xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision b7df4cc3a088a8ce6973c96731bc792dbf54ce28)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of PRs
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 * Tx and Rx rings are always equal
218 		 */
219 		if (vsi->req_txq && vsi->req_rxq) {
220 			vsi->alloc_txq = vsi->req_txq;
221 			vsi->alloc_rxq = vsi->req_rxq;
222 		} else {
223 			vsi->alloc_txq = 1;
224 			vsi->alloc_rxq = 1;
225 		}
226 
227 		vsi->num_q_vectors = 1;
228 		break;
229 	case ICE_VSI_VF:
230 		if (vf->num_req_qs)
231 			vf->num_vf_qs = vf->num_req_qs;
232 		vsi->alloc_txq = vf->num_vf_qs;
233 		vsi->alloc_rxq = vf->num_vf_qs;
234 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
235 		 * data queue interrupts). Since vsi->num_q_vectors is number
236 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
237 		 * original vector count
238 		 */
239 		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
240 		break;
241 	case ICE_VSI_CTRL:
242 		vsi->alloc_txq = 1;
243 		vsi->alloc_rxq = 1;
244 		vsi->num_q_vectors = 1;
245 		break;
246 	case ICE_VSI_CHNL:
247 		vsi->alloc_txq = 0;
248 		vsi->alloc_rxq = 0;
249 		break;
250 	case ICE_VSI_LB:
251 		vsi->alloc_txq = 1;
252 		vsi->alloc_rxq = 1;
253 		break;
254 	default:
255 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
256 		break;
257 	}
258 
259 	ice_vsi_set_num_desc(vsi);
260 }
261 
262 /**
263  * ice_get_free_slot - get the next non-NULL location index in array
264  * @array: array to search
265  * @size: size of the array
266  * @curr: last known occupied index to be used as a search hint
267  *
268  * void * is being used to keep the functionality generic. This lets us use this
269  * function on any array of pointers.
270  */
271 static int ice_get_free_slot(void *array, int size, int curr)
272 {
273 	int **tmp_array = (int **)array;
274 	int next;
275 
276 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
277 		next = curr + 1;
278 	} else {
279 		int i = 0;
280 
281 		while ((i < size) && (tmp_array[i]))
282 			i++;
283 		if (i == size)
284 			next = ICE_NO_VSI;
285 		else
286 			next = i;
287 	}
288 	return next;
289 }
290 
291 /**
292  * ice_vsi_delete_from_hw - delete a VSI from the switch
293  * @vsi: pointer to VSI being removed
294  */
295 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
296 {
297 	struct ice_pf *pf = vsi->back;
298 	struct ice_vsi_ctx *ctxt;
299 	int status;
300 
301 	ice_fltr_remove_all(vsi);
302 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
303 	if (!ctxt)
304 		return;
305 
306 	if (vsi->type == ICE_VSI_VF)
307 		ctxt->vf_num = vsi->vf->vf_id;
308 	ctxt->vsi_num = vsi->vsi_num;
309 
310 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
311 
312 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
313 	if (status)
314 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
315 			vsi->vsi_num, status);
316 
317 	kfree(ctxt);
318 }
319 
320 /**
321  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
322  * @vsi: pointer to VSI being cleared
323  */
324 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
325 {
326 	struct ice_pf *pf = vsi->back;
327 	struct device *dev;
328 
329 	dev = ice_pf_to_dev(pf);
330 
331 	bitmap_free(vsi->af_xdp_zc_qps);
332 	vsi->af_xdp_zc_qps = NULL;
333 	/* free the ring and vector containers */
334 	devm_kfree(dev, vsi->q_vectors);
335 	vsi->q_vectors = NULL;
336 	devm_kfree(dev, vsi->tx_rings);
337 	vsi->tx_rings = NULL;
338 	devm_kfree(dev, vsi->rx_rings);
339 	vsi->rx_rings = NULL;
340 	devm_kfree(dev, vsi->txq_map);
341 	vsi->txq_map = NULL;
342 	devm_kfree(dev, vsi->rxq_map);
343 	vsi->rxq_map = NULL;
344 }
345 
346 /**
347  * ice_vsi_free_stats - Free the ring statistics structures
348  * @vsi: VSI pointer
349  */
350 static void ice_vsi_free_stats(struct ice_vsi *vsi)
351 {
352 	struct ice_vsi_stats *vsi_stat;
353 	struct ice_pf *pf = vsi->back;
354 	int i;
355 
356 	if (vsi->type == ICE_VSI_CHNL)
357 		return;
358 	if (!pf->vsi_stats)
359 		return;
360 
361 	vsi_stat = pf->vsi_stats[vsi->idx];
362 	if (!vsi_stat)
363 		return;
364 
365 	ice_for_each_alloc_txq(vsi, i) {
366 		if (vsi_stat->tx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	ice_for_each_alloc_rxq(vsi, i) {
373 		if (vsi_stat->rx_ring_stats[i]) {
374 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
375 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
376 		}
377 	}
378 
379 	kfree(vsi_stat->tx_ring_stats);
380 	kfree(vsi_stat->rx_ring_stats);
381 	kfree(vsi_stat);
382 	pf->vsi_stats[vsi->idx] = NULL;
383 }
384 
385 /**
386  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
387  * @vsi: VSI which is having stats allocated
388  */
389 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
390 {
391 	struct ice_ring_stats **tx_ring_stats;
392 	struct ice_ring_stats **rx_ring_stats;
393 	struct ice_vsi_stats *vsi_stats;
394 	struct ice_pf *pf = vsi->back;
395 	u16 i;
396 
397 	vsi_stats = pf->vsi_stats[vsi->idx];
398 	tx_ring_stats = vsi_stats->tx_ring_stats;
399 	rx_ring_stats = vsi_stats->rx_ring_stats;
400 
401 	/* Allocate Tx ring stats */
402 	ice_for_each_alloc_txq(vsi, i) {
403 		struct ice_ring_stats *ring_stats;
404 		struct ice_tx_ring *ring;
405 
406 		ring = vsi->tx_rings[i];
407 		ring_stats = tx_ring_stats[i];
408 
409 		if (!ring_stats) {
410 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
411 			if (!ring_stats)
412 				goto err_out;
413 
414 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
415 		}
416 
417 		ring->ring_stats = ring_stats;
418 	}
419 
420 	/* Allocate Rx ring stats */
421 	ice_for_each_alloc_rxq(vsi, i) {
422 		struct ice_ring_stats *ring_stats;
423 		struct ice_rx_ring *ring;
424 
425 		ring = vsi->rx_rings[i];
426 		ring_stats = rx_ring_stats[i];
427 
428 		if (!ring_stats) {
429 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
430 			if (!ring_stats)
431 				goto err_out;
432 
433 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
434 		}
435 
436 		ring->ring_stats = ring_stats;
437 	}
438 
439 	return 0;
440 
441 err_out:
442 	ice_vsi_free_stats(vsi);
443 	return -ENOMEM;
444 }
445 
446 /**
447  * ice_vsi_free - clean up and deallocate the provided VSI
448  * @vsi: pointer to VSI being cleared
449  *
450  * This deallocates the VSI's queue resources, removes it from the PF's
451  * VSI array if necessary, and deallocates the VSI
452  */
453 static void ice_vsi_free(struct ice_vsi *vsi)
454 {
455 	struct ice_pf *pf = NULL;
456 	struct device *dev;
457 
458 	if (!vsi || !vsi->back)
459 		return;
460 
461 	pf = vsi->back;
462 	dev = ice_pf_to_dev(pf);
463 
464 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
465 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
466 		return;
467 	}
468 
469 	mutex_lock(&pf->sw_mutex);
470 	/* updates the PF for this cleared VSI */
471 
472 	pf->vsi[vsi->idx] = NULL;
473 	pf->next_vsi = vsi->idx;
474 
475 	ice_vsi_free_stats(vsi);
476 	ice_vsi_free_arrays(vsi);
477 	mutex_unlock(&pf->sw_mutex);
478 	devm_kfree(dev, vsi);
479 }
480 
481 void ice_vsi_delete(struct ice_vsi *vsi)
482 {
483 	ice_vsi_delete_from_hw(vsi);
484 	ice_vsi_free(vsi);
485 }
486 
487 /**
488  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
489  * @irq: interrupt number
490  * @data: pointer to a q_vector
491  */
492 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
493 {
494 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
495 
496 	if (!q_vector->tx.tx_ring)
497 		return IRQ_HANDLED;
498 
499 #define FDIR_RX_DESC_CLEAN_BUDGET 64
500 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
501 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
502 
503 	return IRQ_HANDLED;
504 }
505 
506 /**
507  * ice_msix_clean_rings - MSIX mode Interrupt Handler
508  * @irq: interrupt number
509  * @data: pointer to a q_vector
510  */
511 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
512 {
513 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514 
515 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
516 		return IRQ_HANDLED;
517 
518 	q_vector->total_events++;
519 
520 	napi_schedule(&q_vector->napi);
521 
522 	return IRQ_HANDLED;
523 }
524 
525 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
526 {
527 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
528 	struct ice_pf *pf = q_vector->vsi->back;
529 	struct ice_repr *repr;
530 	unsigned long id;
531 
532 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
533 		return IRQ_HANDLED;
534 
535 	xa_for_each(&pf->eswitch.reprs, id, repr)
536 		napi_schedule(&repr->q_vector->napi);
537 
538 	return IRQ_HANDLED;
539 }
540 
541 /**
542  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
543  * @vsi: VSI pointer
544  */
545 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
546 {
547 	struct ice_vsi_stats *vsi_stat;
548 	struct ice_pf *pf = vsi->back;
549 
550 	if (vsi->type == ICE_VSI_CHNL)
551 		return 0;
552 	if (!pf->vsi_stats)
553 		return -ENOENT;
554 
555 	if (pf->vsi_stats[vsi->idx])
556 	/* realloc will happen in rebuild path */
557 		return 0;
558 
559 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
560 	if (!vsi_stat)
561 		return -ENOMEM;
562 
563 	vsi_stat->tx_ring_stats =
564 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
565 			GFP_KERNEL);
566 	if (!vsi_stat->tx_ring_stats)
567 		goto err_alloc_tx;
568 
569 	vsi_stat->rx_ring_stats =
570 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
571 			GFP_KERNEL);
572 	if (!vsi_stat->rx_ring_stats)
573 		goto err_alloc_rx;
574 
575 	pf->vsi_stats[vsi->idx] = vsi_stat;
576 
577 	return 0;
578 
579 err_alloc_rx:
580 	kfree(vsi_stat->rx_ring_stats);
581 err_alloc_tx:
582 	kfree(vsi_stat->tx_ring_stats);
583 	kfree(vsi_stat);
584 	pf->vsi_stats[vsi->idx] = NULL;
585 	return -ENOMEM;
586 }
587 
588 /**
589  * ice_vsi_alloc_def - set default values for already allocated VSI
590  * @vsi: ptr to VSI
591  * @ch: ptr to channel
592  */
593 static int
594 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
595 {
596 	if (vsi->type != ICE_VSI_CHNL) {
597 		ice_vsi_set_num_qs(vsi);
598 		if (ice_vsi_alloc_arrays(vsi))
599 			return -ENOMEM;
600 	}
601 
602 	switch (vsi->type) {
603 	case ICE_VSI_SWITCHDEV_CTRL:
604 		/* Setup eswitch MSIX irq handler for VSI */
605 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
606 		break;
607 	case ICE_VSI_PF:
608 		/* Setup default MSIX irq handler for VSI */
609 		vsi->irq_handler = ice_msix_clean_rings;
610 		break;
611 	case ICE_VSI_CTRL:
612 		/* Setup ctrl VSI MSIX irq handler */
613 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
614 		break;
615 	case ICE_VSI_CHNL:
616 		if (!ch)
617 			return -EINVAL;
618 
619 		vsi->num_rxq = ch->num_rxq;
620 		vsi->num_txq = ch->num_txq;
621 		vsi->next_base_q = ch->base_q;
622 		break;
623 	case ICE_VSI_VF:
624 	case ICE_VSI_LB:
625 		break;
626 	default:
627 		ice_vsi_free_arrays(vsi);
628 		return -EINVAL;
629 	}
630 
631 	return 0;
632 }
633 
634 /**
635  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
636  * @pf: board private structure
637  *
638  * Reserves a VSI index from the PF and allocates an empty VSI structure
639  * without a type. The VSI structure must later be initialized by calling
640  * ice_vsi_cfg().
641  *
642  * returns a pointer to a VSI on success, NULL on failure.
