1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 452 * @vsi: VSI pointer 453 */ 454 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 455 { 456 struct ice_vsi_stats *vsi_stat; 457 struct ice_pf *pf = vsi->back; 458 459 if (vsi->type == ICE_VSI_CHNL) 460 return 0; 461 if (!pf->vsi_stats) 462 return -ENOENT; 463 464 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 465 if (!vsi_stat) 466 return -ENOMEM; 467 468 vsi_stat->tx_ring_stats = 469 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 470 GFP_KERNEL); 471 if (!vsi_stat->tx_ring_stats) 472 goto err_alloc_tx; 473 474 vsi_stat->rx_ring_stats = 475 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 476 GFP_KERNEL); 477 if (!vsi_stat->rx_ring_stats) 478 goto err_alloc_rx; 479 480 pf->vsi_stats[vsi->idx] = vsi_stat; 481 482 return 0; 483 484 err_alloc_rx: 485 kfree(vsi_stat->rx_ring_stats); 486 err_alloc_tx: 487 kfree(vsi_stat->tx_ring_stats); 488 kfree(vsi_stat); 489 pf->vsi_stats[vsi->idx] = NULL; 490 return -ENOMEM; 491 } 492 493 /** 494 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 495 * @pf: board private structure 496 * @vsi_type: type of VSI 497 * @ch: ptr to channel 498 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 499 * 500 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 501 * it may be NULL in the case there is no association with a VF. For 502 * ICE_VSI_VF the VF pointer *must not* be NULL. 503 * 504 * returns a pointer to a VSI on success, NULL on failure. 505 */ 506 static struct ice_vsi * 507 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 508 struct ice_channel *ch, struct ice_vf *vf) 509 { 510 struct device *dev = ice_pf_to_dev(pf); 511 struct ice_vsi *vsi = NULL; 512 513 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 514 return NULL; 515 516 /* Need to protect the allocation of the VSIs at the PF level */ 517 mutex_lock(&pf->sw_mutex); 518 519 /* If we have already allocated our maximum number of VSIs, 520 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 521 * is available to be populated 522 */ 523 if (pf->next_vsi == ICE_NO_VSI) { 524 dev_dbg(dev, "out of VSI slots!\n"); 525 goto unlock_pf; 526 } 527 528 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 529 if (!vsi) 530 goto unlock_pf; 531 532 vsi->type = vsi_type; 533 vsi->back = pf; 534 set_bit(ICE_VSI_DOWN, vsi->state); 535 536 if (vsi_type == ICE_VSI_VF) 537 ice_vsi_set_num_qs(vsi, vf); 538 else if (vsi_type != ICE_VSI_CHNL) 539 ice_vsi_set_num_qs(vsi, NULL); 540 541 switch (vsi->type) { 542 case ICE_VSI_SWITCHDEV_CTRL: 543 if (ice_vsi_alloc_arrays(vsi)) 544 goto err_rings; 545 546 /* Setup eswitch MSIX irq handler for VSI */ 547 vsi->irq_handler = ice_eswitch_msix_clean_rings; 548 break; 549 case ICE_VSI_PF: 550 if (ice_vsi_alloc_arrays(vsi)) 551 goto err_rings; 552 553 /* Setup default MSIX irq handler for VSI */ 554 vsi->irq_handler = ice_msix_clean_rings; 555 break; 556 case ICE_VSI_CTRL: 557 if (ice_vsi_alloc_arrays(vsi)) 558 goto err_rings; 559 560 /* Setup ctrl VSI MSIX irq handler */ 561 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 562 563 /* For the PF control VSI this is NULL, for the VF control VSI 564 * this will be the first VF to allocate it. 565 */ 566 vsi->vf = vf; 567 break; 568 case ICE_VSI_VF: 569 if (ice_vsi_alloc_arrays(vsi)) 570 goto err_rings; 571 vsi->vf = vf; 572 break; 573 case ICE_VSI_CHNL: 574 if (!ch) 575 goto err_rings; 576 vsi->num_rxq = ch->num_rxq; 577 vsi->num_txq = ch->num_txq; 578 vsi->next_base_q = ch->base_q; 579 break; 580 case ICE_VSI_LB: 581 if (ice_vsi_alloc_arrays(vsi)) 582 goto err_rings; 583 break; 584 default: 585 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 586 goto unlock_pf; 587 } 588 589 if (vsi->type == ICE_VSI_CTRL && !vf) { 590 /* Use the last VSI slot as the index for PF control VSI */ 591 vsi->idx = pf->num_alloc_vsi - 1; 592 pf->ctrl_vsi_idx = vsi->idx; 593 pf->vsi[vsi->idx] = vsi; 594 } else { 595 /* fill slot and make note of the index */ 596 vsi->idx = pf->next_vsi; 597 pf->vsi[pf->next_vsi] = vsi; 598 599 /* prepare pf->next_vsi for next use */ 600 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 601 pf->next_vsi); 602 } 603 604 if (vsi->type == ICE_VSI_CTRL && vf) 605 vf->ctrl_vsi_idx = vsi->idx; 606 607 /* allocate memory for Tx/Rx ring stat pointers */ 608 if (ice_vsi_alloc_stat_arrays(vsi)) 609 goto err_rings; 610 611 goto unlock_pf; 612 613 err_rings: 614 devm_kfree(dev, vsi); 615 vsi = NULL; 616 unlock_pf: 617 mutex_unlock(&pf->sw_mutex); 618 return vsi; 619 } 620 621 /** 622 * ice_alloc_fd_res - Allocate FD resource for a VSI 623 * @vsi: pointer to the ice_vsi 624 * 625 * This allocates the FD resources 626 * 627 * Returns 0 on success, -EPERM on no-op or -EIO on failure 628 */ 629 static int ice_alloc_fd_res(struct ice_vsi *vsi) 630 { 631 struct ice_pf *pf = vsi->back; 632 u32 g_val, b_val; 633 634 /* Flow Director filters are only allocated/assigned to the PF VSI or 635 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 636 * add/delete filters so resources are not allocated to it 637 */ 638 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 639 return -EPERM; 640 641 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 642 vsi->type == ICE_VSI_CHNL)) 643 return -EPERM; 644 645 /* FD filters from guaranteed pool per VSI */ 646 g_val = pf->hw.func_caps.fd_fltr_guar; 647 if (!g_val) 648 return -EPERM; 649 650 /* FD filters from best effort pool */ 651 b_val = pf->hw.func_caps.fd_fltr_best_effort; 652 if (!b_val) 653 return -EPERM; 654 655 /* PF main VSI gets only 64 FD resources from guaranteed pool 656 * when ADQ is configured. 657 */ 658 #define ICE_PF_VSI_GFLTR 64 659 660 /* determine FD filter resources per VSI from shared(best effort) and 661 * dedicated pool 662 */ 663 if (vsi->type == ICE_VSI_PF) { 664 vsi->num_gfltr = g_val; 665 /* if MQPRIO is configured, main VSI doesn't get all FD 666 * resources from guaranteed pool. PF VSI gets 64 FD resources 667 */ 668 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 669 if (g_val < ICE_PF_VSI_GFLTR) 670 return -EPERM; 671 /* allow bare minimum entries for PF VSI */ 672 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 673 } 674 675 /* each VSI gets same "best_effort" quota */ 676 vsi->num_bfltr = b_val; 677 } else if (vsi->type == ICE_VSI_VF) { 678 vsi->num_gfltr = 0; 679 680 /* each VSI gets same "best_effort" quota */ 681 vsi->num_bfltr = b_val; 682 } else { 683 struct ice_vsi *main_vsi; 684 int numtc; 685 686 main_vsi = ice_get_main_vsi(pf); 687 if (!main_vsi) 688 return -EPERM; 689 690 if (!main_vsi->all_numtc) 691 return -EINVAL; 692 693 /* figure out ADQ numtc */ 694 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 695 696 /* only one TC but still asking resources for channels, 697 * invalid config 698 */ 699 if (numtc < ICE_CHNL_START_TC) 700 return -EPERM; 701 702 g_val -= ICE_PF_VSI_GFLTR; 703 /* channel VSIs gets equal share from guaranteed pool */ 704 vsi->num_gfltr = g_val / numtc; 705 706 /* each VSI gets same "best_effort" quota */ 707 vsi->num_bfltr = b_val; 708 } 709 710 return 0; 711 } 712 713 /** 714 * ice_vsi_get_qs - Assign queues from PF to VSI 715 * @vsi: the VSI to assign queues to 716 * 717 * Returns 0 on success and a negative value on error 718 */ 719 static int ice_vsi_get_qs(struct ice_vsi *vsi) 720 { 721 struct ice_pf *pf = vsi->back; 722 struct ice_qs_cfg tx_qs_cfg = { 723 .qs_mutex = &pf->avail_q_mutex, 724 .pf_map = pf->avail_txqs, 725 .pf_map_size = pf->max_pf_txqs, 726 .q_count = vsi->alloc_txq, 727 .scatter_count = ICE_MAX_SCATTER_TXQS, 728 .vsi_map = vsi->txq_map, 729 .vsi_map_offset = 0, 730 .mapping_mode = ICE_VSI_MAP_CONTIG 731 }; 732 struct ice_qs_cfg rx_qs_cfg = { 733 .qs_mutex = &pf->avail_q_mutex, 734 .pf_map = pf->avail_rxqs, 735 .pf_map_size = pf->max_pf_rxqs, 736 .q_count = vsi->alloc_rxq, 737 .scatter_count = ICE_MAX_SCATTER_RXQS, 738 .vsi_map = vsi->rxq_map, 739 .vsi_map_offset = 0, 740 .mapping_mode = ICE_VSI_MAP_CONTIG 741 }; 742 int ret; 743 744 if (vsi->type == ICE_VSI_CHNL) 745 return 0; 746 747 ret = __ice_vsi_get_qs(&tx_qs_cfg); 748 if (ret) 749 return ret; 750 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 751 752 ret = __ice_vsi_get_qs(&rx_qs_cfg); 753 if (ret) 754 return ret; 755 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 756 757 return 0; 758 } 759 760 /** 761 * ice_vsi_put_qs - Release queues from VSI to PF 762 * @vsi: the VSI that is going to release queues 763 */ 764 static void ice_vsi_put_qs(struct ice_vsi *vsi) 765 { 766 struct ice_pf *pf = vsi->back; 767 int i; 768 769 mutex_lock(&pf->avail_q_mutex); 770 771 ice_for_each_alloc_txq(vsi, i) { 772 clear_bit(vsi->txq_map[i], pf->avail_txqs); 773 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 774 } 775 776 ice_for_each_alloc_rxq(vsi, i) { 777 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 778 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 779 } 780 781 mutex_unlock(&pf->avail_q_mutex); 782 } 783 784 /** 785 * ice_is_safe_mode 786 * @pf: pointer to the PF struct 787 * 788 * returns true if driver is in safe mode, false otherwise 789 */ 790 bool ice_is_safe_mode(struct ice_pf *pf) 791 { 792 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 793 } 794 795 /** 796 * ice_is_rdma_ena 797 * @pf: pointer to the PF struct 798 * 799 * returns true if RDMA is currently supported, false otherwise 800 */ 801 bool ice_is_rdma_ena(struct ice_pf *pf) 802 { 803 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 804 } 805 806 /** 807 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 808 * @vsi: the VSI being cleaned up 809 * 810 * This function deletes RSS input set for all flows that were configured 811 * for this VSI 812 */ 813 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 814 { 815 struct ice_pf *pf = vsi->back; 816 int status; 817 818 if (ice_is_safe_mode(pf)) 819 return; 820 821 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 822 if (status) 823 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 824 vsi->vsi_num, status); 825 } 826 827 /** 828 * ice_rss_clean - Delete RSS related VSI structures and configuration 829 * @vsi: the VSI being removed 830 */ 831 static void ice_rss_clean(struct ice_vsi *vsi) 832 { 833 struct ice_pf *pf = vsi->back; 834 struct device *dev; 835 836 dev = ice_pf_to_dev(pf); 837 838 if (vsi->rss_hkey_user) 839 devm_kfree(dev, vsi->rss_hkey_user); 840 if (vsi->rss_lut_user) 841 devm_kfree(dev, vsi->rss_lut_user); 842 843 ice_vsi_clean_rss_flow_fld(vsi); 844 /* remove RSS replay list */ 845 if (!ice_is_safe_mode(pf)) 846 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 847 } 848 849 /** 850 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 851 * @vsi: the VSI being configured 852 */ 853 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 854 { 855 struct ice_hw_common_caps *cap; 856 struct ice_pf *pf = vsi->back; 857 858 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 859 vsi->rss_size = 1; 860 return; 861 } 862 863 cap = &pf->hw.func_caps.common_cap; 864 switch (vsi->type) { 865 case ICE_VSI_CHNL: 866 case ICE_VSI_PF: 867 /* PF VSI will inherit RSS instance of PF */ 868 vsi->rss_table_size = (u16)cap->rss_table_size; 869 if (vsi->type == ICE_VSI_CHNL) 870 vsi->rss_size = min_t(u16, vsi->num_rxq, 871 BIT(cap->rss_table_entry_width)); 872 else 873 vsi->rss_size = min_t(u16, num_online_cpus(), 874 BIT(cap->rss_table_entry_width)); 875 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 876 break; 877 case ICE_VSI_SWITCHDEV_CTRL: 878 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 879 vsi->rss_size = min_t(u16, num_online_cpus(), 880 BIT(cap->rss_table_entry_width)); 881 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 882 break; 883 case ICE_VSI_VF: 884 /* VF VSI will get a small RSS table. 885 * For VSI_LUT, LUT size should be set to 64 bytes. 886 */ 887 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 888 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 889 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 890 break; 891 case ICE_VSI_LB: 892 break; 893 default: 894 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 895 ice_vsi_type_str(vsi->type)); 896 break; 897 } 898 } 899 900 /** 901 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 902 * @hw: HW structure used to determine the VLAN mode of the device 903 * @ctxt: the VSI context being set 904 * 905 * This initializes a default VSI context for all sections except the Queues. 906 */ 907 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 908 { 909 u32 table = 0; 910 911 memset(&ctxt->info, 0, sizeof(ctxt->info)); 912 /* VSI's should be allocated from shared pool */ 913 ctxt->alloc_from_pool = true; 914 /* Src pruning enabled by default */ 915 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 916 /* Traffic from VSI can be sent to LAN */ 917 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 918 /* allow all untagged/tagged packets by default on Tx */ 919 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 920 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 921 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 922 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 923 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 924 * 925 * DVM - leave inner VLAN in packet by default 926 */ 927 if (ice_is_dvm_ena(hw)) { 928 ctxt->info.inner_vlan_flags |= 929 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 930 ctxt->info.outer_vlan_flags = 931 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 932 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 933 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 934 ctxt->info.outer_vlan_flags |= 935 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 936 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 937 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 938 ctxt->info.outer_vlan_flags |= 939 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 940 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 941 } 942 /* Have 1:1 UP mapping for both ingress/egress tables */ 943 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 944 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 945 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 946 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 947 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 948 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 949 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 950 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 951 ctxt->info.ingress_table = cpu_to_le32(table); 952 ctxt->info.egress_table = cpu_to_le32(table); 953 /* Have 1:1 UP mapping for outer to inner UP table */ 954 ctxt->info.outer_up_table = cpu_to_le32(table); 955 /* No Outer tag support outer_tag_flags remains to zero */ 956 } 957 958 /** 959 * ice_vsi_setup_q_map - Setup a VSI queue map 960 * @vsi: the VSI being configured 961 * @ctxt: VSI context structure 962 */ 963 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 964 { 965 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 966 u16 num_txq_per_tc, num_rxq_per_tc; 967 u16 qcount_tx = vsi->alloc_txq; 968 u16 qcount_rx = vsi->alloc_rxq; 969 u8 netdev_tc = 0; 970 int i; 971 972 if (!vsi->tc_cfg.numtc) { 973 /* at least TC0 should be enabled by default */ 974 vsi->tc_cfg.numtc = 1; 975 vsi->tc_cfg.ena_tc = 1; 976 } 977 978 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 979 if (!num_rxq_per_tc) 980 num_rxq_per_tc = 1; 981 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 982 if (!num_txq_per_tc) 983 num_txq_per_tc = 1; 984 985 /* find the (rounded up) power-of-2 of qcount */ 986 pow = (u16)order_base_2(num_rxq_per_tc); 987 988 /* TC mapping is a function of the number of Rx queues assigned to the 989 * VSI for each traffic class and the offset of these queues. 