xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 66e72a01b60ae6950ddbb3585fdc1424d303e14b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_vsi_vlan_ops.h"
11 
12 /**
13  * ice_vsi_type_str - maps VSI type enum to string equivalents
14  * @vsi_type: VSI type enum
15  */
16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
17 {
18 	switch (vsi_type) {
19 	case ICE_VSI_PF:
20 		return "ICE_VSI_PF";
21 	case ICE_VSI_VF:
22 		return "ICE_VSI_VF";
23 	case ICE_VSI_CTRL:
24 		return "ICE_VSI_CTRL";
25 	case ICE_VSI_CHNL:
26 		return "ICE_VSI_CHNL";
27 	case ICE_VSI_LB:
28 		return "ICE_VSI_LB";
29 	default:
30 		return "unknown";
31 	}
32 }
33 
34 /**
35  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
36  * @vsi: the VSI being configured
37  * @ena: start or stop the Rx rings
38  *
39  * First enable/disable all of the Rx rings, flush any remaining writes, and
40  * then verify that they have all been enabled/disabled successfully. This will
41  * let all of the register writes complete when enabling/disabling the Rx rings
42  * before waiting for the change in hardware to complete.
43  */
44 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
45 {
46 	int ret = 0;
47 	u16 i;
48 
49 	ice_for_each_rxq(vsi, i)
50 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
51 
52 	ice_flush(&vsi->back->hw);
53 
54 	ice_for_each_rxq(vsi, i) {
55 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
56 		if (ret)
57 			break;
58 	}
59 
60 	return ret;
61 }
62 
63 /**
64  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
65  * @vsi: VSI pointer
66  *
67  * On error: returns error code (negative)
68  * On success: returns 0
69  */
70 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
71 {
72 	struct ice_pf *pf = vsi->back;
73 	struct device *dev;
74 
75 	dev = ice_pf_to_dev(pf);
76 	if (vsi->type == ICE_VSI_CHNL)
77 		return 0;
78 
79 	/* allocate memory for both Tx and Rx ring pointers */
80 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
81 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
82 	if (!vsi->tx_rings)
83 		return -ENOMEM;
84 
85 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
86 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
87 	if (!vsi->rx_rings)
88 		goto err_rings;
89 
90 	/* txq_map needs to have enough space to track both Tx (stack) rings
91 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
92 	 * so use num_possible_cpus() as we want to always provide XDP ring
93 	 * per CPU, regardless of queue count settings from user that might
94 	 * have come from ethtool's set_channels() callback;
95 	 */
96 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
97 				    sizeof(*vsi->txq_map), GFP_KERNEL);
98 
99 	if (!vsi->txq_map)
100 		goto err_txq_map;
101 
102 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
103 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
104 	if (!vsi->rxq_map)
105 		goto err_rxq_map;
106 
107 	/* There is no need to allocate q_vectors for a loopback VSI. */
108 	if (vsi->type == ICE_VSI_LB)
109 		return 0;
110 
111 	/* allocate memory for q_vector pointers */
112 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
113 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
114 	if (!vsi->q_vectors)
115 		goto err_vectors;
116 
117 	return 0;
118 
119 err_vectors:
120 	devm_kfree(dev, vsi->rxq_map);
121 err_rxq_map:
122 	devm_kfree(dev, vsi->txq_map);
123 err_txq_map:
124 	devm_kfree(dev, vsi->rx_rings);
125 err_rings:
126 	devm_kfree(dev, vsi->tx_rings);
127 	return -ENOMEM;
128 }
129 
130 /**
131  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
132  * @vsi: the VSI being configured
133  */
134 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
135 {
136 	switch (vsi->type) {
137 	case ICE_VSI_PF:
138 	case ICE_VSI_CTRL:
139 	case ICE_VSI_LB:
140 		/* a user could change the values of num_[tr]x_desc using
141 		 * ethtool -G so we should keep those values instead of
142 		 * overwriting them with the defaults.
143 		 */
144 		if (!vsi->num_rx_desc)
145 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
146 		if (!vsi->num_tx_desc)
147 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
148 		break;
149 	default:
150 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
151 			vsi->type);
152 		break;
153 	}
154 }
155 
156 /**
157  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
158  * @vsi: the VSI being configured
159  *
160  * Return 0 on success and a negative value on error
161  */
162 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
163 {
164 	enum ice_vsi_type vsi_type = vsi->type;
165 	struct ice_pf *pf = vsi->back;
166 	struct ice_vf *vf = vsi->vf;
167 
168 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
169 		return;
170 
171 	switch (vsi_type) {
172 	case ICE_VSI_PF:
173 		if (vsi->req_txq) {
174 			vsi->alloc_txq = vsi->req_txq;
175 			vsi->num_txq = vsi->req_txq;
176 		} else {
177 			vsi->alloc_txq = min3(pf->num_lan_msix,
178 					      ice_get_avail_txq_count(pf),
179 					      (u16)num_online_cpus());
180 		}
181 
182 		pf->num_lan_tx = vsi->alloc_txq;
183 
184 		/* only 1 Rx queue unless RSS is enabled */
185 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
186 			vsi->alloc_rxq = 1;
187 		} else {
188 			if (vsi->req_rxq) {
189 				vsi->alloc_rxq = vsi->req_rxq;
190 				vsi->num_rxq = vsi->req_rxq;
191 			} else {
192 				vsi->alloc_rxq = min3(pf->num_lan_msix,
193 						      ice_get_avail_rxq_count(pf),
194 						      (u16)num_online_cpus());
195 			}
196 		}
197 
198 		pf->num_lan_rx = vsi->alloc_rxq;
199 
200 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
201 					   max_t(int, vsi->alloc_rxq,
202 						 vsi->alloc_txq));
203 		break;
204 	case ICE_VSI_VF:
205 		if (vf->num_req_qs)
206 			vf->num_vf_qs = vf->num_req_qs;
207 		vsi->alloc_txq = vf->num_vf_qs;
208 		vsi->alloc_rxq = vf->num_vf_qs;
209 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
210 		 * data queue interrupts). Since vsi->num_q_vectors is number
211 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
212 		 * original vector count
213 		 */
214 		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
215 		break;
216 	case ICE_VSI_CTRL:
217 		vsi->alloc_txq = 1;
218 		vsi->alloc_rxq = 1;
219 		vsi->num_q_vectors = 1;
220 		break;
221 	case ICE_VSI_CHNL:
222 		vsi->alloc_txq = 0;
223 		vsi->alloc_rxq = 0;
224 		break;
225 	case ICE_VSI_LB:
226 		vsi->alloc_txq = 1;
227 		vsi->alloc_rxq = 1;
228 		break;
229 	default:
230 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
231 		break;
232 	}
233 
234 	ice_vsi_set_num_desc(vsi);
235 }
236 
237 /**
238  * ice_get_free_slot - get the next non-NULL location index in array
239  * @array: array to search
240  * @size: size of the array
241  * @curr: last known occupied index to be used as a search hint
242  *
243  * void * is being used to keep the functionality generic. This lets us use this
244  * function on any array of pointers.
245  */
246 static int ice_get_free_slot(void *array, int size, int curr)
247 {
248 	int **tmp_array = (int **)array;
249 	int next;
250 
251 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
252 		next = curr + 1;
253 	} else {
254 		int i = 0;
255 
256 		while ((i < size) && (tmp_array[i]))
257 			i++;
258 		if (i == size)
259 			next = ICE_NO_VSI;
260 		else
261 			next = i;
262 	}
263 	return next;
264 }
265 
266 /**
267  * ice_vsi_delete_from_hw - delete a VSI from the switch
268  * @vsi: pointer to VSI being removed
269  */
270 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
271 {
272 	struct ice_pf *pf = vsi->back;
273 	struct ice_vsi_ctx *ctxt;
274 	int status;
275 
276 	ice_fltr_remove_all(vsi);
277 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
278 	if (!ctxt)
279 		return;
280 
281 	if (vsi->type == ICE_VSI_VF)
282 		ctxt->vf_num = vsi->vf->vf_id;
283 	ctxt->vsi_num = vsi->vsi_num;
284 
285 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
286 
287 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
288 	if (status)
289 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
290 			vsi->vsi_num, status);
291 
292 	kfree(ctxt);
293 }
294 
295 /**
296  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
297  * @vsi: pointer to VSI being cleared
298  */
299 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
300 {
301 	struct ice_pf *pf = vsi->back;
302 	struct device *dev;
303 
304 	dev = ice_pf_to_dev(pf);
305 
306 	/* free the ring and vector containers */
307 	devm_kfree(dev, vsi->q_vectors);
308 	vsi->q_vectors = NULL;
309 	devm_kfree(dev, vsi->tx_rings);
310 	vsi->tx_rings = NULL;
311 	devm_kfree(dev, vsi->rx_rings);
312 	vsi->rx_rings = NULL;
313 	devm_kfree(dev, vsi->txq_map);
314 	vsi->txq_map = NULL;
315 	devm_kfree(dev, vsi->rxq_map);
316 	vsi->rxq_map = NULL;
317 }
318 
319 /**
320  * ice_vsi_free_stats - Free the ring statistics structures
321  * @vsi: VSI pointer
322  */
323 static void ice_vsi_free_stats(struct ice_vsi *vsi)
324 {
325 	struct ice_vsi_stats *vsi_stat;
326 	struct ice_pf *pf = vsi->back;
327 	int i;
328 
329 	if (vsi->type == ICE_VSI_CHNL)
330 		return;
331 	if (!pf->vsi_stats)
332 		return;
333 
334 	vsi_stat = pf->vsi_stats[vsi->idx];
335 	if (!vsi_stat)
336 		return;
337 
338 	ice_for_each_alloc_txq(vsi, i) {
339 		if (vsi_stat->tx_ring_stats[i]) {
340 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
341 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
342 		}
343 	}
344 
345 	ice_for_each_alloc_rxq(vsi, i) {
346 		if (vsi_stat->rx_ring_stats[i]) {
347 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
348 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
349 		}
350 	}
351 
352 	kfree(vsi_stat->tx_ring_stats);
353 	kfree(vsi_stat->rx_ring_stats);
354 	kfree(vsi_stat);
355 	pf->vsi_stats[vsi->idx] = NULL;
356 }
357 
358 /**
359  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
360  * @vsi: VSI which is having stats allocated
361  */
362 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
363 {
364 	struct ice_ring_stats **tx_ring_stats;
365 	struct ice_ring_stats **rx_ring_stats;
366 	struct ice_vsi_stats *vsi_stats;
367 	struct ice_pf *pf = vsi->back;
368 	u16 i;
369 
370 	vsi_stats = pf->vsi_stats[vsi->idx];
371 	tx_ring_stats = vsi_stats->tx_ring_stats;
372 	rx_ring_stats = vsi_stats->rx_ring_stats;
373 
374 	/* Allocate Tx ring stats */
375 	ice_for_each_alloc_txq(vsi, i) {
376 		struct ice_ring_stats *ring_stats;
377 		struct ice_tx_ring *ring;
378 
379 		ring = vsi->tx_rings[i];
380 		ring_stats = tx_ring_stats[i];
381 
382 		if (!ring_stats) {
383 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
384 			if (!ring_stats)
385 				goto err_out;
386 
387 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
388 		}
389 
390 		ring->ring_stats = ring_stats;
391 	}
392 
393 	/* Allocate Rx ring stats */
394 	ice_for_each_alloc_rxq(vsi, i) {
395 		struct ice_ring_stats *ring_stats;
396 		struct ice_rx_ring *ring;
397 
398 		ring = vsi->rx_rings[i];
399 		ring_stats = rx_ring_stats[i];
400 
401 		if (!ring_stats) {
402 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
403 			if (!ring_stats)
404 				goto err_out;
405 
406 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
407 		}
408 
409 		ring->ring_stats = ring_stats;
410 	}
411 
412 	return 0;
413 
414 err_out:
415 	ice_vsi_free_stats(vsi);
416 	return -ENOMEM;
417 }
418 
419 /**
420  * ice_vsi_free - clean up and deallocate the provided VSI
421  * @vsi: pointer to VSI being cleared
422  *
423  * This deallocates the VSI's queue resources, removes it from the PF's
424  * VSI array if necessary, and deallocates the VSI
425  */
426 static void ice_vsi_free(struct ice_vsi *vsi)
427 {
428 	struct ice_pf *pf = NULL;
429 	struct device *dev;
430 
431 	if (!vsi || !vsi->back)
432 		return;
433 
434 	pf = vsi->back;
435 	dev = ice_pf_to_dev(pf);
436 
437 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
438 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
439 		return;
440 	}
441 
442 	mutex_lock(&pf->sw_mutex);
443 	/* updates the PF for this cleared VSI */
444 
445 	pf->vsi[vsi->idx] = NULL;
446 	pf->next_vsi = vsi->idx;
447 
448 	ice_vsi_free_stats(vsi);
449 	ice_vsi_free_arrays(vsi);
450 	mutex_unlock(&pf->sw_mutex);
451 	devm_kfree(dev, vsi);
452 }
453 
454 void ice_vsi_delete(struct ice_vsi *vsi)
455 {
456 	ice_vsi_delete_from_hw(vsi);
457 	ice_vsi_free(vsi);
458 }
459 
460 /**
461  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
462  * @irq: interrupt number
463  * @data: pointer to a q_vector
464  */
465 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
466 {
467 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
468 
469 	if (!q_vector->tx.tx_ring)
470 		return IRQ_HANDLED;
471 
472 #define FDIR_RX_DESC_CLEAN_BUDGET 64
473 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
474 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
475 
476 	return IRQ_HANDLED;
477 }
478 
479 /**
480  * ice_msix_clean_rings - MSIX mode Interrupt Handler
481  * @irq: interrupt number
482  * @data: pointer to a q_vector
483  */
484 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
485 {
486 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
487 
488 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
489 		return IRQ_HANDLED;
490 
491 	q_vector->total_events++;
492 
493 	napi_schedule(&q_vector->napi);
494 
495 	return IRQ_HANDLED;
496 }
497 
498 /**
499  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
500  * @vsi: VSI pointer
501  */
502 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
503 {
504 	struct ice_vsi_stats *vsi_stat;
505 	struct ice_pf *pf = vsi->back;
506 
507 	if (vsi->type == ICE_VSI_CHNL)
508 		return 0;
509 	if (!pf->vsi_stats)
510 		return -ENOENT;
511 
512 	if (pf->vsi_stats[vsi->idx])
513 	/* realloc will happen in rebuild path */
514 		return 0;
515 
516 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
517 	if (!vsi_stat)
518 		return -ENOMEM;
519 
520 	vsi_stat->tx_ring_stats =
521 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
522 			GFP_KERNEL);
523 	if (!vsi_stat->tx_ring_stats)
524 		goto err_alloc_tx;
525 
526 	vsi_stat->rx_ring_stats =
527 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
528 			GFP_KERNEL);
529 	if (!vsi_stat->rx_ring_stats)
530 		goto err_alloc_rx;
531 
532 	pf->vsi_stats[vsi->idx] = vsi_stat;
533 
534 	return 0;
535 
536 err_alloc_rx:
537 	kfree(vsi_stat->rx_ring_stats);
538 err_alloc_tx:
539 	kfree(vsi_stat->tx_ring_stats);
540 	kfree(vsi_stat);
541 	pf->vsi_stats[vsi->idx] = NULL;
542 	return -ENOMEM;
543 }
544 
545 /**
546  * ice_vsi_alloc_def - set default values for already allocated VSI
547  * @vsi: ptr to VSI
548  * @ch: ptr to channel
549  */
550 static int
551 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
552 {
553 	if (vsi->type != ICE_VSI_CHNL) {
554 		ice_vsi_set_num_qs(vsi);
555 		if (ice_vsi_alloc_arrays(vsi))
556 			return -ENOMEM;
557 	}
558 
559 	switch (vsi->type) {
560 	case ICE_VSI_PF:
561 		/* Setup default MSIX irq handler for VSI */
562 		vsi->irq_handler = ice_msix_clean_rings;
563 		break;
564 	case ICE_VSI_CTRL:
565 		/* Setup ctrl VSI MSIX irq handler */
566 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
567 		break;
568 	case ICE_VSI_CHNL:
569 		if (!ch)
570 			return -EINVAL;
571 
572 		vsi->num_rxq = ch->num_rxq;
573 		vsi->num_txq = ch->num_txq;
574 		vsi->next_base_q = ch->base_q;
575 		break;
576 	case ICE_VSI_VF:
577 	case ICE_VSI_LB:
578 		break;
579 	default:
580 		ice_vsi_free_arrays(vsi);
581 		return -EINVAL;
582 	}
583 
584 	return 0;
585 }
586 
587 /**
588  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
589  * @pf: board private structure
590  *
591  * Reserves a VSI index from the PF and allocates an empty VSI structure
592  * without a type. The VSI structure must later be initialized by calling
593  * ice_vsi_cfg().
