1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 173 { 174 enum ice_vsi_type vsi_type = vsi->type; 175 struct ice_pf *pf = vsi->back; 176 struct ice_vf *vf = vsi->vf; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of PRs 216 * Each ring is associated to the corresponding VF_PR netdev. 217 * Tx and Rx rings are always equal 218 */ 219 if (vsi->req_txq && vsi->req_rxq) { 220 vsi->alloc_txq = vsi->req_txq; 221 vsi->alloc_rxq = vsi->req_rxq; 222 } else { 223 vsi->alloc_txq = 1; 224 vsi->alloc_rxq = 1; 225 } 226 227 vsi->num_q_vectors = 1; 228 break; 229 case ICE_VSI_VF: 230 if (vf->num_req_qs) 231 vf->num_vf_qs = vf->num_req_qs; 232 vsi->alloc_txq = vf->num_vf_qs; 233 vsi->alloc_rxq = vf->num_vf_qs; 234 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 235 * data queue interrupts). Since vsi->num_q_vectors is number 236 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 237 * original vector count 238 */ 239 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF; 240 break; 241 case ICE_VSI_CTRL: 242 vsi->alloc_txq = 1; 243 vsi->alloc_rxq = 1; 244 vsi->num_q_vectors = 1; 245 break; 246 case ICE_VSI_CHNL: 247 vsi->alloc_txq = 0; 248 vsi->alloc_rxq = 0; 249 break; 250 case ICE_VSI_LB: 251 vsi->alloc_txq = 1; 252 vsi->alloc_rxq = 1; 253 break; 254 default: 255 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 256 break; 257 } 258 259 ice_vsi_set_num_desc(vsi); 260 } 261 262 /** 263 * ice_get_free_slot - get the next non-NULL location index in array 264 * @array: array to search 265 * @size: size of the array 266 * @curr: last known occupied index to be used as a search hint 267 * 268 * void * is being used to keep the functionality generic. This lets us use this 269 * function on any array of pointers. 270 */ 271 static int ice_get_free_slot(void *array, int size, int curr) 272 { 273 int **tmp_array = (int **)array; 274 int next; 275 276 if (curr < (size - 1) && !tmp_array[curr + 1]) { 277 next = curr + 1; 278 } else { 279 int i = 0; 280 281 while ((i < size) && (tmp_array[i])) 282 i++; 283 if (i == size) 284 next = ICE_NO_VSI; 285 else 286 next = i; 287 } 288 return next; 289 } 290 291 /** 292 * ice_vsi_delete_from_hw - delete a VSI from the switch 293 * @vsi: pointer to VSI being removed 294 */ 295 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 296 { 297 struct ice_pf *pf = vsi->back; 298 struct ice_vsi_ctx *ctxt; 299 int status; 300 301 ice_fltr_remove_all(vsi); 302 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 303 if (!ctxt) 304 return; 305 306 if (vsi->type == ICE_VSI_VF) 307 ctxt->vf_num = vsi->vf->vf_id; 308 ctxt->vsi_num = vsi->vsi_num; 309 310 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 311 312 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 313 if (status) 314 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 315 vsi->vsi_num, status); 316 317 kfree(ctxt); 318 } 319 320 /** 321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 322 * @vsi: pointer to VSI being cleared 323 */ 324 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 325 { 326 struct ice_pf *pf = vsi->back; 327 struct device *dev; 328 329 dev = ice_pf_to_dev(pf); 330 331 bitmap_free(vsi->af_xdp_zc_qps); 332 vsi->af_xdp_zc_qps = NULL; 333 /* free the ring and vector containers */ 334 devm_kfree(dev, vsi->q_vectors); 335 vsi->q_vectors = NULL; 336 devm_kfree(dev, vsi->tx_rings); 337 vsi->tx_rings = NULL; 338 devm_kfree(dev, vsi->rx_rings); 339 vsi->rx_rings = NULL; 340 devm_kfree(dev, vsi->txq_map); 341 vsi->txq_map = NULL; 342 devm_kfree(dev, vsi->rxq_map); 343 vsi->rxq_map = NULL; 344 } 345 346 /** 347 * ice_vsi_free_stats - Free the ring statistics structures 348 * @vsi: VSI pointer 349 */ 350 static void ice_vsi_free_stats(struct ice_vsi *vsi) 351 { 352 struct ice_vsi_stats *vsi_stat; 353 struct ice_pf *pf = vsi->back; 354 int i; 355 356 if (vsi->type == ICE_VSI_CHNL) 357 return; 358 if (!pf->vsi_stats) 359 return; 360 361 vsi_stat = pf->vsi_stats[vsi->idx]; 362 if (!vsi_stat) 363 return; 364 365 ice_for_each_alloc_txq(vsi, i) { 366 if (vsi_stat->tx_ring_stats[i]) { 367 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 368 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 369 } 370 } 371 372 ice_for_each_alloc_rxq(vsi, i) { 373 if (vsi_stat->rx_ring_stats[i]) { 374 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 375 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 376 } 377 } 378 379 kfree(vsi_stat->tx_ring_stats); 380 kfree(vsi_stat->rx_ring_stats); 381 kfree(vsi_stat); 382 pf->vsi_stats[vsi->idx] = NULL; 383 } 384 385 /** 386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 387 * @vsi: VSI which is having stats allocated 388 */ 389 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 390 { 391 struct ice_ring_stats **tx_ring_stats; 392 struct ice_ring_stats **rx_ring_stats; 393 struct ice_vsi_stats *vsi_stats; 394 struct ice_pf *pf = vsi->back; 395 u16 i; 396 397 vsi_stats = pf->vsi_stats[vsi->idx]; 398 tx_ring_stats = vsi_stats->tx_ring_stats; 399 rx_ring_stats = vsi_stats->rx_ring_stats; 400 401 /* Allocate Tx ring stats */ 402 ice_for_each_alloc_txq(vsi, i) { 403 struct ice_ring_stats *ring_stats; 404 struct ice_tx_ring *ring; 405 406 ring = vsi->tx_rings[i]; 407 ring_stats = tx_ring_stats[i]; 408 409 if (!ring_stats) { 410 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 411 if (!ring_stats) 412 goto err_out; 413 414 WRITE_ONCE(tx_ring_stats[i], ring_stats); 415 } 416 417 ring->ring_stats = ring_stats; 418 } 419 420 /* Allocate Rx ring stats */ 421 ice_for_each_alloc_rxq(vsi, i) { 422 struct ice_ring_stats *ring_stats; 423 struct ice_rx_ring *ring; 424 425 ring = vsi->rx_rings[i]; 426 ring_stats = rx_ring_stats[i]; 427 428 if (!ring_stats) { 429 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 430 if (!ring_stats) 431 goto err_out; 432 433 WRITE_ONCE(rx_ring_stats[i], ring_stats); 434 } 435 436 ring->ring_stats = ring_stats; 437 } 438 439 return 0; 440 441 err_out: 442 ice_vsi_free_stats(vsi); 443 return -ENOMEM; 444 } 445 446 /** 447 * ice_vsi_free - clean up and deallocate the provided VSI 448 * @vsi: pointer to VSI being cleared 449 * 450 * This deallocates the VSI's queue resources, removes it from the PF's 451 * VSI array if necessary, and deallocates the VSI 452 */ 453 static void ice_vsi_free(struct ice_vsi *vsi) 454 { 455 struct ice_pf *pf = NULL; 456 struct device *dev; 457 458 if (!vsi || !vsi->back) 459 return; 460 461 pf = vsi->back; 462 dev = ice_pf_to_dev(pf); 463 464 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 465 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 466 return; 467 } 468 469 mutex_lock(&pf->sw_mutex); 470 /* updates the PF for this cleared VSI */ 471 472 pf->vsi[vsi->idx] = NULL; 473 pf->next_vsi = vsi->idx; 474 475 ice_vsi_free_stats(vsi); 476 ice_vsi_free_arrays(vsi); 477 mutex_unlock(&pf->sw_mutex); 478 devm_kfree(dev, vsi); 479 } 480 481 void ice_vsi_delete(struct ice_vsi *vsi) 482 { 483 ice_vsi_delete_from_hw(vsi); 484 ice_vsi_free(vsi); 485 } 486 487 /** 488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 489 * @irq: interrupt number 490 * @data: pointer to a q_vector 491 */ 492 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 493 { 494 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 495 496 if (!q_vector->tx.tx_ring) 497 return IRQ_HANDLED; 498 499 #define FDIR_RX_DESC_CLEAN_BUDGET 64 500 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 501 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 502 503 return IRQ_HANDLED; 504 } 505 506 /** 507 * ice_msix_clean_rings - MSIX mode Interrupt Handler 508 * @irq: interrupt number 509 * @data: pointer to a q_vector 510 */ 511 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 512 { 513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 514 515 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 516 return IRQ_HANDLED; 517 518 q_vector->total_events++; 519 520 napi_schedule(&q_vector->napi); 521 522 return IRQ_HANDLED; 523 } 524 525 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 526 { 527 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 528 struct ice_pf *pf = q_vector->vsi->back; 529 struct ice_repr *repr; 530 unsigned long id; 531 532 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 533 return IRQ_HANDLED; 534 535 xa_for_each(&pf->eswitch.reprs, id, repr) 536 napi_schedule(&repr->q_vector->napi); 537 538 return IRQ_HANDLED; 539 } 540 541 /** 542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 543 * @vsi: VSI pointer 544 */ 545 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 546 { 547 struct ice_vsi_stats *vsi_stat; 548 struct ice_pf *pf = vsi->back; 549 550 if (vsi->type == ICE_VSI_CHNL) 551 return 0; 552 if (!pf->vsi_stats) 553 return -ENOENT; 554 555 if (pf->vsi_stats[vsi->idx]) 556 /* realloc will happen in rebuild path */ 557 return 0; 558 559 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 560 if (!vsi_stat) 561 return -ENOMEM; 562 563 vsi_stat->tx_ring_stats = 564 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 565 GFP_KERNEL); 566 if (!vsi_stat->tx_ring_stats) 567 goto err_alloc_tx; 568 569 vsi_stat->rx_ring_stats = 570 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 571 GFP_KERNEL); 572 if (!vsi_stat->rx_ring_stats) 573 goto err_alloc_rx; 574 575 pf->vsi_stats[vsi->idx] = vsi_stat; 576 577 return 0; 578 579 err_alloc_rx: 580 kfree(vsi_stat->rx_ring_stats); 581 err_alloc_tx: 582 kfree(vsi_stat->tx_ring_stats); 583 kfree(vsi_stat); 584 pf->vsi_stats[vsi->idx] = NULL; 585 return -ENOMEM; 586 } 587 588 /** 589 * ice_vsi_alloc_def - set default values for already allocated VSI 590 * @vsi: ptr to VSI 591 * @ch: ptr to channel 592 */ 593 static int 594 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 595 { 596 if (vsi->type != ICE_VSI_CHNL) { 597 ice_vsi_set_num_qs(vsi); 598 if (ice_vsi_alloc_arrays(vsi)) 599 return -ENOMEM; 600 } 601 602 switch (vsi->type) { 603 case ICE_VSI_SWITCHDEV_CTRL: 604 /* Setup eswitch MSIX irq handler for VSI */ 605 vsi->irq_handler = ice_eswitch_msix_clean_rings; 606 break; 607 case ICE_VSI_PF: 608 /* Setup default MSIX irq handler for VSI */ 609 vsi->irq_handler = ice_msix_clean_rings; 610 break; 611 case ICE_VSI_CTRL: 612 /* Setup ctrl VSI MSIX irq handler */ 613 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 614 break; 615 case ICE_VSI_CHNL: 616 if (!ch) 617 return -EINVAL; 618 619 vsi->num_rxq = ch->num_rxq; 620 vsi->num_txq = ch->num_txq; 621 vsi->next_base_q = ch->base_q; 622 break; 623 case ICE_VSI_VF: 624 case ICE_VSI_LB: 625 break; 626 default: 627 ice_vsi_free_arrays(vsi); 628 return -EINVAL; 629 } 630 631 return 0; 632 } 633 634 /** 635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 636 * @pf: board private structure 637 * 638 * Reserves a VSI index from the PF and allocates an empty VSI structure 639 * without a type. The VSI structure must later be initialized by calling 640 * ice_vsi_cfg(). 641 * 642 * returns a pointer to a VSI on success, NULL on failure. 643 */ 644 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 645 { 646 struct device *dev = ice_pf_to_dev(pf); 647 struct ice_vsi *vsi = NULL; 648 649 /* Need to protect the allocation of the VSIs at the PF level */ 650 mutex_lock(&pf->sw_mutex); 651 652 /* If we have already allocated our maximum number of VSIs, 653 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 654 * is available to be populated 655 */ 656 if (pf->next_vsi == ICE_NO_VSI) { 657 dev_dbg(dev, "out of VSI slots!\n"); 658 goto unlock_pf; 659 } 660 661 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 662 if (!vsi) 663 goto unlock_pf; 664 665 vsi->back = pf; 666 set_bit(ICE_VSI_DOWN, vsi->state); 667 668 /* fill slot and make note of the index */ 669 vsi->idx = pf->next_vsi; 670 pf->vsi[pf->next_vsi] = vsi; 671 672 /* prepare pf->next_vsi for next use */ 673 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 674 pf->next_vsi); 675 676 unlock_pf: 677 mutex_unlock(&pf->sw_mutex); 678 return vsi; 679 } 680 681 /** 682 * ice_alloc_fd_res - Allocate FD resource for a VSI 683 * @vsi: pointer to the ice_vsi 684 * 685 * This allocates the FD resources 686 * 687 * Returns 0 on success, -EPERM on no-op or -EIO on failure 688 */ 689 static int ice_alloc_fd_res(struct ice_vsi *vsi) 690 { 691 struct ice_pf *pf = vsi->back; 692 u32 g_val, b_val; 693 694 /* Flow Director filters are only allocated/assigned to the PF VSI or 695 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 696 * add/delete filters so resources are not allocated to it 697 */ 698 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 699 return -EPERM; 700 701 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 702 vsi->type == ICE_VSI_CHNL)) 703 return -EPERM; 704 705 /* FD filters from guaranteed pool per VSI */ 706 g_val = pf->hw.func_caps.fd_fltr_guar; 707 if (!g_val) 708 return -EPERM; 709 710 /* FD filters from best effort pool */ 711 b_val = pf->hw.func_caps.fd_fltr_best_effort; 712 if (!b_val) 713 return -EPERM; 714 715 /* PF main VSI gets only 64 FD resources from guaranteed pool 716 * when ADQ is configured. 