990 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 991 * queues allocated to TC0. No:of queues is a power-of-2. 992 * 993 * If TC is not enabled, the queue offset is set to 0, and allocate one 994 * queue, this way, traffic for the given TC will be sent to the default 995 * queue. 996 * 997 * Setup number and offset of Rx queues for all TCs for the VSI 998 */ 999 ice_for_each_traffic_class(i) { 1000 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1001 /* TC is not enabled */ 1002 vsi->tc_cfg.tc_info[i].qoffset = 0; 1003 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1004 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1005 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1006 ctxt->info.tc_mapping[i] = 0; 1007 continue; 1008 } 1009 1010 /* TC is enabled */ 1011 vsi->tc_cfg.tc_info[i].qoffset = offset; 1012 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1013 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1014 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1015 1016 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1017 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1018 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1019 ICE_AQ_VSI_TC_Q_NUM_M); 1020 offset += num_rxq_per_tc; 1021 tx_count += num_txq_per_tc; 1022 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1023 } 1024 1025 /* if offset is non-zero, means it is calculated correctly based on 1026 * enabled TCs for a given VSI otherwise qcount_rx will always 1027 * be correct and non-zero because it is based off - VSI's 1028 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1029 * at least 1) 1030 */ 1031 if (offset) 1032 rx_count = offset; 1033 else 1034 rx_count = num_rxq_per_tc; 1035 1036 if (rx_count > vsi->alloc_rxq) { 1037 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1038 rx_count, vsi->alloc_rxq); 1039 return -EINVAL; 1040 } 1041 1042 if (tx_count > vsi->alloc_txq) { 1043 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1044 tx_count, vsi->alloc_txq); 1045 return -EINVAL; 1046 } 1047 1048 vsi->num_txq = tx_count; 1049 vsi->num_rxq = rx_count; 1050 1051 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1052 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1053 /* since there is a chance that num_rxq could have been changed 1054 * in the above for loop, make num_txq equal to num_rxq. 1055 */ 1056 vsi->num_txq = vsi->num_rxq; 1057 } 1058 1059 /* Rx queue mapping */ 1060 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1061 /* q_mapping buffer holds the info for the first queue allocated for 1062 * this VSI in the PF space and also the number of queues associated 1063 * with this VSI. 1064 */ 1065 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1066 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1067 1068 return 0; 1069 } 1070 1071 /** 1072 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1073 * @ctxt: the VSI context being set 1074 * @vsi: the VSI being configured 1075 */ 1076 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1077 { 1078 u8 dflt_q_group, dflt_q_prio; 1079 u16 dflt_q, report_q, val; 1080 1081 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1082 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1083 return; 1084 1085 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1086 ctxt->info.valid_sections |= cpu_to_le16(val); 1087 dflt_q = 0; 1088 dflt_q_group = 0; 1089 report_q = 0; 1090 dflt_q_prio = 0; 1091 1092 /* enable flow director filtering/programming */ 1093 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1094 ctxt->info.fd_options = cpu_to_le16(val); 1095 /* max of allocated flow director filters */ 1096 ctxt->info.max_fd_fltr_dedicated = 1097 cpu_to_le16(vsi->num_gfltr); 1098 /* max of shared flow director filters any VSI may program */ 1099 ctxt->info.max_fd_fltr_shared = 1100 cpu_to_le16(vsi->num_bfltr); 1101 /* default queue index within the VSI of the default FD */ 1102 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1103 ICE_AQ_VSI_FD_DEF_Q_M); 1104 /* target queue or queue group to the FD filter */ 1105 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1106 ICE_AQ_VSI_FD_DEF_GRP_M); 1107 ctxt->info.fd_def_q = cpu_to_le16(val); 1108 /* queue index on which FD filter completion is reported */ 1109 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1110 ICE_AQ_VSI_FD_REPORT_Q_M); 1111 /* priority of the default qindex action */ 1112 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1113 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1114 ctxt->info.fd_report_opt = cpu_to_le16(val); 1115 } 1116 1117 /** 1118 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1119 * @ctxt: the VSI context being set 1120 * @vsi: the VSI being configured 1121 */ 1122 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1123 { 1124 u8 lut_type, hash_type; 1125 struct device *dev; 1126 struct ice_pf *pf; 1127 1128 pf = vsi->back; 1129 dev = ice_pf_to_dev(pf); 1130 1131 switch (vsi->type) { 1132 case ICE_VSI_CHNL: 1133 case ICE_VSI_PF: 1134 /* PF VSI will inherit RSS instance of PF */ 1135 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1136 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1137 break; 1138 case ICE_VSI_VF: 1139 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1140 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1141 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1142 break; 1143 default: 1144 dev_dbg(dev, "Unsupported VSI type %s\n", 1145 ice_vsi_type_str(vsi->type)); 1146 return; 1147 } 1148 1149 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1150 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1151 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1152 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1153 } 1154 1155 static void 1156 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1157 { 1158 struct ice_pf *pf = vsi->back; 1159 u16 qcount, qmap; 1160 u8 offset = 0; 1161 int pow; 1162 1163 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1164 1165 pow = order_base_2(qcount); 1166 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1167 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1168 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1169 ICE_AQ_VSI_TC_Q_NUM_M); 1170 1171 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1172 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1173 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1174 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1175 } 1176 1177 /** 1178 * ice_vsi_init - Create and initialize a VSI 1179 * @vsi: the VSI being configured 1180 * @init_vsi: is this call creating a VSI 1181 * 1182 * This initializes a VSI context depending on the VSI type to be added and 1183 * passes it down to the add_vsi aq command to create a new VSI. 1184 */ 1185 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1186 { 1187 struct ice_pf *pf = vsi->back; 1188 struct ice_hw *hw = &pf->hw; 1189 struct ice_vsi_ctx *ctxt; 1190 struct device *dev; 1191 int ret = 0; 1192 1193 dev = ice_pf_to_dev(pf); 1194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1195 if (!ctxt) 1196 return -ENOMEM; 1197 1198 switch (vsi->type) { 1199 case ICE_VSI_CTRL: 1200 case ICE_VSI_LB: 1201 case ICE_VSI_PF: 1202 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1203 break; 1204 case ICE_VSI_SWITCHDEV_CTRL: 1205 case ICE_VSI_CHNL: 1206 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1207 break; 1208 case ICE_VSI_VF: 1209 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1210 /* VF number here is the absolute VF number (0-255) */ 1211 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1212 break; 1213 default: 1214 ret = -ENODEV; 1215 goto out; 1216 } 1217 1218 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1219 * prune enabled 1220 */ 1221 if (vsi->type == ICE_VSI_CHNL) { 1222 struct ice_vsi *main_vsi; 1223 1224 main_vsi = ice_get_main_vsi(pf); 1225 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1226 ctxt->info.sw_flags2 |= 1227 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1228 else 1229 ctxt->info.sw_flags2 &= 1230 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1231 } 1232 1233 ice_set_dflt_vsi_ctx(hw, ctxt); 1234 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1235 ice_set_fd_vsi_ctx(ctxt, vsi); 1236 /* if the switch is in VEB mode, allow VSI loopback */ 1237 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1238 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1239 1240 /* Set LUT type and HASH type if RSS is enabled */ 1241 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1242 vsi->type != ICE_VSI_CTRL) { 1243 ice_set_rss_vsi_ctx(ctxt, vsi); 1244 /* if updating VSI context, make sure to set valid_section: 1245 * to indicate which section of VSI context being updated 1246 */ 1247 if (!init_vsi) 1248 ctxt->info.valid_sections |= 1249 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1250 } 1251 1252 ctxt->info.sw_id = vsi->port_info->sw_id; 1253 if (vsi->type == ICE_VSI_CHNL) { 1254 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1255 } else { 1256 ret = ice_vsi_setup_q_map(vsi, ctxt); 1257 if (ret) 1258 goto out; 1259 1260 if (!init_vsi) /* means VSI being updated */ 1261 /* must to indicate which section of VSI context are 1262 * being modified 1263 */ 1264 ctxt->info.valid_sections |= 1265 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1266 } 1267 1268 /* Allow control frames out of main VSI */ 1269 if (vsi->type == ICE_VSI_PF) { 1270 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1271 ctxt->info.valid_sections |= 1272 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1273 } 1274 1275 if (init_vsi) { 1276 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1277 if (ret) { 1278 dev_err(dev, "Add VSI failed, err %d\n", ret); 1279 ret = -EIO; 1280 goto out; 1281 } 1282 } else { 1283 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1284 if (ret) { 1285 dev_err(dev, "Update VSI failed, err %d\n", ret); 1286 ret = -EIO; 1287 goto out; 1288 } 1289 } 1290 1291 /* keep context for update VSI operations */ 1292 vsi->info = ctxt->info; 1293 1294 /* record VSI number returned */ 1295 vsi->vsi_num = ctxt->vsi_num; 1296 1297 out: 1298 kfree(ctxt); 1299 return ret; 1300 } 1301 1302 /** 1303 * ice_free_res - free a block of resources 1304 * @res: pointer to the resource 1305 * @index: starting index previously returned by ice_get_res 1306 * @id: identifier to track owner 1307 * 1308 * Returns number of resources freed 1309 */ 1310 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1311 { 1312 int count = 0; 1313 int i; 1314 1315 if (!res || index >= res->end) 1316 return -EINVAL; 1317 1318 id |= ICE_RES_VALID_BIT; 1319 for (i = index; i < res->end && res->list[i] == id; i++) { 1320 res->list[i] = 0; 1321 count++; 1322 } 1323 1324 return count; 1325 } 1326 1327 /** 1328 * ice_search_res - Search the tracker for a block of resources 1329 * @res: pointer to the resource 1330 * @needed: size of the block needed 1331 * @id: identifier to track owner 1332 * 1333 * Returns the base item index of the block, or -ENOMEM for error 1334 */ 1335 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1336 { 1337 u16 start = 0, end = 0; 1338 1339 if (needed > res->end) 1340 return -ENOMEM; 1341 1342 id |= ICE_RES_VALID_BIT; 1343 1344 do { 1345 /* skip already allocated entries */ 1346 if (res->list[end++] & ICE_RES_VALID_BIT) { 1347 start = end; 1348 if ((start + needed) > res->end) 1349 break; 1350 } 1351 1352 if (end == (start + needed)) { 1353 int i = start; 1354 1355 /* there was enough, so assign it to the requestor */ 1356 while (i != end) 1357 res->list[i++] = id; 1358 1359 return start; 1360 } 1361 } while (end < res->end); 1362 1363 return -ENOMEM; 1364 } 1365 1366 /** 1367 * ice_get_free_res_count - Get free count from a resource tracker 1368 * @res: Resource tracker instance 1369 */ 1370 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1371 { 1372 u16 i, count = 0; 1373 1374 for (i = 0; i < res->end; i++) 1375 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1376 count++; 1377 1378 return count; 1379 } 1380 1381 /** 1382 * ice_get_res - get a block of resources 1383 * @pf: board private structure 1384 * @res: pointer to the resource 1385 * @needed: size of the block needed 1386 * @id: identifier to track owner 1387 * 1388 * Returns the base item index of the block, or negative for error 1389 */ 1390 int 1391 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1392 { 1393 if (!res || !pf) 1394 return -EINVAL; 1395 1396 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1397 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1398 needed, res->num_entries, id); 1399 return -EINVAL; 1400 } 1401 1402 return ice_search_res(res, needed, id); 1403 } 1404 1405 /** 1406 * ice_get_vf_ctrl_res - Get VF control VSI resource 1407 * @pf: pointer to the PF structure 1408 * @vsi: the VSI to allocate a resource for 1409 * 1410 * Look up whether another VF has already allocated the control VSI resource. 