1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 109 if (!vsi->af_xdp_zc_qps) 110 goto err_zc_qps; 111 112 return 0; 113 114 err_zc_qps: 115 devm_kfree(dev, vsi->q_vectors); 116 err_vectors: 117 devm_kfree(dev, vsi->rxq_map); 118 err_rxq_map: 119 devm_kfree(dev, vsi->txq_map); 120 err_txq_map: 121 devm_kfree(dev, vsi->rx_rings); 122 err_rings: 123 devm_kfree(dev, vsi->tx_rings); 124 return -ENOMEM; 125 } 126 127 /** 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 129 * @vsi: the VSI being configured 130 */ 131 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 132 { 133 switch (vsi->type) { 134 case ICE_VSI_PF: 135 case ICE_VSI_CTRL: 136 case ICE_VSI_LB: 137 /* a user could change the values of num_[tr]x_desc using 138 * ethtool -G so we should keep those values instead of 139 * overwriting them with the defaults. 140 */ 141 if (!vsi->num_rx_desc) 142 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 143 if (!vsi->num_tx_desc) 144 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 145 break; 146 default: 147 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 148 vsi->type); 149 break; 150 } 151 } 152 153 /** 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 155 * @vsi: the VSI being configured 156 * @vf_id: ID of the VF being configured 157 * 158 * Return 0 on success and a negative value on error 159 */ 160 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 161 { 162 struct ice_pf *pf = vsi->back; 163 struct ice_vf *vf = NULL; 164 165 if (vsi->type == ICE_VSI_VF) 166 vsi->vf_id = vf_id; 167 else 168 vsi->vf_id = ICE_INVAL_VFID; 169 170 switch (vsi->type) { 171 case ICE_VSI_PF: 172 if (vsi->req_txq) { 173 vsi->alloc_txq = vsi->req_txq; 174 vsi->num_txq = vsi->req_txq; 175 } else { 176 vsi->alloc_txq = min3(pf->num_lan_msix, 177 ice_get_avail_txq_count(pf), 178 (u16)num_online_cpus()); 179 } 180 181 pf->num_lan_tx = vsi->alloc_txq; 182 183 /* only 1 Rx queue unless RSS is enabled */ 184 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 185 vsi->alloc_rxq = 1; 186 } else { 187 if (vsi->req_rxq) { 188 vsi->alloc_rxq = vsi->req_rxq; 189 vsi->num_rxq = vsi->req_rxq; 190 } else { 191 vsi->alloc_rxq = min3(pf->num_lan_msix, 192 ice_get_avail_rxq_count(pf), 193 (u16)num_online_cpus()); 194 } 195 } 196 197 pf->num_lan_rx = vsi->alloc_rxq; 198 199 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 200 max_t(int, vsi->alloc_rxq, 201 vsi->alloc_txq)); 202 break; 203 case ICE_VSI_VF: 204 vf = &pf->vf[vsi->vf_id]; 205 if (vf->num_req_qs) 206 vf->num_vf_qs = vf->num_req_qs; 207 vsi->alloc_txq = vf->num_vf_qs; 208 vsi->alloc_rxq = vf->num_vf_qs; 209 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 210 * data queue interrupts). Since vsi->num_q_vectors is number 211 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 212 * original vector count 213 */ 214 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 215 break; 216 case ICE_VSI_CTRL: 217 vsi->alloc_txq = 1; 218 vsi->alloc_rxq = 1; 219 vsi->num_q_vectors = 1; 220 break; 221 case ICE_VSI_LB: 222 vsi->alloc_txq = 1; 223 vsi->alloc_rxq = 1; 224 break; 225 default: 226 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 227 break; 228 } 229 230 ice_vsi_set_num_desc(vsi); 231 } 232 233 /** 234 * ice_get_free_slot - get the next non-NULL location index in array 235 * @array: array to search 236 * @size: size of the array 237 * @curr: last known occupied index to be used as a search hint 238 * 239 * void * is being used to keep the functionality generic. This lets us use this 240 * function on any array of pointers. 241 */ 242 static int ice_get_free_slot(void *array, int size, int curr) 243 { 244 int **tmp_array = (int **)array; 245 int next; 246 247 if (curr < (size - 1) && !tmp_array[curr + 1]) { 248 next = curr + 1; 249 } else { 250 int i = 0; 251 252 while ((i < size) && (tmp_array[i])) 253 i++; 254 if (i == size) 255 next = ICE_NO_VSI; 256 else 257 next = i; 258 } 259 return next; 260 } 261 262 /** 263 * ice_vsi_delete - delete a VSI from the switch 264 * @vsi: pointer to VSI being removed 265 */ 266 static void ice_vsi_delete(struct ice_vsi *vsi) 267 { 268 struct ice_pf *pf = vsi->back; 269 struct ice_vsi_ctx *ctxt; 270 enum ice_status status; 271 272 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 273 if (!ctxt) 274 return; 275 276 if (vsi->type == ICE_VSI_VF) 277 ctxt->vf_num = vsi->vf_id; 278 ctxt->vsi_num = vsi->vsi_num; 279 280 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 281 282 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 283 if (status) 284 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 285 vsi->vsi_num, ice_stat_str(status)); 286 287 kfree(ctxt); 288 } 289 290 /** 291 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 292 * @vsi: pointer to VSI being cleared 293 */ 294 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 295 { 296 struct ice_pf *pf = vsi->back; 297 struct device *dev; 298 299 dev = ice_pf_to_dev(pf); 300 301 if (vsi->af_xdp_zc_qps) { 302 bitmap_free(vsi->af_xdp_zc_qps); 303 vsi->af_xdp_zc_qps = NULL; 304 } 305 /* free the ring and vector containers */ 306 if (vsi->q_vectors) { 307 devm_kfree(dev, vsi->q_vectors); 308 vsi->q_vectors = NULL; 309 } 310 if (vsi->tx_rings) { 311 devm_kfree(dev, vsi->tx_rings); 312 vsi->tx_rings = NULL; 313 } 314 if (vsi->rx_rings) { 315 devm_kfree(dev, vsi->rx_rings); 316 vsi->rx_rings = NULL; 317 } 318 if (vsi->txq_map) { 319 devm_kfree(dev, vsi->txq_map); 320 vsi->txq_map = NULL; 321 } 322 if (vsi->rxq_map) { 323 devm_kfree(dev, vsi->rxq_map); 324 vsi->rxq_map = NULL; 325 } 326 } 327 328 /** 329 * ice_vsi_clear - clean up and deallocate the provided VSI 330 * @vsi: pointer to VSI being cleared 331 * 332 * This deallocates the VSI's queue resources, removes it from the PF's 333 * VSI array if necessary, and deallocates the VSI 334 * 335 * Returns 0 on success, negative on failure 336 */ 337 static int ice_vsi_clear(struct ice_vsi *vsi) 338 { 339 struct ice_pf *pf = NULL; 340 struct device *dev; 341 342 if (!vsi) 343 return 0; 344 345 if (!vsi->back) 346 return -EINVAL; 347 348 pf = vsi->back; 349 dev = ice_pf_to_dev(pf); 350 351 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 352 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 353 return -EINVAL; 354 } 355 356 mutex_lock(&pf->sw_mutex); 357 /* updates the PF for this cleared VSI */ 358 359 pf->vsi[vsi->idx] = NULL; 360 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 361 pf->next_vsi = vsi->idx; 362 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 363 vsi->vf_id != ICE_INVAL_VFID) 364 pf->next_vsi = vsi->idx; 365 366 ice_vsi_free_arrays(vsi); 367 mutex_unlock(&pf->sw_mutex); 368 devm_kfree(dev, vsi); 369 370 return 0; 371 } 372 373 /** 374 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 375 * @irq: interrupt number 376 * @data: pointer to a q_vector 377 */ 378 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 379 { 380 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 381 382 if (!q_vector->tx.ring) 383 return IRQ_HANDLED; 384 385 #define FDIR_RX_DESC_CLEAN_BUDGET 64 386 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 387 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 388 389 return IRQ_HANDLED; 390 } 391 392 /** 393 * ice_msix_clean_rings - MSIX mode Interrupt Handler 394 * @irq: interrupt number 395 * @data: pointer to a q_vector 396 */ 397 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 398 { 399 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 400 401 if (!q_vector->tx.ring && !q_vector->rx.ring) 402 return IRQ_HANDLED; 403 404 q_vector->total_events++; 405 406 napi_schedule(&q_vector->napi); 407 408 return IRQ_HANDLED; 409 } 410 411 /** 412 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 413 * @pf: board private structure 414 * @vsi_type: type of VSI 415 * @vf_id: ID of the VF being configured 416 * 417 * returns a pointer to a VSI on success, NULL on failure. 418 */ 419 static struct ice_vsi * 420 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 421 { 422 struct device *dev = ice_pf_to_dev(pf); 423 struct ice_vsi *vsi = NULL; 424 425 /* Need to protect the allocation of the VSIs at the PF level */ 426 mutex_lock(&pf->sw_mutex); 427 428 /* If we have already allocated our maximum number of VSIs, 429 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 430 * is available to be populated 431 */ 432 if (pf->next_vsi == ICE_NO_VSI) { 433 dev_dbg(dev, "out of VSI slots!\n"); 434 goto unlock_pf; 435 } 436 437 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 438 if (!vsi) 439 goto unlock_pf; 440 441 vsi->type = vsi_type; 442 vsi->back = pf; 443 set_bit(ICE_VSI_DOWN, vsi->state); 444 445 if (vsi_type == ICE_VSI_VF) 446 ice_vsi_set_num_qs(vsi, vf_id); 447 else 448 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 449 450 switch (vsi->type) { 451 case ICE_VSI_PF: 452 if (ice_vsi_alloc_arrays(vsi)) 453 goto err_rings; 454 455 /* Setup default MSIX irq handler for VSI */ 456 vsi->irq_handler = ice_msix_clean_rings; 457 break; 458 case ICE_VSI_CTRL: 459 if (ice_vsi_alloc_arrays(vsi)) 460 goto err_rings; 461 462 /* Setup ctrl VSI MSIX irq handler */ 463 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 464 break; 465 case ICE_VSI_VF: 466 if (ice_vsi_alloc_arrays(vsi)) 467 goto err_rings; 468 break; 469 case ICE_VSI_LB: 470 if (ice_vsi_alloc_arrays(vsi)) 471 goto err_rings; 472 break; 473 default: 474 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 475 goto unlock_pf; 476 } 477 478 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 479 /* Use the last VSI slot as the index for PF control VSI */ 480 vsi->idx = pf->num_alloc_vsi - 1; 481 pf->ctrl_vsi_idx = vsi->idx; 482 pf->vsi[vsi->idx] = vsi; 483 } else { 484 /* fill slot and make note of the index */ 485 vsi->idx = pf->next_vsi; 486 pf->vsi[pf->next_vsi] = vsi; 487 488 /* prepare pf->next_vsi for next use */ 489 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 490 pf->next_vsi); 491 } 492 493 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 494 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 495 goto unlock_pf; 496 497 err_rings: 498 devm_kfree(dev, vsi); 499 vsi = NULL; 500 unlock_pf: 501 mutex_unlock(&pf->sw_mutex); 502 return vsi; 503 } 504 505 /** 506 * ice_alloc_fd_res - Allocate FD resource for a VSI 507 * @vsi: pointer to the ice_vsi 508 * 509 * This allocates the FD resources 510 * 511 * Returns 0 on success, -EPERM on no-op or -EIO on failure 512 */ 513 static int ice_alloc_fd_res(struct ice_vsi *vsi) 514 { 515 struct ice_pf *pf = vsi->back; 516 u32 g_val, b_val; 517 518 /* Flow Director filters are only allocated/assigned to the PF VSI which 519 * passes the traffic. The CTRL VSI is only used to add/delete filters 520 * so we don't allocate resources to it 521 */ 522 523 /* FD filters from guaranteed pool per VSI */ 524 g_val = pf->hw.func_caps.fd_fltr_guar; 525 if (!g_val) 526 return -EPERM; 527 528 /* FD filters from best effort pool */ 529 b_val = pf->hw.func_caps.fd_fltr_best_effort; 530 if (!b_val) 531 return -EPERM; 532 533 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 534 return -EPERM; 535 536 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 537 return -EPERM; 538 539 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 540 541 /* each VSI gets same "best_effort" quota */ 542 vsi->num_bfltr = b_val; 543 544 if (vsi->type == ICE_VSI_VF) { 545 vsi->num_gfltr = 0; 546 547 /* each VSI gets same "best_effort" quota */ 548 vsi->num_bfltr = b_val; 549 } 550 551 return 0; 552 } 553 554 /** 555 * ice_vsi_get_qs - Assign queues from PF to VSI 556 * @vsi: the VSI to assign queues to 557 * 558 * Returns 0 on success and a negative value on error 559 */ 560 static int ice_vsi_get_qs(struct ice_vsi *vsi) 561 { 562 struct ice_pf *pf = vsi->back; 563 struct ice_qs_cfg tx_qs_cfg = { 564 .qs_mutex = &pf->avail_q_mutex, 565 .pf_map = pf->avail_txqs, 566 .pf_map_size = pf->max_pf_txqs, 567 .q_count = vsi->alloc_txq, 568 .scatter_count = ICE_MAX_SCATTER_TXQS, 569 .vsi_map = vsi->txq_map, 570 .vsi_map_offset = 0, 571 .mapping_mode = ICE_VSI_MAP_CONTIG 572 }; 573 struct ice_qs_cfg rx_qs_cfg = { 574 .qs_mutex = &pf->avail_q_mutex, 575 .pf_map = pf->avail_rxqs, 576 .pf_map_size = pf->max_pf_rxqs, 577 .q_count = vsi->alloc_rxq, 578 .scatter_count = ICE_MAX_SCATTER_RXQS, 579 .vsi_map = vsi->rxq_map, 580 .vsi_map_offset = 0, 581 .mapping_mode = ICE_VSI_MAP_CONTIG 582 }; 583 int ret; 584 585 ret = __ice_vsi_get_qs(&tx_qs_cfg); 586 if (ret) 587 return ret; 588 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 589 590 ret = __ice_vsi_get_qs(&rx_qs_cfg); 591 if (ret) 592 return ret; 593 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 594 595 return 0; 596 } 597 598 /** 599 * ice_vsi_put_qs - Release queues from VSI to PF 600 * @vsi: the VSI that is going to release queues 601 */ 602 static void ice_vsi_put_qs(struct ice_vsi *vsi) 603 { 604 struct ice_pf *pf = vsi->back; 605 int i; 606 607 mutex_lock(&pf->avail_q_mutex); 608 609 for (i = 0; i < vsi->alloc_txq; i++) { 610 clear_bit(vsi->txq_map[i], pf->avail_txqs); 611 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 612 } 613 614 for (i = 0; i < vsi->alloc_rxq; i++) { 615 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 616 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 617 } 618 619 mutex_unlock(&pf->avail_q_mutex); 620 } 621 622 /** 623 * ice_is_safe_mode 624 * @pf: pointer to the PF struct 625 * 626 * returns true if driver is in safe mode, false otherwise 627 */ 628 bool ice_is_safe_mode(struct ice_pf *pf) 629 { 630 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 631 } 632 633 /** 634 * ice_is_aux_ena 635 * @pf: pointer to the PF struct 636 * 637 * returns true if AUX devices/drivers are supported, false otherwise 638 */ 639 bool ice_is_aux_ena(struct ice_pf *pf) 640 { 641 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 642 } 643 644 /** 645 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 646 * @vsi: the VSI being cleaned up 647 * 648 * This function deletes RSS input set for all flows that were configured 649 * for this VSI 650 */ 651 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 652 { 653 struct ice_pf *pf = vsi->back; 654 enum ice_status status; 655 656 if (ice_is_safe_mode(pf)) 657 return; 658 659 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 660 if (status) 661 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 662 vsi->vsi_num, ice_stat_str(status)); 663 } 664 665 /** 666 * ice_rss_clean - Delete RSS related VSI structures and configuration 667 * @vsi: the VSI being removed 668 */ 669 static void ice_rss_clean(struct ice_vsi *vsi) 670 { 671 struct ice_pf *pf = vsi->back; 672 struct device *dev; 673 674 dev = ice_pf_to_dev(pf); 675 676 if (vsi->rss_hkey_user) 677 devm_kfree(dev, vsi->rss_hkey_user); 678 if (vsi->rss_lut_user) 679 devm_kfree(dev, vsi->rss_lut_user); 680 681 ice_vsi_clean_rss_flow_fld(vsi); 682 /* remove RSS replay list */ 683 if (!ice_is_safe_mode(pf)) 684 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 685 } 686 687 /** 688 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 689 * @vsi: the VSI being configured 690 */ 691 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 692 { 693 struct ice_hw_common_caps *cap; 694 struct ice_pf *pf = vsi->back; 695 696 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 697 vsi->rss_size = 1; 698 return; 699 } 700 701 cap = &pf->hw.func_caps.common_cap; 702 switch (vsi->type) { 703 case ICE_VSI_PF: 704 /* PF VSI will inherit RSS instance of PF */ 705 vsi->rss_table_size = (u16)cap->rss_table_size; 706 vsi->rss_size = min_t(u16, num_online_cpus(), 707 BIT(cap->rss_table_entry_width)); 708 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 709 break; 710 case ICE_VSI_VF: 711 /* VF VSI will get a small RSS table. 712 * For VSI_LUT, LUT size should be set to 64 bytes. 713 */ 714 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 715 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 716 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 717 break; 718 case ICE_VSI_LB: 719 break; 720 default: 721 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 722 ice_vsi_type_str(vsi->type)); 723 break; 724 } 725 } 726 727 /** 728 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 729 * @ctxt: the VSI context being set 730 * 731 * This initializes a default VSI context for all sections except the Queues. 732 */ 733 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 734 { 735 u32 table = 0; 736 737 memset(&ctxt->info, 0, sizeof(ctxt->info)); 738 /* VSI's should be allocated from shared pool */ 739 ctxt->alloc_from_pool = true; 740 /* Src pruning enabled by default */ 741 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 742 /* Traffic from VSI can be sent to LAN */ 743 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 744 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 745 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 746 * packets untagged/tagged. 747 */ 748 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 749 ICE_AQ_VSI_VLAN_MODE_M) >> 750 ICE_AQ_VSI_VLAN_MODE_S); 751 /* Have 1:1 UP mapping for both ingress/egress tables */ 752 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 753 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 754 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 755 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 756 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 757 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 758 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 759 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 760 ctxt->info.ingress_table = cpu_to_le32(table); 761 ctxt->info.egress_table = cpu_to_le32(table); 762 /* Have 1:1 UP mapping for outer to inner UP table */ 763 ctxt->info.outer_up_table = cpu_to_le32(table); 764 /* No Outer tag support outer_tag_flags remains to zero */ 765 } 766 767 /** 768 * ice_vsi_setup_q_map - Setup a VSI queue map 769 * @vsi: the VSI being configured 770 * @ctxt: VSI context structure 771 */ 772 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 773 { 774 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 775 u16 num_txq_per_tc, num_rxq_per_tc; 776 u16 qcount_tx = vsi->alloc_txq; 777 u16 qcount_rx = vsi->alloc_rxq; 778 bool ena_tc0 = false; 779 u8 netdev_tc = 0; 780 int i; 781 782 /* at least TC0 should be enabled by default */ 783 if (vsi->tc_cfg.numtc) { 784 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 785 ena_tc0 = true; 786 } else { 787 ena_tc0 = true; 788 } 789 790 if (ena_tc0) { 791 vsi->tc_cfg.numtc++; 792 vsi->tc_cfg.ena_tc |= 1; 793 } 794 795 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 796 if (!num_rxq_per_tc) 797 num_rxq_per_tc = 1; 798 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 799 if (!num_txq_per_tc) 800 num_txq_per_tc = 1; 801 802 /* find the (rounded up) power-of-2 of qcount */ 803 pow = (u16)order_base_2(num_rxq_per_tc); 804 805 /* TC mapping is a function of the number of Rx queues assigned to the 806 * VSI for each traffic class and the offset of these queues. 807 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 808 * queues allocated to TC0. No:of queues is a power-of-2. 809 * 810 * If TC is not enabled, the queue offset is set to 0, and allocate one 811 * queue, this way, traffic for the given TC will be sent to the default 812 * queue. 813 * 814 * Setup number and offset of Rx queues for all TCs for the VSI 815 */ 816 ice_for_each_traffic_class(i) { 817 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 818 /* TC is not enabled */ 819 vsi->tc_cfg.tc_info[i].qoffset = 0; 820 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 821 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 822 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 823 ctxt->info.tc_mapping[i] = 0; 824 continue; 825 } 826 827 /* TC is enabled */ 828 vsi->tc_cfg.tc_info[i].qoffset = offset; 829 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 830 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 831 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 832 833 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 834 ICE_AQ_VSI_TC_Q_OFFSET_M) | 835 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 836 ICE_AQ_VSI_TC_Q_NUM_M); 837 offset += num_rxq_per_tc; 838 tx_count += num_txq_per_tc; 839 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 840 } 841 842 /* if offset is non-zero, means it is calculated correctly based on 843 * enabled TCs for a given VSI otherwise qcount_rx will always 844 * be correct and non-zero because it is based off - VSI's 845 * allocated Rx queues which is at least 1 (hence qcount_tx will be 846 * at least 1) 847 */ 848 if (offset) 849 vsi->num_rxq = offset; 850 else 851 vsi->num_rxq = num_rxq_per_tc; 852 853 vsi->num_txq = tx_count; 854 855 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 856 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 857 /* since there is a chance that num_rxq could have been changed 858 * in the above for loop, make num_txq equal to num_rxq. 859 */ 860 vsi->num_txq = vsi->num_rxq; 861 } 862 863 /* Rx queue mapping */ 864 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 865 /* q_mapping buffer holds the info for the first queue allocated for 866 * this VSI in the PF space and also the number of queues associated 867 * with this VSI. 868 */ 869 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 870 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 871 } 872 873 /** 874 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 875 * @ctxt: the VSI context being set 876 * @vsi: the VSI being configured 877 */ 878 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 879 { 880 u8 dflt_q_group, dflt_q_prio; 881 u16 dflt_q, report_q, val; 882 883 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 884 vsi->type != ICE_VSI_VF) 885 return; 886 887 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 888 ctxt->info.valid_sections |= cpu_to_le16(val); 889 dflt_q = 0; 890 dflt_q_group = 0; 891 report_q = 0; 892 dflt_q_prio = 0; 893 894 /* enable flow director filtering/programming */ 895 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 896 ctxt->info.fd_options = cpu_to_le16(val); 897 /* max of allocated flow director filters */ 898 ctxt->info.max_fd_fltr_dedicated = 899 cpu_to_le16(vsi->num_gfltr); 900 /* max of shared flow director filters any VSI may program */ 901 ctxt->info.max_fd_fltr_shared = 902 cpu_to_le16(vsi->num_bfltr); 903 /* default queue index within the VSI of the default FD */ 904 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 905 ICE_AQ_VSI_FD_DEF_Q_M); 906 /* target queue or queue group to the FD filter */ 907 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 908 ICE_AQ_VSI_FD_DEF_GRP_M); 909 ctxt->info.fd_def_q = cpu_to_le16(val); 910 /* queue index on which FD filter completion is reported */ 911 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 912 ICE_AQ_VSI_FD_REPORT_Q_M); 913 /* priority of the default qindex action */ 914 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 915 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 916 ctxt->info.fd_report_opt = cpu_to_le16(val); 917 } 918 919 /** 920 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 921 * @ctxt: the VSI context being set 922 * @vsi: the VSI being configured 923 */ 924 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 925 { 926 u8 lut_type, hash_type; 927 struct device *dev; 928 struct ice_pf *pf; 929 930 pf = vsi->back; 931 dev = ice_pf_to_dev(pf); 932 933 switch (vsi->type) { 934 case ICE_VSI_PF: 935 /* PF VSI will inherit RSS instance of PF */ 936 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 937 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 938 break; 939 case ICE_VSI_VF: 940 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 941 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 942 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 943 break; 944 default: 945 dev_dbg(dev, "Unsupported VSI type %s\n", 946 ice_vsi_type_str(vsi->type)); 947 return; 948 } 949 950 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 951 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 952 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 953 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 954 } 955 956 /** 957 * ice_vsi_init - Create and initialize a VSI 958 * @vsi: the VSI being configured 959 * @init_vsi: is this call creating a VSI 960 * 961 * This initializes a VSI context depending on the VSI type to be added and 962 * passes it down to the add_vsi aq command to create a new VSI. 963 */ 964 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 965 { 966 struct ice_pf *pf = vsi->back; 967 struct ice_hw *hw = &pf->hw; 968 struct ice_vsi_ctx *ctxt; 969 struct device *dev; 970 int ret = 0; 971 972 dev = ice_pf_to_dev(pf); 973 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 974 if (!ctxt) 975 return -ENOMEM; 976 977 switch (vsi->type) { 978 case ICE_VSI_CTRL: 979 case ICE_VSI_LB: 980 case ICE_VSI_PF: 981 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 982 break; 983 case ICE_VSI_VF: 984 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 985 /* VF number here is the absolute VF number (0-255) */ 986 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 987 break; 988 default: 989 ret = -ENODEV; 990 goto out; 991 } 992 993 ice_set_dflt_vsi_ctx(ctxt); 994 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 995 ice_set_fd_vsi_ctx(ctxt, vsi); 996 /* if the switch is in VEB mode, allow VSI loopback */ 997 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 998 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 999 1000 /* Set LUT type and HASH type if RSS is enabled */ 1001 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1002 vsi->type != ICE_VSI_CTRL) { 1003 ice_set_rss_vsi_ctx(ctxt, vsi); 1004 /* if updating VSI context, make sure to set valid_section: 1005 * to indicate which section of VSI context being updated 1006 */ 1007 if (!init_vsi) 1008 ctxt->info.valid_sections |= 1009 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1010 } 1011 1012 ctxt->info.sw_id = vsi->port_info->sw_id; 1013 ice_vsi_setup_q_map(vsi, ctxt); 1014 if (!init_vsi) /* means VSI being updated */ 1015 /* must to indicate which section of VSI context are 1016 * being modified 1017 */ 1018 ctxt->info.valid_sections |= 1019 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1020 1021 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1022 * respectively 1023 */ 1024 if (vsi->type == ICE_VSI_VF) { 1025 ctxt->info.valid_sections |= 1026 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1027 if (pf->vf[vsi->vf_id].spoofchk) { 1028 ctxt->info.sec_flags |= 1029 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1030 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1031 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1032 } else { 1033 ctxt->info.sec_flags &= 1034 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1035 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1036 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1037 } 1038 } 1039 1040 /* Allow control frames out of main VSI */ 1041 if (vsi->type == ICE_VSI_PF) { 1042 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1043 ctxt->info.valid_sections |= 1044 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1045 } 1046 1047 if (init_vsi) { 1048 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1049 if (ret) { 1050 dev_err(dev, "Add VSI failed, err %d\n", ret); 1051 ret = -EIO; 1052 goto out; 1053 } 1054 } else { 1055 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1056 if (ret) { 1057 dev_err(dev, "Update VSI failed, err %d\n", ret); 1058 ret = -EIO; 1059 goto out; 1060 } 1061 } 1062 1063 /* keep context for update VSI operations */ 1064 vsi->info = ctxt->info; 1065 1066 /* record VSI number returned */ 1067 vsi->vsi_num = ctxt->vsi_num; 1068 1069 out: 1070 kfree(ctxt); 1071 return ret; 1072 } 1073 1074 /** 1075 * ice_free_res - free a block of resources 1076 * @res: pointer to the resource 1077 * @index: starting index previously returned by ice_get_res 1078 * @id: identifier to track owner 1079 * 1080 * Returns number of resources freed 1081 */ 1082 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1083 { 1084 int count = 0; 1085 int i; 1086 1087 if (!res || index >= res->end) 1088 return -EINVAL; 1089 1090 id |= ICE_RES_VALID_BIT; 1091 for (i = index; i < res->end && res->list[i] == id; i++) { 1092 res->list[i] = 0; 1093 count++; 1094 } 1095 1096 return count; 1097 } 1098 1099 /** 1100 * ice_search_res - Search the tracker for a block of resources 1101 * @res: pointer to the resource 1102 * @needed: size of the block needed 1103 * @id: identifier to track owner 1104 * 1105 * Returns the base item index of the block, or -ENOMEM for error 1106 */ 1107 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1108 { 1109 u16 start = 0, end = 0; 1110 1111 if (needed > res->end) 1112 return -ENOMEM; 1113 1114 id |= ICE_RES_VALID_BIT; 1115 1116 do { 1117 /* skip already allocated entries */ 1118 if (res->list[end++] & ICE_RES_VALID_BIT) { 1119 start = end; 1120 if ((start + needed) > res->end) 1121 break; 1122 } 1123 1124 if (end == (start + needed)) { 1125 int i = start; 1126 1127 /* there was enough, so assign it to the requestor */ 1128 while (i != end) 1129 res->list[i++] = id; 1130 1131 return start; 1132 } 1133 } while (end < res->end); 1134 1135 return -ENOMEM; 1136 } 1137 1138 /** 1139 * ice_get_free_res_count - Get free count from a resource tracker 1140 * @res: Resource tracker instance 1141 */ 1142 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1143 { 1144 u16 i, count = 0; 1145 1146 for (i = 0; i < res->end; i++) 1147 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1148 count++; 1149 1150 return count; 1151 } 1152 1153 /** 1154 * ice_get_res - get a block of resources 1155 * @pf: board private structure 1156 * @res: pointer to the resource 1157 * @needed: size of the block needed 1158 * @id: identifier to track owner 1159 * 1160 * Returns the base item index of the block, or negative for error 1161 */ 1162 int 1163 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1164 { 1165 if (!res || !pf) 1166 return -EINVAL; 1167 1168 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1169 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1170 needed, res->num_entries, id); 1171 return -EINVAL; 1172 } 1173 1174 return ice_search_res(res, needed, id); 1175 } 1176 1177 /** 1178 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1179 * @vsi: ptr to the VSI 1180 * 1181 * This should only be called after ice_vsi_alloc() which allocates the 1182 * corresponding SW VSI structure and initializes num_queue_pairs for the 1183 * newly allocated VSI. 1184 * 1185 * Returns 0 on success or negative on failure 1186 */ 1187 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1188 { 1189 struct ice_pf *pf = vsi->back; 1190 struct device *dev; 1191 u16 num_q_vectors; 1192 int base; 1193 1194 dev = ice_pf_to_dev(pf); 1195 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1196 if (vsi->type == ICE_VSI_VF) 1197 return 0; 1198 1199 if (vsi->base_vector) { 1200 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1201 vsi->vsi_num, vsi->base_vector); 1202 return -EEXIST; 1203 } 1204 1205 num_q_vectors = vsi->num_q_vectors; 1206 /* reserve slots from OS requested IRQs */ 1207 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1208 struct ice_vf *vf; 1209 int i; 1210 1211 ice_for_each_vf(pf, i) { 1212 vf = &pf->vf[i]; 1213 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1214 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1215 break; 1216 } 1217 } 1218 if (i == pf->num_alloc_vfs) 1219 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1220 ICE_RES_VF_CTRL_VEC_ID); 1221 } else { 1222 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1223 vsi->idx); 1224 } 1225 1226 if (base < 0) { 1227 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1228 ice_get_free_res_count(pf->irq_tracker), 1229 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1230 return -ENOENT; 1231 } 1232 vsi->base_vector = (u16)base; 1233 pf->num_avail_sw_msix -= num_q_vectors; 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1240 * @vsi: the VSI having rings deallocated 1241 */ 1242 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1243 { 1244 int i; 1245 1246 /* Avoid stale references by clearing map from vector to ring */ 1247 if (vsi->q_vectors) { 1248 ice_for_each_q_vector(vsi, i) { 1249 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1250 1251 if (q_vector) { 1252 q_vector->tx.ring = NULL; 1253 q_vector->rx.ring = NULL; 1254 } 1255 } 1256 } 1257 1258 if (vsi->tx_rings) { 1259 for (i = 0; i < vsi->alloc_txq; i++) { 1260 if (vsi->tx_rings[i]) { 1261 kfree_rcu(vsi->tx_rings[i], rcu); 1262 WRITE_ONCE(vsi->tx_rings[i], NULL); 1263 } 1264 } 1265 } 1266 if (vsi->rx_rings) { 1267 for (i = 0; i < vsi->alloc_rxq; i++) { 1268 if (vsi->rx_rings[i]) { 1269 kfree_rcu(vsi->rx_rings[i], rcu); 1270 WRITE_ONCE(vsi->rx_rings[i], NULL); 1271 } 1272 } 1273 } 1274 } 1275 1276 /** 1277 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1278 * @vsi: VSI which is having rings allocated 1279 */ 1280 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1281 { 1282 struct ice_pf *pf = vsi->back; 1283 struct device *dev; 1284 u16 i; 1285 1286 dev = ice_pf_to_dev(pf); 1287 /* Allocate Tx rings */ 1288 for (i = 0; i < vsi->alloc_txq; i++) { 1289 struct ice_ring *ring; 1290 1291 /* allocate with kzalloc(), free with kfree_rcu() */ 1292 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1293 1294 if (!ring) 1295 goto err_out; 1296 1297 ring->q_index = i; 1298 ring->reg_idx = vsi->txq_map[i]; 1299 ring->ring_active = false; 1300 ring->vsi = vsi; 1301 ring->dev = dev; 1302 ring->count = vsi->num_tx_desc; 1303 WRITE_ONCE(vsi->tx_rings[i], ring); 1304 } 1305 1306 /* Allocate Rx rings */ 1307 for (i = 0; i < vsi->alloc_rxq; i++) { 1308 struct ice_ring *ring; 1309 1310 /* allocate with kzalloc(), free with kfree_rcu() */ 1311 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1312 if (!ring) 1313 goto err_out; 1314 1315 ring->q_index = i; 1316 ring->reg_idx = vsi->rxq_map[i]; 1317 ring->ring_active = false; 1318 ring->vsi = vsi; 1319 ring->netdev = vsi->netdev; 1320 ring->dev = dev; 1321 ring->count = vsi->num_rx_desc; 1322 WRITE_ONCE(vsi->rx_rings[i], ring); 1323 } 1324 1325 return 0; 1326 1327 err_out: 1328 ice_vsi_clear_rings(vsi); 1329 return -ENOMEM; 1330 } 1331 1332 /** 1333 * ice_vsi_manage_rss_lut - disable/enable RSS 1334 * @vsi: the VSI being changed 1335 * @ena: boolean value indicating if this is an enable or disable request 1336 * 1337 * In the event of disable request for RSS, this function will zero out RSS 1338 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1339 * LUT. 1340 */ 1341 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1342 { 1343 u8 *lut; 1344 1345 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1346 if (!lut) 1347 return; 1348 1349 if (ena) { 1350 if (vsi->rss_lut_user) 1351 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1352 else 1353 ice_fill_rss_lut(lut, vsi->rss_table_size, 1354 vsi->rss_size); 1355 } 1356 1357 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1358 kfree(lut); 1359 } 1360 1361 /** 1362 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1363 * @vsi: VSI to be configured 1364 */ 1365 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1366 { 1367 struct ice_pf *pf = vsi->back; 1368 struct device *dev; 1369 u8 *lut, *key; 1370 int err; 1371 1372 dev = ice_pf_to_dev(pf); 1373 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1374 1375 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1376 if (!lut) 1377 return -ENOMEM; 1378 1379 if (vsi->rss_lut_user) 1380 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1381 else 1382 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1383 1384 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1385 if (err) { 1386 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1387 goto ice_vsi_cfg_rss_exit; 1388 } 1389 1390 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1391 if (!key) { 1392 err = -ENOMEM; 1393 goto ice_vsi_cfg_rss_exit; 1394 } 1395 1396 if (vsi->rss_hkey_user) 1397 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1398 else 1399 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1400 1401 err = ice_set_rss_key(vsi, key); 1402 if (err) 1403 dev_err(dev, "set_rss_key failed, error %d\n", err); 1404 1405 kfree(key); 1406 ice_vsi_cfg_rss_exit: 1407 kfree(lut); 1408 return err; 1409 } 1410 1411 /** 1412 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1413 * @vsi: VSI to be configured 1414 * 1415 * This function will only be called during the VF VSI setup. Upon successful 1416 * completion of package download, this function will configure default RSS 1417 * input sets for VF VSI. 1418 */ 1419 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1420 { 1421 struct ice_pf *pf = vsi->back; 1422 enum ice_status status; 1423 struct device *dev; 1424 1425 dev = ice_pf_to_dev(pf); 1426 if (ice_is_safe_mode(pf)) { 1427 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1428 vsi->vsi_num); 1429 return; 1430 } 1431 1432 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1433 if (status) 1434 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1435 vsi->vsi_num, ice_stat_str(status)); 1436 } 1437 1438 /** 1439 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1440 * @vsi: VSI to be configured 1441 * 1442 * This function will only be called after successful download package call 1443 * during initialization of PF. Since the downloaded package will erase the 1444 * RSS section, this function will configure RSS input sets for different 1445 * flow types. The last profile added has the highest priority, therefore 2 1446 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1447 * (i.e. IPv4 src/dst TCP src/dst port). 1448 */ 1449 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1450 { 1451 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1452 struct ice_pf *pf = vsi->back; 1453 struct ice_hw *hw = &pf->hw; 1454 enum ice_status status; 1455 struct device *dev; 1456 1457 dev = ice_pf_to_dev(pf); 1458 if (ice_is_safe_mode(pf)) { 1459 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1460 vsi_num); 1461 return; 1462 } 1463 /* configure RSS for IPv4 with input set IP src/dst */ 1464 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1465 ICE_FLOW_SEG_HDR_IPV4); 1466 if (status) 1467 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1468 vsi_num, ice_stat_str(status)); 1469 1470 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1471 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1472 ICE_FLOW_SEG_HDR_IPV6); 1473 if (status) 1474 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1475 vsi_num, ice_stat_str(status)); 1476 1477 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1478 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1479 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1480 if (status) 1481 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1482 vsi_num, ice_stat_str(status)); 1483 1484 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1485 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1486 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1487 if (status) 1488 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1489 vsi_num, ice_stat_str(status)); 1490 1491 /* configure RSS for sctp4 with input set IP src/dst */ 1492 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1493 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1494 if (status) 1495 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1496 vsi_num, ice_stat_str(status)); 1497 1498 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1499 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1500 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1501 if (status) 1502 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1503 vsi_num, ice_stat_str(status)); 1504 1505 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1506 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1507 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1508 if (status) 1509 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1510 vsi_num, ice_stat_str(status)); 1511 1512 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1513 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1514 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1515 if (status) 1516 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1517 vsi_num, ice_stat_str(status)); 1518 } 1519 1520 /** 1521 * ice_pf_state_is_nominal - checks the PF for nominal state 1522 * @pf: pointer to PF to check 1523 * 1524 * Check the PF's state for a collection of bits that would indicate 1525 * the PF is in a state that would inhibit normal operation for 1526 * driver functionality. 1527 * 1528 * Returns true if PF is in a nominal state, false otherwise 1529 */ 1530 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1531 { 1532 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1533 1534 if (!pf) 1535 return false; 1536 1537 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1538 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1539 return false; 1540 1541 return true; 1542 } 1543 1544 /** 1545 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1546 * @vsi: the VSI to be updated 1547 */ 1548 void ice_update_eth_stats(struct ice_vsi *vsi) 1549 { 1550 struct ice_eth_stats *prev_es, *cur_es; 1551 struct ice_hw *hw = &vsi->back->hw; 1552 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1553 1554 prev_es = &vsi->eth_stats_prev; 1555 cur_es = &vsi->eth_stats; 1556 1557 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1558 &prev_es->rx_bytes, &cur_es->rx_bytes); 1559 1560 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1561 &prev_es->rx_unicast, &cur_es->rx_unicast); 1562 1563 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1564 &prev_es->rx_multicast, &cur_es->rx_multicast); 1565 1566 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1567 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1568 1569 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1570 &prev_es->rx_discards, &cur_es->rx_discards); 1571 1572 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1573 &prev_es->tx_bytes, &cur_es->tx_bytes); 1574 1575 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1576 &prev_es->tx_unicast, &cur_es->tx_unicast); 1577 1578 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1579 &prev_es->tx_multicast, &cur_es->tx_multicast); 1580 1581 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1582 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1583 1584 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1585 &prev_es->tx_errors, &cur_es->tx_errors); 1586 1587 vsi->stat_offsets_loaded = true; 1588 } 1589 1590 /** 1591 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1592 * @vsi: the VSI being configured 1593 * @vid: VLAN ID to be added 1594 * @action: filter action to be performed on match 1595 */ 1596 int 1597 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1598 { 1599 struct ice_pf *pf = vsi->back; 1600 struct device *dev; 1601 int err = 0; 1602 1603 dev = ice_pf_to_dev(pf); 1604 1605 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1606 vsi->num_vlan++; 1607 } else { 1608 err = -ENODEV; 1609 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1610 vsi->vsi_num); 1611 } 1612 1613 return err; 1614 } 1615 1616 /** 1617 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1618 * @vsi: the VSI being configured 1619 * @vid: VLAN ID to be removed 1620 * 1621 * Returns 0 on success and negative on failure 1622 */ 1623 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1624 { 1625 struct ice_pf *pf = vsi->back; 1626 enum ice_status status; 1627 struct device *dev; 1628 int err = 0; 1629 1630 dev = ice_pf_to_dev(pf); 1631 1632 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1633 if (!status) { 1634 vsi->num_vlan--; 1635 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1636 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1637 vid, vsi->vsi_num, ice_stat_str(status)); 1638 } else { 1639 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1640 vid, vsi->vsi_num, ice_stat_str(status)); 1641 err = -EIO; 1642 } 1643 1644 return err; 1645 } 1646 1647 /** 1648 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1649 * @vsi: VSI 1650 */ 1651 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1652 { 1653 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1654 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1655 vsi->rx_buf_len = ICE_RXBUF_2048; 1656 #if (PAGE_SIZE < 8192) 1657 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1658 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1659 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1660 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1661 #endif 1662 } else { 1663 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1664 #if (PAGE_SIZE < 8192) 1665 vsi->rx_buf_len = ICE_RXBUF_3072; 1666 #else 1667 vsi->rx_buf_len = ICE_RXBUF_2048; 1668 #endif 1669 } 1670 } 1671 1672 /** 1673 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1674 * @hw: HW pointer 1675 * @pf_q: index of the Rx queue in the PF's queue space 1676 * @rxdid: flexible descriptor RXDID 1677 * @prio: priority for the RXDID for this queue 1678 */ 1679 void 1680 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1681 { 1682 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1683 1684 /* clear any previous values */ 1685 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1686 QRXFLXP_CNTXT_RXDID_PRIO_M | 1687 QRXFLXP_CNTXT_TS_M); 1688 1689 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1690 QRXFLXP_CNTXT_RXDID_IDX_M; 1691 1692 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1693 QRXFLXP_CNTXT_RXDID_PRIO_M; 1694 1695 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1696 } 1697 1698 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1699 { 1700 if (q_idx >= vsi->num_rxq) 1701 return -EINVAL; 1702 1703 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1704 } 1705 1706 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx) 1707 { 1708 struct ice_aqc_add_tx_qgrp *qg_buf; 1709 int err; 1710 1711 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1712 return -EINVAL; 1713 1714 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1715 if (!qg_buf) 1716 return -ENOMEM; 1717 1718 qg_buf->num_txqs = 1; 1719 1720 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1721 kfree(qg_buf); 1722 return err; 1723 } 1724 1725 /** 1726 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1727 * @vsi: the VSI being configured 1728 * 1729 * Return 0 on success and a negative value on error 1730 * Configure the Rx VSI for operation. 1731 */ 1732 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1733 { 1734 u16 i; 1735 1736 if (vsi->type == ICE_VSI_VF) 1737 goto setup_rings; 1738 1739 ice_vsi_cfg_frame_size(vsi); 1740 setup_rings: 1741 /* set up individual rings */ 1742 ice_for_each_rxq(vsi, i) { 1743 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1744 1745 if (err) 1746 return err; 1747 } 1748 1749 return 0; 1750 } 1751 1752 /** 1753 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1754 * @vsi: the VSI being configured 1755 * @rings: Tx ring array to be configured 1756 * 1757 * Return 0 on success and a negative value on error 1758 * Configure the Tx VSI for operation. 1759 */ 1760 static int 1761 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1762 { 1763 struct ice_aqc_add_tx_qgrp *qg_buf; 1764 u16 q_idx = 0; 1765 int err = 0; 1766 1767 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1768 if (!qg_buf) 1769 return -ENOMEM; 1770 1771 qg_buf->num_txqs = 1; 1772 1773 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1774 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1775 if (err) 1776 goto err_cfg_txqs; 1777 } 1778 1779 err_cfg_txqs: 1780 kfree(qg_buf); 1781 return err; 1782 } 1783 1784 /** 1785 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1786 * @vsi: the VSI being configured 1787 * 1788 * Return 0 on success and a negative value on error 1789 * Configure the Tx VSI for operation. 