643  */
644 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
645 {
646 	struct device *dev = ice_pf_to_dev(pf);
647 	struct ice_vsi *vsi = NULL;
648 
649 	/* Need to protect the allocation of the VSIs at the PF level */
650 	mutex_lock(&pf->sw_mutex);
651 
652 	/* If we have already allocated our maximum number of VSIs,
653 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
654 	 * is available to be populated
655 	 */
656 	if (pf->next_vsi == ICE_NO_VSI) {
657 		dev_dbg(dev, "out of VSI slots!\n");
658 		goto unlock_pf;
659 	}
660 
661 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
662 	if (!vsi)
663 		goto unlock_pf;
664 
665 	vsi->back = pf;
666 	set_bit(ICE_VSI_DOWN, vsi->state);
667 
668 	/* fill slot and make note of the index */
669 	vsi->idx = pf->next_vsi;
670 	pf->vsi[pf->next_vsi] = vsi;
671 
672 	/* prepare pf->next_vsi for next use */
673 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
674 					 pf->next_vsi);
675 
676 unlock_pf:
677 	mutex_unlock(&pf->sw_mutex);
678 	return vsi;
679 }
680 
681 /**
682  * ice_alloc_fd_res - Allocate FD resource for a VSI
683  * @vsi: pointer to the ice_vsi
684  *
685  * This allocates the FD resources
686  *
687  * Returns 0 on success, -EPERM on no-op or -EIO on failure
688  */
689 static int ice_alloc_fd_res(struct ice_vsi *vsi)
690 {
691 	struct ice_pf *pf = vsi->back;
692 	u32 g_val, b_val;
693 
694 	/* Flow Director filters are only allocated/assigned to the PF VSI or
695 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
696 	 * add/delete filters so resources are not allocated to it
697 	 */
698 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
699 		return -EPERM;
700 
701 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
702 	      vsi->type == ICE_VSI_CHNL))
703 		return -EPERM;
704 
705 	/* FD filters from guaranteed pool per VSI */
706 	g_val = pf->hw.func_caps.fd_fltr_guar;
707 	if (!g_val)
708 		return -EPERM;
709 
710 	/* FD filters from best effort pool */
711 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
712 	if (!b_val)
713 		return -EPERM;
714 
715 	/* PF main VSI gets only 64 FD resources from guaranteed pool
716 	 * when ADQ is configured.
717 	 */
718 #define ICE_PF_VSI_GFLTR	64
719 
720 	/* determine FD filter resources per VSI from shared(best effort) and
721 	 * dedicated pool
722 	 */
723 	if (vsi->type == ICE_VSI_PF) {
724 		vsi->num_gfltr = g_val;
725 		/* if MQPRIO is configured, main VSI doesn't get all FD
726 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
727 		 */
728 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
729 			if (g_val < ICE_PF_VSI_GFLTR)
730 				return -EPERM;
731 			/* allow bare minimum entries for PF VSI */
732 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
733 		}
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else if (vsi->type == ICE_VSI_VF) {
738 		vsi->num_gfltr = 0;
739 
740 		/* each VSI gets same "best_effort" quota */
741 		vsi->num_bfltr = b_val;
742 	} else {
743 		struct ice_vsi *main_vsi;
744 		int numtc;
745 
746 		main_vsi = ice_get_main_vsi(pf);
747 		if (!main_vsi)
748 			return -EPERM;
749 
750 		if (!main_vsi->all_numtc)
751 			return -EINVAL;
752 
753 		/* figure out ADQ numtc */
754 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
755 
756 		/* only one TC but still asking resources for channels,
757 		 * invalid config
758 		 */
759 		if (numtc < ICE_CHNL_START_TC)
760 			return -EPERM;
761 
762 		g_val -= ICE_PF_VSI_GFLTR;
763 		/* channel VSIs gets equal share from guaranteed pool */
764 		vsi->num_gfltr = g_val / numtc;
765 
766 		/* each VSI gets same "best_effort" quota */
767 		vsi->num_bfltr = b_val;
768 	}
769 
770 	return 0;
771 }
772 
773 /**
774  * ice_vsi_get_qs - Assign queues from PF to VSI
775  * @vsi: the VSI to assign queues to
776  *
777  * Returns 0 on success and a negative value on error
778  */
779 static int ice_vsi_get_qs(struct ice_vsi *vsi)
780 {
781 	struct ice_pf *pf = vsi->back;
782 	struct ice_qs_cfg tx_qs_cfg = {
783 		.qs_mutex = &pf->avail_q_mutex,
784 		.pf_map = pf->avail_txqs,
785 		.pf_map_size = pf->max_pf_txqs,
786 		.q_count = vsi->alloc_txq,
787 		.scatter_count = ICE_MAX_SCATTER_TXQS,
788 		.vsi_map = vsi->txq_map,
789 		.vsi_map_offset = 0,
790 		.mapping_mode = ICE_VSI_MAP_CONTIG
791 	};
792 	struct ice_qs_cfg rx_qs_cfg = {
793 		.qs_mutex = &pf->avail_q_mutex,
794 		.pf_map = pf->avail_rxqs,
795 		.pf_map_size = pf->max_pf_rxqs,
796 		.q_count = vsi->alloc_rxq,
797 		.scatter_count = ICE_MAX_SCATTER_RXQS,
798 		.vsi_map = vsi->rxq_map,
799 		.vsi_map_offset = 0,
800 		.mapping_mode = ICE_VSI_MAP_CONTIG
801 	};
802 	int ret;
803 
804 	if (vsi->type == ICE_VSI_CHNL)
805 		return 0;
806 
807 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
811 
812 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
813 	if (ret)
814 		return ret;
815 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
816 
817 	return 0;
818 }
819 
820 /**
821  * ice_vsi_put_qs - Release queues from VSI to PF
822  * @vsi: the VSI that is going to release queues
823  */
824 static void ice_vsi_put_qs(struct ice_vsi *vsi)
825 {
826 	struct ice_pf *pf = vsi->back;
827 	int i;
828 
829 	mutex_lock(&pf->avail_q_mutex);
830 
831 	ice_for_each_alloc_txq(vsi, i) {
832 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
833 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	ice_for_each_alloc_rxq(vsi, i) {
837 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
838 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
839 	}
840 
841 	mutex_unlock(&pf->avail_q_mutex);
842 }
843 
844 /**
845  * ice_is_safe_mode
846  * @pf: pointer to the PF struct
847  *
848  * returns true if driver is in safe mode, false otherwise
849  */
850 bool ice_is_safe_mode(struct ice_pf *pf)
851 {
852 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
853 }
854 
855 /**
856  * ice_is_rdma_ena
857  * @pf: pointer to the PF struct
858  *
859  * returns true if RDMA is currently supported, false otherwise
860  */
861 bool ice_is_rdma_ena(struct ice_pf *pf)
862 {
863 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
864 }
865 
866 /**
867  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
868  * @vsi: the VSI being cleaned up
869  *
870  * This function deletes RSS input set for all flows that were configured
871  * for this VSI
872  */
873 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
874 {
875 	struct ice_pf *pf = vsi->back;
876 	int status;
877 
878 	if (ice_is_safe_mode(pf))
879 		return;
880 
881 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
882 	if (status)
883 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
884 			vsi->vsi_num, status);
885 }
886 
887 /**
888  * ice_rss_clean - Delete RSS related VSI structures and configuration
889  * @vsi: the VSI being removed
890  */
891 static void ice_rss_clean(struct ice_vsi *vsi)
892 {
893 	struct ice_pf *pf = vsi->back;
894 	struct device *dev;
895 
896 	dev = ice_pf_to_dev(pf);
897 
898 	devm_kfree(dev, vsi->rss_hkey_user);
899 	devm_kfree(dev, vsi->rss_lut_user);
900 
901 	ice_vsi_clean_rss_flow_fld(vsi);
902 	/* remove RSS replay list */
903 	if (!ice_is_safe_mode(pf))
904 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
905 }
906 
907 /**
908  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
909  * @vsi: the VSI being configured
910  */
911 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
912 {
913 	struct ice_hw_common_caps *cap;
914 	struct ice_pf *pf = vsi->back;
915 	u16 max_rss_size;
916 
917 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
918 		vsi->rss_size = 1;
919 		return;
920 	}
921 
922 	cap = &pf->hw.func_caps.common_cap;
923 	max_rss_size = BIT(cap->rss_table_entry_width);
924 	switch (vsi->type) {
925 	case ICE_VSI_CHNL:
926 	case ICE_VSI_PF:
927 		/* PF VSI will inherit RSS instance of PF */
928 		vsi->rss_table_size = (u16)cap->rss_table_size;
929 		if (vsi->type == ICE_VSI_CHNL)
930 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
931 		else
932 			vsi->rss_size = min_t(u16, num_online_cpus(),
933 					      max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_PF;
935 		break;
936 	case ICE_VSI_SWITCHDEV_CTRL:
937 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
938 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
939 		vsi->rss_lut_type = ICE_LUT_VSI;
940 		break;
941 	case ICE_VSI_VF:
942 		/* VF VSI will get a small RSS table.
943 		 * For VSI_LUT, LUT size should be set to 64 bytes.
944 		 */
945 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
946 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
947 		vsi->rss_lut_type = ICE_LUT_VSI;
948 		break;
949 	case ICE_VSI_LB:
950 		break;
951 	default:
952 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
953 			ice_vsi_type_str(vsi->type));
954 		break;
955 	}
956 }
957 
958 /**
959  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
960  * @hw: HW structure used to determine the VLAN mode of the device
961  * @ctxt: the VSI context being set
962  *
963  * This initializes a default VSI context for all sections except the Queues.
964  */
965 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
966 {
967 	u32 table = 0;
968 
969 	memset(&ctxt->info, 0, sizeof(ctxt->info));
970 	/* VSI's should be allocated from shared pool */
971 	ctxt->alloc_from_pool = true;
972 	/* Src pruning enabled by default */
973 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
974 	/* Traffic from VSI can be sent to LAN */
975 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
976 	/* allow all untagged/tagged packets by default on Tx */
977 	ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
978 						 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
979 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
980 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
981 	 *
982 	 * DVM - leave inner VLAN in packet by default
983 	 */
984 	if (ice_is_dvm_ena(hw)) {
985 		ctxt->info.inner_vlan_flags |=
986 			FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
987 				   ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
988 		ctxt->info.outer_vlan_flags =
989 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
990 				   ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
993 				   ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
994 		ctxt->info.outer_vlan_flags |=
995 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
996 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
997 	}
998 	/* Have 1:1 UP mapping for both ingress/egress tables */
999 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1000 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1001 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1002 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1003 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1004 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1005 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1006 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1007 	ctxt->info.ingress_table = cpu_to_le32(table);
1008 	ctxt->info.egress_table = cpu_to_le32(table);
1009 	/* Have 1:1 UP mapping for outer to inner UP table */
1010 	ctxt->info.outer_up_table = cpu_to_le32(table);
1011 	/* No Outer tag support outer_tag_flags remains to zero */
1012 }
1013 
1014 /**
1015  * ice_vsi_setup_q_map - Setup a VSI queue map
1016  * @vsi: the VSI being configured
1017  * @ctxt: VSI context structure
1018  */
1019 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1020 {
1021 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1022 	u16 num_txq_per_tc, num_rxq_per_tc;
1023 	u16 qcount_tx = vsi->alloc_txq;
1024 	u16 qcount_rx = vsi->alloc_rxq;
1025 	u8 netdev_tc = 0;
1026 	int i;
1027 
1028 	if (!vsi->tc_cfg.numtc) {
1029 		/* at least TC0 should be enabled by default */
1030 		vsi->tc_cfg.numtc = 1;
1031 		vsi->tc_cfg.ena_tc = 1;
1032 	}
1033 
1034 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1035 	if (!num_rxq_per_tc)
1036 		num_rxq_per_tc = 1;
1037 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1038 	if (!num_txq_per_tc)
1039 		num_txq_per_tc = 1;
1040 
1041 	/* find the (rounded up) power-of-2 of qcount */
1042 	pow = (u16)order_base_2(num_rxq_per_tc);
1043 
1044 	/* TC mapping is a function of the number of Rx queues assigned to the
1045 	 * VSI for each traffic class and the offset of these queues.
1046 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1047 	 * queues allocated to TC0. No:of queues is a power-of-2.
1048 	 *
1049 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1050 	 * queue, this way, traffic for the given TC will be sent to the default
1051 	 * queue.
1052 	 *
1053 	 * Setup number and offset of Rx queues for all TCs for the VSI
1054 	 */
1055 	ice_for_each_traffic_class(i) {
1056 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1057 			/* TC is not enabled */
1058 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1059 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1060 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1061 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1062 			ctxt->info.tc_mapping[i] = 0;
1063 			continue;
1064 		}
1065 
1066 		/* TC is enabled */
1067 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1068 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1069 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1070 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1071 
1072 		qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1073 		qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1074 		offset += num_rxq_per_tc;
1075 		tx_count += num_txq_per_tc;
1076 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077 	}
1078 
1079 	/* if offset is non-zero, means it is calculated correctly based on
1080 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1081 	 * be correct and non-zero because it is based off - VSI's
1082 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083 	 * at least 1)
1084 	 */
1085 	if (offset)
1086 		rx_count = offset;
1087 	else
1088 		rx_count = num_rxq_per_tc;
1089 
1090 	if (rx_count > vsi->alloc_rxq) {
1091 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092 			rx_count, vsi->alloc_rxq);
1093 		return -EINVAL;
1094 	}
1095 
1096 	if (tx_count > vsi->alloc_txq) {
1097 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098 			tx_count, vsi->alloc_txq);
1099 		return -EINVAL;
1100 	}
1101 
1102 	vsi->num_txq = tx_count;
1103 	vsi->num_rxq = rx_count;
1104 
1105 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107 		/* since there is a chance that num_rxq could have been changed
1108 		 * in the above for loop, make num_txq equal to num_rxq.
1109 		 */
1110 		vsi->num_txq = vsi->num_rxq;
1111 	}
1112 
1113 	/* Rx queue mapping */
1114 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115 	/* q_mapping buffer holds the info for the first queue allocated for
1116 	 * this VSI in the PF space and also the number of queues associated
1117 	 * with this VSI.