1411 * If so, re-use this resource so that we share it among all VFs. 1412 * 1413 * Otherwise, allocate the resource and return it. 1414 */ 1415 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1416 { 1417 struct ice_vf *vf; 1418 unsigned int bkt; 1419 int base; 1420 1421 rcu_read_lock(); 1422 ice_for_each_vf_rcu(pf, bkt, vf) { 1423 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1424 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1425 rcu_read_unlock(); 1426 return base; 1427 } 1428 } 1429 rcu_read_unlock(); 1430 1431 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1432 ICE_RES_VF_CTRL_VEC_ID); 1433 } 1434 1435 /** 1436 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1437 * @vsi: ptr to the VSI 1438 * 1439 * This should only be called after ice_vsi_alloc() which allocates the 1440 * corresponding SW VSI structure and initializes num_queue_pairs for the 1441 * newly allocated VSI. 1442 * 1443 * Returns 0 on success or negative on failure 1444 */ 1445 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1446 { 1447 struct ice_pf *pf = vsi->back; 1448 struct device *dev; 1449 u16 num_q_vectors; 1450 int base; 1451 1452 dev = ice_pf_to_dev(pf); 1453 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1454 if (vsi->type == ICE_VSI_VF) 1455 return 0; 1456 if (vsi->type == ICE_VSI_CHNL) 1457 return 0; 1458 1459 if (vsi->base_vector) { 1460 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1461 vsi->vsi_num, vsi->base_vector); 1462 return -EEXIST; 1463 } 1464 1465 num_q_vectors = vsi->num_q_vectors; 1466 /* reserve slots from OS requested IRQs */ 1467 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1468 base = ice_get_vf_ctrl_res(pf, vsi); 1469 } else { 1470 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1471 vsi->idx); 1472 } 1473 1474 if (base < 0) { 1475 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1476 ice_get_free_res_count(pf->irq_tracker), 1477 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1478 return -ENOENT; 1479 } 1480 vsi->base_vector = (u16)base; 1481 pf->num_avail_sw_msix -= num_q_vectors; 1482 1483 return 0; 1484 } 1485 1486 /** 1487 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1488 * @vsi: the VSI having rings deallocated 1489 */ 1490 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1491 { 1492 int i; 1493 1494 /* Avoid stale references by clearing map from vector to ring */ 1495 if (vsi->q_vectors) { 1496 ice_for_each_q_vector(vsi, i) { 1497 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1498 1499 if (q_vector) { 1500 q_vector->tx.tx_ring = NULL; 1501 q_vector->rx.rx_ring = NULL; 1502 } 1503 } 1504 } 1505 1506 if (vsi->tx_rings) { 1507 ice_for_each_alloc_txq(vsi, i) { 1508 if (vsi->tx_rings[i]) { 1509 kfree_rcu(vsi->tx_rings[i], rcu); 1510 WRITE_ONCE(vsi->tx_rings[i], NULL); 1511 } 1512 } 1513 } 1514 if (vsi->rx_rings) { 1515 ice_for_each_alloc_rxq(vsi, i) { 1516 if (vsi->rx_rings[i]) { 1517 kfree_rcu(vsi->rx_rings[i], rcu); 1518 WRITE_ONCE(vsi->rx_rings[i], NULL); 1519 } 1520 } 1521 } 1522 } 1523 1524 /** 1525 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1526 * @vsi: VSI which is having rings allocated 1527 */ 1528 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1529 { 1530 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1531 struct ice_pf *pf = vsi->back; 1532 struct device *dev; 1533 u16 i; 1534 1535 dev = ice_pf_to_dev(pf); 1536 /* Allocate Tx rings */ 1537 ice_for_each_alloc_txq(vsi, i) { 1538 struct ice_tx_ring *ring; 1539 1540 /* allocate with kzalloc(), free with kfree_rcu() */ 1541 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1542 1543 if (!ring) 1544 goto err_out; 1545 1546 ring->q_index = i; 1547 ring->reg_idx = vsi->txq_map[i]; 1548 ring->vsi = vsi; 1549 ring->tx_tstamps = &pf->ptp.port.tx; 1550 ring->dev = dev; 1551 ring->count = vsi->num_tx_desc; 1552 ring->txq_teid = ICE_INVAL_TEID; 1553 if (dvm_ena) 1554 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1555 else 1556 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1557 WRITE_ONCE(vsi->tx_rings[i], ring); 1558 } 1559 1560 /* Allocate Rx rings */ 1561 ice_for_each_alloc_rxq(vsi, i) { 1562 struct ice_rx_ring *ring; 1563 1564 /* allocate with kzalloc(), free with kfree_rcu() */ 1565 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1566 if (!ring) 1567 goto err_out; 1568 1569 ring->q_index = i; 1570 ring->reg_idx = vsi->rxq_map[i]; 1571 ring->vsi = vsi; 1572 ring->netdev = vsi->netdev; 1573 ring->dev = dev; 1574 ring->count = vsi->num_rx_desc; 1575 ring->cached_phctime = pf->ptp.cached_phc_time; 1576 WRITE_ONCE(vsi->rx_rings[i], ring); 1577 } 1578 1579 return 0; 1580 1581 err_out: 1582 ice_vsi_clear_rings(vsi); 1583 return -ENOMEM; 1584 } 1585 1586 /** 1587 * ice_vsi_free_stats - Free the ring statistics structures 1588 * @vsi: VSI pointer 1589 */ 1590 static void ice_vsi_free_stats(struct ice_vsi *vsi) 1591 { 1592 struct ice_vsi_stats *vsi_stat; 1593 struct ice_pf *pf = vsi->back; 1594 int i; 1595 1596 if (vsi->type == ICE_VSI_CHNL) 1597 return; 1598 if (!pf->vsi_stats) 1599 return; 1600 1601 vsi_stat = pf->vsi_stats[vsi->idx]; 1602 if (!vsi_stat) 1603 return; 1604 1605 ice_for_each_alloc_txq(vsi, i) { 1606 if (vsi_stat->tx_ring_stats[i]) { 1607 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 1608 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 1609 } 1610 } 1611 1612 ice_for_each_alloc_rxq(vsi, i) { 1613 if (vsi_stat->rx_ring_stats[i]) { 1614 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 1615 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 1616 } 1617 } 1618 1619 kfree(vsi_stat->tx_ring_stats); 1620 kfree(vsi_stat->rx_ring_stats); 1621 kfree(vsi_stat); 1622 pf->vsi_stats[vsi->idx] = NULL; 1623 } 1624 1625 /** 1626 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 1627 * @vsi: VSI which is having stats allocated 1628 */ 1629 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 1630 { 1631 struct ice_ring_stats **tx_ring_stats; 1632 struct ice_ring_stats **rx_ring_stats; 1633 struct ice_vsi_stats *vsi_stats; 1634 struct ice_pf *pf = vsi->back; 1635 u16 i; 1636 1637 vsi_stats = pf->vsi_stats[vsi->idx]; 1638 tx_ring_stats = vsi_stats->tx_ring_stats; 1639 rx_ring_stats = vsi_stats->rx_ring_stats; 1640 1641 /* Allocate Tx ring stats */ 1642 ice_for_each_alloc_txq(vsi, i) { 1643 struct ice_ring_stats *ring_stats; 1644 struct ice_tx_ring *ring; 1645 1646 ring = vsi->tx_rings[i]; 1647 ring_stats = tx_ring_stats[i]; 1648 1649 if (!ring_stats) { 1650 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 1651 if (!ring_stats) 1652 goto err_out; 1653 1654 WRITE_ONCE(tx_ring_stats[i], ring_stats); 1655 } 1656 1657 ring->ring_stats = ring_stats; 1658 } 1659 1660 /* Allocate Rx ring stats */ 1661 ice_for_each_alloc_rxq(vsi, i) { 1662 struct ice_ring_stats *ring_stats; 1663 struct ice_rx_ring *ring; 1664 1665 ring = vsi->rx_rings[i]; 1666 ring_stats = rx_ring_stats[i]; 1667 1668 if (!ring_stats) { 1669 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 1670 if (!ring_stats) 1671 goto err_out; 1672 1673 WRITE_ONCE(rx_ring_stats[i], ring_stats); 1674 } 1675 1676 ring->ring_stats = ring_stats; 1677 } 1678 1679 return 0; 1680 1681 err_out: 1682 ice_vsi_free_stats(vsi); 1683 return -ENOMEM; 1684 } 1685 1686 /** 1687 * ice_vsi_manage_rss_lut - disable/enable RSS 1688 * @vsi: the VSI being changed 1689 * @ena: boolean value indicating if this is an enable or disable request 1690 * 1691 * In the event of disable request for RSS, this function will zero out RSS 1692 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1693 * LUT. 1694 */ 1695 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1696 { 1697 u8 *lut; 1698 1699 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1700 if (!lut) 1701 return; 1702 1703 if (ena) { 1704 if (vsi->rss_lut_user) 1705 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1706 else 1707 ice_fill_rss_lut(lut, vsi->rss_table_size, 1708 vsi->rss_size); 1709 } 1710 1711 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1712 kfree(lut); 1713 } 1714 1715 /** 1716 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1717 * @vsi: VSI to be configured 1718 * @disable: set to true to have FCS / CRC in the frame data 1719 */ 1720 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1721 { 1722 int i; 1723 1724 ice_for_each_rxq(vsi, i) 1725 if (disable) 1726 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1727 else 1728 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1729 } 1730 1731 /** 1732 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1733 * @vsi: VSI to be configured 1734 */ 1735 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1736 { 1737 struct ice_pf *pf = vsi->back; 1738 struct device *dev; 1739 u8 *lut, *key; 1740 int err; 1741 1742 dev = ice_pf_to_dev(pf); 1743 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1744 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1745 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1746 } else { 1747 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1748 1749 /* If orig_rss_size is valid and it is less than determined 1750 * main VSI's rss_size, update main VSI's rss_size to be 1751 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1752 * RSS table gets programmed to be correct (whatever it was 1753 * to begin with (prior to setup-tc for ADQ config) 1754 */ 1755 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1756 vsi->orig_rss_size <= vsi->num_rxq) { 1757 vsi->rss_size = vsi->orig_rss_size; 1758 /* now orig_rss_size is used, reset it to zero */ 1759 vsi->orig_rss_size = 0; 1760 } 1761 } 1762 1763 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1764 if (!lut) 1765 return -ENOMEM; 1766 1767 if (vsi->rss_lut_user) 1768 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1769 else 1770 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1771 1772 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1773 if (err) { 1774 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1775 goto ice_vsi_cfg_rss_exit; 1776 } 1777 1778 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1779 if (!key) { 1780 err = -ENOMEM; 1781 goto ice_vsi_cfg_rss_exit; 1782 } 1783 1784 if (vsi->rss_hkey_user) 1785 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1786 else 1787 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1788 1789 err = ice_set_rss_key(vsi, key); 1790 if (err) 1791 dev_err(dev, "set_rss_key failed, error %d\n", err); 1792 1793 kfree(key); 1794 ice_vsi_cfg_rss_exit: 1795 kfree(lut); 1796 return err; 1797 } 1798 1799 /** 1800 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1801 * @vsi: VSI to be configured 1802 * 1803 * This function will only be called during the VF VSI setup. Upon successful 1804 * completion of package download, this function will configure default RSS 1805 * input sets for VF VSI. 1806 */ 1807 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1808 { 1809 struct ice_pf *pf = vsi->back; 1810 struct device *dev; 1811 int status; 1812 1813 dev = ice_pf_to_dev(pf); 1814 if (ice_is_safe_mode(pf)) { 1815 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1816 vsi->vsi_num); 1817 return; 1818 } 1819 1820 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1821 if (status) 1822 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1823 vsi->vsi_num, status); 1824 } 1825 1826 /** 1827 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1828 * @vsi: VSI to be configured 1829 * 1830 * This function will only be called after successful download package call 1831 * during initialization of PF. Since the downloaded package will erase the 1832 * RSS section, this function will configure RSS input sets for different 1833 * flow types. The last profile added has the highest priority, therefore 2 1834 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1835 * (i.e. IPv4 src/dst TCP src/dst port). 1836 */ 1837 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1838 { 1839 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1840 struct ice_pf *pf = vsi->back; 1841 struct ice_hw *hw = &pf->hw; 1842 struct device *dev; 1843 int status; 1844 1845 dev = ice_pf_to_dev(pf); 1846 if (ice_is_safe_mode(pf)) { 1847 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1848 vsi_num); 1849 return; 1850 } 1851 /* configure RSS for IPv4 with input set IP src/dst */ 1852 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1853 ICE_FLOW_SEG_HDR_IPV4); 1854 if (status) 1855 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1856 vsi_num, status); 1857 1858 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1859 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1860 ICE_FLOW_SEG_HDR_IPV6); 1861 if (status) 1862 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1863 vsi_num, status); 1864 1865 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1866 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1867 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1868 if (status) 1869 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1870 vsi_num, status); 1871 1872 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1873 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1874 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1875 if (status) 1876 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1877 vsi_num, status); 1878 1879 /* configure RSS for sctp4 with input set IP src/dst */ 1880 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1881 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1882 if (status) 1883 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1884 vsi_num, status); 1885 1886 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1887 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1888 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1889 if (status) 1890 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1891 vsi_num, status); 1892 1893 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1894 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1895 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1896 if (status) 1897 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1898 vsi_num, status); 1899 1900 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1901 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1902 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1903 if (status) 1904 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1905 vsi_num, status); 1906 1907 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1908 ICE_FLOW_SEG_HDR_ESP); 1909 if (status) 1910 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1911 vsi_num, status); 1912 } 1913 1914 /** 1915 * ice_pf_state_is_nominal - checks the PF for nominal state 1916 * @pf: pointer to PF to check 1917 * 1918 * Check the PF's state for a collection of bits that would indicate 1919 * the PF is in a state that would inhibit normal operation for 1920 * driver functionality. 