1790 */ 1791 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1792 { 1793 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1794 } 1795 1796 /** 1797 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1798 * @vsi: the VSI being configured 1799 * 1800 * Return 0 on success and a negative value on error 1801 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1802 */ 1803 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1804 { 1805 int ret; 1806 int i; 1807 1808 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1809 if (ret) 1810 return ret; 1811 1812 for (i = 0; i < vsi->num_xdp_txq; i++) 1813 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1814 1815 return ret; 1816 } 1817 1818 /** 1819 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1820 * @intrl: interrupt rate limit in usecs 1821 * @gran: interrupt rate limit granularity in usecs 1822 * 1823 * This function converts a decimal interrupt rate limit in usecs to the format 1824 * expected by firmware. 1825 */ 1826 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1827 { 1828 u32 val = intrl / gran; 1829 1830 if (val) 1831 return val | GLINT_RATE_INTRL_ENA_M; 1832 return 0; 1833 } 1834 1835 /** 1836 * ice_write_intrl - write throttle rate limit to interrupt specific register 1837 * @q_vector: pointer to interrupt specific structure 1838 * @intrl: throttle rate limit in microseconds to write 1839 */ 1840 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1841 { 1842 struct ice_hw *hw = &q_vector->vsi->back->hw; 1843 1844 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1845 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1846 } 1847 1848 /** 1849 * __ice_write_itr - write throttle rate to register 1850 * @q_vector: pointer to interrupt data structure 1851 * @rc: pointer to ring container 1852 * @itr: throttle rate in microseconds to write 1853 */ 1854 static void __ice_write_itr(struct ice_q_vector *q_vector, 1855 struct ice_ring_container *rc, u16 itr) 1856 { 1857 struct ice_hw *hw = &q_vector->vsi->back->hw; 1858 1859 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1860 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1861 } 1862 1863 /** 1864 * ice_write_itr - write throttle rate to queue specific register 1865 * @rc: pointer to ring container 1866 * @itr: throttle rate in microseconds to write 1867 */ 1868 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1869 { 1870 struct ice_q_vector *q_vector; 1871 1872 if (!rc->ring) 1873 return; 1874 1875 q_vector = rc->ring->q_vector; 1876 1877 __ice_write_itr(q_vector, rc, itr); 1878 } 1879 1880 /** 1881 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1882 * @vsi: the VSI being configured 1883 * 1884 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1885 * for the VF VSI. 1886 */ 1887 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1888 { 1889 struct ice_pf *pf = vsi->back; 1890 struct ice_hw *hw = &pf->hw; 1891 u16 txq = 0, rxq = 0; 1892 int i, q; 1893 1894 for (i = 0; i < vsi->num_q_vectors; i++) { 1895 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1896 u16 reg_idx = q_vector->reg_idx; 1897 1898 ice_cfg_itr(hw, q_vector); 1899 1900 /* Both Transmit Queue Interrupt Cause Control register 1901 * and Receive Queue Interrupt Cause control register 1902 * expects MSIX_INDX field to be the vector index 1903 * within the function space and not the absolute 1904 * vector index across PF or across device. 1905 * For SR-IOV VF VSIs queue vector index always starts 1906 * with 1 since first vector index(0) is used for OICR 1907 * in VF space. Since VMDq and other PF VSIs are within 1908 * the PF function space, use the vector index that is 1909 * tracked for this PF. 1910 */ 1911 for (q = 0; q < q_vector->num_ring_tx; q++) { 1912 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1913 q_vector->tx.itr_idx); 1914 txq++; 1915 } 1916 1917 for (q = 0; q < q_vector->num_ring_rx; q++) { 1918 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1919 q_vector->rx.itr_idx); 1920 rxq++; 1921 } 1922 } 1923 } 1924 1925 /** 1926 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1927 * @vsi: the VSI being changed 1928 */ 1929 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1930 { 1931 struct ice_hw *hw = &vsi->back->hw; 1932 struct ice_vsi_ctx *ctxt; 1933 enum ice_status status; 1934 int ret = 0; 1935 1936 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1937 if (!ctxt) 1938 return -ENOMEM; 1939 1940 /* Here we are configuring the VSI to let the driver add VLAN tags by 1941 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1942 * insertion happens in the Tx hot path, in ice_tx_map. 1943 */ 1944 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1945 1946 /* Preserve existing VLAN strip setting */ 1947 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1948 ICE_AQ_VSI_VLAN_EMOD_M); 1949 1950 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1951 1952 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1953 if (status) { 1954 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1955 ice_stat_str(status), 1956 ice_aq_str(hw->adminq.sq_last_status)); 1957 ret = -EIO; 1958 goto out; 1959 } 1960 1961 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1962 out: 1963 kfree(ctxt); 1964 return ret; 1965 } 1966 1967 /** 1968 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1969 * @vsi: the VSI being changed 1970 * @ena: boolean value indicating if this is a enable or disable request 1971 */ 1972 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1973 { 1974 struct ice_hw *hw = &vsi->back->hw; 1975 struct ice_vsi_ctx *ctxt; 1976 enum ice_status status; 1977 int ret = 0; 1978 1979 /* do not allow modifying VLAN stripping when a port VLAN is configured 1980 * on this VSI 1981 */ 1982 if (vsi->info.pvid) 1983 return 0; 1984 1985 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1986 if (!ctxt) 1987 return -ENOMEM; 1988 1989 /* Here we are configuring what the VSI should do with the VLAN tag in 1990 * the Rx packet. We can either leave the tag in the packet or put it in 1991 * the Rx descriptor. 1992 */ 1993 if (ena) 1994 /* Strip VLAN tag from Rx packet and put it in the desc */ 1995 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1996 else 1997 /* Disable stripping. Leave tag in packet */ 1998 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1999 2000 /* Allow all packets untagged/tagged */ 2001 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2002 2003 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2004 2005 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2006 if (status) { 2007 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2008 ena, ice_stat_str(status), 2009 ice_aq_str(hw->adminq.sq_last_status)); 2010 ret = -EIO; 2011 goto out; 2012 } 2013 2014 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2015 out: 2016 kfree(ctxt); 2017 return ret; 2018 } 2019 2020 /** 2021 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2022 * @vsi: the VSI whose rings are to be enabled 2023 * 2024 * Returns 0 on success and a negative value on error 2025 */ 2026 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2027 { 2028 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2029 } 2030 2031 /** 2032 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2033 * @vsi: the VSI whose rings are to be disabled 2034 * 2035 * Returns 0 on success and a negative value on error 2036 */ 2037 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2038 { 2039 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2040 } 2041 2042 /** 2043 * ice_vsi_stop_tx_rings - Disable Tx rings 2044 * @vsi: the VSI being configured 2045 * @rst_src: reset source 2046 * @rel_vmvf_num: Relative ID of VF/VM 2047 * @rings: Tx ring array to be stopped 2048 */ 2049 static int 2050 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2051 u16 rel_vmvf_num, struct ice_ring **rings) 2052 { 2053 u16 q_idx; 2054 2055 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2056 return -EINVAL; 2057 2058 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 2059 struct ice_txq_meta txq_meta = { }; 2060 int status; 2061 2062 if (!rings || !rings[q_idx]) 2063 return -EINVAL; 2064 2065 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2066 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2067 rings[q_idx], &txq_meta); 2068 2069 if (status) 2070 return status; 2071 } 2072 2073 return 0; 2074 } 2075 2076 /** 2077 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2078 * @vsi: the VSI being configured 2079 * @rst_src: reset source 2080 * @rel_vmvf_num: Relative ID of VF/VM 2081 */ 2082 int 2083 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2084 u16 rel_vmvf_num) 2085 { 2086 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 2087 } 2088 2089 /** 2090 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2091 * @vsi: the VSI being configured 2092 */ 2093 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2094 { 2095 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2096 } 2097 2098 /** 2099 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2100 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2101 * 2102 * returns true if Rx VLAN pruning is enabled and false otherwise. 2103 */ 2104 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2105 { 2106 if (!vsi) 2107 return false; 2108 2109 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2110 } 2111 2112 /** 2113 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2114 * @vsi: VSI to enable or disable VLAN pruning on 2115 * @ena: set to true to enable VLAN pruning and false to disable it 2116 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2117 * 2118 * returns 0 if VSI is updated, negative otherwise 2119 */ 2120 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2121 { 2122 struct ice_vsi_ctx *ctxt; 2123 struct ice_pf *pf; 2124 int status; 2125 2126 if (!vsi) 2127 return -EINVAL; 2128 2129 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2130 * mode. VLAN pruning will be enabled when the interface exits 2131 * promiscuous mode if any VLAN filters are active. 