1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_CHNL: 26 return "ICE_VSI_CHNL"; 27 case ICE_VSI_LB: 28 return "ICE_VSI_LB"; 29 case ICE_VSI_SWITCHDEV_CTRL: 30 return "ICE_VSI_SWITCHDEV_CTRL"; 31 default: 32 return "unknown"; 33 } 34 } 35 36 /** 37 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 38 * @vsi: the VSI being configured 39 * @ena: start or stop the Rx rings 40 * 41 * First enable/disable all of the Rx rings, flush any remaining writes, and 42 * then verify that they have all been enabled/disabled successfully. This will 43 * let all of the register writes complete when enabling/disabling the Rx rings 44 * before waiting for the change in hardware to complete. 45 */ 46 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 47 { 48 int ret = 0; 49 u16 i; 50 51 ice_for_each_rxq(vsi, i) 52 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 53 54 ice_flush(&vsi->back->hw); 55 56 ice_for_each_rxq(vsi, i) { 57 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 58 if (ret) 59 break; 60 } 61 62 return ret; 63 } 64 65 /** 66 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 67 * @vsi: VSI pointer 68 * 69 * On error: returns error code (negative) 70 * On success: returns 0 71 */ 72 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 73 { 74 struct ice_pf *pf = vsi->back; 75 struct device *dev; 76 77 dev = ice_pf_to_dev(pf); 78 if (vsi->type == ICE_VSI_CHNL) 79 return 0; 80 81 /* allocate memory for both Tx and Rx ring pointers */ 82 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 83 sizeof(*vsi->tx_rings), GFP_KERNEL); 84 if (!vsi->tx_rings) 85 return -ENOMEM; 86 87 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 88 sizeof(*vsi->rx_rings), GFP_KERNEL); 89 if (!vsi->rx_rings) 90 goto err_rings; 91 92 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 93 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 94 sizeof(*vsi->txq_map), GFP_KERNEL); 95 96 if (!vsi->txq_map) 97 goto err_txq_map; 98 99 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 100 sizeof(*vsi->rxq_map), GFP_KERNEL); 101 if (!vsi->rxq_map) 102 goto err_rxq_map; 103 104 /* There is no need to allocate q_vectors for a loopback VSI. */ 105 if (vsi->type == ICE_VSI_LB) 106 return 0; 107 108 /* allocate memory for q_vector pointers */ 109 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 110 sizeof(*vsi->q_vectors), GFP_KERNEL); 111 if (!vsi->q_vectors) 112 goto err_vectors; 113 114 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 115 if (!vsi->af_xdp_zc_qps) 116 goto err_zc_qps; 117 118 return 0; 119 120 err_zc_qps: 121 devm_kfree(dev, vsi->q_vectors); 122 err_vectors: 123 devm_kfree(dev, vsi->rxq_map); 124 err_rxq_map: 125 devm_kfree(dev, vsi->txq_map); 126 err_txq_map: 127 devm_kfree(dev, vsi->rx_rings); 128 err_rings: 129 devm_kfree(dev, vsi->tx_rings); 130 return -ENOMEM; 131 } 132 133 /** 134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 135 * @vsi: the VSI being configured 136 */ 137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 138 { 139 switch (vsi->type) { 140 case ICE_VSI_PF: 141 case ICE_VSI_SWITCHDEV_CTRL: 142 case ICE_VSI_CTRL: 143 case ICE_VSI_LB: 144 /* a user could change the values of num_[tr]x_desc using 145 * ethtool -G so we should keep those values instead of 146 * overwriting them with the defaults. 147 */ 148 if (!vsi->num_rx_desc) 149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 150 if (!vsi->num_tx_desc) 151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 152 break; 153 default: 154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 155 vsi->type); 156 break; 157 } 158 } 159 160 /** 161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 162 * @vsi: the VSI being configured 163 * @vf_id: ID of the VF being configured 164 * 165 * Return 0 on success and a negative value on error 166 */ 167 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 168 { 169 struct ice_pf *pf = vsi->back; 170 struct ice_vf *vf = NULL; 171 172 if (vsi->type == ICE_VSI_VF) 173 vsi->vf_id = vf_id; 174 else 175 vsi->vf_id = ICE_INVAL_VFID; 176 177 switch (vsi->type) { 178 case ICE_VSI_PF: 179 if (vsi->req_txq) { 180 vsi->alloc_txq = vsi->req_txq; 181 vsi->num_txq = vsi->req_txq; 182 } else { 183 vsi->alloc_txq = min3(pf->num_lan_msix, 184 ice_get_avail_txq_count(pf), 185 (u16)num_online_cpus()); 186 } 187 188 pf->num_lan_tx = vsi->alloc_txq; 189 190 /* only 1 Rx queue unless RSS is enabled */ 191 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 192 vsi->alloc_rxq = 1; 193 } else { 194 if (vsi->req_rxq) { 195 vsi->alloc_rxq = vsi->req_rxq; 196 vsi->num_rxq = vsi->req_rxq; 197 } else { 198 vsi->alloc_rxq = min3(pf->num_lan_msix, 199 ice_get_avail_rxq_count(pf), 200 (u16)num_online_cpus()); 201 } 202 } 203 204 pf->num_lan_rx = vsi->alloc_rxq; 205 206 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 207 max_t(int, vsi->alloc_rxq, 208 vsi->alloc_txq)); 209 break; 210 case ICE_VSI_SWITCHDEV_CTRL: 211 /* The number of queues for ctrl VSI is equal to number of VFs. 212 * Each ring is associated to the corresponding VF_PR netdev. 213 */ 214 vsi->alloc_txq = pf->num_alloc_vfs; 215 vsi->alloc_rxq = pf->num_alloc_vfs; 216 vsi->num_q_vectors = 1; 217 break; 218 case ICE_VSI_VF: 219 vf = &pf->vf[vsi->vf_id]; 220 if (vf->num_req_qs) 221 vf->num_vf_qs = vf->num_req_qs; 222 vsi->alloc_txq = vf->num_vf_qs; 223 vsi->alloc_rxq = vf->num_vf_qs; 224 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 225 * data queue interrupts). Since vsi->num_q_vectors is number 226 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 227 * original vector count 228 */ 229 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 230 break; 231 case ICE_VSI_CTRL: 232 vsi->alloc_txq = 1; 233 vsi->alloc_rxq = 1; 234 vsi->num_q_vectors = 1; 235 break; 236 case ICE_VSI_CHNL: 237 vsi->alloc_txq = 0; 238 vsi->alloc_rxq = 0; 239 break; 240 case ICE_VSI_LB: 241 vsi->alloc_txq = 1; 242 vsi->alloc_rxq = 1; 243 break; 244 default: 245 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 246 break; 247 } 248 249 ice_vsi_set_num_desc(vsi); 250 } 251 252 /** 253 * ice_get_free_slot - get the next non-NULL location index in array 254 * @array: array to search 255 * @size: size of the array 256 * @curr: last known occupied index to be used as a search hint 257 * 258 * void * is being used to keep the functionality generic. This lets us use this 259 * function on any array of pointers. 260 */ 261 static int ice_get_free_slot(void *array, int size, int curr) 262 { 263 int **tmp_array = (int **)array; 264 int next; 265 266 if (curr < (size - 1) && !tmp_array[curr + 1]) { 267 next = curr + 1; 268 } else { 269 int i = 0; 270 271 while ((i < size) && (tmp_array[i])) 272 i++; 273 if (i == size) 274 next = ICE_NO_VSI; 275 else 276 next = i; 277 } 278 return next; 279 } 280 281 /** 282 * ice_vsi_delete - delete a VSI from the switch 283 * @vsi: pointer to VSI being removed 284 */ 285 void ice_vsi_delete(struct ice_vsi *vsi) 286 { 287 struct ice_pf *pf = vsi->back; 288 struct ice_vsi_ctx *ctxt; 289 enum ice_status status; 290 291 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 292 if (!ctxt) 293 return; 294 295 if (vsi->type == ICE_VSI_VF) 296 ctxt->vf_num = vsi->vf_id; 297 ctxt->vsi_num = vsi->vsi_num; 298 299 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 300 301 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 302 if (status) 303 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 304 vsi->vsi_num, ice_stat_str(status)); 305 306 kfree(ctxt); 307 } 308 309 /** 310 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 311 * @vsi: pointer to VSI being cleared 312 */ 313 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 314 { 315 struct ice_pf *pf = vsi->back; 316 struct device *dev; 317 318 dev = ice_pf_to_dev(pf); 319 320 if (vsi->af_xdp_zc_qps) { 321 bitmap_free(vsi->af_xdp_zc_qps); 322 vsi->af_xdp_zc_qps = NULL; 323 } 324 /* free the ring and vector containers */ 325 if (vsi->q_vectors) { 326 devm_kfree(dev, vsi->q_vectors); 327 vsi->q_vectors = NULL; 328 } 329 if (vsi->tx_rings) { 330 devm_kfree(dev, vsi->tx_rings); 331 vsi->tx_rings = NULL; 332 } 333 if (vsi->rx_rings) { 334 devm_kfree(dev, vsi->rx_rings); 335 vsi->rx_rings = NULL; 336 } 337 if (vsi->txq_map) { 338 devm_kfree(dev, vsi->txq_map); 339 vsi->txq_map = NULL; 340 } 341 if (vsi->rxq_map) { 342 devm_kfree(dev, vsi->rxq_map); 343 vsi->rxq_map = NULL; 344 } 345 } 346 347 /** 348 * ice_vsi_clear - clean up and deallocate the provided VSI 349 * @vsi: pointer to VSI being cleared 350 * 351 * This deallocates the VSI's queue resources, removes it from the PF's 352 * VSI array if necessary, and deallocates the VSI 353 * 354 * Returns 0 on success, negative on failure 355 */ 356 int ice_vsi_clear(struct ice_vsi *vsi) 357 { 358 struct ice_pf *pf = NULL; 359 struct device *dev; 360 361 if (!vsi) 362 return 0; 363 364 if (!vsi->back) 365 return -EINVAL; 366 367 pf = vsi->back; 368 dev = ice_pf_to_dev(pf); 369 370 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 371 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 372 return -EINVAL; 373 } 374 375 mutex_lock(&pf->sw_mutex); 376 /* updates the PF for this cleared VSI */ 377 378 pf->vsi[vsi->idx] = NULL; 379 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 380 pf->next_vsi = vsi->idx; 381 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 382 vsi->vf_id != ICE_INVAL_VFID) 383 pf->next_vsi = vsi->idx; 384 385 ice_vsi_free_arrays(vsi); 386 mutex_unlock(&pf->sw_mutex); 387 devm_kfree(dev, vsi); 388 389 return 0; 390 } 391 392 /** 393 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 394 * @irq: interrupt number 395 * @data: pointer to a q_vector 396 */ 397 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 398 { 399 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 400 401 if (!q_vector->tx.tx_ring) 402 return IRQ_HANDLED; 403 404 #define FDIR_RX_DESC_CLEAN_BUDGET 64 405 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 406 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 407 408 return IRQ_HANDLED; 409 } 410 411 /** 412 * ice_msix_clean_rings - MSIX mode Interrupt Handler 413 * @irq: interrupt number 414 * @data: pointer to a q_vector 415 */ 416 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 417 { 418 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 419 420 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 421 return IRQ_HANDLED; 422 423 q_vector->total_events++; 424 425 napi_schedule(&q_vector->napi); 426 427 return IRQ_HANDLED; 428 } 429 430 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 431 { 432 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 433 struct ice_pf *pf = q_vector->vsi->back; 434 int i; 435 436 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 437 return IRQ_HANDLED; 438 439 ice_for_each_vf(pf, i) 440 napi_schedule(&pf->vf[i].repr->q_vector->napi); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 447 * @pf: board private structure 448 * @vsi_type: type of VSI 449 * @ch: ptr to channel 450 * @vf_id: ID of the VF being configured 451 * 452 * returns a pointer to a VSI on success, NULL on failure. 453 */ 454 static struct ice_vsi * 455 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 456 struct ice_channel *ch, u16 vf_id) 457 { 458 struct device *dev = ice_pf_to_dev(pf); 459 struct ice_vsi *vsi = NULL; 460 461 /* Need to protect the allocation of the VSIs at the PF level */ 462 mutex_lock(&pf->sw_mutex); 463 464 /* If we have already allocated our maximum number of VSIs, 465 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 466 * is available to be populated 467 */ 468 if (pf->next_vsi == ICE_NO_VSI) { 469 dev_dbg(dev, "out of VSI slots!\n"); 470 goto unlock_pf; 471 } 472 473 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 474 if (!vsi) 475 goto unlock_pf; 476 477 vsi->type = vsi_type; 478 vsi->back = pf; 479 set_bit(ICE_VSI_DOWN, vsi->state); 480 481 if (vsi_type == ICE_VSI_VF) 482 ice_vsi_set_num_qs(vsi, vf_id); 483 else if (vsi_type != ICE_VSI_CHNL) 484 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 485 486 switch (vsi->type) { 487 case ICE_VSI_SWITCHDEV_CTRL: 488 if (ice_vsi_alloc_arrays(vsi)) 489 goto err_rings; 490 491 /* Setup eswitch MSIX irq handler for VSI */ 492 vsi->irq_handler = ice_eswitch_msix_clean_rings; 493 break; 494 case ICE_VSI_PF: 495 if (ice_vsi_alloc_arrays(vsi)) 496 goto err_rings; 497 498 /* Setup default MSIX irq handler for VSI */ 499 vsi->irq_handler = ice_msix_clean_rings; 500 break; 501 case ICE_VSI_CTRL: 502 if (ice_vsi_alloc_arrays(vsi)) 503 goto err_rings; 504 505 /* Setup ctrl VSI MSIX irq handler */ 506 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 507 break; 508 case ICE_VSI_VF: 509 if (ice_vsi_alloc_arrays(vsi)) 510 goto err_rings; 511 break; 512 case ICE_VSI_CHNL: 513 if (!ch) 514 goto err_rings; 515 vsi->num_rxq = ch->num_rxq; 516 vsi->num_txq = ch->num_txq; 517 vsi->next_base_q = ch->base_q; 518 break; 519 case ICE_VSI_LB: 520 if (ice_vsi_alloc_arrays(vsi)) 521 goto err_rings; 522 break; 523 default: 524 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 525 goto unlock_pf; 526 } 527 528 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 529 /* Use the last VSI slot as the index for PF control VSI */ 530 vsi->idx = pf->num_alloc_vsi - 1; 531 pf->ctrl_vsi_idx = vsi->idx; 532 pf->vsi[vsi->idx] = vsi; 533 } else { 534 /* fill slot and make note of the index */ 535 vsi->idx = pf->next_vsi; 536 pf->vsi[pf->next_vsi] = vsi; 537 538 /* prepare pf->next_vsi for next use */ 539 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 540 pf->next_vsi); 541 } 542 543 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 544 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 545 goto unlock_pf; 546 547 err_rings: 548 devm_kfree(dev, vsi); 549 vsi = NULL; 550 unlock_pf: 551 mutex_unlock(&pf->sw_mutex); 552 return vsi; 553 } 554 555 /** 556 * ice_alloc_fd_res - Allocate FD resource for a VSI 557 * @vsi: pointer to the ice_vsi 558 * 559 * This allocates the FD resources 560 * 561 * Returns 0 on success, -EPERM on no-op or -EIO on failure 562 */ 563 static int ice_alloc_fd_res(struct ice_vsi *vsi) 564 { 565 struct ice_pf *pf = vsi->back; 566 u32 g_val, b_val; 567 568 /* Flow Director filters are only allocated/assigned to the PF VSI which 569 * passes the traffic. The CTRL VSI is only used to add/delete filters 570 * so we don't allocate resources to it 571 */ 572 573 /* FD filters from guaranteed pool per VSI */ 574 g_val = pf->hw.func_caps.fd_fltr_guar; 575 if (!g_val) 576 return -EPERM; 577 578 /* FD filters from best effort pool */ 579 b_val = pf->hw.func_caps.fd_fltr_best_effort; 580 if (!b_val) 581 return -EPERM; 582 583 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 584 return -EPERM; 585 586 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 587 return -EPERM; 588 589 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 590 591 /* each VSI gets same "best_effort" quota */ 592 vsi->num_bfltr = b_val; 593 594 if (vsi->type == ICE_VSI_VF) { 595 vsi->num_gfltr = 0; 596 597 /* each VSI gets same "best_effort" quota */ 598 vsi->num_bfltr = b_val; 599 } 600 601 return 0; 602 } 603 604 /** 605 * ice_vsi_get_qs - Assign queues from PF to VSI 606 * @vsi: the VSI to assign queues to 607 * 608 * Returns 0 on success and a negative value on error 609 */ 610 static int ice_vsi_get_qs(struct ice_vsi *vsi) 611 { 612 struct ice_pf *pf = vsi->back; 613 struct ice_qs_cfg