1921 * 1922 * Returns true if PF is in a nominal state, false otherwise 1923 */ 1924 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1925 { 1926 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1927 1928 if (!pf) 1929 return false; 1930 1931 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1932 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1933 return false; 1934 1935 return true; 1936 } 1937 1938 /** 1939 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1940 * @vsi: the VSI to be updated 1941 */ 1942 void ice_update_eth_stats(struct ice_vsi *vsi) 1943 { 1944 struct ice_eth_stats *prev_es, *cur_es; 1945 struct ice_hw *hw = &vsi->back->hw; 1946 struct ice_pf *pf = vsi->back; 1947 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1948 1949 prev_es = &vsi->eth_stats_prev; 1950 cur_es = &vsi->eth_stats; 1951 1952 if (ice_is_reset_in_progress(pf->state)) 1953 vsi->stat_offsets_loaded = false; 1954 1955 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1956 &prev_es->rx_bytes, &cur_es->rx_bytes); 1957 1958 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1959 &prev_es->rx_unicast, &cur_es->rx_unicast); 1960 1961 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1962 &prev_es->rx_multicast, &cur_es->rx_multicast); 1963 1964 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1965 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1966 1967 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1968 &prev_es->rx_discards, &cur_es->rx_discards); 1969 1970 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1971 &prev_es->tx_bytes, &cur_es->tx_bytes); 1972 1973 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1974 &prev_es->tx_unicast, &cur_es->tx_unicast); 1975 1976 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1977 &prev_es->tx_multicast, &cur_es->tx_multicast); 1978 1979 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1980 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1981 1982 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1983 &prev_es->tx_errors, &cur_es->tx_errors); 1984 1985 vsi->stat_offsets_loaded = true; 1986 } 1987 1988 /** 1989 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1990 * @vsi: VSI 1991 */ 1992 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1993 { 1994 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1995 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1996 vsi->rx_buf_len = ICE_RXBUF_2048; 1997 #if (PAGE_SIZE < 8192) 1998 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1999 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 2000 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 2001 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 2002 #endif 2003 } else { 2004 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 2005 #if (PAGE_SIZE < 8192) 2006 vsi->rx_buf_len = ICE_RXBUF_3072; 2007 #else 2008 vsi->rx_buf_len = ICE_RXBUF_2048; 2009 #endif 2010 } 2011 } 2012 2013 /** 2014 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 2015 * @hw: HW pointer 2016 * @pf_q: index of the Rx queue in the PF's queue space 2017 * @rxdid: flexible descriptor RXDID 2018 * @prio: priority for the RXDID for this queue 2019 * @ena_ts: true to enable timestamp and false to disable timestamp 2020 */ 2021 void 2022 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 2023 bool ena_ts) 2024 { 2025 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 2026 2027 /* clear any previous values */ 2028 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 2029 QRXFLXP_CNTXT_RXDID_PRIO_M | 2030 QRXFLXP_CNTXT_TS_M); 2031 2032 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 2033 QRXFLXP_CNTXT_RXDID_IDX_M; 2034 2035 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 2036 QRXFLXP_CNTXT_RXDID_PRIO_M; 2037 2038 if (ena_ts) 2039 /* Enable TimeSync on this queue */ 2040 regval |= QRXFLXP_CNTXT_TS_M; 2041 2042 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 2043 } 2044 2045 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 2046 { 2047 if (q_idx >= vsi->num_rxq) 2048 return -EINVAL; 2049 2050 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 2051 } 2052 2053 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 2054 { 2055 struct ice_aqc_add_tx_qgrp *qg_buf; 2056 int err; 2057 2058 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 2059 return -EINVAL; 2060 2061 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 2062 if (!qg_buf) 2063 return -ENOMEM; 2064 2065 qg_buf->num_txqs = 1; 2066 2067 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 2068 kfree(qg_buf); 2069 return err; 2070 } 2071 2072 /** 2073 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 2074 * @vsi: the VSI being configured 2075 * 2076 * Return 0 on success and a negative value on error 2077 * Configure the Rx VSI for operation. 2078 */ 2079 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 2080 { 2081 u16 i; 2082 2083 if (vsi->type == ICE_VSI_VF) 2084 goto setup_rings; 2085 2086 ice_vsi_cfg_frame_size(vsi); 2087 setup_rings: 2088 /* set up individual rings */ 2089 ice_for_each_rxq(vsi, i) { 2090 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 2091 2092 if (err) 2093 return err; 2094 } 2095 2096 return 0; 2097 } 2098 2099 /** 2100 * ice_vsi_cfg_txqs - Configure the VSI for Tx 2101 * @vsi: the VSI being configured 2102 * @rings: Tx ring array to be configured 2103 * @count: number of Tx ring array elements 2104 * 2105 * Return 0 on success and a negative value on error 2106 * Configure the Tx VSI for operation. 2107 */ 2108 static int 2109 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 2110 { 2111 struct ice_aqc_add_tx_qgrp *qg_buf; 2112 u16 q_idx = 0; 2113 int err = 0; 2114 2115 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 2116 if (!qg_buf) 2117 return -ENOMEM; 2118 2119 qg_buf->num_txqs = 1; 2120 2121 for (q_idx = 0; q_idx < count; q_idx++) { 2122 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 2123 if (err) 2124 goto err_cfg_txqs; 2125 } 2126 2127 err_cfg_txqs: 2128 kfree(qg_buf); 2129 return err; 2130 } 2131 2132 /** 2133 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 2134 * @vsi: the VSI being configured 2135 * 2136 * Return 0 on success and a negative value on error 2137 * Configure the Tx VSI for operation. 2138 */ 2139 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 2140 { 2141 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 2142 } 2143 2144 /** 2145 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 2146 * @vsi: the VSI being configured 2147 * 2148 * Return 0 on success and a negative value on error 2149 * Configure the Tx queues dedicated for XDP in given VSI for operation. 2150 */ 2151 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 2152 { 2153 int ret; 2154 int i; 2155 2156 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 2157 if (ret) 2158 return ret; 2159 2160 ice_for_each_rxq(vsi, i) 2161 ice_tx_xsk_pool(vsi, i); 2162 2163 return ret; 2164 } 2165 2166 /** 2167 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 2168 * @intrl: interrupt rate limit in usecs 2169 * @gran: interrupt rate limit granularity in usecs 2170 * 2171 * This function converts a decimal interrupt rate limit in usecs to the format 2172 * expected by firmware. 2173 */ 2174 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2175 { 2176 u32 val = intrl / gran; 2177 2178 if (val) 2179 return val | GLINT_RATE_INTRL_ENA_M; 2180 return 0; 2181 } 2182 2183 /** 2184 * ice_write_intrl - write throttle rate limit to interrupt specific register 2185 * @q_vector: pointer to interrupt specific structure 2186 * @intrl: throttle rate limit in microseconds to write 2187 */ 2188 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2189 { 2190 struct ice_hw *hw = &q_vector->vsi->back->hw; 2191 2192 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2193 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2194 } 2195 2196 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2197 { 2198 switch (rc->type) { 2199 case ICE_RX_CONTAINER: 2200 if (rc->rx_ring) 2201 return rc->rx_ring->q_vector; 2202 break; 2203 case ICE_TX_CONTAINER: 2204 if (rc->tx_ring) 2205 return rc->tx_ring->q_vector; 2206 break; 2207 default: 2208 break; 2209 } 2210 2211 return NULL; 2212 } 2213 2214 /** 2215 * __ice_write_itr - write throttle rate to register 2216 * @q_vector: pointer to interrupt data structure 2217 * @rc: pointer to ring container 2218 * @itr: throttle rate in microseconds to write 2219 */ 2220 static void __ice_write_itr(struct ice_q_vector *q_vector, 2221 struct ice_ring_container *rc, u16 itr) 2222 { 2223 struct ice_hw *hw = &q_vector->vsi->back->hw; 2224 2225 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2226 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2227 } 2228 2229 /** 2230 * ice_write_itr - write throttle rate to queue specific register 2231 * @rc: pointer to ring container 2232 * @itr: throttle rate in microseconds to write 2233 */ 2234 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2235 { 2236 struct ice_q_vector *q_vector; 2237 2238 q_vector = ice_pull_qvec_from_rc(rc); 2239 if (!q_vector) 2240 return; 2241 2242 __ice_write_itr(q_vector, rc, itr); 2243 } 2244 2245 /** 2246 * ice_set_q_vector_intrl - set up interrupt rate limiting 2247 * @q_vector: the vector to be configured 2248 * 2249 * Interrupt rate limiting is local to the vector, not per-queue so we must 2250 * detect if either ring container has dynamic moderation enabled to decide 2251 * what to set the interrupt rate limit to via INTRL settings. In the case that 2252 * dynamic moderation is disabled on both, write the value with the cached 2253 * setting to make sure INTRL register matches the user visible value. 2254 */ 2255 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2256 { 2257 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2258 /* in the case of dynamic enabled, cap each vector to no more 2259 * than (4 us) 250,000 ints/sec, which allows low latency 2260 * but still less than 500,000 interrupts per second, which 2261 * reduces CPU a bit in the case of the lowest latency 2262 * setting. The 4 here is a value in microseconds. 2263 */ 2264 ice_write_intrl(q_vector, 4); 2265 } else { 2266 ice_write_intrl(q_vector, q_vector->intrl); 2267 } 2268 } 2269 2270 /** 2271 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2272 * @vsi: the VSI being configured 2273 * 2274 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2275 * for the VF VSI. 2276 */ 2277 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2278 { 2279 struct ice_pf *pf = vsi->back; 2280 struct ice_hw *hw = &pf->hw; 2281 u16 txq = 0, rxq = 0; 2282 int i, q; 2283 2284 ice_for_each_q_vector(vsi, i) { 2285 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2286 u16 reg_idx = q_vector->reg_idx; 2287 2288 ice_cfg_itr(hw, q_vector); 2289 2290 /* Both Transmit Queue Interrupt Cause Control register 2291 * and Receive Queue Interrupt Cause control register 2292 * expects MSIX_INDX field to be the vector index 2293 * within the function space and not the absolute 2294 * vector index across PF or across device. 2295 * For SR-IOV VF VSIs queue vector index always starts 2296 * with 1 since first vector index(0) is used for OICR 2297 * in VF space. Since VMDq and other PF VSIs are within 2298 * the PF function space, use the vector index that is 2299 * tracked for this PF. 2300 */ 2301 for (q = 0; q < q_vector->num_ring_tx; q++) { 2302 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2303 q_vector->tx.itr_idx); 2304 txq++; 2305 } 2306 2307 for (q = 0; q < q_vector->num_ring_rx; q++) { 2308 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2309 q_vector->rx.itr_idx); 2310 rxq++; 2311 } 2312 } 2313 } 2314 2315 /** 2316 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2317 * @vsi: the VSI whose rings are to be enabled 2318 * 2319 * Returns 0 on success and a negative value on error 2320 */ 2321 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2322 { 2323 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2324 } 2325 2326 /** 2327 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2328 * @vsi: the VSI whose rings are to be disabled 2329 * 2330 * Returns 0 on success and a negative value on error 2331 */ 2332 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2333 { 2334 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2335 } 2336 2337 /** 2338 * ice_vsi_stop_tx_rings - Disable Tx rings 2339 * @vsi: the VSI being configured 2340 * @rst_src: reset source 2341 * @rel_vmvf_num: Relative ID of VF/VM 2342 * @rings: Tx ring array to be stopped 2343 * @count: number of Tx ring array elements 2344 */ 2345 static int 2346 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2347 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2348 { 2349 u16 q_idx; 2350 2351 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2352 return -EINVAL; 2353 2354 for (q_idx = 0; q_idx < count; q_idx++) { 2355 struct ice_txq_meta txq_meta = { }; 2356 int status; 2357 2358 if (!rings || !rings[q_idx]) 2359 return -EINVAL; 2360 2361 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2362 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2363 rings[q_idx], &txq_meta); 2364 2365 if (status) 2366 return status; 2367 } 2368 2369 return 0; 2370 } 2371 2372 /** 2373 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2374 * @vsi: the VSI being configured 2375 * @rst_src: reset source 2376 * @rel_vmvf_num: Relative ID of VF/VM 2377 */ 2378 int 2379 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2380 u16 rel_vmvf_num) 2381 { 2382 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2383 } 2384 2385 /** 2386 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2387 * @vsi: the VSI being configured 2388 */ 2389 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2390 { 2391 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2392 } 2393 2394 /** 2395 * ice_vsi_is_rx_queue_active 2396 * @vsi: the VSI being configured 2397 * 2398 * Return true if at least one queue is active. 2399 */ 2400 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2401 { 2402 struct ice_pf *pf = vsi->back; 2403 struct ice_hw *hw = &pf->hw; 2404 int i; 2405 2406 ice_for_each_rxq(vsi, i) { 2407 u32 rx_reg; 2408 int pf_q; 2409 2410 pf_q = vsi->rxq_map[i]; 2411 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2412 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2413 return true; 2414 } 2415 2416 return false; 2417 } 2418 2419 /** 2420 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2421 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2422 * 2423 * returns true if Rx VLAN pruning is enabled and false otherwise. 