717 */ 718 #define ICE_PF_VSI_GFLTR 64 719 720 /* determine FD filter resources per VSI from shared(best effort) and 721 * dedicated pool 722 */ 723 if (vsi->type == ICE_VSI_PF) { 724 vsi->num_gfltr = g_val; 725 /* if MQPRIO is configured, main VSI doesn't get all FD 726 * resources from guaranteed pool. PF VSI gets 64 FD resources 727 */ 728 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 729 if (g_val < ICE_PF_VSI_GFLTR) 730 return -EPERM; 731 /* allow bare minimum entries for PF VSI */ 732 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 733 } 734 735 /* each VSI gets same "best_effort" quota */ 736 vsi->num_bfltr = b_val; 737 } else if (vsi->type == ICE_VSI_VF) { 738 vsi->num_gfltr = 0; 739 740 /* each VSI gets same "best_effort" quota */ 741 vsi->num_bfltr = b_val; 742 } else { 743 struct ice_vsi *main_vsi; 744 int numtc; 745 746 main_vsi = ice_get_main_vsi(pf); 747 if (!main_vsi) 748 return -EPERM; 749 750 if (!main_vsi->all_numtc) 751 return -EINVAL; 752 753 /* figure out ADQ numtc */ 754 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 755 756 /* only one TC but still asking resources for channels, 757 * invalid config 758 */ 759 if (numtc < ICE_CHNL_START_TC) 760 return -EPERM; 761 762 g_val -= ICE_PF_VSI_GFLTR; 763 /* channel VSIs gets equal share from guaranteed pool */ 764 vsi->num_gfltr = g_val / numtc; 765 766 /* each VSI gets same "best_effort" quota */ 767 vsi->num_bfltr = b_val; 768 } 769 770 return 0; 771 } 772 773 /** 774 * ice_vsi_get_qs - Assign queues from PF to VSI 775 * @vsi: the VSI to assign queues to 776 * 777 * Returns 0 on success and a negative value on error 778 */ 779 static int ice_vsi_get_qs(struct ice_vsi *vsi) 780 { 781 struct ice_pf *pf = vsi->back; 782 struct ice_qs_cfg tx_qs_cfg = { 783 .qs_mutex = &pf->avail_q_mutex, 784 .pf_map = pf->avail_txqs, 785 .pf_map_size = pf->max_pf_txqs, 786 .q_count = vsi->alloc_txq, 787 .scatter_count = ICE_MAX_SCATTER_TXQS, 788 .vsi_map = vsi->txq_map, 789 .vsi_map_offset = 0, 790 .mapping_mode = ICE_VSI_MAP_CONTIG 791 }; 792 struct ice_qs_cfg rx_qs_cfg = { 793 .qs_mutex = &pf->avail_q_mutex, 794 .pf_map = pf->avail_rxqs, 795 .pf_map_size = pf->max_pf_rxqs, 796 .q_count = vsi->alloc_rxq, 797 .scatter_count = ICE_MAX_SCATTER_RXQS, 798 .vsi_map = vsi->rxq_map, 799 .vsi_map_offset = 0, 800 .mapping_mode = ICE_VSI_MAP_CONTIG 801 }; 802 int ret; 803 804 if (vsi->type == ICE_VSI_CHNL) 805 return 0; 806 807 ret = __ice_vsi_get_qs(&tx_qs_cfg); 808 if (ret) 809 return ret; 810 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 811 812 ret = __ice_vsi_get_qs(&rx_qs_cfg); 813 if (ret) 814 return ret; 815 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 816 817 return 0; 818 } 819 820 /** 821 * ice_vsi_put_qs - Release queues from VSI to PF 822 * @vsi: the VSI that is going to release queues 823 */ 824 static void ice_vsi_put_qs(struct ice_vsi *vsi) 825 { 826 struct ice_pf *pf = vsi->back; 827 int i; 828 829 mutex_lock(&pf->avail_q_mutex); 830 831 ice_for_each_alloc_txq(vsi, i) { 832 clear_bit(vsi->txq_map[i], pf->avail_txqs); 833 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 834 } 835 836 ice_for_each_alloc_rxq(vsi, i) { 837 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 838 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 839 } 840 841 mutex_unlock(&pf->avail_q_mutex); 842 } 843 844 /** 845 * ice_is_safe_mode 846 * @pf: pointer to the PF struct 847 * 848 * returns true if driver is in safe mode, false otherwise 849 */ 850 bool ice_is_safe_mode(struct ice_pf *pf) 851 { 852 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 853 } 854 855 /** 856 * ice_is_rdma_ena 857 * @pf: pointer to the PF struct 858 * 859 * returns true if RDMA is currently supported, false otherwise 860 */ 861 bool ice_is_rdma_ena(struct ice_pf *pf) 862 { 863 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 864 } 865 866 /** 867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 868 * @vsi: the VSI being cleaned up 869 * 870 * This function deletes RSS input set for all flows that were configured 871 * for this VSI 872 */ 873 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 874 { 875 struct ice_pf *pf = vsi->back; 876 int status; 877 878 if (ice_is_safe_mode(pf)) 879 return; 880 881 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 882 if (status) 883 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 884 vsi->vsi_num, status); 885 } 886 887 /** 888 * ice_rss_clean - Delete RSS related VSI structures and configuration 889 * @vsi: the VSI being removed 890 */ 891 static void ice_rss_clean(struct ice_vsi *vsi) 892 { 893 struct ice_pf *pf = vsi->back; 894 struct device *dev; 895 896 dev = ice_pf_to_dev(pf); 897 898 devm_kfree(dev, vsi->rss_hkey_user); 899 devm_kfree(dev, vsi->rss_lut_user); 900 901 ice_vsi_clean_rss_flow_fld(vsi); 902 /* remove RSS replay list */ 903 if (!ice_is_safe_mode(pf)) 904 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 905 } 906 907 /** 908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 909 * @vsi: the VSI being configured 910 */ 911 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 912 { 913 struct ice_hw_common_caps *cap; 914 struct ice_pf *pf = vsi->back; 915 u16 max_rss_size; 916 917 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 918 vsi->rss_size = 1; 919 return; 920 } 921 922 cap = &pf->hw.func_caps.common_cap; 923 max_rss_size = BIT(cap->rss_table_entry_width); 924 switch (vsi->type) { 925 case ICE_VSI_CHNL: 926 case ICE_VSI_PF: 927 /* PF VSI will inherit RSS instance of PF */ 928 vsi->rss_table_size = (u16)cap->rss_table_size; 929 if (vsi->type == ICE_VSI_CHNL) 930 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 931 else 932 vsi->rss_size = min_t(u16, num_online_cpus(), 933 max_rss_size); 934 vsi->rss_lut_type = ICE_LUT_PF; 935 break; 936 case ICE_VSI_SWITCHDEV_CTRL: 937 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 938 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); 939 vsi->rss_lut_type = ICE_LUT_VSI; 940 break; 941 case ICE_VSI_VF: 942 /* VF VSI will get a small RSS table. 943 * For VSI_LUT, LUT size should be set to 64 bytes. 944 */ 945 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 946 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 947 vsi->rss_lut_type = ICE_LUT_VSI; 948 break; 949 case ICE_VSI_LB: 950 break; 951 default: 952 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 953 ice_vsi_type_str(vsi->type)); 954 break; 955 } 956 } 957 958 /** 959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 960 * @hw: HW structure used to determine the VLAN mode of the device 961 * @ctxt: the VSI context being set 962 * 963 * This initializes a default VSI context for all sections except the Queues. 964 */ 965 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 966 { 967 u32 table = 0; 968 969 memset(&ctxt->info, 0, sizeof(ctxt->info)); 970 /* VSI's should be allocated from shared pool */ 971 ctxt->alloc_from_pool = true; 972 /* Src pruning enabled by default */ 973 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 974 /* Traffic from VSI can be sent to LAN */ 975 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 976 /* allow all untagged/tagged packets by default on Tx */ 977 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 978 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 979 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 980 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 981 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 982 * 983 * DVM - leave inner VLAN in packet by default 984 */ 985 if (ice_is_dvm_ena(hw)) { 986 ctxt->info.inner_vlan_flags |= 987 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 988 ctxt->info.outer_vlan_flags = 989 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 990 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 991 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 992 ctxt->info.outer_vlan_flags |= 993 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 994 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 995 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 996 ctxt->info.outer_vlan_flags |= 997 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 998 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 999 } 1000 /* Have 1:1 UP mapping for both ingress/egress tables */ 1001 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 1002 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 1003 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 1004 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 1005 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 1006 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 1007 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 1008 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 1009 ctxt->info.ingress_table = cpu_to_le32(table); 1010 ctxt->info.egress_table = cpu_to_le32(table); 1011 /* Have 1:1 UP mapping for outer to inner UP table */ 1012 ctxt->info.outer_up_table = cpu_to_le32(table); 1013 /* No Outer tag support outer_tag_flags remains to zero */ 1014 } 1015 1016 /** 1017 * ice_vsi_setup_q_map - Setup a VSI queue map 1018 * @vsi: the VSI being configured 1019 * @ctxt: VSI context structure 1020 */ 1021 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1022 { 1023 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1024 u16 num_txq_per_tc, num_rxq_per_tc; 1025 u16 qcount_tx = vsi->alloc_txq; 1026 u16 qcount_rx = vsi->alloc_rxq; 1027 u8 netdev_tc = 0; 1028 int i; 1029 1030 if (!vsi->tc_cfg.numtc) { 1031 /* at least TC0 should be enabled by default */ 1032 vsi->tc_cfg.numtc = 1; 1033 vsi->tc_cfg.ena_tc = 1; 1034 } 1035 1036 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1037 if (!num_rxq_per_tc) 1038 num_rxq_per_tc = 1; 1039 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1040 if (!num_txq_per_tc) 1041 num_txq_per_tc = 1; 1042 1043 /* find the (rounded up) power-of-2 of qcount */ 1044 pow = (u16)order_base_2(num_rxq_per_tc); 1045 1046 /* TC mapping is a function of the number of Rx queues assigned to the 1047 * VSI for each traffic class and the offset of these queues. 1048 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1049 * queues allocated to TC0. No:of queues is a power-of-2. 1050 * 1051 * If TC is not enabled, the queue offset is set to 0, and allocate one 1052 * queue, this way, traffic for the given TC will be sent to the default 1053 * queue. 1054 * 1055 * Setup number and offset of Rx queues for all TCs for the VSI 1056 */ 1057 ice_for_each_traffic_class(i) { 1058 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1059 /* TC is not enabled */ 1060 vsi->tc_cfg.tc_info[i].qoffset = 0; 1061 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1062 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1063 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1064 ctxt->info.tc_mapping[i] = 0; 1065 continue; 1066 } 1067 1068 /* TC is enabled */ 1069 vsi->tc_cfg.tc_info[i].qoffset = offset; 1070 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1071 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1072 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1073 1074 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1075 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1076 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1077 ICE_AQ_VSI_TC_Q_NUM_M); 1078 offset += num_rxq_per_tc; 1079 tx_count += num_txq_per_tc; 1080 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1081 } 1082 1083 /* if offset is non-zero, means it is calculated correctly based on 1084 * enabled TCs for a given VSI otherwise qcount_rx will always 1085 * be correct and non-zero because it is based off - VSI's 1086 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1087 * at least 1) 1088 */ 1089 if (offset) 1090 rx_count = offset; 1091 else 1092 rx_count = num_rxq_per_tc; 1093 1094 if (rx_count > vsi->alloc_rxq) { 1095 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1096 rx_count, vsi->alloc_rxq); 1097 return -EINVAL; 1098 } 1099 1100 if (tx_count > vsi->alloc_txq) { 1101 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1102 tx_count, vsi->alloc_txq); 1103 return -EINVAL; 1104 } 1105 1106 vsi->num_txq = tx_count; 1107 vsi->num_rxq = rx_count; 1108 1109 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1110 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1111 /* since there is a chance that num_rxq could have been changed 1112 * in the above for loop, make num_txq equal to num_rxq. 1113 */ 1114 vsi->num_txq = vsi->num_rxq; 1115 } 1116 1117 /* Rx queue mapping */ 1118 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1119 /* q_mapping buffer holds the info for the first queue allocated for 1120 * this VSI in the PF space and also the number of queues associated 1121 * with this VSI. 1122 */ 1123 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1124 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1125 1126 return 0; 1127 } 1128 1129 /** 1130 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1131 * @ctxt: the VSI context being set 1132 * @vsi: the VSI being configured 1133 */ 1134 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1135 { 1136 u8 dflt_q_group, dflt_q_prio; 1137 u16 dflt_q, report_q, val; 1138 1139 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1140 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1141 return; 1142 1143 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1144 ctxt->info.valid_sections |= cpu_to_le16(val); 1145 dflt_q = 0; 1146 dflt_q_group = 0; 1147 report_q = 0; 1148 dflt_q_prio = 0; 1149 1150 /* enable flow director filtering/programming */ 1151 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1152 ctxt->info.fd_options = cpu_to_le16(val); 1153 /* max of allocated flow director filters */ 1154 ctxt->info.max_fd_fltr_dedicated = 1155 cpu_to_le16(vsi->num_gfltr); 1156 /* max of shared flow director filters any VSI may program */ 1157 ctxt->info.max_fd_fltr_shared = 1158 cpu_to_le16(vsi->num_bfltr); 1159 /* default queue index within the VSI of the default FD */ 1160 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1161 ICE_AQ_VSI_FD_DEF_Q_M); 1162 /* target queue or queue group to the FD filter */ 1163 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1164 ICE_AQ_VSI_FD_DEF_GRP_M); 1165 ctxt->info.fd_def_q = cpu_to_le16(val); 1166 /* queue index on which FD filter completion is reported */ 1167 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1168 ICE_AQ_VSI_FD_REPORT_Q_M); 1169 /* priority of the default qindex action */ 1170 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1171 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1172 ctxt->info.fd_report_opt = cpu_to_le16(val); 1173 } 1174 1175 /** 1176 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1177 * @ctxt: the VSI context being set 1178 * @vsi: the VSI being configured 1179 */ 1180 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1181 { 1182 u8 lut_type, hash_type; 1183 struct device *dev; 1184 struct ice_pf *pf; 1185 1186 pf = vsi->back; 1187 dev = ice_pf_to_dev(pf); 1188 1189 switch (vsi->type) { 1190 case ICE_VSI_CHNL: 1191 case ICE_VSI_PF: 1192 /* PF VSI will inherit RSS instance of PF */ 1193 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1194 break; 1195 case ICE_VSI_VF: 1196 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1197 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1198 break; 1199 default: 1200 dev_dbg(dev, "Unsupported VSI type %s\n", 1201 ice_vsi_type_str(vsi->type)); 1202 return; 1203 } 1204 1205 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1206 vsi->rss_hfunc = hash_type; 1207 1208 ctxt->info.q_opt_rss = 1209 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 1210 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 1211 } 1212 1213 static void 1214 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1215 { 1216 struct ice_pf *pf = vsi->back; 1217 u16 qcount, qmap; 1218 u8 offset = 0; 1219 int pow; 1220 1221 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1222 1223 pow = order_base_2(qcount); 1224 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1225 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1226 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1227 ICE_AQ_VSI_TC_Q_NUM_M); 1228 1229 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1230 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1231 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1232 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1233 } 1234 1235 /** 1236 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1237 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1238 * 1239 * returns true if Rx VLAN pruning is enabled and false otherwise. 