xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 9d027a35a52a4ea9400390ef4414e4e9dcd54193)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of PRs
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 * Tx and Rx rings are always equal
218 		 */
219 		if (vsi->req_txq && vsi->req_rxq) {
220 			vsi->alloc_txq = vsi->req_txq;
221 			vsi->alloc_rxq = vsi->req_rxq;
222 		} else {
223 			vsi->alloc_txq = 1;
224 			vsi->alloc_rxq = 1;
225 		}
226 
227 		vsi->num_q_vectors = 1;
228 		break;
229 	case ICE_VSI_VF:
230 		if (vf->num_req_qs)
231 			vf->num_vf_qs = vf->num_req_qs;
232 		vsi->alloc_txq = vf->num_vf_qs;
233 		vsi->alloc_rxq = vf->num_vf_qs;
234 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
235 		 * data queue interrupts). Since vsi->num_q_vectors is number
236 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
237 		 * original vector count
238 		 */
239 		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
240 		break;
241 	case ICE_VSI_CTRL:
242 		vsi->alloc_txq = 1;
243 		vsi->alloc_rxq = 1;
244 		vsi->num_q_vectors = 1;
245 		break;
246 	case ICE_VSI_CHNL:
247 		vsi->alloc_txq = 0;
248 		vsi->alloc_rxq = 0;
249 		break;
250 	case ICE_VSI_LB:
251 		vsi->alloc_txq = 1;
252 		vsi->alloc_rxq = 1;
253 		break;
254 	default:
255 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
256 		break;
257 	}
258 
259 	ice_vsi_set_num_desc(vsi);
260 }
261 
262 /**
263  * ice_get_free_slot - get the next non-NULL location index in array
264  * @array: array to search
265  * @size: size of the array
266  * @curr: last known occupied index to be used as a search hint
267  *
268  * void * is being used to keep the functionality generic. This lets us use this
269  * function on any array of pointers.
270  */
271 static int ice_get_free_slot(void *array, int size, int curr)
272 {
273 	int **tmp_array = (int **)array;
274 	int next;
275 
276 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
277 		next = curr + 1;
278 	} else {
279 		int i = 0;
280 
281 		while ((i < size) && (tmp_array[i]))
282 			i++;
283 		if (i == size)
284 			next = ICE_NO_VSI;
285 		else
286 			next = i;
287 	}
288 	return next;
289 }
290 
291 /**
292  * ice_vsi_delete_from_hw - delete a VSI from the switch
293  * @vsi: pointer to VSI being removed
294  */
295 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
296 {
297 	struct ice_pf *pf = vsi->back;
298 	struct ice_vsi_ctx *ctxt;
299 	int status;
300 
301 	ice_fltr_remove_all(vsi);
302 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
303 	if (!ctxt)
304 		return;
305 
306 	if (vsi->type == ICE_VSI_VF)
307 		ctxt->vf_num = vsi->vf->vf_id;
308 	ctxt->vsi_num = vsi->vsi_num;
309 
310 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
311 
312 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
313 	if (status)
314 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
315 			vsi->vsi_num, status);
316 
317 	kfree(ctxt);
318 }
319 
320 /**
321  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
322  * @vsi: pointer to VSI being cleared
323  */
324 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
325 {
326 	struct ice_pf *pf = vsi->back;
327 	struct device *dev;
328 
329 	dev = ice_pf_to_dev(pf);
330 
331 	bitmap_free(vsi->af_xdp_zc_qps);
332 	vsi->af_xdp_zc_qps = NULL;
333 	/* free the ring and vector containers */
334 	devm_kfree(dev, vsi->q_vectors);
335 	vsi->q_vectors = NULL;
336 	devm_kfree(dev, vsi->tx_rings);
337 	vsi->tx_rings = NULL;
338 	devm_kfree(dev, vsi->rx_rings);
339 	vsi->rx_rings = NULL;
340 	devm_kfree(dev, vsi->txq_map);
341 	vsi->txq_map = NULL;
342 	devm_kfree(dev, vsi->rxq_map);
343 	vsi->rxq_map = NULL;
344 }
345 
346 /**
347  * ice_vsi_free_stats - Free the ring statistics structures
348  * @vsi: VSI pointer
349  */
350 static void ice_vsi_free_stats(struct ice_vsi *vsi)
351 {
352 	struct ice_vsi_stats *vsi_stat;
353 	struct ice_pf *pf = vsi->back;
354 	int i;
355 
356 	if (vsi->type == ICE_VSI_CHNL)
357 		return;
358 	if (!pf->vsi_stats)
359 		return;
360 
361 	vsi_stat = pf->vsi_stats[vsi->idx];
362 	if (!vsi_stat)
363 		return;
364 
365 	ice_for_each_alloc_txq(vsi, i) {
366 		if (vsi_stat->tx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	ice_for_each_alloc_rxq(vsi, i) {
373 		if (vsi_stat->rx_ring_stats[i]) {
374 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
375 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
376 		}
377 	}
378 
379 	kfree(vsi_stat->tx_ring_stats);
380 	kfree(vsi_stat->rx_ring_stats);
381 	kfree(vsi_stat);
382 	pf->vsi_stats[vsi->idx] = NULL;
383 }
384 
385 /**
386  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
387  * @vsi: VSI which is having stats allocated
388  */
389 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
390 {
391 	struct ice_ring_stats **tx_ring_stats;
392 	struct ice_ring_stats **rx_ring_stats;
393 	struct ice_vsi_stats *vsi_stats;
394 	struct ice_pf *pf = vsi->back;
395 	u16 i;
396 
397 	vsi_stats = pf->vsi_stats[vsi->idx];
398 	tx_ring_stats = vsi_stats->tx_ring_stats;
399 	rx_ring_stats = vsi_stats->rx_ring_stats;
400 
401 	/* Allocate Tx ring stats */
402 	ice_for_each_alloc_txq(vsi, i) {
403 		struct ice_ring_stats *ring_stats;
404 		struct ice_tx_ring *ring;
405 
406 		ring = vsi->tx_rings[i];
407 		ring_stats = tx_ring_stats[i];
408 
409 		if (!ring_stats) {
410 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
411 			if (!ring_stats)
412 				goto err_out;
413 
414 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
415 		}
416 
417 		ring->ring_stats = ring_stats;
418 	}
419 
420 	/* Allocate Rx ring stats */
421 	ice_for_each_alloc_rxq(vsi, i) {
422 		struct ice_ring_stats *ring_stats;
423 		struct ice_rx_ring *ring;
424 
425 		ring = vsi->rx_rings[i];
426 		ring_stats = rx_ring_stats[i];
427 
428 		if (!ring_stats) {
429 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
430 			if (!ring_stats)
431 				goto err_out;
432 
433 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
434 		}
435 
436 		ring->ring_stats = ring_stats;
437 	}
438 
439 	return 0;
440 
441 err_out:
442 	ice_vsi_free_stats(vsi);
443 	return -ENOMEM;
444 }
445 
446 /**
447  * ice_vsi_free - clean up and deallocate the provided VSI
448  * @vsi: pointer to VSI being cleared
449  *
450  * This deallocates the VSI's queue resources, removes it from the PF's
451  * VSI array if necessary, and deallocates the VSI
452  */
453 static void ice_vsi_free(struct ice_vsi *vsi)
454 {
455 	struct ice_pf *pf = NULL;
456 	struct device *dev;
457 
458 	if (!vsi || !vsi->back)
459 		return;
460 
461 	pf = vsi->back;
462 	dev = ice_pf_to_dev(pf);
463 
464 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
465 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
466 		return;
467 	}
468 
469 	mutex_lock(&pf->sw_mutex);
470 	/* updates the PF for this cleared VSI */
471 
472 	pf->vsi[vsi->idx] = NULL;
473 	pf->next_vsi = vsi->idx;
474 
475 	ice_vsi_free_stats(vsi);
476 	ice_vsi_free_arrays(vsi);
477 	mutex_unlock(&pf->sw_mutex);
478 	devm_kfree(dev, vsi);
479 }
480 
481 void ice_vsi_delete(struct ice_vsi *vsi)
482 {
483 	ice_vsi_delete_from_hw(vsi);
484 	ice_vsi_free(vsi);
485 }
486 
487 /**
488  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
489  * @irq: interrupt number
490  * @data: pointer to a q_vector
491  */
492 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
493 {
494 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
495 
496 	if (!q_vector->tx.tx_ring)
497 		return IRQ_HANDLED;
498 
499 #define FDIR_RX_DESC_CLEAN_BUDGET 64
500 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
501 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
502 
503 	return IRQ_HANDLED;
504 }
505 
506 /**
507  * ice_msix_clean_rings - MSIX mode Interrupt Handler
508  * @irq: interrupt number
509  * @data: pointer to a q_vector
510  */
511 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
512 {
513 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514 
515 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
516 		return IRQ_HANDLED;
517 
518 	q_vector->total_events++;
519 
520 	napi_schedule(&q_vector->napi);
521 
522 	return IRQ_HANDLED;
523 }
524 
525 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
526 {
527 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
528 	struct ice_pf *pf = q_vector->vsi->back;
529 	struct ice_repr *repr;
530 	unsigned long id;
531 
532 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
533 		return IRQ_HANDLED;
534 
535 	xa_for_each(&pf->eswitch.reprs, id, repr)
536 		napi_schedule(&repr->q_vector->napi);
537 
538 	return IRQ_HANDLED;
539 }
540 
541 /**
542  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
543  * @vsi: VSI pointer
544  */
545 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
546 {
547 	struct ice_vsi_stats *vsi_stat;
548 	struct ice_pf *pf = vsi->back;
549 
550 	if (vsi->type == ICE_VSI_CHNL)
551 		return 0;
552 	if (!pf->vsi_stats)
553 		return -ENOENT;
554 
555 	if (pf->vsi_stats[vsi->idx])
556 	/* realloc will happen in rebuild path */
557 		return 0;
558 
559 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
560 	if (!vsi_stat)
561 		return -ENOMEM;
562 
563 	vsi_stat->tx_ring_stats =
564 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
565 			GFP_KERNEL);
566 	if (!vsi_stat->tx_ring_stats)
567 		goto err_alloc_tx;
568 
569 	vsi_stat->rx_ring_stats =
570 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
571 			GFP_KERNEL);
572 	if (!vsi_stat->rx_ring_stats)
573 		goto err_alloc_rx;
574 
575 	pf->vsi_stats[vsi->idx] = vsi_stat;
576 
577 	return 0;
578 
579 err_alloc_rx:
580 	kfree(vsi_stat->rx_ring_stats);
581 err_alloc_tx:
582 	kfree(vsi_stat->tx_ring_stats);
583 	kfree(vsi_stat);
584 	pf->vsi_stats[vsi->idx] = NULL;
585 	return -ENOMEM;
586 }
587 
588 /**
589  * ice_vsi_alloc_def - set default values for already allocated VSI
590  * @vsi: ptr to VSI
591  * @ch: ptr to channel
592  */
593 static int
594 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
595 {
596 	if (vsi->type != ICE_VSI_CHNL) {
597 		ice_vsi_set_num_qs(vsi);
598 		if (ice_vsi_alloc_arrays(vsi))
599 			return -ENOMEM;
600 	}
601 
602 	switch (vsi->type) {
603 	case ICE_VSI_SWITCHDEV_CTRL:
604 		/* Setup eswitch MSIX irq handler for VSI */
605 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
606 		break;
607 	case ICE_VSI_PF:
608 		/* Setup default MSIX irq handler for VSI */
609 		vsi->irq_handler = ice_msix_clean_rings;
610 		break;
611 	case ICE_VSI_CTRL:
612 		/* Setup ctrl VSI MSIX irq handler */
613 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
614 		break;
615 	case ICE_VSI_CHNL:
616 		if (!ch)
617 			return -EINVAL;
618 
619 		vsi->num_rxq = ch->num_rxq;
620 		vsi->num_txq = ch->num_txq;
621 		vsi->next_base_q = ch->base_q;
622 		break;
623 	case ICE_VSI_VF:
624 	case ICE_VSI_LB:
625 		break;
626 	default:
627 		ice_vsi_free_arrays(vsi);
628 		return -EINVAL;
629 	}
630 
631 	return 0;
632 }
633 
634 /**
635  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
636  * @pf: board private structure
637  *
638  * Reserves a VSI index from the PF and allocates an empty VSI structure
639  * without a type. The VSI structure must later be initialized by calling
640  * ice_vsi_cfg().
641  *
642  * returns a pointer to a VSI on success, NULL on failure.
643  */
644 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
645 {
646 	struct device *dev = ice_pf_to_dev(pf);
647 	struct ice_vsi *vsi = NULL;
648 
649 	/* Need to protect the allocation of the VSIs at the PF level */
650 	mutex_lock(&pf->sw_mutex);
651 
652 	/* If we have already allocated our maximum number of VSIs,
653 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
654 	 * is available to be populated
655 	 */
656 	if (pf->next_vsi == ICE_NO_VSI) {
657 		dev_dbg(dev, "out of VSI slots!\n");
658 		goto unlock_pf;
659 	}
660 
661 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
662 	if (!vsi)
663 		goto unlock_pf;
664 
665 	vsi->back = pf;
666 	set_bit(ICE_VSI_DOWN, vsi->state);
667 
668 	/* fill slot and make note of the index */
669 	vsi->idx = pf->next_vsi;
670 	pf->vsi[pf->next_vsi] = vsi;
671 
672 	/* prepare pf->next_vsi for next use */
673 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
674 					 pf->next_vsi);
675 
676 unlock_pf:
677 	mutex_unlock(&pf->sw_mutex);
678 	return vsi;
679 }
680 
681 /**
682  * ice_alloc_fd_res - Allocate FD resource for a VSI
683  * @vsi: pointer to the ice_vsi
684  *
685  * This allocates the FD resources
686  *
687  * Returns 0 on success, -EPERM on no-op or -EIO on failure
688  */
689 static int ice_alloc_fd_res(struct ice_vsi *vsi)
690 {
691 	struct ice_pf *pf = vsi->back;
692 	u32 g_val, b_val;
693 
694 	/* Flow Director filters are only allocated/assigned to the PF VSI or
695 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
696 	 * add/delete filters so resources are not allocated to it
697 	 */
698 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
699 		return -EPERM;
700 
701 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
702 	      vsi->type == ICE_VSI_CHNL))
703 		return -EPERM;
704 
705 	/* FD filters from guaranteed pool per VSI */
706 	g_val = pf->hw.func_caps.fd_fltr_guar;
707 	if (!g_val)
708 		return -EPERM;
709 
710 	/* FD filters from best effort pool */
711 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
712 	if (!b_val)
713 		return -EPERM;
714 
715 	/* PF main VSI gets only 64 FD resources from guaranteed pool
716 	 * when ADQ is configured.
