ 2504 ice_vsi_set_rss_params(vsi); 2505 2506 /* set TC configuration */ 2507 ice_vsi_set_tc_cfg(vsi); 2508 2509 /* create the VSI */ 2510 ret = ice_vsi_init(vsi, true); 2511 if (ret) 2512 goto unroll_get_qs; 2513 2514 ice_vsi_init_vlan_ops(vsi); 2515 2516 switch (vsi->type) { 2517 case ICE_VSI_CTRL: 2518 case ICE_VSI_SWITCHDEV_CTRL: 2519 case ICE_VSI_PF: 2520 ret = ice_vsi_alloc_q_vectors(vsi); 2521 if (ret) 2522 goto unroll_vsi_init; 2523 2524 ret = ice_vsi_setup_vector_base(vsi); 2525 if (ret) 2526 goto unroll_alloc_q_vector; 2527 2528 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2529 if (ret) 2530 goto unroll_vector_base; 2531 2532 ret = ice_vsi_alloc_rings(vsi); 2533 if (ret) 2534 goto unroll_vector_base; 2535 2536 ice_vsi_map_rings_to_vectors(vsi); 2537 2538 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2539 if (vsi->type != ICE_VSI_CTRL) 2540 /* Do not exit if configuring RSS had an issue, at 2541 * least receive traffic on first queue. Hence no 2542 * need to capture return value 2543 */ 2544 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2545 ice_vsi_cfg_rss_lut_key(vsi); 2546 ice_vsi_set_rss_flow_fld(vsi); 2547 } 2548 ice_init_arfs(vsi); 2549 break; 2550 case ICE_VSI_CHNL: 2551 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2552 ice_vsi_cfg_rss_lut_key(vsi); 2553 ice_vsi_set_rss_flow_fld(vsi); 2554 } 2555 break; 2556 case ICE_VSI_VF: 2557 /* VF driver will take care of creating netdev for this type and 2558 * map queues to vectors through Virtchnl, PF driver only 2559 * creates a VSI and corresponding structures for bookkeeping 2560 * purpose 2561 */ 2562 ret = ice_vsi_alloc_q_vectors(vsi); 2563 if (ret) 2564 goto unroll_vsi_init; 2565 2566 ret = ice_vsi_alloc_rings(vsi); 2567 if (ret) 2568 goto unroll_alloc_q_vector; 2569 2570 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2571 if (ret) 2572 goto unroll_vector_base; 2573 2574 /* Do not exit if configuring RSS had an issue, at least 2575 * receive traffic on first queue. Hence no need to capture 2576 * return value 2577 */ 2578 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2579 ice_vsi_cfg_rss_lut_key(vsi); 2580 ice_vsi_set_vf_rss_flow_fld(vsi); 2581 } 2582 break; 2583 case ICE_VSI_LB: 2584 ret = ice_vsi_alloc_rings(vsi); 2585 if (ret) 2586 goto unroll_vsi_init; 2587 break; 2588 default: 2589 /* clean up the resources and exit */ 2590 goto unroll_vsi_init; 2591 } 2592 2593 /* configure VSI nodes based on number of queues and TC's */ 2594 ice_for_each_traffic_class(i) { 2595 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2596 continue; 2597 2598 if (vsi->type == ICE_VSI_CHNL) { 2599 if (!vsi->alloc_txq && vsi->num_txq) 2600 max_txqs[i] = vsi->num_txq; 2601 else 2602 max_txqs[i] = pf->num_lan_tx; 2603 } else { 2604 max_txqs[i] = vsi->alloc_txq; 2605 } 2606 } 2607 2608 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2609 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2610 max_txqs); 2611 if (ret) { 2612 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2613 vsi->vsi_num, ret); 2614 goto unroll_clear_rings; 2615 } 2616 2617 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2618 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2619 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2620 * The rule is added once for PF VSI in order to create appropriate 2621 * recipe, since VSI/VSI list is ignored with drop action... 2622 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2623 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2624 * settings in the HW. 2625 */ 2626 if (!ice_is_safe_mode(pf)) 2627 if (vsi->type == ICE_VSI_PF) { 2628 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2629 ICE_DROP_PACKET); 2630 ice_cfg_sw_lldp(vsi, true, true); 2631 } 2632 2633 if (!vsi->agg_node) 2634 ice_set_agg_vsi(vsi); 2635 return vsi; 2636 2637 unroll_clear_rings: 2638 ice_vsi_clear_rings(vsi); 2639 unroll_vector_base: 2640 /* reclaim SW interrupts back to the common pool */ 2641 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2642 pf->num_avail_sw_msix += vsi->num_q_vectors; 2643 unroll_alloc_q_vector: 2644 ice_vsi_free_q_vectors(vsi); 2645 unroll_vsi_init: 2646 ice_vsi_delete(vsi); 2647 unroll_get_qs: 2648 ice_vsi_put_qs(vsi); 2649 unroll_vsi_alloc: 2650 if (vsi_type == ICE_VSI_VF) 2651 ice_enable_lag(pf->lag); 2652 ice_vsi_clear(vsi); 2653 2654 return NULL; 2655 } 2656 2657 /** 2658 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2659 * @vsi: the VSI being cleaned up 2660 */ 2661 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2662 { 2663 struct ice_pf *pf = vsi->back; 2664 struct ice_hw *hw = &pf->hw; 2665 u32 txq = 0; 2666 u32 rxq = 0; 2667 int i, q; 2668 2669 ice_for_each_q_vector(vsi, i) { 2670 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2671 2672 ice_write_intrl(q_vector, 0); 2673 for (q = 0; q < q_vector->num_ring_tx; q++) { 2674 ice_write_itr(&q_vector->tx, 0); 2675 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2676 if (ice_is_xdp_ena_vsi(vsi)) { 2677 u32 xdp_txq = txq + vsi->num_xdp_txq; 2678 2679 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2680 } 2681 txq++; 2682 } 2683 2684 for (q = 0; q < q_vector->num_ring_rx; q++) { 2685 ice_write_itr(&q_vector->rx, 0); 2686 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2687 rxq++; 2688 } 2689 } 2690 2691 ice_flush(hw); 2692 } 2693 2694 /** 2695 * ice_vsi_free_irq - Free the IRQ association with the OS 2696 * @vsi: the VSI being configured 2697 */ 2698 void ice_vsi_free_irq(struct ice_vsi *vsi) 2699 { 2700 struct ice_pf *pf = vsi->back; 2701 int base = vsi->base_vector; 2702 int i; 2703 2704 if (!vsi->q_vectors || !vsi->irqs_ready) 2705 return; 2706 2707 ice_vsi_release_msix(vsi); 2708 if (vsi->type == ICE_VSI_VF) 2709 return; 2710 2711 vsi->irqs_ready = false; 2712 ice_free_cpu_rx_rmap(vsi); 2713 2714 ice_for_each_q_vector(vsi, i) { 2715 u16 vector = i + base; 2716 int irq_num; 2717 2718 irq_num = pf->msix_entries[vector].vector; 2719 2720 /* free only the irqs that were actually requested */ 2721 if (!vsi->q_vectors[i] || 2722 !