1240 */ 1241 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1242 { 1243 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1244 } 1245 1246 /** 1247 * ice_vsi_init - Create and initialize a VSI 1248 * @vsi: the VSI being configured 1249 * @vsi_flags: VSI configuration flags 1250 * 1251 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1252 * reconfigure an existing context. 1253 * 1254 * This initializes a VSI context depending on the VSI type to be added and 1255 * passes it down to the add_vsi aq command to create a new VSI. 1256 */ 1257 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1258 { 1259 struct ice_pf *pf = vsi->back; 1260 struct ice_hw *hw = &pf->hw; 1261 struct ice_vsi_ctx *ctxt; 1262 struct device *dev; 1263 int ret = 0; 1264 1265 dev = ice_pf_to_dev(pf); 1266 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1267 if (!ctxt) 1268 return -ENOMEM; 1269 1270 switch (vsi->type) { 1271 case ICE_VSI_CTRL: 1272 case ICE_VSI_LB: 1273 case ICE_VSI_PF: 1274 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1275 break; 1276 case ICE_VSI_SWITCHDEV_CTRL: 1277 case ICE_VSI_CHNL: 1278 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1279 break; 1280 case ICE_VSI_VF: 1281 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1282 /* VF number here is the absolute VF number (0-255) */ 1283 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1284 break; 1285 default: 1286 ret = -ENODEV; 1287 goto out; 1288 } 1289 1290 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1291 * prune enabled 1292 */ 1293 if (vsi->type == ICE_VSI_CHNL) { 1294 struct ice_vsi *main_vsi; 1295 1296 main_vsi = ice_get_main_vsi(pf); 1297 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1298 ctxt->info.sw_flags2 |= 1299 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1300 else 1301 ctxt->info.sw_flags2 &= 1302 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1303 } 1304 1305 ice_set_dflt_vsi_ctx(hw, ctxt); 1306 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1307 ice_set_fd_vsi_ctx(ctxt, vsi); 1308 /* if the switch is in VEB mode, allow VSI loopback */ 1309 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1310 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1311 1312 /* Set LUT type and HASH type if RSS is enabled */ 1313 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1314 vsi->type != ICE_VSI_CTRL) { 1315 ice_set_rss_vsi_ctx(ctxt, vsi); 1316 /* if updating VSI context, make sure to set valid_section: 1317 * to indicate which section of VSI context being updated 1318 */ 1319 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1320 ctxt->info.valid_sections |= 1321 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1322 } 1323 1324 ctxt->info.sw_id = vsi->port_info->sw_id; 1325 if (vsi->type == ICE_VSI_CHNL) { 1326 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1327 } else { 1328 ret = ice_vsi_setup_q_map(vsi, ctxt); 1329 if (ret) 1330 goto out; 1331 1332 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1333 /* means VSI being updated */ 1334 /* must to indicate which section of VSI context are 1335 * being modified 1336 */ 1337 ctxt->info.valid_sections |= 1338 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1339 } 1340 1341 /* Allow control frames out of main VSI */ 1342 if (vsi->type == ICE_VSI_PF) { 1343 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1344 ctxt->info.valid_sections |= 1345 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1346 } 1347 1348 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1349 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1350 if (ret) { 1351 dev_err(dev, "Add VSI failed, err %d\n", ret); 1352 ret = -EIO; 1353 goto out; 1354 } 1355 } else { 1356 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1357 if (ret) { 1358 dev_err(dev, "Update VSI failed, err %d\n", ret); 1359 ret = -EIO; 1360 goto out; 1361 } 1362 } 1363 1364 /* keep context for update VSI operations */ 1365 vsi->info = ctxt->info; 1366 1367 /* record VSI number returned */ 1368 vsi->vsi_num = ctxt->vsi_num; 1369 1370 out: 1371 kfree(ctxt); 1372 return ret; 1373 } 1374 1375 /** 1376 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1377 * @vsi: the VSI having rings deallocated 1378 */ 1379 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1380 { 1381 int i; 1382 1383 /* Avoid stale references by clearing map from vector to ring */ 1384 if (vsi->q_vectors) { 1385 ice_for_each_q_vector(vsi, i) { 1386 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1387 1388 if (q_vector) { 1389 q_vector->tx.tx_ring = NULL; 1390 q_vector->rx.rx_ring = NULL; 1391 } 1392 } 1393 } 1394 1395 if (vsi->tx_rings) { 1396 ice_for_each_alloc_txq(vsi, i) { 1397 if (vsi->tx_rings[i]) { 1398 kfree_rcu(vsi->tx_rings[i], rcu); 1399 WRITE_ONCE(vsi->tx_rings[i], NULL); 1400 } 1401 } 1402 } 1403 if (vsi->rx_rings) { 1404 ice_for_each_alloc_rxq(vsi, i) { 1405 if (vsi->rx_rings[i]) { 1406 kfree_rcu(vsi->rx_rings[i], rcu); 1407 WRITE_ONCE(vsi->rx_rings[i], NULL); 1408 } 1409 } 1410 } 1411 } 1412 1413 /** 1414 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1415 * @vsi: VSI which is having rings allocated 1416 */ 1417 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1418 { 1419 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1420 struct ice_pf *pf = vsi->back; 1421 struct device *dev; 1422 u16 i; 1423 1424 dev = ice_pf_to_dev(pf); 1425 /* Allocate Tx rings */ 1426 ice_for_each_alloc_txq(vsi, i) { 1427 struct ice_tx_ring *ring; 1428 1429 /* allocate with kzalloc(), free with kfree_rcu() */ 1430 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1431 1432 if (!ring) 1433 goto err_out; 1434 1435 ring->q_index = i; 1436 ring->reg_idx = vsi->txq_map[i]; 1437 ring->vsi = vsi; 1438 ring->tx_tstamps = &pf->ptp.port.tx; 1439 ring->dev = dev; 1440 ring->count = vsi->num_tx_desc; 1441 ring->txq_teid = ICE_INVAL_TEID; 1442 if (dvm_ena) 1443 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1444 else 1445 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1446 WRITE_ONCE(vsi->tx_rings[i], ring); 1447 } 1448 1449 /* Allocate Rx rings */ 1450 ice_for_each_alloc_rxq(vsi, i) { 1451 struct ice_rx_ring *ring; 1452 1453 /* allocate with kzalloc(), free with kfree_rcu() */ 1454 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1455 if (!ring) 1456 goto err_out; 1457 1458 ring->q_index = i; 1459 ring->reg_idx = vsi->rxq_map[i]; 1460 ring->vsi = vsi; 1461 ring->netdev = vsi->netdev; 1462 ring->dev = dev; 1463 ring->count = vsi->num_rx_desc; 1464 ring->cached_phctime = pf->ptp.cached_phc_time; 1465 WRITE_ONCE(vsi->rx_rings[i], ring); 1466 } 1467 1468 return 0; 1469 1470 err_out: 1471 ice_vsi_clear_rings(vsi); 1472 return -ENOMEM; 1473 } 1474 1475 /** 1476 * ice_vsi_manage_rss_lut - disable/enable RSS 1477 * @vsi: the VSI being changed 1478 * @ena: boolean value indicating if this is an enable or disable request 1479 * 1480 * In the event of disable request for RSS, this function will zero out RSS 1481 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1482 * LUT. 1483 */ 1484 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1485 { 1486 u8 *lut; 1487 1488 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1489 if (!lut) 1490 return; 1491 1492 if (ena) { 1493 if (vsi->rss_lut_user) 1494 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1495 else 1496 ice_fill_rss_lut(lut, vsi->rss_table_size, 1497 vsi->rss_size); 1498 } 1499 1500 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1501 kfree(lut); 1502 } 1503 1504 /** 1505 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1506 * @vsi: VSI to be configured 1507 * @disable: set to true to have FCS / CRC in the frame data 1508 */ 1509 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1510 { 1511 int i; 1512 1513 ice_for_each_rxq(vsi, i) 1514 if (disable) 1515 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1516 else 1517 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1518 } 1519 1520 /** 1521 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1522 * @vsi: VSI to be configured 1523 */ 1524 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1525 { 1526 struct ice_pf *pf = vsi->back; 1527 struct device *dev; 1528 u8 *lut, *key; 1529 int err; 1530 1531 dev = ice_pf_to_dev(pf); 1532 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1533 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1534 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1535 } else { 1536 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1537 1538 /* If orig_rss_size is valid and it is less than determined 1539 * main VSI's rss_size, update main VSI's rss_size to be 1540 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1541 * RSS table gets programmed to be correct (whatever it was 1542 * to begin with (prior to setup-tc for ADQ config) 1543 */ 1544 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1545 vsi->orig_rss_size <= vsi->num_rxq) { 1546 vsi->rss_size = vsi->orig_rss_size; 1547 /* now orig_rss_size is used, reset it to zero */ 1548 vsi->orig_rss_size = 0; 1549 } 1550 } 1551 1552 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1553 if (!lut) 1554 return -ENOMEM; 1555 1556 if (vsi->rss_lut_user) 1557 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1558 else 1559 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1560 1561 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1562 if (err) { 1563 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1564 goto ice_vsi_cfg_rss_exit; 1565 } 1566 1567 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1568 if (!key) { 1569 err = -ENOMEM; 1570 goto ice_vsi_cfg_rss_exit; 1571 } 1572 1573 if (vsi->rss_hkey_user) 1574 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1575 else 1576 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1577 1578 err = ice_set_rss_key(vsi, key); 1579 if (err) 1580 dev_err(dev, "set_rss_key failed, error %d\n", err); 1581 1582 kfree(key); 1583 ice_vsi_cfg_rss_exit: 1584 kfree(lut); 1585 return err; 1586 } 1587 1588 /** 1589 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1590 * @vsi: VSI to be configured 1591 * 1592 * This function will only be called during the VF VSI setup. Upon successful 1593 * completion of package download, this function will configure default RSS 1594 * input sets for VF VSI. 1595 */ 1596 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1597 { 1598 struct ice_pf *pf = vsi->back; 1599 struct device *dev; 1600 int status; 1601 1602 dev = ice_pf_to_dev(pf); 1603 if (ice_is_safe_mode(pf)) { 1604 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1605 vsi->vsi_num); 1606 return; 1607 } 1608 1609 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA); 1610 if (status) 1611 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1612 vsi->vsi_num, status); 1613 } 1614 1615 static const struct ice_rss_hash_cfg default_rss_cfgs[] = { 1616 /* configure RSS for IPv4 with input set IP src/dst */ 1617 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false}, 1618 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1619 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false}, 1620 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1621 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4, 1622 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1623 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1624 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4, 1625 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1626 /* configure RSS for sctp4 with input set IP src/dst - only support 1627 * RSS on SCTPv4 on outer headers (non-tunneled) 1628 */ 1629 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4, 1630 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1631 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1632 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6, 1633 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1634 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1635 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6, 1636 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1637 /* configure RSS for sctp6 with input set IPv6 src/dst - only support 1638 * RSS on SCTPv6 on outer headers (non-tunneled) 1639 */ 1640 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6, 1641 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1642 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */ 1643 {ICE_FLOW_SEG_HDR_ESP, 1644 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false}, 1645 }; 1646 1647 /** 1648 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1649 * @vsi: VSI to be configured 1650 * 1651 * This function will only be called after successful download package call 1652 * during initialization of PF. Since the downloaded package will erase the 1653 * RSS section, this function will configure RSS input sets for different 1654 * flow types. The last profile added has the highest priority, therefore 2 1655 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1656 * (i.e. IPv4 src/dst TCP src/dst port). 