717 	 */
718 #define ICE_PF_VSI_GFLTR	64
719 
720 	/* determine FD filter resources per VSI from shared(best effort) and
721 	 * dedicated pool
722 	 */
723 	if (vsi->type == ICE_VSI_PF) {
724 		vsi->num_gfltr = g_val;
725 		/* if MQPRIO is configured, main VSI doesn't get all FD
726 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
727 		 */
728 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
729 			if (g_val < ICE_PF_VSI_GFLTR)
730 				return -EPERM;
731 			/* allow bare minimum entries for PF VSI */
732 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
733 		}
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else if (vsi->type == ICE_VSI_VF) {
738 		vsi->num_gfltr = 0;
739 
740 		/* each VSI gets same "best_effort" quota */
741 		vsi->num_bfltr = b_val;
742 	} else {
743 		struct ice_vsi *main_vsi;
744 		int numtc;
745 
746 		main_vsi = ice_get_main_vsi(pf);
747 		if (!main_vsi)
748 			return -EPERM;
749 
750 		if (!main_vsi->all_numtc)
751 			return -EINVAL;
752 
753 		/* figure out ADQ numtc */
754 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
755 
756 		/* only one TC but still asking resources for channels,
757 		 * invalid config
758 		 */
759 		if (numtc < ICE_CHNL_START_TC)
760 			return -EPERM;
761 
762 		g_val -= ICE_PF_VSI_GFLTR;
763 		/* channel VSIs gets equal share from guaranteed pool */
764 		vsi->num_gfltr = g_val / numtc;
765 
766 		/* each VSI gets same "best_effort" quota */
767 		vsi->num_bfltr = b_val;
768 	}
769 
770 	return 0;
771 }
772 
773 /**
774  * ice_vsi_get_qs - Assign queues from PF to VSI
775  * @vsi: the VSI to assign queues to
776  *
777  * Returns 0 on success and a negative value on error
778  */
779 static int ice_vsi_get_qs(struct ice_vsi *vsi)
780 {
781 	struct ice_pf *pf = vsi->back;
782 	struct ice_qs_cfg tx_qs_cfg = {
783 		.qs_mutex = &pf->avail_q_mutex,
784 		.pf_map = pf->avail_txqs,
785 		.pf_map_size = pf->max_pf_txqs,
786 		.q_count = vsi->alloc_txq,
787 		.scatter_count = ICE_MAX_SCATTER_TXQS,
788 		.vsi_map = vsi->txq_map,
789 		.vsi_map_offset = 0,
790 		.mapping_mode = ICE_VSI_MAP_CONTIG
791 	};
792 	struct ice_qs_cfg rx_qs_cfg = {
793 		.qs_mutex = &pf->avail_q_mutex,
794 		.pf_map = pf->avail_rxqs,
795 		.pf_map_size = pf->max_pf_rxqs,
796 		.q_count = vsi->alloc_rxq,
797 		.scatter_count = ICE_MAX_SCATTER_RXQS,
798 		.vsi_map = vsi->rxq_map,
799 		.vsi_map_offset = 0,
800 		.mapping_mode = ICE_VSI_MAP_CONTIG
801 	};
802 	int ret;
803 
804 	if (vsi->type == ICE_VSI_CHNL)
805 		return 0;
806 
807 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
811 
812 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
813 	if (ret)
814 		return ret;
815 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
816 
817 	return 0;
818 }
819 
820 /**
821  * ice_vsi_put_qs - Release queues from VSI to PF
822  * @vsi: the VSI that is going to release queues
823  */
824 static void ice_vsi_put_qs(struct ice_vsi *vsi)
825 {
826 	struct ice_pf *pf = vsi->back;
827 	int i;
828 
829 	mutex_lock(&pf->avail_q_mutex);
830 
831 	ice_for_each_alloc_txq(vsi, i) {
832 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
833 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	ice_for_each_alloc_rxq(vsi, i) {
837 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
838 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
839 	}
840 
841 	mutex_unlock(&pf->avail_q_mutex);
842 }
843 
844 /**
845  * ice_is_safe_mode
846  * @pf: pointer to the PF struct
847  *
848  * returns true if driver is in safe mode, false otherwise
849  */
850 bool ice_is_safe_mode(struct ice_pf *pf)
851 {
852 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
853 }
854 
855 /**
856  * ice_is_rdma_ena
857  * @pf: pointer to the PF struct
858  *
859  * returns true if RDMA is currently supported, false otherwise
860  */
861 bool ice_is_rdma_ena(struct ice_pf *pf)
862 {
863 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
864 }
865 
866 /**
867  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
868  * @vsi: the VSI being cleaned up
869  *
870  * This function deletes RSS input set for all flows that were configured
871  * for this VSI
872  */
873 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
874 {
875 	struct ice_pf *pf = vsi->back;
876 	int status;
877 
878 	if (ice_is_safe_mode(pf))
879 		return;
880 
881 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
882 	if (status)
883 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
884 			vsi->vsi_num, status);
885 }
886 
887 /**
888  * ice_rss_clean - Delete RSS related VSI structures and configuration
889  * @vsi: the VSI being removed
890  */
891 static void ice_rss_clean(struct ice_vsi *vsi)
892 {
893 	struct ice_pf *pf = vsi->back;
894 	struct device *dev;
895 
896 	dev = ice_pf_to_dev(pf);
897 
898 	devm_kfree(dev, vsi->rss_hkey_user);
899 	devm_kfree(dev, vsi->rss_lut_user);
900 
901 	ice_vsi_clean_rss_flow_fld(vsi);
902 	/* remove RSS replay list */
903 	if (!ice_is_safe_mode(pf))
904 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
905 }
906 
907 /**
908  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
909  * @vsi: the VSI being configured
910  */
911 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
912 {
913 	struct ice_hw_common_caps *cap;
914 	struct ice_pf *pf = vsi->back;
915 	u16 max_rss_size;
916 
917 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
918 		vsi->rss_size = 1;
919 		return;
920 	}
921 
922 	cap = &pf->hw.func_caps.common_cap;
923 	max_rss_size = BIT(cap->rss_table_entry_width);
924 	switch (vsi->type) {
925 	case ICE_VSI_CHNL:
926 	case ICE_VSI_PF:
927 		/* PF VSI will inherit RSS instance of PF */
928 		vsi->rss_table_size = (u16)cap->rss_table_size;
929 		if (vsi->type == ICE_VSI_CHNL)
930 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
931 		else
932 			vsi->rss_size = min_t(u16, num_online_cpus(),
933 					      max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_PF;
935 		break;
936 	case ICE_VSI_SWITCHDEV_CTRL:
937 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
938 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
939 		vsi->rss_lut_type = ICE_LUT_VSI;
940 		break;
941 	case ICE_VSI_VF:
942 		/* VF VSI will get a small RSS table.
943 		 * For VSI_LUT, LUT size should be set to 64 bytes.
944 		 */
945 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
946 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
947 		vsi->rss_lut_type = ICE_LUT_VSI;
948 		break;
949 	case ICE_VSI_LB:
950 		break;
951 	default:
952 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
953 			ice_vsi_type_str(vsi->type));
954 		break;
955 	}
956 }
957 
958 /**
959  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
960  * @hw: HW structure used to determine the VLAN mode of the device
961  * @ctxt: the VSI context being set
962  *
963  * This initializes a default VSI context for all sections except the Queues.
964  */
965 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
966 {
967 	u32 table = 0;
968 
969 	memset(&ctxt->info, 0, sizeof(ctxt->info));
970 	/* VSI's should be allocated from shared pool */
971 	ctxt->alloc_from_pool = true;
972 	/* Src pruning enabled by default */
973 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
974 	/* Traffic from VSI can be sent to LAN */
975 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
976 	/* allow all untagged/tagged packets by default on Tx */
977 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
978 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
979 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
980 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
981 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
982 	 *
983 	 * DVM - leave inner VLAN in packet by default
984 	 */
985 	if (ice_is_dvm_ena(hw)) {
986 		ctxt->info.inner_vlan_flags |=
987 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
988 		ctxt->info.outer_vlan_flags =
989 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
990 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
991 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
992 		ctxt->info.outer_vlan_flags |=
993 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
994 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
995 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
996 		ctxt->info.outer_vlan_flags |=
997 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
998 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
999 	}
1000 	/* Have 1:1 UP mapping for both ingress/egress tables */
1001 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1002 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1003 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1004 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1005 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1006 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1007 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1008 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1009 	ctxt->info.ingress_table = cpu_to_le32(table);
1010 	ctxt->info.egress_table = cpu_to_le32(table);
1011 	/* Have 1:1 UP mapping for outer to inner UP table */
1012 	ctxt->info.outer_up_table = cpu_to_le32(table);
1013 	/* No Outer tag support outer_tag_flags remains to zero */
1014 }
1015 
1016 /**
1017  * ice_vsi_setup_q_map - Setup a VSI queue map
1018  * @vsi: the VSI being configured
1019  * @ctxt: VSI context structure
1020  */
1021 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1022 {
1023 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1024 	u16 num_txq_per_tc, num_rxq_per_tc;
1025 	u16 qcount_tx = vsi->alloc_txq;
1026 	u16 qcount_rx = vsi->alloc_rxq;
1027 	u8 netdev_tc = 0;
1028 	int i;
1029 
1030 	if (!vsi->tc_cfg.numtc) {
1031 		/* at least TC0 should be enabled by default */
1032 		vsi->tc_cfg.numtc = 1;
1033 		vsi->tc_cfg.ena_tc = 1;
1034 	}
1035 
1036 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1037 	if (!num_rxq_per_tc)
1038 		num_rxq_per_tc = 1;
1039 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1040 	if (!num_txq_per_tc)
1041 		num_txq_per_tc = 1;
1042 
1043 	/* find the (rounded up) power-of-2 of qcount */
1044 	pow = (u16)order_base_2(num_rxq_per_tc);
1045 
1046 	/* TC mapping is a function of the number of Rx queues assigned to the
1047 	 * VSI for each traffic class and the offset of these queues.
1048 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1049 	 * queues allocated to TC0. No:of queues is a power-of-2.
1050 	 *
1051 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1052 	 * queue, this way, traffic for the given TC will be sent to the default
1053 	 * queue.
1054 	 *
1055 	 * Setup number and offset of Rx queues for all TCs for the VSI
1056 	 */
1057 	ice_for_each_traffic_class(i) {
1058 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1059 			/* TC is not enabled */
1060 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1061 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1062 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1063 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1064 			ctxt->info.tc_mapping[i] = 0;
1065 			continue;
1066 		}
1067 
1068 		/* TC is enabled */
1069 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1070 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1071 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1072 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1073 
1074 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1075 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1076 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1077 			 ICE_AQ_VSI_TC_Q_NUM_M);
1078 		offset += num_rxq_per_tc;
1079 		tx_count += num_txq_per_tc;
1080 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1081 	}
1082 
1083 	/* if offset is non-zero, means it is calculated correctly based on
1084 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1085 	 * be correct and non-zero because it is based off - VSI's
1086 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1087 	 * at least 1)
1088 	 */
1089 	if (offset)
1090 		rx_count = offset;
1091 	else
1092 		rx_count = num_rxq_per_tc;
1093 
1094 	if (rx_count > vsi->alloc_rxq) {
1095 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1096 			rx_count, vsi->alloc_rxq);
1097 		return -EINVAL;
1098 	}
1099 
1100 	if (tx_count > vsi->alloc_txq) {
1101 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1102 			tx_count, vsi->alloc_txq);
1103 		return -EINVAL;
1104 	}
1105 
1106 	vsi->num_txq = tx_count;
1107 	vsi->num_rxq = rx_count;
1108 
1109 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1110 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1111 		/* since there is a chance that num_rxq could have been changed
1112 		 * in the above for loop, make num_txq equal to num_rxq.
1113 		 */
1114 		vsi->num_txq = vsi->num_rxq;
1115 	}
1116 
1117 	/* Rx queue mapping */
1118 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1119 	/* q_mapping buffer holds the info for the first queue allocated for
1120 	 * this VSI in the PF space and also the number of queues associated
1121 	 * with this VSI.