594  *
595  * returns a pointer to a VSI on success, NULL on failure.
596  */
597 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
598 {
599 	struct device *dev = ice_pf_to_dev(pf);
600 	struct ice_vsi *vsi = NULL;
601 
602 	/* Need to protect the allocation of the VSIs at the PF level */
603 	mutex_lock(&pf->sw_mutex);
604 
605 	/* If we have already allocated our maximum number of VSIs,
606 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
607 	 * is available to be populated
608 	 */
609 	if (pf->next_vsi == ICE_NO_VSI) {
610 		dev_dbg(dev, "out of VSI slots!\n");
611 		goto unlock_pf;
612 	}
613 
614 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
615 	if (!vsi)
616 		goto unlock_pf;
617 
618 	vsi->back = pf;
619 	set_bit(ICE_VSI_DOWN, vsi->state);
620 
621 	/* fill slot and make note of the index */
622 	vsi->idx = pf->next_vsi;
623 	pf->vsi[pf->next_vsi] = vsi;
624 
625 	/* prepare pf->next_vsi for next use */
626 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
627 					 pf->next_vsi);
628 
629 unlock_pf:
630 	mutex_unlock(&pf->sw_mutex);
631 	return vsi;
632 }
633 
634 /**
635  * ice_alloc_fd_res - Allocate FD resource for a VSI
636  * @vsi: pointer to the ice_vsi
637  *
638  * This allocates the FD resources
639  *
640  * Returns 0 on success, -EPERM on no-op or -EIO on failure
641  */
642 static int ice_alloc_fd_res(struct ice_vsi *vsi)
643 {
644 	struct ice_pf *pf = vsi->back;
645 	u32 g_val, b_val;
646 
647 	/* Flow Director filters are only allocated/assigned to the PF VSI or
648 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
649 	 * add/delete filters so resources are not allocated to it
650 	 */
651 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
652 		return -EPERM;
653 
654 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
655 	      vsi->type == ICE_VSI_CHNL))
656 		return -EPERM;
657 
658 	/* FD filters from guaranteed pool per VSI */
659 	g_val = pf->hw.func_caps.fd_fltr_guar;
660 	if (!g_val)
661 		return -EPERM;
662 
663 	/* FD filters from best effort pool */
664 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
665 	if (!b_val)
666 		return -EPERM;
667 
668 	/* PF main VSI gets only 64 FD resources from guaranteed pool
669 	 * when ADQ is configured.
670 	 */
671 #define ICE_PF_VSI_GFLTR	64
672 
673 	/* determine FD filter resources per VSI from shared(best effort) and
674 	 * dedicated pool
675 	 */
676 	if (vsi->type == ICE_VSI_PF) {
677 		vsi->num_gfltr = g_val;
678 		/* if MQPRIO is configured, main VSI doesn't get all FD
679 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
680 		 */
681 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
682 			if (g_val < ICE_PF_VSI_GFLTR)
683 				return -EPERM;
684 			/* allow bare minimum entries for PF VSI */
685 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
686 		}
687 
688 		/* each VSI gets same "best_effort" quota */
689 		vsi->num_bfltr = b_val;
690 	} else if (vsi->type == ICE_VSI_VF) {
691 		vsi->num_gfltr = 0;
692 
693 		/* each VSI gets same "best_effort" quota */
694 		vsi->num_bfltr = b_val;
695 	} else {
696 		struct ice_vsi *main_vsi;
697 		int numtc;
698 
699 		main_vsi = ice_get_main_vsi(pf);
700 		if (!main_vsi)
701 			return -EPERM;
702 
703 		if (!main_vsi->all_numtc)
704 			return -EINVAL;
705 
706 		/* figure out ADQ numtc */
707 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
708 
709 		/* only one TC but still asking resources for channels,
710 		 * invalid config
711 		 */
712 		if (numtc < ICE_CHNL_START_TC)
713 			return -EPERM;
714 
715 		g_val -= ICE_PF_VSI_GFLTR;
716 		/* channel VSIs gets equal share from guaranteed pool */
717 		vsi->num_gfltr = g_val / numtc;
718 
719 		/* each VSI gets same "best_effort" quota */
720 		vsi->num_bfltr = b_val;
721 	}
722 
723 	return 0;
724 }
725 
726 /**
727  * ice_vsi_get_qs - Assign queues from PF to VSI
728  * @vsi: the VSI to assign queues to
729  *
730  * Returns 0 on success and a negative value on error
731  */
732 static int ice_vsi_get_qs(struct ice_vsi *vsi)
733 {
734 	struct ice_pf *pf = vsi->back;
735 	struct ice_qs_cfg tx_qs_cfg = {
736 		.qs_mutex = &pf->avail_q_mutex,
737 		.pf_map = pf->avail_txqs,
738 		.pf_map_size = pf->max_pf_txqs,
739 		.q_count = vsi->alloc_txq,
740 		.scatter_count = ICE_MAX_SCATTER_TXQS,
741 		.vsi_map = vsi->txq_map,
742 		.vsi_map_offset = 0,
743 		.mapping_mode = ICE_VSI_MAP_CONTIG
744 	};
745 	struct ice_qs_cfg rx_qs_cfg = {
746 		.qs_mutex = &pf->avail_q_mutex,
747 		.pf_map = pf->avail_rxqs,
748 		.pf_map_size = pf->max_pf_rxqs,
749 		.q_count = vsi->alloc_rxq,
750 		.scatter_count = ICE_MAX_SCATTER_RXQS,
751 		.vsi_map = vsi->rxq_map,
752 		.vsi_map_offset = 0,
753 		.mapping_mode = ICE_VSI_MAP_CONTIG
754 	};
755 	int ret;
756 
757 	if (vsi->type == ICE_VSI_CHNL)
758 		return 0;
759 
760 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
761 	if (ret)
762 		return ret;
763 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
764 
765 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
766 	if (ret)
767 		return ret;
768 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
769 
770 	return 0;
771 }
772 
773 /**
774  * ice_vsi_put_qs - Release queues from VSI to PF
775  * @vsi: the VSI that is going to release queues
776  */
777 static void ice_vsi_put_qs(struct ice_vsi *vsi)
778 {
779 	struct ice_pf *pf = vsi->back;
780 	int i;
781 
782 	mutex_lock(&pf->avail_q_mutex);
783 
784 	ice_for_each_alloc_txq(vsi, i) {
785 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
786 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
787 	}
788 
789 	ice_for_each_alloc_rxq(vsi, i) {
790 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
791 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
792 	}
793 
794 	mutex_unlock(&pf->avail_q_mutex);
795 }
796 
797 /**
798  * ice_is_safe_mode
799  * @pf: pointer to the PF struct
800  *
801  * returns true if driver is in safe mode, false otherwise
802  */
803 bool ice_is_safe_mode(struct ice_pf *pf)
804 {
805 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
806 }
807 
808 /**
809  * ice_is_rdma_ena
810  * @pf: pointer to the PF struct
811  *
812  * returns true if RDMA is currently supported, false otherwise
813  */
814 bool ice_is_rdma_ena(struct ice_pf *pf)
815 {
816 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
817 }
818 
819 /**
820  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
821  * @vsi: the VSI being cleaned up
822  *
823  * This function deletes RSS input set for all flows that were configured
824  * for this VSI
825  */
826 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
827 {
828 	struct ice_pf *pf = vsi->back;
829 	int status;
830 
831 	if (ice_is_safe_mode(pf))
832 		return;
833 
834 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
835 	if (status)
836 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
837 			vsi->vsi_num, status);
838 }
839 
840 /**
841  * ice_rss_clean - Delete RSS related VSI structures and configuration
842  * @vsi: the VSI being removed
843  */
844 static void ice_rss_clean(struct ice_vsi *vsi)
845 {
846 	struct ice_pf *pf = vsi->back;
847 	struct device *dev;
848 
849 	dev = ice_pf_to_dev(pf);
850 
851 	devm_kfree(dev, vsi->rss_hkey_user);
852 	devm_kfree(dev, vsi->rss_lut_user);
853 
854 	ice_vsi_clean_rss_flow_fld(vsi);
855 	/* remove RSS replay list */
856 	if (!ice_is_safe_mode(pf))
857 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
858 }
859 
860 /**
861  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
862  * @vsi: the VSI being configured
863  */
864 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
865 {
866 	struct ice_hw_common_caps *cap;
867 	struct ice_pf *pf = vsi->back;
868 	u16 max_rss_size;
869 
870 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
871 		vsi->rss_size = 1;
872 		return;
873 	}
874 
875 	cap = &pf->hw.func_caps.common_cap;
876 	max_rss_size = BIT(cap->rss_table_entry_width);
877 	switch (vsi->type) {
878 	case ICE_VSI_CHNL:
879 	case ICE_VSI_PF:
880 		/* PF VSI will inherit RSS instance of PF */
881 		vsi->rss_table_size = (u16)cap->rss_table_size;
882 		if (vsi->type == ICE_VSI_CHNL)
883 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
884 		else
885 			vsi->rss_size = min_t(u16, num_online_cpus(),
886 					      max_rss_size);
887 		vsi->rss_lut_type = ICE_LUT_PF;
888 		break;
889 	case ICE_VSI_VF:
890 		/* VF VSI will get a small RSS table.
891 		 * For VSI_LUT, LUT size should be set to 64 bytes.
892 		 */
893 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
894 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
895 		vsi->rss_lut_type = ICE_LUT_VSI;
896 		break;
897 	case ICE_VSI_LB:
898 		break;
899 	default:
900 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
901 			ice_vsi_type_str(vsi->type));
902 		break;
903 	}
904 }
905 
906 /**
907  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
908  * @hw: HW structure used to determine the VLAN mode of the device
909  * @ctxt: the VSI context being set
910  *
911  * This initializes a default VSI context for all sections except the Queues.
912  */
913 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
914 {
915 	u32 table = 0;
916 
917 	memset(&ctxt->info, 0, sizeof(ctxt->info));
918 	/* VSI's should be allocated from shared pool */
919 	ctxt->alloc_from_pool = true;
920 	/* Src pruning enabled by default */
921 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
922 	/* Traffic from VSI can be sent to LAN */
923 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
924 	/* allow all untagged/tagged packets by default on Tx */
925 	ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
926 						 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
927 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
928 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
929 	 *
930 	 * DVM - leave inner VLAN in packet by default
931 	 */
932 	if (ice_is_dvm_ena(hw)) {
933 		ctxt->info.inner_vlan_flags |=
934 			FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
935 				   ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
936 		ctxt->info.outer_vlan_flags =
937 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
938 				   ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
939 		ctxt->info.outer_vlan_flags |=
940 			FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
941 				   ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
942 		ctxt->info.outer_vlan_flags |=
943 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
944 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
945 	}
946 	/* Have 1:1 UP mapping for both ingress/egress tables */
947 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
948 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
949 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
950 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
951 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
952 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
953 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
954 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
955 	ctxt->info.ingress_table = cpu_to_le32(table);
956 	ctxt->info.egress_table = cpu_to_le32(table);
957 	/* Have 1:1 UP mapping for outer to inner UP table */
958 	ctxt->info.outer_up_table = cpu_to_le32(table);
959 	/* No Outer tag support outer_tag_flags remains to zero */
960 }
961 
962 /**
963  * ice_vsi_setup_q_map - Setup a VSI queue map
964  * @vsi: the VSI being configured
965  * @ctxt: VSI context structure
966  */
967 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
968 {
969 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
970 	u16 num_txq_per_tc, num_rxq_per_tc;
971 	u16 qcount_tx = vsi->alloc_txq;
972 	u16 qcount_rx = vsi->alloc_rxq;
973 	u8 netdev_tc = 0;
974 	int i;
975 
976 	if (!vsi->tc_cfg.numtc) {
977 		/* at least TC0 should be enabled by default */
978 		vsi->tc_cfg.numtc = 1;
979 		vsi->tc_cfg.ena_tc = 1;
980 	}
981 
982 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
983 	if (!num_rxq_per_tc)
984 		num_rxq_per_tc = 1;
985 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
986 	if (!num_txq_per_tc)
987 		num_txq_per_tc = 1;
988 
989 	/* find the (rounded up) power-of-2 of qcount */
990 	pow = (u16)order_base_2(num_rxq_per_tc);
991 
992 	/* TC mapping is a function of the number of Rx queues assigned to the
993 	 * VSI for each traffic class and the offset of these queues.