tx_qs_cfg = { 614 .qs_mutex = &pf->avail_q_mutex, 615 .pf_map = pf->avail_txqs, 616 .pf_map_size = pf->max_pf_txqs, 617 .q_count = vsi->alloc_txq, 618 .scatter_count = ICE_MAX_SCATTER_TXQS, 619 .vsi_map = vsi->txq_map, 620 .vsi_map_offset = 0, 621 .mapping_mode = ICE_VSI_MAP_CONTIG 622 }; 623 struct ice_qs_cfg rx_qs_cfg = { 624 .qs_mutex = &pf->avail_q_mutex, 625 .pf_map = pf->avail_rxqs, 626 .pf_map_size = pf->max_pf_rxqs, 627 .q_count = vsi->alloc_rxq, 628 .scatter_count = ICE_MAX_SCATTER_RXQS, 629 .vsi_map = vsi->rxq_map, 630 .vsi_map_offset = 0, 631 .mapping_mode = ICE_VSI_MAP_CONTIG 632 }; 633 int ret; 634 635 if (vsi->type == ICE_VSI_CHNL) 636 return 0; 637 638 ret = __ice_vsi_get_qs(&tx_qs_cfg); 639 if (ret) 640 return ret; 641 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 642 643 ret = __ice_vsi_get_qs(&rx_qs_cfg); 644 if (ret) 645 return ret; 646 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 647 648 return 0; 649 } 650 651 /** 652 * ice_vsi_put_qs - Release queues from VSI to PF 653 * @vsi: the VSI that is going to release queues 654 */ 655 static void ice_vsi_put_qs(struct ice_vsi *vsi) 656 { 657 struct ice_pf *pf = vsi->back; 658 int i; 659 660 mutex_lock(&pf->avail_q_mutex); 661 662 ice_for_each_alloc_txq(vsi, i) { 663 clear_bit(vsi->txq_map[i], pf->avail_txqs); 664 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 665 } 666 667 ice_for_each_alloc_rxq(vsi, i) { 668 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 669 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 670 } 671 672 mutex_unlock(&pf->avail_q_mutex); 673 } 674 675 /** 676 * ice_is_safe_mode 677 * @pf: pointer to the PF struct 678 * 679 * returns true if driver is in safe mode, false otherwise 680 */ 681 bool ice_is_safe_mode(struct ice_pf *pf) 682 { 683 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 684 } 685 686 /** 687 * ice_is_aux_ena 688 * @pf: pointer to the PF struct 689 * 690 * returns true if AUX devices/drivers are supported, false otherwise 691 */ 692 bool ice_is_aux_ena(struct ice_pf *pf) 693 { 694 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 695 } 696 697 /** 698 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 699 * @vsi: the VSI being cleaned up 700 * 701 * This function deletes RSS input set for all flows that were configured 702 * for this VSI 703 */ 704 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 705 { 706 struct ice_pf *pf = vsi->back; 707 enum ice_status status; 708 709 if (ice_is_safe_mode(pf)) 710 return; 711 712 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 713 if (status) 714 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 715 vsi->vsi_num, ice_stat_str(status)); 716 } 717 718 /** 719 * ice_rss_clean - Delete RSS related VSI structures and configuration 720 * @vsi: the VSI being removed 721 */ 722 static void ice_rss_clean(struct ice_vsi *vsi) 723 { 724 struct ice_pf *pf = vsi->back; 725 struct device *dev; 726 727 dev = ice_pf_to_dev(pf); 728 729 if (vsi->rss_hkey_user) 730 devm_kfree(dev, vsi->rss_hkey_user); 731 if (vsi->rss_lut_user) 732 devm_kfree(dev, vsi->rss_lut_user); 733 734 ice_vsi_clean_rss_flow_fld(vsi); 735 /* remove RSS replay list */ 736 if (!ice_is_safe_mode(pf)) 737 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 738 } 739 740 /** 741 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 742 * @vsi: the VSI being configured 743 */ 744 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 745 { 746 struct ice_hw_common_caps *cap; 747 struct ice_pf *pf = vsi->back; 748 749 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 750 vsi->rss_size = 1; 751 return; 752 } 753 754 cap = &pf->hw.func_caps.common_cap; 755 switch (vsi->type) { 756 case ICE_VSI_CHNL: 757 case ICE_VSI_PF: 758 /* PF VSI will inherit RSS instance of PF */ 759 vsi->rss_table_size = (u16)cap->rss_table_size; 760 if (vsi->type == ICE_VSI_CHNL) 761 vsi->rss_size = min_t(u16, vsi->num_rxq, 762 BIT(cap->rss_table_entry_width)); 763 else 764 vsi->rss_size = min_t(u16, num_online_cpus(), 765 BIT(cap->rss_table_entry_width)); 766 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 767 break; 768 case ICE_VSI_SWITCHDEV_CTRL: 769 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 770 vsi->rss_size = min_t(u16, num_online_cpus(), 771 BIT(cap->rss_table_entry_width)); 772 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 773 break; 774 case ICE_VSI_VF: 775 /* VF VSI will get a small RSS table. 776 * For VSI_LUT, LUT size should be set to 64 bytes. 777 */ 778 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 779 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 780 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 781 break; 782 case ICE_VSI_LB: 783 break; 784 default: 785 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 786 ice_vsi_type_str(vsi->type)); 787 break; 788 } 789 } 790 791 /** 792 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 793 * @ctxt: the VSI context being set 794 * 795 * This initializes a default VSI context for all sections except the Queues. 796 */ 797 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 798 { 799 u32 table = 0; 800 801 memset(&ctxt->info, 0, sizeof(ctxt->info)); 802 /* VSI's should be allocated from shared pool */ 803 ctxt->alloc_from_pool = true; 804 /* Src pruning enabled by default */ 805 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 806 /* Traffic from VSI can be sent to LAN */ 807 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 808 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 809 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 810 * packets untagged/tagged. 811 */ 812 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 813 ICE_AQ_VSI_VLAN_MODE_M) >> 814 ICE_AQ_VSI_VLAN_MODE_S); 815 /* Have 1:1 UP mapping for both ingress/egress tables */ 816 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 817 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 818 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 819 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 820 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 821 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 822 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 823 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 824 ctxt->info.ingress_table = cpu_to_le32(table); 825 ctxt->info.egress_table = cpu_to_le32(table); 826 /* Have 1:1 UP mapping for outer to inner UP table */ 827 ctxt->info.outer_up_table = cpu_to_le32(table); 828 /* No Outer tag support outer_tag_flags remains to zero */ 829 } 830 831 /** 832 * ice_vsi_setup_q_map - Setup a VSI queue map 833 * @vsi: the VSI being configured 834 * @ctxt: VSI context structure 835 */ 836 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 837 { 838 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 839 u16 num_txq_per_tc, num_rxq_per_tc; 840 u16 qcount_tx = vsi->alloc_txq; 841 u16 qcount_rx = vsi->alloc_rxq; 842 u8 netdev_tc = 0; 843 int i; 844 845 if (!vsi->tc_cfg.numtc) { 846 /* at least TC0 should be enabled by default */ 847 vsi->tc_cfg.numtc = 1; 848 vsi->tc_cfg.ena_tc = 1; 849 } 850 851 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 852 if (!num_rxq_per_tc) 853 num_rxq_per_tc = 1; 854 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 855 if (!num_txq_per_tc) 856 num_txq_per_tc = 1; 857 858 /* find the (rounded up) power-of-2 of qcount */ 859 pow = (u16)order_base_2(num_rxq_per_tc); 860 861 /* TC mapping is a function of the number of Rx queues assigned to the 862 * VSI for each traffic class and the offset of these queues. 863 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 864 * queues allocated to TC0. No:of queues is a power-of-2. 865 * 866 * If TC is not enabled, the queue offset is set to 0, and allocate one 867 * queue, this way, traffic for the given TC will be sent to the default 868 * queue. 869 * 870 * Setup number and offset of Rx queues for all TCs for the VSI 871 */ 872 ice_for_each_traffic_class(i) { 873 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 874 /* TC is not enabled */ 875 vsi->tc_cfg.tc_info[i].qoffset = 0; 876 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 877 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 878 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 879 ctxt->info.tc_mapping[i] = 0; 880 continue; 881 } 882 883 /* TC is enabled */ 884 vsi->tc_cfg.tc_info[i].qoffset = offset; 885 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 886 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 887 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 888 889 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 890 ICE_AQ_VSI_TC_Q_OFFSET_M) | 891 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 892 ICE_AQ_VSI_TC_Q_NUM_M); 893 offset += num_rxq_per_tc; 894 tx_count += num_txq_per_tc; 895 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 896 } 897 898 /* if offset is non-zero, means it is calculated correctly based on 899 * enabled TCs for a given VSI otherwise qcount_rx will always 900 * be correct and non-zero because it is based off - VSI's 901 * allocated Rx queues which is at least 1 (hence qcount_tx will be 902 * at least 1) 903 */ 904 if (offset) 905 vsi->num_rxq = offset; 906 else 907 vsi->num_rxq = num_rxq_per_tc; 908 909 vsi->num_txq = tx_count; 910 911 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 912 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 913 /* since there is a chance that num_rxq could have been changed 914 * in the above for loop, make num_txq equal to num_rxq. 915 */ 916 vsi->num_txq = vsi->num_rxq; 917 } 918 919 /* Rx queue mapping */ 920 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 921 /* q_mapping buffer holds the info for the first queue allocated for 922 * this VSI in the PF space and also the number of queues associated 923 * with this VSI. 924 */ 925 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 926 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 927 } 928 929 /** 930 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 931 * @ctxt: the VSI context being set 932 * @vsi: the VSI being configured 933 */ 934 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 935 { 936 u8 dflt_q_group, dflt_q_prio; 937 u16 dflt_q, report_q, val; 938 939 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 940 vsi->type != ICE_VSI_VF) 941 return; 942 943 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 944 ctxt->info.valid_sections |= cpu_to_le16(val); 945 dflt_q = 0; 946 dflt_q_group = 0; 947 report_q = 0; 948 dflt_q_prio = 0; 949 950 /* enable flow director filtering/programming */ 951 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 952 ctxt->info.fd_options = cpu_to_le16(val); 953 /* max of allocated flow director filters */ 954 ctxt->info.max_fd_fltr_dedicated = 955 cpu_to_le16(vsi->num_gfltr); 956 /* max of shared flow director filters any VSI may program */ 957 ctxt->info.max_fd_fltr_shared = 958 cpu_to_le16(vsi->num_bfltr); 959 /* default queue index within the VSI of the default FD */ 960 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 961 ICE_AQ_VSI_FD_DEF_Q_M); 962 /* target queue or queue group to the FD filter */ 963 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 964 ICE_AQ_VSI_FD_DEF_GRP_M); 965 ctxt->info.fd_def_q = cpu_to_le16(val); 966 /* queue index on which FD filter completion is reported */ 967 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 968 ICE_AQ_VSI_FD_REPORT_Q_M); 969 /* priority of the default qindex action */ 970 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 971 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 972 ctxt->info.fd_report_opt = cpu_to_le16(val); 973 } 974 975 /** 976 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 977 * @ctxt: the VSI context being set 978 * @vsi: the VSI being configured 979 */ 980 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 981 { 982 u8 lut_type, hash_type; 983 struct device *dev; 984 struct ice_pf *pf; 985 986 pf = vsi->back; 987 dev = ice_pf_to_dev(pf); 988 989 switch (vsi->type) { 990 case ICE_VSI_CHNL: 991 case ICE_VSI_PF: 992 /* PF VSI will inherit RSS instance of PF */ 993 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 994 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 995 break; 996 case ICE_VSI_VF: 997 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 998 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 999 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1000 break; 1001 default: 1002 dev_dbg(dev, "Unsupported VSI type %s\n", 1003 ice_vsi_type_str(vsi->type)); 1004 return; 1005 } 1006 1007 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1008 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1009 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1010 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1011 } 1012 1013 static void 1014 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1015 { 1016 struct ice_pf *pf = vsi->back; 1017 u16 qcount, qmap; 1018 u8 offset = 0; 1019 int pow; 1020 1021 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1022 1023 pow = order_base_2(qcount); 1024 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1025 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1026 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1027 ICE_AQ_VSI_TC_Q_NUM_M); 1028 1029 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1030 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1031 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1032 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1033 } 1034 1035 /** 1036 * ice_vsi_init - Create and initialize a VSI 1037 * @vsi: the VSI being configured 1038 * @init_vsi: is this call creating a VSI 1039 * 1040 * This initializes a VSI context depending on the VSI type to be added and 1041 * passes it down to the add_vsi aq command to create a new VSI. 1042 */ 1043 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1044 { 1045 struct ice_pf *pf = vsi->back; 1046 struct ice_hw *hw = &pf->hw; 1047 struct ice_vsi_ctx *ctxt; 1048 struct device *dev; 1049 int ret = 0; 1050 1051 dev = ice_pf_to_dev(pf); 1052 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1053 if (!ctxt) 1054 return -ENOMEM; 1055 1056 switch (vsi->type) { 1057 case ICE_VSI_CTRL: 1058 case ICE_VSI_LB: 1059 case ICE_VSI_PF: 1060 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1061 break; 1062 case ICE_VSI_SWITCHDEV_CTRL: 1063 case ICE_VSI_CHNL: 1064 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1065 break; 1066 case ICE_VSI_VF: 1067 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1068 /* VF number here is the absolute VF number (0-255) */ 1069 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 1070 break; 1071 default: 1072 ret = -ENODEV; 1073 goto out; 1074 } 1075 1076 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1077 * prune enabled 1078 */ 1079 if (vsi->type == ICE_VSI_CHNL) { 1080 struct ice_vsi *main_vsi; 1081 1082 main_vsi = ice_get_main_vsi(pf); 1083 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1084 ctxt->info.sw_flags2 |= 1085 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1086 else 1087 ctxt->info.sw_flags2 &= 1088 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1089 } 1090 1091 ice_set_dflt_vsi_ctx(ctxt); 1092 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1093 ice_set_fd_vsi_ctx(ctxt, vsi); 1094 /* if the switch is in VEB mode, allow VSI