1122 	 */
1123 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1124 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1125 
1126 	return 0;
1127 }
1128 
1129 /**
1130  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1131  * @ctxt: the VSI context being set
1132  * @vsi: the VSI being configured
1133  */
1134 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1135 {
1136 	u8 dflt_q_group, dflt_q_prio;
1137 	u16 dflt_q, report_q, val;
1138 
1139 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1140 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1141 		return;
1142 
1143 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1144 	ctxt->info.valid_sections |= cpu_to_le16(val);
1145 	dflt_q = 0;
1146 	dflt_q_group = 0;
1147 	report_q = 0;
1148 	dflt_q_prio = 0;
1149 
1150 	/* enable flow director filtering/programming */
1151 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1152 	ctxt->info.fd_options = cpu_to_le16(val);
1153 	/* max of allocated flow director filters */
1154 	ctxt->info.max_fd_fltr_dedicated =
1155 			cpu_to_le16(vsi->num_gfltr);
1156 	/* max of shared flow director filters any VSI may program */
1157 	ctxt->info.max_fd_fltr_shared =
1158 			cpu_to_le16(vsi->num_bfltr);
1159 	/* default queue index within the VSI of the default FD */
1160 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1161 	       ICE_AQ_VSI_FD_DEF_Q_M);
1162 	/* target queue or queue group to the FD filter */
1163 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1164 		ICE_AQ_VSI_FD_DEF_GRP_M);
1165 	ctxt->info.fd_def_q = cpu_to_le16(val);
1166 	/* queue index on which FD filter completion is reported */
1167 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1168 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1169 	/* priority of the default qindex action */
1170 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1171 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1172 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1173 }
1174 
1175 /**
1176  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1177  * @ctxt: the VSI context being set
1178  * @vsi: the VSI being configured
1179  */
1180 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1181 {
1182 	u8 lut_type, hash_type;
1183 	struct device *dev;
1184 	struct ice_pf *pf;
1185 
1186 	pf = vsi->back;
1187 	dev = ice_pf_to_dev(pf);
1188 
1189 	switch (vsi->type) {
1190 	case ICE_VSI_CHNL:
1191 	case ICE_VSI_PF:
1192 		/* PF VSI will inherit RSS instance of PF */
1193 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1194 		break;
1195 	case ICE_VSI_VF:
1196 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1197 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1198 		break;
1199 	default:
1200 		dev_dbg(dev, "Unsupported VSI type %s\n",
1201 			ice_vsi_type_str(vsi->type));
1202 		return;
1203 	}
1204 
1205 	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1206 	vsi->rss_hfunc = hash_type;
1207 
1208 	ctxt->info.q_opt_rss =
1209 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1210 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1211 }
1212 
1213 static void
1214 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1215 {
1216 	struct ice_pf *pf = vsi->back;
1217 	u16 qcount, qmap;
1218 	u8 offset = 0;
1219 	int pow;
1220 
1221 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1222 
1223 	pow = order_base_2(qcount);
1224 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1225 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1226 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1227 		   ICE_AQ_VSI_TC_Q_NUM_M);
1228 
1229 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1230 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1231 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1232 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1233 }
1234 
1235 /**
1236  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1237  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1238  *
1239  * returns true if Rx VLAN pruning is enabled and false otherwise.
1240  */
1241 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1242 {
1243 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1244 }
1245 
1246 /**
1247  * ice_vsi_init - Create and initialize a VSI
1248  * @vsi: the VSI being configured
1249  * @vsi_flags: VSI configuration flags
1250  *
1251  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1252  * reconfigure an existing context.
1253  *
1254  * This initializes a VSI context depending on the VSI type to be added and
1255  * passes it down to the add_vsi aq command to create a new VSI.
1256  */
1257 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1258 {
1259 	struct ice_pf *pf = vsi->back;
1260 	struct ice_hw *hw = &pf->hw;
1261 	struct ice_vsi_ctx *ctxt;
1262 	struct device *dev;
1263 	int ret = 0;
1264 
1265 	dev = ice_pf_to_dev(pf);
1266 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1267 	if (!ctxt)
1268 		return -ENOMEM;
1269 
1270 	switch (vsi->type) {
1271 	case ICE_VSI_CTRL:
1272 	case ICE_VSI_LB:
1273 	case ICE_VSI_PF:
1274 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1275 		break;
1276 	case ICE_VSI_SWITCHDEV_CTRL:
1277 	case ICE_VSI_CHNL:
1278 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1279 		break;
1280 	case ICE_VSI_VF:
1281 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1282 		/* VF number here is the absolute VF number (0-255) */
1283 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1284 		break;
1285 	default:
1286 		ret = -ENODEV;
1287 		goto out;
1288 	}
1289 
1290 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1291 	 * prune enabled
1292 	 */
1293 	if (vsi->type == ICE_VSI_CHNL) {
1294 		struct ice_vsi *main_vsi;
1295 
1296 		main_vsi = ice_get_main_vsi(pf);
1297 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1298 			ctxt->info.sw_flags2 |=
1299 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1300 		else
1301 			ctxt->info.sw_flags2 &=
1302 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1303 	}
1304 
1305 	ice_set_dflt_vsi_ctx(hw, ctxt);
1306 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1307 		ice_set_fd_vsi_ctx(ctxt, vsi);
1308 	/* if the switch is in VEB mode, allow VSI loopback */
1309 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1310 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1311 
1312 	/* Set LUT type and HASH type if RSS is enabled */
1313 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1314 	    vsi->type != ICE_VSI_CTRL) {
1315 		ice_set_rss_vsi_ctx(ctxt, vsi);
1316 		/* if updating VSI context, make sure to set valid_section:
1317 		 * to indicate which section of VSI context being updated
1318 		 */
1319 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1320 			ctxt->info.valid_sections |=
1321 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1322 	}
1323 
1324 	ctxt->info.sw_id = vsi->port_info->sw_id;
1325 	if (vsi->type == ICE_VSI_CHNL) {
1326 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1327 	} else {
1328 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1329 		if (ret)
1330 			goto out;
1331 
1332 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1333 			/* means VSI being updated */
1334 			/* must to indicate which section of VSI context are
1335 			 * being modified
1336 			 */
1337 			ctxt->info.valid_sections |=
1338 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1339 	}
1340 
1341 	/* Allow control frames out of main VSI */
1342 	if (vsi->type == ICE_VSI_PF) {
1343 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1344 		ctxt->info.valid_sections |=
1345 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1346 	}
1347 
1348 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1349 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1350 		if (ret) {
1351 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1352 			ret = -EIO;
1353 			goto out;
1354 		}
1355 	} else {
1356 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1357 		if (ret) {
1358 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1359 			ret = -EIO;
1360 			goto out;
1361 		}
1362 	}
1363 
1364 	/* keep context for update VSI operations */
1365 	vsi->info = ctxt->info;
1366 
1367 	/* record VSI number returned */
1368 	vsi->vsi_num = ctxt->vsi_num;
1369 
1370 out:
1371 	kfree(ctxt);
1372 	return ret;
1373 }
1374 
1375 /**
1376  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1377  * @vsi: the VSI having rings deallocated
1378  */
1379 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1380 {
1381 	int i;
1382 
1383 	/* Avoid stale references by clearing map from vector to ring */
1384 	if (vsi->q_vectors) {
1385 		ice_for_each_q_vector(vsi, i) {
1386 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1387 
1388 			if (q_vector) {
1389 				q_vector->tx.tx_ring = NULL;
1390 				q_vector->rx.rx_ring = NULL;
1391 			}
1392 		}
1393 	}
1394 
1395 	if (vsi->tx_rings) {
1396 		ice_for_each_alloc_txq(vsi, i) {
1397 			if (vsi->tx_rings[i]) {
1398 				kfree_rcu(vsi->tx_rings[i], rcu);
1399 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1400 			}
1401 		}
1402 	}
1403 	if (vsi->rx_rings) {
1404 		ice_for_each_alloc_rxq(vsi, i) {
1405 			if (vsi->rx_rings[i]) {
1406 				kfree_rcu(vsi->rx_rings[i], rcu);
1407 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1408 			}
1409 		}
1410 	}
1411 }
1412 
1413 /**
1414  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1415  * @vsi: VSI which is having rings allocated
1416  */
1417 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1418 {
1419 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1420 	struct ice_pf *pf = vsi->back;
1421 	struct device *dev;
1422 	u16 i;
1423 
1424 	dev = ice_pf_to_dev(pf);
1425 	/* Allocate Tx rings */
1426 	ice_for_each_alloc_txq(vsi, i) {
1427 		struct ice_tx_ring *ring;
1428 
1429 		/* allocate with kzalloc(), free with kfree_rcu() */
1430 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1431 
1432 		if (!ring)
1433 			goto err_out;
1434 
1435 		ring->q_index = i;
1436 		ring->reg_idx = vsi->txq_map[i];
1437 		ring->vsi = vsi;
1438 		ring->tx_tstamps = &pf->ptp.port.tx;
1439 		ring->dev = dev;
1440 		ring->count = vsi->num_tx_desc;
1441 		ring->txq_teid = ICE_INVAL_TEID;
1442 		if (dvm_ena)
1443 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1444 		else
1445 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1446 		WRITE_ONCE(vsi->tx_rings[i], ring);
1447 	}
1448 
1449 	/* Allocate Rx rings */
1450 	ice_for_each_alloc_rxq(vsi, i) {
1451 		struct ice_rx_ring *ring;
1452 
1453 		/* allocate with kzalloc(), free with kfree_rcu() */
1454 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1455 		if (!ring)
1456 			goto err_out;
1457 
1458 		ring->q_index = i;
1459 		ring->reg_idx = vsi->rxq_map[i];
1460 		ring->vsi = vsi;
1461 		ring->netdev = vsi->netdev;
1462 		ring->dev = dev;
1463 		ring->count = vsi->num_rx_desc;
1464 		ring->cached_phctime = pf->ptp.cached_phc_time;
1465 		WRITE_ONCE(vsi->rx_rings[i], ring);
1466 	}
1467 
1468 	return 0;
1469 
1470 err_out:
1471 	ice_vsi_clear_rings(vsi);
1472 	return -ENOMEM;
1473 }
1474 
1475 /**
1476  * ice_vsi_manage_rss_lut - disable/enable RSS
1477  * @vsi: the VSI being changed
1478  * @ena: boolean value indicating if this is an enable or disable request
1479  *
1480  * In the event of disable request for RSS, this function will zero out RSS
1481  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1482  * LUT.
1483  */
1484 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1485 {
1486 	u8 *lut;
1487 
1488 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1489 	if (!lut)
1490 		return;
1491 
1492 	if (ena) {
1493 		if (vsi->rss_lut_user)
1494 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1495 		else
1496 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1497 					 vsi->rss_size);
1498 	}
1499 
1500 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1501 	kfree(lut);
1502 }
1503 
1504 /**
1505  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1506  * @vsi: VSI to be configured
1507  * @disable: set to true to have FCS / CRC in the frame data
1508  */
1509 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1510 {
1511 	int i;
1512 
1513 	ice_for_each_rxq(vsi, i)
1514 		if (disable)
1515 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1516 		else
1517 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1518 }
1519 
1520 /**
1521  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1522  * @vsi: VSI to be configured
1523  */
1524 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1525 {
1526 	struct ice_pf *pf = vsi->back;
1527 	struct device *dev;
1528 	u8 *lut, *key;
1529 	int err;
1530 
1531 	dev = ice_pf_to_dev(pf);
1532 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1533 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1534 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1535 	} else {
1536 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1537 
1538 		/* If orig_rss_size is valid and it is less than determined
1539 		 * main VSI's rss_size, update main VSI's rss_size to be
1540 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1541 		 * RSS table gets programmed to be correct (whatever it was
1542 		 * to begin with (prior to setup-tc for ADQ config)
1543 		 */
1544 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1545 		    vsi->orig_rss_size <= vsi->num_rxq) {
1546 			vsi->rss_size = vsi->orig_rss_size;
1547 			/* now orig_rss_size is used, reset it to zero */
1548 			vsi->orig_rss_size = 0;
1549 		}
1550 	}
1551 
1552 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1553 	if (!lut)
1554 		return -ENOMEM;
1555 
1556 	if (vsi->rss_lut_user)
1557 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1558 	else
1559 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1560 
1561 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1562 	if (err) {
1563 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1564 		goto ice_vsi_cfg_rss_exit;
1565 	}
1566 
1567 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1568 	if (!key) {
1569 		err = -ENOMEM;
1570 		goto ice_vsi_cfg_rss_exit;
1571 	}
1572 
1573 	if (vsi->rss_hkey_user)
1574 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1575 	else
1576 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1577 
1578 	err = ice_set_rss_key(vsi, key);
1579 	if (err)
1580 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1581 
1582 	kfree(key);
1583 ice_vsi_cfg_rss_exit:
1584 	kfree(lut);
1585 	return err;
1586 }
1587 
1588 /**
1589  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1590  * @vsi: VSI to be configured
1591  *
1592  * This function will only be called during the VF VSI setup. Upon successful
1593  * completion of package download, this function will configure default RSS
1594  * input sets for VF VSI.
1595  */
1596 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1597 {
1598 	struct ice_pf *pf = vsi->back;
1599 	struct device *dev;
1600 	int status;
1601 
1602 	dev = ice_pf_to_dev(pf);
1603 	if (ice_is_safe_mode(pf)) {
1604 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1605 			vsi->vsi_num);
1606 		return;
1607 	}
1608 
1609 	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1610 	if (status)
1611 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1612 			vsi->vsi_num, status);
1613 }
1614 
1615 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1616 	/* configure RSS for IPv4 with input set IP src/dst */
1617 	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1618 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1619 	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1620 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1621 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1622 				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1623 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1624 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1625 				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1626 	/* configure RSS for sctp4 with input set IP src/dst - only support
1627 	 * RSS on SCTPv4 on outer headers (non-tunneled)
1628 	 */
1629 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1630 		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1631 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1632 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1633 				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1634 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1635 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1636 				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1637 	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1638 	 * RSS on SCTPv6 on outer headers (non-tunneled)
1639 	 */
1640 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1641 		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1642 	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1643 	{ICE_FLOW_SEG_HDR_ESP,
1644 		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1645 };
1646 
1647 /**
1648  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1649  * @vsi: VSI to be configured
1650  *
1651  * This function will only be called after successful download package call
1652  * during initialization of PF. Since the downloaded package will erase the
1653  * RSS section, this function will configure RSS input sets for different
1654  * flow types. The last profile added has the highest priority, therefore 2
1655  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1656  * (i.e. IPv4 src/dst TCP src/dst port).