2132 */ 2133 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2134 return 0; 2135 2136 pf = vsi->back; 2137 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2138 if (!ctxt) 2139 return -ENOMEM; 2140 2141 ctxt->info = vsi->info; 2142 2143 if (ena) 2144 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2145 else 2146 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2147 2148 if (!vlan_promisc) 2149 ctxt->info.valid_sections = 2150 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2151 2152 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2153 if (status) { 2154 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2155 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2156 ice_stat_str(status), 2157 ice_aq_str(pf->hw.adminq.sq_last_status)); 2158 goto err_out; 2159 } 2160 2161 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2162 2163 kfree(ctxt); 2164 return 0; 2165 2166 err_out: 2167 kfree(ctxt); 2168 return -EIO; 2169 } 2170 2171 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2172 { 2173 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2174 2175 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2176 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2177 } 2178 2179 /** 2180 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2181 * @vsi: VSI to set the q_vectors register index on 2182 */ 2183 static int 2184 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2185 { 2186 u16 i; 2187 2188 if (!vsi || !vsi->q_vectors) 2189 return -EINVAL; 2190 2191 ice_for_each_q_vector(vsi, i) { 2192 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2193 2194 if (!q_vector) { 2195 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2196 i, vsi->vsi_num); 2197 goto clear_reg_idx; 2198 } 2199 2200 if (vsi->type == ICE_VSI_VF) { 2201 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2202 2203 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2204 } else { 2205 q_vector->reg_idx = 2206 q_vector->v_idx + vsi->base_vector; 2207 } 2208 } 2209 2210 return 0; 2211 2212 clear_reg_idx: 2213 ice_for_each_q_vector(vsi, i) { 2214 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2215 2216 if (q_vector) 2217 q_vector->reg_idx = 0; 2218 } 2219 2220 return -EINVAL; 2221 } 2222 2223 /** 2224 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2225 * @vsi: the VSI being configured 2226 * @tx: bool to determine Tx or Rx rule 2227 * @create: bool to determine create or remove Rule 2228 */ 2229 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2230 { 2231 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2232 enum ice_sw_fwd_act_type act); 2233 struct ice_pf *pf = vsi->back; 2234 enum ice_status status; 2235 struct device *dev; 2236 2237 dev = ice_pf_to_dev(pf); 2238 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2239 2240 if (tx) { 2241 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2242 ICE_DROP_PACKET); 2243 } else { 2244 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2245 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2246 create); 2247 } else { 2248 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2249 ICE_FWD_TO_VSI); 2250 } 2251 } 2252 2253 if (status) 2254 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2255 create ? "adding" : "removing", tx ? "TX" : "RX", 2256 vsi->vsi_num, ice_stat_str(status)); 2257 } 2258 2259 /** 2260 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2261 * @vsi: pointer to the VSI 2262 * 2263 * This function will allocate new scheduler aggregator now if needed and will 2264 * move specified VSI into it. 2265 */ 2266 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2267 { 2268 struct device *dev = ice_pf_to_dev(vsi->back); 2269 struct ice_agg_node *agg_node_iter = NULL; 2270 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2271 struct ice_agg_node *agg_node = NULL; 2272 int node_offset, max_agg_nodes = 0; 2273 struct ice_port_info *port_info; 2274 struct ice_pf *pf = vsi->back; 2275 u32 agg_node_id_start = 0; 2276 enum ice_status status; 2277 2278 /* create (as needed) scheduler aggregator node and move VSI into 2279 * corresponding aggregator node 2280 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2281 * - VF aggregator nodes will contain VF VSI 2282 */ 2283 port_info = pf->hw.port_info; 2284 if (!port_info) 2285 return; 2286 2287 switch (vsi->type) { 2288 case ICE_VSI_CTRL: 2289 case ICE_VSI_LB: 2290 case ICE_VSI_PF: 2291 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2292 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2293 agg_node_iter = &pf->pf_agg_node[0]; 2294 break; 2295 case ICE_VSI_VF: 2296 /* user can create 'n' VFs on a given PF, but since max children 2297 * per aggregator node can be only 64. Following code handles 2298 * aggregator(s) for VF VSIs, either selects a agg_node which 2299 * was already created provided num_vsis < 64, otherwise 2300 * select next available node, which will be created 2301 */ 2302 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2303 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2304 agg_node_iter = &pf->vf_agg_node[0]; 2305 break; 2306 default: 2307 /* other VSI type, handle later if needed */ 2308 dev_dbg(dev, "unexpected VSI type %s\n", 2309 ice_vsi_type_str(vsi->type)); 2310 return; 2311 } 2312 2313 /* find the appropriate aggregator node */ 2314 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2315 /* see if we can find space in previously created 2316 * node if num_vsis < 64, otherwise skip 2317 */ 2318 if (agg_node_iter->num_vsis && 2319 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2320 agg_node_iter++; 2321 continue; 2322 } 2323 2324 if (agg_node_iter->valid && 2325 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2326 agg_id = agg_node_iter->agg_id; 2327 agg_node = agg_node_iter; 2328 break; 2329 } 2330 2331 /* find unclaimed agg_id */ 2332 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2333 agg_id = node_offset + agg_node_id_start; 2334 agg_node = agg_node_iter; 2335 break; 2336 } 2337 /* move to next agg_node */ 2338 agg_node_iter++; 2339 } 2340 2341 if (!agg_node) 2342 return; 2343 2344 /* if selected aggregator node was not created, create it */ 2345 if (!agg_node->valid) { 2346 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2347 (u8)vsi->tc_cfg.ena_tc); 2348 if (status) { 2349 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2350 agg_id); 2351 return; 2352 } 2353 /* aggregator node is created, store the neeeded info */ 2354 agg_node->valid = true; 2355 agg_node->agg_id = agg_id; 2356 } 2357 2358 /* move VSI to corresponding aggregator node */ 2359 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2360 (u8)vsi->tc_cfg.ena_tc); 2361 if (status) { 2362 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2363 vsi->idx, agg_id); 2364 return; 2365 } 2366 2367 /* keep active children count for aggregator node */ 2368 agg_node->num_vsis++; 2369 2370 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2371 * to aggregator node 2372 */ 2373 vsi->agg_node = agg_node; 2374 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2375 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2376 vsi->agg_node->num_vsis); 2377 } 2378 2379 /** 2380 * ice_vsi_setup - Set up a VSI by a given type 2381 * @pf: board private structure 2382 * @pi: pointer to the port_info instance 2383 * @vsi_type: VSI type 2384 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2385 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2386 * fill-in ICE_INVAL_VFID as input. 2387 * 2388 * This allocates the sw VSI structure and its queue resources. 2389 * 2390 * Returns pointer to the successfully allocated and configured VSI sw struct on 2391 * success, NULL on failure. 2392 */ 2393 struct ice_vsi * 2394 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2395 enum ice_vsi_type vsi_type, u16 vf_id) 2396 { 2397 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2398 struct device *dev = ice_pf_to_dev(pf); 2399 enum ice_status status; 2400 struct ice_vsi *vsi; 2401 int ret, i; 2402 2403 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2404 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2405 else 2406 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2407 2408 if (!vsi) { 2409 dev_err(dev, "could not allocate VSI\n"); 2410 return NULL; 2411 } 2412 2413 vsi->port_info = pi; 2414 vsi->vsw = pf->first_sw; 2415 if (vsi->type == ICE_VSI_PF) 2416 vsi->ethtype = ETH_P_PAUSE; 2417 2418 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2419 vsi->vf_id = vf_id; 2420 2421 ice_alloc_fd_res(vsi); 2422 2423 if (ice_vsi_get_qs(vsi)) { 2424 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2425 vsi->idx); 2426 goto unroll_vsi_alloc; 2427 } 2428 2429 /* set RSS capabilities */ 2430 ice_vsi_set_rss_params(vsi); 2431 2432 /* set TC configuration */ 2433 ice_vsi_set_tc_cfg(vsi); 2434 2435 /* create the VSI */ 2436 ret = ice_vsi_init(vsi, true); 2437 if (ret) 2438 goto unroll_get_qs; 2439 2440 switch (vsi->type) { 2441 case ICE_VSI_CTRL: 2442 case ICE_VSI_PF: 2443 ret = ice_vsi_alloc_q_vectors(vsi); 2444 if (ret) 2445 goto unroll_vsi_init; 2446 2447 ret = ice_vsi_setup_vector_base(vsi); 2448 if (ret) 2449 goto unroll_alloc_q_vector; 2450 2451 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2452 if (ret) 2453 goto unroll_vector_base; 2454 2455 ret = ice_vsi_alloc_rings(vsi); 2456 if (ret) 2457 goto unroll_vector_base; 2458 2459 /* Always add VLAN ID 0 switch rule by default. This is needed 2460 * in order to allow all untagged and 0 tagged priority traffic 2461 * if Rx VLAN pruning is enabled. Also there are cases where we 2462 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2463 * so this handles those cases (i.e. adding the PF to a bridge 2464 * without the 8021q module loaded). 2465 */ 2466 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2467 if (ret) 2468 goto unroll_clear_rings; 2469 2470 ice_vsi_map_rings_to_vectors(vsi); 2471 2472 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2473 if (vsi->type != ICE_VSI_CTRL) 2474 /* Do not exit if configuring RSS had an issue, at 2475 * least receive traffic on first queue. Hence no 2476 * need to capture return value 2477 */ 2478 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2479 ice_vsi_cfg_rss_lut_key(vsi); 2480 ice_vsi_set_rss_flow_fld(vsi); 2481 } 2482 ice_init_arfs(vsi); 2483 break; 2484 case ICE_VSI_VF: 2485 /* VF driver will take care of creating netdev for this type and 2486 * map queues to vectors through Virtchnl, PF driver only 2487 * creates a VSI and corresponding structures for bookkeeping 2488 * purpose 2489 */ 2490 ret = ice_vsi_alloc_q_vectors(vsi); 2491 if (ret) 2492 goto unroll_vsi_init; 2493 2494 ret = ice_vsi_alloc_rings(vsi); 2495 if (ret) 2496 goto unroll_alloc_q_vector; 2497 2498 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2499 if (ret) 2500 goto unroll_vector_base; 2501 2502 /* Do not exit if configuring RSS had an issue, at least 2503 * receive traffic on first queue. Hence no need to capture 2504 * return value 2505 */ 2506 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2507 ice_vsi_cfg_rss_lut_key(vsi); 2508 ice_vsi_set_vf_rss_flow_fld(vsi); 2509 } 2510 break; 2511 case ICE_VSI_LB: 2512 ret = ice_vsi_alloc_rings(vsi); 2513 if (ret) 2514 goto unroll_vsi_init; 2515 break; 2516 default: 2517 /* clean up the resources and exit */ 2518 goto unroll_vsi_init; 2519 } 2520 2521 /* configure VSI nodes based on number of queues and TC's */ 2522 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2523 max_txqs[i] = vsi->alloc_txq; 2524 2525 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2526 max_txqs); 2527 if (status) { 2528 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2529 vsi->vsi_num, ice_stat_str(status)); 2530 goto unroll_clear_rings; 2531 } 2532 2533 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2534 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2535 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2536 * The rule is added once for PF VSI in order to create appropriate 2537 * recipe, since VSI/VSI list is ignored with drop action... 2538 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2539 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2540 * settings in the HW. 2541 */ 2542 if (!ice_is_safe_mode(pf)) 2543 if (vsi->type == ICE_VSI_PF) { 2544 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2545 ICE_DROP_PACKET); 2546 ice_cfg_sw_lldp(vsi, true, true); 2547 } 2548 2549 if (!vsi->agg_node) 2550 ice_set_agg_vsi(vsi); 2551 return vsi; 2552 2553 unroll_clear_rings: 2554 ice_vsi_clear_rings(vsi); 2555 unroll_vector_base: 2556 /* reclaim SW interrupts back to the common pool */ 2557 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2558 pf->num_avail_sw_msix += vsi->num_q_vectors; 2559 unroll_alloc_q_vector: 2560 ice_vsi_free_q_vectors(vsi); 2561 unroll_vsi_init: 2562 ice_vsi_delete(vsi); 2563 unroll_get_qs: 2564 ice_vsi_put_qs(vsi); 2565 unroll_vsi_alloc: 2566 if (vsi_type == ICE_VSI_VF) 2567 ice_enable_lag(pf->lag); 2568 ice_vsi_clear(vsi); 2569 2570 return NULL; 2571 } 2572 2573 /** 2574 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2575 * @vsi: the VSI being cleaned up 2576 */ 2577 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2578 { 2579 struct ice_pf *pf = vsi->back; 2580 struct ice_hw *hw = &pf->hw; 2581 u32 txq = 0; 2582 u32 rxq = 0; 2583 int i, q; 2584 2585 for (i = 0; i < vsi->num_q_vectors; i++) { 2586 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2587 2588 ice_write_intrl(q_vector, 0); 2589 for (q = 0; q < q_vector->num_ring_tx; q++) { 2590 ice_write_itr(&q_vector->tx, 0); 2591 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2592 if (ice_is_xdp_ena_vsi(vsi)) { 2593 u32 xdp_txq = txq + vsi->num_xdp_txq; 2594 2595 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2596 } 2597 txq++; 2598 } 2599 2600 for (q = 0; q < q_vector->num_ring_rx; q++) { 2601 ice_write_itr(&q_vector->rx, 0); 2602 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2603 rxq++; 2604 } 2605 } 2606 2607 ice_flush(hw); 2608 } 2609 2610 /** 2611 * ice_vsi_free_irq - Free the IRQ association with the OS 2612 * @vsi: the VSI being configured 2613 */ 2614 void ice_vsi_free_irq(struct ice_vsi *vsi) 2615 { 2616 struct ice_pf *pf = vsi->back; 2617 int base = vsi->base_vector; 2618 int i; 2619 2620 if (!vsi->q_vectors || !vsi->irqs_ready) 2621 return; 2622 2623 ice_vsi_release_msix(vsi); 2624 if (vsi->type == ICE_VSI_VF) 2625 return; 2626 2627 vsi->irqs_ready = false; 2628 ice_for_each_q_vector(vsi, i) { 2629 u16 vector = i + base; 2630 int irq_num; 2631 2632 irq_num = pf->msix_entries[vector].vector; 2633 2634 /* free only the irqs that were actually requested */ 2635 if (!vsi->q_vectors[i] || 2636 !