loopback */ 1095 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1096 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1097 1098 /* Set LUT type and HASH type if RSS is enabled */ 1099 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1100 vsi->type != ICE_VSI_CTRL) { 1101 ice_set_rss_vsi_ctx(ctxt, vsi); 1102 /* if updating VSI context, make sure to set valid_section: 1103 * to indicate which section of VSI context being updated 1104 */ 1105 if (!init_vsi) 1106 ctxt->info.valid_sections |= 1107 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1108 } 1109 1110 ctxt->info.sw_id = vsi->port_info->sw_id; 1111 if (vsi->type == ICE_VSI_CHNL) { 1112 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1113 } else { 1114 ice_vsi_setup_q_map(vsi, ctxt); 1115 if (!init_vsi) /* means VSI being updated */ 1116 /* must to indicate which section of VSI context are 1117 * being modified 1118 */ 1119 ctxt->info.valid_sections |= 1120 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1121 } 1122 1123 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1124 * respectively 1125 */ 1126 if (vsi->type == ICE_VSI_VF) { 1127 ctxt->info.valid_sections |= 1128 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1129 if (pf->vf[vsi->vf_id].spoofchk) { 1130 ctxt->info.sec_flags |= 1131 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1132 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1133 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1134 } else { 1135 ctxt->info.sec_flags &= 1136 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1137 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1138 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1139 } 1140 } 1141 1142 /* Allow control frames out of main VSI */ 1143 if (vsi->type == ICE_VSI_PF) { 1144 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1145 ctxt->info.valid_sections |= 1146 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1147 } 1148 1149 if (init_vsi) { 1150 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1151 if (ret) { 1152 dev_err(dev, "Add VSI failed, err %d\n", ret); 1153 ret = -EIO; 1154 goto out; 1155 } 1156 } else { 1157 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1158 if (ret) { 1159 dev_err(dev, "Update VSI failed, err %d\n", ret); 1160 ret = -EIO; 1161 goto out; 1162 } 1163 } 1164 1165 /* keep context for update VSI operations */ 1166 vsi->info = ctxt->info; 1167 1168 /* record VSI number returned */ 1169 vsi->vsi_num = ctxt->vsi_num; 1170 1171 out: 1172 kfree(ctxt); 1173 return ret; 1174 } 1175 1176 /** 1177 * ice_free_res - free a block of resources 1178 * @res: pointer to the resource 1179 * @index: starting index previously returned by ice_get_res 1180 * @id: identifier to track owner 1181 * 1182 * Returns number of resources freed 1183 */ 1184 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1185 { 1186 int count = 0; 1187 int i; 1188 1189 if (!res || index >= res->end) 1190 return -EINVAL; 1191 1192 id |= ICE_RES_VALID_BIT; 1193 for (i = index; i < res->end && res->list[i] == id; i++) { 1194 res->list[i] = 0; 1195 count++; 1196 } 1197 1198 return count; 1199 } 1200 1201 /** 1202 * ice_search_res - Search the tracker for a block of resources 1203 * @res: pointer to the resource 1204 * @needed: size of the block needed 1205 * @id: identifier to track owner 1206 * 1207 * Returns the base item index of the block, or -ENOMEM for error 1208 */ 1209 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1210 { 1211 u16 start = 0, end = 0; 1212 1213 if (needed > res->end) 1214 return -ENOMEM; 1215 1216 id |= ICE_RES_VALID_BIT; 1217 1218 do { 1219 /* skip already allocated entries */ 1220 if (res->list[end++] & ICE_RES_VALID_BIT) { 1221 start = end; 1222 if ((start + needed) > res->end) 1223 break; 1224 } 1225 1226 if (end == (start + needed)) { 1227 int i = start; 1228 1229 /* there was enough, so assign it to the requestor */ 1230 while (i != end) 1231 res->list[i++] = id; 1232 1233 return start; 1234 } 1235 } while (end < res->end); 1236 1237 return -ENOMEM; 1238 } 1239 1240 /** 1241 * ice_get_free_res_count - Get free count from a resource tracker 1242 * @res: Resource tracker instance 1243 */ 1244 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1245 { 1246 u16 i, count = 0; 1247 1248 for (i = 0; i < res->end; i++) 1249 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1250 count++; 1251 1252 return count; 1253 } 1254 1255 /** 1256 * ice_get_res - get a block of resources 1257 * @pf: board private structure 1258 * @res: pointer to the resource 1259 * @needed: size of the block needed 1260 * @id: identifier to track owner 1261 * 1262 * Returns the base item index of the block, or negative for error 1263 */ 1264 int 1265 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1266 { 1267 if (!res || !pf) 1268 return -EINVAL; 1269 1270 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1271 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1272 needed, res->num_entries, id); 1273 return -EINVAL; 1274 } 1275 1276 return ice_search_res(res, needed, id); 1277 } 1278 1279 /** 1280 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1281 * @vsi: ptr to the VSI 1282 * 1283 * This should only be called after ice_vsi_alloc() which allocates the 1284 * corresponding SW VSI structure and initializes num_queue_pairs for the 1285 * newly allocated VSI. 1286 * 1287 * Returns 0 on success or negative on failure 1288 */ 1289 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1290 { 1291 struct ice_pf *pf = vsi->back; 1292 struct device *dev; 1293 u16 num_q_vectors; 1294 int base; 1295 1296 dev = ice_pf_to_dev(pf); 1297 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1298 if (vsi->type == ICE_VSI_VF) 1299 return 0; 1300 if (vsi->type == ICE_VSI_CHNL) 1301 return 0; 1302 1303 if (vsi->base_vector) { 1304 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1305 vsi->vsi_num, vsi->base_vector); 1306 return -EEXIST; 1307 } 1308 1309 num_q_vectors = vsi->num_q_vectors; 1310 /* reserve slots from OS requested IRQs */ 1311 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1312 int i; 1313 1314 ice_for_each_vf(pf, i) { 1315 struct ice_vf *vf = &pf->vf[i]; 1316 1317 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1318 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1319 break; 1320 } 1321 } 1322 if (i == pf->num_alloc_vfs) 1323 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1324 ICE_RES_VF_CTRL_VEC_ID); 1325 } else { 1326 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1327 vsi->idx); 1328 } 1329 1330 if (base < 0) { 1331 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1332 ice_get_free_res_count(pf->irq_tracker), 1333 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1334 return -ENOENT; 1335 } 1336 vsi->base_vector = (u16)base; 1337 pf->num_avail_sw_msix -= num_q_vectors; 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1344 * @vsi: the VSI having rings deallocated 1345 */ 1346 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1347 { 1348 int i; 1349 1350 /* Avoid stale references by clearing map from vector to ring */ 1351 if (vsi->q_vectors) { 1352 ice_for_each_q_vector(vsi, i) { 1353 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1354 1355 if (q_vector) { 1356 q_vector->tx.tx_ring = NULL; 1357 q_vector->rx.rx_ring = NULL; 1358 } 1359 } 1360 } 1361 1362 if (vsi->tx_rings) { 1363 ice_for_each_alloc_txq(vsi, i) { 1364 if (vsi->tx_rings[i]) { 1365 kfree_rcu(vsi->tx_rings[i], rcu); 1366 WRITE_ONCE(vsi->tx_rings[i], NULL); 1367 } 1368 } 1369 } 1370 if (vsi->rx_rings) { 1371 ice_for_each_alloc_rxq(vsi, i) { 1372 if (vsi->rx_rings[i]) { 1373 kfree_rcu(vsi->rx_rings[i], rcu); 1374 WRITE_ONCE(vsi->rx_rings[i], NULL); 1375 } 1376 } 1377 } 1378 } 1379 1380 /** 1381 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1382 * @vsi: VSI which is having rings allocated 1383 */ 1384 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1385 { 1386 struct ice_pf *pf = vsi->back; 1387 struct device *dev; 1388 u16 i; 1389 1390 dev = ice_pf_to_dev(pf); 1391 /* Allocate Tx rings */ 1392 ice_for_each_alloc_txq(vsi, i) { 1393 struct ice_tx_ring *ring; 1394 1395 /* allocate with kzalloc(), free with kfree_rcu() */ 1396 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1397 1398 if (!ring) 1399 goto err_out; 1400 1401 ring->q_index = i; 1402 ring->reg_idx = vsi->txq_map[i]; 1403 ring->vsi = vsi; 1404 ring->tx_tstamps = &pf->ptp.port.tx; 1405 ring->dev = dev; 1406 ring->count = vsi->num_tx_desc; 1407 WRITE_ONCE(vsi->tx_rings[i], ring); 1408 } 1409 1410 /* Allocate Rx rings */ 1411 ice_for_each_alloc_rxq(vsi, i) { 1412 struct ice_rx_ring *ring; 1413 1414 /* allocate with kzalloc(), free with kfree_rcu() */ 1415 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1416 if (!ring) 1417 goto err_out; 1418 1419 ring->q_index = i; 1420 ring->reg_idx = vsi->rxq_map[i]; 1421 ring->vsi = vsi; 1422 ring->netdev = vsi->netdev; 1423 ring->dev = dev; 1424 ring->count = vsi->num_rx_desc; 1425 WRITE_ONCE(vsi->rx_rings[i], ring); 1426 } 1427 1428 return 0; 1429 1430 err_out: 1431 ice_vsi_clear_rings(vsi); 1432 return -ENOMEM; 1433 } 1434 1435 /** 1436 * ice_vsi_manage_rss_lut - disable/enable RSS 1437 * @vsi: the VSI being changed 1438 * @ena: boolean value indicating if this is an enable or disable request 1439 * 1440 * In the event of disable request for RSS, this function will zero out RSS 1441 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1442 * LUT. 1443 */ 1444 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1445 { 1446 u8 *lut; 1447 1448 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1449 if (!lut) 1450 return; 1451 1452 if (ena) { 1453 if (vsi->rss_lut_user) 1454 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1455 else 1456 ice_fill_rss_lut(lut, vsi->rss_table_size, 1457 vsi->rss_size); 1458 } 1459 1460 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1461 kfree(lut); 1462 } 1463 1464 /** 1465 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1466 * @vsi: VSI to be configured 1467 */ 1468 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1469 { 1470 struct ice_pf *pf = vsi->back; 1471 struct device *dev; 1472 u8 *lut, *key; 1473 int err; 1474 1475 dev = ice_pf_to_dev(pf); 1476 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1477 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1478 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1479 } else { 1480 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1481 1482 /* If orig_rss_size is valid and it is less than determined 1483 * main VSI's rss_size, update main VSI's rss_size to be 1484 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1485 * RSS table gets programmed to be correct (whatever it was 1486 * to begin with (prior to setup-tc for ADQ config) 1487 */ 1488 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1489 vsi->orig_rss_size <= vsi->num_rxq) { 1490 vsi->rss_size = vsi->orig_rss_size; 1491 /* now orig_rss_size is used, reset it to zero */ 1492 vsi->orig_rss_size = 0; 1493 } 1494 } 1495 1496 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1497 if (!lut) 1498 return -ENOMEM; 1499 1500 if (vsi->rss_lut_user) 1501 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1502 else 1503 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1504 1505 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1506 if (err) { 1507 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1508 goto ice_vsi_cfg_rss_exit; 1509 } 1510 1511 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1512 if (!key) { 1513 err = -ENOMEM; 1514 goto ice_vsi_cfg_rss_exit; 1515 } 1516 1517 if (vsi->rss_hkey_user) 1518 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1519 else 1520 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1521 1522 err = ice_set_rss_key(vsi, key); 1523 if (err) 1524 dev_err(dev, "set_rss_key failed, error %d\n", err); 1525 1526 kfree(key); 1527 ice_vsi_cfg_rss_exit: 1528 kfree(lut); 1529 return err; 1530 } 1531 1532 /** 1533 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1534 * @vsi: VSI to be configured 1535 * 1536 * This function will only be called during the VF VSI setup. Upon successful 1537 * completion of package download, this function will configure default RSS 1538 * input sets for VF VSI. 1539 */ 1540 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1541 { 1542 struct ice_pf *pf = vsi->back; 1543 enum ice_status status; 1544 struct device *dev; 1545 1546 dev = ice_pf_to_dev(pf); 1547 if (ice_is_safe_mode(pf)) { 1548 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1549 vsi->vsi_num); 1550 return; 1551 } 1552 1553 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1554 if (status) 1555 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1556 vsi->vsi_num, ice_stat_str(status)); 1557 } 1558 1559 /** 1560 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1561 * @vsi: VSI to be configured 1562 * 1563 * This function will only be called after successful download package call 1564 * during initialization of PF. Since the downloaded package will erase the 1565 * RSS section, this function will configure RSS input sets for different 1566 * flow types. The last profile added has the highest priority, therefore 2 1567 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1568 * (i.e. IPv4 src/dst TCP src/dst port). 1569 */ 1570 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1571 { 1572 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1573 struct ice_pf *pf = vsi->back; 1574 struct ice_hw *hw = &pf->hw; 1575 enum ice_status status; 1576 struct device *dev; 1577 1578 dev = ice_pf_to_dev(pf); 1579 if (ice_is_safe_mode(pf)) { 1580 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1581 vsi_num); 1582 return; 1583 } 1584 /* configure RSS for IPv4 with input set IP src/dst */ 1585 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1586 ICE_FLOW_SEG_HDR_IPV4); 1587 if (status) 1588 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1589 vsi_num, ice_stat_str(status)); 1590 1591 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1592 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1593 ICE_FLOW_SEG_HDR_IPV6); 1594 if (status) 1595 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1596 vsi_num, ice_stat_str(status)); 1597 1598 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1599 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1600 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1601 if (status) 1602 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1603 vsi_num, ice_stat_str(status)); 1604 1605 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1606 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1607 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1608 if (status) 1609 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1610 vsi_num, ice_stat_str(status)); 1611 1612 /* configure RSS for sctp4 with input set IP src/dst */ 1613 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1614 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1615 if (status) 1616 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1617 vsi_num, ice_stat_str(status)); 1618 1619 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1620 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1621 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1622 if (status) 1623 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1624 vsi_num, ice_stat_str(status)); 1625 1626 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1627 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1628 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1629 if (status) 1630 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1631 vsi_num, ice_stat_str(status)); 1632 1633 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1634 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1635 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1636 if (status) 1637 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1638 vsi_num, ice_stat_str(status)); 1639 } 1640 1641 /** 1642 * ice_pf_state_is_nominal - checks the PF for nominal state 1643 * @pf: pointer to PF to check 1644 * 1645 * Check the PF's state for a collection of bits that would indicate 1646 * the PF is in a state that would inhibit normal operation for 1647 * driver functionality. 