1657  */
1658 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1659 {
1660 	u16 vsi_num = vsi->vsi_num;
1661 	struct ice_pf *pf = vsi->back;
1662 	struct ice_hw *hw = &pf->hw;
1663 	struct device *dev;
1664 	int status;
1665 	u32 i;
1666 
1667 	dev = ice_pf_to_dev(pf);
1668 	if (ice_is_safe_mode(pf)) {
1669 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1670 			vsi_num);
1671 		return;
1672 	}
1673 	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1674 		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1675 
1676 		status = ice_add_rss_cfg(hw, vsi, cfg);
1677 		if (status)
1678 			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1679 				cfg->addl_hdrs, cfg->hash_flds,
1680 				cfg->hdr_type, cfg->symm);
1681 	}
1682 }
1683 
1684 /**
1685  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1686  * @vsi: VSI
1687  */
1688 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1689 {
1690 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1691 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1692 		vsi->rx_buf_len = ICE_RXBUF_1664;
1693 #if (PAGE_SIZE < 8192)
1694 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1695 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1696 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1697 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1698 #endif
1699 	} else {
1700 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1701 		vsi->rx_buf_len = ICE_RXBUF_3072;
1702 	}
1703 }
1704 
1705 /**
1706  * ice_pf_state_is_nominal - checks the PF for nominal state
1707  * @pf: pointer to PF to check
1708  *
1709  * Check the PF's state for a collection of bits that would indicate
1710  * the PF is in a state that would inhibit normal operation for
1711  * driver functionality.
1712  *
1713  * Returns true if PF is in a nominal state, false otherwise
1714  */
1715 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1716 {
1717 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1718 
1719 	if (!pf)
1720 		return false;
1721 
1722 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1723 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1724 		return false;
1725 
1726 	return true;
1727 }
1728 
1729 /**
1730  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1731  * @vsi: the VSI to be updated
1732  */
1733 void ice_update_eth_stats(struct ice_vsi *vsi)
1734 {
1735 	struct ice_eth_stats *prev_es, *cur_es;
1736 	struct ice_hw *hw = &vsi->back->hw;
1737 	struct ice_pf *pf = vsi->back;
1738 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1739 
1740 	prev_es = &vsi->eth_stats_prev;
1741 	cur_es = &vsi->eth_stats;
1742 
1743 	if (ice_is_reset_in_progress(pf->state))
1744 		vsi->stat_offsets_loaded = false;
1745 
1746 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1747 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1748 
1749 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1750 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1751 
1752 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1753 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1754 
1755 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1756 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1757 
1758 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1759 			  &prev_es->rx_discards, &cur_es->rx_discards);
1760 
1761 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1762 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1763 
1764 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1765 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1766 
1767 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1768 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1769 
1770 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1771 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1772 
1773 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1774 			  &prev_es->tx_errors, &cur_es->tx_errors);
1775 
1776 	vsi->stat_offsets_loaded = true;
1777 }
1778 
1779 /**
1780  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1781  * @hw: HW pointer
1782  * @pf_q: index of the Rx queue in the PF's queue space
1783  * @rxdid: flexible descriptor RXDID
1784  * @prio: priority for the RXDID for this queue
1785  * @ena_ts: true to enable timestamp and false to disable timestamp
1786  */
1787 void
1788 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1789 			bool ena_ts)
1790 {
1791 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1792 
1793 	/* clear any previous values */
1794 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1795 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1796 		    QRXFLXP_CNTXT_TS_M);
1797 
1798 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1799 		QRXFLXP_CNTXT_RXDID_IDX_M;
1800 
1801 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1802 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1803 
1804 	if (ena_ts)
1805 		/* Enable TimeSync on this queue */
1806 		regval |= QRXFLXP_CNTXT_TS_M;
1807 
1808 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1809 }
1810 
1811 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1812 {
1813 	if (q_idx >= vsi->num_rxq)
1814 		return -EINVAL;
1815 
1816 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1817 }
1818 
1819 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1820 {
1821 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
1822 
1823 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1824 		return -EINVAL;
1825 
1826 	qg_buf->num_txqs = 1;
1827 
1828 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1829 }
1830 
1831 /**
1832  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1833  * @vsi: the VSI being configured
1834  *
1835  * Return 0 on success and a negative value on error
1836  * Configure the Rx VSI for operation.
1837  */
1838 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1839 {
1840 	u16 i;
1841 
1842 	if (vsi->type == ICE_VSI_VF)
1843 		goto setup_rings;
1844 
1845 	ice_vsi_cfg_frame_size(vsi);
1846 setup_rings:
1847 	/* set up individual rings */
1848 	ice_for_each_rxq(vsi, i) {
1849 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1850 
1851 		if (err)
1852 			return err;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1860  * @vsi: the VSI being configured
1861  * @rings: Tx ring array to be configured
1862  * @count: number of Tx ring array elements
1863  *
1864  * Return 0 on success and a negative value on error
1865  * Configure the Tx VSI for operation.
1866  */
1867 static int
1868 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1869 {
1870 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
1871 	int err = 0;
1872 	u16 q_idx;
1873 
1874 	qg_buf->num_txqs = 1;
1875 
1876 	for (q_idx = 0; q_idx < count; q_idx++) {
1877 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1878 		if (err)
1879 			break;
1880 	}
1881 
1882 	return err;
1883 }
1884 
1885 /**
1886  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1887  * @vsi: the VSI being configured
1888  *
1889  * Return 0 on success and a negative value on error
1890  * Configure the Tx VSI for operation.
1891  */
1892 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1893 {
1894 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1895 }
1896 
1897 /**
1898  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1899  * @vsi: the VSI being configured
1900  *
1901  * Return 0 on success and a negative value on error
1902  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1903  */
1904 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1905 {
1906 	int ret;
1907 	int i;
1908 
1909 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1910 	if (ret)
1911 		return ret;
1912 
1913 	ice_for_each_rxq(vsi, i)
1914 		ice_tx_xsk_pool(vsi, i);
1915 
1916 	return 0;
1917 }
1918 
1919 /**
1920  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1921  * @intrl: interrupt rate limit in usecs
1922  * @gran: interrupt rate limit granularity in usecs
1923  *
1924  * This function converts a decimal interrupt rate limit in usecs to the format
1925  * expected by firmware.
1926  */
1927 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1928 {
1929 	u32 val = intrl / gran;
1930 
1931 	if (val)
1932 		return val | GLINT_RATE_INTRL_ENA_M;
1933 	return 0;
1934 }
1935 
1936 /**
1937  * ice_write_intrl - write throttle rate limit to interrupt specific register
1938  * @q_vector: pointer to interrupt specific structure
1939  * @intrl: throttle rate limit in microseconds to write
1940  */
1941 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1942 {
1943 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1944 
1945 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1946 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1947 }
1948 
1949 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1950 {
1951 	switch (rc->type) {
1952 	case ICE_RX_CONTAINER:
1953 		if (rc->rx_ring)
1954 			return rc->rx_ring->q_vector;
1955 		break;
1956 	case ICE_TX_CONTAINER:
1957 		if (rc->tx_ring)
1958 			return rc->tx_ring->q_vector;
1959 		break;
1960 	default:
1961 		break;
1962 	}
1963 
1964 	return NULL;
1965 }
1966 
1967 /**
1968  * __ice_write_itr - write throttle rate to register
1969  * @q_vector: pointer to interrupt data structure
1970  * @rc: pointer to ring container
1971  * @itr: throttle rate in microseconds to write
1972  */
1973 static void __ice_write_itr(struct ice_q_vector *q_vector,
1974 			    struct ice_ring_container *rc, u16 itr)
1975 {
1976 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1977 
1978 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1979 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1980 }
1981 
1982 /**
1983  * ice_write_itr - write throttle rate to queue specific register
1984  * @rc: pointer to ring container
1985  * @itr: throttle rate in microseconds to write
1986  */
1987 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1988 {
1989 	struct ice_q_vector *q_vector;
1990 
1991 	q_vector = ice_pull_qvec_from_rc(rc);
1992 	if (!q_vector)
1993 		return;
1994 
1995 	__ice_write_itr(q_vector, rc, itr);
1996 }
1997 
1998 /**
1999  * ice_set_q_vector_intrl - set up interrupt rate limiting
2000  * @q_vector: the vector to be configured
2001  *
2002  * Interrupt rate limiting is local to the vector, not per-queue so we must
2003  * detect if either ring container has dynamic moderation enabled to decide
2004  * what to set the interrupt rate limit to via INTRL settings. In the case that
2005  * dynamic moderation is disabled on both, write the value with the cached
2006  * setting to make sure INTRL register matches the user visible value.
2007  */
2008 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2009 {
2010 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2011 		/* in the case of dynamic enabled, cap each vector to no more
2012 		 * than (4 us) 250,000 ints/sec, which allows low latency
2013 		 * but still less than 500,000 interrupts per second, which
2014 		 * reduces CPU a bit in the case of the lowest latency
2015 		 * setting. The 4 here is a value in microseconds.
2016 		 */
2017 		ice_write_intrl(q_vector, 4);
2018 	} else {
2019 		ice_write_intrl(q_vector, q_vector->intrl);
2020 	}
2021 }
2022 
2023 /**
2024  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2025  * @vsi: the VSI being configured
2026  *
2027  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2028  * for the VF VSI.
2029  */
2030 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2031 {
2032 	struct ice_pf *pf = vsi->back;
2033 	struct ice_hw *hw = &pf->hw;
2034 	u16 txq = 0, rxq = 0;
2035 	int i, q;
2036 
2037 	ice_for_each_q_vector(vsi, i) {
2038 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2039 		u16 reg_idx = q_vector->reg_idx;
2040 
2041 		ice_cfg_itr(hw, q_vector);
2042 
2043 		/* Both Transmit Queue Interrupt Cause Control register
2044 		 * and Receive Queue Interrupt Cause control register
2045 		 * expects MSIX_INDX field to be the vector index
2046 		 * within the function space and not the absolute
2047 		 * vector index across PF or across device.
2048 		 * For SR-IOV VF VSIs queue vector index always starts
2049 		 * with 1 since first vector index(0) is used for OICR
2050 		 * in VF space. Since VMDq and other PF VSIs are within
2051 		 * the PF function space, use the vector index that is
2052 		 * tracked for this PF.
2053 		 */
2054 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2055 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2056 					      q_vector->tx.itr_idx);
2057 			txq++;
2058 		}
2059 
2060 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2061 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2062 					      q_vector->rx.itr_idx);
2063 			rxq++;
2064 		}
2065 	}
2066 }
2067 
2068 /**
2069  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2070  * @vsi: the VSI whose rings are to be enabled
2071  *
2072  * Returns 0 on success and a negative value on error
2073  */
2074 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2075 {
2076 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2077 }
2078 
2079 /**
2080  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2081  * @vsi: the VSI whose rings are to be disabled
2082  *
2083  * Returns 0 on success and a negative value on error
2084  */
2085 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2086 {
2087 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2088 }
2089 
2090 /**
2091  * ice_vsi_stop_tx_rings - Disable Tx rings
2092  * @vsi: the VSI being configured
2093  * @rst_src: reset source
2094  * @rel_vmvf_num: Relative ID of VF/VM
2095  * @rings: Tx ring array to be stopped
2096  * @count: number of Tx ring array elements
2097  */
2098 static int
2099 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2100 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2101 {
2102 	u16 q_idx;
2103 
2104 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2105 		return -EINVAL;
2106 
2107 	for (q_idx = 0; q_idx < count; q_idx++) {
2108 		struct ice_txq_meta txq_meta = { };
2109 		int status;
2110 
2111 		if (!rings || !rings[q_idx])
2112 			return -EINVAL;
2113 
2114 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2115 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2116 					      rings[q_idx], &txq_meta);
2117 
2118 		if (status)
2119 			return status;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 /**
2126  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2127  * @vsi: the VSI being configured
2128  * @rst_src: reset source
2129  * @rel_vmvf_num: Relative ID of VF/VM
2130  */
2131 int
2132 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2133 			  u16 rel_vmvf_num)
2134 {
2135 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2136 }
2137 
2138 /**
2139  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2140  * @vsi: the VSI being configured
2141  */
2142 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2143 {
2144 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2145 }
2146 
2147 /**
2148  * ice_vsi_is_rx_queue_active
2149  * @vsi: the VSI being configured
2150  *
2151  * Return true if at least one queue is active.
2152  */
2153 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2154 {
2155 	struct ice_pf *pf = vsi->back;
2156 	struct ice_hw *hw = &pf->hw;
2157 	int i;
2158 
2159 	ice_for_each_rxq(vsi, i) {
2160 		u32 rx_reg;
2161 		int pf_q;
2162 
2163 		pf_q = vsi->rxq_map[i];
2164 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2165 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2166 			return true;
2167 	}
2168 
2169 	return false;
2170 }
2171 
2172 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2173 {
2174 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2175 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2176 		vsi->tc_cfg.numtc = 1;
2177 		return;
2178 	}
2179 
2180 	/* set VSI TC information based on DCB config */
2181 	ice_vsi_set_dcb_tc_cfg(vsi);
2182 }
2183 
2184 /**
2185  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2186  * @vsi: the VSI being configured
2187  * @tx: bool to determine Tx or Rx rule
2188  * @create: bool to determine create or remove Rule
2189  */
2190 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2191 {
2192 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2193 			enum ice_sw_fwd_act_type act);
2194 	struct ice_pf *pf = vsi->back;
2195 	struct device *dev;
2196 	int status;
2197 
2198 	dev = ice_pf_to_dev(pf);
2199 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2200 
2201 	if (tx) {
2202 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2203 				  ICE_DROP_PACKET);
2204 	} else {
2205 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2206 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2207 							  create);
2208 		} else {
2209 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2210 					  ICE_FWD_TO_VSI);
2211 		}
2212 	}
2213 
2214 	if (status)
2215 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2216 			create ? "adding" : "removing", tx ? "TX" : "RX",
2217 			vsi->vsi_num, status);
2218 }
2219 
2220 /**
2221  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2222  * @vsi: pointer to the VSI
2223  *
2224  * This function will allocate new scheduler aggregator now if needed and will
2225  * move specified VSI into it.