1118 	 */
1119 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127  * @ctxt: the VSI context being set
1128  * @vsi: the VSI being configured
1129  */
1130 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131 {
1132 	u8 dflt_q_group, dflt_q_prio;
1133 	u16 dflt_q, report_q, val;
1134 
1135 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137 		return;
1138 
1139 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140 	ctxt->info.valid_sections |= cpu_to_le16(val);
1141 	dflt_q = 0;
1142 	dflt_q_group = 0;
1143 	report_q = 0;
1144 	dflt_q_prio = 0;
1145 
1146 	/* enable flow director filtering/programming */
1147 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148 	ctxt->info.fd_options = cpu_to_le16(val);
1149 	/* max of allocated flow director filters */
1150 	ctxt->info.max_fd_fltr_dedicated =
1151 			cpu_to_le16(vsi->num_gfltr);
1152 	/* max of shared flow director filters any VSI may program */
1153 	ctxt->info.max_fd_fltr_shared =
1154 			cpu_to_le16(vsi->num_bfltr);
1155 	/* default queue index within the VSI of the default FD */
1156 	val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1159 	ctxt->info.fd_def_q = cpu_to_le16(val);
1160 	/* queue index on which FD filter completion is reported */
1161 	val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1162 	/* priority of the default qindex action */
1163 	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1164 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1165 }
1166 
1167 /**
1168  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1169  * @ctxt: the VSI context being set
1170  * @vsi: the VSI being configured
1171  */
1172 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1173 {
1174 	u8 lut_type, hash_type;
1175 	struct device *dev;
1176 	struct ice_pf *pf;
1177 
1178 	pf = vsi->back;
1179 	dev = ice_pf_to_dev(pf);
1180 
1181 	switch (vsi->type) {
1182 	case ICE_VSI_CHNL:
1183 	case ICE_VSI_PF:
1184 		/* PF VSI will inherit RSS instance of PF */
1185 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1186 		break;
1187 	case ICE_VSI_VF:
1188 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1189 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1190 		break;
1191 	default:
1192 		dev_dbg(dev, "Unsupported VSI type %s\n",
1193 			ice_vsi_type_str(vsi->type));
1194 		return;
1195 	}
1196 
1197 	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1198 	vsi->rss_hfunc = hash_type;
1199 
1200 	ctxt->info.q_opt_rss =
1201 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1202 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1203 }
1204 
1205 static void
1206 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207 {
1208 	struct ice_pf *pf = vsi->back;
1209 	u16 qcount, qmap;
1210 	u8 offset = 0;
1211 	int pow;
1212 
1213 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214 
1215 	pow = order_base_2(qcount);
1216 	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1217 	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1218 
1219 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223 }
1224 
1225 /**
1226  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228  *
1229  * returns true if Rx VLAN pruning is enabled and false otherwise.
1230  */
1231 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232 {
1233 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234 }
1235 
1236 /**
1237  * ice_vsi_init - Create and initialize a VSI
1238  * @vsi: the VSI being configured
1239  * @vsi_flags: VSI configuration flags
1240  *
1241  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242  * reconfigure an existing context.
1243  *
1244  * This initializes a VSI context depending on the VSI type to be added and
1245  * passes it down to the add_vsi aq command to create a new VSI.
1246  */
1247 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248 {
1249 	struct ice_pf *pf = vsi->back;
1250 	struct ice_hw *hw = &pf->hw;
1251 	struct ice_vsi_ctx *ctxt;
1252 	struct device *dev;
1253 	int ret = 0;
1254 
1255 	dev = ice_pf_to_dev(pf);
1256 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257 	if (!ctxt)
1258 		return -ENOMEM;
1259 
1260 	switch (vsi->type) {
1261 	case ICE_VSI_CTRL:
1262 	case ICE_VSI_LB:
1263 	case ICE_VSI_PF:
1264 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265 		break;
1266 	case ICE_VSI_SWITCHDEV_CTRL:
1267 	case ICE_VSI_CHNL:
1268 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269 		break;
1270 	case ICE_VSI_VF:
1271 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272 		/* VF number here is the absolute VF number (0-255) */
1273 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274 		break;
1275 	default:
1276 		ret = -ENODEV;
1277 		goto out;
1278 	}
1279 
1280 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281 	 * prune enabled
1282 	 */
1283 	if (vsi->type == ICE_VSI_CHNL) {
1284 		struct ice_vsi *main_vsi;
1285 
1286 		main_vsi = ice_get_main_vsi(pf);
1287 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288 			ctxt->info.sw_flags2 |=
1289 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290 		else
1291 			ctxt->info.sw_flags2 &=
1292 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293 	}
1294 
1295 	ice_set_dflt_vsi_ctx(hw, ctxt);
1296 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297 		ice_set_fd_vsi_ctx(ctxt, vsi);
1298 	/* if the switch is in VEB mode, allow VSI loopback */
1299 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301 
1302 	/* Set LUT type and HASH type if RSS is enabled */
1303 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304 	    vsi->type != ICE_VSI_CTRL) {
1305 		ice_set_rss_vsi_ctx(ctxt, vsi);
1306 		/* if updating VSI context, make sure to set valid_section:
1307 		 * to indicate which section of VSI context being updated
1308 		 */
1309 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310 			ctxt->info.valid_sections |=
1311 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312 	}
1313 
1314 	ctxt->info.sw_id = vsi->port_info->sw_id;
1315 	if (vsi->type == ICE_VSI_CHNL) {
1316 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317 	} else {
1318 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1319 		if (ret)
1320 			goto out;
1321 
1322 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323 			/* means VSI being updated */
1324 			/* must to indicate which section of VSI context are
1325 			 * being modified
1326 			 */
1327 			ctxt->info.valid_sections |=
1328 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329 	}
1330 
1331 	/* Allow control frames out of main VSI */
1332 	if (vsi->type == ICE_VSI_PF) {
1333 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334 		ctxt->info.valid_sections |=
1335 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336 	}
1337 
1338 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340 		if (ret) {
1341 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1342 			ret = -EIO;
1343 			goto out;
1344 		}
1345 	} else {
1346 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347 		if (ret) {
1348 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1349 			ret = -EIO;
1350 			goto out;
1351 		}
1352 	}
1353 
1354 	/* keep context for update VSI operations */
1355 	vsi->info = ctxt->info;
1356 
1357 	/* record VSI number returned */
1358 	vsi->vsi_num = ctxt->vsi_num;
1359 
1360 out:
1361 	kfree(ctxt);
1362 	return ret;
1363 }
1364 
1365 /**
1366  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367  * @vsi: the VSI having rings deallocated
1368  */
1369 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370 {
1371 	int i;
1372 
1373 	/* Avoid stale references by clearing map from vector to ring */
1374 	if (vsi->q_vectors) {
1375 		ice_for_each_q_vector(vsi, i) {
1376 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377 
1378 			if (q_vector) {
1379 				q_vector->tx.tx_ring = NULL;
1380 				q_vector->rx.rx_ring = NULL;
1381 			}
1382 		}
1383 	}
1384 
1385 	if (vsi->tx_rings) {
1386 		ice_for_each_alloc_txq(vsi, i) {
1387 			if (vsi->tx_rings[i]) {
1388 				kfree_rcu(vsi->tx_rings[i], rcu);
1389 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1390 			}
1391 		}
1392 	}
1393 	if (vsi->rx_rings) {
1394 		ice_for_each_alloc_rxq(vsi, i) {
1395 			if (vsi->rx_rings[i]) {
1396 				kfree_rcu(vsi->rx_rings[i], rcu);
1397 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1398 			}
1399 		}
1400 	}
1401 }
1402 
1403 /**
1404  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405  * @vsi: VSI which is having rings allocated
1406  */
1407 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408 {
1409 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410 	struct ice_pf *pf = vsi->back;
1411 	struct device *dev;
1412 	u16 i;
1413 
1414 	dev = ice_pf_to_dev(pf);
1415 	/* Allocate Tx rings */
1416 	ice_for_each_alloc_txq(vsi, i) {
1417 		struct ice_tx_ring *ring;
1418 
1419 		/* allocate with kzalloc(), free with kfree_rcu() */
1420 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421 
1422 		if (!ring)
1423 			goto err_out;
1424 
1425 		ring->q_index = i;
1426 		ring->reg_idx = vsi->txq_map[i];
1427 		ring->vsi = vsi;
1428 		ring->tx_tstamps = &pf->ptp.port.tx;
1429 		ring->dev = dev;
1430 		ring->count = vsi->num_tx_desc;
1431 		ring->txq_teid = ICE_INVAL_TEID;
1432 		if (dvm_ena)
1433 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434 		else
1435 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436 		WRITE_ONCE(vsi->tx_rings[i], ring);
1437 	}
1438 
1439 	/* Allocate Rx rings */
1440 	ice_for_each_alloc_rxq(vsi, i) {
1441 		struct ice_rx_ring *ring;
1442 
1443 		/* allocate with kzalloc(), free with kfree_rcu() */
1444 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445 		if (!ring)
1446 			goto err_out;
1447 
1448 		ring->q_index = i;
1449 		ring->reg_idx = vsi->rxq_map[i];
1450 		ring->vsi = vsi;
1451 		ring->netdev = vsi->netdev;
1452 		ring->dev = dev;
1453 		ring->count = vsi->num_rx_desc;
1454 		ring->cached_phctime = pf->ptp.cached_phc_time;
1455 		WRITE_ONCE(vsi->rx_rings[i], ring);
1456 	}
1457 
1458 	return 0;
1459 
1460 err_out:
1461 	ice_vsi_clear_rings(vsi);
1462 	return -ENOMEM;
1463 }
1464 
1465 /**
1466  * ice_vsi_manage_rss_lut - disable/enable RSS
1467  * @vsi: the VSI being changed
1468  * @ena: boolean value indicating if this is an enable or disable request
1469  *
1470  * In the event of disable request for RSS, this function will zero out RSS
1471  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472  * LUT.
1473  */
1474 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475 {
1476 	u8 *lut;
1477 
1478 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1479 	if (!lut)
1480 		return;
1481 
1482 	if (ena) {
1483 		if (vsi->rss_lut_user)
1484 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485 		else
1486 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1487 					 vsi->rss_size);
1488 	}
1489 
1490 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491 	kfree(lut);
1492 }
1493 
1494 /**
1495  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496  * @vsi: VSI to be configured
1497  * @disable: set to true to have FCS / CRC in the frame data
1498  */
1499 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500 {
1501 	int i;
1502 
1503 	ice_for_each_rxq(vsi, i)
1504 		if (disable)
1505 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506 		else
1507 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508 }
1509 
1510 /**
1511  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512  * @vsi: VSI to be configured
1513  */
1514 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515 {
1516 	struct ice_pf *pf = vsi->back;
1517 	struct device *dev;
1518 	u8 *lut, *key;
1519 	int err;
1520 
1521 	dev = ice_pf_to_dev(pf);
1522 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525 	} else {
1526 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527 
1528 		/* If orig_rss_size is valid and it is less than determined
1529 		 * main VSI's rss_size, update main VSI's rss_size to be
1530 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531 		 * RSS table gets programmed to be correct (whatever it was
1532 		 * to begin with (prior to setup-tc for ADQ config)
1533 		 */
1534 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535 		    vsi->orig_rss_size <= vsi->num_rxq) {
1536 			vsi->rss_size = vsi->orig_rss_size;
1537 			/* now orig_rss_size is used, reset it to zero */
1538 			vsi->orig_rss_size = 0;
1539 		}
1540 	}
1541 
1542 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543 	if (!lut)
1544 		return -ENOMEM;
1545 
1546 	if (vsi->rss_lut_user)
1547 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548 	else
1549 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550 
1551 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552 	if (err) {
1553 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1554 		goto ice_vsi_cfg_rss_exit;
1555 	}
1556 
1557 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558 	if (!key) {
1559 		err = -ENOMEM;
1560 		goto ice_vsi_cfg_rss_exit;
1561 	}
1562 
1563 	if (vsi->rss_hkey_user)
1564 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1565 	else
1566 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567 
1568 	err = ice_set_rss_key(vsi, key);
1569 	if (err)
1570 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1571 
1572 	kfree(key);
1573 ice_vsi_cfg_rss_exit:
1574 	kfree(lut);
1575 	return err;
1576 }
1577 
1578 /**
1579  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580  * @vsi: VSI to be configured
1581  *
1582  * This function will only be called during the VF VSI setup. Upon successful
1583  * completion of package download, this function will configure default RSS
1584  * input sets for VF VSI.
1585  */
1586 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587 {
1588 	struct ice_pf *pf = vsi->back;
1589 	struct device *dev;
1590 	int status;
1591 
1592 	dev = ice_pf_to_dev(pf);
1593 	if (ice_is_safe_mode(pf)) {
1594 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595 			vsi->vsi_num);
1596 		return;
1597 	}
1598 
1599 	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1600 	if (status)
1601 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602 			vsi->vsi_num, status);
1603 }
1604 
1605 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1606 	/* configure RSS for IPv4 with input set IP src/dst */
1607 	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1608 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1609 	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1610 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1611 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1612 				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1613 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1614 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1615 				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1616 	/* configure RSS for sctp4 with input set IP src/dst - only support
1617 	 * RSS on SCTPv4 on outer headers (non-tunneled)
1618 	 */
1619 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1620 		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1621 	/* configure RSS for gtpc4 with input set IPv4 src/dst */
1622 	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1623 		ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1624 	/* configure RSS for gtpc4t with input set IPv4 src/dst */
1625 	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1626 		ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1627 	/* configure RSS for gtpu4 with input set IPv4 src/dst */
1628 	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1629 		ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1630 	/* configure RSS for gtpu4e with input set IPv4 src/dst */
1631 	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1632 		ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1633 	/* configure RSS for gtpu4u with input set IPv4 src/dst */
1634 	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1635 		ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1636 	/* configure RSS for gtpu4d with input set IPv4 src/dst */
1637 	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1638 		ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1639 
1640 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1641 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1642 				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1643 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1644 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1645 				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1646 	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1647 	 * RSS on SCTPv6 on outer headers (non-tunneled)
1648 	 */
1649 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1650 		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1651 	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1652 	{ICE_FLOW_SEG_HDR_ESP,
1653 		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1654 	/* configure RSS for gtpc6 with input set IPv6 src/dst */
1655 	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1656 		ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1657 	/* configure RSS for gtpc6t with input set IPv6 src/dst */
1658 	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1659 		ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1660 	/* configure RSS for gtpu6 with input set IPv6 src/dst */
1661 	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1662 		ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1663 	/* configure RSS for gtpu6e with input set IPv6 src/dst */
1664 	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1665 		ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1666 	/* configure RSS for gtpu6u with input set IPv6 src/dst */
1667 	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1668 		ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1669 	/* configure RSS for gtpu6d with input set IPv6 src/dst */
1670 	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1671 		ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1672 };
1673 
1674 /**
1675  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1676  * @vsi: VSI to be configured
1677  *
1678  * This function will only be called after successful download package call
1679  * during initialization of PF. Since the downloaded package will erase the
1680  * RSS section, this function will configure RSS input sets for different
1681  * flow types. The last profile added has the highest priority, therefore 2
1682  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1683  * (i.e. IPv4 src/dst TCP src/dst port).