1648 * 1649 * Returns true if PF is in a nominal state, false otherwise 1650 */ 1651 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1652 { 1653 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1654 1655 if (!pf) 1656 return false; 1657 1658 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1659 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1660 return false; 1661 1662 return true; 1663 } 1664 1665 /** 1666 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1667 * @vsi: the VSI to be updated 1668 */ 1669 void ice_update_eth_stats(struct ice_vsi *vsi) 1670 { 1671 struct ice_eth_stats *prev_es, *cur_es; 1672 struct ice_hw *hw = &vsi->back->hw; 1673 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1674 1675 prev_es = &vsi->eth_stats_prev; 1676 cur_es = &vsi->eth_stats; 1677 1678 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1679 &prev_es->rx_bytes, &cur_es->rx_bytes); 1680 1681 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1682 &prev_es->rx_unicast, &cur_es->rx_unicast); 1683 1684 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1685 &prev_es->rx_multicast, &cur_es->rx_multicast); 1686 1687 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1688 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1689 1690 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1691 &prev_es->rx_discards, &cur_es->rx_discards); 1692 1693 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1694 &prev_es->tx_bytes, &cur_es->tx_bytes); 1695 1696 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1697 &prev_es->tx_unicast, &cur_es->tx_unicast); 1698 1699 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1700 &prev_es->tx_multicast, &cur_es->tx_multicast); 1701 1702 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1703 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1704 1705 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1706 &prev_es->tx_errors, &cur_es->tx_errors); 1707 1708 vsi->stat_offsets_loaded = true; 1709 } 1710 1711 /** 1712 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1713 * @vsi: the VSI being configured 1714 * @vid: VLAN ID to be added 1715 * @action: filter action to be performed on match 1716 */ 1717 int 1718 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1719 { 1720 struct ice_pf *pf = vsi->back; 1721 struct device *dev; 1722 int err = 0; 1723 1724 dev = ice_pf_to_dev(pf); 1725 1726 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1727 vsi->num_vlan++; 1728 } else { 1729 err = -ENODEV; 1730 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1731 vsi->vsi_num); 1732 } 1733 1734 return err; 1735 } 1736 1737 /** 1738 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1739 * @vsi: the VSI being configured 1740 * @vid: VLAN ID to be removed 1741 * 1742 * Returns 0 on success and negative on failure 1743 */ 1744 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1745 { 1746 struct ice_pf *pf = vsi->back; 1747 enum ice_status status; 1748 struct device *dev; 1749 int err = 0; 1750 1751 dev = ice_pf_to_dev(pf); 1752 1753 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1754 if (!status) { 1755 vsi->num_vlan--; 1756 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1757 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1758 vid, vsi->vsi_num, ice_stat_str(status)); 1759 } else { 1760 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1761 vid, vsi->vsi_num, ice_stat_str(status)); 1762 err = -EIO; 1763 } 1764 1765 return err; 1766 } 1767 1768 /** 1769 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1770 * @vsi: VSI 1771 */ 1772 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1773 { 1774 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1775 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1776 vsi->rx_buf_len = ICE_RXBUF_2048; 1777 #if (PAGE_SIZE < 8192) 1778 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1779 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1780 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1781 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1782 #endif 1783 } else { 1784 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1785 #if (PAGE_SIZE < 8192) 1786 vsi->rx_buf_len = ICE_RXBUF_3072; 1787 #else 1788 vsi->rx_buf_len = ICE_RXBUF_2048; 1789 #endif 1790 } 1791 } 1792 1793 /** 1794 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1795 * @hw: HW pointer 1796 * @pf_q: index of the Rx queue in the PF's queue space 1797 * @rxdid: flexible descriptor RXDID 1798 * @prio: priority for the RXDID for this queue 1799 * @ena_ts: true to enable timestamp and false to disable timestamp 1800 */ 1801 void 1802 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1803 bool ena_ts) 1804 { 1805 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1806 1807 /* clear any previous values */ 1808 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1809 QRXFLXP_CNTXT_RXDID_PRIO_M | 1810 QRXFLXP_CNTXT_TS_M); 1811 1812 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1813 QRXFLXP_CNTXT_RXDID_IDX_M; 1814 1815 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1816 QRXFLXP_CNTXT_RXDID_PRIO_M; 1817 1818 if (ena_ts) 1819 /* Enable TimeSync on this queue */ 1820 regval |= QRXFLXP_CNTXT_TS_M; 1821 1822 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1823 } 1824 1825 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1826 { 1827 if (q_idx >= vsi->num_rxq) 1828 return -EINVAL; 1829 1830 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1831 } 1832 1833 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1834 { 1835 struct ice_aqc_add_tx_qgrp *qg_buf; 1836 int err; 1837 1838 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1839 return -EINVAL; 1840 1841 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1842 if (!qg_buf) 1843 return -ENOMEM; 1844 1845 qg_buf->num_txqs = 1; 1846 1847 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1848 kfree(qg_buf); 1849 return err; 1850 } 1851 1852 /** 1853 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1854 * @vsi: the VSI being configured 1855 * 1856 * Return 0 on success and a negative value on error 1857 * Configure the Rx VSI for operation. 1858 */ 1859 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1860 { 1861 u16 i; 1862 1863 if (vsi->type == ICE_VSI_VF) 1864 goto setup_rings; 1865 1866 ice_vsi_cfg_frame_size(vsi); 1867 setup_rings: 1868 /* set up individual rings */ 1869 ice_for_each_rxq(vsi, i) { 1870 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1871 1872 if (err) 1873 return err; 1874 } 1875 1876 return 0; 1877 } 1878 1879 /** 1880 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1881 * @vsi: the VSI being configured 1882 * @rings: Tx ring array to be configured 1883 * @count: number of Tx ring array elements 1884 * 1885 * Return 0 on success and a negative value on error 1886 * Configure the Tx VSI for operation. 1887 */ 1888 static int 1889 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1890 { 1891 struct ice_aqc_add_tx_qgrp *qg_buf; 1892 u16 q_idx = 0; 1893 int err = 0; 1894 1895 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1896 if (!qg_buf) 1897 return -ENOMEM; 1898 1899 qg_buf->num_txqs = 1; 1900 1901 for (q_idx = 0; q_idx < count; q_idx++) { 1902 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1903 if (err) 1904 goto err_cfg_txqs; 1905 } 1906 1907 err_cfg_txqs: 1908 kfree(qg_buf); 1909 return err; 1910 } 1911 1912 /** 1913 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1914 * @vsi: the VSI being configured 1915 * 1916 * Return 0 on success and a negative value on error 1917 * Configure the Tx VSI for operation. 1918 */ 1919 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1920 { 1921 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1922 } 1923 1924 /** 1925 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1926 * @vsi: the VSI being configured 1927 * 1928 * Return 0 on success and a negative value on error 1929 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1930 */ 1931 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1932 { 1933 int ret; 1934 int i; 1935 1936 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1937 if (ret) 1938 return ret; 1939 1940 ice_for_each_xdp_txq(vsi, i) 1941 vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]); 1942 1943 return ret; 1944 } 1945 1946 /** 1947 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1948 * @intrl: interrupt rate limit in usecs 1949 * @gran: interrupt rate limit granularity in usecs 1950 * 1951 * This function converts a decimal interrupt rate limit in usecs to the format 1952 * expected by firmware. 1953 */ 1954 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1955 { 1956 u32 val = intrl / gran; 1957 1958 if (val) 1959 return val | GLINT_RATE_INTRL_ENA_M; 1960 return 0; 1961 } 1962 1963 /** 1964 * ice_write_intrl - write throttle rate limit to interrupt specific register 1965 * @q_vector: pointer to interrupt specific structure 1966 * @intrl: throttle rate limit in microseconds to write 1967 */ 1968 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1969 { 1970 struct ice_hw *hw = &q_vector->vsi->back->hw; 1971 1972 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1973 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1974 } 1975 1976 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1977 { 1978 switch (rc->type) { 1979 case ICE_RX_CONTAINER: 1980 if (rc->rx_ring) 1981 return rc->rx_ring->q_vector; 1982 break; 1983 case ICE_TX_CONTAINER: 1984 if (rc->tx_ring) 1985 return rc->tx_ring->q_vector; 1986 default: 1987 break; 1988 } 1989 1990 return NULL; 1991 } 1992 1993 /** 1994 * __ice_write_itr - write throttle rate to register 1995 * @q_vector: pointer to interrupt data structure 1996 * @rc: pointer to ring container 1997 * @itr: throttle rate in microseconds to write 1998 */ 1999 static void __ice_write_itr(struct ice_q_vector *q_vector, 2000 struct ice_ring_container *rc, u16 itr) 2001 { 2002 struct ice_hw *hw = &q_vector->vsi->back->hw; 2003 2004 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2005 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2006 } 2007 2008 /** 2009 * ice_write_itr - write throttle rate to queue specific register 2010 * @rc: pointer to ring container 2011 * @itr: throttle rate in microseconds to write 2012 */ 2013 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2014 { 2015 struct ice_q_vector *q_vector; 2016 2017 q_vector = ice_pull_qvec_from_rc(rc); 2018 if (!q_vector) 2019 return; 2020 2021 __ice_write_itr(q_vector, rc, itr); 2022 } 2023 2024 /** 2025 * ice_set_q_vector_intrl - set up interrupt rate limiting 2026 * @q_vector: the vector to be configured 2027 * 2028 * Interrupt rate limiting is local to the vector, not per-queue so we must 2029 * detect if either ring container has dynamic moderation enabled to decide 2030 * what to set the interrupt rate limit to via INTRL settings. In the case that 2031 * dynamic moderation is disabled on both, write the value with the cached 2032 * setting to make sure INTRL register matches the user visible value. 2033 */ 2034 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2035 { 2036 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2037 /* in the case of dynamic enabled, cap each vector to no more 2038 * than (4 us) 250,000 ints/sec, which allows low latency 2039 * but still less than 500,000 interrupts per second, which 2040 * reduces CPU a bit in the case of the lowest latency 2041 * setting. The 4 here is a value in microseconds. 2042 */ 2043 ice_write_intrl(q_vector, 4); 2044 } else { 2045 ice_write_intrl(q_vector, q_vector->intrl); 2046 } 2047 } 2048 2049 /** 2050 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2051 * @vsi: the VSI being configured 2052 * 2053 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2054 * for the VF VSI. 2055 */ 2056 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2057 { 2058 struct ice_pf *pf = vsi->back; 2059 struct ice_hw *hw = &pf->hw; 2060 u16 txq = 0, rxq = 0; 2061 int i, q; 2062 2063 ice_for_each_q_vector(vsi, i) { 2064 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2065 u16 reg_idx = q_vector->reg_idx; 2066 2067 ice_cfg_itr(hw, q_vector); 2068 2069 /* Both Transmit Queue Interrupt Cause Control register 2070 * and Receive Queue Interrupt Cause control register 2071 * expects MSIX_INDX field to be the vector index 2072 * within the function space and not the absolute 2073 * vector index across PF or across device. 2074 * For SR-IOV VF VSIs queue vector index always starts 2075 * with 1 since first vector index(0) is used for OICR 2076 * in VF space. Since VMDq and other PF VSIs are within 2077 * the PF function space, use the vector index that is 2078 * tracked for this PF. 2079 */ 2080 for (q = 0; q < q_vector->num_ring_tx; q++) { 2081 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2082 q_vector->tx.itr_idx); 2083 txq++; 2084 } 2085 2086 for (q = 0; q < q_vector->num_ring_rx; q++) { 2087 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2088 q_vector->rx.itr_idx); 2089 rxq++; 2090 } 2091 } 2092 } 2093 2094 /** 2095 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 2096 * @vsi: the VSI being changed 2097 */ 2098 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 2099 { 2100 struct ice_hw *hw = &vsi->back->hw; 2101 struct ice_vsi_ctx *ctxt; 2102 enum ice_status status; 2103 int ret = 0; 2104 2105 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2106 if (!ctxt) 2107 return -ENOMEM; 2108 2109 /* Here we are configuring the VSI to let the driver add VLAN tags by 2110 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 2111 * insertion happens in the Tx hot path, in ice_tx_map. 2112 */ 2113 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 2114 2115 /* Preserve existing VLAN strip setting */ 2116 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 2117 ICE_AQ_VSI_VLAN_EMOD_M); 2118 2119 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2120 2121 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2122 if (status) { 2123 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 2124 ice_stat_str(status), 2125 ice_aq_str(hw->adminq.sq_last_status)); 2126 ret = -EIO; 2127 goto out; 2128 } 2129 2130 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2131 out: 2132 kfree(ctxt); 2133 return ret; 2134 } 2135 2136 /** 2137 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 2138 * @vsi: the VSI being changed 2139 * @ena: boolean value indicating if this is a enable or disable request 2140 */ 2141 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 2142 { 2143 struct ice_hw *hw = &vsi->back->hw; 2144 struct ice_vsi_ctx *ctxt; 2145 enum ice_status status; 2146 int ret = 0; 2147 2148 /* do not allow modifying VLAN stripping when a port VLAN is configured 2149 * on this VSI 2150 */ 2151 if (vsi->info.pvid) 2152 return 0; 2153 2154 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2155 if (!ctxt) 2156 return -ENOMEM; 2157 2158 /* Here we are configuring what the VSI should do with the VLAN tag in 2159 * the Rx packet. We can either leave the tag in the packet or put it in 2160 * the Rx descriptor. 