2226  */
2227 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2228 {
2229 	struct device *dev = ice_pf_to_dev(vsi->back);
2230 	struct ice_agg_node *agg_node_iter = NULL;
2231 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2232 	struct ice_agg_node *agg_node = NULL;
2233 	int node_offset, max_agg_nodes = 0;
2234 	struct ice_port_info *port_info;
2235 	struct ice_pf *pf = vsi->back;
2236 	u32 agg_node_id_start = 0;
2237 	int status;
2238 
2239 	/* create (as needed) scheduler aggregator node and move VSI into
2240 	 * corresponding aggregator node
2241 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2242 	 * - VF aggregator nodes will contain VF VSI
2243 	 */
2244 	port_info = pf->hw.port_info;
2245 	if (!port_info)
2246 		return;
2247 
2248 	switch (vsi->type) {
2249 	case ICE_VSI_CTRL:
2250 	case ICE_VSI_CHNL:
2251 	case ICE_VSI_LB:
2252 	case ICE_VSI_PF:
2253 	case ICE_VSI_SWITCHDEV_CTRL:
2254 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2255 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2256 		agg_node_iter = &pf->pf_agg_node[0];
2257 		break;
2258 	case ICE_VSI_VF:
2259 		/* user can create 'n' VFs on a given PF, but since max children
2260 		 * per aggregator node can be only 64. Following code handles
2261 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2262 		 * was already created provided num_vsis < 64, otherwise
2263 		 * select next available node, which will be created
2264 		 */
2265 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2266 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2267 		agg_node_iter = &pf->vf_agg_node[0];
2268 		break;
2269 	default:
2270 		/* other VSI type, handle later if needed */
2271 		dev_dbg(dev, "unexpected VSI type %s\n",
2272 			ice_vsi_type_str(vsi->type));
2273 		return;
2274 	}
2275 
2276 	/* find the appropriate aggregator node */
2277 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2278 		/* see if we can find space in previously created
2279 		 * node if num_vsis < 64, otherwise skip
2280 		 */
2281 		if (agg_node_iter->num_vsis &&
2282 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2283 			agg_node_iter++;
2284 			continue;
2285 		}
2286 
2287 		if (agg_node_iter->valid &&
2288 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2289 			agg_id = agg_node_iter->agg_id;
2290 			agg_node = agg_node_iter;
2291 			break;
2292 		}
2293 
2294 		/* find unclaimed agg_id */
2295 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2296 			agg_id = node_offset + agg_node_id_start;
2297 			agg_node = agg_node_iter;
2298 			break;
2299 		}
2300 		/* move to next agg_node */
2301 		agg_node_iter++;
2302 	}
2303 
2304 	if (!agg_node)
2305 		return;
2306 
2307 	/* if selected aggregator node was not created, create it */
2308 	if (!agg_node->valid) {
2309 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2310 				     (u8)vsi->tc_cfg.ena_tc);
2311 		if (status) {
2312 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2313 				agg_id);
2314 			return;
2315 		}
2316 		/* aggregator node is created, store the needed info */
2317 		agg_node->valid = true;
2318 		agg_node->agg_id = agg_id;
2319 	}
2320 
2321 	/* move VSI to corresponding aggregator node */
2322 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2323 				     (u8)vsi->tc_cfg.ena_tc);
2324 	if (status) {
2325 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2326 			vsi->idx, agg_id);
2327 		return;
2328 	}
2329 
2330 	/* keep active children count for aggregator node */
2331 	agg_node->num_vsis++;
2332 
2333 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2334 	 * to aggregator node
2335 	 */
2336 	vsi->agg_node = agg_node;
2337 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2338 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2339 		vsi->agg_node->num_vsis);
2340 }
2341 
2342 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2343 {
2344 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2345 	struct device *dev = ice_pf_to_dev(pf);
2346 	int ret, i;
2347 
2348 	/* configure VSI nodes based on number of queues and TC's */
2349 	ice_for_each_traffic_class(i) {
2350 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2351 			continue;
2352 
2353 		if (vsi->type == ICE_VSI_CHNL) {
2354 			if (!vsi->alloc_txq && vsi->num_txq)
2355 				max_txqs[i] = vsi->num_txq;
2356 			else
2357 				max_txqs[i] = pf->num_lan_tx;
2358 		} else {
2359 			max_txqs[i] = vsi->alloc_txq;
2360 		}
2361 	}
2362 
2363 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2364 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2365 			      max_txqs);
2366 	if (ret) {
2367 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2368 			vsi->vsi_num, ret);
2369 		return ret;
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 /**
2376  * ice_vsi_cfg_def - configure default VSI based on the type
2377  * @vsi: pointer to VSI
2378  * @params: the parameters to configure this VSI with
2379  */
2380 static int
2381 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2382 {
2383 	struct device *dev = ice_pf_to_dev(vsi->back);
2384 	struct ice_pf *pf = vsi->back;
2385 	int ret;
2386 
2387 	vsi->vsw = pf->first_sw;
2388 
2389 	ret = ice_vsi_alloc_def(vsi, params->ch);
2390 	if (ret)
2391 		return ret;
2392 
2393 	/* allocate memory for Tx/Rx ring stat pointers */
2394 	ret = ice_vsi_alloc_stat_arrays(vsi);
2395 	if (ret)
2396 		goto unroll_vsi_alloc;
2397 
2398 	ice_alloc_fd_res(vsi);
2399 
2400 	ret = ice_vsi_get_qs(vsi);
2401 	if (ret) {
2402 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2403 			vsi->idx);
2404 		goto unroll_vsi_alloc_stat;
2405 	}
2406 
2407 	/* set RSS capabilities */
2408 	ice_vsi_set_rss_params(vsi);
2409 
2410 	/* set TC configuration */
2411 	ice_vsi_set_tc_cfg(vsi);
2412 
2413 	/* create the VSI */
2414 	ret = ice_vsi_init(vsi, params->flags);
2415 	if (ret)
2416 		goto unroll_get_qs;
2417 
2418 	ice_vsi_init_vlan_ops(vsi);
2419 
2420 	switch (vsi->type) {
2421 	case ICE_VSI_CTRL:
2422 	case ICE_VSI_SWITCHDEV_CTRL:
2423 	case ICE_VSI_PF:
2424 		ret = ice_vsi_alloc_q_vectors(vsi);
2425 		if (ret)
2426 			goto unroll_vsi_init;
2427 
2428 		ret = ice_vsi_alloc_rings(vsi);
2429 		if (ret)
2430 			goto unroll_vector_base;
2431 
2432 		ret = ice_vsi_alloc_ring_stats(vsi);
2433 		if (ret)
2434 			goto unroll_vector_base;
2435 
2436 		ice_vsi_map_rings_to_vectors(vsi);
2437 
2438 		/* Associate q_vector rings to napi */
2439 		ice_vsi_set_napi_queues(vsi, true);
2440 
2441 		vsi->stat_offsets_loaded = false;
2442 
2443 		if (ice_is_xdp_ena_vsi(vsi)) {
2444 			ret = ice_vsi_determine_xdp_res(vsi);
2445 			if (ret)
2446 				goto unroll_vector_base;
2447 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2448 			if (ret)
2449 				goto unroll_vector_base;
2450 		}
2451 
2452 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2453 		if (vsi->type != ICE_VSI_CTRL)
2454 			/* Do not exit if configuring RSS had an issue, at
2455 			 * least receive traffic on first queue. Hence no
2456 			 * need to capture return value
2457 			 */
2458 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2459 				ice_vsi_cfg_rss_lut_key(vsi);
2460 				ice_vsi_set_rss_flow_fld(vsi);
2461 			}
2462 		ice_init_arfs(vsi);
2463 		break;
2464 	case ICE_VSI_CHNL:
2465 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2466 			ice_vsi_cfg_rss_lut_key(vsi);
2467 			ice_vsi_set_rss_flow_fld(vsi);
2468 		}
2469 		break;
2470 	case ICE_VSI_VF:
2471 		/* VF driver will take care of creating netdev for this type and
2472 		 * map queues to vectors through Virtchnl, PF driver only
2473 		 * creates a VSI and corresponding structures for bookkeeping
2474 		 * purpose
2475 		 */
2476 		ret = ice_vsi_alloc_q_vectors(vsi);
2477 		if (ret)
2478 			goto unroll_vsi_init;
2479 
2480 		ret = ice_vsi_alloc_rings(vsi);
2481 		if (ret)
2482 			goto unroll_alloc_q_vector;
2483 
2484 		ret = ice_vsi_alloc_ring_stats(vsi);
2485 		if (ret)
2486 			goto unroll_vector_base;
2487 
2488 		vsi->stat_offsets_loaded = false;
2489 
2490 		/* Do not exit if configuring RSS had an issue, at least
2491 		 * receive traffic on first queue. Hence no need to capture
2492 		 * return value
2493 		 */
2494 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2495 			ice_vsi_cfg_rss_lut_key(vsi);
2496 			ice_vsi_set_vf_rss_flow_fld(vsi);
2497 		}
2498 		break;
2499 	case ICE_VSI_LB:
2500 		ret = ice_vsi_alloc_rings(vsi);
2501 		if (ret)
2502 			goto unroll_vsi_init;
2503 
2504 		ret = ice_vsi_alloc_ring_stats(vsi);
2505 		if (ret)
2506 			goto unroll_vector_base;
2507 
2508 		break;
2509 	default:
2510 		/* clean up the resources and exit */
2511 		ret = -EINVAL;
2512 		goto unroll_vsi_init;
2513 	}
2514 
2515 	return 0;
2516 
2517 unroll_vector_base:
2518 	/* reclaim SW interrupts back to the common pool */
2519 unroll_alloc_q_vector:
2520 	ice_vsi_free_q_vectors(vsi);
2521 unroll_vsi_init:
2522 	ice_vsi_delete_from_hw(vsi);
2523 unroll_get_qs:
2524 	ice_vsi_put_qs(vsi);
2525 unroll_vsi_alloc_stat:
2526 	ice_vsi_free_stats(vsi);
2527 unroll_vsi_alloc:
2528 	ice_vsi_free_arrays(vsi);
2529 	return ret;
2530 }
2531 
2532 /**
2533  * ice_vsi_cfg - configure a previously allocated VSI
2534  * @vsi: pointer to VSI
2535  * @params: parameters used to configure this VSI
2536  */
2537 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2538 {
2539 	struct ice_pf *pf = vsi->back;
2540 	int ret;
2541 
2542 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2543 		return -EINVAL;
2544 
2545 	vsi->type = params->type;
2546 	vsi->port_info = params->pi;
2547 
2548 	/* For VSIs which don't have a connected VF, this will be NULL */
2549 	vsi->vf = params->vf;
2550 
2551 	ret = ice_vsi_cfg_def(vsi, params);
2552 	if (ret)
2553 		return ret;
2554 
2555 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2556 	if (ret)
2557 		ice_vsi_decfg(vsi);
2558 
2559 	if (vsi->type == ICE_VSI_CTRL) {
2560 		if (vsi->vf) {
2561 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2562 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2563 		} else {
2564 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2565 			pf->ctrl_vsi_idx = vsi->idx;
2566 		}
2567 	}
2568 
2569 	return ret;
2570 }
2571 
2572 /**
2573  * ice_vsi_decfg - remove all VSI configuration
2574  * @vsi: pointer to VSI
2575  */
2576 void ice_vsi_decfg(struct ice_vsi *vsi)
2577 {
2578 	struct ice_pf *pf = vsi->back;
2579 	int err;
2580 
2581 	/* The Rx rule will only exist to remove if the LLDP FW
2582 	 * engine is currently stopped
2583 	 */
2584 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2585 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2586 		ice_cfg_sw_lldp(vsi, false, false);
2587 
2588 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2589 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2590 	if (err)
2591 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2592 			vsi->vsi_num, err);
2593 
2594 	if (ice_is_xdp_ena_vsi(vsi))
2595 		/* return value check can be skipped here, it always returns
2596 		 * 0 if reset is in progress
2597 		 */
2598 		ice_destroy_xdp_rings(vsi);
2599 
2600 	ice_vsi_clear_rings(vsi);
2601 	ice_vsi_free_q_vectors(vsi);
2602 	ice_vsi_put_qs(vsi);
2603 	ice_vsi_free_arrays(vsi);
2604 
2605 	/* SR-IOV determines needed MSIX resources all at once instead of per
2606 	 * VSI since when VFs are spawned we know how many VFs there are and how
2607 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2608 	 * cleared in the same manner.
2609 	 */
2610 
2611 	if (vsi->type == ICE_VSI_VF &&
2612 	    vsi->agg_node && vsi->agg_node->valid)
2613 		vsi->agg_node->num_vsis--;
2614 	if (vsi->agg_node) {
2615 		vsi->agg_node->valid = false;
2616 		vsi->agg_node->agg_id = 0;
2617 	}
2618 }
2619 
2620 /**
2621  * ice_vsi_setup - Set up a VSI by a given type
2622  * @pf: board private structure
2623  * @params: parameters to use when creating the VSI
2624  *
2625  * This allocates the sw VSI structure and its queue resources.
2626  *
2627  * Returns pointer to the successfully allocated and configured VSI sw struct on
2628  * success, NULL on failure.
2629  */
2630 struct ice_vsi *
2631 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2632 {
2633 	struct device *dev = ice_pf_to_dev(pf);
2634 	struct ice_vsi *vsi;
2635 	int ret;
2636 
2637 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2638 	 * a port_info structure for it.