(vsi->q_vectors[i]->num_ring_tx || 2723 vsi->q_vectors[i]->num_ring_rx)) 2724 continue; 2725 2726 /* clear the affinity notifier in the IRQ descriptor */ 2727 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2728 irq_set_affinity_notifier(irq_num, NULL); 2729 2730 /* clear the affinity_mask in the IRQ descriptor */ 2731 irq_set_affinity_hint(irq_num, NULL); 2732 synchronize_irq(irq_num); 2733 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2734 } 2735 } 2736 2737 /** 2738 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2739 * @vsi: the VSI having resources freed 2740 */ 2741 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2742 { 2743 int i; 2744 2745 if (!vsi->tx_rings) 2746 return; 2747 2748 ice_for_each_txq(vsi, i) 2749 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2750 ice_free_tx_ring(vsi->tx_rings[i]); 2751 } 2752 2753 /** 2754 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2755 * @vsi: the VSI having resources freed 2756 */ 2757 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2758 { 2759 int i; 2760 2761 if (!vsi->rx_rings) 2762 return; 2763 2764 ice_for_each_rxq(vsi, i) 2765 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2766 ice_free_rx_ring(vsi->rx_rings[i]); 2767 } 2768 2769 /** 2770 * ice_vsi_close - Shut down a VSI 2771 * @vsi: the VSI being shut down 2772 */ 2773 void ice_vsi_close(struct ice_vsi *vsi) 2774 { 2775 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2776 ice_down(vsi); 2777 2778 ice_vsi_free_irq(vsi); 2779 ice_vsi_free_tx_rings(vsi); 2780 ice_vsi_free_rx_rings(vsi); 2781 } 2782 2783 /** 2784 * ice_ena_vsi - resume a VSI 2785 * @vsi: the VSI being resume 2786 * @locked: is the rtnl_lock already held 2787 */ 2788 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2789 { 2790 int err = 0; 2791 2792 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2793 return 0; 2794 2795 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2796 2797 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2798 if (netif_running(vsi->netdev)) { 2799 if (!locked) 2800 rtnl_lock(); 2801 2802 err = ice_open_internal(vsi->netdev); 2803 2804 if (!locked) 2805 rtnl_unlock(); 2806 } 2807 } else if (vsi->type == ICE_VSI_CTRL) { 2808 err = ice_vsi_open_ctrl(vsi); 2809 } 2810 2811 return err; 2812 } 2813 2814 /** 2815 * ice_dis_vsi - pause a VSI 2816 * @vsi: the VSI being paused 2817 * @locked: is the rtnl_lock already held 2818 */ 2819 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2820 { 2821 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2822 return; 2823 2824 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2825 2826 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2827 if (netif_running(vsi->netdev)) { 2828 if (!locked) 2829 rtnl_lock(); 2830 2831 ice_vsi_close(vsi); 2832 2833 if (!locked) 2834 rtnl_unlock(); 2835 } else { 2836 ice_vsi_close(vsi); 2837 } 2838 } else if (vsi->type == ICE_VSI_CTRL || 2839 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2840 ice_vsi_close(vsi); 2841 } 2842 } 2843 2844 /** 2845 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2846 * @vsi: the VSI being un-configured 2847 */ 2848 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2849 { 2850 int base = vsi->base_vector; 2851 struct ice_pf *pf = vsi->back; 2852 struct ice_hw *hw = &pf->hw; 2853 u32 val; 2854 int i; 2855 2856 /* disable interrupt causation from each queue */ 2857 if (vsi->tx_rings) { 2858 ice_for_each_txq(vsi, i) { 2859 if (vsi->tx_rings[i]) { 2860 u16 reg; 2861 2862 reg = vsi->tx_rings[i]->reg_idx; 2863 val = rd32(hw, QINT_TQCTL(reg)); 2864 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2865 wr32(hw, QINT_TQCTL(reg), val); 2866 } 2867 } 2868 } 2869 2870 if (vsi->rx_rings) { 2871 ice_for_each_rxq(vsi, i) { 2872 if (vsi->rx_rings[i]) { 2873 u16 reg; 2874 2875 reg = vsi->rx_rings[i]->reg_idx; 2876 val = rd32(hw, QINT_RQCTL(reg)); 2877 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2878 wr32(hw, QINT_RQCTL(reg), val); 2879 } 2880 } 2881 } 2882 2883 /* disable each interrupt */ 2884 ice_for_each_q_vector(vsi, i) { 2885 if (!vsi->q_vectors[i]) 2886 continue; 2887 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2888 } 2889 2890 ice_flush(hw); 2891 2892 /* don't call synchronize_irq() for VF's from the host */ 2893 if (vsi->type == ICE_VSI_VF) 2894 return; 2895 2896 ice_for_each_q_vector(vsi, i) 2897 synchronize_irq(pf->msix_entries[i + base].vector); 2898 } 2899 2900 /** 2901 * ice_napi_del - Remove NAPI handler for the VSI 2902 * @vsi: VSI for which NAPI handler is to be removed 2903 */ 2904 void ice_napi_del(struct ice_vsi *vsi) 2905 { 2906 int v_idx; 2907 2908 if (!vsi->netdev) 2909 return; 2910 2911 ice_for_each_q_vector(vsi, v_idx) 2912 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2913 } 2914 2915 /** 2916 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2917 * @pf: pointer to PF structure 2918 * @vsi: the VSI to free resources for 2919 * 2920 * Check if the VF control VSI resource is still in use. If no VF is using it 2921 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2922 * once no other VF uses it. 2923 */ 2924 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2925 { 2926 struct ice_vf *vf; 2927 unsigned int bkt; 2928 2929 rcu_read_lock(); 2930 ice_for_each_vf_rcu(pf, bkt, vf) { 2931 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2932 rcu_read_unlock(); 2933 return; 2934 } 2935 } 2936 rcu_read_unlock(); 2937 2938 /* No other VFs left that have control VSI. It is now safe to reclaim 2939 * SW interrupts back to the common pool. 2940 */ 2941 ice_free_res(pf->irq_tracker, vsi->base_vector, 2942 ICE_RES_VF_CTRL_VEC_ID); 2943 pf->num_avail_sw_msix += vsi->num_q_vectors; 2944 } 2945 2946 /** 2947 * ice_vsi_release - Delete a VSI and free its resources 2948 * @vsi: the VSI being removed 2949 * 2950 * Returns 0 on success or < 0 on error 2951 */ 2952 int ice_vsi_release(struct ice_vsi *vsi) 2953 { 2954 struct ice_pf *pf; 2955 int err; 2956 2957 if (!vsi->back) 2958 return -ENODEV; 2959 pf = vsi->back; 2960 2961 /* do not unregister while driver is in the reset recovery pending 2962 * state. Since reset/rebuild happens through PF service task workqueue, 2963 * it's not a good idea to unregister netdev that is associated to the 2964 * PF that is running the work queue items currently. This is done to 2965 * avoid check_flush_dependency() warning on this wq 2966 */ 2967 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2968 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2969 unregister_netdev(vsi->netdev); 2970 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2971 } 2972 2973 if (vsi->type == ICE_VSI_PF) 2974 ice_devlink_destroy_pf_port(pf); 2975 2976 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2977 ice_rss_clean(vsi); 2978 2979 /* Disable VSI and free resources */ 2980 if (vsi->type != ICE_VSI_LB) 2981 ice_vsi_dis_irq(vsi); 2982 ice_vsi_close(vsi); 2983 2984 /* SR-IOV determines needed MSIX resources all at once instead of per 2985 * VSI since when VFs are spawned we know how many VFs there are and how 2986 * many interrupts each VF needs. SR-IOV MSIX resources are also 2987 * cleared in the same manner. 