994 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
995 	 * queues allocated to TC0. No:of queues is a power-of-2.
996 	 *
997 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
998 	 * queue, this way, traffic for the given TC will be sent to the default
999 	 * queue.
1000 	 *
1001 	 * Setup number and offset of Rx queues for all TCs for the VSI
1002 	 */
1003 	ice_for_each_traffic_class(i) {
1004 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1005 			/* TC is not enabled */
1006 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1007 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1008 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1009 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1010 			ctxt->info.tc_mapping[i] = 0;
1011 			continue;
1012 		}
1013 
1014 		/* TC is enabled */
1015 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1016 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1017 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1018 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1019 
1020 		qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1021 		qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1022 		offset += num_rxq_per_tc;
1023 		tx_count += num_txq_per_tc;
1024 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1025 	}
1026 
1027 	/* if offset is non-zero, means it is calculated correctly based on
1028 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1029 	 * be correct and non-zero because it is based off - VSI's
1030 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1031 	 * at least 1)
1032 	 */
1033 	if (offset)
1034 		rx_count = offset;
1035 	else
1036 		rx_count = num_rxq_per_tc;
1037 
1038 	if (rx_count > vsi->alloc_rxq) {
1039 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1040 			rx_count, vsi->alloc_rxq);
1041 		return -EINVAL;
1042 	}
1043 
1044 	if (tx_count > vsi->alloc_txq) {
1045 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1046 			tx_count, vsi->alloc_txq);
1047 		return -EINVAL;
1048 	}
1049 
1050 	vsi->num_txq = tx_count;
1051 	vsi->num_rxq = rx_count;
1052 
1053 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1054 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1055 		/* since there is a chance that num_rxq could have been changed
1056 		 * in the above for loop, make num_txq equal to num_rxq.
1057 		 */
1058 		vsi->num_txq = vsi->num_rxq;
1059 	}
1060 
1061 	/* Rx queue mapping */
1062 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1063 	/* q_mapping buffer holds the info for the first queue allocated for
1064 	 * this VSI in the PF space and also the number of queues associated
1065 	 * with this VSI.
1066 	 */
1067 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1068 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1075  * @ctxt: the VSI context being set
1076  * @vsi: the VSI being configured
1077  */
1078 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1079 {
1080 	u8 dflt_q_group, dflt_q_prio;
1081 	u16 dflt_q, report_q, val;
1082 
1083 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1084 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1085 		return;
1086 
1087 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1088 	ctxt->info.valid_sections |= cpu_to_le16(val);
1089 	dflt_q = 0;
1090 	dflt_q_group = 0;
1091 	report_q = 0;
1092 	dflt_q_prio = 0;
1093 
1094 	/* enable flow director filtering/programming */
1095 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1096 	ctxt->info.fd_options = cpu_to_le16(val);
1097 	/* max of allocated flow director filters */
1098 	ctxt->info.max_fd_fltr_dedicated =
1099 			cpu_to_le16(vsi->num_gfltr);
1100 	/* max of shared flow director filters any VSI may program */
1101 	ctxt->info.max_fd_fltr_shared =
1102 			cpu_to_le16(vsi->num_bfltr);
1103 	/* default queue index within the VSI of the default FD */
1104 	val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1105 	/* target queue or queue group to the FD filter */
1106 	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1107 	ctxt->info.fd_def_q = cpu_to_le16(val);
1108 	/* queue index on which FD filter completion is reported */
1109 	val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1110 	/* priority of the default qindex action */
1111 	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1112 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1113 }
1114 
1115 /**
1116  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1117  * @ctxt: the VSI context being set
1118  * @vsi: the VSI being configured
1119  */
1120 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1121 {
1122 	u8 lut_type, hash_type;
1123 	struct device *dev;
1124 	struct ice_pf *pf;
1125 
1126 	pf = vsi->back;
1127 	dev = ice_pf_to_dev(pf);
1128 
1129 	switch (vsi->type) {
1130 	case ICE_VSI_CHNL:
1131 	case ICE_VSI_PF:
1132 		/* PF VSI will inherit RSS instance of PF */
1133 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1134 		break;
1135 	case ICE_VSI_VF:
1136 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1137 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1138 		break;
1139 	default:
1140 		dev_dbg(dev, "Unsupported VSI type %s\n",
1141 			ice_vsi_type_str(vsi->type));
1142 		return;
1143 	}
1144 
1145 	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1146 	vsi->rss_hfunc = hash_type;
1147 
1148 	ctxt->info.q_opt_rss =
1149 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1150 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1151 }
1152 
1153 static void
1154 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1155 {
1156 	struct ice_pf *pf = vsi->back;
1157 	u16 qcount, qmap;
1158 	u8 offset = 0;
1159 	int pow;
1160 
1161 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1162 
1163 	pow = order_base_2(qcount);
1164 	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1165 	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1166 
1167 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1168 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1169 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1170 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1171 }
1172 
1173 /**
1174  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1175  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1176  *
1177  * returns true if Rx VLAN pruning is enabled and false otherwise.
1178  */
1179 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1180 {
1181 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1182 }
1183 
1184 /**
1185  * ice_vsi_init - Create and initialize a VSI
1186  * @vsi: the VSI being configured
1187  * @vsi_flags: VSI configuration flags
1188  *
1189  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1190  * reconfigure an existing context.
1191  *
1192  * This initializes a VSI context depending on the VSI type to be added and
1193  * passes it down to the add_vsi aq command to create a new VSI.
1194  */
1195 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1196 {
1197 	struct ice_pf *pf = vsi->back;
1198 	struct ice_hw *hw = &pf->hw;
1199 	struct ice_vsi_ctx *ctxt;
1200 	struct device *dev;
1201 	int ret = 0;
1202 
1203 	dev = ice_pf_to_dev(pf);
1204 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1205 	if (!ctxt)
1206 		return -ENOMEM;
1207 
1208 	switch (vsi->type) {
1209 	case ICE_VSI_CTRL:
1210 	case ICE_VSI_LB:
1211 	case ICE_VSI_PF:
1212 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1213 		break;
1214 	case ICE_VSI_CHNL:
1215 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1216 		break;
1217 	case ICE_VSI_VF:
1218 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1219 		/* VF number here is the absolute VF number (0-255) */
1220 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1221 		break;
1222 	default:
1223 		ret = -ENODEV;
1224 		goto out;
1225 	}
1226 
1227 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1228 	 * prune enabled
1229 	 */
1230 	if (vsi->type == ICE_VSI_CHNL) {
1231 		struct ice_vsi *main_vsi;
1232 
1233 		main_vsi = ice_get_main_vsi(pf);
1234 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1235 			ctxt->info.sw_flags2 |=
1236 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1237 		else
1238 			ctxt->info.sw_flags2 &=
1239 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1240 	}
1241 
1242 	ice_set_dflt_vsi_ctx(hw, ctxt);
1243 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1244 		ice_set_fd_vsi_ctx(ctxt, vsi);
1245 	/* if the switch is in VEB mode, allow VSI loopback */
1246 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1247 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1248 
1249 	/* Set LUT type and HASH type if RSS is enabled */
1250 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1251 	    vsi->type != ICE_VSI_CTRL) {
1252 		ice_set_rss_vsi_ctx(ctxt, vsi);
1253 		/* if updating VSI context, make sure to set valid_section:
1254 		 * to indicate which section of VSI context being updated
1255 		 */
1256 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1257 			ctxt->info.valid_sections |=
1258 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1259 	}
1260 
1261 	ctxt->info.sw_id = vsi->port_info->sw_id;
1262 	if (vsi->type == ICE_VSI_CHNL) {
1263 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1264 	} else {
1265 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1266 		if (ret)
1267 			goto out;
1268 
1269 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1270 			/* means VSI being updated */
1271 			/* must to indicate which section of VSI context are
1272 			 * being modified
1273 			 */
1274 			ctxt->info.valid_sections |=
1275 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1276 	}
1277 
1278 	/* Allow control frames out of main VSI */
1279 	if (vsi->type == ICE_VSI_PF) {
1280 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1281 		ctxt->info.valid_sections |=
1282 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1283 	}
1284 
1285 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1286 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1287 		if (ret) {
1288 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1289 			ret = -EIO;
1290 			goto out;
1291 		}
1292 	} else {
1293 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1294 		if (ret) {
1295 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1296 			ret = -EIO;
1297 			goto out;
1298 		}
1299 	}
1300 
1301 	/* keep context for update VSI operations */
1302 	vsi->info = ctxt->info;
1303 
1304 	/* record VSI number returned */
1305 	vsi->vsi_num = ctxt->vsi_num;
1306 
1307 out:
1308 	kfree(ctxt);
1309 	return ret;
1310 }
1311 
1312 /**
1313  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1314  * @vsi: the VSI having rings deallocated
1315  */
1316 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1317 {
1318 	int i;
1319 
1320 	/* Avoid stale references by clearing map from vector to ring */
1321 	if (vsi->q_vectors) {
1322 		ice_for_each_q_vector(vsi, i) {
1323 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1324 
1325 			if (q_vector) {
1326 				q_vector->tx.tx_ring = NULL;
1327 				q_vector->rx.rx_ring = NULL;
1328 			}
1329 		}
1330 	}
1331 
1332 	if (vsi->tx_rings) {
1333 		ice_for_each_alloc_txq(vsi, i) {
1334 			if (vsi->tx_rings[i]) {
1335 				kfree_rcu(vsi->tx_rings[i], rcu);
1336 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1337 			}
1338 		}
1339 	}
1340 	if (vsi->rx_rings) {
1341 		ice_for_each_alloc_rxq(vsi, i) {
1342 			if (vsi->rx_rings[i]) {
1343 				kfree_rcu(vsi->rx_rings[i], rcu);
1344 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1345 			}
1346 		}
1347 	}
1348 }
1349 
1350 /**
1351  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1352  * @vsi: VSI which is having rings allocated
1353  */
1354 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1355 {
1356 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1357 	struct ice_pf *pf = vsi->back;
1358 	struct device *dev;
1359 	u16 i;
1360 
1361 	dev = ice_pf_to_dev(pf);
1362 	/* Allocate Tx rings */
1363 	ice_for_each_alloc_txq(vsi, i) {
1364 		struct ice_tx_ring *ring;
1365 
1366 		/* allocate with kzalloc(), free with kfree_rcu() */
1367 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1368 
1369 		if (!ring)
1370 			goto err_out;
1371 
1372 		ring->q_index = i;
1373 		ring->reg_idx = vsi->txq_map[i];
1374 		ring->vsi = vsi;
1375 		ring->tx_tstamps = &pf->ptp.port.tx;
1376 		ring->dev = dev;
1377 		ring->count = vsi->num_tx_desc;
1378 		ring->txq_teid = ICE_INVAL_TEID;
1379 		if (dvm_ena)
1380 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1381 		else
1382 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1383 		WRITE_ONCE(vsi->tx_rings[i], ring);
1384 	}
1385 
1386 	/* Allocate Rx rings */
1387 	ice_for_each_alloc_rxq(vsi, i) {
1388 		struct ice_rx_ring *ring;
1389 
1390 		/* allocate with kzalloc(), free with kfree_rcu() */
1391 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1392 		if (!ring)
1393 			goto err_out;
1394 
1395 		ring->q_index = i;
1396 		ring->reg_idx = vsi->rxq_map[i];
1397 		ring->vsi = vsi;
1398 		ring->netdev = vsi->netdev;
1399 		ring->dev = dev;
1400 		ring->count = vsi->num_rx_desc;
1401 		ring->cached_phctime = pf->ptp.cached_phc_time;
1402 		WRITE_ONCE(vsi->rx_rings[i], ring);
1403 	}
1404 
1405 	return 0;
1406 
1407 err_out:
1408 	ice_vsi_clear_rings(vsi);
1409 	return -ENOMEM;
1410 }
1411 
1412 /**
1413  * ice_vsi_manage_rss_lut - disable/enable RSS
1414  * @vsi: the VSI being changed
1415  * @ena: boolean value indicating if this is an enable or disable request
1416  *
1417  * In the event of disable request for RSS, this function will zero out RSS
1418  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1419  * LUT.