2639 	 */
2640 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2641 	    WARN_ON(!params->pi))
2642 		return NULL;
2643 
2644 	vsi = ice_vsi_alloc(pf);
2645 	if (!vsi) {
2646 		dev_err(dev, "could not allocate VSI\n");
2647 		return NULL;
2648 	}
2649 
2650 	ret = ice_vsi_cfg(vsi, params);
2651 	if (ret)
2652 		goto err_vsi_cfg;
2653 
2654 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2655 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2656 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2657 	 * The rule is added once for PF VSI in order to create appropriate
2658 	 * recipe, since VSI/VSI list is ignored with drop action...
2659 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2660 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2661 	 * settings in the HW.
2662 	 */
2663 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2664 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2665 				 ICE_DROP_PACKET);
2666 		ice_cfg_sw_lldp(vsi, true, true);
2667 	}
2668 
2669 	if (!vsi->agg_node)
2670 		ice_set_agg_vsi(vsi);
2671 
2672 	return vsi;
2673 
2674 err_vsi_cfg:
2675 	ice_vsi_free(vsi);
2676 
2677 	return NULL;
2678 }
2679 
2680 /**
2681  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2682  * @vsi: the VSI being cleaned up
2683  */
2684 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2685 {
2686 	struct ice_pf *pf = vsi->back;
2687 	struct ice_hw *hw = &pf->hw;
2688 	u32 txq = 0;
2689 	u32 rxq = 0;
2690 	int i, q;
2691 
2692 	ice_for_each_q_vector(vsi, i) {
2693 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2694 
2695 		ice_write_intrl(q_vector, 0);
2696 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2697 			ice_write_itr(&q_vector->tx, 0);
2698 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2699 			if (ice_is_xdp_ena_vsi(vsi)) {
2700 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2701 
2702 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2703 			}
2704 			txq++;
2705 		}
2706 
2707 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2708 			ice_write_itr(&q_vector->rx, 0);
2709 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2710 			rxq++;
2711 		}
2712 	}
2713 
2714 	ice_flush(hw);
2715 }
2716 
2717 /**
2718  * ice_vsi_free_irq - Free the IRQ association with the OS
2719  * @vsi: the VSI being configured
2720  */
2721 void ice_vsi_free_irq(struct ice_vsi *vsi)
2722 {
2723 	struct ice_pf *pf = vsi->back;
2724 	int i;
2725 
2726 	if (!vsi->q_vectors || !vsi->irqs_ready)
2727 		return;
2728 
2729 	ice_vsi_release_msix(vsi);
2730 	if (vsi->type == ICE_VSI_VF)
2731 		return;
2732 
2733 	vsi->irqs_ready = false;
2734 	ice_free_cpu_rx_rmap(vsi);
2735 
2736 	ice_for_each_q_vector(vsi, i) {
2737 		int irq_num;
2738 
2739 		irq_num = vsi->q_vectors[i]->irq.virq;
2740 
2741 		/* free only the irqs that were actually requested */
2742 		if (!vsi->q_vectors[i] ||
2743 		    !(vsi->q_vectors[i]->num_ring_tx ||
2744 		      vsi->q_vectors[i]->num_ring_rx))
2745 			continue;
2746 
2747 		/* clear the affinity notifier in the IRQ descriptor */
2748 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2749 			irq_set_affinity_notifier(irq_num, NULL);
2750 
2751 		/* clear the affinity_mask in the IRQ descriptor */
2752 		irq_set_affinity_hint(irq_num, NULL);
2753 		synchronize_irq(irq_num);
2754 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2755 	}
2756 }
2757 
2758 /**
2759  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2760  * @vsi: the VSI having resources freed
2761  */
2762 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2763 {
2764 	int i;
2765 
2766 	if (!vsi->tx_rings)
2767 		return;
2768 
2769 	ice_for_each_txq(vsi, i)
2770 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2771 			ice_free_tx_ring(vsi->tx_rings[i]);
2772 }
2773 
2774 /**
2775  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2776  * @vsi: the VSI having resources freed
2777  */
2778 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2779 {
2780 	int i;
2781 
2782 	if (!vsi->rx_rings)
2783 		return;
2784 
2785 	ice_for_each_rxq(vsi, i)
2786 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2787 			ice_free_rx_ring(vsi->rx_rings[i]);
2788 }
2789 
2790 /**
2791  * ice_vsi_close - Shut down a VSI
2792  * @vsi: the VSI being shut down
2793  */
2794 void ice_vsi_close(struct ice_vsi *vsi)
2795 {
2796 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2797 		ice_down(vsi);
2798 
2799 	ice_vsi_free_irq(vsi);
2800 	ice_vsi_free_tx_rings(vsi);
2801 	ice_vsi_free_rx_rings(vsi);
2802 }
2803 
2804 /**
2805  * ice_ena_vsi - resume a VSI
2806  * @vsi: the VSI being resume
2807  * @locked: is the rtnl_lock already held
2808  */
2809 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2810 {
2811 	int err = 0;
2812 
2813 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2814 		return 0;
2815 
2816 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2817 
2818 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2819 		if (netif_running(vsi->netdev)) {
2820 			if (!locked)
2821 				rtnl_lock();
2822 
2823 			err = ice_open_internal(vsi->netdev);
2824 
2825 			if (!locked)
2826 				rtnl_unlock();
2827 		}
2828 	} else if (vsi->type == ICE_VSI_CTRL) {
2829 		err = ice_vsi_open_ctrl(vsi);
2830 	}
2831 
2832 	return err;
2833 }
2834 
2835 /**
2836  * ice_dis_vsi - pause a VSI
2837  * @vsi: the VSI being paused
2838  * @locked: is the rtnl_lock already held
2839  */
2840 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2841 {
2842 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2843 		return;
2844 
2845 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2846 
2847 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2848 		if (netif_running(vsi->netdev)) {
2849 			if (!locked)
2850 				rtnl_lock();
2851 
2852 			ice_vsi_close(vsi);
2853 
2854 			if (!locked)
2855 				rtnl_unlock();
2856 		} else {
2857 			ice_vsi_close(vsi);
2858 		}
2859 	} else if (vsi->type == ICE_VSI_CTRL ||
2860 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2861 		ice_vsi_close(vsi);
2862 	}
2863 }
2864 
2865 /**
2866  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2867  * @vsi: the VSI being un-configured
2868  */
2869 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2870 {
2871 	struct ice_pf *pf = vsi->back;
2872 	struct ice_hw *hw = &pf->hw;
2873 	u32 val;
2874 	int i;
2875 
2876 	/* disable interrupt causation from each queue */
2877 	if (vsi->tx_rings) {
2878 		ice_for_each_txq(vsi, i) {
2879 			if (vsi->tx_rings[i]) {
2880 				u16 reg;
2881 
2882 				reg = vsi->tx_rings[i]->reg_idx;
2883 				val = rd32(hw, QINT_TQCTL(reg));
2884 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2885 				wr32(hw, QINT_TQCTL(reg), val);
2886 			}
2887 		}
2888 	}
2889 
2890 	if (vsi->rx_rings) {
2891 		ice_for_each_rxq(vsi, i) {
2892 			if (vsi->rx_rings[i]) {
2893 				u16 reg;
2894 
2895 				reg = vsi->rx_rings[i]->reg_idx;
2896 				val = rd32(hw, QINT_RQCTL(reg));
2897 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2898 				wr32(hw, QINT_RQCTL(reg), val);
2899 			}
2900 		}
2901 	}
2902 
2903 	/* disable each interrupt */
2904 	ice_for_each_q_vector(vsi, i) {
2905 		if (!vsi->q_vectors[i])
2906 			continue;
2907 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2908 	}
2909 
2910 	ice_flush(hw);
2911 
2912 	/* don't call synchronize_irq() for VF's from the host */
2913 	if (vsi->type == ICE_VSI_VF)
2914 		return;
2915 
2916 	ice_for_each_q_vector(vsi, i)
2917 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2918 }
2919 
2920 /**
2921  * ice_queue_set_napi - Set the napi instance for the queue
2922  * @dev: device to which NAPI and queue belong
2923  * @queue_index: Index of queue
2924  * @type: queue type as RX or TX
2925  * @napi: NAPI context
2926  * @locked: is the rtnl_lock already held
2927  *
2928  * Set the napi instance for the queue
2929  */
2930 static void
2931 ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2932 		   enum netdev_queue_type type, struct napi_struct *napi,
2933 		   bool locked)
2934 {
2935 	if (!locked)
2936 		rtnl_lock();
2937 	netif_queue_set_napi(dev, queue_index, type, napi);
2938 	if (!locked)
2939 		rtnl_unlock();
2940 }
2941 
2942 /**
2943  * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2944  * @q_vector: q_vector pointer
2945  * @locked: is the rtnl_lock already held
2946  *
2947  * Associate the q_vector napi with all the queue[s] on the vector
2948  */
2949 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2950 {
2951 	struct ice_rx_ring *rx_ring;
2952 	struct ice_tx_ring *tx_ring;
2953 
2954 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2955 		ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2956 				   NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2957 				   locked);
2958 
2959 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2960 		ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2961 				   NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2962 				   locked);
2963 	/* Also set the interrupt number for the NAPI */
2964 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2965 }
2966 
2967 /**
2968  * ice_vsi_set_napi_queues
2969  * @vsi: VSI pointer
2970  * @locked: is the rtnl_lock already held
2971  *
2972  * Associate queue[s] with napi for all vectors
2973  */
2974 void ice_vsi_set_napi_queues(struct ice_vsi *vsi, bool locked)
2975 {
2976 	int i;
2977 
2978 	if (!vsi->netdev)
2979 		return;
2980 
2981 	ice_for_each_q_vector(vsi, i)
2982 		ice_q_vector_set_napi_queues(vsi->q_vectors[i], locked);
2983 }
2984 
2985 /**
2986  * ice_vsi_release - Delete a VSI and free its resources
2987  * @vsi: the VSI being removed
2988  *
2989  * Returns 0 on success or < 0 on error
2990  */
2991 int ice_vsi_release(struct ice_vsi *vsi)
2992 {
2993 	struct ice_pf *pf;
2994 
2995 	if (!vsi->back)
2996 		return -ENODEV;
2997 	pf = vsi->back;
2998 
2999 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3000 		ice_rss_clean(vsi);
3001 
3002 	ice_vsi_close(vsi);
3003 	ice_vsi_decfg(vsi);
3004 
3005 	/* retain SW VSI data structure since it is needed to unregister and
3006 	 * free VSI netdev when PF is not in reset recovery pending state,\
3007 	 * for ex: during rmmod.
3008 	 */
3009 	if (!ice_is_reset_in_progress(pf->state))
3010 		ice_vsi_delete(vsi);
3011 
3012 	return 0;
3013 }
3014 
3015 /**
3016  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3017  * @vsi: VSI connected with q_vectors
3018  * @coalesce: array of struct with stored coalesce
3019  *
3020  * Returns array size.
3021  */
3022 static int
3023 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3024 			     struct ice_coalesce_stored *coalesce)
3025 {
3026 	int i;
3027 
3028 	ice_for_each_q_vector(vsi, i) {
3029 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3030 
3031 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3032 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3033 		coalesce[i].intrl = q_vector->intrl;
3034 
3035 		if (i < vsi->num_txq)
3036 			coalesce[i].tx_valid = true;
3037 		if (i < vsi->num_rxq)
3038 			coalesce[i].rx_valid = true;
3039 	}
3040 
3041 	return vsi->num_q_vectors;
3042 }
3043 
3044 /**
3045  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3046  * @vsi: VSI connected with q_vectors
3047  * @coalesce: pointer to array of struct with stored coalesce
3048  * @size: size of coalesce array
3049  *
3050  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3051  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3052  * to default value.
3053  */
3054 static void
3055 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3056 			     struct ice_coalesce_stored *coalesce, int size)
3057 {
3058 	struct ice_ring_container *rc;
3059 	int i;
3060 
3061 	if ((size && !coalesce) || !vsi)
3062 		return;
3063 
3064 	/* There are a couple of cases that have to be handled here:
3065 	 *   1. The case where the number of queue vectors stays the same, but
3066 	 *      the number of Tx or Rx rings changes (the first for loop)
3067 	 *   2. The case where the number of queue vectors increased (the
3068 	 *      second for loop)
3069 	 */
3070 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3071 		/* There are 2 cases to handle here and they are the same for
3072 		 * both Tx and Rx:
3073 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3074 		 *   and the loop variable is less than the number of rings
3075 		 *   allocated, then write the previous values
3076 		 *
3077 		 *   if the entry was not valid previously, but the number of
3078 		 *   rings is less than are allocated (this means the number of
3079 		 *   rings increased from previously), then write out the
3080 		 *   values in the first element
3081 		 *
3082 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3083 		 *   as there is no harm because the dynamic algorithm
3084 		 *   will just overwrite.