2988 */ 2989 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2990 ice_free_vf_ctrl_res(pf, vsi); 2991 } else if (vsi->type != ICE_VSI_VF) { 2992 /* reclaim SW interrupts back to the common pool */ 2993 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2994 pf->num_avail_sw_msix += vsi->num_q_vectors; 2995 } 2996 2997 if (!ice_is_safe_mode(pf)) { 2998 if (vsi->type == ICE_VSI_PF) { 2999 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3000 ICE_DROP_PACKET); 3001 ice_cfg_sw_lldp(vsi, true, false); 3002 /* The Rx rule will only exist to remove if the LLDP FW 3003 * engine is currently stopped 3004 */ 3005 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3006 ice_cfg_sw_lldp(vsi, false, false); 3007 } 3008 } 3009 3010 if (ice_is_vsi_dflt_vsi(vsi)) 3011 ice_clear_dflt_vsi(vsi); 3012 ice_fltr_remove_all(vsi); 3013 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3014 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3015 if (err) 3016 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3017 vsi->vsi_num, err); 3018 ice_vsi_delete(vsi); 3019 ice_vsi_free_q_vectors(vsi); 3020 3021 if (vsi->netdev) { 3022 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3023 unregister_netdev(vsi->netdev); 3024 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3025 } 3026 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3027 free_netdev(vsi->netdev); 3028 vsi->netdev = NULL; 3029 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3030 } 3031 } 3032 3033 if (vsi->type == ICE_VSI_VF && 3034 vsi->agg_node && vsi->agg_node->valid) 3035 vsi->agg_node->num_vsis--; 3036 ice_vsi_clear_rings(vsi); 3037 3038 ice_vsi_put_qs(vsi); 3039 3040 /* retain SW VSI data structure since it is needed to unregister and 3041 * free VSI netdev when PF is not in reset recovery pending state,\ 3042 * for ex: during rmmod. 3043 */ 3044 if (!ice_is_reset_in_progress(pf->state)) 3045 ice_vsi_clear(vsi); 3046 3047 return 0; 3048 } 3049 3050 /** 3051 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3052 * @vsi: VSI connected with q_vectors 3053 * @coalesce: array of struct with stored coalesce 3054 * 3055 * Returns array size. 3056 */ 3057 static int 3058 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3059 struct ice_coalesce_stored *coalesce) 3060 { 3061 int i; 3062 3063 ice_for_each_q_vector(vsi, i) { 3064 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3065 3066 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3067 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3068 coalesce[i].intrl = q_vector->intrl; 3069 3070 if (i < vsi->num_txq) 3071 coalesce[i].tx_valid = true; 3072 if (i < vsi->num_rxq) 3073 coalesce[i].rx_valid = true; 3074 } 3075 3076 return vsi->num_q_vectors; 3077 } 3078 3079 /** 3080 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3081 * @vsi: VSI connected with q_vectors 3082 * @coalesce: pointer to array of struct with stored coalesce 3083 * @size: size of coalesce array 3084 * 3085 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3086 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3087 * to default value. 3088 */ 3089 static void 3090 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3091 struct ice_coalesce_stored *coalesce, int size) 3092 { 3093 struct ice_ring_container *rc; 3094 int i; 3095 3096 if ((size && !coalesce) || !vsi) 3097 return; 3098 3099 /* There are a couple of cases that have to be handled here: 3100 * 1. The case where the number of queue vectors stays the same, but 3101 * the number of Tx or Rx rings changes (the first for loop) 3102 * 2. The case where the number of queue vectors increased (the 3103 * second for loop) 3104 */ 3105 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3106 /* There are 2 cases to handle here and they are the same for 3107 * both Tx and Rx: 3108 * if the entry was valid previously (coalesce[i].[tr]x_valid 3109 * and the loop variable is less than the number of rings 3110 * allocated, then write the previous values 3111 * 3112 * if the entry was not valid previously, but the number of 3113 * rings is less than are allocated (this means the number of 3114 * rings increased from previously), then write out the 3115 * values in the first element 3116 * 3117 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3118 * as there is no harm because the dynamic algorithm 3119 * will just overwrite. 3120 */ 3121 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3122 rc = &vsi->q_vectors[i]->rx; 3123 rc->itr_settings = coalesce[i].itr_rx; 3124 ice_write_itr(rc, rc->itr_setting); 3125 } else if (i < vsi->alloc_rxq) { 3126 rc = &vsi->q_vectors[i]->rx; 3127 rc->itr_settings = coalesce[0].itr_rx; 3128 ice_write_itr(rc, rc->itr_setting); 3129 } 3130 3131 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3132 rc = &vsi->q_vectors[i]->tx; 3133 rc->itr_settings = coalesce[i].itr_tx; 3134 ice_write_itr(rc, rc->itr_setting); 3135 } else if (i < vsi->alloc_txq) { 3136 rc = &vsi->q_vectors[i]->tx; 3137 rc->itr_settings = coalesce[0].itr_tx; 3138 ice_write_itr(rc, rc->itr_setting); 3139 } 3140 3141 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3142 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3143 } 3144 3145 /* the number of queue vectors increased so write whatever is in 3146 * the first element 3147 */ 3148 for (; i < vsi->num_q_vectors; i++) { 3149 /* transmit */ 3150 rc = &vsi->q_vectors[i]->tx; 3151 rc->itr_settings = coalesce[0].itr_tx; 3152 ice_write_itr(rc, rc->itr_setting); 3153 3154 /* receive */ 3155 rc = &vsi->q_vectors[i]->rx; 3156 rc->itr_settings = coalesce[0].itr_rx; 3157 ice_write_itr(rc, rc->itr_setting); 3158 3159 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3160 