1420  */
1421 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1422 {
1423 	u8 *lut;
1424 
1425 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1426 	if (!lut)
1427 		return;
1428 
1429 	if (ena) {
1430 		if (vsi->rss_lut_user)
1431 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1432 		else
1433 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1434 					 vsi->rss_size);
1435 	}
1436 
1437 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1438 	kfree(lut);
1439 }
1440 
1441 /**
1442  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1443  * @vsi: VSI to be configured
1444  * @disable: set to true to have FCS / CRC in the frame data
1445  */
1446 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1447 {
1448 	int i;
1449 
1450 	ice_for_each_rxq(vsi, i)
1451 		if (disable)
1452 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1453 		else
1454 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1455 }
1456 
1457 /**
1458  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1459  * @vsi: VSI to be configured
1460  */
1461 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1462 {
1463 	struct ice_pf *pf = vsi->back;
1464 	struct device *dev;
1465 	u8 *lut, *key;
1466 	int err;
1467 
1468 	dev = ice_pf_to_dev(pf);
1469 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1470 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1471 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1472 	} else {
1473 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1474 
1475 		/* If orig_rss_size is valid and it is less than determined
1476 		 * main VSI's rss_size, update main VSI's rss_size to be
1477 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1478 		 * RSS table gets programmed to be correct (whatever it was
1479 		 * to begin with (prior to setup-tc for ADQ config)
1480 		 */
1481 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1482 		    vsi->orig_rss_size <= vsi->num_rxq) {
1483 			vsi->rss_size = vsi->orig_rss_size;
1484 			/* now orig_rss_size is used, reset it to zero */
1485 			vsi->orig_rss_size = 0;
1486 		}
1487 	}
1488 
1489 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1490 	if (!lut)
1491 		return -ENOMEM;
1492 
1493 	if (vsi->rss_lut_user)
1494 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1495 	else
1496 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1497 
1498 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1499 	if (err) {
1500 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1501 		goto ice_vsi_cfg_rss_exit;
1502 	}
1503 
1504 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1505 	if (!key) {
1506 		err = -ENOMEM;
1507 		goto ice_vsi_cfg_rss_exit;
1508 	}
1509 
1510 	if (vsi->rss_hkey_user)
1511 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1512 	else
1513 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1514 
1515 	err = ice_set_rss_key(vsi, key);
1516 	if (err)
1517 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1518 
1519 	kfree(key);
1520 ice_vsi_cfg_rss_exit:
1521 	kfree(lut);
1522 	return err;
1523 }
1524 
1525 /**
1526  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1527  * @vsi: VSI to be configured
1528  *
1529  * This function will only be called during the VF VSI setup. Upon successful
1530  * completion of package download, this function will configure default RSS
1531  * input sets for VF VSI.
1532  */
1533 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1534 {
1535 	struct ice_pf *pf = vsi->back;
1536 	struct device *dev;
1537 	int status;
1538 
1539 	dev = ice_pf_to_dev(pf);
1540 	if (ice_is_safe_mode(pf)) {
1541 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1542 			vsi->vsi_num);
1543 		return;
1544 	}
1545 
1546 	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1547 	if (status)
1548 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1549 			vsi->vsi_num, status);
1550 }
1551 
1552 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1553 	/* configure RSS for IPv4 with input set IP src/dst */
1554 	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1555 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1556 	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1557 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1558 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1559 				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1560 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1561 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1562 				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1563 	/* configure RSS for sctp4 with input set IP src/dst - only support
1564 	 * RSS on SCTPv4 on outer headers (non-tunneled)
1565 	 */
1566 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1567 		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1568 	/* configure RSS for gtpc4 with input set IPv4 src/dst */
1569 	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1570 		ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1571 	/* configure RSS for gtpc4t with input set IPv4 src/dst */
1572 	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1573 		ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1574 	/* configure RSS for gtpu4 with input set IPv4 src/dst */
1575 	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1576 		ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1577 	/* configure RSS for gtpu4e with input set IPv4 src/dst */
1578 	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1579 		ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1580 	/* configure RSS for gtpu4u with input set IPv4 src/dst */
1581 	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1582 		ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1583 	/* configure RSS for gtpu4d with input set IPv4 src/dst */
1584 	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1585 		ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1586 
1587 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1588 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1589 				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1590 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1591 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1592 				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1593 	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1594 	 * RSS on SCTPv6 on outer headers (non-tunneled)
1595 	 */
1596 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1597 		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1598 	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1599 	{ICE_FLOW_SEG_HDR_ESP,
1600 		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1601 	/* configure RSS for gtpc6 with input set IPv6 src/dst */
1602 	{ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1603 		ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1604 	/* configure RSS for gtpc6t with input set IPv6 src/dst */
1605 	{ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1606 		ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1607 	/* configure RSS for gtpu6 with input set IPv6 src/dst */
1608 	{ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1609 		ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1610 	/* configure RSS for gtpu6e with input set IPv6 src/dst */
1611 	{ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1612 		ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1613 	/* configure RSS for gtpu6u with input set IPv6 src/dst */
1614 	{ ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1615 		ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1616 	/* configure RSS for gtpu6d with input set IPv6 src/dst */
1617 	{ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1618 		ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1619 };
1620 
1621 /**
1622  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1623  * @vsi: VSI to be configured
1624  *
1625  * This function will only be called after successful download package call
1626  * during initialization of PF. Since the downloaded package will erase the
1627  * RSS section, this function will configure RSS input sets for different
1628  * flow types. The last profile added has the highest priority, therefore 2
1629  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1630  * (i.e. IPv4 src/dst TCP src/dst port).
1631  */
1632 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1633 {
1634 	u16 vsi_num = vsi->vsi_num;
1635 	struct ice_pf *pf = vsi->back;
1636 	struct ice_hw *hw = &pf->hw;
1637 	struct device *dev;
1638 	int status;
1639 	u32 i;
1640 
1641 	dev = ice_pf_to_dev(pf);
1642 	if (ice_is_safe_mode(pf)) {
1643 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1644 			vsi_num);
1645 		return;
1646 	}
1647 	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1648 		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1649 
1650 		status = ice_add_rss_cfg(hw, vsi, cfg);
1651 		if (status)
1652 			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1653 				cfg->addl_hdrs, cfg->hash_flds,
1654 				cfg->hdr_type, cfg->symm);
1655 	}
1656 }
1657 
1658 /**
1659  * ice_pf_state_is_nominal - checks the PF for nominal state
1660  * @pf: pointer to PF to check
1661  *
1662  * Check the PF's state for a collection of bits that would indicate
1663  * the PF is in a state that would inhibit normal operation for
1664  * driver functionality.
1665  *
1666  * Returns true if PF is in a nominal state, false otherwise
1667  */
1668 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1669 {
1670 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1671 
1672 	if (!pf)
1673 		return false;
1674 
1675 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1676 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1677 		return false;
1678 
1679 	return true;
1680 }
1681 
1682 /**
1683  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1684  * @vsi: the VSI to be updated
1685  */
1686 void ice_update_eth_stats(struct ice_vsi *vsi)
1687 {
1688 	struct ice_eth_stats *prev_es, *cur_es;
1689 	struct ice_hw *hw = &vsi->back->hw;
1690 	struct ice_pf *pf = vsi->back;
1691 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1692 
1693 	prev_es = &vsi->eth_stats_prev;
1694 	cur_es = &vsi->eth_stats;
1695 
1696 	if (ice_is_reset_in_progress(pf->state))
1697 		vsi->stat_offsets_loaded = false;
1698 
1699 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1700 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1701 
1702 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1703 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1704 
1705 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1706 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1707 
1708 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1709 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1710 
1711 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1712 			  &prev_es->rx_discards, &cur_es->rx_discards);
1713 
1714 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1715 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1716 
1717 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1718 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1719 
1720 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1721 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1722 
1723 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1724 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1725 
1726 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1727 			  &prev_es->tx_errors, &cur_es->tx_errors);
1728 
1729 	vsi->stat_offsets_loaded = true;
1730 }
1731 
1732 /**
1733  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1734  * @hw: HW pointer
1735  * @pf_q: index of the Rx queue in the PF's queue space
1736  * @rxdid: flexible descriptor RXDID
1737  * @prio: priority for the RXDID for this queue
1738  * @ena_ts: true to enable timestamp and false to disable timestamp
1739  */
1740 void
1741 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1742 			bool ena_ts)
1743 {
1744 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1745 
1746 	/* clear any previous values */
1747 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1748 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1749 		    QRXFLXP_CNTXT_TS_M);
1750 
1751 	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1752 	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1753 
1754 	if (ena_ts)
1755 		/* Enable TimeSync on this queue */
1756 		regval |= QRXFLXP_CNTXT_TS_M;
1757 
1758 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1759 }
1760 
1761 /**
1762  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1763  * @intrl: interrupt rate limit in usecs
1764  * @gran: interrupt rate limit granularity in usecs
1765  *
1766  * This function converts a decimal interrupt rate limit in usecs to the format
1767  * expected by firmware.
1768  */
1769 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1770 {
1771 	u32 val = intrl / gran;
1772 
1773 	if (val)
1774 		return val | GLINT_RATE_INTRL_ENA_M;
1775 	return 0;
1776 }
1777 
1778 /**
1779  * ice_write_intrl - write throttle rate limit to interrupt specific register
1780  * @q_vector: pointer to interrupt specific structure
1781  * @intrl: throttle rate limit in microseconds to write
1782  */
1783 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1784 {
1785 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1786 
1787 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1788 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1789 }
1790 
1791 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1792 {
1793 	switch (rc->type) {
1794 	case ICE_RX_CONTAINER:
1795 		if (rc->rx_ring)
1796 			return rc->rx_ring->q_vector;
1797 		break;
1798 	case ICE_TX_CONTAINER:
1799 		if (rc->tx_ring)
1800 			return rc->tx_ring->q_vector;
1801 		break;
1802 	default:
1803 		break;
1804 	}
1805 
1806 	return NULL;
1807 }
1808 
1809 /**
1810  * __ice_write_itr - write throttle rate to register
1811  * @q_vector: pointer to interrupt data structure
1812  * @rc: pointer to ring container
1813  * @itr: throttle rate in microseconds to write
1814  */
1815 static void __ice_write_itr(struct ice_q_vector *q_vector,
1816 			    struct ice_ring_container *rc, u16 itr)
1817 {
1818 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1819 
1820 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1821 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1822 }
1823 
1824 /**
1825  * ice_write_itr - write throttle rate to queue specific register
1826  * @rc: pointer to ring container
1827  * @itr: throttle rate in microseconds to write
1828  */
1829 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1830 {
1831 	struct ice_q_vector *q_vector;
1832 
1833 	q_vector = ice_pull_qvec_from_rc(rc);
1834 	if (!q_vector)
1835 		return;
1836 
1837 	__ice_write_itr(q_vector, rc, itr);
1838 }
1839 
1840 /**
1841  * ice_set_q_vector_intrl - set up interrupt rate limiting
1842  * @q_vector: the vector to be configured
1843  *
1844  * Interrupt rate limiting is local to the vector, not per-queue so we must
1845  * detect if either ring container has dynamic moderation enabled to decide
1846  * what to set the interrupt rate limit to via INTRL settings. In the case that
1847  * dynamic moderation is disabled on both, write the value with the cached
1848  * setting to make sure INTRL register matches the user visible value.
1849  */
1850 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1851 {
1852 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1853 		/* in the case of dynamic enabled, cap each vector to no more
1854 		 * than (4 us) 250,000 ints/sec, which allows low latency
1855 		 * but still less than 500,000 interrupts per second, which
1856 		 * reduces CPU a bit in the case of the lowest latency
1857 		 * setting. The 4 here is a value in microseconds.
1858 		 */
1859 		ice_write_intrl(q_vector, 4);
1860 	} else {
1861 		ice_write_intrl(q_vector, q_vector->intrl);
1862 	}
1863 }
1864 
1865 /**
1866  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1867  * @vsi: the VSI being configured
1868  *
1869  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1870  * for the VF VSI.
1871  */
1872 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1873 {
1874 	struct ice_pf *pf = vsi->back;
1875 	struct ice_hw *hw = &pf->hw;
1876 	u16 txq = 0, rxq = 0;
1877 	int i, q;
1878 
1879 	ice_for_each_q_vector(vsi, i) {
1880 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1881 		u16 reg_idx = q_vector->reg_idx;
1882 
1883 		ice_cfg_itr(hw, q_vector);
1884 
1885 		/* Both Transmit Queue Interrupt Cause Control register
1886 		 * and Receive Queue Interrupt Cause control register
1887 		 * expects MSIX_INDX field to be the vector index
1888 		 * within the function space and not the absolute
1889 		 * vector index across PF or across device.
1890 		 * For SR-IOV VF VSIs queue vector index always starts
1891 		 * with 1 since first vector index(0) is used for OICR
1892 		 * in VF space. Since VMDq and other PF VSIs are within
1893 		 * the PF function space, use the vector index that is
1894 		 * tracked for this PF.
1895 		 */
1896 		for (q = 0; q < q_vector->num_ring_tx; q++) {
1897 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1898 					      q_vector->tx.itr_idx);
1899 			txq++;
1900 		}
1901 
1902 		for (q = 0; q < q_vector->num_ring_rx; q++) {
1903 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1904 					      q_vector->rx.itr_idx);
1905 			rxq++;
1906 		}
1907 	}
1908 }
1909 
1910 /**
1911  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1912  * @vsi: the VSI whose rings are to be enabled
1913  *
1914  * Returns 0 on success and a negative value on error
1915  */
1916 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1917 {
1918 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1919 }
1920 
1921 /**
1922  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1923  * @vsi: the VSI whose rings are to be disabled
1924  *
1925  * Returns 0 on success and a negative value on error
1926  */
1927 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1928 {
1929 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
1930 }
1931 
1932 /**
1933  * ice_vsi_stop_tx_rings - Disable Tx rings
1934  * @vsi: the VSI being configured
1935  * @rst_src: reset source
1936  * @rel_vmvf_num: Relative ID of VF/VM
1937  * @rings: Tx ring array to be stopped
1938  * @count: number of Tx ring array elements
1939  */
1940 static int
1941 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1942 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1943 {
1944 	u16 q_idx;
1945 
1946 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1947 		return -EINVAL;
1948 
1949 	for (q_idx = 0; q_idx < count; q_idx++) {
1950 		struct ice_txq_meta txq_meta = { };
1951 		int status;
1952 
1953 		if (!rings || !rings[q_idx])
1954 			return -EINVAL;
1955 
1956 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1957 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1958 					      rings[q_idx], &txq_meta);
1959 
1960 		if (status)
1961 			return status;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 /**
1968  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1969  * @vsi: the VSI being configured
1970  * @rst_src: reset source
1971  * @rel_vmvf_num: Relative ID of VF/VM
1972  */
1973 int
1974 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1975 			  u16 rel_vmvf_num)
1976 {
1977 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
1978 }
1979 
1980 /**
1981  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
1982  * @vsi: the VSI being configured
1983  */
1984 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
1985 {
1986 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
1987 }
1988 
1989 /**
1990  * ice_vsi_is_rx_queue_active
1991  * @vsi: the VSI being configured
1992  *
1993  * Return true if at least one queue is active.