3085 		 */
3086 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3087 			rc = &vsi->q_vectors[i]->rx;
3088 			rc->itr_settings = coalesce[i].itr_rx;
3089 			ice_write_itr(rc, rc->itr_setting);
3090 		} else if (i < vsi->alloc_rxq) {
3091 			rc = &vsi->q_vectors[i]->rx;
3092 			rc->itr_settings = coalesce[0].itr_rx;
3093 			ice_write_itr(rc, rc->itr_setting);
3094 		}
3095 
3096 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3097 			rc = &vsi->q_vectors[i]->tx;
3098 			rc->itr_settings = coalesce[i].itr_tx;
3099 			ice_write_itr(rc, rc->itr_setting);
3100 		} else if (i < vsi->alloc_txq) {
3101 			rc = &vsi->q_vectors[i]->tx;
3102 			rc->itr_settings = coalesce[0].itr_tx;
3103 			ice_write_itr(rc, rc->itr_setting);
3104 		}
3105 
3106 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3107 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3108 	}
3109 
3110 	/* the number of queue vectors increased so write whatever is in
3111 	 * the first element
3112 	 */
3113 	for (; i < vsi->num_q_vectors; i++) {
3114 		/* transmit */
3115 		rc = &vsi->q_vectors[i]->tx;
3116 		rc->itr_settings = coalesce[0].itr_tx;
3117 		ice_write_itr(rc, rc->itr_setting);
3118 
3119 		/* receive */
3120 		rc = &vsi->q_vectors[i]->rx;
3121 		rc->itr_settings = coalesce[0].itr_rx;
3122 		ice_write_itr(rc, rc->itr_setting);
3123 
3124 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3125 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3126 	}
3127 }
3128 
3129 /**
3130  * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3131  * @vsi: VSI pointer
3132  */
3133 static int
3134 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3135 {
3136 	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3137 	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3138 	struct ice_ring_stats **tx_ring_stats;
3139 	struct ice_ring_stats **rx_ring_stats;
3140 	struct ice_vsi_stats *vsi_stat;
3141 	struct ice_pf *pf = vsi->back;
3142 	u16 prev_txq = vsi->alloc_txq;
3143 	u16 prev_rxq = vsi->alloc_rxq;
3144 	int i;
3145 
3146 	vsi_stat = pf->vsi_stats[vsi->idx];
3147 
3148 	if (req_txq < prev_txq) {
3149 		for (i = req_txq; i < prev_txq; i++) {
3150 			if (vsi_stat->tx_ring_stats[i]) {
3151 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3152 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3153 			}
3154 		}
3155 	}
3156 
3157 	tx_ring_stats = vsi_stat->rx_ring_stats;
3158 	vsi_stat->tx_ring_stats =
3159 		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3160 			       sizeof(*vsi_stat->tx_ring_stats),
3161 			       GFP_KERNEL | __GFP_ZERO);
3162 	if (!vsi_stat->tx_ring_stats) {
3163 		vsi_stat->tx_ring_stats = tx_ring_stats;
3164 		return -ENOMEM;
3165 	}
3166 
3167 	if (req_rxq < prev_rxq) {
3168 		for (i = req_rxq; i < prev_rxq; i++) {
3169 			if (vsi_stat->rx_ring_stats[i]) {
3170 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3171 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3172 			}
3173 		}
3174 	}
3175 
3176 	rx_ring_stats = vsi_stat->rx_ring_stats;
3177 	vsi_stat->rx_ring_stats =
3178 		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3179 			       sizeof(*vsi_stat->rx_ring_stats),
3180 			       GFP_KERNEL | __GFP_ZERO);
3181 	if (!vsi_stat->rx_ring_stats) {
3182 		vsi_stat->rx_ring_stats = rx_ring_stats;
3183 		return -ENOMEM;
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 /**
3190  * ice_vsi_rebuild - Rebuild VSI after reset
3191  * @vsi: VSI to be rebuild
3192  * @vsi_flags: flags used for VSI rebuild flow
3193  *
3194  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3195  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3196  *
3197  * Returns 0 on success and negative value on failure
3198  */
3199 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3200 {
3201 	struct ice_vsi_cfg_params params = {};
3202 	struct ice_coalesce_stored *coalesce;
3203 	int prev_num_q_vectors = 0;
3204 	struct ice_pf *pf;
3205 	int ret;
3206 
3207 	if (!vsi)
3208 		return -EINVAL;
3209 
3210 	params = ice_vsi_to_params(vsi);
3211 	params.flags = vsi_flags;
3212 
3213 	pf = vsi->back;
3214 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3215 		return -EINVAL;
3216 
3217 	coalesce = kcalloc(vsi->num_q_vectors,
3218 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3219 	if (!coalesce)
3220 		return -ENOMEM;
3221 
3222 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3223 
3224 	ret = ice_vsi_realloc_stat_arrays(vsi);
3225 	if (ret)
3226 		goto err_vsi_cfg;
3227 
3228 	ice_vsi_decfg(vsi);
3229 	ret = ice_vsi_cfg_def(vsi, &params);
3230 	if (ret)
3231 		goto err_vsi_cfg;
3232 
3233 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3234 	if (ret) {
3235 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3236 			ret = -EIO;
3237 			goto err_vsi_cfg_tc_lan;
3238 		}
3239 
3240 		kfree(coalesce);
3241 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3242 	}
3243 
3244 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3245 	kfree(coalesce);
3246 
3247 	return 0;
3248 
3249 err_vsi_cfg_tc_lan:
3250 	ice_vsi_decfg(vsi);
3251 err_vsi_cfg:
3252 	kfree(coalesce);
3253 	return ret;
3254 }
3255 
3256 /**
3257  * ice_is_reset_in_progress - check for a reset in progress
3258  * @state: PF state field
3259  */
3260 bool ice_is_reset_in_progress(unsigned long *state)
3261 {
3262 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3263 	       test_bit(ICE_PFR_REQ, state) ||
3264 	       test_bit(ICE_CORER_REQ, state) ||
3265 	       test_bit(ICE_GLOBR_REQ, state);
3266 }
3267 
3268 /**
3269  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3270  * @pf: pointer to the PF structure
3271  * @timeout: length of time to wait, in jiffies
3272  *
3273  * Wait (sleep) for a short time until the driver finishes cleaning up from
3274  * a device reset. The caller must be able to sleep. Use this to delay
3275  * operations that could fail while the driver is cleaning up after a device
3276  * reset.
3277  *
3278  * Returns 0 on success, -EBUSY if the reset is not finished within the
3279  * timeout, and -ERESTARTSYS if the thread was interrupted.
3280  */
3281 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3282 {
3283 	long ret;
3284 
3285 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3286 					       !ice_is_reset_in_progress(pf->state),
3287 					       timeout);
3288 	if (ret < 0)
3289 		return ret;
3290 	else if (!ret)
3291 		return -EBUSY;
3292 	else
3293 		return 0;
3294 }
3295 
3296 /**
3297  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3298  * @vsi: VSI being configured
3299  * @ctx: the context buffer returned from AQ VSI update command
3300  */
3301 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3302 {
3303 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3304 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3305 	       sizeof(vsi->info.q_mapping));
3306 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3307 	       sizeof(vsi->info.tc_mapping));
3308 }
3309 
3310 /**
3311  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3312  * @vsi: the VSI being configured
3313  * @ena_tc: TC map to be enabled
3314  */
3315 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3316 {
3317 	struct net_device *netdev = vsi->netdev;
3318 	struct ice_pf *pf = vsi->back;
3319 	int numtc = vsi->tc_cfg.numtc;
3320 	struct ice_dcbx_cfg *dcbcfg;
3321 	u8 netdev_tc;
3322 	int i;
3323 
3324 	if (!netdev)
3325 		return;
3326 
3327 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3328 	if (vsi->type == ICE_VSI_CHNL)
3329 		return;
3330 
3331 	if (!ena_tc) {
3332 		netdev_reset_tc(netdev);
3333 		return;
3334 	}
3335 
3336 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3337 		numtc = vsi->all_numtc;
3338 
3339 	if (netdev_set_num_tc(netdev, numtc))
3340 		return;
3341 
3342 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3343 
3344 	ice_for_each_traffic_class(i)
3345 		if (vsi->tc_cfg.ena_tc & BIT(i))
3346 			netdev_set_tc_queue(netdev,
3347 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3348 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3349 					    vsi->tc_cfg.tc_info[i].qoffset);
3350 	/* setup TC queue map for CHNL TCs */
3351 	ice_for_each_chnl_tc(i) {
3352 		if (!(vsi->all_enatc & BIT(i)))
3353 			break;
3354 		if (!vsi->mqprio_qopt.qopt.count[i])
3355 			break;
3356 		netdev_set_tc_queue(netdev, i,
3357 				    vsi->mqprio_qopt.qopt.count[i],
3358 				    vsi->mqprio_qopt.qopt.offset[i]);
3359 	}
3360 
3361 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3362 		return;
3363 
3364 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3365 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3366 
3367 		/* Get the mapped netdev TC# for the UP */
3368 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3369 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3370 	}
3371 }
3372 
3373 /**
3374  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3375  * @vsi: the VSI being configured,
3376  * @ctxt: VSI context structure
3377  * @ena_tc: number of traffic classes to enable
3378  *
3379  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3380  */
3381 static int
3382 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3383 			   u8 ena_tc)
3384 {
3385 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3386 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3387 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3388 	u16 new_txq, new_rxq;
3389 	u8 netdev_tc = 0;
3390 	int i;
3391 
3392 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3393 
3394 	pow = order_base_2(tc0_qcount);
3395 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3396 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3397 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3398 
3399 	ice_for_each_traffic_class(i) {
3400 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3401 			/* TC is not enabled */
3402 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3403 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3404 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3405 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3406 			ctxt->info.tc_mapping[i] = 0;
3407 			continue;
3408 		}
3409 
3410 		offset = vsi->mqprio_qopt.qopt.offset[i];
3411 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3412 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3413 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3414 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3415 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3416 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3417 	}
3418 
3419 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3420 		ice_for_each_chnl_tc(i) {
3421 			if (!(vsi->all_enatc & BIT(i)))
3422 				continue;
3423 			offset = vsi->mqprio_qopt.qopt.offset[i];
3424 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3425 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3426 		}
3427 	}
3428 
3429 	new_txq = offset + qcount_tx;
3430 	if (new_txq > vsi->alloc_txq) {
3431 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3432 			new_txq, vsi->alloc_txq);
3433 		return -EINVAL;
3434 	}
3435 
3436 	new_rxq = offset + qcount_rx;
3437 	if (new_rxq > vsi->alloc_rxq) {
3438 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3439 			new_rxq, vsi->alloc_rxq);
3440 		return -EINVAL;
3441 	}
3442 
3443 	/* Set actual Tx/Rx queue pairs */
3444 	vsi->num_txq = new_txq;
3445 	vsi->num_rxq = new_rxq;
3446 
3447 	/* Setup queue TC[0].qmap for given VSI context */
3448 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3449 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3450 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3451 
3452 	/* Find queue count available for channel VSIs and starting offset
3453 	 * for channel VSIs
3454 	 */
3455 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3456 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3457 		vsi->next_base_q = tc0_qcount;
3458 	}
3459 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3460 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3461 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3462 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3463 
3464 	return 0;
3465 }
3466 
3467 /**
3468  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3469  * @vsi: VSI to be configured
3470  * @ena_tc: TC bitmap
3471  *
3472  * VSI queues expected to be quiesced before calling this function
3473  */
3474 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3475 {
3476 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3477 	struct ice_pf *pf = vsi->back;
3478 	struct ice_tc_cfg old_tc_cfg;
3479 	struct ice_vsi_ctx *ctx;
3480 	struct device *dev;
3481 	int i, ret = 0;
3482 	u8 num_tc = 0;
3483 
3484 	dev = ice_pf_to_dev(pf);
3485 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3486 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3487 		return 0;
3488 
3489 	ice_for_each_traffic_class(i) {
3490 		/* build bitmap of enabled TCs */
3491 		if (ena_tc & BIT(i))
3492 			num_tc++;
3493 		/* populate max_txqs per TC */
3494 		max_txqs[i] = vsi->alloc_txq;
3495 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3496 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3497 		 */
3498 		if (vsi->type == ICE_VSI_CHNL &&
3499 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3500 			max_txqs[i] = vsi->num_txq;
3501 	}
3502 
3503 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3504 	vsi->tc_cfg.ena_tc = ena_tc;
3505 	vsi->tc_cfg.numtc = num_tc;
3506 
3507 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3508 	if (!ctx)
3509 		return -ENOMEM;
3510 
3511 	ctx->vf_num = 0;
3512 	ctx->info = vsi->info;
3513 
3514 	if (vsi->type == ICE_VSI_PF &&
3515 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3516 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3517 	else
3518 		ret = ice_vsi_setup_q_map(vsi, ctx);
3519 
3520 	if (ret) {
3521 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3522 		goto out;
3523 	}
3524 
3525 	/* must to indicate which section of VSI context are being modified */
3526 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3527 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3528 	if (ret) {
3529 		dev_info(dev, "Failed VSI Update\n");
3530 		goto out;
3531 	}
3532 
3533 	if (vsi->type == ICE_VSI_PF &&
3534 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3535 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3536 	else
3537 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3538 				      vsi->tc_cfg.ena_tc, max_txqs);
3539 
3540 	if (ret) {
3541 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3542 			vsi->vsi_num, ret);
3543 		goto out;
3544 	}
3545 	ice_vsi_update_q_map(vsi, ctx);
3546 	vsi->info.valid_sections = 0;
3547 
3548 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3549 out:
3550 	kfree(ctx);
3551 	return ret;
3552 }
3553 
3554 /**
3555  * ice_update_ring_stats - Update ring statistics
3556  * @stats: stats to be updated
3557  * @pkts: number of processed packets
3558  * @bytes: number of processed bytes
3559  *
3560  * This function assumes that caller has acquired a u64_stats_sync lock.
3561  */
3562 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3563 {
3564 	stats->bytes += bytes;
3565 	stats->pkts += pkts;
3566 }
3567 
3568 /**
3569  * ice_update_tx_ring_stats - Update Tx ring specific counters
3570  * @tx_ring: ring to update
3571  * @pkts: number of processed packets
3572  * @bytes: number of processed bytes
3573  */
3574 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3575 {
3576 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3577 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3578 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3579 }
3580 
3581 /**
3582  * ice_update_rx_ring_stats - Update Rx ring specific counters
3583  * @rx_ring: ring to update
3584  * @pkts: number of processed packets
3585  * @bytes: number of processed bytes
3586  */
3587 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3588 {
3589 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3590 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3591 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3592 }
3593 
3594 /**
3595  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3596  * @pi: port info of the switch with default VSI
3597  *
3598  * Return true if the there is a single VSI in default forwarding VSI list
3599  */
3600 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3601 {
3602 	bool exists = false;
3603 
3604 	ice_check_if_dflt_vsi(pi, 0, &exists);
3605 	return exists;
3606 }
3607 
3608 /**
3609  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3610  * @vsi: VSI to compare against default forwarding VSI
3611  *
3612  * If this VSI passed in is the default forwarding VSI then return true, else
3613  * return false
3614  */
3615 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3616 {
3617 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3618 }
3619 
3620 /**
3621  * ice_set_dflt_vsi - set the default forwarding VSI
3622  * @vsi: VSI getting set as the default forwarding VSI on the switch
3623  *
3624  * If the VSI passed in is already the default VSI and it's enabled just return
3625  * success.