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3161 } 3162 } 3163 3164 /** 3165 * ice_vsi_rebuild - Rebuild VSI after reset 3166 * @vsi: VSI to be rebuild 3167 * @init_vsi: is this an initialization or a reconfigure of the VSI 3168 * 3169 * Returns 0 on success and negative value on failure 3170 */ 3171 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3172 { 3173 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3174 struct ice_coalesce_stored *coalesce; 3175 int prev_num_q_vectors = 0; 3176 enum ice_vsi_type vtype; 3177 struct ice_pf *pf; 3178 int ret, i; 3179 3180 if (!vsi) 3181 return -EINVAL; 3182 3183 pf = vsi->back; 3184 vtype = vsi->type; 3185 if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf) 3186 return -EINVAL; 3187 3188 ice_vsi_init_vlan_ops(vsi); 3189 3190 coalesce = kcalloc(vsi->num_q_vectors, 3191 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3192 if (!coalesce) 3193 return -ENOMEM; 3194 3195 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3196 3197 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3198 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3199 if (ret) 3200 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3201 vsi->vsi_num, ret); 3202 ice_vsi_free_q_vectors(vsi); 3203 3204 /* SR-IOV determines needed MSIX resources all at once instead of per 3205 * VSI since when VFs are spawned we know how many VFs there are and how 3206 * many interrupts each VF needs. SR-IOV MSIX resources are also 3207 * cleared in the same manner. 3208 */ 3209 if (vtype != ICE_VSI_VF) { 3210 /* reclaim SW interrupts back to the common pool */ 3211 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3212 pf->num_avail_sw_msix += vsi->num_q_vectors; 3213 vsi->base_vector = 0; 3214 } 3215 3216 if (ice_is_xdp_ena_vsi(vsi)) 3217 /* return value check can be skipped here, it always returns 3218 * 0 if reset is in progress 3219 */ 3220 ice_destroy_xdp_rings(vsi); 3221 ice_vsi_put_qs(vsi); 3222 ice_vsi_clear_rings(vsi); 3223 ice_vsi_free_arrays(vsi); 3224 if (vtype == ICE_VSI_VF) 3225 ice_vsi_set_num_qs(vsi, vsi->vf); 3226 else 3227 ice_vsi_set_num_qs(vsi, NULL); 3228 3229 ret = ice_vsi_alloc_arrays(vsi); 3230 if (ret < 0) 3231 goto err_vsi; 3232 3233 ice_vsi_get_qs(vsi); 3234 3235 ice_alloc_fd_res(vsi); 3236 ice_vsi_set_tc_cfg(vsi); 3237 3238 /* Initialize VSI struct elements and create VSI in FW */ 3239 ret = ice_vsi_init(vsi, init_vsi); 3240 if (ret < 0) 3241 goto err_vsi; 3242 3243 switch (vtype) { 3244 case ICE_VSI_CTRL: 3245 case ICE_VSI_SWITCHDEV_CTRL: 3246 case ICE_VSI_PF: 3247 ret = ice_vsi_alloc_q_vectors(vsi); 3248 if (ret) 3249 goto err_rings; 3250 3251 ret = ice_vsi_setup_vector_base(vsi); 3252 if (ret) 3253 goto err_vectors; 3254 3255 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3256 if (ret) 3257 goto err_vectors; 3258 3259 ret = ice_vsi_alloc_rings(vsi); 3260 if (ret) 3261 goto err_vectors; 3262 3263 ice_vsi_map_rings_to_vectors(vsi); 3264 if (ice_is_xdp_ena_vsi(vsi)) { 3265 ret = ice_vsi_determine_xdp_res(vsi); 3266 if (ret) 3267 goto err_vectors; 3268 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3269 if (ret) 3270 goto err_vectors; 3271 } 3272 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3273 if (vtype != ICE_VSI_CTRL) 3274 /* Do not exit if configuring RSS had an issue, at 3275 * least receive traffic on first queue. Hence no 3276 * need to capture return value 3277 */ 3278 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3279 ice_vsi_cfg_rss_lut_key(vsi); 3280 break; 3281 case ICE_VSI_VF: 3282 ret = ice_vsi_alloc_q_vectors(vsi); 3283 if (ret) 3284 goto err_rings; 3285 3286 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3287 if (ret) 3288 goto err_vectors; 3289 3290 ret = ice_vsi_alloc_rings(vsi); 3291 if (ret) 3292 goto err_vectors; 3293 3294 break; 3295 case ICE_VSI_CHNL: 3296 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3297 ice_vsi_cfg_rss_lut_key(vsi); 3298 ice_vsi_set_rss_flow_fld(vsi); 3299 } 3300 break; 3301 default: 3302 break; 3303 } 3304 3305 /* configure VSI nodes based on number of queues and TC's */ 3306 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3307 /* configure VSI nodes based on number of queues and TC's. 3308 * ADQ creates VSIs for each TC/Channel but doesn't 3309 * allocate queues instead it reconfigures the PF queues 3310 * as per the TC command. So max_txqs should point to the 3311 * PF Tx queues. 3312 */ 3313 if (vtype == ICE_VSI_CHNL) 3314 max_txqs[i] = pf->num_lan_tx; 3315 else 3316 max_txqs[i] = vsi->alloc_txq; 3317 3318 if (ice_is_xdp_ena_vsi(vsi)) 3319 max_txqs[i] += vsi->num_xdp_txq; 3320 } 3321 3322 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3323 /* If MQPRIO is set, means channel code path, hence for main 3324 * VSI's, use TC as 1 3325 */ 3326 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3327 else 3328 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3329 vsi->tc_cfg.ena_tc, max_txqs); 3330 3331 if (ret) { 3332 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3333 vsi->vsi_num, ret); 3334 if (init_vsi) { 3335 ret = -EIO; 3336 goto err_vectors; 3337 } else { 3338 return ice_schedule_reset(pf, ICE_RESET_PFR); 3339 } 3340 } 3341 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3342 kfree(coalesce); 3343 3344 return 0; 3345 3346 err_vectors: 3347 ice_vsi_free_q_vectors(vsi); 3348 err_rings: 3349 if (vsi->netdev) { 3350 vsi->current_netdev_flags = 0; 3351 unregister_netdev(vsi->netdev); 3352 free_netdev(vsi->netdev); 3353 vsi->netdev = NULL; 3354 } 3355 err_vsi: 3356 ice_vsi_clear(vsi); 3357 set_bit(ICE_RESET_FAILED, pf->state); 3358 kfree(coalesce); 3359 return ret; 3360 } 3361 3362 /** 3363 * ice_is_reset_in_progress - check for a reset in progress 3364 * @state: PF state field 3365 */ 3366 bool ice_is_reset_in_progress(unsigned long *state) 3367 { 3368 return test_bit(ICE_RESET_OICR_RECV, state) || 3369 test_bit(ICE_PFR_REQ, state) || 3370 test_bit(ICE_CORER_REQ, state) || 3371 test_bit(ICE_GLOBR_REQ, state); 3372 } 3373 3374 /** 3375 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3376 * @pf: pointer to the PF structure 3377 * @timeout: length of time to wait, in jiffies 3378 * 3379 * Wait (sleep) for a short time until the driver finishes cleaning up from 3380 * a device reset. The caller must be able to sleep. Use this to delay 3381 * operations that could fail while the driver is cleaning up after a device 3382 * reset. 