1994  */
1995 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
1996 {
1997 	struct ice_pf *pf = vsi->back;
1998 	struct ice_hw *hw = &pf->hw;
1999 	int i;
2000 
2001 	ice_for_each_rxq(vsi, i) {
2002 		u32 rx_reg;
2003 		int pf_q;
2004 
2005 		pf_q = vsi->rxq_map[i];
2006 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2007 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2008 			return true;
2009 	}
2010 
2011 	return false;
2012 }
2013 
2014 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2015 {
2016 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2017 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2018 		vsi->tc_cfg.numtc = 1;
2019 		return;
2020 	}
2021 
2022 	/* set VSI TC information based on DCB config */
2023 	ice_vsi_set_dcb_tc_cfg(vsi);
2024 }
2025 
2026 /**
2027  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2028  * @vsi: the VSI being configured
2029  * @tx: bool to determine Tx or Rx rule
2030  * @create: bool to determine create or remove Rule
2031  */
2032 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2033 {
2034 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2035 			enum ice_sw_fwd_act_type act);
2036 	struct ice_pf *pf = vsi->back;
2037 	struct device *dev;
2038 	int status;
2039 
2040 	dev = ice_pf_to_dev(pf);
2041 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2042 
2043 	if (tx) {
2044 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2045 				  ICE_DROP_PACKET);
2046 	} else {
2047 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2048 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2049 							  create);
2050 		} else {
2051 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2052 					  ICE_FWD_TO_VSI);
2053 		}
2054 	}
2055 
2056 	if (status)
2057 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2058 			create ? "adding" : "removing", tx ? "TX" : "RX",
2059 			vsi->vsi_num, status);
2060 }
2061 
2062 /**
2063  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2064  * @vsi: pointer to the VSI
2065  *
2066  * This function will allocate new scheduler aggregator now if needed and will
2067  * move specified VSI into it.
2068  */
2069 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2070 {
2071 	struct device *dev = ice_pf_to_dev(vsi->back);
2072 	struct ice_agg_node *agg_node_iter = NULL;
2073 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2074 	struct ice_agg_node *agg_node = NULL;
2075 	int node_offset, max_agg_nodes = 0;
2076 	struct ice_port_info *port_info;
2077 	struct ice_pf *pf = vsi->back;
2078 	u32 agg_node_id_start = 0;
2079 	int status;
2080 
2081 	/* create (as needed) scheduler aggregator node and move VSI into
2082 	 * corresponding aggregator node
2083 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2084 	 * - VF aggregator nodes will contain VF VSI
2085 	 */
2086 	port_info = pf->hw.port_info;
2087 	if (!port_info)
2088 		return;
2089 
2090 	switch (vsi->type) {
2091 	case ICE_VSI_CTRL:
2092 	case ICE_VSI_CHNL:
2093 	case ICE_VSI_LB:
2094 	case ICE_VSI_PF:
2095 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2096 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2097 		agg_node_iter = &pf->pf_agg_node[0];
2098 		break;
2099 	case ICE_VSI_VF:
2100 		/* user can create 'n' VFs on a given PF, but since max children
2101 		 * per aggregator node can be only 64. Following code handles
2102 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2103 		 * was already created provided num_vsis < 64, otherwise
2104 		 * select next available node, which will be created
2105 		 */
2106 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2107 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2108 		agg_node_iter = &pf->vf_agg_node[0];
2109 		break;
2110 	default:
2111 		/* other VSI type, handle later if needed */
2112 		dev_dbg(dev, "unexpected VSI type %s\n",
2113 			ice_vsi_type_str(vsi->type));
2114 		return;
2115 	}
2116 
2117 	/* find the appropriate aggregator node */
2118 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2119 		/* see if we can find space in previously created
2120 		 * node if num_vsis < 64, otherwise skip
2121 		 */
2122 		if (agg_node_iter->num_vsis &&
2123 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2124 			agg_node_iter++;
2125 			continue;
2126 		}
2127 
2128 		if (agg_node_iter->valid &&
2129 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2130 			agg_id = agg_node_iter->agg_id;
2131 			agg_node = agg_node_iter;
2132 			break;
2133 		}
2134 
2135 		/* find unclaimed agg_id */
2136 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2137 			agg_id = node_offset + agg_node_id_start;
2138 			agg_node = agg_node_iter;
2139 			break;
2140 		}
2141 		/* move to next agg_node */
2142 		agg_node_iter++;
2143 	}
2144 
2145 	if (!agg_node)
2146 		return;
2147 
2148 	/* if selected aggregator node was not created, create it */
2149 	if (!agg_node->valid) {
2150 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2151 				     (u8)vsi->tc_cfg.ena_tc);
2152 		if (status) {
2153 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2154 				agg_id);
2155 			return;
2156 		}
2157 		/* aggregator node is created, store the needed info */
2158 		agg_node->valid = true;
2159 		agg_node->agg_id = agg_id;
2160 	}
2161 
2162 	/* move VSI to corresponding aggregator node */
2163 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2164 				     (u8)vsi->tc_cfg.ena_tc);
2165 	if (status) {
2166 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2167 			vsi->idx, agg_id);
2168 		return;
2169 	}
2170 
2171 	/* keep active children count for aggregator node */
2172 	agg_node->num_vsis++;
2173 
2174 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2175 	 * to aggregator node
2176 	 */
2177 	vsi->agg_node = agg_node;
2178 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2179 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2180 		vsi->agg_node->num_vsis);
2181 }
2182 
2183 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2184 {
2185 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2186 	struct device *dev = ice_pf_to_dev(pf);
2187 	int ret, i;
2188 
2189 	/* configure VSI nodes based on number of queues and TC's */
2190 	ice_for_each_traffic_class(i) {
2191 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2192 			continue;
2193 
2194 		if (vsi->type == ICE_VSI_CHNL) {
2195 			if (!vsi->alloc_txq && vsi->num_txq)
2196 				max_txqs[i] = vsi->num_txq;
2197 			else
2198 				max_txqs[i] = pf->num_lan_tx;
2199 		} else {
2200 			max_txqs[i] = vsi->alloc_txq;
2201 		}
2202 
2203 		if (vsi->type == ICE_VSI_PF)
2204 			max_txqs[i] += vsi->num_xdp_txq;
2205 	}
2206 
2207 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2208 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2209 			      max_txqs);
2210 	if (ret) {
2211 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2212 			vsi->vsi_num, ret);
2213 		return ret;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 /**
2220  * ice_vsi_cfg_def - configure default VSI based on the type
2221  * @vsi: pointer to VSI
2222  */
2223 static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2224 {
2225 	struct device *dev = ice_pf_to_dev(vsi->back);
2226 	struct ice_pf *pf = vsi->back;
2227 	int ret;
2228 
2229 	vsi->vsw = pf->first_sw;
2230 
2231 	ret = ice_vsi_alloc_def(vsi, vsi->ch);
2232 	if (ret)
2233 		return ret;
2234 
2235 	/* allocate memory for Tx/Rx ring stat pointers */
2236 	ret = ice_vsi_alloc_stat_arrays(vsi);
2237 	if (ret)
2238 		goto unroll_vsi_alloc;
2239 
2240 	ice_alloc_fd_res(vsi);
2241 
2242 	ret = ice_vsi_get_qs(vsi);
2243 	if (ret) {
2244 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2245 			vsi->idx);
2246 		goto unroll_vsi_alloc_stat;
2247 	}
2248 
2249 	/* set RSS capabilities */
2250 	ice_vsi_set_rss_params(vsi);
2251 
2252 	/* set TC configuration */
2253 	ice_vsi_set_tc_cfg(vsi);
2254 
2255 	/* create the VSI */
2256 	ret = ice_vsi_init(vsi, vsi->flags);
2257 	if (ret)
2258 		goto unroll_get_qs;
2259 
2260 	ice_vsi_init_vlan_ops(vsi);
2261 
2262 	switch (vsi->type) {
2263 	case ICE_VSI_CTRL:
2264 	case ICE_VSI_PF:
2265 		ret = ice_vsi_alloc_q_vectors(vsi);
2266 		if (ret)
2267 			goto unroll_vsi_init;
2268 
2269 		ret = ice_vsi_alloc_rings(vsi);
2270 		if (ret)
2271 			goto unroll_vector_base;
2272 
2273 		ret = ice_vsi_alloc_ring_stats(vsi);
2274 		if (ret)
2275 			goto unroll_vector_base;
2276 
2277 		if (ice_is_xdp_ena_vsi(vsi)) {
2278 			ret = ice_vsi_determine_xdp_res(vsi);
2279 			if (ret)
2280 				goto unroll_vector_base;
2281 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2282 						    ICE_XDP_CFG_PART);
2283 			if (ret)
2284 				goto unroll_vector_base;
2285 		}
2286 
2287 		ice_vsi_map_rings_to_vectors(vsi);
2288 
2289 		/* Associate q_vector rings to napi */
2290 		ice_vsi_set_napi_queues(vsi);
2291 
2292 		vsi->stat_offsets_loaded = false;
2293 
2294 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2295 		if (vsi->type != ICE_VSI_CTRL)
2296 			/* Do not exit if configuring RSS had an issue, at
2297 			 * least receive traffic on first queue. Hence no
2298 			 * need to capture return value
2299 			 */
2300 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2301 				ice_vsi_cfg_rss_lut_key(vsi);
2302 				ice_vsi_set_rss_flow_fld(vsi);
2303 			}
2304 		ice_init_arfs(vsi);
2305 		break;
2306 	case ICE_VSI_CHNL:
2307 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2308 			ice_vsi_cfg_rss_lut_key(vsi);
2309 			ice_vsi_set_rss_flow_fld(vsi);
2310 		}
2311 		break;
2312 	case ICE_VSI_VF:
2313 		/* VF driver will take care of creating netdev for this type and
2314 		 * map queues to vectors through Virtchnl, PF driver only
2315 		 * creates a VSI and corresponding structures for bookkeeping
2316 		 * purpose
2317 		 */
2318 		ret = ice_vsi_alloc_q_vectors(vsi);
2319 		if (ret)
2320 			goto unroll_vsi_init;
2321 
2322 		ret = ice_vsi_alloc_rings(vsi);
2323 		if (ret)
2324 			goto unroll_alloc_q_vector;
2325 
2326 		ret = ice_vsi_alloc_ring_stats(vsi);
2327 		if (ret)
2328 			goto unroll_vector_base;
2329 
2330 		vsi->stat_offsets_loaded = false;
2331 
2332 		/* Do not exit if configuring RSS had an issue, at least
2333 		 * receive traffic on first queue. Hence no need to capture
2334 		 * return value
2335 		 */
2336 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2337 			ice_vsi_cfg_rss_lut_key(vsi);
2338 			ice_vsi_set_vf_rss_flow_fld(vsi);
2339 		}
2340 		break;
2341 	case ICE_VSI_LB:
2342 		ret = ice_vsi_alloc_rings(vsi);
2343 		if (ret)
2344 			goto unroll_vsi_init;
2345 
2346 		ret = ice_vsi_alloc_ring_stats(vsi);
2347 		if (ret)
2348 			goto unroll_vector_base;
2349 
2350 		break;
2351 	default:
2352 		/* clean up the resources and exit */
2353 		ret = -EINVAL;
2354 		goto unroll_vsi_init;
2355 	}
2356 
2357 	return 0;
2358 
2359 unroll_vector_base:
2360 	/* reclaim SW interrupts back to the common pool */
2361 unroll_alloc_q_vector:
2362 	ice_vsi_free_q_vectors(vsi);
2363 unroll_vsi_init:
2364 	ice_vsi_delete_from_hw(vsi);
2365 unroll_get_qs:
2366 	ice_vsi_put_qs(vsi);
2367 unroll_vsi_alloc_stat:
2368 	ice_vsi_free_stats(vsi);
2369 unroll_vsi_alloc:
2370 	ice_vsi_free_arrays(vsi);
2371 	return ret;
2372 }
2373 
2374 /**
2375  * ice_vsi_cfg - configure a previously allocated VSI
2376  * @vsi: pointer to VSI
2377  */
2378 int ice_vsi_cfg(struct ice_vsi *vsi)
2379 {
2380 	struct ice_pf *pf = vsi->back;
2381 	int ret;
2382 
2383 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2384 		return -EINVAL;
2385 
2386 	ret = ice_vsi_cfg_def(vsi);
2387 	if (ret)
2388 		return ret;
2389 
2390 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2391 	if (ret)
2392 		ice_vsi_decfg(vsi);
2393 
2394 	if (vsi->type == ICE_VSI_CTRL) {
2395 		if (vsi->vf) {
2396 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2397 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2398 		} else {
2399 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2400 			pf->ctrl_vsi_idx = vsi->idx;
2401 		}
2402 	}
2403 
2404 	return ret;
2405 }
2406 
2407 /**
2408  * ice_vsi_decfg - remove all VSI configuration
2409  * @vsi: pointer to VSI
2410  */
2411 void ice_vsi_decfg(struct ice_vsi *vsi)
2412 {
2413 	struct ice_pf *pf = vsi->back;
2414 	int err;
2415 
2416 	/* The Rx rule will only exist to remove if the LLDP FW
2417 	 * engine is currently stopped
2418 	 */
2419 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2420 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2421 		ice_cfg_sw_lldp(vsi, false, false);
2422 
2423 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2424 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2425 	if (err)
2426 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2427 			vsi->vsi_num, err);
2428 
2429 	if (ice_is_xdp_ena_vsi(vsi))
2430 		/* return value check can be skipped here, it always returns
2431 		 * 0 if reset is in progress
2432 		 */
2433 		ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2434 
2435 	ice_vsi_clear_rings(vsi);
2436 	ice_vsi_free_q_vectors(vsi);
2437 	ice_vsi_put_qs(vsi);
2438 	ice_vsi_free_arrays(vsi);
2439 
2440 	/* SR-IOV determines needed MSIX resources all at once instead of per
2441 	 * VSI since when VFs are spawned we know how many VFs there are and how
2442 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2443 	 * cleared in the same manner.