3626  *
3627  * Otherwise try to set the VSI passed in as the switch's default VSI and
3628  * return the result.
3629  */
3630 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3631 {
3632 	struct device *dev;
3633 	int status;
3634 
3635 	if (!vsi)
3636 		return -EINVAL;
3637 
3638 	dev = ice_pf_to_dev(vsi->back);
3639 
3640 	if (ice_lag_is_switchdev_running(vsi->back)) {
3641 		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3642 			vsi->vsi_num);
3643 		return 0;
3644 	}
3645 
3646 	/* the VSI passed in is already the default VSI */
3647 	if (ice_is_vsi_dflt_vsi(vsi)) {
3648 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3649 			vsi->vsi_num);
3650 		return 0;
3651 	}
3652 
3653 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3654 	if (status) {
3655 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3656 			vsi->vsi_num, status);
3657 		return status;
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 /**
3664  * ice_clear_dflt_vsi - clear the default forwarding VSI
3665  * @vsi: VSI to remove from filter list
3666  *
3667  * If the switch has no default VSI or it's not enabled then return error.
3668  *
3669  * Otherwise try to clear the default VSI and return the result.
3670  */
3671 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3672 {
3673 	struct device *dev;
3674 	int status;
3675 
3676 	if (!vsi)
3677 		return -EINVAL;
3678 
3679 	dev = ice_pf_to_dev(vsi->back);
3680 
3681 	/* there is no default VSI configured */
3682 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3683 		return -ENODEV;
3684 
3685 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3686 				  ICE_FLTR_RX);
3687 	if (status) {
3688 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3689 			vsi->vsi_num, status);
3690 		return -EIO;
3691 	}
3692 
3693 	return 0;
3694 }
3695 
3696 /**
3697  * ice_get_link_speed_mbps - get link speed in Mbps
3698  * @vsi: the VSI whose link speed is being queried
3699  *
3700  * Return current VSI link speed and 0 if the speed is unknown.
3701  */
3702 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3703 {
3704 	unsigned int link_speed;
3705 
3706 	link_speed = vsi->port_info->phy.link_info.link_speed;
3707 
3708 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3709 }
3710 
3711 /**
3712  * ice_get_link_speed_kbps - get link speed in Kbps
3713  * @vsi: the VSI whose link speed is being queried
3714  *
3715  * Return current VSI link speed and 0 if the speed is unknown.
3716  */
3717 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3718 {
3719 	int speed_mbps;
3720 
3721 	speed_mbps = ice_get_link_speed_mbps(vsi);
3722 
3723 	return speed_mbps * 1000;
3724 }
3725 
3726 /**
3727  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3728  * @vsi: VSI to be configured
3729  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3730  *
3731  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3732  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3733  * on TC 0.
3734  */
3735 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3736 {
3737 	struct ice_pf *pf = vsi->back;
3738 	struct device *dev;
3739 	int status;
3740 	int speed;
3741 
3742 	dev = ice_pf_to_dev(pf);
3743 	if (!vsi->port_info) {
3744 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3745 			vsi->idx, vsi->type);
3746 		return -EINVAL;
3747 	}
3748 
3749 	speed = ice_get_link_speed_kbps(vsi);
3750 	if (min_tx_rate > (u64)speed) {
3751 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3752 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3753 			speed);
3754 		return -EINVAL;
3755 	}
3756 
3757 	/* Configure min BW for VSI limit */
3758 	if (min_tx_rate) {
3759 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3760 						   ICE_MIN_BW, min_tx_rate);
3761 		if (status) {
3762 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3763 				min_tx_rate, ice_vsi_type_str(vsi->type),
3764 				vsi->idx);
3765 			return status;
3766 		}
3767 
3768 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3769 			min_tx_rate, ice_vsi_type_str(vsi->type));
3770 	} else {
3771 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3772 							vsi->idx, 0,
3773 							ICE_MIN_BW);
3774 		if (status) {
3775 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3776 				ice_vsi_type_str(vsi->type), vsi->idx);
3777 			return status;
3778 		}
3779 
3780 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3781 			ice_vsi_type_str(vsi->type), vsi->idx);
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 /**
3788  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3789  * @vsi: VSI to be configured
3790  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3791  *
3792  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3793  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3794  * on TC 0.
3795  */
3796 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3797 {
3798 	struct ice_pf *pf = vsi->back;
3799 	struct device *dev;
3800 	int status;
3801 	int speed;
3802 
3803 	dev = ice_pf_to_dev(pf);
3804 	if (!vsi->port_info) {
3805 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3806 			vsi->idx, vsi->type);
3807 		return -EINVAL;
3808 	}
3809 
3810 	speed = ice_get_link_speed_kbps(vsi);
3811 	if (max_tx_rate > (u64)speed) {
3812 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3813 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3814 			speed);
3815 		return -EINVAL;
3816 	}
3817 
3818 	/* Configure max BW for VSI limit */
3819 	if (max_tx_rate) {
3820 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3821 						   ICE_MAX_BW, max_tx_rate);
3822 		if (status) {
3823 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3824 				max_tx_rate, ice_vsi_type_str(vsi->type),
3825 				vsi->idx);
3826 			return status;
3827 		}
3828 
3829 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3830 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3831 	} else {
3832 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3833 							vsi->idx, 0,
3834 							ICE_MAX_BW);
3835 		if (status) {
3836 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3837 				ice_vsi_type_str(vsi->type), vsi->idx);
3838 			return status;
3839 		}
3840 
3841 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3842 			ice_vsi_type_str(vsi->type), vsi->idx);
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 /**
3849  * ice_set_link - turn on/off physical link
3850  * @vsi: VSI to modify physical link on
3851  * @ena: turn on/off physical link
3852  */
3853 int ice_set_link(struct ice_vsi *vsi, bool ena)
3854 {
3855 	struct device *dev = ice_pf_to_dev(vsi->back);
3856 	struct ice_port_info *pi = vsi->port_info;
3857 	struct ice_hw *hw = pi->hw;
3858 	int status;
3859 
3860 	if (vsi->type != ICE_VSI_PF)
3861 		return -EINVAL;
3862 
3863 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3864 
3865 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3866 	 * this is not a fatal error, so print a warning message and return
3867 	 * a success code. Return an error if FW returns an error code other
3868 	 * than ICE_AQ_RC_EMODE
3869 	 */
3870 	if (status == -EIO) {
3871 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3872 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3873 				(ena ? "ON" : "OFF"), status,
3874 				ice_aq_str(hw->adminq.sq_last_status));
3875 	} else if (status) {
3876 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3877 			(ena ? "ON" : "OFF"), status,
3878 			ice_aq_str(hw->adminq.sq_last_status));
3879 		return status;
3880 	}
3881 
3882 	return 0;
3883 }
3884 
3885 /**
3886  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3887  * @vsi: VSI used to add VLAN filters
3888  *
3889  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3890  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3891  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3892  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3893  *
3894  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3895  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3896  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3897  *
3898  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3899  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3900  * part of filtering.
3901  */
3902 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3903 {
3904 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3905 	struct ice_vlan vlan;
3906 	int err;
3907 
3908 	vlan = ICE_VLAN(0, 0, 0);
3909 	err = vlan_ops->add_vlan(vsi, &vlan);
3910 	if (err && err != -EEXIST)
3911 		return err;
3912 
3913 	/* in SVM both VLAN 0 filters are identical */
3914 	if (!ice_is_dvm_ena(&vsi->back->hw))
3915 		return 0;
3916 
3917 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3918 	err = vlan_ops->add_vlan(vsi, &vlan);
3919 	if (err && err != -EEXIST)
3920 		return err;
3921 
3922 	return 0;
3923 }
3924 
3925 /**
3926  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3927  * @vsi: VSI used to add VLAN filters
3928  *
3929  * Delete the VLAN 0 filters in the same manner that they were added in
3930  * ice_vsi_add_vlan_zero.
3931  */
3932 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3933 {
3934 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3935 	struct ice_vlan vlan;
3936 	int err;
3937 
3938 	vlan = ICE_VLAN(0, 0, 0);
3939 	err = vlan_ops->del_vlan(vsi, &vlan);
3940 	if (err && err != -EEXIST)
3941 		return err;
3942 
3943 	/* in SVM both VLAN 0 filters are identical */
3944 	if (!ice_is_dvm_ena(&vsi->back->hw))
3945 		return 0;
3946 
3947 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3948 	err = vlan_ops->del_vlan(vsi, &vlan);
3949 	if (err && err != -EEXIST)
3950 		return err;
3951 
3952 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3953 	 * promisc mode so the filter isn't left by accident
3954 	 */
3955 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3956 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3957 }
3958 
3959 /**
3960  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3961  * @vsi: VSI used to get the VLAN mode
3962  *
3963  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3964  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3965  */
3966 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3967 {
3968 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3969 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3970 	/* no VLAN 0 filter is created when a port VLAN is active */
3971 	if (vsi->type == ICE_VSI_VF) {
3972 		if (WARN_ON(!vsi->vf))
3973 			return 0;
3974 
3975 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3976 			return 0;
3977 	}
3978 
3979 	if (ice_is_dvm_ena(&vsi->back->hw))
3980 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3981 	else
3982 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3983 }
3984 
3985 /**
3986  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3987  * @vsi: VSI used to determine if any non-zero VLANs have been added
3988  */
3989 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3990 {
3991 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3992 }
3993 
3994 /**
3995  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3996  * @vsi: VSI used to get the number of non-zero VLANs added
3997  */
3998 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3999 {
4000 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4001 }
4002 
4003 /**
4004  * ice_is_feature_supported
4005  * @pf: pointer to the struct ice_pf instance
4006  * @f: feature enum to be checked
4007  *
4008  * returns true if feature is supported, false otherwise
4009  */
4010 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4011 {
4012 	if (f < 0 || f >= ICE_F_MAX)
4013 		return false;
4014 
4015 	return test_bit(f, pf->features);
4016 }
4017 
4018 /**
4019  * ice_set_feature_support
4020  * @pf: pointer to the struct ice_pf instance
4021  * @f: feature enum to set
4022  */
4023 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4024 {
4025 	if (f < 0 || f >= ICE_F_MAX)
4026 		return;
4027 
4028 	set_bit(f, pf->features);
4029 }
4030 
4031 /**
4032  * ice_clear_feature_support
4033  * @pf: pointer to the struct ice_pf instance
4034  * @f: feature enum to clear
4035  */
4036 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4037 {
4038 	if (f < 0 || f >= ICE_F_MAX)
4039 		return;
4040 
4041 	clear_bit(f, pf->features);
4042 }
4043 
4044 /**
4045  * ice_init_feature_support
4046  * @pf: pointer to the struct ice_pf instance
4047  *
4048  * called during init to setup supported feature
4049  */
4050 void ice_init_feature_support(struct ice_pf *pf)
4051 {
4052 	switch (pf->hw.device_id) {
4053 	case ICE_DEV_ID_E810C_BACKPLANE:
4054 	case ICE_DEV_ID_E810C_QSFP:
4055 	case ICE_DEV_ID_E810C_SFP:
4056 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
4057 	case ICE_DEV_ID_E810_XXV_QSFP:
4058 	case ICE_DEV_ID_E810_XXV_SFP:
4059 		ice_set_feature_support(pf, ICE_F_DSCP);
4060 		if (ice_is_phy_rclk_in_netlist(&pf->hw))
4061 			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
4062 		/* If we don't own the timer - don't enable other caps */
4063 		if (!ice_pf_src_tmr_owned(pf))
4064 			break;
4065 		if (ice_is_cgu_in_netlist(&pf->hw))
4066 			ice_set_feature_support(pf, ICE_F_CGU);
4067 		if (ice_is_clock_mux_in_netlist(&pf->hw))
4068 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4069 		if (ice_gnss_is_gps_present(&pf->hw))
4070 			ice_set_feature_support(pf, ICE_F_GNSS);
4071 		break;
4072 	default:
4073 		break;
4074 	}
4075 }
4076 
4077 /**
4078  * ice_vsi_update_security - update security block in VSI
4079  * @vsi: pointer to VSI structure
4080  * @fill: function pointer to fill ctx
4081  */
4082 int
4083 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4084 {
4085 	struct ice_vsi_ctx ctx = { 0 };
4086 
4087 	ctx.info = vsi->info;
4088 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4089 	fill(&ctx);
4090 
4091 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4092 		return -ENODEV;
4093 
4094 	vsi->info = ctx.info;
4095 	return 0;
4096 }
4097 
4098 /**
4099  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4100  * @ctx: pointer to VSI ctx structure
4101  */
4102 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4103 {
4104 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4105 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4106 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4107 }
4108 
4109 /**
4110  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4111  * @ctx: pointer to VSI ctx structure
4112  */
4113 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4114 {
4115 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4116 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4117 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4118 }
4119 
4120 /**
4121  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4122  * @ctx: pointer to VSI ctx structure
4123  */
4124 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4125 {
4126 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4127 }
4128 
4129 /**
4130  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4131  * @ctx: pointer to VSI ctx structure
4132  */
4133 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4134 {
4135 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4136 }
4137 
4138 /**
4139  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4140  * @vsi: pointer to VSI structure
4141  * @set: set or unset the bit
4142  */
4143 int
4144 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4145 {
4146 	struct ice_vsi_ctx ctx = {
4147 		.info	= vsi->info,
4148 	};
4149 
4150 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4151 	if (set)
4152 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4153 	else
4154 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4155 
4156 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4157 		return -ENODEV;
4158 
4159 	vsi->info = ctx.info;
4160 	return 0;
4161 }
4162