3383 * 3384 * Returns 0 on success, -EBUSY if the reset is not finished within the 3385 * timeout, and -ERESTARTSYS if the thread was interrupted. 3386 */ 3387 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3388 { 3389 long ret; 3390 3391 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3392 !ice_is_reset_in_progress(pf->state), 3393 timeout); 3394 if (ret < 0) 3395 return ret; 3396 else if (!ret) 3397 return -EBUSY; 3398 else 3399 return 0; 3400 } 3401 3402 /** 3403 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3404 * @vsi: VSI being configured 3405 * @ctx: the context buffer returned from AQ VSI update command 3406 */ 3407 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3408 { 3409 vsi->info.mapping_flags = ctx->info.mapping_flags; 3410 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3411 sizeof(vsi->info.q_mapping)); 3412 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3413 sizeof(vsi->info.tc_mapping)); 3414 } 3415 3416 /** 3417 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3418 * @vsi: the VSI being configured 3419 * @ena_tc: TC map to be enabled 3420 */ 3421 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3422 { 3423 struct net_device *netdev = vsi->netdev; 3424 struct ice_pf *pf = vsi->back; 3425 int numtc = vsi->tc_cfg.numtc; 3426 struct ice_dcbx_cfg *dcbcfg; 3427 u8 netdev_tc; 3428 int i; 3429 3430 if (!netdev) 3431 return; 3432 3433 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3434 if (vsi->type == ICE_VSI_CHNL) 3435 return; 3436 3437 if (!ena_tc) { 3438 netdev_reset_tc(netdev); 3439 return; 3440 } 3441 3442 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3443 numtc = vsi->all_numtc; 3444 3445 if (netdev_set_num_tc(netdev, numtc)) 3446 return; 3447 3448 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3449 3450 ice_for_each_traffic_class(i) 3451 if (vsi->tc_cfg.ena_tc & BIT(i)) 3452 netdev_set_tc_queue(netdev, 3453 vsi->tc_cfg.tc_info[i].netdev_tc, 3454 vsi->tc_cfg.tc_info[i].qcount_tx, 3455 vsi->tc_cfg.tc_info[i].qoffset); 3456 /* setup TC queue map for CHNL TCs */ 3457 ice_for_each_chnl_tc(i) { 3458 if (!(vsi->all_enatc & BIT(i))) 3459 break; 3460 if (!vsi->mqprio_qopt.qopt.count[i]) 3461 break; 3462 netdev_set_tc_queue(netdev, i, 3463 vsi->mqprio_qopt.qopt.count[i], 3464 vsi->mqprio_qopt.qopt.offset[i]); 3465 } 3466 3467 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3468 return; 3469 3470 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3471 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3472 3473 /* Get the mapped netdev TC# for the UP */ 3474 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3475 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3476 } 3477 } 3478 3479 /** 3480 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3481 * @vsi: the VSI being configured, 3482 * @ctxt: VSI context structure 3483 * @ena_tc: number of traffic classes to enable 3484 * 3485 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3486 */ 3487 static int 3488 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3489 u8 ena_tc) 3490 { 3491 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3492 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3493 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3494 u8 netdev_tc = 0; 3495 int i; 3496 3497 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3498 3499 pow = order_base_2(tc0_qcount); 3500 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3501 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3502 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3503 3504 ice_for_each_traffic_class(i) { 3505 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3506 /* TC is not enabled */ 3507 vsi->tc_cfg.tc_info[i].qoffset = 0; 3508 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3509 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3510 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3511 ctxt->info.tc_mapping[i] = 0; 3512 continue; 3513 } 3514 3515 offset = vsi->mqprio_qopt.qopt.offset[i]; 3516 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3517 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3518 vsi->tc_cfg.tc_info[i].qoffset = offset; 3519 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3520 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3521 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3522 } 3523 3524 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3525 ice_for_each_chnl_tc(i) { 3526 if (!(vsi->all_enatc & BIT(i))) 3527 continue; 3528 offset = vsi->mqprio_qopt.qopt.offset[i]; 3529 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3530 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3531 } 3532 } 3533 3534 /* Set actual Tx/Rx queue pairs */ 3535 vsi->num_txq = offset + qcount_tx; 3536 if (vsi->num_txq > vsi->alloc_txq) { 3537 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3538 vsi->num_txq, vsi->alloc_txq); 3539 return -EINVAL; 3540 } 3541 3542 vsi->num_rxq = offset + qcount_rx; 3543 if (vsi->num_rxq > vsi->alloc_rxq) { 3544 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3545 vsi->num_rxq, vsi->alloc_rxq); 3546 return -EINVAL; 3547 } 3548 3549 /* Setup queue TC[0].qmap for given VSI context */ 3550 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3551 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3552 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3553 3554 /* Find queue count available for channel VSIs and starting offset 3555 * for channel VSIs 3556 */ 3557 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3558 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3559 vsi->next_base_q = tc0_qcount; 3560 } 3561 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3562 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3563 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3564 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3565 3566 return 0; 3567 } 3568 3569 /** 3570 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3571 * @vsi: VSI to be configured 3572 * @ena_tc: TC bitmap 3573 * 3574 * VSI queues expected to be quiesced before calling this function 3575 */ 3576 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3577 { 3578 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3579 