2161 */ 2162 if (ena) 2163 /* Strip VLAN tag from Rx packet and put it in the desc */ 2164 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2165 else 2166 /* Disable stripping. Leave tag in packet */ 2167 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2168 2169 /* Allow all packets untagged/tagged */ 2170 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2171 2172 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2173 2174 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2175 if (status) { 2176 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2177 ena, ice_stat_str(status), 2178 ice_aq_str(hw->adminq.sq_last_status)); 2179 ret = -EIO; 2180 goto out; 2181 } 2182 2183 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2184 out: 2185 kfree(ctxt); 2186 return ret; 2187 } 2188 2189 /** 2190 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2191 * @vsi: the VSI whose rings are to be enabled 2192 * 2193 * Returns 0 on success and a negative value on error 2194 */ 2195 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2196 { 2197 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2198 } 2199 2200 /** 2201 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2202 * @vsi: the VSI whose rings are to be disabled 2203 * 2204 * Returns 0 on success and a negative value on error 2205 */ 2206 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2207 { 2208 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2209 } 2210 2211 /** 2212 * ice_vsi_stop_tx_rings - Disable Tx rings 2213 * @vsi: the VSI being configured 2214 * @rst_src: reset source 2215 * @rel_vmvf_num: Relative ID of VF/VM 2216 * @rings: Tx ring array to be stopped 2217 * @count: number of Tx ring array elements 2218 */ 2219 static int 2220 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2221 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2222 { 2223 u16 q_idx; 2224 2225 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2226 return -EINVAL; 2227 2228 for (q_idx = 0; q_idx < count; q_idx++) { 2229 struct ice_txq_meta txq_meta = { }; 2230 int status; 2231 2232 if (!rings || !rings[q_idx]) 2233 return -EINVAL; 2234 2235 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2236 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2237 rings[q_idx], &txq_meta); 2238 2239 if (status) 2240 return status; 2241 } 2242 2243 return 0; 2244 } 2245 2246 /** 2247 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2248 * @vsi: the VSI being configured 2249 * @rst_src: reset source 2250 * @rel_vmvf_num: Relative ID of VF/VM 2251 */ 2252 int 2253 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2254 u16 rel_vmvf_num) 2255 { 2256 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2257 } 2258 2259 /** 2260 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2261 * @vsi: the VSI being configured 2262 */ 2263 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2264 { 2265 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2266 } 2267 2268 /** 2269 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2270 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2271 * 2272 * returns true if Rx VLAN pruning is enabled and false otherwise. 2273 */ 2274 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2275 { 2276 if (!vsi) 2277 return false; 2278 2279 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2280 } 2281 2282 /** 2283 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2284 * @vsi: VSI to enable or disable VLAN pruning on 2285 * @ena: set to true to enable VLAN pruning and false to disable it 2286 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2287 * 2288 * returns 0 if VSI is updated, negative otherwise 2289 */ 2290 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2291 { 2292 struct ice_vsi_ctx *ctxt; 2293 struct ice_pf *pf; 2294 int status; 2295 2296 if (!vsi) 2297 return -EINVAL; 2298 2299 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2300 * mode. VLAN pruning will be enabled when the interface exits 2301 * promiscuous mode if any VLAN filters are active. 2302 */ 2303 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2304 return 0; 2305 2306 pf = vsi->back; 2307 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2308 if (!ctxt) 2309 return -ENOMEM; 2310 2311 ctxt->info = vsi->info; 2312 2313 if (ena) 2314 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2315 else 2316 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2317 2318 if (!vlan_promisc) 2319 ctxt->info.valid_sections = 2320 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2321 2322 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2323 if (status) { 2324 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2325 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2326 ice_stat_str(status), 2327 ice_aq_str(pf->hw.adminq.sq_last_status)); 2328 goto err_out; 2329 } 2330 2331 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2332 2333 kfree(ctxt); 2334 return 0; 2335 2336 err_out: 2337 kfree(ctxt); 2338 return -EIO; 2339 } 2340 2341 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2342 { 2343 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2344 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2345 vsi->tc_cfg.numtc = 1; 2346 return; 2347 } 2348 2349 /* set VSI TC information based on DCB config */ 2350 ice_vsi_set_dcb_tc_cfg(vsi); 2351 } 2352 2353 /** 2354 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2355 * @vsi: VSI to set the q_vectors register index on 2356 */ 2357 static int 2358 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2359 { 2360 u16 i; 2361 2362 if (!vsi || !vsi->q_vectors) 2363 return -EINVAL; 2364 2365 ice_for_each_q_vector(vsi, i) { 2366 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2367 2368 if (!q_vector) { 2369 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2370 i, vsi->vsi_num); 2371 goto clear_reg_idx; 2372 } 2373 2374 if (vsi->type == ICE_VSI_VF) { 2375 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2376 2377 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2378 } else { 2379 q_vector->reg_idx = 2380 q_vector->v_idx + vsi->base_vector; 2381 } 2382 } 2383 2384 return 0; 2385 2386 clear_reg_idx: 2387 ice_for_each_q_vector(vsi, i) { 2388 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2389 2390 if (q_vector) 2391 q_vector->reg_idx = 0; 2392 } 2393 2394 return -EINVAL; 2395 } 2396 2397 /** 2398 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2399 * @vsi: the VSI being configured 2400 * @tx: bool to determine Tx or Rx rule 2401 * @create: bool to determine create or remove Rule 2402 */ 2403 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2404 { 2405 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2406 enum ice_sw_fwd_act_type act); 2407 struct ice_pf *pf = vsi->back; 2408 enum ice_status status; 2409 struct device *dev; 2410 2411 dev = ice_pf_to_dev(pf); 2412 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2413 2414 if (tx) { 2415 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2416 ICE_DROP_PACKET); 2417 } else { 2418 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2419 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2420 create); 2421 } else { 2422 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2423 ICE_FWD_TO_VSI); 2424 } 2425 } 2426 2427 if (status) 2428 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2429 create ? "adding" : "removing", tx ? "TX" : "RX", 2430 vsi->vsi_num, ice_stat_str(status)); 2431 } 2432 2433 /** 2434 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2435 * @vsi: pointer to the VSI 2436 * 2437 * This function will allocate new scheduler aggregator now if needed and will 2438 * move specified VSI into it. 2439 */ 2440 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2441 { 2442 struct device *dev = ice_pf_to_dev(vsi->back); 2443 struct ice_agg_node *agg_node_iter = NULL; 2444 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2445 struct ice_agg_node *agg_node = NULL; 2446 int node_offset, max_agg_nodes = 0; 2447 struct ice_port_info *port_info; 2448 struct ice_pf *pf = vsi->back; 2449 u32 agg_node_id_start = 0; 2450 enum ice_status status; 2451 2452 /* create (as needed) scheduler aggregator node and move VSI into 2453 * corresponding aggregator node 2454 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2455 * - VF aggregator nodes will contain VF VSI 2456 */ 2457 port_info = pf->hw.port_info; 2458 if (!port_info) 2459 return; 2460 2461 switch (vsi->type) { 2462 case ICE_VSI_CTRL: 2463 case ICE_VSI_CHNL: 2464 case ICE_VSI_LB: 2465 case ICE_VSI_PF: 2466 case ICE_VSI_SWITCHDEV_CTRL: 2467 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2468 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2469 agg_node_iter = &pf->pf_agg_node[0]; 2470 break; 2471 case ICE_VSI_VF: 2472 /* user can create 'n' VFs on a given PF, but since max children 2473 * per aggregator node can be only 64. Following code handles 2474 * aggregator(s) for VF VSIs, either selects a agg_node which 2475 * was already created provided num_vsis < 64, otherwise 2476 * select next available node, which will be created 2477 */ 2478 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2479 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2480 agg_node_iter = &pf->vf_agg_node[0]; 2481 break; 2482 default: 2483 /* other VSI type, handle later if needed */ 2484 dev_dbg(dev, "unexpected VSI type %s\n", 2485 ice_vsi_type_str(vsi->type)); 2486 return; 2487 } 2488 2489 /* find the appropriate aggregator node */ 2490 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2491 /* see if we can find space in previously created 2492 * node if num_vsis < 64, otherwise skip 2493 */ 2494 if (agg_node_iter->num_vsis && 2495 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2496 agg_node_iter++; 2497 continue; 2498 } 2499 2500 if (agg_node_iter->valid && 2501 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2502 agg_id = agg_node_iter->agg_id; 2503 agg_node = agg_node_iter; 2504 break; 2505 } 2506 2507 /* find unclaimed agg_id */ 2508 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2509 agg_id = node_offset + agg_node_id_start; 2510 agg_node = agg_node_iter; 2511 break; 2512 } 2513 /* move to next agg_node */ 2514 agg_node_iter++; 2515 } 2516 2517 if (!agg_node) 2518 return; 2519 2520 /* if selected aggregator node was not created, create it */ 2521 if (!agg_node->valid) { 2522 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2523 (u8)vsi->tc_cfg.ena_tc); 2524 if (status) { 2525 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2526 agg_id); 2527 return; 2528 } 2529 /* aggregator node is created, store the neeeded info */ 2530 agg_node->valid = true; 2531 agg_node->agg_id = agg_id; 2532 } 2533 2534 /* move VSI to corresponding aggregator node */ 2535 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2536 (u8)vsi->tc_cfg.ena_tc); 2537 if (status) { 2538 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2539 vsi->idx, agg_id); 2540 return; 2541 } 2542 2543 /* keep active children count for aggregator node */ 2544 agg_node->num_vsis++; 2545 2546 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2547 * to aggregator node 2548 */ 2549 vsi->agg_node = agg_node; 2550 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2551 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2552 vsi->agg_node->num_vsis); 2553 } 2554 2555 /** 2556 * ice_vsi_setup - Set up a VSI by a given type 2557 * @pf: board private structure 2558 * @pi: pointer to the port_info instance 2559 * @vsi_type: VSI type 2560 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2561 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2562 * fill-in ICE_INVAL_VFID as input. 2563 * @ch: ptr to channel 2564 * 2565 * This allocates the sw VSI structure and its queue resources. 2566 * 2567 * Returns pointer to the successfully allocated and configured VSI sw struct on 2568 * success, NULL on failure. 2569 */ 2570 struct ice_vsi * 2571 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2572 enum ice_vsi_type vsi_type, u16 vf_id, struct ice_channel *ch) 2573 { 2574 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2575 struct device *dev = ice_pf_to_dev(pf); 2576 enum ice_status status; 2577 struct ice_vsi *vsi; 2578 int ret, i; 2579 2580 if (vsi_type == ICE_VSI_CHNL) 2581 vsi = ice_vsi_alloc(pf, vsi_type, ch, ICE_INVAL_VFID); 2582 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2583 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf_id); 2584 else 2585 vsi = ice_vsi_alloc(pf, vsi_type, NULL, ICE_INVAL_VFID); 2586 2587 if (!vsi) { 2588 dev_err(dev, "could not allocate VSI\n"); 2589 return NULL; 2590 } 2591 2592 vsi->port_info = pi; 2593 vsi->vsw = pf->first_sw; 2594 if (vsi->type == ICE_VSI_PF) 2595 vsi->ethtype = ETH_P_PAUSE; 2596 2597 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2598 vsi->vf_id = vf_id; 2599 2600 ice_alloc_fd_res(vsi); 2601 2602 if (vsi_type != ICE_VSI_CHNL) { 2603 if (ice_vsi_get_qs(vsi)) { 2604 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2605 vsi->idx); 2606 goto unroll_vsi_alloc; 2607 } 2608 } 2609 2610 /* set RSS capabilities */ 2611 ice_vsi_set_rss_params(vsi); 2612 2613 /* set TC configuration */ 2614 ice_vsi_set_tc_cfg(vsi); 2615 2616 /* create the VSI */ 2617 ret = ice_vsi_init(vsi, true); 2618 if (ret) 2619 goto unroll_get_qs; 2620 2621 switch (vsi->type) { 2622 case ICE_VSI_CTRL: 2623 case ICE_VSI_SWITCHDEV_CTRL: 2624 case ICE_VSI_PF: 2625 ret = ice_vsi_alloc_q_vectors(vsi); 2626 if (ret) 2627 goto unroll_vsi_init; 2628 2629 ret = ice_vsi_setup_vector_base(vsi); 2630 if (ret) 2631 goto unroll_alloc_q_vector; 2632 2633 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2634 if (ret) 2635 goto unroll_vector_base; 2636 2637 ret = ice_vsi_alloc_rings(vsi); 2638 if (ret) 2639 goto unroll_vector_base; 2640 2641 /* Always add VLAN ID 0 switch rule by default. This is needed 2642 * in order to allow all untagged and 0 tagged priority traffic 2643 * if Rx VLAN pruning is enabled. Also there are cases where we 2644 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2645 * so this handles those cases (i.e. adding the PF to a bridge 2646 * without the 8021q module loaded). 