2424 */ 2425 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2426 { 2427 if (!vsi) 2428 return false; 2429 2430 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2431 } 2432 2433 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2434 { 2435 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2436 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2437 vsi->tc_cfg.numtc = 1; 2438 return; 2439 } 2440 2441 /* set VSI TC information based on DCB config */ 2442 ice_vsi_set_dcb_tc_cfg(vsi); 2443 } 2444 2445 /** 2446 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2447 * @vsi: VSI to set the q_vectors register index on 2448 */ 2449 static int 2450 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2451 { 2452 u16 i; 2453 2454 if (!vsi || !vsi->q_vectors) 2455 return -EINVAL; 2456 2457 ice_for_each_q_vector(vsi, i) { 2458 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2459 2460 if (!q_vector) { 2461 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2462 i, vsi->vsi_num); 2463 goto clear_reg_idx; 2464 } 2465 2466 if (vsi->type == ICE_VSI_VF) { 2467 struct ice_vf *vf = vsi->vf; 2468 2469 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2470 } else { 2471 q_vector->reg_idx = 2472 q_vector->v_idx + vsi->base_vector; 2473 } 2474 } 2475 2476 return 0; 2477 2478 clear_reg_idx: 2479 ice_for_each_q_vector(vsi, i) { 2480 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2481 2482 if (q_vector) 2483 q_vector->reg_idx = 0; 2484 } 2485 2486 return -EINVAL; 2487 } 2488 2489 /** 2490 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2491 * @vsi: the VSI being configured 2492 * @tx: bool to determine Tx or Rx rule 2493 * @create: bool to determine create or remove Rule 2494 */ 2495 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2496 { 2497 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2498 enum ice_sw_fwd_act_type act); 2499 struct ice_pf *pf = vsi->back; 2500 struct device *dev; 2501 int status; 2502 2503 dev = ice_pf_to_dev(pf); 2504 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2505 2506 if (tx) { 2507 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2508 ICE_DROP_PACKET); 2509 } else { 2510 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2511 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2512 create); 2513 } else { 2514 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2515 ICE_FWD_TO_VSI); 2516 } 2517 } 2518 2519 if (status) 2520 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2521 create ? "adding" : "removing", tx ? "TX" : "RX", 2522 vsi->vsi_num, status); 2523 } 2524 2525 /** 2526 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2527 * @vsi: pointer to the VSI 2528 * 2529 * This function will allocate new scheduler aggregator now if needed and will 2530 * move specified VSI into it. 2531 */ 2532 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2533 { 2534 struct device *dev = ice_pf_to_dev(vsi->back); 2535 struct ice_agg_node *agg_node_iter = NULL; 2536 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2537 struct ice_agg_node *agg_node = NULL; 2538 int node_offset, max_agg_nodes = 0; 2539 struct ice_port_info *port_info; 2540 struct ice_pf *pf = vsi->back; 2541 u32 agg_node_id_start = 0; 2542 int status; 2543 2544 /* create (as needed) scheduler aggregator node and move VSI into 2545 * corresponding aggregator node 2546 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2547 * - VF aggregator nodes will contain VF VSI 2548 */ 2549 port_info = pf->hw.port_info; 2550 if (!port_info) 2551 return; 2552 2553 switch (vsi->type) { 2554 case ICE_VSI_CTRL: 2555 case ICE_VSI_CHNL: 2556 case ICE_VSI_LB: 2557 case ICE_VSI_PF: 2558 case ICE_VSI_SWITCHDEV_CTRL: 2559 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2560 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2561 agg_node_iter = &pf->pf_agg_node[0]; 2562 break; 2563 case ICE_VSI_VF: 2564 /* user can create 'n' VFs on a given PF, but since max children 2565 * per aggregator node can be only 64. Following code handles 2566 * aggregator(s) for VF VSIs, either selects a agg_node which 2567 * was already created provided num_vsis < 64, otherwise 2568 * select next available node, which will be created 2569 */ 2570 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2571 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2572 agg_node_iter = &pf->vf_agg_node[0]; 2573 break; 2574 default: 2575 /* other VSI type, handle later if needed */ 2576 dev_dbg(dev, "unexpected VSI type %s\n", 2577 ice_vsi_type_str(vsi->type)); 2578 return; 2579 } 2580 2581 /* find the appropriate aggregator node */ 2582 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2583 /* see if we can find space in previously created 2584 * node if num_vsis < 64, otherwise skip 2585 */ 2586 if (agg_node_iter->num_vsis && 2587 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2588 agg_node_iter++; 2589 continue; 2590 } 2591 2592 if (agg_node_iter->valid && 2593 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2594 agg_id = agg_node_iter->agg_id; 2595 agg_node = agg_node_iter; 2596 break; 2597 } 2598 2599 /* find unclaimed agg_id */ 2600 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2601 agg_id = node_offset + agg_node_id_start; 2602 agg_node = agg_node_iter; 2603 break; 2604 } 2605 /* move to next agg_node */ 2606 agg_node_iter++; 2607 } 2608 2609 if (!agg_node) 2610 return; 2611 2612 /* if selected aggregator node was not created, create it */ 2613 if (!agg_node->valid) { 2614 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2615 (u8)vsi->tc_cfg.ena_tc); 2616 if (status) { 2617 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2618 agg_id); 2619 return; 2620 } 2621 /* aggregator node is created, store the needed info */ 2622 agg_node->valid = true; 2623 agg_node->agg_id = agg_id; 2624 } 2625 2626 /* move VSI to corresponding aggregator node */ 2627 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2628 (u8)vsi->tc_cfg.ena_tc); 2629 if (status) { 2630 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2631 vsi->idx, agg_id); 2632 return; 2633 } 2634 2635 /* keep active children count for aggregator node */ 2636 agg_node->num_vsis++; 2637 2638 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2639 * to aggregator node 2640 */ 2641 vsi->agg_node = agg_node; 2642 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2643 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2644 vsi->agg_node->num_vsis); 2645 } 2646 2647 /** 2648 * ice_vsi_setup - Set up a VSI by a given type 2649 * @pf: board private structure 2650 * @pi: pointer to the port_info instance 2651 * @vsi_type: VSI type 2652 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2653 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2654 * @ch: ptr to channel 2655 * 2656 * This allocates the sw VSI structure and its queue resources. 2657 * 2658 * Returns pointer to the successfully allocated and configured VSI sw struct on 2659 * success, NULL on failure. 2660 */ 2661 struct ice_vsi * 2662 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2663 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2664 struct ice_channel *ch) 2665 { 2666 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2667 struct device *dev = ice_pf_to_dev(pf); 2668 struct ice_vsi *vsi; 2669 int ret, i; 2670 2671 if (vsi_type == ICE_VSI_CHNL) 2672 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2673 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2674 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2675 else 2676 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2677 2678 if (!vsi) { 2679 dev_err(dev, "could not allocate VSI\n"); 2680 return NULL; 2681 } 2682 2683 vsi->port_info = pi; 2684 vsi->vsw = pf->first_sw; 2685 if (vsi->type == ICE_VSI_PF) 2686 vsi->ethtype = ETH_P_PAUSE; 2687 2688 ice_alloc_fd_res(vsi); 2689 2690 if (vsi_type != ICE_VSI_CHNL) { 2691 if (ice_vsi_get_qs(vsi)) { 2692 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2693 vsi->idx); 2694 goto unroll_vsi_alloc; 2695 } 2696 } 2697 2698 /* set RSS capabilities */ 2699 ice_vsi_set_rss_params(vsi); 2700 2701 /* set TC configuration */ 2702 ice_vsi_set_tc_cfg(vsi); 2703 2704 /* create the VSI */ 2705 ret = ice_vsi_init(vsi, true); 2706 if (ret) 2707 goto unroll_get_qs; 2708 2709 ice_vsi_init_vlan_ops(vsi); 2710 2711 switch (vsi->type) { 2712 case ICE_VSI_CTRL: 2713 case ICE_VSI_SWITCHDEV_CTRL: 2714 case ICE_VSI_PF: 2715 ret = ice_vsi_alloc_q_vectors(vsi); 2716 if (ret) 2717 goto unroll_vsi_init; 2718 2719 ret = ice_vsi_setup_vector_base(vsi); 2720 if (ret) 2721 goto unroll_alloc_q_vector; 2722 2723 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2724 if (ret) 2725 goto unroll_vector_base; 2726 2727 ret = ice_vsi_alloc_rings(vsi); 2728 if (ret) 2729 goto unroll_vector_base; 2730 2731 ret = ice_vsi_alloc_ring_stats(vsi); 2732 if (ret) 2733 goto unroll_vector_base; 2734 2735 ice_vsi_map_rings_to_vectors(vsi); 2736 2737 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2738 if (vsi->type != ICE_VSI_CTRL) 2739 /* Do not exit if configuring RSS had an issue, at 2740 * least receive traffic on first queue. Hence no 2741 * need to capture return value 2742 */ 2743 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2744 ice_vsi_cfg_rss_lut_key(vsi); 2745 ice_vsi_set_rss_flow_fld(vsi); 2746 } 2747 ice_init_arfs(vsi); 2748 break; 2749 case ICE_VSI_CHNL: 2750 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2751 ice_vsi_cfg_rss_lut_key(vsi); 2752 ice_vsi_set_rss_flow_fld(vsi); 2753 } 2754 break; 2755 case ICE_VSI_VF: 2756 /* VF driver will take care of creating netdev for this type and 2757 * map queues to vectors through Virtchnl, PF driver only 2758 * creates a VSI and corresponding structures for bookkeeping 2759 * purpose 2760 */ 2761 ret = ice_vsi_alloc_q_vectors(vsi); 2762 if (ret) 2763 goto unroll_vsi_init; 2764 2765 ret = ice_vsi_alloc_rings(vsi); 2766 if (ret) 2767 goto unroll_alloc_q_vector; 2768 2769 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2770 if (ret) 2771 goto unroll_vector_base; 2772 2773 ret = ice_vsi_alloc_ring_stats(vsi); 2774 if (ret) 2775 goto unroll_vector_base; 2776 /* Do not exit if configuring RSS had an issue, at least 2777 * receive traffic on first queue. Hence no need to capture 2778 * return value 2779 */ 2780 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2781 ice_vsi_cfg_rss_lut_key(vsi); 2782 ice_vsi_set_vf_rss_flow_fld(vsi); 2783 } 2784 break; 2785 case ICE_VSI_LB: 2786 ret = ice_vsi_alloc_rings(vsi); 2787 if (ret) 2788 goto unroll_vsi_init; 2789 2790 ret = ice_vsi_alloc_ring_stats(vsi); 2791 if (ret) 2792 goto unroll_vector_base; 2793 2794 break; 2795 default: 2796 /* clean up the resources and exit */ 2797 goto unroll_vsi_init; 2798 } 2799 2800 /* configure VSI nodes based on number of queues and TC's */ 2801 ice_for_each_traffic_class(i) { 2802 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2803 continue; 2804 2805 if (vsi->type == ICE_VSI_CHNL) { 2806 if (!vsi->alloc_txq && vsi->num_txq) 2807 max_txqs[i] = vsi->num_txq; 2808 else 2809 max_txqs[i] = pf->num_lan_tx; 2810 } else { 2811 max_txqs[i] = vsi->alloc_txq; 2812 } 2813 } 2814 2815 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2816 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2817 max_txqs); 2818 if (ret) { 2819 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2820 vsi->vsi_num, ret); 2821 goto unroll_clear_rings; 2822 } 2823 2824 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2825 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2826 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2827 * The rule is added once for PF VSI in order to create appropriate 2828 * recipe, since VSI/VSI list is ignored with drop action... 2829 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2830 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2831 * settings in the HW. 2832 */ 2833 if (!ice_is_safe_mode(pf)) 2834 if (vsi->type == ICE_VSI_PF) { 2835 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2836 ICE_DROP_PACKET); 2837 ice_cfg_sw_lldp(vsi, true, true); 2838 } 2839 2840 if (!vsi->agg_node) 2841 ice_set_agg_vsi(vsi); 2842 return vsi; 2843 2844 unroll_clear_rings: 2845 ice_vsi_clear_rings(vsi); 2846 unroll_vector_base: 2847 /* reclaim SW interrupts back to the common pool */ 2848 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2849 pf->num_avail_sw_msix += vsi->num_q_vectors; 2850 unroll_alloc_q_vector: 2851 ice_vsi_free_q_vectors(vsi); 2852 unroll_vsi_init: 2853 ice_vsi_free_stats(vsi); 2854 ice_vsi_delete(vsi); 2855 unroll_get_qs: 2856 ice_vsi_put_qs(vsi); 2857 unroll_vsi_alloc: 2858 if (vsi_type == ICE_VSI_VF) 2859 ice_enable_lag(pf->lag); 2860 ice_vsi_clear(vsi); 2861 2862 return NULL; 2863 } 2864 2865 /** 2866 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2867 * @vsi: the VSI being cleaned up 2868 */ 2869 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2870 { 2871 struct ice_pf *pf = vsi->back; 2872 struct ice_hw *hw = &pf->hw; 2873 u32 txq = 0; 2874 u32 rxq = 0; 2875 int i, q; 2876 2877 ice_for_each_q_vector(vsi, i) { 2878 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2879 2880 ice_write_intrl(q_vector, 0); 2881 for (q = 0; q < q_vector->num_ring_tx; q++) { 2882 ice_write_itr(&q_vector->tx, 0); 2883 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2884 if (ice_is_xdp_ena_vsi(vsi)) { 2885 u32 xdp_txq = txq + vsi->num_xdp_txq; 2886 2887 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2888 } 2889 txq++; 2890 } 2891 2892 for (q = 0; q < q_vector->num_ring_rx; q++) { 2893 ice_write_itr(&q_vector->rx, 0); 2894 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2895 rxq++; 2896 } 2897 } 2898 2899 ice_flush(hw); 2900 } 2901 2902 /** 2903 * ice_vsi_free_irq - Free the IRQ association with the OS 2904 * @vsi: the VSI being configured 2905 */ 2906 void ice_vsi_free_irq(struct ice_vsi *vsi) 2907 { 2908 struct ice_pf *pf = vsi->back; 2909 int base = vsi->base_vector; 2910 int i; 2911 2912 if (!vsi->q_vectors || !vsi->irqs_ready) 2913 return; 2914 2915 ice_vsi_release_msix(vsi); 2916 if (vsi->type == ICE_VSI_VF) 2917 return; 2918 2919 vsi->irqs_ready = false; 2920 ice_free_cpu_rx_rmap(vsi); 2921 2922 ice_for_each_q_vector(vsi, i) { 2923 u16 vector = i + base; 2924 int irq_num; 2925 2926 irq_num = pf->msix_entries[vector].vector; 2927 2928 /* free only the irqs that were actually requested */ 2929 if (!vsi->q_vectors[i] || 2930 !