struct ice_pf *pf = vsi->back; 3580 struct ice_vsi_ctx *ctx; 3581 struct device *dev; 3582 int i, ret = 0; 3583 u8 num_tc = 0; 3584 3585 dev = ice_pf_to_dev(pf); 3586 if (vsi->tc_cfg.ena_tc == ena_tc && 3587 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3588 return ret; 3589 3590 ice_for_each_traffic_class(i) { 3591 /* build bitmap of enabled TCs */ 3592 if (ena_tc & BIT(i)) 3593 num_tc++; 3594 /* populate max_txqs per TC */ 3595 max_txqs[i] = vsi->alloc_txq; 3596 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3597 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3598 */ 3599 if (vsi->type == ICE_VSI_CHNL && 3600 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3601 max_txqs[i] = vsi->num_txq; 3602 } 3603 3604 vsi->tc_cfg.ena_tc = ena_tc; 3605 vsi->tc_cfg.numtc = num_tc; 3606 3607 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3608 if (!ctx) 3609 return -ENOMEM; 3610 3611 ctx->vf_num = 0; 3612 ctx->info = vsi->info; 3613 3614 if (vsi->type == ICE_VSI_PF && 3615 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3616 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3617 else 3618 ret = ice_vsi_setup_q_map(vsi, ctx); 3619 3620 if (ret) 3621 goto out; 3622 3623 /* must to indicate which section of VSI context are being modified */ 3624 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3625 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3626 if (ret) { 3627 dev_info(dev, "Failed VSI Update\n"); 3628 goto out; 3629 } 3630 3631 if (vsi->type == ICE_VSI_PF && 3632 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3633 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3634 else 3635 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3636 vsi->tc_cfg.ena_tc, max_txqs); 3637 3638 if (ret) { 3639 dev_err(dev, "VSI %d failed TC config, error %d\n", 3640 vsi->vsi_num, ret); 3641 goto out; 3642 } 3643 ice_vsi_update_q_map(vsi, ctx); 3644 vsi->info.valid_sections = 0; 3645 3646 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3647 out: 3648 kfree(ctx); 3649 return ret; 3650 } 3651 3652 /** 3653 * ice_update_ring_stats - Update ring statistics 3654 * @stats: stats to be updated 3655 * @pkts: number of processed packets 3656 * @bytes: number of processed bytes 3657 * 3658 * This function assumes that caller has acquired a u64_stats_sync lock. 3659 */ 3660 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3661 { 3662 stats->bytes += bytes; 3663 stats->pkts += pkts; 3664 } 3665 3666 /** 3667 * ice_update_tx_ring_stats - Update Tx ring specific counters 3668 * @tx_ring: ring to update 3669 * @pkts: number of processed packets 3670 * @bytes: number of processed bytes 3671 */ 3672 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3673 { 3674 u64_stats_update_begin(&tx_ring->syncp); 3675 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3676 u64_stats_update_end(&tx_ring->syncp); 3677 } 3678 3679 /** 3680 * ice_update_rx_ring_stats - Update Rx ring specific counters 3681 * @rx_ring: ring to update 3682 * @pkts: number of processed packets 3683 * @bytes: number of processed bytes 3684 */ 3685 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3686 { 3687 u64_stats_update_begin(&rx_ring->syncp); 3688 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3689 u64_stats_update_end(&rx_ring->syncp); 3690 } 3691 3692 /** 3693 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3694 * @pi: port info of the switch with default VSI 3695 * 3696 * Return true if the there is a single VSI in default forwarding VSI list 3697 */ 3698 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3699 { 3700 bool exists = false; 3701 3702 ice_check_if_dflt_vsi(pi, 0, &exists); 3703 return exists; 3704 } 3705 3706 /** 3707 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3708 * @vsi: VSI to compare against default forwarding VSI 3709 * 3710 * If this VSI passed in is the default forwarding VSI then return true, else 3711 * return false 3712 */ 3713 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3714 { 3715 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3716 } 3717 3718 /** 3719 * ice_set_dflt_vsi - set the default forwarding VSI 3720 * @vsi: VSI getting set as the default forwarding VSI on the switch 3721 * 3722 * If the VSI passed in is already the default VSI and it's enabled just return 3723 * success. 3724 * 3725 * Otherwise try to set the VSI passed in as the switch's default VSI and 3726 * return the result. 3727 */ 3728 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3729 { 3730 struct device *dev; 3731 int status; 3732 3733 if (!vsi) 3734 return -EINVAL; 3735 3736 dev = ice_pf_to_dev(vsi->back); 3737 3738 /* the VSI passed in is already the default VSI */ 3739 if (ice_is_vsi_dflt_vsi(vsi)) { 3740 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3741 vsi->vsi_num); 3742 return 0; 3743 } 3744 3745 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3746 if (status) { 3747 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3748 vsi->vsi_num, status); 3749 return status; 3750 } 3751 3752 return 0; 3753 } 3754 3755 /** 3756 * ice_clear_dflt_vsi - clear the default forwarding VSI 3757 * @vsi: VSI to remove from filter list 3758 * 3759 * If the switch has no default VSI or it's not enabled then return error. 3760 * 3761 * Otherwise try to clear the default VSI and return the result. 3762 */ 3763 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3764 { 3765 struct device *dev; 3766 int status; 3767 3768 if (!vsi) 3769 return -EINVAL; 3770 3771 dev = ice_pf_to_dev(vsi->back); 3772 3773 /* there is no default VSI configured */ 3774 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3775 return -ENODEV; 3776 3777 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3778 ICE_FLTR_RX); 3779 if (status) { 3780 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3781 vsi->vsi_num, status); 3782 return -EIO; 3783 } 3784 3785 return 0; 3786 } 3787 3788 /** 3789 * ice_get_link_speed_mbps - get link speed in Mbps 3790 * @vsi: the VSI whose link speed is being queried 3791 * 3792 * Return current VSI link speed and 0 if the speed is unknown. 