2647 */ 2648 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2649 if (ret) 2650 goto unroll_clear_rings; 2651 2652 ice_vsi_map_rings_to_vectors(vsi); 2653 2654 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2655 if (vsi->type != ICE_VSI_CTRL) 2656 /* Do not exit if configuring RSS had an issue, at 2657 * least receive traffic on first queue. Hence no 2658 * need to capture return value 2659 */ 2660 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2661 ice_vsi_cfg_rss_lut_key(vsi); 2662 ice_vsi_set_rss_flow_fld(vsi); 2663 } 2664 ice_init_arfs(vsi); 2665 break; 2666 case ICE_VSI_CHNL: 2667 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2668 ice_vsi_cfg_rss_lut_key(vsi); 2669 ice_vsi_set_rss_flow_fld(vsi); 2670 } 2671 break; 2672 case ICE_VSI_VF: 2673 /* VF driver will take care of creating netdev for this type and 2674 * map queues to vectors through Virtchnl, PF driver only 2675 * creates a VSI and corresponding structures for bookkeeping 2676 * purpose 2677 */ 2678 ret = ice_vsi_alloc_q_vectors(vsi); 2679 if (ret) 2680 goto unroll_vsi_init; 2681 2682 ret = ice_vsi_alloc_rings(vsi); 2683 if (ret) 2684 goto unroll_alloc_q_vector; 2685 2686 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2687 if (ret) 2688 goto unroll_vector_base; 2689 2690 /* Do not exit if configuring RSS had an issue, at least 2691 * receive traffic on first queue. Hence no need to capture 2692 * return value 2693 */ 2694 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2695 ice_vsi_cfg_rss_lut_key(vsi); 2696 ice_vsi_set_vf_rss_flow_fld(vsi); 2697 } 2698 break; 2699 case ICE_VSI_LB: 2700 ret = ice_vsi_alloc_rings(vsi); 2701 if (ret) 2702 goto unroll_vsi_init; 2703 break; 2704 default: 2705 /* clean up the resources and exit */ 2706 goto unroll_vsi_init; 2707 } 2708 2709 /* configure VSI nodes based on number of queues and TC's */ 2710 ice_for_each_traffic_class(i) { 2711 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2712 continue; 2713 2714 if (vsi->type == ICE_VSI_CHNL) { 2715 if (!vsi->alloc_txq && vsi->num_txq) 2716 max_txqs[i] = vsi->num_txq; 2717 else 2718 max_txqs[i] = pf->num_lan_tx; 2719 } else { 2720 max_txqs[i] = vsi->alloc_txq; 2721 } 2722 } 2723 2724 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2725 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2726 max_txqs); 2727 if (status) { 2728 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2729 vsi->vsi_num, ice_stat_str(status)); 2730 goto unroll_clear_rings; 2731 } 2732 2733 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2734 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2735 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2736 * The rule is added once for PF VSI in order to create appropriate 2737 * recipe, since VSI/VSI list is ignored with drop action... 2738 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2739 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2740 * settings in the HW. 2741 */ 2742 if (!ice_is_safe_mode(pf)) 2743 if (vsi->type == ICE_VSI_PF) { 2744 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2745 ICE_DROP_PACKET); 2746 ice_cfg_sw_lldp(vsi, true, true); 2747 } 2748 2749 if (!vsi->agg_node) 2750 ice_set_agg_vsi(vsi); 2751 return vsi; 2752 2753 unroll_clear_rings: 2754 ice_vsi_clear_rings(vsi); 2755 unroll_vector_base: 2756 /* reclaim SW interrupts back to the common pool */ 2757 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2758 pf->num_avail_sw_msix += vsi->num_q_vectors; 2759 unroll_alloc_q_vector: 2760 ice_vsi_free_q_vectors(vsi); 2761 unroll_vsi_init: 2762 ice_vsi_delete(vsi); 2763 unroll_get_qs: 2764 ice_vsi_put_qs(vsi); 2765 unroll_vsi_alloc: 2766 if (vsi_type == ICE_VSI_VF) 2767 ice_enable_lag(pf->lag); 2768 ice_vsi_clear(vsi); 2769 2770 return NULL; 2771 } 2772 2773 /** 2774 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2775 * @vsi: the VSI being cleaned up 2776 */ 2777 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2778 { 2779 struct ice_pf *pf = vsi->back; 2780 struct ice_hw *hw = &pf->hw; 2781 u32 txq = 0; 2782 u32 rxq = 0; 2783 int i, q; 2784 2785 ice_for_each_q_vector(vsi, i) { 2786 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2787 2788 ice_write_intrl(q_vector, 0); 2789 for (q = 0; q < q_vector->num_ring_tx; q++) { 2790 ice_write_itr(&q_vector->tx, 0); 2791 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2792 if (ice_is_xdp_ena_vsi(vsi)) { 2793 u32 xdp_txq = txq + vsi->num_xdp_txq; 2794 2795 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2796 } 2797 txq++; 2798 } 2799 2800 for (q = 0; q < q_vector->num_ring_rx; q++) { 2801 ice_write_itr(&q_vector->rx, 0); 2802 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2803 rxq++; 2804 } 2805 } 2806 2807 ice_flush(hw); 2808 } 2809 2810 /** 2811 * ice_vsi_free_irq - Free the IRQ association with the OS 2812 * @vsi: the VSI being configured 2813 */ 2814 void ice_vsi_free_irq(struct ice_vsi *vsi) 2815 { 2816 struct ice_pf *pf = vsi->back; 2817 int base = vsi->base_vector; 2818 int i; 2819 2820 if (!vsi->q_vectors || !vsi->irqs_ready) 2821 return; 2822 2823 ice_vsi_release_msix(vsi); 2824 if (vsi->type == ICE_VSI_VF) 2825 return; 2826 2827 vsi->irqs_ready = false; 2828 ice_for_each_q_vector(vsi, i) { 2829 u16 vector = i + base; 2830 int irq_num; 2831 2832 irq_num = pf->msix_entries[vector].vector; 2833 2834 /* free only the irqs that were actually requested */ 2835 if (!vsi->q_vectors[i] || 2836 !(vsi->q_vectors[i]->num_ring_tx || 2837 vsi->q_vectors[i]->num_ring_rx)) 2838 continue; 2839 2840 /* clear the affinity notifier in the IRQ descriptor */ 2841 irq_set_affinity_notifier(irq_num, NULL); 2842 2843 /* clear the affinity_mask in the IRQ descriptor */ 2844 irq_set_affinity_hint(irq_num, NULL); 2845 synchronize_irq(irq_num); 2846 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2847 } 2848 } 2849 2850 /** 2851 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2852 * @vsi: the VSI having resources freed 2853 */ 2854 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2855 { 2856 int i; 2857 2858 if (!vsi->tx_rings) 2859 return; 2860 2861 ice_for_each_txq(vsi, i) 2862 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2863 ice_free_tx_ring(vsi->tx_rings[i]); 2864 } 2865 2866 /** 2867 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2868 * @vsi: the VSI having resources freed 2869 */ 2870 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2871 { 2872 int i; 2873 2874 if (!vsi->rx_rings) 2875 return; 2876 2877 ice_for_each_rxq(vsi, i) 2878 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2879 ice_free_rx_ring(vsi->rx_rings[i]); 2880 } 2881 2882 /** 2883 * ice_vsi_close - Shut down a VSI 2884 * @vsi: the VSI being shut down 2885 */ 2886 void ice_vsi_close(struct ice_vsi *vsi) 2887 { 2888 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2889 ice_down(vsi); 2890 2891 ice_vsi_free_irq(vsi); 2892 ice_vsi_free_tx_rings(vsi); 2893 ice_vsi_free_rx_rings(vsi); 2894 } 2895 2896 /** 2897 * ice_ena_vsi - resume a VSI 2898 * @vsi: the VSI being resume 2899 * @locked: is the rtnl_lock already held 2900 */ 2901 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2902 { 2903 int err = 0; 2904 2905 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2906 return 0; 2907 2908 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2909 2910 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2911 if (netif_running(vsi->netdev)) { 2912 if (!locked) 2913 rtnl_lock(); 2914 2915 err = ice_open_internal(vsi->netdev); 2916 2917 if (!locked) 2918 rtnl_unlock(); 2919 } 2920 } else if (vsi->type == ICE_VSI_CTRL) { 2921 err = ice_vsi_open_ctrl(vsi); 2922 } 2923 2924 return err; 2925 } 2926 2927 /** 2928 * ice_dis_vsi - pause a VSI 2929 * @vsi: the VSI being paused 2930 * @locked: is the rtnl_lock already held 2931 */ 2932 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2933 { 2934 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2935 return; 2936 2937 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2938 2939 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2940 if (netif_running(vsi->netdev)) { 2941 if (!locked) 2942 rtnl_lock(); 2943 2944 ice_vsi_close(vsi); 2945 2946 if (!locked) 2947 rtnl_unlock(); 2948 } else { 2949 ice_vsi_close(vsi); 2950 } 2951 } else if (vsi->type == ICE_VSI_CTRL || 2952 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2953 ice_vsi_close(vsi); 2954 } 2955 } 2956 2957 /** 2958 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2959 * @vsi: the VSI being un-configured 2960 */ 2961 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2962 { 2963 int base = vsi->base_vector; 2964 struct ice_pf *pf = vsi->back; 2965 struct ice_hw *hw = &pf->hw; 2966 u32 val; 2967 int i; 2968 2969 /* disable interrupt causation from each queue */ 2970 if (vsi->tx_rings) { 2971 ice_for_each_txq(vsi, i) { 2972 if (vsi->tx_rings[i]) { 2973 u16 reg; 2974 2975 reg = vsi->tx_rings[i]->reg_idx; 2976 val = rd32(hw, QINT_TQCTL(reg)); 2977 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2978 wr32(hw, QINT_TQCTL(reg), val); 2979 } 2980 } 2981 } 2982 2983 if (vsi->rx_rings) { 2984 ice_for_each_rxq(vsi, i) { 2985 if (vsi->rx_rings[i]) { 2986 u16 reg; 2987 2988 reg = vsi->rx_rings[i]->reg_idx; 2989 val = rd32(hw, QINT_RQCTL(reg)); 2990 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2991 wr32(hw, QINT_RQCTL(reg), val); 2992 } 2993 } 2994 } 2995 2996 /* disable each interrupt */ 2997 ice_for_each_q_vector(vsi, i) { 2998 if (!vsi->q_vectors[i]) 2999 continue; 3000 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 3001 } 3002 3003 ice_flush(hw); 3004 3005 /* don't call synchronize_irq() for VF's from the host */ 3006 if (vsi->type == ICE_VSI_VF) 3007 return; 3008 3009 ice_for_each_q_vector(vsi, i) 3010 synchronize_irq(pf->msix_entries[i + base].vector); 3011 } 3012 3013 /** 3014 * ice_napi_del - Remove NAPI handler for the VSI 3015 * @vsi: VSI for which NAPI handler is to be removed 3016 */ 3017 void ice_napi_del(struct ice_vsi *vsi) 3018 { 3019 int v_idx; 3020 3021 if (!vsi->netdev) 3022 return; 3023 3024 ice_for_each_q_vector(vsi, v_idx) 3025 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3026 } 3027 3028 /** 3029 * ice_vsi_release - Delete a VSI and free its resources 3030 * @vsi: the VSI being removed 3031 * 3032 * Returns 0 on success or < 0 on error 3033 */ 3034 int ice_vsi_release(struct ice_vsi *vsi) 3035 { 3036 enum ice_status err; 3037 struct ice_pf *pf; 3038 3039 if (!vsi->back) 3040 return -ENODEV; 3041 pf = vsi->back; 3042 3043 /* do not unregister while driver is in the reset recovery pending 3044 * state. Since reset/rebuild happens through PF service task workqueue, 3045 * it's not a good idea to unregister netdev that is associated to the 3046 * PF that is running the work queue items currently. This is done to 3047 * avoid check_flush_dependency() warning on this wq 3048 */ 3049 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3050 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3051 unregister_netdev(vsi->netdev); 3052 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3053 } 3054 3055 if (vsi->type == ICE_VSI_PF) 3056 ice_devlink_destroy_pf_port(pf); 3057 3058 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3059 ice_rss_clean(vsi); 3060 3061 /* Disable VSI and free resources */ 3062 if (vsi->type != ICE_VSI_LB) 3063 ice_vsi_dis_irq(vsi); 3064 ice_vsi_close(vsi); 3065 3066 /* SR-IOV determines needed MSIX resources all at once instead of per 3067 * VSI since when VFs are spawned we know how many VFs there are and how 3068 * many interrupts each VF needs. SR-IOV MSIX resources are also 3069 * cleared in the same manner. 3070 */ 3071 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 3072 int i; 3073 3074 ice_for_each_vf(pf, i) { 3075 struct ice_vf *vf = &pf->vf[i]; 3076 3077 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 3078 break; 3079 } 3080 if (i == pf->num_alloc_vfs) { 3081 /* No other VFs left that have control VSI, reclaim SW 3082 * interrupts back to the common pool 3083 */ 3084 ice_free_res(pf->irq_tracker, vsi->base_vector, 3085 ICE_RES_VF_CTRL_VEC_ID); 3086 pf->num_avail_sw_msix += vsi->num_q_vectors; 3087 } 3088 } else if (vsi->type != ICE_VSI_VF) { 3089 /* reclaim SW interrupts back to the common pool */ 3090 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3091 pf->num_avail_sw_msix += vsi->num_q_vectors; 3092 } 3093 3094 if (!ice_is_safe_mode(pf)) { 3095 if (vsi->type == ICE_VSI_PF) { 3096 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3097 ICE_DROP_PACKET); 3098 ice_cfg_sw_lldp(vsi, true, false); 3099 /* The Rx rule will only exist to remove if the LLDP FW 3100 * engine is currently stopped 3101 */ 3102 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3103 ice_cfg_sw_lldp(vsi, false, false); 3104 } 3105 } 3106 3107 ice_fltr_remove_all(vsi); 3108 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3109 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3110 if (err) 3111 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3112 vsi->vsi_num, err); 3113 ice_vsi_delete(vsi); 3114 ice_vsi_free_q_vectors(vsi); 3115 3116 if (vsi->netdev) { 3117 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3118 unregister_netdev(vsi->netdev); 3119 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3120 } 3121 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3122 free_netdev(vsi->netdev); 3123 vsi->netdev = NULL; 3124 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3125 } 3126 } 3127 3128 if (vsi->type == ICE_VSI_VF && 3129 vsi->agg_node && vsi->agg_node->valid) 3130 vsi->agg_node->num_vsis--; 3131 ice_vsi_clear_rings(vsi); 3132 3133 ice_vsi_put_qs(vsi); 3134 3135 /* retain SW VSI data structure since it is needed to unregister and 3136 * free VSI netdev when PF is not in reset recovery pending state,\ 3137 * for ex: during rmmod. 3138 */ 3139 if (!ice_is_reset_in_progress(pf->state)) 3140 ice_vsi_clear(vsi); 3141 3142 return 0; 3143 } 3144 3145 /** 3146 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3147 * @vsi: VSI connected with q_vectors 3148 * @coalesce: array of struct with stored coalesce 3149 * 3150 * Returns array size. 3151 */ 3152 static int 3153 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3154 struct ice_coalesce_stored *coalesce) 3155 { 3156 int i; 3157 3158 ice_for_each_q_vector(vsi, i) { 3159 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3160 3161 coalesce[i].itr_tx = q_vector->tx.itr_setting; 3162 coalesce[i].itr_rx = q_vector->rx.itr_setting; 3163 coalesce[i].intrl = q_vector->intrl; 3164 3165 if (i < vsi->num_txq) 3166 coalesce[i].tx_valid = true; 3167 if (i < vsi->num_rxq) 3168 coalesce[i].rx_valid = true; 3169 } 3170 3171 return vsi->num_q_vectors; 3172 } 3173 3174 /** 3175 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3176 * @vsi: VSI connected with q_vectors 3177 * @coalesce: pointer to array of struct with stored coalesce 3178 * @size: size of coalesce array 3179 * 3180 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3181 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3182 * to default value. 3183 */ 3184 static void 3185 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3186 struct ice_coalesce_stored *coalesce, int size) 3187 { 3188 struct ice_ring_container *rc; 3189 int i; 3190 3191 if ((size && !coalesce) || !vsi) 3192 return; 3193 3194 /* There are a couple of cases that have to be handled here: 3195 * 1. The case where the number of queue vectors stays the same, but 3196 * the number of Tx or Rx rings changes (the first for loop) 3197 * 2. The case where the number of queue vectors increased (the 3198 * second for loop) 3199 */ 3200 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3201 /* There are 2 cases to handle here and they are the same for 3202 * both Tx and Rx: 3203 * if the entry was valid previously (coalesce[i].[tr]x_valid 3204 * and the loop variable is less than the number of rings 3205 * allocated, then write the previous values 3206 * 3207 * if the entry was not valid previously, but the number of 3208 * rings is less than are allocated (this means the number of 3209 * rings increased from previously), then write out the 3210 * values in the first element 3211 * 3212 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3213 * as there is no harm because the dynamic algorithm 3214 * will just overwrite. 