1684  */
1685 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1686 {
1687 	u16 vsi_num = vsi->vsi_num;
1688 	struct ice_pf *pf = vsi->back;
1689 	struct ice_hw *hw = &pf->hw;
1690 	struct device *dev;
1691 	int status;
1692 	u32 i;
1693 
1694 	dev = ice_pf_to_dev(pf);
1695 	if (ice_is_safe_mode(pf)) {
1696 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1697 			vsi_num);
1698 		return;
1699 	}
1700 	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1701 		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1702 
1703 		status = ice_add_rss_cfg(hw, vsi, cfg);
1704 		if (status)
1705 			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1706 				cfg->addl_hdrs, cfg->hash_flds,
1707 				cfg->hdr_type, cfg->symm);
1708 	}
1709 }
1710 
1711 /**
1712  * ice_pf_state_is_nominal - checks the PF for nominal state
1713  * @pf: pointer to PF to check
1714  *
1715  * Check the PF's state for a collection of bits that would indicate
1716  * the PF is in a state that would inhibit normal operation for
1717  * driver functionality.
1718  *
1719  * Returns true if PF is in a nominal state, false otherwise
1720  */
1721 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1722 {
1723 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1724 
1725 	if (!pf)
1726 		return false;
1727 
1728 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1729 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1730 		return false;
1731 
1732 	return true;
1733 }
1734 
1735 /**
1736  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1737  * @vsi: the VSI to be updated
1738  */
1739 void ice_update_eth_stats(struct ice_vsi *vsi)
1740 {
1741 	struct ice_eth_stats *prev_es, *cur_es;
1742 	struct ice_hw *hw = &vsi->back->hw;
1743 	struct ice_pf *pf = vsi->back;
1744 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1745 
1746 	prev_es = &vsi->eth_stats_prev;
1747 	cur_es = &vsi->eth_stats;
1748 
1749 	if (ice_is_reset_in_progress(pf->state))
1750 		vsi->stat_offsets_loaded = false;
1751 
1752 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1753 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1754 
1755 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1756 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1757 
1758 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1759 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1760 
1761 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1762 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1763 
1764 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1765 			  &prev_es->rx_discards, &cur_es->rx_discards);
1766 
1767 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1768 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1769 
1770 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1771 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1772 
1773 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1774 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1775 
1776 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1777 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1778 
1779 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1780 			  &prev_es->tx_errors, &cur_es->tx_errors);
1781 
1782 	vsi->stat_offsets_loaded = true;
1783 }
1784 
1785 /**
1786  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1787  * @hw: HW pointer
1788  * @pf_q: index of the Rx queue in the PF's queue space
1789  * @rxdid: flexible descriptor RXDID
1790  * @prio: priority for the RXDID for this queue
1791  * @ena_ts: true to enable timestamp and false to disable timestamp
1792  */
1793 void
1794 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1795 			bool ena_ts)
1796 {
1797 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1798 
1799 	/* clear any previous values */
1800 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1801 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1802 		    QRXFLXP_CNTXT_TS_M);
1803 
1804 	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1805 	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1806 
1807 	if (ena_ts)
1808 		/* Enable TimeSync on this queue */
1809 		regval |= QRXFLXP_CNTXT_TS_M;
1810 
1811 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1812 }
1813 
1814 /**
1815  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1816  * @intrl: interrupt rate limit in usecs
1817  * @gran: interrupt rate limit granularity in usecs
1818  *
1819  * This function converts a decimal interrupt rate limit in usecs to the format
1820  * expected by firmware.
1821  */
1822 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1823 {
1824 	u32 val = intrl / gran;
1825 
1826 	if (val)
1827 		return val | GLINT_RATE_INTRL_ENA_M;
1828 	return 0;
1829 }
1830 
1831 /**
1832  * ice_write_intrl - write throttle rate limit to interrupt specific register
1833  * @q_vector: pointer to interrupt specific structure
1834  * @intrl: throttle rate limit in microseconds to write
1835  */
1836 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1837 {
1838 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1839 
1840 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1841 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1842 }
1843 
1844 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1845 {
1846 	switch (rc->type) {
1847 	case ICE_RX_CONTAINER:
1848 		if (rc->rx_ring)
1849 			return rc->rx_ring->q_vector;
1850 		break;
1851 	case ICE_TX_CONTAINER:
1852 		if (rc->tx_ring)
1853 			return rc->tx_ring->q_vector;
1854 		break;
1855 	default:
1856 		break;
1857 	}
1858 
1859 	return NULL;
1860 }
1861 
1862 /**
1863  * __ice_write_itr - write throttle rate to register
1864  * @q_vector: pointer to interrupt data structure
1865  * @rc: pointer to ring container
1866  * @itr: throttle rate in microseconds to write
1867  */
1868 static void __ice_write_itr(struct ice_q_vector *q_vector,
1869 			    struct ice_ring_container *rc, u16 itr)
1870 {
1871 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1872 
1873 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1874 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1875 }
1876 
1877 /**
1878  * ice_write_itr - write throttle rate to queue specific register
1879  * @rc: pointer to ring container
1880  * @itr: throttle rate in microseconds to write
1881  */
1882 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1883 {
1884 	struct ice_q_vector *q_vector;
1885 
1886 	q_vector = ice_pull_qvec_from_rc(rc);
1887 	if (!q_vector)
1888 		return;
1889 
1890 	__ice_write_itr(q_vector, rc, itr);
1891 }
1892 
1893 /**
1894  * ice_set_q_vector_intrl - set up interrupt rate limiting
1895  * @q_vector: the vector to be configured
1896  *
1897  * Interrupt rate limiting is local to the vector, not per-queue so we must
1898  * detect if either ring container has dynamic moderation enabled to decide
1899  * what to set the interrupt rate limit to via INTRL settings. In the case that
1900  * dynamic moderation is disabled on both, write the value with the cached
1901  * setting to make sure INTRL register matches the user visible value.
1902  */
1903 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1904 {
1905 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1906 		/* in the case of dynamic enabled, cap each vector to no more
1907 		 * than (4 us) 250,000 ints/sec, which allows low latency
1908 		 * but still less than 500,000 interrupts per second, which
1909 		 * reduces CPU a bit in the case of the lowest latency
1910 		 * setting. The 4 here is a value in microseconds.
1911 		 */
1912 		ice_write_intrl(q_vector, 4);
1913 	} else {
1914 		ice_write_intrl(q_vector, q_vector->intrl);
1915 	}
1916 }
1917 
1918 /**
1919  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1920  * @vsi: the VSI being configured
1921  *
1922  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1923  * for the VF VSI.
1924  */
1925 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1926 {
1927 	struct ice_pf *pf = vsi->back;
1928 	struct ice_hw *hw = &pf->hw;
1929 	u16 txq = 0, rxq = 0;
1930 	int i, q;
1931 
1932 	ice_for_each_q_vector(vsi, i) {
1933 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1934 		u16 reg_idx = q_vector->reg_idx;
1935 
1936 		ice_cfg_itr(hw, q_vector);
1937 
1938 		/* Both Transmit Queue Interrupt Cause Control register
1939 		 * and Receive Queue Interrupt Cause control register
1940 		 * expects MSIX_INDX field to be the vector index
1941 		 * within the function space and not the absolute
1942 		 * vector index across PF or across device.
1943 		 * For SR-IOV VF VSIs queue vector index always starts
1944 		 * with 1 since first vector index(0) is used for OICR
1945 		 * in VF space. Since VMDq and other PF VSIs are within
1946 		 * the PF function space, use the vector index that is
1947 		 * tracked for this PF.
1948 		 */
1949 		for (q = 0; q < q_vector->num_ring_tx; q++) {
1950 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1951 					      q_vector->tx.itr_idx);
1952 			txq++;
1953 		}
1954 
1955 		for (q = 0; q < q_vector->num_ring_rx; q++) {
1956 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1957 					      q_vector->rx.itr_idx);
1958 			rxq++;
1959 		}
1960 	}
1961 }
1962 
1963 /**
1964  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1965  * @vsi: the VSI whose rings are to be enabled
1966  *
1967  * Returns 0 on success and a negative value on error
1968  */
1969 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1970 {
1971 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1972 }
1973 
1974 /**
1975  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1976  * @vsi: the VSI whose rings are to be disabled
1977  *
1978  * Returns 0 on success and a negative value on error
1979  */
1980 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1981 {
1982 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
1983 }
1984 
1985 /**
1986  * ice_vsi_stop_tx_rings - Disable Tx rings
1987  * @vsi: the VSI being configured
1988  * @rst_src: reset source
1989  * @rel_vmvf_num: Relative ID of VF/VM
1990  * @rings: Tx ring array to be stopped
1991  * @count: number of Tx ring array elements
1992  */
1993 static int
1994 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1995 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1996 {
1997 	u16 q_idx;
1998 
1999 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2000 		return -EINVAL;
2001 
2002 	for (q_idx = 0; q_idx < count; q_idx++) {
2003 		struct ice_txq_meta txq_meta = { };
2004 		int status;
2005 
2006 		if (!rings || !rings[q_idx])
2007 			return -EINVAL;
2008 
2009 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2010 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2011 					      rings[q_idx], &txq_meta);
2012 
2013 		if (status)
2014 			return status;
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 /**
2021  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2022  * @vsi: the VSI being configured
2023  * @rst_src: reset source
2024  * @rel_vmvf_num: Relative ID of VF/VM
2025  */
2026 int
2027 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2028 			  u16 rel_vmvf_num)
2029 {
2030 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2031 }
2032 
2033 /**
2034  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2035  * @vsi: the VSI being configured
2036  */
2037 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2038 {
2039 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2040 }
2041 
2042 /**
2043  * ice_vsi_is_rx_queue_active
2044  * @vsi: the VSI being configured
2045  *
2046  * Return true if at least one queue is active.
2047  */
2048 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2049 {
2050 	struct ice_pf *pf = vsi->back;
2051 	struct ice_hw *hw = &pf->hw;
2052 	int i;
2053 
2054 	ice_for_each_rxq(vsi, i) {
2055 		u32 rx_reg;
2056 		int pf_q;
2057 
2058 		pf_q = vsi->rxq_map[i];
2059 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2060 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2061 			return true;
2062 	}
2063 
2064 	return false;
2065 }
2066 
2067 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2068 {
2069 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2070 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2071 		vsi->tc_cfg.numtc = 1;
2072 		return;
2073 	}
2074 
2075 	/* set VSI TC information based on DCB config */
2076 	ice_vsi_set_dcb_tc_cfg(vsi);
2077 }
2078 
2079 /**
2080  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2081  * @vsi: the VSI being configured
2082  * @tx: bool to determine Tx or Rx rule
2083  * @create: bool to determine create or remove Rule
2084  */
2085 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2086 {
2087 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2088 			enum ice_sw_fwd_act_type act);
2089 	struct ice_pf *pf = vsi->back;
2090 	struct device *dev;
2091 	int status;
2092 
2093 	dev = ice_pf_to_dev(pf);
2094 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2095 
2096 	if (tx) {
2097 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2098 				  ICE_DROP_PACKET);
2099 	} else {
2100 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2101 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2102 							  create);
2103 		} else {
2104 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2105 					  ICE_FWD_TO_VSI);
2106 		}
2107 	}
2108 
2109 	if (status)
2110 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2111 			create ? "adding" : "removing", tx ? "TX" : "RX",
2112 			vsi->vsi_num, status);
2113 }
2114 
2115 /**
2116  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2117  * @vsi: pointer to the VSI
2118  *
2119  * This function will allocate new scheduler aggregator now if needed and will
2120  * move specified VSI into it.