(vsi->q_vectors[i]->num_ring_tx || 2931 vsi->q_vectors[i]->num_ring_rx)) 2932 continue; 2933 2934 /* clear the affinity notifier in the IRQ descriptor */ 2935 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2936 irq_set_affinity_notifier(irq_num, NULL); 2937 2938 /* clear the affinity_mask in the IRQ descriptor */ 2939 irq_set_affinity_hint(irq_num, NULL); 2940 synchronize_irq(irq_num); 2941 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2942 } 2943 } 2944 2945 /** 2946 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2947 * @vsi: the VSI having resources freed 2948 */ 2949 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2950 { 2951 int i; 2952 2953 if (!vsi->tx_rings) 2954 return; 2955 2956 ice_for_each_txq(vsi, i) 2957 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2958 ice_free_tx_ring(vsi->tx_rings[i]); 2959 } 2960 2961 /** 2962 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2963 * @vsi: the VSI having resources freed 2964 */ 2965 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2966 { 2967 int i; 2968 2969 if (!vsi->rx_rings) 2970 return; 2971 2972 ice_for_each_rxq(vsi, i) 2973 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2974 ice_free_rx_ring(vsi->rx_rings[i]); 2975 } 2976 2977 /** 2978 * ice_vsi_close - Shut down a VSI 2979 * @vsi: the VSI being shut down 2980 */ 2981 void ice_vsi_close(struct ice_vsi *vsi) 2982 { 2983 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2984 ice_down(vsi); 2985 2986 ice_vsi_free_irq(vsi); 2987 ice_vsi_free_tx_rings(vsi); 2988 ice_vsi_free_rx_rings(vsi); 2989 } 2990 2991 /** 2992 * ice_ena_vsi - resume a VSI 2993 * @vsi: the VSI being resume 2994 * @locked: is the rtnl_lock already held 2995 */ 2996 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2997 { 2998 int err = 0; 2999 3000 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 3001 return 0; 3002 3003 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 3004 3005 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 3006 if (netif_running(vsi->netdev)) { 3007 if (!locked) 3008 rtnl_lock(); 3009 3010 err = ice_open_internal(vsi->netdev); 3011 3012 if (!locked) 3013 rtnl_unlock(); 3014 } 3015 } else if (vsi->type == ICE_VSI_CTRL) { 3016 err = ice_vsi_open_ctrl(vsi); 3017 } 3018 3019 return err; 3020 } 3021 3022 /** 3023 * ice_dis_vsi - pause a VSI 3024 * @vsi: the VSI being paused 3025 * @locked: is the rtnl_lock already held 3026 */ 3027 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 3028 { 3029 if (test_bit(ICE_VSI_DOWN, vsi->state)) 3030 return; 3031 3032 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 3033 3034 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 3035 if (netif_running(vsi->netdev)) { 3036 if (!locked) 3037 rtnl_lock(); 3038 3039 ice_vsi_close(vsi); 3040 3041 if (!locked) 3042 rtnl_unlock(); 3043 } else { 3044 ice_vsi_close(vsi); 3045 } 3046 } else if (vsi->type == ICE_VSI_CTRL || 3047 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 3048 ice_vsi_close(vsi); 3049 } 3050 } 3051 3052 /** 3053 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 3054 * @vsi: the VSI being un-configured 3055 */ 3056 void ice_vsi_dis_irq(struct ice_vsi *vsi) 3057 { 3058 int base = vsi->base_vector; 3059 struct ice_pf *pf = vsi->back; 3060 struct ice_hw *hw = &pf->hw; 3061 u32 val; 3062 int i; 3063 3064 /* disable interrupt causation from each queue */ 3065 if (vsi->tx_rings) { 3066 ice_for_each_txq(vsi, i) { 3067 if (vsi->tx_rings[i]) { 3068 u16 reg; 3069 3070 reg = vsi->tx_rings[i]->reg_idx; 3071 val = rd32(hw, QINT_TQCTL(reg)); 3072 val &= ~QINT_TQCTL_CAUSE_ENA_M; 3073 wr32(hw, QINT_TQCTL(reg), val); 3074 } 3075 } 3076 } 3077 3078 if (vsi->rx_rings) { 3079 ice_for_each_rxq(vsi, i) { 3080 if (vsi->rx_rings[i]) { 3081 u16 reg; 3082 3083 reg = vsi->rx_rings[i]->reg_idx; 3084 val = rd32(hw, QINT_RQCTL(reg)); 3085 val &= ~QINT_RQCTL_CAUSE_ENA_M; 3086 wr32(hw, QINT_RQCTL(reg), val); 3087 } 3088 } 3089 } 3090 3091 /* disable each interrupt */ 3092 ice_for_each_q_vector(vsi, i) { 3093 if (!vsi->q_vectors[i]) 3094 continue; 3095 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 3096 } 3097 3098 ice_flush(hw); 3099 3100 /* don't call synchronize_irq() for VF's from the host */ 3101 if (vsi->type == ICE_VSI_VF) 3102 return; 3103 3104 ice_for_each_q_vector(vsi, i) 3105 synchronize_irq(pf->msix_entries[i + base].vector); 3106 } 3107 3108 /** 3109 * ice_napi_del - Remove NAPI handler for the VSI 3110 * @vsi: VSI for which NAPI handler is to be removed 3111 */ 3112 void ice_napi_del(struct ice_vsi *vsi) 3113 { 3114 int v_idx; 3115 3116 if (!vsi->netdev) 3117 return; 3118 3119 ice_for_each_q_vector(vsi, v_idx) 3120 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3121 } 3122 3123 /** 3124 * ice_free_vf_ctrl_res - Free the VF control VSI resource 3125 * @pf: pointer to PF structure 3126 * @vsi: the VSI to free resources for 3127 * 3128 * Check if the VF control VSI resource is still in use. If no VF is using it 3129 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 3130 * once no other VF uses it. 3131 */ 3132 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 3133 { 3134 struct ice_vf *vf; 3135 unsigned int bkt; 3136 3137 rcu_read_lock(); 3138 ice_for_each_vf_rcu(pf, bkt, vf) { 3139 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 3140 rcu_read_unlock(); 3141 return; 3142 } 3143 } 3144 rcu_read_unlock(); 3145 3146 /* No other VFs left that have control VSI. It is now safe to reclaim 3147 * SW interrupts back to the common pool. 3148 */ 3149 ice_free_res(pf->irq_tracker, vsi->base_vector, 3150 ICE_RES_VF_CTRL_VEC_ID); 3151 pf->num_avail_sw_msix += vsi->num_q_vectors; 3152 } 3153 3154 /** 3155 * ice_vsi_release - Delete a VSI and free its resources 3156 * @vsi: the VSI being removed 3157 * 3158 * Returns 0 on success or < 0 on error 3159 */ 3160 int ice_vsi_release(struct ice_vsi *vsi) 3161 { 3162 struct ice_pf *pf; 3163 int err; 3164 3165 if (!vsi->back) 3166 return -ENODEV; 3167 pf = vsi->back; 3168 3169 /* do not unregister while driver is in the reset recovery pending 3170 * state. Since reset/rebuild happens through PF service task workqueue, 3171 * it's not a good idea to unregister netdev that is associated to the 3172 * PF that is running the work queue items currently. This is done to 3173 * avoid check_flush_dependency() warning on this wq 3174 */ 3175 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3176 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3177 unregister_netdev(vsi->netdev); 3178 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3179 } 3180 3181 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3182 ice_rss_clean(vsi); 3183 3184 /* Disable VSI and free resources */ 3185 if (vsi->type != ICE_VSI_LB) 3186 ice_vsi_dis_irq(vsi); 3187 ice_vsi_close(vsi); 3188 3189 /* SR-IOV determines needed MSIX resources all at once instead of per 3190 * VSI since when VFs are spawned we know how many VFs there are and how 3191 * many interrupts each VF needs. SR-IOV MSIX resources are also 3192 * cleared in the same manner. 3193 */ 3194 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 3195 ice_free_vf_ctrl_res(pf, vsi); 3196 } else if (vsi->type != ICE_VSI_VF) { 3197 /* reclaim SW interrupts back to the common pool */ 3198 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3199 pf->num_avail_sw_msix += vsi->num_q_vectors; 3200 } 3201 3202 if (!ice_is_safe_mode(pf)) { 3203 if (vsi->type == ICE_VSI_PF) { 3204 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3205 ICE_DROP_PACKET); 3206 ice_cfg_sw_lldp(vsi, true, false); 3207 /* The Rx rule will only exist to remove if the LLDP FW 3208 * engine is currently stopped 3209 */ 3210 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3211 ice_cfg_sw_lldp(vsi, false, false); 3212 } 3213 } 3214 3215 if (ice_is_vsi_dflt_vsi(vsi)) 3216 ice_clear_dflt_vsi(vsi); 3217 ice_fltr_remove_all(vsi); 3218 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3219 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3220 if (err) 3221 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3222 vsi->vsi_num, err); 3223 ice_vsi_delete(vsi); 3224 ice_vsi_free_q_vectors(vsi); 3225 3226 if (vsi->netdev) { 3227 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3228 unregister_netdev(vsi->netdev); 3229 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3230 } 3231 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3232 free_netdev(vsi->netdev); 3233 vsi->netdev = NULL; 3234 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3235 } 3236 } 3237 3238 if (vsi->type == ICE_VSI_VF && 3239 vsi->agg_node && vsi->agg_node->valid) 3240 vsi->agg_node->num_vsis--; 3241 ice_vsi_clear_rings(vsi); 3242 ice_vsi_free_stats(vsi); 3243 ice_vsi_put_qs(vsi); 3244 3245 /* retain SW VSI data structure since it is needed to unregister and 3246 * free VSI netdev when PF is not in reset recovery pending state,\ 3247 * for ex: during rmmod. 3248 */ 3249 if (!ice_is_reset_in_progress(pf->state)) 3250 ice_vsi_clear(vsi); 3251 3252 return 0; 3253 } 3254 3255 /** 3256 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3257 * @vsi: VSI connected with q_vectors 3258 * @coalesce: array of struct with stored coalesce 3259 * 3260 * Returns array size. 3261 */ 3262 static int 3263 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3264 struct ice_coalesce_stored *coalesce) 3265 { 3266 int i; 3267 3268 ice_for_each_q_vector(vsi, i) { 3269 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3270 3271 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3272 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3273 coalesce[i].intrl = q_vector->intrl; 3274 3275 if (i < vsi->num_txq) 3276 coalesce[i].tx_valid = true; 3277 if (i < vsi->num_rxq) 3278 coalesce[i].rx_valid = true; 3279 } 3280 3281 return vsi->num_q_vectors; 3282 } 3283 3284 /** 3285 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3286 * @vsi: VSI connected with q_vectors 3287 * @coalesce: pointer to array of struct with stored coalesce 3288 * @size: size of coalesce array 3289 * 3290 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3291 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3292 * to default value. 3293 */ 3294 static void 3295 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3296 struct ice_coalesce_stored *coalesce, int size) 3297 { 3298 struct ice_ring_container *rc; 3299 int i; 3300 3301 if ((size && !coalesce) || !vsi) 3302 return; 3303 3304 /* There are a couple of cases that have to be handled here: 3305 * 1. The case where the number of queue vectors stays the same, but 3306 * the number of Tx or Rx rings changes (the first for loop) 3307 * 2. The case where the number of queue vectors increased (the 3308 * second for loop) 3309 */ 3310 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3311 /* There are 2 cases to handle here and they are the same for 3312 * both Tx and Rx: 3313 * if the entry was valid previously (coalesce[i].[tr]x_valid 3314 * and the loop variable is less than the number of rings 3315 * allocated, then write the previous values 3316 * 3317 * if the entry was not valid previously, but the number of 3318 * rings is less than are allocated (this means the number of 3319 * rings increased from previously), then write out the 3320 * values in the first element 3321 * 3322 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3323 * as there is no harm because the dynamic algorithm 3324 * will just overwrite. 3325 */ 3326 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3327 rc = &vsi->q_vectors[i]->rx; 3328 rc->itr_settings = coalesce[i].itr_rx; 3329 ice_write_itr(rc, rc->itr_setting); 3330 } else if (i < vsi->alloc_rxq) { 3331 rc = &vsi->q_vectors[i]->rx; 3332 rc->itr_settings = coalesce[0].itr_rx; 3333 ice_write_itr(rc, rc->itr_setting); 3334 } 3335 3336 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3337 rc = &vsi->q_vectors[i]->tx; 3338 rc->itr_settings = coalesce[i].itr_tx; 3339 ice_write_itr(rc, rc->itr_setting); 3340 } else if (i < vsi->alloc_txq) { 3341 rc = &vsi->q_vectors[i]->tx; 3342 rc->itr_settings = coalesce[0].itr_tx; 3343 ice_write_itr(rc, rc->itr_setting); 3344 } 3345 3346 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3347 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3348 } 3349 3350 /* the number of queue vectors increased so write whatever is in 3351 * the first element 3352 */ 3353 for (; i < vsi->num_q_vectors; i++) { 3354 /* transmit */ 3355 rc = &vsi->q_vectors[i]->tx; 3356 rc->itr_settings = coalesce[0].itr_tx; 3357 ice_write_itr(rc, rc->itr_setting); 3358 3359 /* receive */ 3360 rc = &vsi->q_vectors[i]->rx; 3361 rc->itr_settings = coalesce[0].itr_rx; 3362 ice_write_itr(rc, rc->itr_setting); 3363 3364 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3365 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3366 } 3367 } 3368 3369 /** 3370 * ice_vsi_realloc_stat_arrays - Frees unused stat structures 3371 * @vsi: VSI pointer 3372 * @prev_txq: Number of Tx rings before ring reallocation 3373 * @prev_rxq: Number of Rx rings before ring reallocation 3374 */ 3375 static int 3376 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq) 3377 { 3378 struct ice_vsi_stats *vsi_stat; 3379 struct ice_pf *pf = vsi->back; 3380 int i; 3381 3382 if (!prev_txq || !prev_rxq) 3383 return 0; 3384 if (vsi->type == ICE_VSI_CHNL) 3385 return 0; 3386 3387 vsi_stat = pf->vsi_stats[vsi->idx]; 3388 3389 if (vsi->num_txq < prev_txq) { 3390 for (i = vsi->num_txq; i < prev_txq; i++) { 3391 if (vsi_stat->tx_ring_stats[i]) { 3392 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3393 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3394 } 3395 } 3396 } 3397 3398 if (vsi->num_rxq < prev_rxq) { 3399 for (i = vsi->num_rxq; i < prev_rxq; i++) { 3400 if (vsi_stat->rx_ring_stats[i]) { 3401 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3402 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3403 } 3404 } 3405 } 3406 3407 return 0; 3408 } 3409 3410 /** 3411 * ice_vsi_rebuild - Rebuild VSI after reset 3412 * @vsi: VSI to be rebuild 3413 * @init_vsi: is this an initialization or a reconfigure of the VSI 3414 * 3415 * Returns 0 on success and negative value on failure 3416 */ 3417 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3418 { 3419 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3420 struct ice_coalesce_stored *coalesce; 3421 int ret, i, prev_txq, prev_rxq; 3422 int prev_num_q_vectors = 0; 3423 enum ice_vsi_type vtype; 3424 struct ice_pf *pf; 3425 3426 if (!vsi) 3427 return -EINVAL; 3428 3429 pf = vsi->back; 3430 vtype = vsi->type; 3431 if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf)) 3432 return -EINVAL; 3433 3434 ice_vsi_init_vlan_ops(vsi); 3435 3436 coalesce = kcalloc(vsi->num_q_vectors, 3437 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3438 if (!coalesce) 3439 return -ENOMEM; 3440 3441 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3442 3443 prev_txq = vsi->num_txq; 3444 prev_rxq = vsi->num_rxq; 3445 3446 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3447 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3448 if (ret) 3449 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3450 vsi->vsi_num, ret); 3451 ice_vsi_free_q_vectors(vsi); 3452 3453 /* SR-IOV determines needed MSIX resources all at once instead of per 3454 * VSI since when VFs are spawned we know how many VFs there are and how 3455 * many interrupts each VF needs. SR-IOV MSIX resources are also 3456 * cleared in the same manner. 