3215 */ 3216 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3217 rc = &vsi->q_vectors[i]->rx; 3218 rc->itr_setting = coalesce[i].itr_rx; 3219 ice_write_itr(rc, rc->itr_setting); 3220 } else if (i < vsi->alloc_rxq) { 3221 rc = &vsi->q_vectors[i]->rx; 3222 rc->itr_setting = coalesce[0].itr_rx; 3223 ice_write_itr(rc, rc->itr_setting); 3224 } 3225 3226 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3227 rc = &vsi->q_vectors[i]->tx; 3228 rc->itr_setting = coalesce[i].itr_tx; 3229 ice_write_itr(rc, rc->itr_setting); 3230 } else if (i < vsi->alloc_txq) { 3231 rc = &vsi->q_vectors[i]->tx; 3232 rc->itr_setting = coalesce[0].itr_tx; 3233 ice_write_itr(rc, rc->itr_setting); 3234 } 3235 3236 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3237 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3238 } 3239 3240 /* the number of queue vectors increased so write whatever is in 3241 * the first element 3242 */ 3243 for (; i < vsi->num_q_vectors; i++) { 3244 /* transmit */ 3245 rc = &vsi->q_vectors[i]->tx; 3246 rc->itr_setting = coalesce[0].itr_tx; 3247 ice_write_itr(rc, rc->itr_setting); 3248 3249 /* receive */ 3250 rc = &vsi->q_vectors[i]->rx; 3251 rc->itr_setting = coalesce[0].itr_rx; 3252 ice_write_itr(rc, rc->itr_setting); 3253 3254 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3255 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3256 } 3257 } 3258 3259 /** 3260 * ice_vsi_rebuild - Rebuild VSI after reset 3261 * @vsi: VSI to be rebuild 3262 * @init_vsi: is this an initialization or a reconfigure of the VSI 3263 * 3264 * Returns 0 on success and negative value on failure 3265 */ 3266 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3267 { 3268 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3269 struct ice_coalesce_stored *coalesce; 3270 int prev_num_q_vectors = 0; 3271 struct ice_vf *vf = NULL; 3272 enum ice_vsi_type vtype; 3273 enum ice_status status; 3274 struct ice_pf *pf; 3275 int ret, i; 3276 3277 if (!vsi) 3278 return -EINVAL; 3279 3280 pf = vsi->back; 3281 vtype = vsi->type; 3282 if (vtype == ICE_VSI_VF) 3283 vf = &pf->vf[vsi->vf_id]; 3284 3285 coalesce = kcalloc(vsi->num_q_vectors, 3286 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3287 if (!coalesce) 3288 return -ENOMEM; 3289 3290 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3291 3292 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3293 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3294 if (ret) 3295 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3296 vsi->vsi_num, ret); 3297 ice_vsi_free_q_vectors(vsi); 3298 3299 /* SR-IOV determines needed MSIX resources all at once instead of per 3300 * VSI since when VFs are spawned we know how many VFs there are and how 3301 * many interrupts each VF needs. SR-IOV MSIX resources are also 3302 * cleared in the same manner. 3303 */ 3304 if (vtype != ICE_VSI_VF) { 3305 /* reclaim SW interrupts back to the common pool */ 3306 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3307 pf->num_avail_sw_msix += vsi->num_q_vectors; 3308 vsi->base_vector = 0; 3309 } 3310 3311 if (ice_is_xdp_ena_vsi(vsi)) 3312 /* return value check can be skipped here, it always returns 3313 * 0 if reset is in progress 3314 */ 3315 ice_destroy_xdp_rings(vsi); 3316 ice_vsi_put_qs(vsi); 3317 ice_vsi_clear_rings(vsi); 3318 ice_vsi_free_arrays(vsi); 3319 if (vtype == ICE_VSI_VF) 3320 ice_vsi_set_num_qs(vsi, vf->vf_id); 3321 else 3322 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3323 3324 ret = ice_vsi_alloc_arrays(vsi); 3325 if (ret < 0) 3326 goto err_vsi; 3327 3328 ice_vsi_get_qs(vsi); 3329 3330 ice_alloc_fd_res(vsi); 3331 ice_vsi_set_tc_cfg(vsi); 3332 3333 /* Initialize VSI struct elements and create VSI in FW */ 3334 ret = ice_vsi_init(vsi, init_vsi); 3335 if (ret < 0) 3336 goto err_vsi; 3337 3338 switch (vtype) { 3339 case ICE_VSI_CTRL: 3340 case ICE_VSI_SWITCHDEV_CTRL: 3341 case ICE_VSI_PF: 3342 ret = ice_vsi_alloc_q_vectors(vsi); 3343 if (ret) 3344 goto err_rings; 3345 3346 ret = ice_vsi_setup_vector_base(vsi); 3347 if (ret) 3348 goto err_vectors; 3349 3350 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3351 if (ret) 3352 goto err_vectors; 3353 3354 ret = ice_vsi_alloc_rings(vsi); 3355 if (ret) 3356 goto err_vectors; 3357 3358 ice_vsi_map_rings_to_vectors(vsi); 3359 if (ice_is_xdp_ena_vsi(vsi)) { 3360 ret = ice_vsi_determine_xdp_res(vsi); 3361 if (ret) 3362 goto err_vectors; 3363 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3364 if (ret) 3365 goto err_vectors; 3366 } 3367 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3368 if (vtype != ICE_VSI_CTRL) 3369 /* Do not exit if configuring RSS had an issue, at 3370 * least receive traffic on first queue. Hence no 3371 * need to capture return value 3372 */ 3373 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3374 ice_vsi_cfg_rss_lut_key(vsi); 3375 break; 3376 case ICE_VSI_VF: 3377 ret = ice_vsi_alloc_q_vectors(vsi); 3378 if (ret) 3379 goto err_rings; 3380 3381 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3382 if (ret) 3383 goto err_vectors; 3384 3385 ret = ice_vsi_alloc_rings(vsi); 3386 if (ret) 3387 goto err_vectors; 3388 3389 break; 3390 case ICE_VSI_CHNL: 3391 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3392 ice_vsi_cfg_rss_lut_key(vsi); 3393 ice_vsi_set_rss_flow_fld(vsi); 3394 } 3395 break; 3396 default: 3397 break; 3398 } 3399 3400 /* configure VSI nodes based on number of queues and TC's */ 3401 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3402 /* configure VSI nodes based on number of queues and TC's. 3403 * ADQ creates VSIs for each TC/Channel but doesn't 3404 * allocate queues instead it reconfigures the PF queues 3405 * as per the TC command. So max_txqs should point to the 3406 * PF Tx queues. 3407 */ 3408 if (vtype == ICE_VSI_CHNL) 3409 max_txqs[i] = pf->num_lan_tx; 3410 else 3411 max_txqs[i] = vsi->alloc_txq; 3412 3413 if (ice_is_xdp_ena_vsi(vsi)) 3414 max_txqs[i] += vsi->num_xdp_txq; 3415 } 3416 3417 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3418 /* If MQPRIO is set, means channel code path, hence for main 3419 * VSI's, use TC as 1 3420 */ 3421 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3422 else 3423 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3424 vsi->tc_cfg.ena_tc, max_txqs); 3425 3426 if (status) { 3427 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3428 vsi->vsi_num, ice_stat_str(status)); 3429 if (init_vsi) { 3430 ret = -EIO; 3431 goto err_vectors; 3432 } else { 3433 return ice_schedule_reset(pf, ICE_RESET_PFR); 3434 } 3435 } 3436 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3437 kfree(coalesce); 3438 3439 return 0; 3440 3441 err_vectors: 3442 ice_vsi_free_q_vectors(vsi); 3443 err_rings: 3444 if (vsi->netdev) { 3445 vsi->current_netdev_flags = 0; 3446 unregister_netdev(vsi->netdev); 3447 free_netdev(vsi->netdev); 3448 vsi->netdev = NULL; 3449 } 3450 err_vsi: 3451 ice_vsi_clear(vsi); 3452 set_bit(ICE_RESET_FAILED, pf->state); 3453 kfree(coalesce); 3454 return ret; 3455 } 3456 3457 /** 3458 * ice_is_reset_in_progress - check for a reset in progress 3459 * @state: PF state field 3460 */ 3461 bool ice_is_reset_in_progress(unsigned long *state) 3462 { 3463 return test_bit(ICE_RESET_OICR_RECV, state) || 3464 test_bit(ICE_PFR_REQ, state) || 3465 test_bit(ICE_CORER_REQ, state) || 3466 test_bit(ICE_GLOBR_REQ, state); 3467 } 3468 3469 /** 3470 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3471 * @pf: pointer to the PF structure 3472 * @timeout: length of time to wait, in jiffies 3473 * 3474 * Wait (sleep) for a short time until the driver finishes cleaning up from 3475 * a device reset. The caller must be able to sleep. Use this to delay 3476 * operations that could fail while the driver is cleaning up after a device 3477 * reset. 3478 * 3479 * Returns 0 on success, -EBUSY if the reset is not finished within the 3480 * timeout, and -ERESTARTSYS if the thread was interrupted. 3481 */ 3482 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3483 { 3484 long ret; 3485 3486 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3487 !ice_is_reset_in_progress(pf->state), 3488 timeout); 3489 if (ret < 0) 3490 return ret; 3491 else if (!ret) 3492 return -EBUSY; 3493 else 3494 return 0; 3495 } 3496 3497 /** 3498 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3499 * @vsi: VSI being configured 3500 * @ctx: the context buffer returned from AQ VSI update command 3501 */ 3502 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3503 { 3504 vsi->info.mapping_flags = ctx->info.mapping_flags; 3505 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3506 sizeof(vsi->info.q_mapping)); 3507 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3508 sizeof(vsi->info.tc_mapping)); 3509 } 3510 3511 /** 3512 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3513 * @vsi: the VSI being configured 3514 * @ena_tc: TC map to be enabled 3515 */ 3516 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3517 { 3518 struct net_device *netdev = vsi->netdev; 3519 struct ice_pf *pf = vsi->back; 3520 int numtc = vsi->tc_cfg.numtc; 3521 struct ice_dcbx_cfg *dcbcfg; 3522 u8 netdev_tc; 3523 int i; 3524 3525 if (!netdev) 3526 return; 3527 3528 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3529 if (vsi->type == ICE_VSI_CHNL) 3530 return; 3531 3532 if (!ena_tc) { 3533 netdev_reset_tc(netdev); 3534 return; 3535 } 3536 3537 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3538 numtc = vsi->all_numtc; 3539 3540 if (netdev_set_num_tc(netdev, numtc)) 3541 return; 3542 3543 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3544 3545 ice_for_each_traffic_class(i) 3546 if (vsi->tc_cfg.ena_tc & BIT(i)) 3547 netdev_set_tc_queue(netdev, 3548 vsi->tc_cfg.tc_info[i].netdev_tc, 3549 vsi->tc_cfg.tc_info[i].qcount_tx, 3550 vsi->tc_cfg.tc_info[i].qoffset); 3551 /* setup TC queue map for CHNL TCs */ 3552 ice_for_each_chnl_tc(i) { 3553 if (!(vsi->all_enatc & BIT(i))) 3554 break; 3555 if (!vsi->mqprio_qopt.qopt.count[i]) 3556 break; 3557 netdev_set_tc_queue(netdev, i, 3558 vsi->mqprio_qopt.qopt.count[i], 3559 vsi->mqprio_qopt.qopt.offset[i]); 3560 } 3561 3562 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3563 return; 3564 3565 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3566 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3567 3568 /* Get the mapped netdev TC# for the UP */ 3569 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3570 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3571 } 3572 } 3573 3574 /** 3575 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3576 * @vsi: the VSI being configured, 3577 * @ctxt: VSI context structure 3578 * @ena_tc: number of traffic classes to enable 3579 * 3580 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3581 */ 3582 static void 3583 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3584 u8 ena_tc) 3585 { 3586 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3587 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3588 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3589 u8 netdev_tc = 0; 3590 int i; 3591 3592 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3593 3594 pow = order_base_2(tc0_qcount); 3595 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3596 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3597 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3598 3599 ice_for_each_traffic_class(i) { 3600 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3601 /* TC is not enabled */ 3602 vsi->tc_cfg.tc_info[i].qoffset = 0; 3603 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3604 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3605 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3606 ctxt->info.tc_mapping[i] = 0; 3607 continue; 3608 } 3609 3610 offset = vsi->mqprio_qopt.qopt.offset[i]; 3611 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3612 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3613 vsi->tc_cfg.tc_info[i].qoffset = offset; 3614 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3615 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3616 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3617 } 3618 3619 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3620 ice_for_each_chnl_tc(i) { 3621 if (!(vsi->all_enatc & BIT(i))) 3622 continue; 3623 offset = vsi->mqprio_qopt.qopt.offset[i]; 3624 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3625 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3626 } 3627 } 3628 3629 /* Set actual Tx/Rx queue pairs */ 3630 vsi->num_txq = offset + qcount_tx; 3631 vsi->num_rxq = offset + qcount_rx; 3632 3633 /* Setup queue TC[0].qmap for given VSI context */ 3634 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3635 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3636 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3637 3638 /* Find queue count available for channel VSIs and starting offset 3639 * for channel VSIs 3640 */ 3641 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3642 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3643 vsi->next_base_q = tc0_qcount; 3644 } 3645 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3646 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3647 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3648 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3649 } 3650 3651 /** 3652 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3653 * @vsi: VSI to be configured 3654 * @ena_tc: TC bitmap 3655 * 3656 * VSI queues expected to be quiesced before calling this function 3657 */ 3658 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3659 { 3660 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3661 struct ice_pf *pf = vsi->back; 3662 struct ice_vsi_ctx *ctx; 3663 enum ice_status status; 3664 struct device *dev; 3665 int i, ret = 0; 3666 u8 num_tc = 0; 3667 3668 dev = ice_pf_to_dev(pf); 3669 if (vsi->tc_cfg.ena_tc == ena_tc && 3670 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3671 return ret; 3672 3673 ice_for_each_traffic_class(i) { 3674 /* build bitmap of enabled TCs */ 3675 if (ena_tc & BIT(i)) 3676 num_tc++; 3677 /* populate max_txqs per TC */ 3678 max_txqs[i] = vsi->alloc_txq; 3679 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3680 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3681 */ 3682 if (vsi->type == ICE_VSI_CHNL && 3683 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3684 max_txqs[i] = vsi->num_txq; 3685 } 3686 3687 vsi->tc_cfg.ena_tc = ena_tc; 3688 vsi->tc_cfg.numtc = num_tc; 3689 3690 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3691 if (!ctx) 3692 return -ENOMEM; 3693 3694 ctx->vf_num = 0; 3695 ctx->info = vsi->info; 3696 3697 if (vsi->type == ICE_VSI_PF && 3698 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3699 ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3700 else 3701 ice_vsi_setup_q_map(vsi, ctx); 3702 3703 /* must to indicate which section of VSI context are being modified */ 3704 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3705 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3706 if (status) { 3707 dev_info(dev, "Failed VSI Update\n"); 3708 ret = -EIO; 3709 goto out; 3710 } 3711 3712 if (vsi->type == ICE_VSI_PF && 3713 