1657 */ 1658 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1659 { 1660 u16 vsi_num = vsi->vsi_num; 1661 struct ice_pf *pf = vsi->back; 1662 struct ice_hw *hw = &pf->hw; 1663 struct device *dev; 1664 int status; 1665 u32 i; 1666 1667 dev = ice_pf_to_dev(pf); 1668 if (ice_is_safe_mode(pf)) { 1669 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1670 vsi_num); 1671 return; 1672 } 1673 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) { 1674 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i]; 1675 1676 status = ice_add_rss_cfg(hw, vsi, cfg); 1677 if (status) 1678 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n", 1679 cfg->addl_hdrs, cfg->hash_flds, 1680 cfg->hdr_type, cfg->symm); 1681 } 1682 } 1683 1684 /** 1685 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1686 * @vsi: VSI 1687 */ 1688 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1689 { 1690 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1691 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 1692 vsi->rx_buf_len = ICE_RXBUF_1664; 1693 #if (PAGE_SIZE < 8192) 1694 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1695 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1696 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1697 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1698 #endif 1699 } else { 1700 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1701 vsi->rx_buf_len = ICE_RXBUF_3072; 1702 } 1703 } 1704 1705 /** 1706 * ice_pf_state_is_nominal - checks the PF for nominal state 1707 * @pf: pointer to PF to check 1708 * 1709 * Check the PF's state for a collection of bits that would indicate 1710 * the PF is in a state that would inhibit normal operation for 1711 * driver functionality. 1712 * 1713 * Returns true if PF is in a nominal state, false otherwise 1714 */ 1715 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1716 { 1717 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1718 1719 if (!pf) 1720 return false; 1721 1722 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1723 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1724 return false; 1725 1726 return true; 1727 } 1728 1729 /** 1730 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1731 * @vsi: the VSI to be updated 1732 */ 1733 void ice_update_eth_stats(struct ice_vsi *vsi) 1734 { 1735 struct ice_eth_stats *prev_es, *cur_es; 1736 struct ice_hw *hw = &vsi->back->hw; 1737 struct ice_pf *pf = vsi->back; 1738 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1739 1740 prev_es = &vsi->eth_stats_prev; 1741 cur_es = &vsi->eth_stats; 1742 1743 if (ice_is_reset_in_progress(pf->state)) 1744 vsi->stat_offsets_loaded = false; 1745 1746 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1747 &prev_es->rx_bytes, &cur_es->rx_bytes); 1748 1749 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1750 &prev_es->rx_unicast, &cur_es->rx_unicast); 1751 1752 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1753 &prev_es->rx_multicast, &cur_es->rx_multicast); 1754 1755 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1756 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1757 1758 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1759 &prev_es->rx_discards, &cur_es->rx_discards); 1760 1761 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1762 &prev_es->tx_bytes, &cur_es->tx_bytes); 1763 1764 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1765 &prev_es->tx_unicast, &cur_es->tx_unicast); 1766 1767 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1768 &prev_es->tx_multicast, &cur_es->tx_multicast); 1769 1770 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1771 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1772 1773 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1774 &prev_es->tx_errors, &cur_es->tx_errors); 1775 1776 vsi->stat_offsets_loaded = true; 1777 } 1778 1779 /** 1780 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1781 * @hw: HW pointer 1782 * @pf_q: index of the Rx queue in the PF's queue space 1783 * @rxdid: flexible descriptor RXDID 1784 * @prio: priority for the RXDID for this queue 1785 * @ena_ts: true to enable timestamp and false to disable timestamp 1786 */ 1787 void 1788 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1789 bool ena_ts) 1790 { 1791 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1792 1793 /* clear any previous values */ 1794 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1795 QRXFLXP_CNTXT_RXDID_PRIO_M | 1796 QRXFLXP_CNTXT_TS_M); 1797 1798 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1799 QRXFLXP_CNTXT_RXDID_IDX_M; 1800 1801 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1802 QRXFLXP_CNTXT_RXDID_PRIO_M; 1803 1804 if (ena_ts) 1805 /* Enable TimeSync on this queue */ 1806 regval |= QRXFLXP_CNTXT_TS_M; 1807 1808 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1809 } 1810 1811 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1812 { 1813 if (q_idx >= vsi->num_rxq) 1814 return -EINVAL; 1815 1816 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1817 } 1818 1819 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1820 { 1821 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 1822 1823 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1824 return -EINVAL; 1825 1826 qg_buf->num_txqs = 1; 1827 1828 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1829 } 1830 1831 /** 1832 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1833 * @vsi: the VSI being configured 1834 * 1835 * Return 0 on success and a negative value on error 1836 * Configure the Rx VSI for operation. 1837 */ 1838 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1839 { 1840 u16 i; 1841 1842 if (vsi->type == ICE_VSI_VF) 1843 goto setup_rings; 1844 1845 ice_vsi_cfg_frame_size(vsi); 1846 setup_rings: 1847 /* set up individual rings */ 1848 ice_for_each_rxq(vsi, i) { 1849 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1850 1851 if (err) 1852 return err; 1853 } 1854 1855 return 0; 1856 } 1857 1858 /** 1859 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1860 * @vsi: the VSI being configured 1861 * @rings: Tx ring array to be configured 1862 * @count: number of Tx ring array elements 1863 * 1864 * Return 0 on success and a negative value on error 1865 * Configure the Tx VSI for operation. 1866 */ 1867 static int 1868 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1869 { 1870 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 1871 int err = 0; 1872 u16 q_idx; 1873 1874 qg_buf->num_txqs = 1; 1875 1876 for (q_idx = 0; q_idx < count; q_idx++) { 1877 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1878 if (err) 1879 break; 1880 } 1881 1882 return err; 1883 } 1884 1885 /** 1886 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1887 * @vsi: the VSI being configured 1888 * 1889 * Return 0 on success and a negative value on error 1890 * Configure the Tx VSI for operation. 1891 */ 1892 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1893 { 1894 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1895 } 1896 1897 /** 1898 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1899 * @vsi: the VSI being configured 1900 * 1901 * Return 0 on success and a negative value on error 1902 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1903 */ 1904 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1905 { 1906 int ret; 1907 int i; 1908 1909 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1910 if (ret) 1911 return ret; 1912 1913 ice_for_each_rxq(vsi, i) 1914 ice_tx_xsk_pool(vsi, i); 1915 1916 return 0; 1917 } 1918 1919 /** 1920 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1921 * @intrl: interrupt rate limit in usecs 1922 * @gran: interrupt rate limit granularity in usecs 1923 * 1924 * This function converts a decimal interrupt rate limit in usecs to the format 1925 * expected by firmware. 1926 */ 1927 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1928 { 1929 u32 val = intrl / gran; 1930 1931 if (val) 1932 return val | GLINT_RATE_INTRL_ENA_M; 1933 return 0; 1934 } 1935 1936 /** 1937 * ice_write_intrl - write throttle rate limit to interrupt specific register 1938 * @q_vector: pointer to interrupt specific structure 1939 * @intrl: throttle rate limit in microseconds to write 1940 */ 1941 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1942 { 1943 struct ice_hw *hw = &q_vector->vsi->back->hw; 1944 1945 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1946 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1947 } 1948 1949 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1950 { 1951 switch (rc->type) { 1952 case ICE_RX_CONTAINER: 1953 if (rc->rx_ring) 1954 return rc->rx_ring->q_vector; 1955 break; 1956 case ICE_TX_CONTAINER: 1957 if (rc->tx_ring) 1958 return rc->tx_ring->q_vector; 1959 break; 1960 default: 1961 break; 1962 } 1963 1964 return NULL; 1965 } 1966 1967 /** 1968 * __ice_write_itr - write throttle rate to register 1969 * @q_vector: pointer to interrupt data structure 1970 * @rc: pointer to ring container 1971 * @itr: throttle rate in microseconds to write 1972 */ 1973 static void __ice_write_itr(struct ice_q_vector *q_vector, 1974 struct ice_ring_container *rc, u16 itr) 1975 { 1976 struct ice_hw *hw = &q_vector->vsi->back->hw; 1977 1978 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1979 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1980 } 1981 1982 /** 1983 * ice_write_itr - write throttle rate to queue specific register 1984 * @rc: pointer to ring container 1985 * @itr: throttle rate in microseconds to write 1986 */ 1987 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1988 { 1989 struct ice_q_vector *q_vector; 1990 1991 q_vector = ice_pull_qvec_from_rc(rc); 1992 if (!q_vector) 1993 return; 1994 1995 __ice_write_itr(q_vector, rc, itr); 1996 } 1997 1998 /** 1999 * ice_set_q_vector_intrl - set up interrupt rate limiting 2000 * @q_vector: the vector to be configured 2001 * 2002 * Interrupt rate limiting is local to the vector, not per-queue so we must 2003 * detect if either ring container has dynamic moderation enabled to decide 2004 * what to set the interrupt rate limit to via INTRL settings. In the case that 2005 * dynamic moderation is disabled on both, write the value with the cached 2006 * setting to make sure INTRL register matches the user visible value. 2007 */ 2008 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2009 { 2010 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2011 /* in the case of dynamic enabled, cap each vector to no more 2012 * than (4 us) 250,000 ints/sec, which allows low latency 2013 * but still less than 500,000 interrupts per second, which 2014 * reduces CPU a bit in the case of the lowest latency 2015 * setting. The 4 here is a value in microseconds. 2016 */ 2017 ice_write_intrl(q_vector, 4); 2018 } else { 2019 ice_write_intrl(q_vector, q_vector->intrl); 2020 } 2021 } 2022 2023 /** 2024 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2025 * @vsi: the VSI being configured 2026 * 2027 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2028 * for the VF VSI. 2029 */ 2030 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2031 { 2032 struct ice_pf *pf = vsi->back; 2033 struct ice_hw *hw = &pf->hw; 2034 u16 txq = 0, rxq = 0; 2035 int i, q; 2036 2037 ice_for_each_q_vector(vsi, i) { 2038 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2039 u16 reg_idx = q_vector->reg_idx; 2040 2041 ice_cfg_itr(hw, q_vector); 2042 2043 /* Both Transmit Queue Interrupt Cause Control register 2044 * and Receive Queue Interrupt Cause control register 2045 * expects MSIX_INDX field to be the vector index 2046 * within the function space and not the absolute 2047 * vector index across PF or across device. 2048 * For SR-IOV VF VSIs queue vector index always starts 2049 * with 1 since first vector index(0) is used for OICR 2050 * in VF space. Since VMDq and other PF VSIs are within 2051 * the PF function space, use the vector index that is 2052 * tracked for this PF. 2053 */ 2054 for (q = 0; q < q_vector->num_ring_tx; q++) { 2055 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2056 q_vector->tx.itr_idx); 2057 txq++; 2058 } 2059 2060 for (q = 0; q < q_vector->num_ring_rx; q++) { 2061 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2062 q_vector->rx.itr_idx); 2063 rxq++; 2064 } 2065 } 2066 } 2067 2068 /** 2069 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2070 * @vsi: the VSI whose rings are to be enabled 2071 * 2072 * Returns 0 on success and a negative value on error 2073 */ 2074 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2075 { 2076 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2077 } 2078 2079 /** 2080 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2081 * @vsi: the VSI whose rings are to be disabled 2082 * 2083 * Returns 0 on success and a negative value on error 2084 */ 2085 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2086 { 2087 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2088 } 2089 2090 /** 2091 * ice_vsi_stop_tx_rings - Disable Tx rings 2092 * @vsi: the VSI being configured 2093 * @rst_src: reset source 2094 * @rel_vmvf_num: Relative ID of VF/VM 2095 * @rings: Tx ring array to be stopped 2096 * @count: number of Tx ring array elements 2097 */ 2098 static int 2099 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2100 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2101 { 2102 u16 q_idx; 2103 2104 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2105 return -EINVAL; 2106 2107 for (q_idx = 0; q_idx < count; q_idx++) { 2108 struct ice_txq_meta txq_meta = { }; 2109 int status; 2110 2111 if (!rings || !rings[q_idx]) 2112 return -EINVAL; 2113 2114 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2115 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2116 rings[q_idx], &txq_meta); 2117 2118 if (status) 2119 return status; 2120 } 2121 2122 return 0; 2123 } 2124 2125 /** 2126 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2127 * @vsi: the VSI being configured 2128 * @rst_src: reset source 2129 * @rel_vmvf_num: Relative ID of VF/VM 2130 */ 2131 int 2132 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2133 u16 rel_vmvf_num) 2134 { 2135 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2136 } 2137 2138 /** 2139 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2140 * @vsi: the VSI being configured 2141 */ 2142 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2143 { 2144 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2145 } 2146 2147 /** 2148 * ice_vsi_is_rx_queue_active 2149 * @vsi: the VSI being configured 2150 * 2151 * Return true if at least one queue is active. 