2121  */
2122 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2123 {
2124 	struct device *dev = ice_pf_to_dev(vsi->back);
2125 	struct ice_agg_node *agg_node_iter = NULL;
2126 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2127 	struct ice_agg_node *agg_node = NULL;
2128 	int node_offset, max_agg_nodes = 0;
2129 	struct ice_port_info *port_info;
2130 	struct ice_pf *pf = vsi->back;
2131 	u32 agg_node_id_start = 0;
2132 	int status;
2133 
2134 	/* create (as needed) scheduler aggregator node and move VSI into
2135 	 * corresponding aggregator node
2136 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2137 	 * - VF aggregator nodes will contain VF VSI
2138 	 */
2139 	port_info = pf->hw.port_info;
2140 	if (!port_info)
2141 		return;
2142 
2143 	switch (vsi->type) {
2144 	case ICE_VSI_CTRL:
2145 	case ICE_VSI_CHNL:
2146 	case ICE_VSI_LB:
2147 	case ICE_VSI_PF:
2148 	case ICE_VSI_SWITCHDEV_CTRL:
2149 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2150 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2151 		agg_node_iter = &pf->pf_agg_node[0];
2152 		break;
2153 	case ICE_VSI_VF:
2154 		/* user can create 'n' VFs on a given PF, but since max children
2155 		 * per aggregator node can be only 64. Following code handles
2156 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2157 		 * was already created provided num_vsis < 64, otherwise
2158 		 * select next available node, which will be created
2159 		 */
2160 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2161 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2162 		agg_node_iter = &pf->vf_agg_node[0];
2163 		break;
2164 	default:
2165 		/* other VSI type, handle later if needed */
2166 		dev_dbg(dev, "unexpected VSI type %s\n",
2167 			ice_vsi_type_str(vsi->type));
2168 		return;
2169 	}
2170 
2171 	/* find the appropriate aggregator node */
2172 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2173 		/* see if we can find space in previously created
2174 		 * node if num_vsis < 64, otherwise skip
2175 		 */
2176 		if (agg_node_iter->num_vsis &&
2177 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2178 			agg_node_iter++;
2179 			continue;
2180 		}
2181 
2182 		if (agg_node_iter->valid &&
2183 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2184 			agg_id = agg_node_iter->agg_id;
2185 			agg_node = agg_node_iter;
2186 			break;
2187 		}
2188 
2189 		/* find unclaimed agg_id */
2190 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2191 			agg_id = node_offset + agg_node_id_start;
2192 			agg_node = agg_node_iter;
2193 			break;
2194 		}
2195 		/* move to next agg_node */
2196 		agg_node_iter++;
2197 	}
2198 
2199 	if (!agg_node)
2200 		return;
2201 
2202 	/* if selected aggregator node was not created, create it */
2203 	if (!agg_node->valid) {
2204 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2205 				     (u8)vsi->tc_cfg.ena_tc);
2206 		if (status) {
2207 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2208 				agg_id);
2209 			return;
2210 		}
2211 		/* aggregator node is created, store the needed info */
2212 		agg_node->valid = true;
2213 		agg_node->agg_id = agg_id;
2214 	}
2215 
2216 	/* move VSI to corresponding aggregator node */
2217 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2218 				     (u8)vsi->tc_cfg.ena_tc);
2219 	if (status) {
2220 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2221 			vsi->idx, agg_id);
2222 		return;
2223 	}
2224 
2225 	/* keep active children count for aggregator node */
2226 	agg_node->num_vsis++;
2227 
2228 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2229 	 * to aggregator node
2230 	 */
2231 	vsi->agg_node = agg_node;
2232 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2233 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2234 		vsi->agg_node->num_vsis);
2235 }
2236 
2237 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2238 {
2239 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2240 	struct device *dev = ice_pf_to_dev(pf);
2241 	int ret, i;
2242 
2243 	/* configure VSI nodes based on number of queues and TC's */
2244 	ice_for_each_traffic_class(i) {
2245 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2246 			continue;
2247 
2248 		if (vsi->type == ICE_VSI_CHNL) {
2249 			if (!vsi->alloc_txq && vsi->num_txq)
2250 				max_txqs[i] = vsi->num_txq;
2251 			else
2252 				max_txqs[i] = pf->num_lan_tx;
2253 		} else {
2254 			max_txqs[i] = vsi->alloc_txq;
2255 		}
2256 
2257 		if (vsi->type == ICE_VSI_PF)
2258 			max_txqs[i] += vsi->num_xdp_txq;
2259 	}
2260 
2261 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2262 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2263 			      max_txqs);
2264 	if (ret) {
2265 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2266 			vsi->vsi_num, ret);
2267 		return ret;
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 /**
2274  * ice_vsi_cfg_def - configure default VSI based on the type
2275  * @vsi: pointer to VSI
2276  * @params: the parameters to configure this VSI with
2277  */
2278 static int
2279 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2280 {
2281 	struct device *dev = ice_pf_to_dev(vsi->back);
2282 	struct ice_pf *pf = vsi->back;
2283 	int ret;
2284 
2285 	vsi->vsw = pf->first_sw;
2286 
2287 	ret = ice_vsi_alloc_def(vsi, params->ch);
2288 	if (ret)
2289 		return ret;
2290 
2291 	/* allocate memory for Tx/Rx ring stat pointers */
2292 	ret = ice_vsi_alloc_stat_arrays(vsi);
2293 	if (ret)
2294 		goto unroll_vsi_alloc;
2295 
2296 	ice_alloc_fd_res(vsi);
2297 
2298 	ret = ice_vsi_get_qs(vsi);
2299 	if (ret) {
2300 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2301 			vsi->idx);
2302 		goto unroll_vsi_alloc_stat;
2303 	}
2304 
2305 	/* set RSS capabilities */
2306 	ice_vsi_set_rss_params(vsi);
2307 
2308 	/* set TC configuration */
2309 	ice_vsi_set_tc_cfg(vsi);
2310 
2311 	/* create the VSI */
2312 	ret = ice_vsi_init(vsi, params->flags);
2313 	if (ret)
2314 		goto unroll_get_qs;
2315 
2316 	ice_vsi_init_vlan_ops(vsi);
2317 
2318 	switch (vsi->type) {
2319 	case ICE_VSI_CTRL:
2320 	case ICE_VSI_SWITCHDEV_CTRL:
2321 	case ICE_VSI_PF:
2322 		ret = ice_vsi_alloc_q_vectors(vsi);
2323 		if (ret)
2324 			goto unroll_vsi_init;
2325 
2326 		ret = ice_vsi_alloc_rings(vsi);
2327 		if (ret)
2328 			goto unroll_vector_base;
2329 
2330 		ret = ice_vsi_alloc_ring_stats(vsi);
2331 		if (ret)
2332 			goto unroll_vector_base;
2333 
2334 		ice_vsi_map_rings_to_vectors(vsi);
2335 
2336 		/* Associate q_vector rings to napi */
2337 		ice_vsi_set_napi_queues(vsi);
2338 
2339 		vsi->stat_offsets_loaded = false;
2340 
2341 		if (ice_is_xdp_ena_vsi(vsi)) {
2342 			ret = ice_vsi_determine_xdp_res(vsi);
2343 			if (ret)
2344 				goto unroll_vector_base;
2345 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2346 			if (ret)
2347 				goto unroll_vector_base;
2348 		}
2349 
2350 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2351 		if (vsi->type != ICE_VSI_CTRL)
2352 			/* Do not exit if configuring RSS had an issue, at
2353 			 * least receive traffic on first queue. Hence no
2354 			 * need to capture return value
2355 			 */
2356 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2357 				ice_vsi_cfg_rss_lut_key(vsi);
2358 				ice_vsi_set_rss_flow_fld(vsi);
2359 			}
2360 		ice_init_arfs(vsi);
2361 		break;
2362 	case ICE_VSI_CHNL:
2363 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2364 			ice_vsi_cfg_rss_lut_key(vsi);
2365 			ice_vsi_set_rss_flow_fld(vsi);
2366 		}
2367 		break;
2368 	case ICE_VSI_VF:
2369 		/* VF driver will take care of creating netdev for this type and
2370 		 * map queues to vectors through Virtchnl, PF driver only
2371 		 * creates a VSI and corresponding structures for bookkeeping
2372 		 * purpose
2373 		 */
2374 		ret = ice_vsi_alloc_q_vectors(vsi);
2375 		if (ret)
2376 			goto unroll_vsi_init;
2377 
2378 		ret = ice_vsi_alloc_rings(vsi);
2379 		if (ret)
2380 			goto unroll_alloc_q_vector;
2381 
2382 		ret = ice_vsi_alloc_ring_stats(vsi);
2383 		if (ret)
2384 			goto unroll_vector_base;
2385 
2386 		vsi->stat_offsets_loaded = false;
2387 
2388 		/* Do not exit if configuring RSS had an issue, at least
2389 		 * receive traffic on first queue. Hence no need to capture
2390 		 * return value
2391 		 */
2392 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2393 			ice_vsi_cfg_rss_lut_key(vsi);
2394 			ice_vsi_set_vf_rss_flow_fld(vsi);
2395 		}
2396 		break;
2397 	case ICE_VSI_LB:
2398 		ret = ice_vsi_alloc_rings(vsi);
2399 		if (ret)
2400 			goto unroll_vsi_init;
2401 
2402 		ret = ice_vsi_alloc_ring_stats(vsi);
2403 		if (ret)
2404 			goto unroll_vector_base;
2405 
2406 		break;
2407 	default:
2408 		/* clean up the resources and exit */
2409 		ret = -EINVAL;
2410 		goto unroll_vsi_init;
2411 	}
2412 
2413 	return 0;
2414 
2415 unroll_vector_base:
2416 	/* reclaim SW interrupts back to the common pool */
2417 unroll_alloc_q_vector:
2418 	ice_vsi_free_q_vectors(vsi);
2419 unroll_vsi_init:
2420 	ice_vsi_delete_from_hw(vsi);
2421 unroll_get_qs:
2422 	ice_vsi_put_qs(vsi);
2423 unroll_vsi_alloc_stat:
2424 	ice_vsi_free_stats(vsi);
2425 unroll_vsi_alloc:
2426 	ice_vsi_free_arrays(vsi);
2427 	return ret;
2428 }
2429 
2430 /**
2431  * ice_vsi_cfg - configure a previously allocated VSI
2432  * @vsi: pointer to VSI
2433  * @params: parameters used to configure this VSI
2434  */
2435 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2436 {
2437 	struct ice_pf *pf = vsi->back;
2438 	int ret;
2439 
2440 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2441 		return -EINVAL;
2442 
2443 	vsi->type = params->type;
2444 	vsi->port_info = params->pi;
2445 
2446 	/* For VSIs which don't have a connected VF, this will be NULL */
2447 	vsi->vf = params->vf;
2448 
2449 	ret = ice_vsi_cfg_def(vsi, params);
2450 	if (ret)
2451 		return ret;
2452 
2453 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2454 	if (ret)
2455 		ice_vsi_decfg(vsi);
2456 
2457 	if (vsi->type == ICE_VSI_CTRL) {
2458 		if (vsi->vf) {
2459 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2460 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2461 		} else {
2462 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2463 			pf->ctrl_vsi_idx = vsi->idx;
2464 		}
2465 	}
2466 
2467 	return ret;
2468 }
2469 
2470 /**
2471  * ice_vsi_decfg - remove all VSI configuration
2472  * @vsi: pointer to VSI
2473  */
2474 void ice_vsi_decfg(struct ice_vsi *vsi)
2475 {
2476 	struct ice_pf *pf = vsi->back;
2477 	int err;
2478 
2479 	/* The Rx rule will only exist to remove if the LLDP FW
2480 	 * engine is currently stopped
2481 	 */
2482 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2483 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2484 		ice_cfg_sw_lldp(vsi, false, false);
2485 
2486 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2487 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2488 	if (err)
2489 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2490 			vsi->vsi_num, err);
2491 
2492 	if (ice_is_xdp_ena_vsi(vsi))
2493 		/* return value check can be skipped here, it always returns
2494 		 * 0 if reset is in progress
2495 		 */
2496 		ice_destroy_xdp_rings(vsi);
2497 
2498 	ice_vsi_clear_rings(vsi);
2499 	ice_vsi_free_q_vectors(vsi);
2500 	ice_vsi_put_qs(vsi);
2501 	ice_vsi_free_arrays(vsi);
2502 
2503 	/* SR-IOV determines needed MSIX resources all at once instead of per
2504 	 * VSI since when VFs are spawned we know how many VFs there are and how
2505 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2506 	 * cleared in the same manner.
2507 	 */
2508 
2509 	if (vsi->type == ICE_VSI_VF &&
2510 	    vsi->agg_node && vsi->agg_node->valid)
2511 		vsi->agg_node->num_vsis--;
2512 }
2513 
2514 /**
2515  * ice_vsi_setup - Set up a VSI by a given type
2516  * @pf: board private structure
2517  * @params: parameters to use when creating the VSI
2518  *
2519  * This allocates the sw VSI structure and its queue resources.
2520  *
2521  * Returns pointer to the successfully allocated and configured VSI sw struct on
2522  * success, NULL on failure.
2523  */
2524 struct ice_vsi *
2525 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2526 {
2527 	struct device *dev = ice_pf_to_dev(pf);
2528 	struct ice_vsi *vsi;
2529 	int ret;
2530 
2531 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2532 	 * a port_info structure for it.
2533 	 */
2534 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2535 	    WARN_ON(!params->pi))
2536 		return NULL;
2537 
2538 	vsi = ice_vsi_alloc(pf);
2539 	if (!vsi) {
2540 		dev_err(dev, "could not allocate VSI\n");
2541 		return NULL;
2542 	}
2543 
2544 	ret = ice_vsi_cfg(vsi, params);
2545 	if (ret)
2546 		goto err_vsi_cfg;
2547 
2548 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2549 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2550 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2551 	 * The rule is added once for PF VSI in order to create appropriate
2552 	 * recipe, since VSI/VSI list is ignored with drop action...
2553 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2554 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2555 	 * settings in the HW.