3457 */ 3458 if (vtype != ICE_VSI_VF) { 3459 /* reclaim SW interrupts back to the common pool */ 3460 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3461 pf->num_avail_sw_msix += vsi->num_q_vectors; 3462 vsi->base_vector = 0; 3463 } 3464 3465 if (ice_is_xdp_ena_vsi(vsi)) 3466 /* return value check can be skipped here, it always returns 3467 * 0 if reset is in progress 3468 */ 3469 ice_destroy_xdp_rings(vsi); 3470 ice_vsi_put_qs(vsi); 3471 ice_vsi_clear_rings(vsi); 3472 ice_vsi_free_arrays(vsi); 3473 if (vtype == ICE_VSI_VF) 3474 ice_vsi_set_num_qs(vsi, vsi->vf); 3475 else 3476 ice_vsi_set_num_qs(vsi, NULL); 3477 3478 ret = ice_vsi_alloc_arrays(vsi); 3479 if (ret < 0) 3480 goto err_vsi; 3481 3482 ice_vsi_get_qs(vsi); 3483 3484 ice_alloc_fd_res(vsi); 3485 ice_vsi_set_tc_cfg(vsi); 3486 3487 /* Initialize VSI struct elements and create VSI in FW */ 3488 ret = ice_vsi_init(vsi, init_vsi); 3489 if (ret < 0) 3490 goto err_vsi; 3491 3492 switch (vtype) { 3493 case ICE_VSI_CTRL: 3494 case ICE_VSI_SWITCHDEV_CTRL: 3495 case ICE_VSI_PF: 3496 ret = ice_vsi_alloc_q_vectors(vsi); 3497 if (ret) 3498 goto err_rings; 3499 3500 ret = ice_vsi_setup_vector_base(vsi); 3501 if (ret) 3502 goto err_vectors; 3503 3504 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3505 if (ret) 3506 goto err_vectors; 3507 3508 ret = ice_vsi_alloc_rings(vsi); 3509 if (ret) 3510 goto err_vectors; 3511 3512 ret = ice_vsi_alloc_ring_stats(vsi); 3513 if (ret) 3514 goto err_vectors; 3515 3516 ice_vsi_map_rings_to_vectors(vsi); 3517 3518 vsi->stat_offsets_loaded = false; 3519 if (ice_is_xdp_ena_vsi(vsi)) { 3520 ret = ice_vsi_determine_xdp_res(vsi); 3521 if (ret) 3522 goto err_vectors; 3523 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3524 if (ret) 3525 goto err_vectors; 3526 } 3527 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3528 if (vtype != ICE_VSI_CTRL) 3529 /* Do not exit if configuring RSS had an issue, at 3530 * least receive traffic on first queue. Hence no 3531 * need to capture return value 3532 */ 3533 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3534 ice_vsi_cfg_rss_lut_key(vsi); 3535 3536 /* disable or enable CRC stripping */ 3537 if (vsi->netdev) 3538 ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features & 3539 NETIF_F_RXFCS)); 3540 3541 break; 3542 case ICE_VSI_VF: 3543 ret = ice_vsi_alloc_q_vectors(vsi); 3544 if (ret) 3545 goto err_rings; 3546 3547 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3548 if (ret) 3549 goto err_vectors; 3550 3551 ret = ice_vsi_alloc_rings(vsi); 3552 if (ret) 3553 goto err_vectors; 3554 3555 ret = ice_vsi_alloc_ring_stats(vsi); 3556 if (ret) 3557 goto err_vectors; 3558 3559 vsi->stat_offsets_loaded = false; 3560 break; 3561 case ICE_VSI_CHNL: 3562 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3563 ice_vsi_cfg_rss_lut_key(vsi); 3564 ice_vsi_set_rss_flow_fld(vsi); 3565 } 3566 break; 3567 default: 3568 break; 3569 } 3570 3571 /* configure VSI nodes based on number of queues and TC's */ 3572 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3573 /* configure VSI nodes based on number of queues and TC's. 3574 * ADQ creates VSIs for each TC/Channel but doesn't 3575 * allocate queues instead it reconfigures the PF queues 3576 * as per the TC command. So max_txqs should point to the 3577 * PF Tx queues. 3578 */ 3579 if (vtype == ICE_VSI_CHNL) 3580 max_txqs[i] = pf->num_lan_tx; 3581 else 3582 max_txqs[i] = vsi->alloc_txq; 3583 3584 if (ice_is_xdp_ena_vsi(vsi)) 3585 max_txqs[i] += vsi->num_xdp_txq; 3586 } 3587 3588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3589 /* If MQPRIO is set, means channel code path, hence for main 3590 * VSI's, use TC as 1 3591 */ 3592 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3593 else 3594 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3595 vsi->tc_cfg.ena_tc, max_txqs); 3596 3597 if (ret) { 3598 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3599 vsi->vsi_num, ret); 3600 if (init_vsi) { 3601 ret = -EIO; 3602 goto err_vectors; 3603 } else { 3604 return ice_schedule_reset(pf, ICE_RESET_PFR); 3605 } 3606 } 3607 3608 if (ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq)) 3609 goto err_vectors; 3610 3611 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3612 kfree(coalesce); 3613 3614 return 0; 3615 3616 err_vectors: 3617 ice_vsi_free_q_vectors(vsi); 3618 err_rings: 3619 if (vsi->netdev) { 3620 vsi->current_netdev_flags = 0; 3621 unregister_netdev(vsi->netdev); 3622 free_netdev(vsi->netdev); 3623 vsi->netdev = NULL; 3624 } 3625 err_vsi: 3626 ice_vsi_clear(vsi); 3627 set_bit(ICE_RESET_FAILED, pf->state); 3628 kfree(coalesce); 3629 return ret; 3630 } 3631 3632 /** 3633 * ice_is_reset_in_progress - check for a reset in progress 3634 * @state: PF state field 3635 */ 3636 bool ice_is_reset_in_progress(unsigned long *state) 3637 { 3638 return test_bit(ICE_RESET_OICR_RECV, state) || 3639 test_bit(ICE_PFR_REQ, state) || 3640 test_bit(ICE_CORER_REQ, state) || 3641 test_bit(ICE_GLOBR_REQ, state); 3642 } 3643 3644 /** 3645 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3646 * @pf: pointer to the PF structure 3647 * @timeout: length of time to wait, in jiffies 3648 * 3649 * Wait (sleep) for a short time until the driver finishes cleaning up from 3650 * a device reset. The caller must be able to sleep. Use this to delay 3651 * operations that could fail while the driver is cleaning up after a device 3652 * reset. 3653 * 3654 * Returns 0 on success, -EBUSY if the reset is not finished within the 3655 * timeout, and -ERESTARTSYS if the thread was interrupted. 3656 */ 3657 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3658 { 3659 long ret; 3660 3661 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3662 !ice_is_reset_in_progress(pf->state), 3663 timeout); 3664 if (ret < 0) 3665 return ret; 3666 else if (!ret) 3667 return -EBUSY; 3668 else 3669 return 0; 3670 } 3671 3672 /** 3673 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3674 * @vsi: VSI being configured 3675 * @ctx: the context buffer returned from AQ VSI update command 3676 */ 3677 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3678 { 3679 vsi->info.mapping_flags = ctx->info.mapping_flags; 3680 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3681 sizeof(vsi->info.q_mapping)); 3682 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3683 sizeof(vsi->info.tc_mapping)); 3684 } 3685 3686 /** 3687 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3688 * @vsi: the VSI being configured 3689 * @ena_tc: TC map to be enabled 3690 */ 3691 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3692 { 3693 struct net_device *netdev = vsi->netdev; 3694 struct ice_pf *pf = vsi->back; 3695 int numtc = vsi->tc_cfg.numtc; 3696 struct ice_dcbx_cfg *dcbcfg; 3697 u8 netdev_tc; 3698 int i; 3699 3700 if (!netdev) 3701 return; 3702 3703 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3704 if (vsi->type == ICE_VSI_CHNL) 3705 return; 3706 3707 if (!ena_tc) { 3708 netdev_reset_tc(netdev); 3709 return; 3710 } 3711 3712 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3713 numtc = vsi->all_numtc; 3714 3715 if (netdev_set_num_tc(netdev, numtc)) 3716 return; 3717 3718 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3719 3720 ice_for_each_traffic_class(i) 3721 if (vsi->tc_cfg.ena_tc & BIT(i)) 3722 netdev_set_tc_queue(netdev, 3723 vsi->tc_cfg.tc_info[i].netdev_tc, 3724 vsi->tc_cfg.tc_info[i].qcount_tx, 3725 vsi->tc_cfg.tc_info[i].qoffset); 3726 /* setup TC queue map for CHNL TCs */ 3727 ice_for_each_chnl_tc(i) { 3728 if (!(vsi->all_enatc & BIT(i))) 3729 break; 3730 if (!vsi->mqprio_qopt.qopt.count[i]) 3731 break; 3732 netdev_set_tc_queue(netdev, i, 3733 vsi->mqprio_qopt.qopt.count[i], 3734 vsi->mqprio_qopt.qopt.offset[i]); 3735 } 3736 3737 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3738 return; 3739 3740 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3741 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3742 3743 /* Get the mapped netdev TC# for the UP */ 3744 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3745 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3746 } 3747 } 3748 3749 /** 3750 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3751 * @vsi: the VSI being configured, 3752 * @ctxt: VSI context structure 3753 * @ena_tc: number of traffic classes to enable 3754 * 3755 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3756 */ 3757 static int 3758 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3759 u8 ena_tc) 3760 { 3761 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3762 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3763 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3764 u16 new_txq, new_rxq; 3765 u8 netdev_tc = 0; 3766 int i; 3767 3768 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3769 3770 pow = order_base_2(tc0_qcount); 3771 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3772 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3773 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3774 3775 ice_for_each_traffic_class(i) { 3776 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3777 /* TC is not enabled */ 3778 vsi->tc_cfg.tc_info[i].qoffset = 0; 3779 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3780 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3781 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3782 ctxt->info.tc_mapping[i] = 0; 3783 continue; 3784 } 3785 3786 offset = vsi->mqprio_qopt.qopt.offset[i]; 3787 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3788 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3789 vsi->tc_cfg.tc_info[i].qoffset = offset; 3790 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3791 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3792 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3793 } 3794 3795 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3796 ice_for_each_chnl_tc(i) { 3797 if (!(vsi->all_enatc & BIT(i))) 3798 continue; 3799 offset = vsi->mqprio_qopt.qopt.offset[i]; 3800 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3801 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3802 } 3803 } 3804 3805 new_txq = offset + qcount_tx; 3806 if (new_txq > vsi->alloc_txq) { 3807 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3808 new_txq, vsi->alloc_txq); 3809 return -EINVAL; 3810 } 3811 3812 new_rxq = offset + qcount_rx; 3813 if (new_rxq > vsi->alloc_rxq) { 3814 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3815 new_rxq, vsi->alloc_rxq); 3816 return -EINVAL; 3817 } 3818 3819 /* Set actual Tx/Rx queue pairs */ 3820 vsi->num_txq = new_txq; 3821 vsi->num_rxq = new_rxq; 3822 3823 /* Setup queue TC[0].qmap for given VSI context */ 3824 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3825 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3826 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3827 3828 /* Find queue count available for channel VSIs and starting offset 3829 * for channel VSIs 3830 */ 3831 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3832 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3833 vsi->next_base_q = tc0_qcount; 3834 } 3835 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3836 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3837 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3838 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3839 3840 return 0; 3841 } 3842 3843 /** 3844 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3845 * @vsi: VSI to be configured 3846 * @ena_tc: TC bitmap 3847 * 3848 * VSI queues expected to be quiesced before calling this function 3849 */ 3850 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3851 { 3852 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3853 struct ice_pf *pf = vsi->back; 3854 struct ice_tc_cfg old_tc_cfg; 3855 struct ice_vsi_ctx *ctx; 3856 struct device *dev; 3857 int i, ret = 0; 3858 u8 num_tc = 0; 3859 3860 dev = ice_pf_to_dev(pf); 3861 if (vsi->tc_cfg.ena_tc == ena_tc && 3862 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3863 return ret; 3864 3865 ice_for_each_traffic_class(i) { 3866 /* build bitmap of enabled TCs */ 3867 if (ena_tc & BIT(i)) 3868 num_tc++; 3869 /* populate max_txqs per TC */ 3870 max_txqs[i] = vsi->alloc_txq; 3871 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3872 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3873 */ 3874 if (vsi->type == ICE_VSI_CHNL && 3875 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3876 max_txqs[i] = vsi->num_txq; 3877 } 3878 3879 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3880 vsi->tc_cfg.ena_tc = ena_tc; 3881 vsi->tc_cfg.numtc = num_tc; 3882 3883 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3884 if (!ctx) 3885 return -ENOMEM; 3886 3887 ctx->vf_num = 0; 3888 ctx->info = vsi->info; 3889 3890 if (vsi->type == ICE_VSI_PF && 3891 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3892 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3893 else 3894 ret = ice_vsi_setup_q_map(vsi, ctx); 3895 3896 if (ret) { 3897 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3898 goto out; 3899 } 3900 3901 /* must to indicate which section of VSI context are being modified */ 3902 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3903 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3904 if (ret) { 3905 dev_info(dev, "Failed VSI Update\n"); 3906 goto out; 3907 } 3908 3909 if (vsi->type == ICE_VSI_PF && 3910 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3911 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3912 else 3913 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3914 vsi->tc_cfg.ena_tc, max_txqs); 3915 3916 if (ret) { 3917 dev_err(dev, "VSI %d failed TC config, error %d\n", 3918 vsi->vsi_num, ret); 3919 goto out; 3920 } 3921 ice_vsi_update_q_map(vsi, ctx); 3922 vsi->info.valid_sections = 0; 3923 3924 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3925 out: 3926 kfree(ctx); 3927 return ret; 3928 } 3929 3930 /** 3931 * ice_update_ring_stats - Update ring statistics 3932 * @stats: stats to be updated 3933 * @pkts: number of processed packets 3934 * @bytes: number of processed bytes 3935 * 3936 * This function assumes that caller has acquired a u64_stats_sync lock. 3937 */ 3938 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3939 { 3940 stats->bytes += bytes; 3941 stats->pkts += pkts; 3942 } 3943 3944 /** 3945 * ice_update_tx_ring_stats - Update Tx ring specific counters 3946 * @tx_ring: ring to update 3947 * @pkts: number of processed packets 3948 * @bytes: number of processed bytes 3949 */ 3950 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3951 { 3952 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3953 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3954 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3955 } 3956 3957 /** 3958 * ice_update_rx_ring_stats - Update Rx ring specific counters 3959 * @rx_ring: ring to update 3960 * @pkts: number of processed packets 3961 * @bytes: number of processed bytes 3962 */ 3963 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3964 { 3965 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3966 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3967 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3968 } 3969 3970 /** 3971 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3972 * @pi: port info of the switch with default VSI 3973 * 3974 * Return true if the there is a single VSI in default forwarding VSI list 3975 */ 3976 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3977 { 3978 bool exists = false; 3979 3980 ice_check_if_dflt_vsi(pi, 0, &exists); 3981 return exists; 3982 } 3983 3984 /** 3985 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3986 * @vsi: VSI to compare against default forwarding VSI 3987 * 3988 * If this VSI passed in is the default forwarding VSI then return true, else 3989 * return false 3990 */ 3991 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3992 { 3993 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3994 } 3995 3996 /** 3997 * ice_set_dflt_vsi - set the default forwarding VSI 3998 * @vsi: VSI getting set as the default forwarding VSI on the switch 3999 * 4000 * If the VSI passed in is already the default VSI and it's enabled just return 4001 * success. 