2152 */ 2153 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2154 { 2155 struct ice_pf *pf = vsi->back; 2156 struct ice_hw *hw = &pf->hw; 2157 int i; 2158 2159 ice_for_each_rxq(vsi, i) { 2160 u32 rx_reg; 2161 int pf_q; 2162 2163 pf_q = vsi->rxq_map[i]; 2164 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2165 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2166 return true; 2167 } 2168 2169 return false; 2170 } 2171 2172 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2173 { 2174 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2175 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2176 vsi->tc_cfg.numtc = 1; 2177 return; 2178 } 2179 2180 /* set VSI TC information based on DCB config */ 2181 ice_vsi_set_dcb_tc_cfg(vsi); 2182 } 2183 2184 /** 2185 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2186 * @vsi: the VSI being configured 2187 * @tx: bool to determine Tx or Rx rule 2188 * @create: bool to determine create or remove Rule 2189 */ 2190 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2191 { 2192 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2193 enum ice_sw_fwd_act_type act); 2194 struct ice_pf *pf = vsi->back; 2195 struct device *dev; 2196 int status; 2197 2198 dev = ice_pf_to_dev(pf); 2199 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2200 2201 if (tx) { 2202 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2203 ICE_DROP_PACKET); 2204 } else { 2205 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2206 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2207 create); 2208 } else { 2209 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2210 ICE_FWD_TO_VSI); 2211 } 2212 } 2213 2214 if (status) 2215 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2216 create ? "adding" : "removing", tx ? "TX" : "RX", 2217 vsi->vsi_num, status); 2218 } 2219 2220 /** 2221 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2222 * @vsi: pointer to the VSI 2223 * 2224 * This function will allocate new scheduler aggregator now if needed and will 2225 * move specified VSI into it. 2226 */ 2227 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2228 { 2229 struct device *dev = ice_pf_to_dev(vsi->back); 2230 struct ice_agg_node *agg_node_iter = NULL; 2231 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2232 struct ice_agg_node *agg_node = NULL; 2233 int node_offset, max_agg_nodes = 0; 2234 struct ice_port_info *port_info; 2235 struct ice_pf *pf = vsi->back; 2236 u32 agg_node_id_start = 0; 2237 int status; 2238 2239 /* create (as needed) scheduler aggregator node and move VSI into 2240 * corresponding aggregator node 2241 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2242 * - VF aggregator nodes will contain VF VSI 2243 */ 2244 port_info = pf->hw.port_info; 2245 if (!port_info) 2246 return; 2247 2248 switch (vsi->type) { 2249 case ICE_VSI_CTRL: 2250 case ICE_VSI_CHNL: 2251 case ICE_VSI_LB: 2252 case ICE_VSI_PF: 2253 case ICE_VSI_SWITCHDEV_CTRL: 2254 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2255 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2256 agg_node_iter = &pf->pf_agg_node[0]; 2257 break; 2258 case ICE_VSI_VF: 2259 /* user can create 'n' VFs on a given PF, but since max children 2260 * per aggregator node can be only 64. Following code handles 2261 * aggregator(s) for VF VSIs, either selects a agg_node which 2262 * was already created provided num_vsis < 64, otherwise 2263 * select next available node, which will be created 2264 */ 2265 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2266 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2267 agg_node_iter = &pf->vf_agg_node[0]; 2268 break; 2269 default: 2270 /* other VSI type, handle later if needed */ 2271 dev_dbg(dev, "unexpected VSI type %s\n", 2272 ice_vsi_type_str(vsi->type)); 2273 return; 2274 } 2275 2276 /* find the appropriate aggregator node */ 2277 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2278 /* see if we can find space in previously created 2279 * node if num_vsis < 64, otherwise skip 2280 */ 2281 if (agg_node_iter->num_vsis && 2282 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2283 agg_node_iter++; 2284 continue; 2285 } 2286 2287 if (agg_node_iter->valid && 2288 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2289 agg_id = agg_node_iter->agg_id; 2290 agg_node = agg_node_iter; 2291 break; 2292 } 2293 2294 /* find unclaimed agg_id */ 2295 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2296 agg_id = node_offset + agg_node_id_start; 2297 agg_node = agg_node_iter; 2298 break; 2299 } 2300 /* move to next agg_node */ 2301 agg_node_iter++; 2302 } 2303 2304 if (!agg_node) 2305 return; 2306 2307 /* if selected aggregator node was not created, create it */ 2308 if (!agg_node->valid) { 2309 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2310 (u8)vsi->tc_cfg.ena_tc); 2311 if (status) { 2312 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2313 agg_id); 2314 return; 2315 } 2316 /* aggregator node is created, store the needed info */ 2317 agg_node->valid = true; 2318 agg_node->agg_id = agg_id; 2319 } 2320 2321 /* move VSI to corresponding aggregator node */ 2322 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2323 (u8)vsi->tc_cfg.ena_tc); 2324 if (status) { 2325 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2326 vsi->idx, agg_id); 2327 return; 2328 } 2329 2330 /* keep active children count for aggregator node */ 2331 agg_node->num_vsis++; 2332 2333 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2334 * to aggregator node 2335 */ 2336 vsi->agg_node = agg_node; 2337 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2338 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2339 vsi->agg_node->num_vsis); 2340 } 2341 2342 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2343 { 2344 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2345 struct device *dev = ice_pf_to_dev(pf); 2346 int ret, i; 2347 2348 /* configure VSI nodes based on number of queues and TC's */ 2349 ice_for_each_traffic_class(i) { 2350 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2351 continue; 2352 2353 if (vsi->type == ICE_VSI_CHNL) { 2354 if (!vsi->alloc_txq && vsi->num_txq) 2355 max_txqs[i] = vsi->num_txq; 2356 else 2357 max_txqs[i] = pf->num_lan_tx; 2358 } else { 2359 max_txqs[i] = vsi->alloc_txq; 2360 } 2361 } 2362 2363 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2364 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2365 max_txqs); 2366 if (ret) { 2367 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2368 vsi->vsi_num, ret); 2369 return ret; 2370 } 2371 2372 return 0; 2373 } 2374 2375 /** 2376 * ice_vsi_cfg_def - configure default VSI based on the type 2377 * @vsi: pointer to VSI 2378 * @params: the parameters to configure this VSI with 2379 */ 2380 static int 2381 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2382 { 2383 struct device *dev = ice_pf_to_dev(vsi->back); 2384 struct ice_pf *pf = vsi->back; 2385 int ret; 2386 2387 vsi->vsw = pf->first_sw; 2388 2389 ret = ice_vsi_alloc_def(vsi, params->ch); 2390 if (ret) 2391 return ret; 2392 2393 /* allocate memory for Tx/Rx ring stat pointers */ 2394 ret = ice_vsi_alloc_stat_arrays(vsi); 2395 if (ret) 2396 goto unroll_vsi_alloc; 2397 2398 ice_alloc_fd_res(vsi); 2399 2400 ret = ice_vsi_get_qs(vsi); 2401 if (ret) { 2402 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2403 vsi->idx); 2404 goto unroll_vsi_alloc_stat; 2405 } 2406 2407 /* set RSS capabilities */ 2408 ice_vsi_set_rss_params(vsi); 2409 2410 /* set TC configuration */ 2411 ice_vsi_set_tc_cfg(vsi); 2412 2413 /* create the VSI */ 2414 ret = ice_vsi_init(vsi, params->flags); 2415 if (ret) 2416 goto unroll_get_qs; 2417 2418 ice_vsi_init_vlan_ops(vsi); 2419 2420 switch (vsi->type) { 2421 case ICE_VSI_CTRL: 2422 case ICE_VSI_SWITCHDEV_CTRL: 2423 case ICE_VSI_PF: 2424 ret = ice_vsi_alloc_q_vectors(vsi); 2425 if (ret) 2426 goto unroll_vsi_init; 2427 2428 ret = ice_vsi_alloc_rings(vsi); 2429 if (ret) 2430 goto unroll_vector_base; 2431 2432 ret = ice_vsi_alloc_ring_stats(vsi); 2433 if (ret) 2434 goto unroll_vector_base; 2435 2436 ice_vsi_map_rings_to_vectors(vsi); 2437 2438 /* Associate q_vector rings to napi */ 2439 ice_vsi_set_napi_queues(vsi, true); 2440 2441 vsi->stat_offsets_loaded = false; 2442 2443 if (ice_is_xdp_ena_vsi(vsi)) { 2444 ret = ice_vsi_determine_xdp_res(vsi); 2445 if (ret) 2446 goto unroll_vector_base; 2447 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2448 if (ret) 2449 goto unroll_vector_base; 2450 } 2451 2452 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2453 if (vsi->type != ICE_VSI_CTRL) 2454 /* Do not exit if configuring RSS had an issue, at 2455 * least receive traffic on first queue. Hence no 2456 * need to capture return value 2457 */ 2458 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2459 ice_vsi_cfg_rss_lut_key(vsi); 2460 ice_vsi_set_rss_flow_fld(vsi); 2461 } 2462 ice_init_arfs(vsi); 2463 break; 2464 case ICE_VSI_CHNL: 2465 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2466 ice_vsi_cfg_rss_lut_key(vsi); 2467 ice_vsi_set_rss_flow_fld(vsi); 2468 } 2469 break; 2470 case ICE_VSI_VF: 2471 /* VF driver will take care of creating netdev for this type and 2472 * map queues to vectors through Virtchnl, PF driver only 2473 * creates a VSI and corresponding structures for bookkeeping 2474 * purpose 2475 */ 2476 ret = ice_vsi_alloc_q_vectors(vsi); 2477 if (ret) 2478 goto unroll_vsi_init; 2479 2480 ret = ice_vsi_alloc_rings(vsi); 2481 if (ret) 2482 goto unroll_alloc_q_vector; 2483 2484 ret = ice_vsi_alloc_ring_stats(vsi); 2485 if (ret) 2486 goto unroll_vector_base; 2487 2488 vsi->stat_offsets_loaded = false; 2489 2490 /* Do not exit if configuring RSS had an issue, at least 2491 * receive traffic on first queue. Hence no need to capture 2492 * return value 2493 */ 2494 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2495 ice_vsi_cfg_rss_lut_key(vsi); 2496 ice_vsi_set_vf_rss_flow_fld(vsi); 2497 } 2498 break; 2499 case ICE_VSI_LB: 2500 ret = ice_vsi_alloc_rings(vsi); 2501 if (ret) 2502 goto unroll_vsi_init; 2503 2504 ret = ice_vsi_alloc_ring_stats(vsi); 2505 if (ret) 2506 goto unroll_vector_base; 2507 2508 break; 2509 default: 2510 /* clean up the resources and exit */ 2511 ret = -EINVAL; 2512 goto unroll_vsi_init; 2513 } 2514 2515 return 0; 2516 2517 unroll_vector_base: 2518 /* reclaim SW interrupts back to the common pool */ 2519 unroll_alloc_q_vector: 2520 ice_vsi_free_q_vectors(vsi); 2521 unroll_vsi_init: 2522 ice_vsi_delete_from_hw(vsi); 2523 unroll_get_qs: 2524 ice_vsi_put_qs(vsi); 2525 unroll_vsi_alloc_stat: 2526 ice_vsi_free_stats(vsi); 2527 unroll_vsi_alloc: 2528 ice_vsi_free_arrays(vsi); 2529 return ret; 2530 } 2531 2532 /** 2533 * ice_vsi_cfg - configure a previously allocated VSI 2534 * @vsi: pointer to VSI 2535 * @params: parameters used to configure this VSI 2536 */ 2537 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2538 { 2539 struct ice_pf *pf = vsi->back; 2540 int ret; 2541 2542 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2543 return -EINVAL; 2544 2545 vsi->type = params->type; 2546 vsi->port_info = params->pi; 2547 2548 /* For VSIs which don't have a connected VF, this will be NULL */ 2549 vsi->vf = params->vf; 2550 2551 ret = ice_vsi_cfg_def(vsi, params); 2552 if (ret) 2553 return ret; 2554 2555 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2556 if (ret) 2557 ice_vsi_decfg(vsi); 2558 2559 if (vsi->type == ICE_VSI_CTRL) { 2560 if (vsi->vf) { 2561 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2562 vsi->vf->ctrl_vsi_idx = vsi->idx; 2563 } else { 2564 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2565 pf->ctrl_vsi_idx = vsi->idx; 2566 } 2567 } 2568 2569 return ret; 2570 } 2571 2572 /** 2573 * ice_vsi_decfg - remove all VSI configuration 2574 * @vsi: pointer to VSI 2575 */ 2576 void ice_vsi_decfg(struct ice_vsi *vsi) 2577 { 2578 struct ice_pf *pf = vsi->back; 2579 int err; 2580 2581 /* The Rx rule will only exist to remove if the LLDP FW 2582 * engine is currently stopped 2583 */ 2584 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2585 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2586 ice_cfg_sw_lldp(vsi, false, false); 2587 2588 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2589 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2590 if (err) 2591 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2592 vsi->vsi_num, err); 2593 2594 if (ice_is_xdp_ena_vsi(vsi)) 2595 /* return value check can be skipped here, it always returns 2596 * 0 if reset is in progress 2597 */ 2598 ice_destroy_xdp_rings(vsi); 2599 2600 ice_vsi_clear_rings(vsi); 2601 ice_vsi_free_q_vectors(vsi); 2602 ice_vsi_put_qs(vsi); 2603 ice_vsi_free_arrays(vsi); 2604 2605 /* SR-IOV determines needed MSIX resources all at once instead of per 2606 * VSI since when VFs are spawned we know how many VFs there are and how 2607 * many interrupts each VF needs. SR-IOV MSIX resources are also 2608 * cleared in the same manner. 2609 */ 2610 2611 if (vsi->type == ICE_VSI_VF && 2612 vsi->agg_node && vsi->agg_node->valid) 2613 vsi->agg_node->num_vsis--; 2614 if (vsi->agg_node) { 2615 vsi->agg_node->valid = false; 2616 vsi->agg_node->agg_id = 0; 2617 } 2618 } 2619 2620 /** 2621 * ice_vsi_setup - Set up a VSI by a given type 2622 * @pf: board private structure 2623 * @params: parameters to use when creating the VSI 2624 * 2625 * This allocates the sw VSI structure and its queue resources. 2626 * 2627 * Returns pointer to the successfully allocated and configured VSI sw struct on 2628 * success, NULL on failure. 2629 */ 2630 struct ice_vsi * 2631 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2632 { 2633 struct device *dev = ice_pf_to_dev(pf); 2634 struct ice_vsi *vsi; 2635 int ret; 2636 2637 /* ice_vsi_setup can only initialize a new VSI, and we must have 2638 * a port_info structure for it. 2639 */ 2640 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2641 WARN_ON(!params->pi)) 2642 return NULL; 2643 2644 vsi = ice_vsi_alloc(pf); 2645 if (!vsi) { 2646 dev_err(dev, "could not allocate VSI\n"); 2647 return NULL; 2648 } 2649 2650 ret = ice_vsi_cfg(vsi, params); 2651 if (ret) 2652 goto err_vsi_cfg; 2653 2654 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2655 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2656 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2657 * The rule is added once for PF VSI in order to create appropriate 2658 * recipe, since VSI/VSI list is ignored with drop action... 