2444 	 */
2445 
2446 	if (vsi->type == ICE_VSI_VF &&
2447 	    vsi->agg_node && vsi->agg_node->valid)
2448 		vsi->agg_node->num_vsis--;
2449 }
2450 
2451 /**
2452  * ice_vsi_setup - Set up a VSI by a given type
2453  * @pf: board private structure
2454  * @params: parameters to use when creating the VSI
2455  *
2456  * This allocates the sw VSI structure and its queue resources.
2457  *
2458  * Returns pointer to the successfully allocated and configured VSI sw struct on
2459  * success, NULL on failure.
2460  */
2461 struct ice_vsi *
2462 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2463 {
2464 	struct device *dev = ice_pf_to_dev(pf);
2465 	struct ice_vsi *vsi;
2466 	int ret;
2467 
2468 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2469 	 * a port_info structure for it.
2470 	 */
2471 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2472 	    WARN_ON(!params->port_info))
2473 		return NULL;
2474 
2475 	vsi = ice_vsi_alloc(pf);
2476 	if (!vsi) {
2477 		dev_err(dev, "could not allocate VSI\n");
2478 		return NULL;
2479 	}
2480 
2481 	vsi->params = *params;
2482 	ret = ice_vsi_cfg(vsi);
2483 	if (ret)
2484 		goto err_vsi_cfg;
2485 
2486 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2487 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2488 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2489 	 * The rule is added once for PF VSI in order to create appropriate
2490 	 * recipe, since VSI/VSI list is ignored with drop action...
2491 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2492 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2493 	 * settings in the HW.
2494 	 */
2495 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2496 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2497 				 ICE_DROP_PACKET);
2498 		ice_cfg_sw_lldp(vsi, true, true);
2499 	}
2500 
2501 	if (!vsi->agg_node)
2502 		ice_set_agg_vsi(vsi);
2503 
2504 	return vsi;
2505 
2506 err_vsi_cfg:
2507 	ice_vsi_free(vsi);
2508 
2509 	return NULL;
2510 }
2511 
2512 /**
2513  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2514  * @vsi: the VSI being cleaned up
2515  */
2516 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2517 {
2518 	struct ice_pf *pf = vsi->back;
2519 	struct ice_hw *hw = &pf->hw;
2520 	u32 txq = 0;
2521 	u32 rxq = 0;
2522 	int i, q;
2523 
2524 	ice_for_each_q_vector(vsi, i) {
2525 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2526 
2527 		ice_write_intrl(q_vector, 0);
2528 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2529 			ice_write_itr(&q_vector->tx, 0);
2530 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2531 			if (ice_is_xdp_ena_vsi(vsi)) {
2532 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2533 
2534 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2535 			}
2536 			txq++;
2537 		}
2538 
2539 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2540 			ice_write_itr(&q_vector->rx, 0);
2541 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2542 			rxq++;
2543 		}
2544 	}
2545 
2546 	ice_flush(hw);
2547 }
2548 
2549 /**
2550  * ice_vsi_free_irq - Free the IRQ association with the OS
2551  * @vsi: the VSI being configured
2552  */
2553 void ice_vsi_free_irq(struct ice_vsi *vsi)
2554 {
2555 	struct ice_pf *pf = vsi->back;
2556 	int i;
2557 
2558 	if (!vsi->q_vectors || !vsi->irqs_ready)
2559 		return;
2560 
2561 	ice_vsi_release_msix(vsi);
2562 	if (vsi->type == ICE_VSI_VF)
2563 		return;
2564 
2565 	vsi->irqs_ready = false;
2566 	ice_free_cpu_rx_rmap(vsi);
2567 
2568 	ice_for_each_q_vector(vsi, i) {
2569 		int irq_num;
2570 
2571 		irq_num = vsi->q_vectors[i]->irq.virq;
2572 
2573 		/* free only the irqs that were actually requested */
2574 		if (!vsi->q_vectors[i] ||
2575 		    !(vsi->q_vectors[i]->num_ring_tx ||
2576 		      vsi->q_vectors[i]->num_ring_rx))
2577 			continue;
2578 
2579 		/* clear the affinity notifier in the IRQ descriptor */
2580 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2581 			irq_set_affinity_notifier(irq_num, NULL);
2582 
2583 		/* clear the affinity_hint in the IRQ descriptor */
2584 		irq_update_affinity_hint(irq_num, NULL);
2585 		synchronize_irq(irq_num);
2586 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2587 	}
2588 }
2589 
2590 /**
2591  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2592  * @vsi: the VSI having resources freed
2593  */
2594 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2595 {
2596 	int i;
2597 
2598 	if (!vsi->tx_rings)
2599 		return;
2600 
2601 	ice_for_each_txq(vsi, i)
2602 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2603 			ice_free_tx_ring(vsi->tx_rings[i]);
2604 }
2605 
2606 /**
2607  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2608  * @vsi: the VSI having resources freed
2609  */
2610 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2611 {
2612 	int i;
2613 
2614 	if (!vsi->rx_rings)
2615 		return;
2616 
2617 	ice_for_each_rxq(vsi, i)
2618 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2619 			ice_free_rx_ring(vsi->rx_rings[i]);
2620 }
2621 
2622 /**
2623  * ice_vsi_close - Shut down a VSI
2624  * @vsi: the VSI being shut down
2625  */
2626 void ice_vsi_close(struct ice_vsi *vsi)
2627 {
2628 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2629 		ice_down(vsi);
2630 
2631 	ice_vsi_free_irq(vsi);
2632 	ice_vsi_free_tx_rings(vsi);
2633 	ice_vsi_free_rx_rings(vsi);
2634 }
2635 
2636 /**
2637  * ice_ena_vsi - resume a VSI
2638  * @vsi: the VSI being resume
2639  * @locked: is the rtnl_lock already held
2640  */
2641 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2642 {
2643 	int err = 0;
2644 
2645 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2646 		return 0;
2647 
2648 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2649 
2650 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2651 		if (netif_running(vsi->netdev)) {
2652 			if (!locked)
2653 				rtnl_lock();
2654 
2655 			err = ice_open_internal(vsi->netdev);
2656 
2657 			if (!locked)
2658 				rtnl_unlock();
2659 		}
2660 	} else if (vsi->type == ICE_VSI_CTRL) {
2661 		err = ice_vsi_open_ctrl(vsi);
2662 	}
2663 
2664 	return err;
2665 }
2666 
2667 /**
2668  * ice_dis_vsi - pause a VSI
2669  * @vsi: the VSI being paused
2670  * @locked: is the rtnl_lock already held
2671  */
2672 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2673 {
2674 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2675 		return;
2676 
2677 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2678 
2679 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2680 		if (netif_running(vsi->netdev)) {
2681 			if (!locked)
2682 				rtnl_lock();
2683 
2684 			ice_vsi_close(vsi);
2685 
2686 			if (!locked)
2687 				rtnl_unlock();
2688 		} else {
2689 			ice_vsi_close(vsi);
2690 		}
2691 	} else if (vsi->type == ICE_VSI_CTRL) {
2692 		ice_vsi_close(vsi);
2693 	}
2694 }
2695 
2696 /**
2697  * __ice_queue_set_napi - Set the napi instance for the queue
2698  * @dev: device to which NAPI and queue belong
2699  * @queue_index: Index of queue
2700  * @type: queue type as RX or TX
2701  * @napi: NAPI context
2702  * @locked: is the rtnl_lock already held
2703  *
2704  * Set the napi instance for the queue. Caller indicates the lock status.
2705  */
2706 static void
2707 __ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2708 		     enum netdev_queue_type type, struct napi_struct *napi,
2709 		     bool locked)
2710 {
2711 	if (!locked)
2712 		rtnl_lock();
2713 	netif_queue_set_napi(dev, queue_index, type, napi);
2714 	if (!locked)
2715 		rtnl_unlock();
2716 }
2717 
2718 /**
2719  * ice_queue_set_napi - Set the napi instance for the queue
2720  * @vsi: VSI being configured
2721  * @queue_index: Index of queue
2722  * @type: queue type as RX or TX
2723  * @napi: NAPI context
2724  *
2725  * Set the napi instance for the queue. The rtnl lock state is derived from the
2726  * execution path.
2727  */
2728 void
2729 ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2730 		   enum netdev_queue_type type, struct napi_struct *napi)
2731 {
2732 	struct ice_pf *pf = vsi->back;
2733 
2734 	if (!vsi->netdev)
2735 		return;
2736 
2737 	if (current_work() == &pf->serv_task ||
2738 	    test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2739 	    test_bit(ICE_DOWN, pf->state) ||
2740 	    test_bit(ICE_SUSPENDED, pf->state))
2741 		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2742 				     false);
2743 	else
2744 		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2745 				     true);
2746 }
2747 
2748 /**
2749  * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2750  * @q_vector: q_vector pointer
2751  * @locked: is the rtnl_lock already held
2752  *
2753  * Associate the q_vector napi with all the queue[s] on the vector.
2754  * Caller indicates the lock status.
2755  */
2756 void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2757 {
2758 	struct ice_rx_ring *rx_ring;
2759 	struct ice_tx_ring *tx_ring;
2760 
2761 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2762 		__ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2763 				     NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2764 				     locked);
2765 
2766 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2767 		__ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2768 				     NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2769 				     locked);
2770 	/* Also set the interrupt number for the NAPI */
2771 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2772 }
2773 
2774 /**
2775  * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2776  * @q_vector: q_vector pointer
2777  *
2778  * Associate the q_vector napi with all the queue[s] on the vector
2779  */
2780 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2781 {
2782 	struct ice_rx_ring *rx_ring;
2783 	struct ice_tx_ring *tx_ring;
2784 
2785 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2786 		ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2787 				   NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2788 
2789 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2790 		ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
2791 				   NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
2792 	/* Also set the interrupt number for the NAPI */
2793 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2794 }
2795 
2796 /**
2797  * ice_vsi_set_napi_queues
2798  * @vsi: VSI pointer
2799  *
2800  * Associate queue[s] with napi for all vectors
2801  */
2802 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2803 {
2804 	int i;
2805 
2806 	if (!vsi->netdev)
2807 		return;
2808 
2809 	ice_for_each_q_vector(vsi, i)
2810 		ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
2811 }
2812 
2813 /**
2814  * ice_vsi_release - Delete a VSI and free its resources
2815  * @vsi: the VSI being removed
2816  *
2817  * Returns 0 on success or < 0 on error
2818  */
2819 int ice_vsi_release(struct ice_vsi *vsi)
2820 {
2821 	struct ice_pf *pf;
2822 
2823 	if (!vsi->back)
2824 		return -ENODEV;
2825 	pf = vsi->back;
2826 
2827 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2828 		ice_rss_clean(vsi);
2829 
2830 	ice_vsi_close(vsi);
2831 	ice_vsi_decfg(vsi);
2832 
2833 	/* retain SW VSI data structure since it is needed to unregister and
2834 	 * free VSI netdev when PF is not in reset recovery pending state,\
2835 	 * for ex: during rmmod.
2836 	 */
2837 	if (!ice_is_reset_in_progress(pf->state))
2838 		ice_vsi_delete(vsi);
2839 
2840 	return 0;
2841 }
2842 
2843 /**
2844  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2845  * @vsi: VSI connected with q_vectors
2846  * @coalesce: array of struct with stored coalesce
2847  *
2848  * Returns array size.
2849  */
2850 static int
2851 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2852 			     struct ice_coalesce_stored *coalesce)
2853 {
2854 	int i;
2855 
2856 	ice_for_each_q_vector(vsi, i) {
2857 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2858 
2859 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2860 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2861 		coalesce[i].intrl = q_vector->intrl;
2862 
2863 		if (i < vsi->num_txq)
2864 			coalesce[i].tx_valid = true;
2865 		if (i < vsi->num_rxq)
2866 			coalesce[i].rx_valid = true;
2867 	}
2868 
2869 	return vsi->num_q_vectors;
2870 }
2871 
2872 /**
2873  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2874  * @vsi: VSI connected with q_vectors
2875  * @coalesce: pointer to array of struct with stored coalesce
2876  * @size: size of coalesce array
2877  *
2878  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2879  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2880  * to default value.
2881  */
2882 static void
2883 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2884 			     struct ice_coalesce_stored *coalesce, int size)
2885 {
2886 	struct ice_ring_container *rc;
2887 	int i;
2888 
2889 	if ((size && !coalesce) || !vsi)
2890 		return;
2891 
2892 	/* There are a couple of cases that have to be handled here:
2893 	 *   1. The case where the number of queue vectors stays the same, but
2894 	 *      the number of Tx or Rx rings changes (the first for loop)
2895 	 *   2. The case where the number of queue vectors increased (the
2896 	 *      second for loop)
2897 	 */
2898 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2899 		/* There are 2 cases to handle here and they are the same for
2900 		 * both Tx and Rx:
2901 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
2902 		 *   and the loop variable is less than the number of rings
2903 		 *   allocated, then write the previous values
2904 		 *
2905 		 *   if the entry was not valid previously, but the number of
2906 		 *   rings is less than are allocated (this means the number of
2907 		 *   rings increased from previously), then write out the
2908 		 *   values in the first element
2909 		 *
2910 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
2911 		 *   as there is no harm because the dynamic algorithm
2912 		 *   will just overwrite.