2556 	 */
2557 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2558 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2559 				 ICE_DROP_PACKET);
2560 		ice_cfg_sw_lldp(vsi, true, true);
2561 	}
2562 
2563 	if (!vsi->agg_node)
2564 		ice_set_agg_vsi(vsi);
2565 
2566 	return vsi;
2567 
2568 err_vsi_cfg:
2569 	ice_vsi_free(vsi);
2570 
2571 	return NULL;
2572 }
2573 
2574 /**
2575  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2576  * @vsi: the VSI being cleaned up
2577  */
2578 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2579 {
2580 	struct ice_pf *pf = vsi->back;
2581 	struct ice_hw *hw = &pf->hw;
2582 	u32 txq = 0;
2583 	u32 rxq = 0;
2584 	int i, q;
2585 
2586 	ice_for_each_q_vector(vsi, i) {
2587 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2588 
2589 		ice_write_intrl(q_vector, 0);
2590 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2591 			ice_write_itr(&q_vector->tx, 0);
2592 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2593 			if (ice_is_xdp_ena_vsi(vsi)) {
2594 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2595 
2596 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2597 			}
2598 			txq++;
2599 		}
2600 
2601 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2602 			ice_write_itr(&q_vector->rx, 0);
2603 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2604 			rxq++;
2605 		}
2606 	}
2607 
2608 	ice_flush(hw);
2609 }
2610 
2611 /**
2612  * ice_vsi_free_irq - Free the IRQ association with the OS
2613  * @vsi: the VSI being configured
2614  */
2615 void ice_vsi_free_irq(struct ice_vsi *vsi)
2616 {
2617 	struct ice_pf *pf = vsi->back;
2618 	int i;
2619 
2620 	if (!vsi->q_vectors || !vsi->irqs_ready)
2621 		return;
2622 
2623 	ice_vsi_release_msix(vsi);
2624 	if (vsi->type == ICE_VSI_VF)
2625 		return;
2626 
2627 	vsi->irqs_ready = false;
2628 	ice_free_cpu_rx_rmap(vsi);
2629 
2630 	ice_for_each_q_vector(vsi, i) {
2631 		int irq_num;
2632 
2633 		irq_num = vsi->q_vectors[i]->irq.virq;
2634 
2635 		/* free only the irqs that were actually requested */
2636 		if (!vsi->q_vectors[i] ||
2637 		    !(vsi->q_vectors[i]->num_ring_tx ||
2638 		      vsi->q_vectors[i]->num_ring_rx))
2639 			continue;
2640 
2641 		/* clear the affinity notifier in the IRQ descriptor */
2642 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2643 			irq_set_affinity_notifier(irq_num, NULL);
2644 
2645 		/* clear the affinity_mask in the IRQ descriptor */
2646 		irq_set_affinity_hint(irq_num, NULL);
2647 		synchronize_irq(irq_num);
2648 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2649 	}
2650 }
2651 
2652 /**
2653  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2654  * @vsi: the VSI having resources freed
2655  */
2656 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2657 {
2658 	int i;
2659 
2660 	if (!vsi->tx_rings)
2661 		return;
2662 
2663 	ice_for_each_txq(vsi, i)
2664 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2665 			ice_free_tx_ring(vsi->tx_rings[i]);
2666 }
2667 
2668 /**
2669  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2670  * @vsi: the VSI having resources freed
2671  */
2672 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2673 {
2674 	int i;
2675 
2676 	if (!vsi->rx_rings)
2677 		return;
2678 
2679 	ice_for_each_rxq(vsi, i)
2680 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2681 			ice_free_rx_ring(vsi->rx_rings[i]);
2682 }
2683 
2684 /**
2685  * ice_vsi_close - Shut down a VSI
2686  * @vsi: the VSI being shut down
2687  */
2688 void ice_vsi_close(struct ice_vsi *vsi)
2689 {
2690 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2691 		ice_down(vsi);
2692 
2693 	ice_vsi_free_irq(vsi);
2694 	ice_vsi_free_tx_rings(vsi);
2695 	ice_vsi_free_rx_rings(vsi);
2696 }
2697 
2698 /**
2699  * ice_ena_vsi - resume a VSI
2700  * @vsi: the VSI being resume
2701  * @locked: is the rtnl_lock already held
2702  */
2703 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2704 {
2705 	int err = 0;
2706 
2707 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2708 		return 0;
2709 
2710 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2711 
2712 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2713 		if (netif_running(vsi->netdev)) {
2714 			if (!locked)
2715 				rtnl_lock();
2716 
2717 			err = ice_open_internal(vsi->netdev);
2718 
2719 			if (!locked)
2720 				rtnl_unlock();
2721 		}
2722 	} else if (vsi->type == ICE_VSI_CTRL) {
2723 		err = ice_vsi_open_ctrl(vsi);
2724 	}
2725 
2726 	return err;
2727 }
2728 
2729 /**
2730  * ice_dis_vsi - pause a VSI
2731  * @vsi: the VSI being paused
2732  * @locked: is the rtnl_lock already held
2733  */
2734 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2735 {
2736 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2737 		return;
2738 
2739 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2740 
2741 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2742 		if (netif_running(vsi->netdev)) {
2743 			if (!locked)
2744 				rtnl_lock();
2745 
2746 			ice_vsi_close(vsi);
2747 
2748 			if (!locked)
2749 				rtnl_unlock();
2750 		} else {
2751 			ice_vsi_close(vsi);
2752 		}
2753 	} else if (vsi->type == ICE_VSI_CTRL ||
2754 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2755 		ice_vsi_close(vsi);
2756 	}
2757 }
2758 
2759 /**
2760  * __ice_queue_set_napi - Set the napi instance for the queue
2761  * @dev: device to which NAPI and queue belong
2762  * @queue_index: Index of queue
2763  * @type: queue type as RX or TX
2764  * @napi: NAPI context
2765  * @locked: is the rtnl_lock already held
2766  *
2767  * Set the napi instance for the queue. Caller indicates the lock status.
2768  */
2769 static void
2770 __ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2771 		     enum netdev_queue_type type, struct napi_struct *napi,
2772 		     bool locked)
2773 {
2774 	if (!locked)
2775 		rtnl_lock();
2776 	netif_queue_set_napi(dev, queue_index, type, napi);
2777 	if (!locked)
2778 		rtnl_unlock();
2779 }
2780 
2781 /**
2782  * ice_queue_set_napi - Set the napi instance for the queue
2783  * @vsi: VSI being configured
2784  * @queue_index: Index of queue
2785  * @type: queue type as RX or TX
2786  * @napi: NAPI context
2787  *
2788  * Set the napi instance for the queue. The rtnl lock state is derived from the
2789  * execution path.
2790  */
2791 void
2792 ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2793 		   enum netdev_queue_type type, struct napi_struct *napi)
2794 {
2795 	struct ice_pf *pf = vsi->back;
2796 
2797 	if (!vsi->netdev)
2798 		return;
2799 
2800 	if (current_work() == &pf->serv_task ||
2801 	    test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2802 	    test_bit(ICE_DOWN, pf->state) ||
2803 	    test_bit(ICE_SUSPENDED, pf->state))
2804 		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2805 				     false);
2806 	else
2807 		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2808 				     true);
2809 }
2810 
2811 /**
2812  * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2813  * @q_vector: q_vector pointer
2814  * @locked: is the rtnl_lock already held
2815  *
2816  * Associate the q_vector napi with all the queue[s] on the vector.
2817  * Caller indicates the lock status.
2818  */
2819 void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2820 {
2821 	struct ice_rx_ring *rx_ring;
2822 	struct ice_tx_ring *tx_ring;
2823 
2824 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2825 		__ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2826 				     NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2827 				     locked);
2828 
2829 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2830 		__ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2831 				     NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2832 				     locked);
2833 	/* Also set the interrupt number for the NAPI */
2834 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2835 }
2836 
2837 /**
2838  * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2839  * @q_vector: q_vector pointer
2840  *
2841  * Associate the q_vector napi with all the queue[s] on the vector
2842  */
2843 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2844 {
2845 	struct ice_rx_ring *rx_ring;
2846 	struct ice_tx_ring *tx_ring;
2847 
2848 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2849 		ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2850 				   NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2851 
2852 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2853 		ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
2854 				   NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
2855 	/* Also set the interrupt number for the NAPI */
2856 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2857 }
2858 
2859 /**
2860  * ice_vsi_set_napi_queues
2861  * @vsi: VSI pointer
2862  *
2863  * Associate queue[s] with napi for all vectors
2864  */
2865 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2866 {
2867 	int i;
2868 
2869 	if (!vsi->netdev)
2870 		return;
2871 
2872 	ice_for_each_q_vector(vsi, i)
2873 		ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
2874 }
2875 
2876 /**
2877  * ice_vsi_release - Delete a VSI and free its resources
2878  * @vsi: the VSI being removed
2879  *
2880  * Returns 0 on success or < 0 on error
2881  */
2882 int ice_vsi_release(struct ice_vsi *vsi)
2883 {
2884 	struct ice_pf *pf;
2885 
2886 	if (!vsi->back)
2887 		return -ENODEV;
2888 	pf = vsi->back;
2889 
2890 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2891 		ice_rss_clean(vsi);
2892 
2893 	ice_vsi_close(vsi);
2894 	ice_vsi_decfg(vsi);
2895 
2896 	/* retain SW VSI data structure since it is needed to unregister and
2897 	 * free VSI netdev when PF is not in reset recovery pending state,\
2898 	 * for ex: during rmmod.
2899 	 */
2900 	if (!ice_is_reset_in_progress(pf->state))
2901 		ice_vsi_delete(vsi);
2902 
2903 	return 0;
2904 }
2905 
2906 /**
2907  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2908  * @vsi: VSI connected with q_vectors
2909  * @coalesce: array of struct with stored coalesce
2910  *
2911  * Returns array size.
2912  */
2913 static int
2914 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2915 			     struct ice_coalesce_stored *coalesce)
2916 {
2917 	int i;
2918 
2919 	ice_for_each_q_vector(vsi, i) {
2920 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2921 
2922 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2923 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2924 		coalesce[i].intrl = q_vector->intrl;
2925 
2926 		if (i < vsi->num_txq)
2927 			coalesce[i].tx_valid = true;
2928 		if (i < vsi->num_rxq)
2929 			coalesce[i].rx_valid = true;
2930 	}
2931 
2932 	return vsi->num_q_vectors;
2933 }
2934 
2935 /**
2936  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2937  * @vsi: VSI connected with q_vectors
2938  * @coalesce: pointer to array of struct with stored coalesce
2939  * @size: size of coalesce array
2940  *
2941  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2942  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2943  * to default value.
2944  */
2945 static void
2946 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2947 			     struct ice_coalesce_stored *coalesce, int size)
2948 {
2949 	struct ice_ring_container *rc;
2950 	int i;
2951 
2952 	if ((size && !coalesce) || !vsi)
2953 		return;
2954 
2955 	/* There are a couple of cases that have to be handled here:
2956 	 *   1. The case where the number of queue vectors stays the same, but
2957 	 *      the number of Tx or Rx rings changes (the first for loop)
2958 	 *   2. The case where the number of queue vectors increased (the
2959 	 *      second for loop)
2960 	 */
2961 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2962 		/* There are 2 cases to handle here and they are the same for
2963 		 * both Tx and Rx:
2964 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
2965 		 *   and the loop variable is less than the number of rings
2966 		 *   allocated, then write the previous values
2967 		 *
2968 		 *   if the entry was not valid previously, but the number of
2969 		 *   rings is less than are allocated (this means the number of
2970 		 *   rings increased from previously), then write out the
2971 		 *   values in the first element
2972 		 *
2973 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
2974 		 *   as there is no harm because the dynamic algorithm
2975 		 *   will just overwrite.