2659 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2660 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2661 * settings in the HW. 2662 */ 2663 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2664 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2665 ICE_DROP_PACKET); 2666 ice_cfg_sw_lldp(vsi, true, true); 2667 } 2668 2669 if (!vsi->agg_node) 2670 ice_set_agg_vsi(vsi); 2671 2672 return vsi; 2673 2674 err_vsi_cfg: 2675 ice_vsi_free(vsi); 2676 2677 return NULL; 2678 } 2679 2680 /** 2681 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2682 * @vsi: the VSI being cleaned up 2683 */ 2684 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2685 { 2686 struct ice_pf *pf = vsi->back; 2687 struct ice_hw *hw = &pf->hw; 2688 u32 txq = 0; 2689 u32 rxq = 0; 2690 int i, q; 2691 2692 ice_for_each_q_vector(vsi, i) { 2693 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2694 2695 ice_write_intrl(q_vector, 0); 2696 for (q = 0; q < q_vector->num_ring_tx; q++) { 2697 ice_write_itr(&q_vector->tx, 0); 2698 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2699 if (ice_is_xdp_ena_vsi(vsi)) { 2700 u32 xdp_txq = txq + vsi->num_xdp_txq; 2701 2702 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2703 } 2704 txq++; 2705 } 2706 2707 for (q = 0; q < q_vector->num_ring_rx; q++) { 2708 ice_write_itr(&q_vector->rx, 0); 2709 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2710 rxq++; 2711 } 2712 } 2713 2714 ice_flush(hw); 2715 } 2716 2717 /** 2718 * ice_vsi_free_irq - Free the IRQ association with the OS 2719 * @vsi: the VSI being configured 2720 */ 2721 void ice_vsi_free_irq(struct ice_vsi *vsi) 2722 { 2723 struct ice_pf *pf = vsi->back; 2724 int i; 2725 2726 if (!vsi->q_vectors || !vsi->irqs_ready) 2727 return; 2728 2729 ice_vsi_release_msix(vsi); 2730 if (vsi->type == ICE_VSI_VF) 2731 return; 2732 2733 vsi->irqs_ready = false; 2734 ice_free_cpu_rx_rmap(vsi); 2735 2736 ice_for_each_q_vector(vsi, i) { 2737 int irq_num; 2738 2739 irq_num = vsi->q_vectors[i]->irq.virq; 2740 2741 /* free only the irqs that were actually requested */ 2742 if (!vsi->q_vectors[i] || 2743 !(vsi->q_vectors[i]->num_ring_tx || 2744 vsi->q_vectors[i]->num_ring_rx)) 2745 continue; 2746 2747 /* clear the affinity notifier in the IRQ descriptor */ 2748 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2749 irq_set_affinity_notifier(irq_num, NULL); 2750 2751 /* clear the affinity_mask in the IRQ descriptor */ 2752 irq_set_affinity_hint(irq_num, NULL); 2753 synchronize_irq(irq_num); 2754 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2755 } 2756 } 2757 2758 /** 2759 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2760 * @vsi: the VSI having resources freed 2761 */ 2762 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2763 { 2764 int i; 2765 2766 if (!vsi->tx_rings) 2767 return; 2768 2769 ice_for_each_txq(vsi, i) 2770 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2771 ice_free_tx_ring(vsi->tx_rings[i]); 2772 } 2773 2774 /** 2775 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2776 * @vsi: the VSI having resources freed 2777 */ 2778 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2779 { 2780 int i; 2781 2782 if (!vsi->rx_rings) 2783 return; 2784 2785 ice_for_each_rxq(vsi, i) 2786 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2787 ice_free_rx_ring(vsi->rx_rings[i]); 2788 } 2789 2790 /** 2791 * ice_vsi_close - Shut down a VSI 2792 * @vsi: the VSI being shut down 2793 */ 2794 void ice_vsi_close(struct ice_vsi *vsi) 2795 { 2796 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2797 ice_down(vsi); 2798 2799 ice_vsi_free_irq(vsi); 2800 ice_vsi_free_tx_rings(vsi); 2801 ice_vsi_free_rx_rings(vsi); 2802 } 2803 2804 /** 2805 * ice_ena_vsi - resume a VSI 2806 * @vsi: the VSI being resume 2807 * @locked: is the rtnl_lock already held 2808 */ 2809 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2810 { 2811 int err = 0; 2812 2813 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2814 return 0; 2815 2816 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2817 2818 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2819 if (netif_running(vsi->netdev)) { 2820 if (!locked) 2821 rtnl_lock(); 2822 2823 err = ice_open_internal(vsi->netdev); 2824 2825 if (!locked) 2826 rtnl_unlock(); 2827 } 2828 } else if (vsi->type == ICE_VSI_CTRL) { 2829 err = ice_vsi_open_ctrl(vsi); 2830 } 2831 2832 return err; 2833 } 2834 2835 /** 2836 * ice_dis_vsi - pause a VSI 2837 * @vsi: the VSI being paused 2838 * @locked: is the rtnl_lock already held 2839 */ 2840 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2841 { 2842 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2843 return; 2844 2845 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2846 2847 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2848 if (netif_running(vsi->netdev)) { 2849 if (!locked) 2850 rtnl_lock(); 2851 2852 ice_vsi_close(vsi); 2853 2854 if (!locked) 2855 rtnl_unlock(); 2856 } else { 2857 ice_vsi_close(vsi); 2858 } 2859 } else if (vsi->type == ICE_VSI_CTRL || 2860 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2861 ice_vsi_close(vsi); 2862 } 2863 } 2864 2865 /** 2866 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2867 * @vsi: the VSI being un-configured 2868 */ 2869 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2870 { 2871 struct ice_pf *pf = vsi->back; 2872 struct ice_hw *hw = &pf->hw; 2873 u32 val; 2874 int i; 2875 2876 /* disable interrupt causation from each queue */ 2877 if (vsi->tx_rings) { 2878 ice_for_each_txq(vsi, i) { 2879 if (vsi->tx_rings[i]) { 2880 u16 reg; 2881 2882 reg = vsi->tx_rings[i]->reg_idx; 2883 val = rd32(hw, QINT_TQCTL(reg)); 2884 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2885 wr32(hw, QINT_TQCTL(reg), val); 2886 } 2887 } 2888 } 2889 2890 if (vsi->rx_rings) { 2891 ice_for_each_rxq(vsi, i) { 2892 if (vsi->rx_rings[i]) { 2893 u16 reg; 2894 2895 reg = vsi->rx_rings[i]->reg_idx; 2896 val = rd32(hw, QINT_RQCTL(reg)); 2897 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2898 wr32(hw, QINT_RQCTL(reg), val); 2899 } 2900 } 2901 } 2902 2903 /* disable each interrupt */ 2904 ice_for_each_q_vector(vsi, i) { 2905 if (!vsi->q_vectors[i]) 2906 continue; 2907 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2908 } 2909 2910 ice_flush(hw); 2911 2912 /* don't call synchronize_irq() for VF's from the host */ 2913 if (vsi->type == ICE_VSI_VF) 2914 return; 2915 2916 ice_for_each_q_vector(vsi, i) 2917 synchronize_irq(vsi->q_vectors[i]->irq.virq); 2918 } 2919 2920 /** 2921 * ice_queue_set_napi - Set the napi instance for the queue 2922 * @dev: device to which NAPI and queue belong 2923 * @queue_index: Index of queue 2924 * @type: queue type as RX or TX 2925 * @napi: NAPI context 2926 * @locked: is the rtnl_lock already held 2927 * 2928 * Set the napi instance for the queue 2929 */ 2930 static void 2931 ice_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2932 enum netdev_queue_type type, struct napi_struct *napi, 2933 bool locked) 2934 { 2935 if (!locked) 2936 rtnl_lock(); 2937 netif_queue_set_napi(dev, queue_index, type, napi); 2938 if (!locked) 2939 rtnl_unlock(); 2940 } 2941 2942 /** 2943 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi 2944 * @q_vector: q_vector pointer 2945 * @locked: is the rtnl_lock already held 2946 * 2947 * Associate the q_vector napi with all the queue[s] on the vector 2948 */ 2949 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked) 2950 { 2951 struct ice_rx_ring *rx_ring; 2952 struct ice_tx_ring *tx_ring; 2953 2954 ice_for_each_rx_ring(rx_ring, q_vector->rx) 2955 ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index, 2956 NETDEV_QUEUE_TYPE_RX, &q_vector->napi, 2957 locked); 2958 2959 ice_for_each_tx_ring(tx_ring, q_vector->tx) 2960 ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index, 2961 NETDEV_QUEUE_TYPE_TX, &q_vector->napi, 2962 locked); 2963 /* Also set the interrupt number for the NAPI */ 2964 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); 2965 } 2966 2967 /** 2968 * ice_vsi_set_napi_queues 2969 * @vsi: VSI pointer 2970 * @locked: is the rtnl_lock already held 2971 * 2972 * Associate queue[s] with napi for all vectors 2973 */ 2974 void ice_vsi_set_napi_queues(struct ice_vsi *vsi, bool locked) 2975 { 2976 int i; 2977 2978 if (!vsi->netdev) 2979 return; 2980 2981 ice_for_each_q_vector(vsi, i) 2982 ice_q_vector_set_napi_queues(vsi->q_vectors[i], locked); 2983 } 2984 2985 /** 2986 * ice_vsi_release - Delete a VSI and free its resources 2987 * @vsi: the VSI being removed 2988 * 2989 * Returns 0 on success or < 0 on error 2990 */ 2991 int ice_vsi_release(struct ice_vsi *vsi) 2992 { 2993 struct ice_pf *pf; 2994 2995 if (!vsi->back) 2996 return -ENODEV; 2997 pf = vsi->back; 2998 2999 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3000 ice_rss_clean(vsi); 3001 3002 ice_vsi_close(vsi); 3003 ice_vsi_decfg(vsi); 3004 3005 /* retain SW VSI data structure since it is needed to unregister and 3006 * free VSI netdev when PF is not in reset recovery pending state,\ 3007 * for ex: during rmmod. 3008 */ 3009 if (!ice_is_reset_in_progress(pf->state)) 3010 ice_vsi_delete(vsi); 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3017 * @vsi: VSI connected with q_vectors 3018 * @coalesce: array of struct with stored coalesce 3019 * 3020 * Returns array size. 3021 */ 3022 static int 3023 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3024 struct ice_coalesce_stored *coalesce) 3025 { 3026 int i; 3027 3028 ice_for_each_q_vector(vsi, i) { 3029 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3030 3031 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3032 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3033 coalesce[i].intrl = q_vector->intrl; 3034 3035 if (i < vsi->num_txq) 3036 coalesce[i].tx_valid = true; 3037 if (i < vsi->num_rxq) 3038 coalesce[i].rx_valid = true; 3039 } 3040 3041 return vsi->num_q_vectors; 3042 } 3043 3044 /** 3045 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3046 * @vsi: VSI connected with q_vectors 3047 * @coalesce: pointer to array of struct with stored coalesce 3048 * @size: size of coalesce array 3049 * 3050 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3051 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3052 * to default value. 3053 */ 3054 static void 3055 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3056 struct ice_coalesce_stored *coalesce, int size) 3057 { 3058 struct ice_ring_container *rc; 3059 int i; 3060 3061 if ((size && !coalesce) || !vsi) 3062 return; 3063 3064 /* There are a couple of cases that have to be handled here: 3065 * 1. The case where the number of queue vectors stays the same, but 3066 * the number of Tx or Rx rings changes (the first for loop) 3067 * 2. The case where the number of queue vectors increased (the 3068 * second for loop) 3069 */ 3070 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3071 /* There are 2 cases to handle here and they are the same for 3072 * both Tx and Rx: 3073 * if the entry was valid previously (coalesce[i].[tr]x_valid 3074 * and the loop variable is less than the number of rings 3075 * allocated, then write the previous values 3076 * 3077 * if the entry was not valid previously, but the number of 3078 * rings is less than are allocated (this means the number of 3079 * rings increased from previously), then write out the 3080 * values in the first element 3081 * 3082 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3083 * as there is no harm because the dynamic algorithm 3084 * will just overwrite. 3085 */ 3086 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3087 rc = &vsi->q_vectors[i]->rx; 3088 rc->itr_settings = coalesce[i].itr_rx; 3089 ice_write_itr(rc, rc->itr_setting); 3090 } else if (i < vsi->alloc_rxq) { 3091 rc = &vsi->q_vectors[i]->rx; 3092 rc->itr_settings = coalesce[0].itr_rx; 3093 ice_write_itr(rc, rc->itr_setting); 3094 } 3095 3096 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3097 rc = &vsi->q_vectors[i]->tx; 3098 rc->itr_settings = coalesce[i].itr_tx; 3099 ice_write_itr(rc, rc->itr_setting); 3100 } else if (i < vsi->alloc_txq) { 3101 rc = &vsi->q_vectors[i]->tx; 3102 rc->itr_settings = coalesce[0].itr_tx; 3103 ice_write_itr(rc, rc->itr_setting); 3104 } 3105 3106 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3107 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3108 } 3109 3110 /* the number of queue vectors increased so write whatever is in 3111 * the first element 3112 */ 3113 for (; i < vsi->num_q_vectors; i++) { 3114 /* transmit */ 3115 rc = &vsi->q_vectors[i]->tx; 3116 rc->itr_settings = coalesce[0].itr_tx; 3117 ice_write_itr(rc, rc->itr_setting); 3118 3119 /* receive */ 3120 rc = &vsi->q_vectors[i]->rx; 3121 rc->itr_settings = coalesce[0].itr_rx; 3122 ice_write_itr(rc, rc->itr_setting); 3123 3124 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3125 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3126 } 3127 } 3128 3129 /** 3130 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones 3131 * @vsi: VSI pointer 3132 */ 3133 static int 3134 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) 3135 { 3136 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; 3137 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; 3138 struct ice_ring_stats **tx_ring_stats; 3139 struct ice_ring_stats **rx_ring_stats; 3140 struct ice_vsi_stats *vsi_stat; 3141 struct ice_pf *pf = vsi->back; 3142 u16 prev_txq = vsi->alloc_txq; 3143 u16 prev_rxq = vsi->alloc_rxq; 3144 int i; 3145 3146 vsi_stat = pf->vsi_stats[vsi->idx]; 3147 3148 if (req_txq < prev_txq) { 3149 for (i = req_txq; i < prev_txq; i++) { 3150 if (vsi_stat->tx_ring_stats[i]) { 3151 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3152 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3153 } 3154 } 3155 } 3156 3157 tx_ring_stats = vsi_stat->rx_ring_stats; 3158 vsi_stat->tx_ring_stats = 3159 krealloc_array(vsi_stat->tx_ring_stats, req_txq, 3160 sizeof(*vsi_stat->tx_ring_stats), 3161 GFP_KERNEL | __GFP_ZERO); 3162 if (!vsi_stat->tx_ring_stats) { 3163 vsi_stat->tx_ring_stats = tx_ring_stats; 3164 return -ENOMEM; 3165 } 3166 3167 if (req_rxq < prev_rxq) { 3168 for (i = req_rxq; i < prev_rxq; i++) { 3169 if (vsi_stat->rx_ring_stats[i]) { 3170 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3171 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3172 } 3173 } 3174 } 3175 3176 rx_ring_stats = vsi_stat->rx_ring_stats; 3177 vsi_stat->rx_ring_stats = 3178 krealloc_array(vsi_stat->rx_ring_stats, req_rxq, 3179 sizeof(*vsi_stat->rx_ring_stats), 3180 GFP_KERNEL | __GFP_ZERO); 3181 if (!vsi_stat->rx_ring_stats) { 3182 vsi_stat->rx_ring_stats = rx_ring_stats; 3183 return -ENOMEM; 3184 } 3185 3186 return 0; 3187 } 3188 3189 /** 3190 * ice_vsi_rebuild - Rebuild VSI after reset 3191 * @vsi: VSI to be rebuild 3192 * @vsi_flags: flags used for VSI rebuild flow 3193 * 3194 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3195 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3196 * 3197 * Returns 0 on success and negative value on failure 3198 */ 3199 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3200 { 3201 struct ice_vsi_cfg_params params = {}; 3202 struct ice_coalesce_stored *coalesce; 3203 int prev_num_q_vectors = 0; 3204 struct ice_pf *pf; 3205 int ret; 3206 3207 if (!vsi) 3208 return -EINVAL; 3209 3210 params = ice_vsi_to_params(vsi); 3211 params.flags = vsi_flags; 3212 3213 pf = vsi->back; 3214 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3215 return -EINVAL; 3216 3217 coalesce = kcalloc(vsi->num_q_vectors, 3218 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3219 if (!coalesce) 3220 return -ENOMEM; 3221 3222 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3223 3224 ret = ice_vsi_realloc_stat_arrays(vsi); 3225 if (ret) 3226 goto err_vsi_cfg; 3227 3228 ice_vsi_decfg(vsi); 3229 ret = ice_vsi_cfg_def(vsi, ¶ms); 3230 if (ret) 3231 goto err_vsi_cfg; 3232 3233 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3234 if (ret) { 3235 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3236 ret = -EIO; 3237 goto err_vsi_cfg_tc_lan; 3238 } 3239 3240 kfree(coalesce); 3241 return ice_schedule_reset(pf, ICE_RESET_PFR); 3242 } 3243 3244 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3245 kfree(coalesce); 3246 3247 return 0; 3248 3249 err_vsi_cfg_tc_lan: 3250 ice_vsi_decfg(vsi); 3251 err_vsi_cfg: 3252 kfree(coalesce); 3253 return ret; 3254 } 3255 3256 /** 3257 * ice_is_reset_in_progress - check for a reset in progress 3258 * @state: PF state field 3259 */ 3260 bool ice_is_reset_in_progress(unsigned long *state) 3261 { 3262 return test_bit(ICE_RESET_OICR_RECV, state) || 3263 test_bit(ICE_PFR_REQ, state) || 3264 test_bit(ICE_CORER_REQ, state) || 3265 test_bit(ICE_GLOBR_REQ, state); 3266 } 3267 3268 /** 3269 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3270 * @pf: pointer to the PF structure 3271 * @timeout: length of time to wait, in jiffies 3272 * 3273 * Wait (sleep) for a short time until the driver finishes cleaning up from 3274 * a device reset. The caller must be able to sleep. Use this to delay 3275 * operations that could fail while the driver is cleaning up after a device 3276 * reset. 3277 * 3278 * Returns 0 on success, -EBUSY if the reset is not finished within the 3279 * timeout, and -ERESTARTSYS if the thread was interrupted. 3280 */ 3281 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3282 { 3283 long ret; 3284 3285 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3286 !ice_is_reset_in_progress(pf->state), 3287 timeout); 3288 if (ret < 0) 3289 return ret; 3290 else if (!ret) 3291 return -EBUSY; 3292 else 3293 return 0; 3294 } 3295 3296 /** 3297 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3298 * @vsi: VSI being configured 3299 * @ctx: the context buffer returned from AQ VSI update command 3300 */ 3301 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3302 { 3303 vsi->info.mapping_flags = ctx->info.mapping_flags; 3304 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3305 sizeof(vsi->info.q_mapping)); 3306 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3307 sizeof(vsi->info.tc_mapping)); 3308 } 3309 3310 /** 3311 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3312 * @vsi: the VSI being configured 3313 * @ena_tc: TC map to be enabled 3314 */ 3315 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3316 { 3317 struct net_device *netdev = vsi->netdev; 3318 struct ice_pf *pf = vsi->back; 3319 int numtc = vsi->tc_cfg.numtc; 3320 struct ice_dcbx_cfg *dcbcfg; 3321 u8 netdev_tc; 3322 int i; 3323 3324 if (!netdev) 3325 return; 3326 3327 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3328 if (vsi->type == ICE_VSI_CHNL) 3329 return; 3330 3331 if (!ena_tc) { 3332 netdev_reset_tc(netdev); 3333 return; 3334 } 3335 3336 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3337 numtc = vsi->all_numtc; 3338 3339 if (netdev_set_num_tc(netdev, numtc)) 3340 return; 3341 3342 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3343 3344 ice_for_each_traffic_class(i) 3345 if (vsi->tc_cfg.ena_tc & BIT(i)) 3346 netdev_set_tc_queue(netdev, 3347 vsi->tc_cfg.tc_info[i].netdev_tc, 3348 vsi->tc_cfg.tc_info[i].qcount_tx, 3349 vsi->tc_cfg.tc_info[i].qoffset); 3350 /* setup TC queue map for CHNL TCs */ 3351 ice_for_each_chnl_tc(i) { 3352 if (!(vsi->all_enatc & BIT(i))) 3353 break; 3354 if (!vsi->mqprio_qopt.qopt.count[i]) 3355 break; 3356 netdev_set_tc_queue(netdev, i, 3357 vsi->mqprio_qopt.qopt.count[i], 3358 vsi->mqprio_qopt.qopt.offset[i]); 3359 } 3360 3361 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3362 return; 3363 3364 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3365 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3366 3367 /* Get the mapped netdev TC# for the UP */ 3368 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3369 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3370 } 3371 } 3372 3373 /** 3374 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3375 * @vsi: the VSI being configured, 3376 * @ctxt: VSI context structure 3377 * @ena_tc: number of traffic classes to enable 3378 * 3379 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3380 */ 3381 static int 3382 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3383 u8 ena_tc) 3384 { 3385 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3386 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3387 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3388 u16 new_txq, new_rxq; 3389 u8 netdev_tc = 0; 3390 int i; 3391 3392 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3393 3394 pow = order_base_2(tc0_qcount); 3395 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3396 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3397 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3398 3399 ice_for_each_traffic_class(i) { 3400 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3401 /* TC is not enabled */ 3402 vsi->tc_cfg.tc_info[i].qoffset = 0; 3403 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3404 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3405 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3406 ctxt->info.tc_mapping[i] = 0; 3407 continue; 3408 } 3409 3410 offset = vsi->mqprio_qopt.qopt.offset[i]; 3411 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3412 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3413 vsi->tc_cfg.tc_info[i].qoffset = offset; 3414 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3415 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3416 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3417 } 3418 3419 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3420 ice_for_each_chnl_tc(i) { 3421 if (!(vsi->all_enatc & BIT(i))) 3422 continue; 3423 offset = vsi->mqprio_qopt.qopt.offset[i]; 3424 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3425 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3426 } 3427 } 3428 3429 new_txq = offset + qcount_tx; 3430 if (new_txq > vsi->alloc_txq) { 3431 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3432 new_txq, vsi->alloc_txq); 3433 return -EINVAL; 3434 } 3435 3436 new_rxq = offset + qcount_rx; 3437 if (new_rxq > vsi->alloc_rxq) { 3438 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3439 new_rxq, vsi->alloc_rxq); 3440 return -EINVAL; 3441 } 3442 3443 /* Set actual Tx/Rx queue pairs */ 3444 vsi->num_txq = new_txq; 3445 vsi->num_rxq = new_rxq; 3446 3447 /* Setup queue TC[0].qmap for given VSI context */ 3448 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3449 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3450 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3451 3452 /* Find queue count available for channel VSIs and starting offset 3453 * for channel VSIs 3454 */ 3455 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3456 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3457 vsi->next_base_q = tc0_qcount; 3458 } 3459 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3460 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3461 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3462 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3463 3464 return 0; 3465 } 3466 3467 /** 3468 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3469 * @vsi: VSI to be configured 3470 * @ena_tc: TC bitmap 3471 * 3472 * VSI queues expected to be quiesced before calling this function 3473 */ 3474 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3475 { 3476 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3477 struct ice_pf *pf = vsi->back; 3478 struct ice_tc_cfg old_tc_cfg; 3479 struct ice_vsi_ctx *ctx; 3480 struct device *dev; 3481 int i, ret = 0; 3482 u8 num_tc = 0; 3483 3484 dev = ice_pf_to_dev(pf); 3485 if (vsi->tc_cfg.ena_tc == ena_tc && 3486 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3487 return 0; 3488 3489 ice_for_each_traffic_class(i) { 3490 /* build bitmap of enabled TCs */ 3491 if (ena_tc & BIT(i)) 3492 num_tc++; 3493 /* populate max_txqs per TC */ 3494 max_txqs[i] = vsi->alloc_txq; 3495 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3496 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3497 */ 3498 if (vsi->type == ICE_VSI_CHNL && 3499 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3500 max_txqs[i] = vsi->num_txq; 3501 } 3502 3503 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3504 vsi->tc_cfg.ena_tc = ena_tc; 3505 vsi->tc_cfg.numtc = num_tc; 3506 3507 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3508 if (!ctx) 3509 return -ENOMEM; 3510 3511 ctx->vf_num = 0; 3512 ctx->info = vsi->info; 3513 3514 if (vsi->type == ICE_VSI_PF && 3515 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3516 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3517 else 3518 ret = ice_vsi_setup_q_map(vsi, ctx); 3519 3520 if (ret) { 3521 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3522 goto out; 3523 } 3524 3525 /* must to indicate which section of VSI context are being modified */ 3526 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3527 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3528 if (ret) { 3529 dev_info(dev, "Failed VSI Update\n"); 3530 goto out; 3531 } 3532 3533 if (vsi->type == ICE_VSI_PF && 3534 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3535 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3536 else 3537 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3538 vsi->tc_cfg.ena_tc, max_txqs); 3539 3540 if (ret) { 3541 dev_err(dev, "VSI %d failed TC config, error %d\n", 3542 vsi->vsi_num, ret); 3543 goto out; 3544 } 3545 ice_vsi_update_q_map(vsi, ctx); 3546 vsi->info.valid_sections = 0; 3547 3548 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3549 out: 3550 kfree(ctx); 3551 return ret; 3552 } 3553 3554 /** 3555 * ice_update_ring_stats - Update ring statistics 3556 * @stats: stats to be updated 3557 * @pkts: number of processed packets 3558 * @bytes: number of processed bytes 3559 * 3560 * This function assumes that caller has acquired a u64_stats_sync lock. 3561 */ 3562 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3563 { 3564 stats->bytes += bytes; 3565 stats->pkts += pkts; 3566 } 3567 3568 /** 3569 * ice_update_tx_ring_stats - Update Tx ring specific counters 3570 * @tx_ring: ring to update 3571 * @pkts: number of processed packets 3572 * @bytes: number of processed bytes 3573 */ 3574 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3575 { 3576 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3577 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3578 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3579 } 3580 3581 /** 3582 * ice_update_rx_ring_stats - Update Rx ring specific counters 3583 * @rx_ring: ring to update 3584 * @pkts: number of processed packets 3585 * @bytes: number of processed bytes 3586 */ 3587 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3588 { 3589 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3590 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3591 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3592 } 3593 3594 /** 3595 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3596 * @pi: port info of the switch with default VSI 3597 * 3598 * Return true if the there is a single VSI in default forwarding VSI list 3599 */ 3600 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3601 { 3602 bool exists = false; 3603 3604 ice_check_if_dflt_vsi(pi, 0, &exists); 3605 return exists; 3606 } 3607 3608 /** 3609 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3610 * @vsi: VSI to compare against default forwarding VSI 3611 * 3612 * If this VSI passed in is the default forwarding VSI then return true, else 3613 * return false 3614 */ 3615 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3616 { 3617 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3618 } 3619 3620 /** 3621 * ice_set_dflt_vsi - set the default forwarding VSI 3622 * @vsi: VSI getting set as the default forwarding VSI on the switch 3623 * 3624 * If the VSI passed in is already the default VSI and it's enabled just return 3625 * success. 3626 * 3627 * Otherwise try to set the VSI passed in as the switch's default VSI and 3628 * return the result. 3629 */ 3630 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3631 { 3632 struct device *dev; 3633 int status; 3634 3635 if (!vsi) 3636 return -EINVAL; 3637 3638 dev = ice_pf_to_dev(vsi->back); 3639 3640 if (ice_lag_is_switchdev_running(vsi->back)) { 3641 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3642 vsi->vsi_num); 3643 return 0; 3644 } 3645 3646 /* the VSI passed in is already the default VSI */ 3647 if (ice_is_vsi_dflt_vsi(vsi)) { 3648 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3649 vsi->vsi_num); 3650 return 0; 3651 } 3652 3653 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3654 if (status) { 3655 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3656 vsi->vsi_num, status); 3657 return status; 3658 } 3659 3660 return 0; 3661 } 3662 3663 /** 3664 * ice_clear_dflt_vsi - clear the default forwarding VSI 3665 * @vsi: VSI to remove from filter list 3666 * 3667 * If the switch has no default VSI or it's not enabled then return error. 