3793 */ 3794 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3795 { 3796 switch (vsi->port_info->phy.link_info.link_speed) { 3797 case ICE_AQ_LINK_SPEED_100GB: 3798 return SPEED_100000; 3799 case ICE_AQ_LINK_SPEED_50GB: 3800 return SPEED_50000; 3801 case ICE_AQ_LINK_SPEED_40GB: 3802 return SPEED_40000; 3803 case ICE_AQ_LINK_SPEED_25GB: 3804 return SPEED_25000; 3805 case ICE_AQ_LINK_SPEED_20GB: 3806 return SPEED_20000; 3807 case ICE_AQ_LINK_SPEED_10GB: 3808 return SPEED_10000; 3809 case ICE_AQ_LINK_SPEED_5GB: 3810 return SPEED_5000; 3811 case ICE_AQ_LINK_SPEED_2500MB: 3812 return SPEED_2500; 3813 case ICE_AQ_LINK_SPEED_1000MB: 3814 return SPEED_1000; 3815 case ICE_AQ_LINK_SPEED_100MB: 3816 return SPEED_100; 3817 case ICE_AQ_LINK_SPEED_10MB: 3818 return SPEED_10; 3819 case ICE_AQ_LINK_SPEED_UNKNOWN: 3820 default: 3821 return 0; 3822 } 3823 } 3824 3825 /** 3826 * ice_get_link_speed_kbps - get link speed in Kbps 3827 * @vsi: the VSI whose link speed is being queried 3828 * 3829 * Return current VSI link speed and 0 if the speed is unknown. 3830 */ 3831 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3832 { 3833 int speed_mbps; 3834 3835 speed_mbps = ice_get_link_speed_mbps(vsi); 3836 3837 return speed_mbps * 1000; 3838 } 3839 3840 /** 3841 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3842 * @vsi: VSI to be configured 3843 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3844 * 3845 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3846 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3847 * on TC 0. 3848 */ 3849 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3850 { 3851 struct ice_pf *pf = vsi->back; 3852 struct device *dev; 3853 int status; 3854 int speed; 3855 3856 dev = ice_pf_to_dev(pf); 3857 if (!vsi->port_info) { 3858 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3859 vsi->idx, vsi->type); 3860 return -EINVAL; 3861 } 3862 3863 speed = ice_get_link_speed_kbps(vsi); 3864 if (min_tx_rate > (u64)speed) { 3865 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3866 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3867 speed); 3868 return -EINVAL; 3869 } 3870 3871 /* Configure min BW for VSI limit */ 3872 if (min_tx_rate) { 3873 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3874 ICE_MIN_BW, min_tx_rate); 3875 if (status) { 3876 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3877 min_tx_rate, ice_vsi_type_str(vsi->type), 3878 vsi->idx); 3879 return status; 3880 } 3881 3882 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3883 min_tx_rate, ice_vsi_type_str(vsi->type)); 3884 } else { 3885 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3886 vsi->idx, 0, 3887 ICE_MIN_BW); 3888 if (status) { 3889 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3890 ice_vsi_type_str(vsi->type), vsi->idx); 3891 return status; 3892 } 3893 3894 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3895 ice_vsi_type_str(vsi->type), vsi->idx); 3896 } 3897 3898 return 0; 3899 } 3900 3901 /** 3902 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3903 * @vsi: VSI to be configured 3904 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3905 * 3906 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3907 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3908 * on TC 0. 3909 */ 3910 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3911 { 3912 struct ice_pf *pf = vsi->back; 3913 struct device *dev; 3914 int status; 3915 int speed; 3916 3917 dev = ice_pf_to_dev(pf); 3918 if (!vsi->port_info) { 3919 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3920 vsi->idx, vsi->type); 3921 return -EINVAL; 3922 } 3923 3924 speed = ice_get_link_speed_kbps(vsi); 3925 if (max_tx_rate > (u64)speed) { 3926 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3927 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3928 speed); 3929 return -EINVAL; 3930 } 3931 3932 /* Configure max BW for VSI limit */ 3933 if (max_tx_rate) { 3934 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3935 ICE_MAX_BW, max_tx_rate); 3936 if (status) { 3937 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3938 max_tx_rate, ice_vsi_type_str(vsi->type), 3939 vsi->idx); 3940 return status; 3941 } 3942 3943 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3944 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3945 } else { 3946 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3947 vsi->idx, 0, 3948 ICE_MAX_BW); 3949 if (status) { 3950 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3951 ice_vsi_type_str(vsi->type), vsi->idx); 3952 return status; 3953 } 3954 3955 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3956 ice_vsi_type_str(vsi->type), vsi->idx); 3957 } 3958 3959 return 0; 3960 } 3961 3962 /** 3963 * ice_set_link - turn on/off physical link 3964 * @vsi: VSI to modify physical link on 3965 * @ena: turn on/off physical link 3966 */ 3967 int ice_set_link(struct ice_vsi *vsi, bool ena) 3968 { 3969 struct device *dev = ice_pf_to_dev(vsi->back); 3970 struct ice_port_info *pi = vsi->port_info; 3971 struct ice_hw *hw = pi->hw; 3972 int status; 3973 3974 if (vsi->type != ICE_VSI_PF) 3975 return -EINVAL; 3976 3977 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3978 3979 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3980 * this is not a fatal error, so print a warning message and return 3981 * a success code. Return an error if FW returns an error code other 3982 * than ICE_AQ_RC_EMODE 3983 */ 3984 if (status == -EIO) { 3985 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3986 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3987 (ena ? "ON" : "OFF"), status, 3988 ice_aq_str(hw->adminq.sq_last_status)); 3989 } else if (status) { 3990 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3991 (ena ? "ON" : "OFF"), status, 3992 ice_aq_str(hw->adminq.sq_last_status)); 3993 return status; 3994 } 3995 3996 return 0; 3997 } 3998 3999 /** 4000 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4001 * @vsi: VSI used to add VLAN filters 4002 * 4003 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4004 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4005 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4006 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4007 * 4008 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4009 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4010 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4011 * 4012 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4013 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4014 * part of filtering. 