4002 * 4003 * Otherwise try to set the VSI passed in as the switch's default VSI and 4004 * return the result. 4005 */ 4006 int ice_set_dflt_vsi(struct ice_vsi *vsi) 4007 { 4008 struct device *dev; 4009 int status; 4010 4011 if (!vsi) 4012 return -EINVAL; 4013 4014 dev = ice_pf_to_dev(vsi->back); 4015 4016 /* the VSI passed in is already the default VSI */ 4017 if (ice_is_vsi_dflt_vsi(vsi)) { 4018 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 4019 vsi->vsi_num); 4020 return 0; 4021 } 4022 4023 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 4024 if (status) { 4025 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 4026 vsi->vsi_num, status); 4027 return status; 4028 } 4029 4030 return 0; 4031 } 4032 4033 /** 4034 * ice_clear_dflt_vsi - clear the default forwarding VSI 4035 * @vsi: VSI to remove from filter list 4036 * 4037 * If the switch has no default VSI or it's not enabled then return error. 4038 * 4039 * Otherwise try to clear the default VSI and return the result. 4040 */ 4041 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 4042 { 4043 struct device *dev; 4044 int status; 4045 4046 if (!vsi) 4047 return -EINVAL; 4048 4049 dev = ice_pf_to_dev(vsi->back); 4050 4051 /* there is no default VSI configured */ 4052 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 4053 return -ENODEV; 4054 4055 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 4056 ICE_FLTR_RX); 4057 if (status) { 4058 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 4059 vsi->vsi_num, status); 4060 return -EIO; 4061 } 4062 4063 return 0; 4064 } 4065 4066 /** 4067 * ice_get_link_speed_mbps - get link speed in Mbps 4068 * @vsi: the VSI whose link speed is being queried 4069 * 4070 * Return current VSI link speed and 0 if the speed is unknown. 4071 */ 4072 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 4073 { 4074 unsigned int link_speed; 4075 4076 link_speed = vsi->port_info->phy.link_info.link_speed; 4077 4078 return (int)ice_get_link_speed(fls(link_speed) - 1); 4079 } 4080 4081 /** 4082 * ice_get_link_speed_kbps - get link speed in Kbps 4083 * @vsi: the VSI whose link speed is being queried 4084 * 4085 * Return current VSI link speed and 0 if the speed is unknown. 4086 */ 4087 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 4088 { 4089 int speed_mbps; 4090 4091 speed_mbps = ice_get_link_speed_mbps(vsi); 4092 4093 return speed_mbps * 1000; 4094 } 4095 4096 /** 4097 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 4098 * @vsi: VSI to be configured 4099 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 4100 * 4101 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 4102 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 4103 * on TC 0. 4104 */ 4105 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 4106 { 4107 struct ice_pf *pf = vsi->back; 4108 struct device *dev; 4109 int status; 4110 int speed; 4111 4112 dev = ice_pf_to_dev(pf); 4113 if (!vsi->port_info) { 4114 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4115 vsi->idx, vsi->type); 4116 return -EINVAL; 4117 } 4118 4119 speed = ice_get_link_speed_kbps(vsi); 4120 if (min_tx_rate > (u64)speed) { 4121 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4122 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4123 speed); 4124 return -EINVAL; 4125 } 4126 4127 /* Configure min BW for VSI limit */ 4128 if (min_tx_rate) { 4129 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4130 ICE_MIN_BW, min_tx_rate); 4131 if (status) { 4132 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4133 min_tx_rate, ice_vsi_type_str(vsi->type), 4134 vsi->idx); 4135 return status; 4136 } 4137 4138 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4139 min_tx_rate, ice_vsi_type_str(vsi->type)); 4140 } else { 4141 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4142 vsi->idx, 0, 4143 ICE_MIN_BW); 4144 if (status) { 4145 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4146 ice_vsi_type_str(vsi->type), vsi->idx); 4147 return status; 4148 } 4149 4150 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4151 ice_vsi_type_str(vsi->type), vsi->idx); 4152 } 4153 4154 return 0; 4155 } 4156 4157 /** 4158 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4159 * @vsi: VSI to be configured 4160 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4161 * 4162 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4163 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4164 * on TC 0. 4165 */ 4166 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4167 { 4168 struct ice_pf *pf = vsi->back; 4169 struct device *dev; 4170 int status; 4171 int speed; 4172 4173 dev = ice_pf_to_dev(pf); 4174 if (!vsi->port_info) { 4175 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4176 vsi->idx, vsi->type); 4177 return -EINVAL; 4178 } 4179 4180 speed = ice_get_link_speed_kbps(vsi); 4181 if (max_tx_rate > (u64)speed) { 4182 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4183 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4184 speed); 4185 return -EINVAL; 4186 } 4187 4188 /* Configure max BW for VSI limit */ 4189 if (max_tx_rate) { 4190 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4191 ICE_MAX_BW, max_tx_rate); 4192 if (status) { 4193 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4194 max_tx_rate, ice_vsi_type_str(vsi->type), 4195 vsi->idx); 4196 return status; 4197 } 4198 4199 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4200 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4201 } else { 4202 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4203 vsi->idx, 0, 4204 ICE_MAX_BW); 4205 if (status) { 4206 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4207 ice_vsi_type_str(vsi->type), vsi->idx); 4208 return status; 4209 } 4210 4211 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4212 ice_vsi_type_str(vsi->type), vsi->idx); 4213 } 4214 4215 return 0; 4216 } 4217 4218 /** 4219 * ice_set_link - turn on/off physical link 4220 * @vsi: VSI to modify physical link on 4221 * @ena: turn on/off physical link 4222 */ 4223 int ice_set_link(struct ice_vsi *vsi, bool ena) 4224 { 4225 struct device *dev = ice_pf_to_dev(vsi->back); 4226 struct ice_port_info *pi = vsi->port_info; 4227 struct ice_hw *hw = pi->hw; 4228 int status; 4229 4230 if (vsi->type != ICE_VSI_PF) 4231 return -EINVAL; 4232 4233 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4234 4235 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4236 * this is not a fatal error, so print a warning message and return 4237 * a success code. Return an error if FW returns an error code other 4238 * than ICE_AQ_RC_EMODE 4239 */ 4240 if (status == -EIO) { 4241 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4242 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4243 (ena ? "ON" : "OFF"), status, 4244 ice_aq_str(hw->adminq.sq_last_status)); 4245 } else if (status) { 4246 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4247 (ena ? "ON" : "OFF"), status, 4248 ice_aq_str(hw->adminq.sq_last_status)); 4249 return status; 4250 } 4251 4252 return 0; 4253 } 4254 4255 /** 4256 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4257 * @vsi: VSI used to add VLAN filters 4258 * 4259 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4260 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4261 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4262 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4263 * 4264 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4265 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4266 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4267 * 4268 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4269 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4270 * part of filtering. 4271 */ 4272 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4273 { 4274 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4275 struct ice_vlan vlan; 4276 int err; 4277 4278 vlan = ICE_VLAN(0, 0, 0); 4279 err = vlan_ops->add_vlan(vsi, &vlan); 4280 if (err && err != -EEXIST) 4281 return err; 4282 4283 /* in SVM both VLAN 0 filters are identical */ 4284 if (!ice_is_dvm_ena(&vsi->back->hw)) 4285 return 0; 4286 4287 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4288 err = vlan_ops->add_vlan(vsi, &vlan); 4289 if (err && err != -EEXIST) 4290 return err; 4291 4292 return 0; 4293 } 4294 4295 /** 4296 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4297 * @vsi: VSI used to add VLAN filters 4298 * 4299 * Delete the VLAN 0 filters in the same manner that they were added in 4300 * ice_vsi_add_vlan_zero. 4301 */ 4302 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4303 { 4304 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4305 struct ice_vlan vlan; 4306 int err; 4307 4308 vlan = ICE_VLAN(0, 0, 0); 4309 err = vlan_ops->del_vlan(vsi, &vlan); 4310 if (err && err != -EEXIST) 4311 return err; 4312 4313 /* in SVM both VLAN 0 filters are identical */ 4314 if (!ice_is_dvm_ena(&vsi->back->hw)) 4315 return 0; 4316 4317 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4318 err = vlan_ops->del_vlan(vsi, &vlan); 4319 if (err && err != -EEXIST) 4320 return err; 4321 4322 /* when deleting the last VLAN filter, make sure to disable the VLAN 4323 * promisc mode so the filter isn't left by accident 4324 */ 4325 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 4326 ICE_MCAST_VLAN_PROMISC_BITS, 0); 4327 } 4328 4329 /** 4330 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4331 * @vsi: VSI used to get the VLAN mode 4332 * 4333 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4334 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4335 */ 4336 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4337 { 4338 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4339 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4340 /* no VLAN 0 filter is created when a port VLAN is active */ 4341 if (vsi->type == ICE_VSI_VF) { 4342 if (WARN_ON(!vsi->vf)) 4343 return 0; 4344 4345 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4346 return 0; 4347 } 4348 4349 if (ice_is_dvm_ena(&vsi->back->hw)) 4350 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4351 else 4352 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4353 } 4354 4355 /** 4356 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4357 * @vsi: VSI used to determine if any non-zero VLANs have been added 4358 */ 4359 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4360 { 4361 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4362 } 4363 4364 /** 4365 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4366 * @vsi: VSI used to get the number of non-zero VLANs added 4367 */ 4368 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4369 { 4370 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4371 } 4372 4373 /** 4374 * ice_is_feature_supported 4375 * @pf: pointer to the struct ice_pf instance 4376 * @f: feature enum to be checked 4377 * 4378 * returns true if feature is supported, false otherwise 4379 */ 4380 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4381 { 4382 if (f < 0 || f >= ICE_F_MAX) 4383 return false; 4384 4385 return test_bit(f, pf->features); 4386 } 4387 4388 /** 4389 * ice_set_feature_support 4390 * @pf: pointer to the struct ice_pf instance 4391 * @f: feature enum to set 4392 */ 4393 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4394 { 4395 if (f < 0 || f >= ICE_F_MAX) 4396 return; 4397 4398 set_bit(f, pf->features); 4399 } 4400 4401 /** 4402 * ice_clear_feature_support 4403 * @pf: pointer to the struct ice_pf instance 4404 * @f: feature enum to clear 4405 */ 4406 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4407 { 4408 if (f < 0 || f >= ICE_F_MAX) 4409 return; 4410 4411 clear_bit(f, pf->features); 4412 } 4413 4414 /** 4415 * ice_init_feature_support 4416 * @pf: pointer to the struct ice_pf instance 4417 * 4418 * called during init to setup supported feature 4419 */ 4420 void ice_init_feature_support(struct ice_pf *pf) 4421 { 4422 switch (pf->hw.device_id) { 4423 case ICE_DEV_ID_E810C_BACKPLANE: 4424 case ICE_DEV_ID_E810C_QSFP: 4425 case ICE_DEV_ID_E810C_SFP: 4426 ice_set_feature_support(pf, ICE_F_DSCP); 4427 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4428 if (ice_is_e810t(&pf->hw)) { 4429 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4430 if (ice_gnss_is_gps_present(&pf->hw)) 4431 ice_set_feature_support(pf, ICE_F_GNSS); 4432 } 4433 break; 4434 default: 4435 break; 4436 } 4437 } 4438 4439 /** 4440 * ice_vsi_update_security - update security block in VSI 4441 * @vsi: pointer to VSI structure 4442 * @fill: function pointer to fill ctx 4443 */ 4444 int 4445 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4446 { 4447 struct ice_vsi_ctx ctx = { 0 }; 4448 4449 ctx.info = vsi->info; 4450 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4451 fill(&ctx); 4452 4453 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4454 return -ENODEV; 4455 4456 vsi->info = ctx.info; 4457 return 0; 4458 } 4459 4460 /** 4461 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4462 * @ctx: pointer to VSI ctx structure 4463 */ 4464 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4465 { 4466 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4467 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4468 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4469 } 4470 4471 /** 4472 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4473 * @ctx: pointer to VSI ctx structure 4474 */ 4475 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4476 { 4477 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4478 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4479 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4480 } 4481 4482 /** 4483 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4484 * @ctx: pointer to VSI ctx structure 4485 */ 4486 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4487 { 4488 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4489 } 4490 4491 /** 4492 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4493 * @ctx: pointer to VSI ctx structure 4494 */ 4495 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4496 { 4497 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4498 } 4499