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3714 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, 3715 max_txqs); 3716 else 3717 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3718 vsi->tc_cfg.ena_tc, max_txqs); 3719 3720 if (status) { 3721 dev_err(dev, "VSI %d failed TC config, error %s\n", 3722 vsi->vsi_num, ice_stat_str(status)); 3723 ret = -EIO; 3724 goto out; 3725 } 3726 ice_vsi_update_q_map(vsi, ctx); 3727 vsi->info.valid_sections = 0; 3728 3729 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3730 out: 3731 kfree(ctx); 3732 return ret; 3733 } 3734 3735 /** 3736 * ice_update_ring_stats - Update ring statistics 3737 * @stats: stats to be updated 3738 * @pkts: number of processed packets 3739 * @bytes: number of processed bytes 3740 * 3741 * This function assumes that caller has acquired a u64_stats_sync lock. 3742 */ 3743 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3744 { 3745 stats->bytes += bytes; 3746 stats->pkts += pkts; 3747 } 3748 3749 /** 3750 * ice_update_tx_ring_stats - Update Tx ring specific counters 3751 * @tx_ring: ring to update 3752 * @pkts: number of processed packets 3753 * @bytes: number of processed bytes 3754 */ 3755 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3756 { 3757 u64_stats_update_begin(&tx_ring->syncp); 3758 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3759 u64_stats_update_end(&tx_ring->syncp); 3760 } 3761 3762 /** 3763 * ice_update_rx_ring_stats - Update Rx ring specific counters 3764 * @rx_ring: ring to update 3765 * @pkts: number of processed packets 3766 * @bytes: number of processed bytes 3767 */ 3768 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3769 { 3770 u64_stats_update_begin(&rx_ring->syncp); 3771 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3772 u64_stats_update_end(&rx_ring->syncp); 3773 } 3774 3775 /** 3776 * ice_status_to_errno - convert from enum ice_status to Linux errno 3777 * @err: ice_status value to convert 3778 */ 3779 int ice_status_to_errno(enum ice_status err) 3780 { 3781 switch (err) { 3782 case ICE_SUCCESS: 3783 return 0; 3784 case ICE_ERR_DOES_NOT_EXIST: 3785 return -ENOENT; 3786 case ICE_ERR_OUT_OF_RANGE: 3787 case ICE_ERR_AQ_ERROR: 3788 case ICE_ERR_AQ_TIMEOUT: 3789 case ICE_ERR_AQ_EMPTY: 3790 case ICE_ERR_AQ_FW_CRITICAL: 3791 return -EIO; 3792 case ICE_ERR_PARAM: 3793 case ICE_ERR_INVAL_SIZE: 3794 return -EINVAL; 3795 case ICE_ERR_NO_MEMORY: 3796 return -ENOMEM; 3797 case ICE_ERR_MAX_LIMIT: 3798 return -EAGAIN; 3799 case ICE_ERR_RESET_ONGOING: 3800 return -EBUSY; 3801 case ICE_ERR_AQ_FULL: 3802 return -ENOSPC; 3803 default: 3804 return -EINVAL; 3805 } 3806 } 3807 3808 /** 3809 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3810 * @sw: switch to check if its default forwarding VSI is free 3811 * 3812 * Return true if the default forwarding VSI is already being used, else returns 3813 * false signalling that it's available to use. 3814 */ 3815 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3816 { 3817 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3818 } 3819 3820 /** 3821 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3822 * @sw: switch for the default forwarding VSI to compare against 3823 * @vsi: VSI to compare against default forwarding VSI 3824 * 3825 * If this VSI passed in is the default forwarding VSI then return true, else 3826 * return false 3827 */ 3828 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3829 { 3830 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3831 } 3832 3833 /** 3834 * ice_set_dflt_vsi - set the default forwarding VSI 3835 * @sw: switch used to assign the default forwarding VSI 3836 * @vsi: VSI getting set as the default forwarding VSI on the switch 3837 * 3838 * If the VSI passed in is already the default VSI and it's enabled just return 3839 * success. 3840 * 3841 * If there is already a default VSI on the switch and it's enabled then return 3842 * -EEXIST since there can only be one default VSI per switch. 3843 * 3844 * Otherwise try to set the VSI passed in as the switch's default VSI and 3845 * return the result. 3846 */ 3847 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3848 { 3849 enum ice_status status; 3850 struct device *dev; 3851 3852 if (!sw || !vsi) 3853 return -EINVAL; 3854 3855 dev = ice_pf_to_dev(vsi->back); 3856 3857 /* the VSI passed in is already the default VSI */ 3858 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3859 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3860 vsi->vsi_num); 3861 return 0; 3862 } 3863 3864 /* another VSI is already the default VSI for this switch */ 3865 if (ice_is_dflt_vsi_in_use(sw)) { 3866 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3867 sw->dflt_vsi->vsi_num); 3868 return -EEXIST; 3869 } 3870 3871 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3872 if (status) { 3873 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3874 vsi->vsi_num, ice_stat_str(status)); 3875 return -EIO; 3876 } 3877 3878 sw->dflt_vsi = vsi; 3879 sw->dflt_vsi_ena = true; 3880 3881 return 0; 3882 } 3883 3884 /** 3885 * ice_clear_dflt_vsi - clear the default forwarding VSI 3886 * @sw: switch used to clear the default VSI 3887 * 3888 * If the switch has no default VSI or it's not enabled then return error. 3889 * 3890 * Otherwise try to clear the default VSI and return the result. 3891 */ 3892 int ice_clear_dflt_vsi(struct ice_sw *sw) 3893 { 3894 struct ice_vsi *dflt_vsi; 3895 enum ice_status status; 3896 struct device *dev; 3897 3898 if (!sw) 3899 return -EINVAL; 3900 3901 dev = ice_pf_to_dev(sw->pf); 3902 3903 dflt_vsi = sw->dflt_vsi; 3904 3905 /* there is no default VSI configured */ 3906 if (!ice_is_dflt_vsi_in_use(sw)) 3907 return -ENODEV; 3908 3909 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3910 ICE_FLTR_RX); 3911 if (status) { 3912 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3913 dflt_vsi->vsi_num, ice_stat_str(status)); 3914 return -EIO; 3915 } 3916 3917 sw->dflt_vsi = NULL; 3918 sw->dflt_vsi_ena = false; 3919 3920 return 0; 3921 } 3922 3923 /** 3924 * ice_get_link_speed_mbps - get link speed in Mbps 3925 * @vsi: the VSI whose link speed is being queried 3926 * 3927 * Return current VSI link speed and 0 if the speed is unknown. 3928 */ 3929 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3930 { 3931 switch (vsi->port_info->phy.link_info.link_speed) { 3932 case ICE_AQ_LINK_SPEED_100GB: 3933 return SPEED_100000; 3934 case ICE_AQ_LINK_SPEED_50GB: 3935 return SPEED_50000; 3936 case ICE_AQ_LINK_SPEED_40GB: 3937 return SPEED_40000; 3938 case ICE_AQ_LINK_SPEED_25GB: 3939 return SPEED_25000; 3940 case ICE_AQ_LINK_SPEED_20GB: 3941 return SPEED_20000; 3942 case ICE_AQ_LINK_SPEED_10GB: 3943 return SPEED_10000; 3944 case ICE_AQ_LINK_SPEED_5GB: 3945 return SPEED_5000; 3946 case ICE_AQ_LINK_SPEED_2500MB: 3947 return SPEED_2500; 3948 case ICE_AQ_LINK_SPEED_1000MB: 3949 return SPEED_1000; 3950 case ICE_AQ_LINK_SPEED_100MB: 3951 return SPEED_100; 3952 case ICE_AQ_LINK_SPEED_10MB: 3953 return SPEED_10; 3954 case ICE_AQ_LINK_SPEED_UNKNOWN: 3955 default: 3956 return 0; 3957 } 3958 } 3959 3960 /** 3961 * ice_get_link_speed_kbps - get link speed in Kbps 3962 * @vsi: the VSI whose link speed is being queried 3963 * 3964 * Return current VSI link speed and 0 if the speed is unknown. 3965 */ 3966 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3967 { 3968 int speed_mbps; 3969 3970 speed_mbps = ice_get_link_speed_mbps(vsi); 3971 3972 return speed_mbps * 1000; 3973 } 3974 3975 /** 3976 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3977 * @vsi: VSI to be configured 3978 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3979 * 3980 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3981 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3982 * on TC 0. 3983 */ 3984 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3985 { 3986 struct ice_pf *pf = vsi->back; 3987 enum ice_status status; 3988 struct device *dev; 3989 int speed; 3990 3991 dev = ice_pf_to_dev(pf); 3992 if (!vsi->port_info) { 3993 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3994 vsi->idx, vsi->type); 3995 return -EINVAL; 3996 } 3997 3998 speed = ice_get_link_speed_kbps(vsi); 3999 if (min_tx_rate > (u64)speed) { 4000 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4001 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4002 speed); 4003 return -EINVAL; 4004 } 4005 4006 /* Configure min BW for VSI limit */ 4007 if (min_tx_rate) { 4008 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4009 ICE_MIN_BW, min_tx_rate); 4010 if (status) { 4011 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4012 min_tx_rate, ice_vsi_type_str(vsi->type), 4013 vsi->idx); 4014 return -EIO; 4015 } 4016 4017 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4018 min_tx_rate, ice_vsi_type_str(vsi->type)); 4019 } else { 4020 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4021 vsi->idx, 0, 4022 ICE_MIN_BW); 4023 if (status) { 4024 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4025 ice_vsi_type_str(vsi->type), vsi->idx); 4026 return -EIO; 4027 } 4028 4029 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4030 ice_vsi_type_str(vsi->type), vsi->idx); 4031 } 4032 4033 return 0; 4034 } 4035 4036 /** 4037 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4038 * @vsi: VSI to be configured 4039 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4040 * 4041 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4042 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4043 * on TC 0. 4044 */ 4045 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4046 { 4047 struct ice_pf *pf = vsi->back; 4048 enum ice_status status; 4049 struct device *dev; 4050 int speed; 4051 4052 dev = ice_pf_to_dev(pf); 4053 if (!vsi->port_info) { 4054 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4055 vsi->idx, vsi->type); 4056 return -EINVAL; 4057 } 4058 4059 speed = ice_get_link_speed_kbps(vsi); 4060 if (max_tx_rate > (u64)speed) { 4061 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4062 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4063 speed); 4064 return -EINVAL; 4065 } 4066 4067 /* Configure max BW for VSI limit */ 4068 if (max_tx_rate) { 4069 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4070 ICE_MAX_BW, max_tx_rate); 4071 if (status) { 4072 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4073 max_tx_rate, ice_vsi_type_str(vsi->type), 4074 vsi->idx); 4075 return -EIO; 4076 } 4077 4078 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4079 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4080 } else { 4081 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4082 vsi->idx, 0, 4083 ICE_MAX_BW); 4084 if (status) { 4085 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4086 ice_vsi_type_str(vsi->type), vsi->idx); 4087 return -EIO; 4088 } 4089 4090 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4091 ice_vsi_type_str(vsi->type), vsi->idx); 4092 } 4093 4094 return 0; 4095 } 4096 4097 /** 4098 * ice_set_link - turn on/off physical link 4099 * @vsi: VSI to modify physical link on 4100 * @ena: turn on/off physical link 4101 */ 4102 int ice_set_link(struct ice_vsi *vsi, bool ena) 4103 { 4104 struct device *dev = ice_pf_to_dev(vsi->back); 4105 struct ice_port_info *pi = vsi->port_info; 4106 struct ice_hw *hw = pi->hw; 4107 enum ice_status status; 4108 4109 if (vsi->type != ICE_VSI_PF) 4110 return -EINVAL; 4111 4112 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4113 4114 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4115 * this is not a fatal error, so print a warning message and return 4116 * a success code. Return an error if FW returns an error code other 4117 * than ICE_AQ_RC_EMODE 4118 */ 4119 if (status == ICE_ERR_AQ_ERROR) { 4120 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4121 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 4122 (ena ? "ON" : "OFF"), ice_stat_str(status), 4123 ice_aq_str(hw->adminq.sq_last_status)); 4124 } else if (status) { 4125 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 4126 (ena ? "ON" : "OFF"), ice_stat_str(status), 4127 ice_aq_str(hw->adminq.sq_last_status)); 4128 return -EIO; 4129 } 4130 4131 return 0; 4132 } 4133 4134 /** 4135 * ice_is_feature_supported 4136 * @pf: pointer to the struct ice_pf instance 4137 * @f: feature enum to be checked 4138 * 4139 * returns true if feature is supported, false otherwise 4140 */ 4141 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4142 { 4143 if (f < 0 || f >= ICE_F_MAX) 4144 return false; 4145 4146 return test_bit(f, pf->features); 4147 } 4148 4149 /** 4150 * ice_set_feature_support 4151 * @pf: pointer to the struct ice_pf instance 4152 * @f: feature enum to set 4153 */ 4154 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4155 { 4156 if (f < 0 || f >= ICE_F_MAX) 4157 return; 4158 4159 set_bit(f, pf->features); 4160 } 4161 4162 /** 4163 * ice_clear_feature_support 4164 * @pf: pointer to the struct ice_pf instance 4165 * @f: feature enum to clear 4166 */ 4167 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4168 { 4169 if (f < 0 || f >= ICE_F_MAX) 4170 return; 4171 4172 clear_bit(f, pf->features); 4173 } 4174 4175 /** 4176 * ice_init_feature_support 4177 * @pf: pointer to the struct ice_pf instance 4178 * 4179 * called during init to setup supported feature 4180 */ 4181 void ice_init_feature_support(struct ice_pf *pf) 4182 { 4183 switch (pf->hw.device_id) { 4184 case ICE_DEV_ID_E810C_BACKPLANE: 4185 case ICE_DEV_ID_E810C_QSFP: 4186 case ICE_DEV_ID_E810C_SFP: 4187 ice_set_feature_support(pf, ICE_F_DSCP); 4188 if (ice_is_e810t(&pf->hw)) 4189 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4190 break; 4191 default: 4192 break; 4193 } 4194 } 4195 4196 /** 4197 * ice_vsi_update_security - update security block in VSI 4198 * @vsi: pointer to VSI structure 4199 * @fill: function pointer to fill ctx 4200 */ 4201 int 4202 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4203 { 4204 struct ice_vsi_ctx ctx = { 0 }; 4205 4206 ctx.info = vsi->info; 4207 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4208 fill(&ctx); 4209 4210 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4211 return -ENODEV; 4212 4213 vsi->info = ctx.info; 4214 return 0; 4215 } 4216 4217 /** 4218 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4219 * @ctx: pointer to VSI ctx structure 4220 */ 4221 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4222 { 4223 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4224 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4225 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4226 } 4227 4228 /** 4229 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4230 * @ctx: pointer to VSI ctx structure 4231 */ 4232 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4233 { 4234 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4235 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4236 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4237 } 4238 4239 /** 4240 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4241 * @ctx: pointer to VSI ctx structure 4242 */ 4243 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4244 { 4245 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4246 } 4247 4248 /** 4249 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4250 * @ctx: pointer to VSI ctx structure 4251 */ 4252 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4253 { 4254 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4255 } 4256