4015 */ 4016 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4017 { 4018 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4019 struct ice_vlan vlan; 4020 int err; 4021 4022 vlan = ICE_VLAN(0, 0, 0); 4023 err = vlan_ops->add_vlan(vsi, &vlan); 4024 if (err && err != -EEXIST) 4025 return err; 4026 4027 /* in SVM both VLAN 0 filters are identical */ 4028 if (!ice_is_dvm_ena(&vsi->back->hw)) 4029 return 0; 4030 4031 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4032 err = vlan_ops->add_vlan(vsi, &vlan); 4033 if (err && err != -EEXIST) 4034 return err; 4035 4036 return 0; 4037 } 4038 4039 /** 4040 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4041 * @vsi: VSI used to add VLAN filters 4042 * 4043 * Delete the VLAN 0 filters in the same manner that they were added in 4044 * ice_vsi_add_vlan_zero. 4045 */ 4046 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4047 { 4048 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4049 struct ice_vlan vlan; 4050 int err; 4051 4052 vlan = ICE_VLAN(0, 0, 0); 4053 err = vlan_ops->del_vlan(vsi, &vlan); 4054 if (err && err != -EEXIST) 4055 return err; 4056 4057 /* in SVM both VLAN 0 filters are identical */ 4058 if (!ice_is_dvm_ena(&vsi->back->hw)) 4059 return 0; 4060 4061 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4062 err = vlan_ops->del_vlan(vsi, &vlan); 4063 if (err && err != -EEXIST) 4064 return err; 4065 4066 return 0; 4067 } 4068 4069 /** 4070 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4071 * @vsi: VSI used to get the VLAN mode 4072 * 4073 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4074 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4075 */ 4076 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4077 { 4078 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4079 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4080 /* no VLAN 0 filter is created when a port VLAN is active */ 4081 if (vsi->type == ICE_VSI_VF) { 4082 if (WARN_ON(!vsi->vf)) 4083 return 0; 4084 4085 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4086 return 0; 4087 } 4088 4089 if (ice_is_dvm_ena(&vsi->back->hw)) 4090 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4091 else 4092 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4093 } 4094 4095 /** 4096 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4097 * @vsi: VSI used to determine if any non-zero VLANs have been added 4098 */ 4099 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4100 { 4101 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4102 } 4103 4104 /** 4105 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4106 * @vsi: VSI used to get the number of non-zero VLANs added 4107 */ 4108 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4109 { 4110 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4111 } 4112 4113 /** 4114 * ice_is_feature_supported 4115 * @pf: pointer to the struct ice_pf instance 4116 * @f: feature enum to be checked 4117 * 4118 * returns true if feature is supported, false otherwise 4119 */ 4120 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4121 { 4122 if (f < 0 || f >= ICE_F_MAX) 4123 return false; 4124 4125 return test_bit(f, pf->features); 4126 } 4127 4128 /** 4129 * ice_set_feature_support 4130 * @pf: pointer to the struct ice_pf instance 4131 * @f: feature enum to set 4132 */ 4133 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4134 { 4135 if (f < 0 || f >= ICE_F_MAX) 4136 return; 4137 4138 set_bit(f, pf->features); 4139 } 4140 4141 /** 4142 * ice_clear_feature_support 4143 * @pf: pointer to the struct ice_pf instance 4144 * @f: feature enum to clear 4145 */ 4146 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4147 { 4148 if (f < 0 || f >= ICE_F_MAX) 4149 return; 4150 4151 clear_bit(f, pf->features); 4152 } 4153 4154 /** 4155 * ice_init_feature_support 4156 * @pf: pointer to the struct ice_pf instance 4157 * 4158 * called during init to setup supported feature 4159 */ 4160 void ice_init_feature_support(struct ice_pf *pf) 4161 { 4162 switch (pf->hw.device_id) { 4163 case ICE_DEV_ID_E810C_BACKPLANE: 4164 case ICE_DEV_ID_E810C_QSFP: 4165 case ICE_DEV_ID_E810C_SFP: 4166 ice_set_feature_support(pf, ICE_F_DSCP); 4167 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4168 if (ice_is_e810t(&pf->hw)) { 4169 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4170 if (ice_gnss_is_gps_present(&pf->hw)) 4171 ice_set_feature_support(pf, ICE_F_GNSS); 4172 } 4173 break; 4174 default: 4175 break; 4176 } 4177 } 4178 4179 /** 4180 * ice_vsi_update_security - update security block in VSI 4181 * @vsi: pointer to VSI structure 4182 * @fill: function pointer to fill ctx 4183 */ 4184 int 4185 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4186 { 4187 struct ice_vsi_ctx ctx = { 0 }; 4188 4189 ctx.info = vsi->info; 4190 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4191 fill(&ctx); 4192 4193 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4194 return -ENODEV; 4195 4196 vsi->info = ctx.info; 4197 return 0; 4198 } 4199 4200 /** 4201 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4202 * @ctx: pointer to VSI ctx structure 4203 */ 4204 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4205 { 4206 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4207 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4208 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4209 } 4210 4211 /** 4212 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4213 * @ctx: pointer to VSI ctx structure 4214 */ 4215 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4216 { 4217 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4218 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4219 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4220 } 4221 4222 /** 4223 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4224 * @ctx: pointer to VSI ctx structure 4225 */ 4226 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4227 { 4228 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4229 } 4230 4231 /** 4232 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4233 * @ctx: pointer to VSI ctx structure 4234 */ 4235 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4236 { 4237 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4238 } 4239