(vsi->q_vectors[i]->num_ring_tx || 2637 vsi->q_vectors[i]->num_ring_rx)) 2638 continue; 2639 2640 /* clear the affinity notifier in the IRQ descriptor */ 2641 irq_set_affinity_notifier(irq_num, NULL); 2642 2643 /* clear the affinity_mask in the IRQ descriptor */ 2644 irq_set_affinity_hint(irq_num, NULL); 2645 synchronize_irq(irq_num); 2646 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2647 } 2648 } 2649 2650 /** 2651 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2652 * @vsi: the VSI having resources freed 2653 */ 2654 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2655 { 2656 int i; 2657 2658 if (!vsi->tx_rings) 2659 return; 2660 2661 ice_for_each_txq(vsi, i) 2662 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2663 ice_free_tx_ring(vsi->tx_rings[i]); 2664 } 2665 2666 /** 2667 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2668 * @vsi: the VSI having resources freed 2669 */ 2670 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2671 { 2672 int i; 2673 2674 if (!vsi->rx_rings) 2675 return; 2676 2677 ice_for_each_rxq(vsi, i) 2678 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2679 ice_free_rx_ring(vsi->rx_rings[i]); 2680 } 2681 2682 /** 2683 * ice_vsi_close - Shut down a VSI 2684 * @vsi: the VSI being shut down 2685 */ 2686 void ice_vsi_close(struct ice_vsi *vsi) 2687 { 2688 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2689 ice_down(vsi); 2690 2691 ice_vsi_free_irq(vsi); 2692 ice_vsi_free_tx_rings(vsi); 2693 ice_vsi_free_rx_rings(vsi); 2694 } 2695 2696 /** 2697 * ice_ena_vsi - resume a VSI 2698 * @vsi: the VSI being resume 2699 * @locked: is the rtnl_lock already held 2700 */ 2701 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2702 { 2703 int err = 0; 2704 2705 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2706 return 0; 2707 2708 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2709 2710 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2711 if (netif_running(vsi->netdev)) { 2712 if (!locked) 2713 rtnl_lock(); 2714 2715 err = ice_open_internal(vsi->netdev); 2716 2717 if (!locked) 2718 rtnl_unlock(); 2719 } 2720 } else if (vsi->type == ICE_VSI_CTRL) { 2721 err = ice_vsi_open_ctrl(vsi); 2722 } 2723 2724 return err; 2725 } 2726 2727 /** 2728 * ice_dis_vsi - pause a VSI 2729 * @vsi: the VSI being paused 2730 * @locked: is the rtnl_lock already held 2731 */ 2732 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2733 { 2734 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2735 return; 2736 2737 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2738 2739 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2740 if (netif_running(vsi->netdev)) { 2741 if (!locked) 2742 rtnl_lock(); 2743 2744 ice_vsi_close(vsi); 2745 2746 if (!locked) 2747 rtnl_unlock(); 2748 } else { 2749 ice_vsi_close(vsi); 2750 } 2751 } else if (vsi->type == ICE_VSI_CTRL) { 2752 ice_vsi_close(vsi); 2753 } 2754 } 2755 2756 /** 2757 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2758 * @vsi: the VSI being un-configured 2759 */ 2760 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2761 { 2762 int base = vsi->base_vector; 2763 struct ice_pf *pf = vsi->back; 2764 struct ice_hw *hw = &pf->hw; 2765 u32 val; 2766 int i; 2767 2768 /* disable interrupt causation from each queue */ 2769 if (vsi->tx_rings) { 2770 ice_for_each_txq(vsi, i) { 2771 if (vsi->tx_rings[i]) { 2772 u16 reg; 2773 2774 reg = vsi->tx_rings[i]->reg_idx; 2775 val = rd32(hw, QINT_TQCTL(reg)); 2776 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2777 wr32(hw, QINT_TQCTL(reg), val); 2778 } 2779 } 2780 } 2781 2782 if (vsi->rx_rings) { 2783 ice_for_each_rxq(vsi, i) { 2784 if (vsi->rx_rings[i]) { 2785 u16 reg; 2786 2787 reg = vsi->rx_rings[i]->reg_idx; 2788 val = rd32(hw, QINT_RQCTL(reg)); 2789 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2790 wr32(hw, QINT_RQCTL(reg), val); 2791 } 2792 } 2793 } 2794 2795 /* disable each interrupt */ 2796 ice_for_each_q_vector(vsi, i) { 2797 if (!vsi->q_vectors[i]) 2798 continue; 2799 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2800 } 2801 2802 ice_flush(hw); 2803 2804 /* don't call synchronize_irq() for VF's from the host */ 2805 if (vsi->type == ICE_VSI_VF) 2806 return; 2807 2808 ice_for_each_q_vector(vsi, i) 2809 synchronize_irq(pf->msix_entries[i + base].vector); 2810 } 2811 2812 /** 2813 * ice_napi_del - Remove NAPI handler for the VSI 2814 * @vsi: VSI for which NAPI handler is to be removed 2815 */ 2816 void ice_napi_del(struct ice_vsi *vsi) 2817 { 2818 int v_idx; 2819 2820 if (!vsi->netdev) 2821 return; 2822 2823 ice_for_each_q_vector(vsi, v_idx) 2824 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2825 } 2826 2827 /** 2828 * ice_vsi_release - Delete a VSI and free its resources 2829 * @vsi: the VSI being removed 2830 * 2831 * Returns 0 on success or < 0 on error 2832 */ 2833 int ice_vsi_release(struct ice_vsi *vsi) 2834 { 2835 struct ice_pf *pf; 2836 2837 if (!vsi->back) 2838 return -ENODEV; 2839 pf = vsi->back; 2840 2841 /* do not unregister while driver is in the reset recovery pending 2842 * state. Since reset/rebuild happens through PF service task workqueue, 2843 * it's not a good idea to unregister netdev that is associated to the 2844 * PF that is running the work queue items currently. This is done to 2845 * avoid check_flush_dependency() warning on this wq 2846 */ 2847 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2848 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2849 unregister_netdev(vsi->netdev); 2850 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2851 } 2852 2853 ice_devlink_destroy_port(vsi); 2854 2855 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2856 ice_rss_clean(vsi); 2857 2858 /* Disable VSI and free resources */ 2859 if (vsi->type != ICE_VSI_LB) 2860 ice_vsi_dis_irq(vsi); 2861 ice_vsi_close(vsi); 2862 2863 /* SR-IOV determines needed MSIX resources all at once instead of per 2864 * VSI since when VFs are spawned we know how many VFs there are and how 2865 * many interrupts each VF needs. SR-IOV MSIX resources are also 2866 * cleared in the same manner. 2867 */ 2868 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2869 struct ice_vf *vf; 2870 int i; 2871 2872 ice_for_each_vf(pf, i) { 2873 vf = &pf->vf[i]; 2874 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2875 break; 2876 } 2877 if (i == pf->num_alloc_vfs) { 2878 /* No other VFs left that have control VSI, reclaim SW 2879 * interrupts back to the common pool 2880 */ 2881 ice_free_res(pf->irq_tracker, vsi->base_vector, 2882 ICE_RES_VF_CTRL_VEC_ID); 2883 pf->num_avail_sw_msix += vsi->num_q_vectors; 2884 } 2885 } else if (vsi->type != ICE_VSI_VF) { 2886 /* reclaim SW interrupts back to the common pool */ 2887 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2888 pf->num_avail_sw_msix += vsi->num_q_vectors; 2889 } 2890 2891 if (!ice_is_safe_mode(pf)) { 2892 if (vsi->type == ICE_VSI_PF) { 2893 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2894 ICE_DROP_PACKET); 2895 ice_cfg_sw_lldp(vsi, true, false); 2896 /* The Rx rule will only exist to remove if the LLDP FW 2897 * engine is currently stopped 2898 */ 2899 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2900 ice_cfg_sw_lldp(vsi, false, false); 2901 } 2902 } 2903 2904 ice_fltr_remove_all(vsi); 2905 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2906 ice_vsi_delete(vsi); 2907 ice_vsi_free_q_vectors(vsi); 2908 2909 if (vsi->netdev) { 2910 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2911 unregister_netdev(vsi->netdev); 2912 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2913 } 2914 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2915 free_netdev(vsi->netdev); 2916 vsi->netdev = NULL; 2917 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2918 } 2919 } 2920 2921 if (vsi->type == ICE_VSI_VF && 2922 vsi->agg_node && vsi->agg_node->valid) 2923 vsi->agg_node->num_vsis--; 2924 ice_vsi_clear_rings(vsi); 2925 2926 ice_vsi_put_qs(vsi); 2927 2928 /* retain SW VSI data structure since it is needed to unregister and 2929 * free VSI netdev when PF is not in reset recovery pending state,\ 2930 * for ex: during rmmod. 2931 */ 2932 if (!ice_is_reset_in_progress(pf->state)) 2933 ice_vsi_clear(vsi); 2934 2935 return 0; 2936 } 2937 2938 /** 2939 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2940 * @vsi: VSI connected with q_vectors 2941 * @coalesce: array of struct with stored coalesce 2942 * 2943 * Returns array size. 2944 */ 2945 static int 2946 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2947 struct ice_coalesce_stored *coalesce) 2948 { 2949 int i; 2950 2951 ice_for_each_q_vector(vsi, i) { 2952 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2953 2954 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2955 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2956 coalesce[i].intrl = q_vector->intrl; 2957 2958 if (i < vsi->num_txq) 2959 coalesce[i].tx_valid = true; 2960 if (i < vsi->num_rxq) 2961 coalesce[i].rx_valid = true; 2962 } 2963 2964 return vsi->num_q_vectors; 2965 } 2966 2967 /** 2968 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2969 * @vsi: VSI connected with q_vectors 2970 * @coalesce: pointer to array of struct with stored coalesce 2971 * @size: size of coalesce array 2972 * 2973 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2974 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2975 * to default value. 2976 */ 2977 static void 2978 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2979 struct ice_coalesce_stored *coalesce, int size) 2980 { 2981 struct ice_ring_container *rc; 2982 int i; 2983 2984 if ((size && !coalesce) || !vsi) 2985 return; 2986 2987 /* There are a couple of cases that have to be handled here: 2988 * 1. The case where the number of queue vectors stays the same, but 2989 * the number of Tx or Rx rings changes (the first for loop) 2990 * 2. The case where the number of queue vectors increased (the 2991 * second for loop) 2992 */ 2993 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2994 /* There are 2 cases to handle here and they are the same for 2995 * both Tx and Rx: 2996 * if the entry was valid previously (coalesce[i].[tr]x_valid 2997 * and the loop variable is less than the number of rings 2998 * allocated, then write the previous values 2999 * 3000 * if the entry was not valid previously, but the number of 3001 * rings is less than are allocated (this means the number of 3002 * rings increased from previously), then write out the 3003 * values in the first element 3004 * 3005 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3006 * as there is no harm because the dynamic algorithm 3007 * will just overwrite. 