2913 		 */
2914 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2915 			rc = &vsi->q_vectors[i]->rx;
2916 			rc->itr_settings = coalesce[i].itr_rx;
2917 			ice_write_itr(rc, rc->itr_setting);
2918 		} else if (i < vsi->alloc_rxq) {
2919 			rc = &vsi->q_vectors[i]->rx;
2920 			rc->itr_settings = coalesce[0].itr_rx;
2921 			ice_write_itr(rc, rc->itr_setting);
2922 		}
2923 
2924 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2925 			rc = &vsi->q_vectors[i]->tx;
2926 			rc->itr_settings = coalesce[i].itr_tx;
2927 			ice_write_itr(rc, rc->itr_setting);
2928 		} else if (i < vsi->alloc_txq) {
2929 			rc = &vsi->q_vectors[i]->tx;
2930 			rc->itr_settings = coalesce[0].itr_tx;
2931 			ice_write_itr(rc, rc->itr_setting);
2932 		}
2933 
2934 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2935 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2936 	}
2937 
2938 	/* the number of queue vectors increased so write whatever is in
2939 	 * the first element
2940 	 */
2941 	for (; i < vsi->num_q_vectors; i++) {
2942 		/* transmit */
2943 		rc = &vsi->q_vectors[i]->tx;
2944 		rc->itr_settings = coalesce[0].itr_tx;
2945 		ice_write_itr(rc, rc->itr_setting);
2946 
2947 		/* receive */
2948 		rc = &vsi->q_vectors[i]->rx;
2949 		rc->itr_settings = coalesce[0].itr_rx;
2950 		ice_write_itr(rc, rc->itr_setting);
2951 
2952 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2953 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2954 	}
2955 }
2956 
2957 /**
2958  * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2959  * @vsi: VSI pointer
2960  */
2961 static int
2962 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2963 {
2964 	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2965 	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2966 	struct ice_ring_stats **tx_ring_stats;
2967 	struct ice_ring_stats **rx_ring_stats;
2968 	struct ice_vsi_stats *vsi_stat;
2969 	struct ice_pf *pf = vsi->back;
2970 	u16 prev_txq = vsi->alloc_txq;
2971 	u16 prev_rxq = vsi->alloc_rxq;
2972 	int i;
2973 
2974 	vsi_stat = pf->vsi_stats[vsi->idx];
2975 
2976 	if (req_txq < prev_txq) {
2977 		for (i = req_txq; i < prev_txq; i++) {
2978 			if (vsi_stat->tx_ring_stats[i]) {
2979 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
2980 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
2981 			}
2982 		}
2983 	}
2984 
2985 	tx_ring_stats = vsi_stat->tx_ring_stats;
2986 	vsi_stat->tx_ring_stats =
2987 		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
2988 			       sizeof(*vsi_stat->tx_ring_stats),
2989 			       GFP_KERNEL | __GFP_ZERO);
2990 	if (!vsi_stat->tx_ring_stats) {
2991 		vsi_stat->tx_ring_stats = tx_ring_stats;
2992 		return -ENOMEM;
2993 	}
2994 
2995 	if (req_rxq < prev_rxq) {
2996 		for (i = req_rxq; i < prev_rxq; i++) {
2997 			if (vsi_stat->rx_ring_stats[i]) {
2998 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
2999 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3000 			}
3001 		}
3002 	}
3003 
3004 	rx_ring_stats = vsi_stat->rx_ring_stats;
3005 	vsi_stat->rx_ring_stats =
3006 		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3007 			       sizeof(*vsi_stat->rx_ring_stats),
3008 			       GFP_KERNEL | __GFP_ZERO);
3009 	if (!vsi_stat->rx_ring_stats) {
3010 		vsi_stat->rx_ring_stats = rx_ring_stats;
3011 		return -ENOMEM;
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 /**
3018  * ice_vsi_rebuild - Rebuild VSI after reset
3019  * @vsi: VSI to be rebuild
3020  * @vsi_flags: flags used for VSI rebuild flow
3021  *
3022  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3023  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3024  *
3025  * Returns 0 on success and negative value on failure
3026  */
3027 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3028 {
3029 	struct ice_coalesce_stored *coalesce;
3030 	int prev_num_q_vectors;
3031 	struct ice_pf *pf;
3032 	int ret;
3033 
3034 	if (!vsi)
3035 		return -EINVAL;
3036 
3037 	vsi->flags = vsi_flags;
3038 	pf = vsi->back;
3039 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3040 		return -EINVAL;
3041 
3042 	ret = ice_vsi_realloc_stat_arrays(vsi);
3043 	if (ret)
3044 		goto err_vsi_cfg;
3045 
3046 	ice_vsi_decfg(vsi);
3047 	ret = ice_vsi_cfg_def(vsi);
3048 	if (ret)
3049 		goto err_vsi_cfg;
3050 
3051 	coalesce = kcalloc(vsi->num_q_vectors,
3052 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3053 	if (!coalesce)
3054 		return -ENOMEM;
3055 
3056 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3057 
3058 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3059 	if (ret) {
3060 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3061 			ret = -EIO;
3062 			goto err_vsi_cfg_tc_lan;
3063 		}
3064 
3065 		kfree(coalesce);
3066 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3067 	}
3068 
3069 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3070 	kfree(coalesce);
3071 
3072 	return 0;
3073 
3074 err_vsi_cfg_tc_lan:
3075 	ice_vsi_decfg(vsi);
3076 	kfree(coalesce);
3077 err_vsi_cfg:
3078 	return ret;
3079 }
3080 
3081 /**
3082  * ice_is_reset_in_progress - check for a reset in progress
3083  * @state: PF state field
3084  */
3085 bool ice_is_reset_in_progress(unsigned long *state)
3086 {
3087 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3088 	       test_bit(ICE_PFR_REQ, state) ||
3089 	       test_bit(ICE_CORER_REQ, state) ||
3090 	       test_bit(ICE_GLOBR_REQ, state);
3091 }
3092 
3093 /**
3094  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3095  * @pf: pointer to the PF structure
3096  * @timeout: length of time to wait, in jiffies
3097  *
3098  * Wait (sleep) for a short time until the driver finishes cleaning up from
3099  * a device reset. The caller must be able to sleep. Use this to delay
3100  * operations that could fail while the driver is cleaning up after a device
3101  * reset.
3102  *
3103  * Returns 0 on success, -EBUSY if the reset is not finished within the
3104  * timeout, and -ERESTARTSYS if the thread was interrupted.
3105  */
3106 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3107 {
3108 	long ret;
3109 
3110 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3111 					       !ice_is_reset_in_progress(pf->state),
3112 					       timeout);
3113 	if (ret < 0)
3114 		return ret;
3115 	else if (!ret)
3116 		return -EBUSY;
3117 	else
3118 		return 0;
3119 }
3120 
3121 /**
3122  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3123  * @vsi: VSI being configured
3124  * @ctx: the context buffer returned from AQ VSI update command
3125  */
3126 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3127 {
3128 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3129 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3130 	       sizeof(vsi->info.q_mapping));
3131 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3132 	       sizeof(vsi->info.tc_mapping));
3133 }
3134 
3135 /**
3136  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3137  * @vsi: the VSI being configured
3138  * @ena_tc: TC map to be enabled
3139  */
3140 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3141 {
3142 	struct net_device *netdev = vsi->netdev;
3143 	struct ice_pf *pf = vsi->back;
3144 	int numtc = vsi->tc_cfg.numtc;
3145 	struct ice_dcbx_cfg *dcbcfg;
3146 	u8 netdev_tc;
3147 	int i;
3148 
3149 	if (!netdev)
3150 		return;
3151 
3152 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3153 	if (vsi->type == ICE_VSI_CHNL)
3154 		return;
3155 
3156 	if (!ena_tc) {
3157 		netdev_reset_tc(netdev);
3158 		return;
3159 	}
3160 
3161 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3162 		numtc = vsi->all_numtc;
3163 
3164 	if (netdev_set_num_tc(netdev, numtc))
3165 		return;
3166 
3167 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3168 
3169 	ice_for_each_traffic_class(i)
3170 		if (vsi->tc_cfg.ena_tc & BIT(i))
3171 			netdev_set_tc_queue(netdev,
3172 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3173 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3174 					    vsi->tc_cfg.tc_info[i].qoffset);
3175 	/* setup TC queue map for CHNL TCs */
3176 	ice_for_each_chnl_tc(i) {
3177 		if (!(vsi->all_enatc & BIT(i)))
3178 			break;
3179 		if (!vsi->mqprio_qopt.qopt.count[i])
3180 			break;
3181 		netdev_set_tc_queue(netdev, i,
3182 				    vsi->mqprio_qopt.qopt.count[i],
3183 				    vsi->mqprio_qopt.qopt.offset[i]);
3184 	}
3185 
3186 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3187 		return;
3188 
3189 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3190 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3191 
3192 		/* Get the mapped netdev TC# for the UP */
3193 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3194 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3195 	}
3196 }
3197 
3198 /**
3199  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3200  * @vsi: the VSI being configured,
3201  * @ctxt: VSI context structure
3202  * @ena_tc: number of traffic classes to enable
3203  *
3204  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3205  */
3206 static int
3207 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3208 			   u8 ena_tc)
3209 {
3210 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3211 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3212 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3213 	u16 new_txq, new_rxq;
3214 	u8 netdev_tc = 0;
3215 	int i;
3216 
3217 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3218 
3219 	pow = order_base_2(tc0_qcount);
3220 	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3221 	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3222 
3223 	ice_for_each_traffic_class(i) {
3224 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3225 			/* TC is not enabled */
3226 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3227 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3228 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3229 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3230 			ctxt->info.tc_mapping[i] = 0;
3231 			continue;
3232 		}
3233 
3234 		offset = vsi->mqprio_qopt.qopt.offset[i];
3235 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3236 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3237 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3238 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3239 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3240 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3241 	}
3242 
3243 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3244 		ice_for_each_chnl_tc(i) {
3245 			if (!(vsi->all_enatc & BIT(i)))
3246 				continue;
3247 			offset = vsi->mqprio_qopt.qopt.offset[i];
3248 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3249 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3250 		}
3251 	}
3252 
3253 	new_txq = offset + qcount_tx;
3254 	if (new_txq > vsi->alloc_txq) {
3255 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3256 			new_txq, vsi->alloc_txq);
3257 		return -EINVAL;
3258 	}
3259 
3260 	new_rxq = offset + qcount_rx;
3261 	if (new_rxq > vsi->alloc_rxq) {
3262 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3263 			new_rxq, vsi->alloc_rxq);
3264 		return -EINVAL;
3265 	}
3266 
3267 	/* Set actual Tx/Rx queue pairs */
3268 	vsi->num_txq = new_txq;
3269 	vsi->num_rxq = new_rxq;
3270 
3271 	/* Setup queue TC[0].qmap for given VSI context */
3272 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3273 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3274 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3275 
3276 	/* Find queue count available for channel VSIs and starting offset
3277 	 * for channel VSIs
3278 	 */
3279 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3280 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3281 		vsi->next_base_q = tc0_qcount;
3282 	}
3283 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3284 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3285 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3286 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3287 
3288 	return 0;
3289 }
3290 
3291 /**
3292  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3293  * @vsi: VSI to be configured
3294  * @ena_tc: TC bitmap
3295  *
3296  * VSI queues expected to be quiesced before calling this function
3297  */
3298 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3299 {
3300 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3301 	struct ice_pf *pf = vsi->back;
3302 	struct ice_tc_cfg old_tc_cfg;
3303 	struct ice_vsi_ctx *ctx;
3304 	struct device *dev;
3305 	int i, ret = 0;
3306 	u8 num_tc = 0;
3307 
3308 	dev = ice_pf_to_dev(pf);
3309 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3310 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3311 		return 0;
3312 
3313 	ice_for_each_traffic_class(i) {
3314 		/* build bitmap of enabled TCs */
3315 		if (ena_tc & BIT(i))
3316 			num_tc++;
3317 		/* populate max_txqs per TC */
3318 		max_txqs[i] = vsi->alloc_txq;
3319 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3320 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3321 		 */
3322 		if (vsi->type == ICE_VSI_CHNL &&
3323 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3324 			max_txqs[i] = vsi->num_txq;
3325 	}
3326 
3327 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3328 	vsi->tc_cfg.ena_tc = ena_tc;
3329 	vsi->tc_cfg.numtc = num_tc;
3330 
3331 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3332 	if (!ctx)
3333 		return -ENOMEM;
3334 
3335 	ctx->vf_num = 0;
3336 	ctx->info = vsi->info;
3337 
3338 	if (vsi->type == ICE_VSI_PF &&
3339 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3340 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3341 	else
3342 		ret = ice_vsi_setup_q_map(vsi, ctx);
3343 
3344 	if (ret) {
3345 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3346 		goto out;
3347 	}
3348 
3349 	/* must to indicate which section of VSI context are being modified */
3350 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3351 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3352 	if (ret) {
3353 		dev_info(dev, "Failed VSI Update\n");
3354 		goto out;
3355 	}
3356 
3357 	if (vsi->type == ICE_VSI_PF &&
3358 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3359 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3360 	else
3361 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3362 				      vsi->tc_cfg.ena_tc, max_txqs);
3363 
3364 	if (ret) {
3365 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3366 			vsi->vsi_num, ret);
3367 		goto out;
3368 	}
3369 	ice_vsi_update_q_map(vsi, ctx);
3370 	vsi->info.valid_sections = 0;
3371 
3372 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3373 out:
3374 	kfree(ctx);
3375 	return ret;
3376 }
3377 
3378 /**
3379  * ice_update_ring_stats - Update ring statistics
3380  * @stats: stats to be updated
3381  * @pkts: number of processed packets
3382  * @bytes: number of processed bytes
3383  *
3384  * This function assumes that caller has acquired a u64_stats_sync lock.
3385  */
3386 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3387 {
3388 	stats->bytes += bytes;
3389 	stats->pkts += pkts;
3390 }
3391 
3392 /**
3393  * ice_update_tx_ring_stats - Update Tx ring specific counters
3394  * @tx_ring: ring to update
3395  * @pkts: number of processed packets
3396  * @bytes: number of processed bytes
3397  */
3398 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3399 {
3400 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3401 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3402 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3403 }
3404 
3405 /**
3406  * ice_update_rx_ring_stats - Update Rx ring specific counters
3407  * @rx_ring: ring to update
3408  * @pkts: number of processed packets
3409  * @bytes: number of processed bytes
3410  */
3411 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3412 {
3413 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3414 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3415 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3416 }
3417 
3418 /**
3419  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3420  * @pi: port info of the switch with default VSI
3421  *
3422  * Return true if the there is a single VSI in default forwarding VSI list
3423  */
3424 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3425 {
3426 	bool exists = false;
3427 
3428 	ice_check_if_dflt_vsi(pi, 0, &exists);
3429 	return exists;
3430 }
3431 
3432 /**
3433  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3434  * @vsi: VSI to compare against default forwarding VSI
3435  *
3436  * If this VSI passed in is the default forwarding VSI then return true, else
3437  * return false
3438  */
3439 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3440 {
3441 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3442 }
3443 
3444 /**
3445  * ice_set_dflt_vsi - set the default forwarding VSI
3446  * @vsi: VSI getting set as the default forwarding VSI on the switch
3447  *
3448  * If the VSI passed in is already the default VSI and it's enabled just return
3449  * success.