2976 		 */
2977 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2978 			rc = &vsi->q_vectors[i]->rx;
2979 			rc->itr_settings = coalesce[i].itr_rx;
2980 			ice_write_itr(rc, rc->itr_setting);
2981 		} else if (i < vsi->alloc_rxq) {
2982 			rc = &vsi->q_vectors[i]->rx;
2983 			rc->itr_settings = coalesce[0].itr_rx;
2984 			ice_write_itr(rc, rc->itr_setting);
2985 		}
2986 
2987 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2988 			rc = &vsi->q_vectors[i]->tx;
2989 			rc->itr_settings = coalesce[i].itr_tx;
2990 			ice_write_itr(rc, rc->itr_setting);
2991 		} else if (i < vsi->alloc_txq) {
2992 			rc = &vsi->q_vectors[i]->tx;
2993 			rc->itr_settings = coalesce[0].itr_tx;
2994 			ice_write_itr(rc, rc->itr_setting);
2995 		}
2996 
2997 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2998 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2999 	}
3000 
3001 	/* the number of queue vectors increased so write whatever is in
3002 	 * the first element
3003 	 */
3004 	for (; i < vsi->num_q_vectors; i++) {
3005 		/* transmit */
3006 		rc = &vsi->q_vectors[i]->tx;
3007 		rc->itr_settings = coalesce[0].itr_tx;
3008 		ice_write_itr(rc, rc->itr_setting);
3009 
3010 		/* receive */
3011 		rc = &vsi->q_vectors[i]->rx;
3012 		rc->itr_settings = coalesce[0].itr_rx;
3013 		ice_write_itr(rc, rc->itr_setting);
3014 
3015 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3016 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3017 	}
3018 }
3019 
3020 /**
3021  * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3022  * @vsi: VSI pointer
3023  */
3024 static int
3025 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3026 {
3027 	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3028 	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3029 	struct ice_ring_stats **tx_ring_stats;
3030 	struct ice_ring_stats **rx_ring_stats;
3031 	struct ice_vsi_stats *vsi_stat;
3032 	struct ice_pf *pf = vsi->back;
3033 	u16 prev_txq = vsi->alloc_txq;
3034 	u16 prev_rxq = vsi->alloc_rxq;
3035 	int i;
3036 
3037 	vsi_stat = pf->vsi_stats[vsi->idx];
3038 
3039 	if (req_txq < prev_txq) {
3040 		for (i = req_txq; i < prev_txq; i++) {
3041 			if (vsi_stat->tx_ring_stats[i]) {
3042 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3043 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3044 			}
3045 		}
3046 	}
3047 
3048 	tx_ring_stats = vsi_stat->tx_ring_stats;
3049 	vsi_stat->tx_ring_stats =
3050 		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3051 			       sizeof(*vsi_stat->tx_ring_stats),
3052 			       GFP_KERNEL | __GFP_ZERO);
3053 	if (!vsi_stat->tx_ring_stats) {
3054 		vsi_stat->tx_ring_stats = tx_ring_stats;
3055 		return -ENOMEM;
3056 	}
3057 
3058 	if (req_rxq < prev_rxq) {
3059 		for (i = req_rxq; i < prev_rxq; i++) {
3060 			if (vsi_stat->rx_ring_stats[i]) {
3061 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3062 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3063 			}
3064 		}
3065 	}
3066 
3067 	rx_ring_stats = vsi_stat->rx_ring_stats;
3068 	vsi_stat->rx_ring_stats =
3069 		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3070 			       sizeof(*vsi_stat->rx_ring_stats),
3071 			       GFP_KERNEL | __GFP_ZERO);
3072 	if (!vsi_stat->rx_ring_stats) {
3073 		vsi_stat->rx_ring_stats = rx_ring_stats;
3074 		return -ENOMEM;
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  * ice_vsi_rebuild - Rebuild VSI after reset
3082  * @vsi: VSI to be rebuild
3083  * @vsi_flags: flags used for VSI rebuild flow
3084  *
3085  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3086  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3087  *
3088  * Returns 0 on success and negative value on failure
3089  */
3090 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3091 {
3092 	struct ice_vsi_cfg_params params = {};
3093 	struct ice_coalesce_stored *coalesce;
3094 	int prev_num_q_vectors;
3095 	struct ice_pf *pf;
3096 	int ret;
3097 
3098 	if (!vsi)
3099 		return -EINVAL;
3100 
3101 	params = ice_vsi_to_params(vsi);
3102 	params.flags = vsi_flags;
3103 
3104 	pf = vsi->back;
3105 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3106 		return -EINVAL;
3107 
3108 	ret = ice_vsi_realloc_stat_arrays(vsi);
3109 	if (ret)
3110 		goto err_vsi_cfg;
3111 
3112 	ice_vsi_decfg(vsi);
3113 	ret = ice_vsi_cfg_def(vsi, &params);
3114 	if (ret)
3115 		goto err_vsi_cfg;
3116 
3117 	coalesce = kcalloc(vsi->num_q_vectors,
3118 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3119 	if (!coalesce)
3120 		return -ENOMEM;
3121 
3122 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3123 
3124 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3125 	if (ret) {
3126 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3127 			ret = -EIO;
3128 			goto err_vsi_cfg_tc_lan;
3129 		}
3130 
3131 		kfree(coalesce);
3132 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3133 	}
3134 
3135 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3136 	kfree(coalesce);
3137 
3138 	return 0;
3139 
3140 err_vsi_cfg_tc_lan:
3141 	ice_vsi_decfg(vsi);
3142 	kfree(coalesce);
3143 err_vsi_cfg:
3144 	return ret;
3145 }
3146 
3147 /**
3148  * ice_is_reset_in_progress - check for a reset in progress
3149  * @state: PF state field
3150  */
3151 bool ice_is_reset_in_progress(unsigned long *state)
3152 {
3153 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3154 	       test_bit(ICE_PFR_REQ, state) ||
3155 	       test_bit(ICE_CORER_REQ, state) ||
3156 	       test_bit(ICE_GLOBR_REQ, state);
3157 }
3158 
3159 /**
3160  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3161  * @pf: pointer to the PF structure
3162  * @timeout: length of time to wait, in jiffies
3163  *
3164  * Wait (sleep) for a short time until the driver finishes cleaning up from
3165  * a device reset. The caller must be able to sleep. Use this to delay
3166  * operations that could fail while the driver is cleaning up after a device
3167  * reset.
3168  *
3169  * Returns 0 on success, -EBUSY if the reset is not finished within the
3170  * timeout, and -ERESTARTSYS if the thread was interrupted.
3171  */
3172 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3173 {
3174 	long ret;
3175 
3176 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3177 					       !ice_is_reset_in_progress(pf->state),
3178 					       timeout);
3179 	if (ret < 0)
3180 		return ret;
3181 	else if (!ret)
3182 		return -EBUSY;
3183 	else
3184 		return 0;
3185 }
3186 
3187 /**
3188  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3189  * @vsi: VSI being configured
3190  * @ctx: the context buffer returned from AQ VSI update command
3191  */
3192 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3193 {
3194 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3195 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3196 	       sizeof(vsi->info.q_mapping));
3197 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3198 	       sizeof(vsi->info.tc_mapping));
3199 }
3200 
3201 /**
3202  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3203  * @vsi: the VSI being configured
3204  * @ena_tc: TC map to be enabled
3205  */
3206 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3207 {
3208 	struct net_device *netdev = vsi->netdev;
3209 	struct ice_pf *pf = vsi->back;
3210 	int numtc = vsi->tc_cfg.numtc;
3211 	struct ice_dcbx_cfg *dcbcfg;
3212 	u8 netdev_tc;
3213 	int i;
3214 
3215 	if (!netdev)
3216 		return;
3217 
3218 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3219 	if (vsi->type == ICE_VSI_CHNL)
3220 		return;
3221 
3222 	if (!ena_tc) {
3223 		netdev_reset_tc(netdev);
3224 		return;
3225 	}
3226 
3227 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3228 		numtc = vsi->all_numtc;
3229 
3230 	if (netdev_set_num_tc(netdev, numtc))
3231 		return;
3232 
3233 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3234 
3235 	ice_for_each_traffic_class(i)
3236 		if (vsi->tc_cfg.ena_tc & BIT(i))
3237 			netdev_set_tc_queue(netdev,
3238 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3239 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3240 					    vsi->tc_cfg.tc_info[i].qoffset);
3241 	/* setup TC queue map for CHNL TCs */
3242 	ice_for_each_chnl_tc(i) {
3243 		if (!(vsi->all_enatc & BIT(i)))
3244 			break;
3245 		if (!vsi->mqprio_qopt.qopt.count[i])
3246 			break;
3247 		netdev_set_tc_queue(netdev, i,
3248 				    vsi->mqprio_qopt.qopt.count[i],
3249 				    vsi->mqprio_qopt.qopt.offset[i]);
3250 	}
3251 
3252 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3253 		return;
3254 
3255 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3256 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3257 
3258 		/* Get the mapped netdev TC# for the UP */
3259 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3260 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3261 	}
3262 }
3263 
3264 /**
3265  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3266  * @vsi: the VSI being configured,
3267  * @ctxt: VSI context structure
3268  * @ena_tc: number of traffic classes to enable
3269  *
3270  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3271  */
3272 static int
3273 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3274 			   u8 ena_tc)
3275 {
3276 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3277 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3278 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3279 	u16 new_txq, new_rxq;
3280 	u8 netdev_tc = 0;
3281 	int i;
3282 
3283 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3284 
3285 	pow = order_base_2(tc0_qcount);
3286 	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3287 	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3288 
3289 	ice_for_each_traffic_class(i) {
3290 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3291 			/* TC is not enabled */
3292 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3293 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3294 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3295 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3296 			ctxt->info.tc_mapping[i] = 0;
3297 			continue;
3298 		}
3299 
3300 		offset = vsi->mqprio_qopt.qopt.offset[i];
3301 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3302 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3303 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3304 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3305 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3306 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3307 	}
3308 
3309 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3310 		ice_for_each_chnl_tc(i) {
3311 			if (!(vsi->all_enatc & BIT(i)))
3312 				continue;
3313 			offset = vsi->mqprio_qopt.qopt.offset[i];
3314 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3315 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3316 		}
3317 	}
3318 
3319 	new_txq = offset + qcount_tx;
3320 	if (new_txq > vsi->alloc_txq) {
3321 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3322 			new_txq, vsi->alloc_txq);
3323 		return -EINVAL;
3324 	}
3325 
3326 	new_rxq = offset + qcount_rx;
3327 	if (new_rxq > vsi->alloc_rxq) {
3328 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3329 			new_rxq, vsi->alloc_rxq);
3330 		return -EINVAL;
3331 	}
3332 
3333 	/* Set actual Tx/Rx queue pairs */
3334 	vsi->num_txq = new_txq;
3335 	vsi->num_rxq = new_rxq;
3336 
3337 	/* Setup queue TC[0].qmap for given VSI context */
3338 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3339 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3340 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3341 
3342 	/* Find queue count available for channel VSIs and starting offset
3343 	 * for channel VSIs
3344 	 */
3345 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3346 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3347 		vsi->next_base_q = tc0_qcount;
3348 	}
3349 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3350 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3351 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3352 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3353 
3354 	return 0;
3355 }
3356 
3357 /**
3358  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3359  * @vsi: VSI to be configured
3360  * @ena_tc: TC bitmap
3361  *
3362  * VSI queues expected to be quiesced before calling this function
3363  */
3364 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3365 {
3366 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3367 	struct ice_pf *pf = vsi->back;
3368 	struct ice_tc_cfg old_tc_cfg;
3369 	struct ice_vsi_ctx *ctx;
3370 	struct device *dev;
3371 	int i, ret = 0;
3372 	u8 num_tc = 0;
3373 
3374 	dev = ice_pf_to_dev(pf);
3375 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3376 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3377 		return 0;
3378 
3379 	ice_for_each_traffic_class(i) {
3380 		/* build bitmap of enabled TCs */
3381 		if (ena_tc & BIT(i))
3382 			num_tc++;
3383 		/* populate max_txqs per TC */
3384 		max_txqs[i] = vsi->alloc_txq;
3385 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3386 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3387 		 */
3388 		if (vsi->type == ICE_VSI_CHNL &&
3389 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3390 			max_txqs[i] = vsi->num_txq;
3391 	}
3392 
3393 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3394 	vsi->tc_cfg.ena_tc = ena_tc;
3395 	vsi->tc_cfg.numtc = num_tc;
3396 
3397 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3398 	if (!ctx)
3399 		return -ENOMEM;
3400 
3401 	ctx->vf_num = 0;
3402 	ctx->info = vsi->info;
3403 
3404 	if (vsi->type == ICE_VSI_PF &&
3405 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3406 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3407 	else
3408 		ret = ice_vsi_setup_q_map(vsi, ctx);
3409 
3410 	if (ret) {
3411 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3412 		goto out;
3413 	}
3414 
3415 	/* must to indicate which section of VSI context are being modified */
3416 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3417 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3418 	if (ret) {
3419 		dev_info(dev, "Failed VSI Update\n");
3420 		goto out;
3421 	}
3422 
3423 	if (vsi->type == ICE_VSI_PF &&
3424 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3425 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3426 	else
3427 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3428 				      vsi->tc_cfg.ena_tc, max_txqs);
3429 
3430 	if (ret) {
3431 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3432 			vsi->vsi_num, ret);
3433 		goto out;
3434 	}
3435 	ice_vsi_update_q_map(vsi, ctx);
3436 	vsi->info.valid_sections = 0;
3437 
3438 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3439 out:
3440 	kfree(ctx);
3441 	return ret;
3442 }
3443 
3444 /**
3445  * ice_update_ring_stats - Update ring statistics
3446  * @stats: stats to be updated
3447  * @pkts: number of processed packets
3448  * @bytes: number of processed bytes
3449  *
3450  * This function assumes that caller has acquired a u64_stats_sync lock.
3451  */
3452 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3453 {
3454 	stats->bytes += bytes;
3455 	stats->pkts += pkts;
3456 }
3457 
3458 /**
3459  * ice_update_tx_ring_stats - Update Tx ring specific counters
3460  * @tx_ring: ring to update
3461  * @pkts: number of processed packets
3462  * @bytes: number of processed bytes
3463  */
3464 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3465 {
3466 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3467 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3468 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3469 }
3470 
3471 /**
3472  * ice_update_rx_ring_stats - Update Rx ring specific counters
3473  * @rx_ring: ring to update
3474  * @pkts: number of processed packets
3475  * @bytes: number of processed bytes
3476  */
3477 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3478 {
3479 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3480 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3481 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3482 }
3483 
3484 /**
3485  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3486  * @pi: port info of the switch with default VSI
3487  *
3488  * Return true if the there is a single VSI in default forwarding VSI list
3489  */
3490 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3491 {
3492 	bool exists = false;
3493 
3494 	ice_check_if_dflt_vsi(pi, 0, &exists);
3495 	return exists;
3496 }
3497 
3498 /**
3499  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3500  * @vsi: VSI to compare against default forwarding VSI
3501  *
3502  * If this VSI passed in is the default forwarding VSI then return true, else
3503  * return false
3504  */
3505 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3506 {
3507 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3508 }
3509 
3510 /**
3511  * ice_set_dflt_vsi - set the default forwarding VSI
3512  * @vsi: VSI getting set as the default forwarding VSI on the switch
3513  *
3514  * If the VSI passed in is already the default VSI and it's enabled just return
3515  * success.