3668 * 3669 * Otherwise try to clear the default VSI and return the result. 3670 */ 3671 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3672 { 3673 struct device *dev; 3674 int status; 3675 3676 if (!vsi) 3677 return -EINVAL; 3678 3679 dev = ice_pf_to_dev(vsi->back); 3680 3681 /* there is no default VSI configured */ 3682 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3683 return -ENODEV; 3684 3685 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3686 ICE_FLTR_RX); 3687 if (status) { 3688 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3689 vsi->vsi_num, status); 3690 return -EIO; 3691 } 3692 3693 return 0; 3694 } 3695 3696 /** 3697 * ice_get_link_speed_mbps - get link speed in Mbps 3698 * @vsi: the VSI whose link speed is being queried 3699 * 3700 * Return current VSI link speed and 0 if the speed is unknown. 3701 */ 3702 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3703 { 3704 unsigned int link_speed; 3705 3706 link_speed = vsi->port_info->phy.link_info.link_speed; 3707 3708 return (int)ice_get_link_speed(fls(link_speed) - 1); 3709 } 3710 3711 /** 3712 * ice_get_link_speed_kbps - get link speed in Kbps 3713 * @vsi: the VSI whose link speed is being queried 3714 * 3715 * Return current VSI link speed and 0 if the speed is unknown. 3716 */ 3717 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3718 { 3719 int speed_mbps; 3720 3721 speed_mbps = ice_get_link_speed_mbps(vsi); 3722 3723 return speed_mbps * 1000; 3724 } 3725 3726 /** 3727 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3728 * @vsi: VSI to be configured 3729 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3730 * 3731 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3732 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3733 * on TC 0. 3734 */ 3735 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3736 { 3737 struct ice_pf *pf = vsi->back; 3738 struct device *dev; 3739 int status; 3740 int speed; 3741 3742 dev = ice_pf_to_dev(pf); 3743 if (!vsi->port_info) { 3744 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3745 vsi->idx, vsi->type); 3746 return -EINVAL; 3747 } 3748 3749 speed = ice_get_link_speed_kbps(vsi); 3750 if (min_tx_rate > (u64)speed) { 3751 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3752 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3753 speed); 3754 return -EINVAL; 3755 } 3756 3757 /* Configure min BW for VSI limit */ 3758 if (min_tx_rate) { 3759 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3760 ICE_MIN_BW, min_tx_rate); 3761 if (status) { 3762 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3763 min_tx_rate, ice_vsi_type_str(vsi->type), 3764 vsi->idx); 3765 return status; 3766 } 3767 3768 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3769 min_tx_rate, ice_vsi_type_str(vsi->type)); 3770 } else { 3771 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3772 vsi->idx, 0, 3773 ICE_MIN_BW); 3774 if (status) { 3775 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3776 ice_vsi_type_str(vsi->type), vsi->idx); 3777 return status; 3778 } 3779 3780 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3781 ice_vsi_type_str(vsi->type), vsi->idx); 3782 } 3783 3784 return 0; 3785 } 3786 3787 /** 3788 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3789 * @vsi: VSI to be configured 3790 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3791 * 3792 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3793 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3794 * on TC 0. 3795 */ 3796 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3797 { 3798 struct ice_pf *pf = vsi->back; 3799 struct device *dev; 3800 int status; 3801 int speed; 3802 3803 dev = ice_pf_to_dev(pf); 3804 if (!vsi->port_info) { 3805 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3806 vsi->idx, vsi->type); 3807 return -EINVAL; 3808 } 3809 3810 speed = ice_get_link_speed_kbps(vsi); 3811 if (max_tx_rate > (u64)speed) { 3812 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3813 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3814 speed); 3815 return -EINVAL; 3816 } 3817 3818 /* Configure max BW for VSI limit */ 3819 if (max_tx_rate) { 3820 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3821 ICE_MAX_BW, max_tx_rate); 3822 if (status) { 3823 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3824 max_tx_rate, ice_vsi_type_str(vsi->type), 3825 vsi->idx); 3826 return status; 3827 } 3828 3829 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3830 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3831 } else { 3832 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3833 vsi->idx, 0, 3834 ICE_MAX_BW); 3835 if (status) { 3836 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3837 ice_vsi_type_str(vsi->type), vsi->idx); 3838 return status; 3839 } 3840 3841 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3842 ice_vsi_type_str(vsi->type), vsi->idx); 3843 } 3844 3845 return 0; 3846 } 3847 3848 /** 3849 * ice_set_link - turn on/off physical link 3850 * @vsi: VSI to modify physical link on 3851 * @ena: turn on/off physical link 3852 */ 3853 int ice_set_link(struct ice_vsi *vsi, bool ena) 3854 { 3855 struct device *dev = ice_pf_to_dev(vsi->back); 3856 struct ice_port_info *pi = vsi->port_info; 3857 struct ice_hw *hw = pi->hw; 3858 int status; 3859 3860 if (vsi->type != ICE_VSI_PF) 3861 return -EINVAL; 3862 3863 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3864 3865 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3866 * this is not a fatal error, so print a warning message and return 3867 * a success code. Return an error if FW returns an error code other 3868 * than ICE_AQ_RC_EMODE 3869 */ 3870 if (status == -EIO) { 3871 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3872 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3873 (ena ? "ON" : "OFF"), status, 3874 ice_aq_str(hw->adminq.sq_last_status)); 3875 } else if (status) { 3876 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3877 (ena ? "ON" : "OFF"), status, 3878 ice_aq_str(hw->adminq.sq_last_status)); 3879 return status; 3880 } 3881 3882 return 0; 3883 } 3884 3885 /** 3886 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3887 * @vsi: VSI used to add VLAN filters 3888 * 3889 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3890 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3891 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3892 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3893 * 3894 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3895 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3896 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3897 * 3898 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3899 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3900 * part of filtering. 3901 */ 3902 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3903 { 3904 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3905 struct ice_vlan vlan; 3906 int err; 3907 3908 vlan = ICE_VLAN(0, 0, 0); 3909 err = vlan_ops->add_vlan(vsi, &vlan); 3910 if (err && err != -EEXIST) 3911 return err; 3912 3913 /* in SVM both VLAN 0 filters are identical */ 3914 if (!ice_is_dvm_ena(&vsi->back->hw)) 3915 return 0; 3916 3917 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3918 err = vlan_ops->add_vlan(vsi, &vlan); 3919 if (err && err != -EEXIST) 3920 return err; 3921 3922 return 0; 3923 } 3924 3925 /** 3926 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3927 * @vsi: VSI used to add VLAN filters 3928 * 3929 * Delete the VLAN 0 filters in the same manner that they were added in 3930 * ice_vsi_add_vlan_zero. 3931 */ 3932 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3933 { 3934 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3935 struct ice_vlan vlan; 3936 int err; 3937 3938 vlan = ICE_VLAN(0, 0, 0); 3939 err = vlan_ops->del_vlan(vsi, &vlan); 3940 if (err && err != -EEXIST) 3941 return err; 3942 3943 /* in SVM both VLAN 0 filters are identical */ 3944 if (!ice_is_dvm_ena(&vsi->back->hw)) 3945 return 0; 3946 3947 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3948 err = vlan_ops->del_vlan(vsi, &vlan); 3949 if (err && err != -EEXIST) 3950 return err; 3951 3952 /* when deleting the last VLAN filter, make sure to disable the VLAN 3953 * promisc mode so the filter isn't left by accident 3954 */ 3955 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3956 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3957 } 3958 3959 /** 3960 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3961 * @vsi: VSI used to get the VLAN mode 3962 * 3963 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3964 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3965 */ 3966 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3967 { 3968 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3969 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3970 /* no VLAN 0 filter is created when a port VLAN is active */ 3971 if (vsi->type == ICE_VSI_VF) { 3972 if (WARN_ON(!vsi->vf)) 3973 return 0; 3974 3975 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3976 return 0; 3977 } 3978 3979 if (ice_is_dvm_ena(&vsi->back->hw)) 3980 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3981 else 3982 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3983 } 3984 3985 /** 3986 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3987 * @vsi: VSI used to determine if any non-zero VLANs have been added 3988 */ 3989 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3990 { 3991 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3992 } 3993 3994 /** 3995 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3996 * @vsi: VSI used to get the number of non-zero VLANs added 3997 */ 3998 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3999 { 4000 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4001 } 4002 4003 /** 4004 * ice_is_feature_supported 4005 * @pf: pointer to the struct ice_pf instance 4006 * @f: feature enum to be checked 4007 * 4008 * returns true if feature is supported, false otherwise 4009 */ 4010 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4011 { 4012 if (f < 0 || f >= ICE_F_MAX) 4013 return false; 4014 4015 return test_bit(f, pf->features); 4016 } 4017 4018 /** 4019 * ice_set_feature_support 4020 * @pf: pointer to the struct ice_pf instance 4021 * @f: feature enum to set 4022 */ 4023 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4024 { 4025 if (f < 0 || f >= ICE_F_MAX) 4026 return; 4027 4028 set_bit(f, pf->features); 4029 } 4030 4031 /** 4032 * ice_clear_feature_support 4033 * @pf: pointer to the struct ice_pf instance 4034 * @f: feature enum to clear 4035 */ 4036 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4037 { 4038 if (f < 0 || f >= ICE_F_MAX) 4039 return; 4040 4041 clear_bit(f, pf->features); 4042 } 4043 4044 /** 4045 * ice_init_feature_support 4046 * @pf: pointer to the struct ice_pf instance 4047 * 4048 * called during init to setup supported feature 4049 */ 4050 void ice_init_feature_support(struct ice_pf *pf) 4051 { 4052 switch (pf->hw.device_id) { 4053 case ICE_DEV_ID_E810C_BACKPLANE: 4054 case ICE_DEV_ID_E810C_QSFP: 4055 case ICE_DEV_ID_E810C_SFP: 4056 case ICE_DEV_ID_E810_XXV_BACKPLANE: 4057 case ICE_DEV_ID_E810_XXV_QSFP: 4058 case ICE_DEV_ID_E810_XXV_SFP: 4059 ice_set_feature_support(pf, ICE_F_DSCP); 4060 if (ice_is_phy_rclk_in_netlist(&pf->hw)) 4061 ice_set_feature_support(pf, ICE_F_PHY_RCLK); 4062 /* If we don't own the timer - don't enable other caps */ 4063 if (!ice_pf_src_tmr_owned(pf)) 4064 break; 4065 if (ice_is_cgu_in_netlist(&pf->hw)) 4066 ice_set_feature_support(pf, ICE_F_CGU); 4067 if (ice_is_clock_mux_in_netlist(&pf->hw)) 4068 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4069 if (ice_gnss_is_gps_present(&pf->hw)) 4070 ice_set_feature_support(pf, ICE_F_GNSS); 4071 break; 4072 default: 4073 break; 4074 } 4075 } 4076 4077 /** 4078 * ice_vsi_update_security - update security block in VSI 4079 * @vsi: pointer to VSI structure 4080 * @fill: function pointer to fill ctx 4081 */ 4082 int 4083 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4084 { 4085 struct ice_vsi_ctx ctx = { 0 }; 4086 4087 ctx.info = vsi->info; 4088 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4089 fill(&ctx); 4090 4091 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4092 return -ENODEV; 4093 4094 vsi->info = ctx.info; 4095 return 0; 4096 } 4097 4098 /** 4099 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4100 * @ctx: pointer to VSI ctx structure 4101 */ 4102 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4103 { 4104 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4105 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4106 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4107 } 4108 4109 /** 4110 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4111 * @ctx: pointer to VSI ctx structure 4112 */ 4113 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4114 { 4115 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4116 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4117 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4118 } 4119 4120 /** 4121 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4122 * @ctx: pointer to VSI ctx structure 4123 */ 4124 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4125 { 4126 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4127 } 4128 4129 /** 4130 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4131 * @ctx: pointer to VSI ctx structure 4132 */ 4133 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4134 { 4135 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4136 } 4137 4138 /** 4139 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 4140 * @vsi: pointer to VSI structure 4141 * @set: set or unset the bit 4142 */ 4143 int 4144 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 4145 { 4146 struct ice_vsi_ctx ctx = { 4147 .info = vsi->info, 4148 }; 4149 4150 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4151 if (set) 4152 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4153 else 4154 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4155 4156 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4157 return -ENODEV; 4158 4159 vsi->info = ctx.info; 4160 return 0; 4161 } 4162