3450  *
3451  * Otherwise try to set the VSI passed in as the switch's default VSI and
3452  * return the result.
3453  */
3454 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3455 {
3456 	struct device *dev;
3457 	int status;
3458 
3459 	if (!vsi)
3460 		return -EINVAL;
3461 
3462 	dev = ice_pf_to_dev(vsi->back);
3463 
3464 	if (ice_lag_is_switchdev_running(vsi->back)) {
3465 		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3466 			vsi->vsi_num);
3467 		return 0;
3468 	}
3469 
3470 	/* the VSI passed in is already the default VSI */
3471 	if (ice_is_vsi_dflt_vsi(vsi)) {
3472 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3473 			vsi->vsi_num);
3474 		return 0;
3475 	}
3476 
3477 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3478 	if (status) {
3479 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3480 			vsi->vsi_num, status);
3481 		return status;
3482 	}
3483 
3484 	return 0;
3485 }
3486 
3487 /**
3488  * ice_clear_dflt_vsi - clear the default forwarding VSI
3489  * @vsi: VSI to remove from filter list
3490  *
3491  * If the switch has no default VSI or it's not enabled then return error.
3492  *
3493  * Otherwise try to clear the default VSI and return the result.
3494  */
3495 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3496 {
3497 	struct device *dev;
3498 	int status;
3499 
3500 	if (!vsi)
3501 		return -EINVAL;
3502 
3503 	dev = ice_pf_to_dev(vsi->back);
3504 
3505 	/* there is no default VSI configured */
3506 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3507 		return -ENODEV;
3508 
3509 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3510 				  ICE_FLTR_RX);
3511 	if (status) {
3512 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3513 			vsi->vsi_num, status);
3514 		return -EIO;
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 /**
3521  * ice_get_link_speed_mbps - get link speed in Mbps
3522  * @vsi: the VSI whose link speed is being queried
3523  *
3524  * Return current VSI link speed and 0 if the speed is unknown.
3525  */
3526 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3527 {
3528 	unsigned int link_speed;
3529 
3530 	link_speed = vsi->port_info->phy.link_info.link_speed;
3531 
3532 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3533 }
3534 
3535 /**
3536  * ice_get_link_speed_kbps - get link speed in Kbps
3537  * @vsi: the VSI whose link speed is being queried
3538  *
3539  * Return current VSI link speed and 0 if the speed is unknown.
3540  */
3541 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3542 {
3543 	int speed_mbps;
3544 
3545 	speed_mbps = ice_get_link_speed_mbps(vsi);
3546 
3547 	return speed_mbps * 1000;
3548 }
3549 
3550 /**
3551  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3552  * @vsi: VSI to be configured
3553  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3554  *
3555  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3556  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3557  * on TC 0.
3558  */
3559 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3560 {
3561 	struct ice_pf *pf = vsi->back;
3562 	struct device *dev;
3563 	int status;
3564 	int speed;
3565 
3566 	dev = ice_pf_to_dev(pf);
3567 	if (!vsi->port_info) {
3568 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3569 			vsi->idx, vsi->type);
3570 		return -EINVAL;
3571 	}
3572 
3573 	speed = ice_get_link_speed_kbps(vsi);
3574 	if (min_tx_rate > (u64)speed) {
3575 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3576 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3577 			speed);
3578 		return -EINVAL;
3579 	}
3580 
3581 	/* Configure min BW for VSI limit */
3582 	if (min_tx_rate) {
3583 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3584 						   ICE_MIN_BW, min_tx_rate);
3585 		if (status) {
3586 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3587 				min_tx_rate, ice_vsi_type_str(vsi->type),
3588 				vsi->idx);
3589 			return status;
3590 		}
3591 
3592 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3593 			min_tx_rate, ice_vsi_type_str(vsi->type));
3594 	} else {
3595 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3596 							vsi->idx, 0,
3597 							ICE_MIN_BW);
3598 		if (status) {
3599 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3600 				ice_vsi_type_str(vsi->type), vsi->idx);
3601 			return status;
3602 		}
3603 
3604 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3605 			ice_vsi_type_str(vsi->type), vsi->idx);
3606 	}
3607 
3608 	return 0;
3609 }
3610 
3611 /**
3612  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3613  * @vsi: VSI to be configured
3614  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3615  *
3616  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3617  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3618  * on TC 0.
3619  */
3620 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3621 {
3622 	struct ice_pf *pf = vsi->back;
3623 	struct device *dev;
3624 	int status;
3625 	int speed;
3626 
3627 	dev = ice_pf_to_dev(pf);
3628 	if (!vsi->port_info) {
3629 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3630 			vsi->idx, vsi->type);
3631 		return -EINVAL;
3632 	}
3633 
3634 	speed = ice_get_link_speed_kbps(vsi);
3635 	if (max_tx_rate > (u64)speed) {
3636 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3637 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3638 			speed);
3639 		return -EINVAL;
3640 	}
3641 
3642 	/* Configure max BW for VSI limit */
3643 	if (max_tx_rate) {
3644 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3645 						   ICE_MAX_BW, max_tx_rate);
3646 		if (status) {
3647 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3648 				max_tx_rate, ice_vsi_type_str(vsi->type),
3649 				vsi->idx);
3650 			return status;
3651 		}
3652 
3653 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3654 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3655 	} else {
3656 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3657 							vsi->idx, 0,
3658 							ICE_MAX_BW);
3659 		if (status) {
3660 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3661 				ice_vsi_type_str(vsi->type), vsi->idx);
3662 			return status;
3663 		}
3664 
3665 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3666 			ice_vsi_type_str(vsi->type), vsi->idx);
3667 	}
3668 
3669 	return 0;
3670 }
3671 
3672 /**
3673  * ice_set_link - turn on/off physical link
3674  * @vsi: VSI to modify physical link on
3675  * @ena: turn on/off physical link
3676  */
3677 int ice_set_link(struct ice_vsi *vsi, bool ena)
3678 {
3679 	struct device *dev = ice_pf_to_dev(vsi->back);
3680 	struct ice_port_info *pi = vsi->port_info;
3681 	struct ice_hw *hw = pi->hw;
3682 	int status;
3683 
3684 	if (vsi->type != ICE_VSI_PF)
3685 		return -EINVAL;
3686 
3687 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3688 
3689 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3690 	 * this is not a fatal error, so print a warning message and return
3691 	 * a success code. Return an error if FW returns an error code other
3692 	 * than ICE_AQ_RC_EMODE
3693 	 */
3694 	if (status == -EIO) {
3695 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3696 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3697 				(ena ? "ON" : "OFF"), status,
3698 				ice_aq_str(hw->adminq.sq_last_status));
3699 	} else if (status) {
3700 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3701 			(ena ? "ON" : "OFF"), status,
3702 			ice_aq_str(hw->adminq.sq_last_status));
3703 		return status;
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 /**
3710  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3711  * @vsi: VSI used to add VLAN filters
3712  *
3713  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3714  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3715  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3716  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3717  *
3718  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3719  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3720  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3721  *
3722  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3723  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3724  * part of filtering.
3725  */
3726 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3727 {
3728 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3729 	struct ice_vlan vlan;
3730 	int err;
3731 
3732 	vlan = ICE_VLAN(0, 0, 0);
3733 	err = vlan_ops->add_vlan(vsi, &vlan);
3734 	if (err && err != -EEXIST)
3735 		return err;
3736 
3737 	/* in SVM both VLAN 0 filters are identical */
3738 	if (!ice_is_dvm_ena(&vsi->back->hw))
3739 		return 0;
3740 
3741 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3742 	err = vlan_ops->add_vlan(vsi, &vlan);
3743 	if (err && err != -EEXIST)
3744 		return err;
3745 
3746 	return 0;
3747 }
3748 
3749 /**
3750  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3751  * @vsi: VSI used to add VLAN filters
3752  *
3753  * Delete the VLAN 0 filters in the same manner that they were added in
3754  * ice_vsi_add_vlan_zero.
3755  */
3756 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3757 {
3758 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3759 	struct ice_vlan vlan;
3760 	int err;
3761 
3762 	vlan = ICE_VLAN(0, 0, 0);
3763 	err = vlan_ops->del_vlan(vsi, &vlan);
3764 	if (err && err != -EEXIST)
3765 		return err;
3766 
3767 	/* in SVM both VLAN 0 filters are identical */
3768 	if (!ice_is_dvm_ena(&vsi->back->hw))
3769 		return 0;
3770 
3771 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3772 	err = vlan_ops->del_vlan(vsi, &vlan);
3773 	if (err && err != -EEXIST)
3774 		return err;
3775 
3776 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3777 	 * promisc mode so the filter isn't left by accident
3778 	 */
3779 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3780 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3781 }
3782 
3783 /**
3784  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3785  * @vsi: VSI used to get the VLAN mode
3786  *
3787  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3788  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3789  */
3790 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3791 {
3792 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3793 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3794 	/* no VLAN 0 filter is created when a port VLAN is active */
3795 	if (vsi->type == ICE_VSI_VF) {
3796 		if (WARN_ON(!vsi->vf))
3797 			return 0;
3798 
3799 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3800 			return 0;
3801 	}
3802 
3803 	if (ice_is_dvm_ena(&vsi->back->hw))
3804 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3805 	else
3806 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3807 }
3808 
3809 /**
3810  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3811  * @vsi: VSI used to determine if any non-zero VLANs have been added
3812  */
3813 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3814 {
3815 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3816 }
3817 
3818 /**
3819  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3820  * @vsi: VSI used to get the number of non-zero VLANs added
3821  */
3822 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3823 {
3824 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3825 }
3826 
3827 /**
3828  * ice_is_feature_supported
3829  * @pf: pointer to the struct ice_pf instance
3830  * @f: feature enum to be checked
3831  *
3832  * returns true if feature is supported, false otherwise
3833  */
3834 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3835 {
3836 	if (f < 0 || f >= ICE_F_MAX)
3837 		return false;
3838 
3839 	return test_bit(f, pf->features);
3840 }
3841 
3842 /**
3843  * ice_set_feature_support
3844  * @pf: pointer to the struct ice_pf instance
3845  * @f: feature enum to set
3846  */
3847 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3848 {
3849 	if (f < 0 || f >= ICE_F_MAX)
3850 		return;
3851 
3852 	set_bit(f, pf->features);
3853 }
3854 
3855 /**
3856  * ice_clear_feature_support
3857  * @pf: pointer to the struct ice_pf instance
3858  * @f: feature enum to clear
3859  */
3860 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3861 {
3862 	if (f < 0 || f >= ICE_F_MAX)
3863 		return;
3864 
3865 	clear_bit(f, pf->features);
3866 }
3867 
3868 /**
3869  * ice_init_feature_support
3870  * @pf: pointer to the struct ice_pf instance
3871  *
3872  * called during init to setup supported feature
3873  */
3874 void ice_init_feature_support(struct ice_pf *pf)
3875 {
3876 	switch (pf->hw.device_id) {
3877 	case ICE_DEV_ID_E810C_BACKPLANE:
3878 	case ICE_DEV_ID_E810C_QSFP:
3879 	case ICE_DEV_ID_E810C_SFP:
3880 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3881 	case ICE_DEV_ID_E810_XXV_QSFP:
3882 	case ICE_DEV_ID_E810_XXV_SFP:
3883 		ice_set_feature_support(pf, ICE_F_DSCP);
3884 		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3885 			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3886 		/* If we don't own the timer - don't enable other caps */
3887 		if (!ice_pf_src_tmr_owned(pf))
3888 			break;
3889 		if (ice_is_cgu_in_netlist(&pf->hw))
3890 			ice_set_feature_support(pf, ICE_F_CGU);
3891 		if (ice_is_clock_mux_in_netlist(&pf->hw))
3892 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3893 		if (ice_gnss_is_gps_present(&pf->hw))
3894 			ice_set_feature_support(pf, ICE_F_GNSS);
3895 		break;
3896 	default:
3897 		break;
3898 	}
3899 }
3900 
3901 /**
3902  * ice_vsi_update_security - update security block in VSI
3903  * @vsi: pointer to VSI structure
3904  * @fill: function pointer to fill ctx
3905  */
3906 int
3907 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3908 {
3909 	struct ice_vsi_ctx ctx = { 0 };
3910 
3911 	ctx.info = vsi->info;
3912 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3913 	fill(&ctx);
3914 
3915 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3916 		return -ENODEV;
3917 
3918 	vsi->info = ctx.info;
3919 	return 0;
3920 }
3921 
3922 /**
3923  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3924  * @ctx: pointer to VSI ctx structure
3925  */
3926 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3927 {
3928 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3929 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3930 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3931 }
3932 
3933 /**
3934  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3935  * @ctx: pointer to VSI ctx structure
3936  */
3937 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3938 {
3939 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3940 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3941 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3942 }
3943 
3944 /**
3945  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
3946  * @ctx: pointer to VSI ctx structure
3947  */
3948 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
3949 {
3950 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3951 }
3952 
3953 /**
3954  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
3955  * @ctx: pointer to VSI ctx structure
3956  */
3957 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
3958 {
3959 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3960 }
3961 
3962 /**
3963  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3964  * @vsi: pointer to VSI structure
3965  * @set: set or unset the bit
3966  */
3967 int
3968 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3969 {
3970 	struct ice_vsi_ctx ctx = {
3971 		.info	= vsi->info,
3972 	};
3973 
3974 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3975 	if (set)
3976 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3977 	else
3978 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3979 
3980 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3981 		return -ENODEV;
3982 
3983 	vsi->info = ctx.info;
3984 	return 0;
3985 }
3986