3516  *
3517  * Otherwise try to set the VSI passed in as the switch's default VSI and
3518  * return the result.
3519  */
3520 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3521 {
3522 	struct device *dev;
3523 	int status;
3524 
3525 	if (!vsi)
3526 		return -EINVAL;
3527 
3528 	dev = ice_pf_to_dev(vsi->back);
3529 
3530 	if (ice_lag_is_switchdev_running(vsi->back)) {
3531 		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3532 			vsi->vsi_num);
3533 		return 0;
3534 	}
3535 
3536 	/* the VSI passed in is already the default VSI */
3537 	if (ice_is_vsi_dflt_vsi(vsi)) {
3538 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3539 			vsi->vsi_num);
3540 		return 0;
3541 	}
3542 
3543 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3544 	if (status) {
3545 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3546 			vsi->vsi_num, status);
3547 		return status;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 /**
3554  * ice_clear_dflt_vsi - clear the default forwarding VSI
3555  * @vsi: VSI to remove from filter list
3556  *
3557  * If the switch has no default VSI or it's not enabled then return error.
3558  *
3559  * Otherwise try to clear the default VSI and return the result.
3560  */
3561 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3562 {
3563 	struct device *dev;
3564 	int status;
3565 
3566 	if (!vsi)
3567 		return -EINVAL;
3568 
3569 	dev = ice_pf_to_dev(vsi->back);
3570 
3571 	/* there is no default VSI configured */
3572 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3573 		return -ENODEV;
3574 
3575 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3576 				  ICE_FLTR_RX);
3577 	if (status) {
3578 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3579 			vsi->vsi_num, status);
3580 		return -EIO;
3581 	}
3582 
3583 	return 0;
3584 }
3585 
3586 /**
3587  * ice_get_link_speed_mbps - get link speed in Mbps
3588  * @vsi: the VSI whose link speed is being queried
3589  *
3590  * Return current VSI link speed and 0 if the speed is unknown.
3591  */
3592 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3593 {
3594 	unsigned int link_speed;
3595 
3596 	link_speed = vsi->port_info->phy.link_info.link_speed;
3597 
3598 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3599 }
3600 
3601 /**
3602  * ice_get_link_speed_kbps - get link speed in Kbps
3603  * @vsi: the VSI whose link speed is being queried
3604  *
3605  * Return current VSI link speed and 0 if the speed is unknown.
3606  */
3607 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3608 {
3609 	int speed_mbps;
3610 
3611 	speed_mbps = ice_get_link_speed_mbps(vsi);
3612 
3613 	return speed_mbps * 1000;
3614 }
3615 
3616 /**
3617  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3618  * @vsi: VSI to be configured
3619  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3620  *
3621  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3622  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3623  * on TC 0.
3624  */
3625 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3626 {
3627 	struct ice_pf *pf = vsi->back;
3628 	struct device *dev;
3629 	int status;
3630 	int speed;
3631 
3632 	dev = ice_pf_to_dev(pf);
3633 	if (!vsi->port_info) {
3634 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3635 			vsi->idx, vsi->type);
3636 		return -EINVAL;
3637 	}
3638 
3639 	speed = ice_get_link_speed_kbps(vsi);
3640 	if (min_tx_rate > (u64)speed) {
3641 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3642 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3643 			speed);
3644 		return -EINVAL;
3645 	}
3646 
3647 	/* Configure min BW for VSI limit */
3648 	if (min_tx_rate) {
3649 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3650 						   ICE_MIN_BW, min_tx_rate);
3651 		if (status) {
3652 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3653 				min_tx_rate, ice_vsi_type_str(vsi->type),
3654 				vsi->idx);
3655 			return status;
3656 		}
3657 
3658 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3659 			min_tx_rate, ice_vsi_type_str(vsi->type));
3660 	} else {
3661 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3662 							vsi->idx, 0,
3663 							ICE_MIN_BW);
3664 		if (status) {
3665 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3666 				ice_vsi_type_str(vsi->type), vsi->idx);
3667 			return status;
3668 		}
3669 
3670 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3671 			ice_vsi_type_str(vsi->type), vsi->idx);
3672 	}
3673 
3674 	return 0;
3675 }
3676 
3677 /**
3678  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3679  * @vsi: VSI to be configured
3680  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3681  *
3682  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3683  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3684  * on TC 0.
3685  */
3686 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3687 {
3688 	struct ice_pf *pf = vsi->back;
3689 	struct device *dev;
3690 	int status;
3691 	int speed;
3692 
3693 	dev = ice_pf_to_dev(pf);
3694 	if (!vsi->port_info) {
3695 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3696 			vsi->idx, vsi->type);
3697 		return -EINVAL;
3698 	}
3699 
3700 	speed = ice_get_link_speed_kbps(vsi);
3701 	if (max_tx_rate > (u64)speed) {
3702 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3703 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3704 			speed);
3705 		return -EINVAL;
3706 	}
3707 
3708 	/* Configure max BW for VSI limit */
3709 	if (max_tx_rate) {
3710 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3711 						   ICE_MAX_BW, max_tx_rate);
3712 		if (status) {
3713 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3714 				max_tx_rate, ice_vsi_type_str(vsi->type),
3715 				vsi->idx);
3716 			return status;
3717 		}
3718 
3719 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3720 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3721 	} else {
3722 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3723 							vsi->idx, 0,
3724 							ICE_MAX_BW);
3725 		if (status) {
3726 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3727 				ice_vsi_type_str(vsi->type), vsi->idx);
3728 			return status;
3729 		}
3730 
3731 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3732 			ice_vsi_type_str(vsi->type), vsi->idx);
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 /**
3739  * ice_set_link - turn on/off physical link
3740  * @vsi: VSI to modify physical link on
3741  * @ena: turn on/off physical link
3742  */
3743 int ice_set_link(struct ice_vsi *vsi, bool ena)
3744 {
3745 	struct device *dev = ice_pf_to_dev(vsi->back);
3746 	struct ice_port_info *pi = vsi->port_info;
3747 	struct ice_hw *hw = pi->hw;
3748 	int status;
3749 
3750 	if (vsi->type != ICE_VSI_PF)
3751 		return -EINVAL;
3752 
3753 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3754 
3755 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3756 	 * this is not a fatal error, so print a warning message and return
3757 	 * a success code. Return an error if FW returns an error code other
3758 	 * than ICE_AQ_RC_EMODE
3759 	 */
3760 	if (status == -EIO) {
3761 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3762 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3763 				(ena ? "ON" : "OFF"), status,
3764 				ice_aq_str(hw->adminq.sq_last_status));
3765 	} else if (status) {
3766 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3767 			(ena ? "ON" : "OFF"), status,
3768 			ice_aq_str(hw->adminq.sq_last_status));
3769 		return status;
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 /**
3776  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3777  * @vsi: VSI used to add VLAN filters
3778  *
3779  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3780  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3781  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3782  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3783  *
3784  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3785  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3786  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3787  *
3788  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3789  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3790  * part of filtering.
3791  */
3792 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3793 {
3794 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3795 	struct ice_vlan vlan;
3796 	int err;
3797 
3798 	vlan = ICE_VLAN(0, 0, 0);
3799 	err = vlan_ops->add_vlan(vsi, &vlan);
3800 	if (err && err != -EEXIST)
3801 		return err;
3802 
3803 	/* in SVM both VLAN 0 filters are identical */
3804 	if (!ice_is_dvm_ena(&vsi->back->hw))
3805 		return 0;
3806 
3807 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3808 	err = vlan_ops->add_vlan(vsi, &vlan);
3809 	if (err && err != -EEXIST)
3810 		return err;
3811 
3812 	return 0;
3813 }
3814 
3815 /**
3816  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3817  * @vsi: VSI used to add VLAN filters
3818  *
3819  * Delete the VLAN 0 filters in the same manner that they were added in
3820  * ice_vsi_add_vlan_zero.
3821  */
3822 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3823 {
3824 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3825 	struct ice_vlan vlan;
3826 	int err;
3827 
3828 	vlan = ICE_VLAN(0, 0, 0);
3829 	err = vlan_ops->del_vlan(vsi, &vlan);
3830 	if (err && err != -EEXIST)
3831 		return err;
3832 
3833 	/* in SVM both VLAN 0 filters are identical */
3834 	if (!ice_is_dvm_ena(&vsi->back->hw))
3835 		return 0;
3836 
3837 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3838 	err = vlan_ops->del_vlan(vsi, &vlan);
3839 	if (err && err != -EEXIST)
3840 		return err;
3841 
3842 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3843 	 * promisc mode so the filter isn't left by accident
3844 	 */
3845 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3846 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3847 }
3848 
3849 /**
3850  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3851  * @vsi: VSI used to get the VLAN mode
3852  *
3853  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3854  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3855  */
3856 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3857 {
3858 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3859 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3860 	/* no VLAN 0 filter is created when a port VLAN is active */
3861 	if (vsi->type == ICE_VSI_VF) {
3862 		if (WARN_ON(!vsi->vf))
3863 			return 0;
3864 
3865 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3866 			return 0;
3867 	}
3868 
3869 	if (ice_is_dvm_ena(&vsi->back->hw))
3870 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3871 	else
3872 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3873 }
3874 
3875 /**
3876  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3877  * @vsi: VSI used to determine if any non-zero VLANs have been added
3878  */
3879 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3880 {
3881 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3882 }
3883 
3884 /**
3885  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3886  * @vsi: VSI used to get the number of non-zero VLANs added
3887  */
3888 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3889 {
3890 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3891 }
3892 
3893 /**
3894  * ice_is_feature_supported
3895  * @pf: pointer to the struct ice_pf instance
3896  * @f: feature enum to be checked
3897  *
3898  * returns true if feature is supported, false otherwise
3899  */
3900 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3901 {
3902 	if (f < 0 || f >= ICE_F_MAX)
3903 		return false;
3904 
3905 	return test_bit(f, pf->features);
3906 }
3907 
3908 /**
3909  * ice_set_feature_support
3910  * @pf: pointer to the struct ice_pf instance
3911  * @f: feature enum to set
3912  */
3913 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3914 {
3915 	if (f < 0 || f >= ICE_F_MAX)
3916 		return;
3917 
3918 	set_bit(f, pf->features);
3919 }
3920 
3921 /**
3922  * ice_clear_feature_support
3923  * @pf: pointer to the struct ice_pf instance
3924  * @f: feature enum to clear
3925  */
3926 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3927 {
3928 	if (f < 0 || f >= ICE_F_MAX)
3929 		return;
3930 
3931 	clear_bit(f, pf->features);
3932 }
3933 
3934 /**
3935  * ice_init_feature_support
3936  * @pf: pointer to the struct ice_pf instance
3937  *
3938  * called during init to setup supported feature
3939  */
3940 void ice_init_feature_support(struct ice_pf *pf)
3941 {
3942 	switch (pf->hw.device_id) {
3943 	case ICE_DEV_ID_E810C_BACKPLANE:
3944 	case ICE_DEV_ID_E810C_QSFP:
3945 	case ICE_DEV_ID_E810C_SFP:
3946 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3947 	case ICE_DEV_ID_E810_XXV_QSFP:
3948 	case ICE_DEV_ID_E810_XXV_SFP:
3949 		ice_set_feature_support(pf, ICE_F_DSCP);
3950 		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3951 			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3952 		/* If we don't own the timer - don't enable other caps */
3953 		if (!ice_pf_src_tmr_owned(pf))
3954 			break;
3955 		if (ice_is_cgu_in_netlist(&pf->hw))
3956 			ice_set_feature_support(pf, ICE_F_CGU);
3957 		if (ice_is_clock_mux_in_netlist(&pf->hw))
3958 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3959 		if (ice_gnss_is_gps_present(&pf->hw))
3960 			ice_set_feature_support(pf, ICE_F_GNSS);
3961 		break;
3962 	default:
3963 		break;
3964 	}
3965 }
3966 
3967 /**
3968  * ice_vsi_update_security - update security block in VSI
3969  * @vsi: pointer to VSI structure
3970  * @fill: function pointer to fill ctx
3971  */
3972 int
3973 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3974 {
3975 	struct ice_vsi_ctx ctx = { 0 };
3976 
3977 	ctx.info = vsi->info;
3978 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3979 	fill(&ctx);
3980 
3981 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3982 		return -ENODEV;
3983 
3984 	vsi->info = ctx.info;
3985 	return 0;
3986 }
3987 
3988 /**
3989  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3990  * @ctx: pointer to VSI ctx structure
3991  */
3992 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3993 {
3994 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3995 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3996 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3997 }
3998 
3999 /**
4000  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4001  * @ctx: pointer to VSI ctx structure
4002  */
4003 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4004 {
4005 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4006 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4007 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4008 }
4009 
4010 /**
4011  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4012  * @ctx: pointer to VSI ctx structure
4013  */
4014 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4015 {
4016 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4017 }
4018 
4019 /**
4020  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4021  * @ctx: pointer to VSI ctx structure
4022  */
4023 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4024 {
4025 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4026 }
4027 
4028 /**
4029  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4030  * @vsi: pointer to VSI structure
4031  * @set: set or unset the bit
4032  */
4033 int
4034 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4035 {
4036 	struct ice_vsi_ctx ctx = {
4037 		.info	= vsi->info,
4038 	};
4039 
4040 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4041 	if (set)
4042 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4043 	else
4044 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4045 
4046 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4047 		return -ENODEV;
4048 
4049 	vsi->info = ctx.info;
4050 	return 0;
4051 }
4052