3008 */ 3009 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3010 rc = &vsi->q_vectors[i]->rx; 3011 rc->itr_setting = coalesce[i].itr_rx; 3012 ice_write_itr(rc, rc->itr_setting); 3013 } else if (i < vsi->alloc_rxq) { 3014 rc = &vsi->q_vectors[i]->rx; 3015 rc->itr_setting = coalesce[0].itr_rx; 3016 ice_write_itr(rc, rc->itr_setting); 3017 } 3018 3019 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3020 rc = &vsi->q_vectors[i]->tx; 3021 rc->itr_setting = coalesce[i].itr_tx; 3022 ice_write_itr(rc, rc->itr_setting); 3023 } else if (i < vsi->alloc_txq) { 3024 rc = &vsi->q_vectors[i]->tx; 3025 rc->itr_setting = coalesce[0].itr_tx; 3026 ice_write_itr(rc, rc->itr_setting); 3027 } 3028 3029 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3030 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 3031 } 3032 3033 /* the number of queue vectors increased so write whatever is in 3034 * the first element 3035 */ 3036 for (; i < vsi->num_q_vectors; i++) { 3037 /* transmit */ 3038 rc = &vsi->q_vectors[i]->tx; 3039 rc->itr_setting = coalesce[0].itr_tx; 3040 ice_write_itr(rc, rc->itr_setting); 3041 3042 /* receive */ 3043 rc = &vsi->q_vectors[i]->rx; 3044 rc->itr_setting = coalesce[0].itr_rx; 3045 ice_write_itr(rc, rc->itr_setting); 3046 3047 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3048 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3049 } 3050 } 3051 3052 /** 3053 * ice_vsi_rebuild - Rebuild VSI after reset 3054 * @vsi: VSI to be rebuild 3055 * @init_vsi: is this an initialization or a reconfigure of the VSI 3056 * 3057 * Returns 0 on success and negative value on failure 3058 */ 3059 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3060 { 3061 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3062 struct ice_coalesce_stored *coalesce; 3063 int prev_num_q_vectors = 0; 3064 struct ice_vf *vf = NULL; 3065 enum ice_vsi_type vtype; 3066 enum ice_status status; 3067 struct ice_pf *pf; 3068 int ret, i; 3069 3070 if (!vsi) 3071 return -EINVAL; 3072 3073 pf = vsi->back; 3074 vtype = vsi->type; 3075 if (vtype == ICE_VSI_VF) 3076 vf = &pf->vf[vsi->vf_id]; 3077 3078 coalesce = kcalloc(vsi->num_q_vectors, 3079 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3080 if (!coalesce) 3081 return -ENOMEM; 3082 3083 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3084 3085 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3086 ice_vsi_free_q_vectors(vsi); 3087 3088 /* SR-IOV determines needed MSIX resources all at once instead of per 3089 * VSI since when VFs are spawned we know how many VFs there are and how 3090 * many interrupts each VF needs. SR-IOV MSIX resources are also 3091 * cleared in the same manner. 3092 */ 3093 if (vtype != ICE_VSI_VF) { 3094 /* reclaim SW interrupts back to the common pool */ 3095 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3096 pf->num_avail_sw_msix += vsi->num_q_vectors; 3097 vsi->base_vector = 0; 3098 } 3099 3100 if (ice_is_xdp_ena_vsi(vsi)) 3101 /* return value check can be skipped here, it always returns 3102 * 0 if reset is in progress 3103 */ 3104 ice_destroy_xdp_rings(vsi); 3105 ice_vsi_put_qs(vsi); 3106 ice_vsi_clear_rings(vsi); 3107 ice_vsi_free_arrays(vsi); 3108 if (vtype == ICE_VSI_VF) 3109 ice_vsi_set_num_qs(vsi, vf->vf_id); 3110 else 3111 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3112 3113 ret = ice_vsi_alloc_arrays(vsi); 3114 if (ret < 0) 3115 goto err_vsi; 3116 3117 ice_vsi_get_qs(vsi); 3118 3119 ice_alloc_fd_res(vsi); 3120 ice_vsi_set_tc_cfg(vsi); 3121 3122 /* Initialize VSI struct elements and create VSI in FW */ 3123 ret = ice_vsi_init(vsi, init_vsi); 3124 if (ret < 0) 3125 goto err_vsi; 3126 3127 switch (vtype) { 3128 case ICE_VSI_CTRL: 3129 case ICE_VSI_PF: 3130 ret = ice_vsi_alloc_q_vectors(vsi); 3131 if (ret) 3132 goto err_rings; 3133 3134 ret = ice_vsi_setup_vector_base(vsi); 3135 if (ret) 3136 goto err_vectors; 3137 3138 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3139 if (ret) 3140 goto err_vectors; 3141 3142 ret = ice_vsi_alloc_rings(vsi); 3143 if (ret) 3144 goto err_vectors; 3145 3146 ice_vsi_map_rings_to_vectors(vsi); 3147 if (ice_is_xdp_ena_vsi(vsi)) { 3148 vsi->num_xdp_txq = vsi->alloc_rxq; 3149 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3150 if (ret) 3151 goto err_vectors; 3152 } 3153 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3154 if (vtype != ICE_VSI_CTRL) 3155 /* Do not exit if configuring RSS had an issue, at 3156 * least receive traffic on first queue. Hence no 3157 * need to capture return value 3158 */ 3159 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3160 ice_vsi_cfg_rss_lut_key(vsi); 3161 break; 3162 case ICE_VSI_VF: 3163 ret = ice_vsi_alloc_q_vectors(vsi); 3164 if (ret) 3165 goto err_rings; 3166 3167 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3168 if (ret) 3169 goto err_vectors; 3170 3171 ret = ice_vsi_alloc_rings(vsi); 3172 if (ret) 3173 goto err_vectors; 3174 3175 break; 3176 default: 3177 break; 3178 } 3179 3180 /* configure VSI nodes based on number of queues and TC's */ 3181 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3182 max_txqs[i] = vsi->alloc_txq; 3183 3184 if (ice_is_xdp_ena_vsi(vsi)) 3185 max_txqs[i] += vsi->num_xdp_txq; 3186 } 3187 3188 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3189 max_txqs); 3190 if (status) { 3191 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3192 vsi->vsi_num, ice_stat_str(status)); 3193 if (init_vsi) { 3194 ret = -EIO; 3195 goto err_vectors; 3196 } else { 3197 return ice_schedule_reset(pf, ICE_RESET_PFR); 3198 } 3199 } 3200 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3201 kfree(coalesce); 3202 3203 return 0; 3204 3205 err_vectors: 3206 ice_vsi_free_q_vectors(vsi); 3207 err_rings: 3208 if (vsi->netdev) { 3209 vsi->current_netdev_flags = 0; 3210 unregister_netdev(vsi->netdev); 3211 free_netdev(vsi->netdev); 3212 vsi->netdev = NULL; 3213 } 3214 err_vsi: 3215 ice_vsi_clear(vsi); 3216 set_bit(ICE_RESET_FAILED, pf->state); 3217 kfree(coalesce); 3218 return ret; 3219 } 3220 3221 /** 3222 * ice_is_reset_in_progress - check for a reset in progress 3223 * @state: PF state field 3224 */ 3225 bool ice_is_reset_in_progress(unsigned long *state) 3226 { 3227 return test_bit(ICE_RESET_OICR_RECV, state) || 3228 test_bit(ICE_PFR_REQ, state) || 3229 test_bit(ICE_CORER_REQ, state) || 3230 test_bit(ICE_GLOBR_REQ, state); 3231 } 3232 3233 /** 3234 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3235 * @pf: pointer to the PF structure 3236 * @timeout: length of time to wait, in jiffies 3237 * 3238 * Wait (sleep) for a short time until the driver finishes cleaning up from 3239 * a device reset. The caller must be able to sleep. Use this to delay 3240 * operations that could fail while the driver is cleaning up after a device 3241 * reset. 3242 * 3243 * Returns 0 on success, -EBUSY if the reset is not finished within the 3244 * timeout, and -ERESTARTSYS if the thread was interrupted. 3245 */ 3246 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3247 { 3248 long ret; 3249 3250 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3251 !ice_is_reset_in_progress(pf->state), 3252 timeout); 3253 if (ret < 0) 3254 return ret; 3255 else if (!ret) 3256 return -EBUSY; 3257 else 3258 return 0; 3259 } 3260 3261 #ifdef CONFIG_DCB 3262 /** 3263 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3264 * @vsi: VSI being configured 3265 * @ctx: the context buffer returned from AQ VSI update command 3266 */ 3267 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3268 { 3269 vsi->info.mapping_flags = ctx->info.mapping_flags; 3270 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3271 sizeof(vsi->info.q_mapping)); 3272 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3273 sizeof(vsi->info.tc_mapping)); 3274 } 3275 3276 /** 3277 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3278 * @vsi: VSI to be configured 3279 * @ena_tc: TC bitmap 3280 * 3281 * VSI queues expected to be quiesced before calling this function 3282 */ 3283 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3284 { 3285 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3286 struct ice_pf *pf = vsi->back; 3287 struct ice_vsi_ctx *ctx; 3288 enum ice_status status; 3289 struct device *dev; 3290 int i, ret = 0; 3291 u8 num_tc = 0; 3292 3293 dev = ice_pf_to_dev(pf); 3294 3295 ice_for_each_traffic_class(i) { 3296 /* build bitmap of enabled TCs */ 3297 if (ena_tc & BIT(i)) 3298 num_tc++; 3299 /* populate max_txqs per TC */ 3300 max_txqs[i] = vsi->alloc_txq; 3301 } 3302 3303 vsi->tc_cfg.ena_tc = ena_tc; 3304 vsi->tc_cfg.numtc = num_tc; 3305 3306 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3307 if (!ctx) 3308 return -ENOMEM; 3309 3310 ctx->vf_num = 0; 3311 ctx->info = vsi->info; 3312 3313 ice_vsi_setup_q_map(vsi, ctx); 3314 3315 /* must to indicate which section of VSI context are being modified */ 3316 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3317 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3318 if (status) { 3319 dev_info(dev, "Failed VSI Update\n"); 3320 ret = -EIO; 3321 goto out; 3322 } 3323 3324 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3325 max_txqs); 3326 3327 if (status) { 3328 dev_err(dev, "VSI %d failed TC config, error %s\n", 3329 vsi->vsi_num, ice_stat_str(status)); 3330 ret = -EIO; 3331 goto out; 3332 } 3333 ice_vsi_update_q_map(vsi, ctx); 3334 vsi->info.valid_sections = 0; 3335 3336 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3337 out: 3338 kfree(ctx); 3339 return ret; 3340 } 3341 #endif /* CONFIG_DCB */ 3342 3343 /** 3344 * ice_update_ring_stats - Update ring statistics 3345 * @ring: ring to update 3346 * @pkts: number of processed packets 3347 * @bytes: number of processed bytes 3348 * 3349 * This function assumes that caller has acquired a u64_stats_sync lock. 3350 */ 3351 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3352 { 3353 ring->stats.bytes += bytes; 3354 ring->stats.pkts += pkts; 3355 } 3356 3357 /** 3358 * ice_update_tx_ring_stats - Update Tx ring specific counters 3359 * @tx_ring: ring to update 3360 * @pkts: number of processed packets 3361 * @bytes: number of processed bytes 3362 */ 3363 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3364 { 3365 u64_stats_update_begin(&tx_ring->syncp); 3366 ice_update_ring_stats(tx_ring, pkts, bytes); 3367 u64_stats_update_end(&tx_ring->syncp); 3368 } 3369 3370 /** 3371 * ice_update_rx_ring_stats - Update Rx ring specific counters 3372 * @rx_ring: ring to update 3373 * @pkts: number of processed packets 3374 * @bytes: number of processed bytes 3375 */ 3376 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3377 { 3378 u64_stats_update_begin(&rx_ring->syncp); 3379 ice_update_ring_stats(rx_ring, pkts, bytes); 3380 u64_stats_update_end(&rx_ring->syncp); 3381 } 3382 3383 /** 3384 * ice_status_to_errno - convert from enum ice_status to Linux errno 3385 * @err: ice_status value to convert 3386 */ 3387 int ice_status_to_errno(enum ice_status err) 3388 { 3389 switch (err) { 3390 case ICE_SUCCESS: 3391 return 0; 3392 case ICE_ERR_DOES_NOT_EXIST: 3393 return -ENOENT; 3394 case ICE_ERR_OUT_OF_RANGE: 3395 return -ENOTTY; 3396 case ICE_ERR_PARAM: 3397 return -EINVAL; 3398 case ICE_ERR_NO_MEMORY: 3399 return -ENOMEM; 3400 case ICE_ERR_MAX_LIMIT: 3401 return -EAGAIN; 3402 default: 3403 return -EINVAL; 3404 } 3405 } 3406 3407 /** 3408 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3409 * @sw: switch to check if its default forwarding VSI is free 3410 * 3411 * Return true if the default forwarding VSI is already being used, else returns 3412 * false signalling that it's available to use. 3413 */ 3414 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3415 { 3416 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3417 } 3418 3419 /** 3420 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3421 * @sw: switch for the default forwarding VSI to compare against 3422 * @vsi: VSI to compare against default forwarding VSI 3423 * 3424 * If this VSI passed in is the default forwarding VSI then return true, else 3425 * return false 3426 */ 3427 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3428 { 3429 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3430 } 3431 3432 /** 3433 * ice_set_dflt_vsi - set the default forwarding VSI 3434 * @sw: switch used to assign the default forwarding VSI 3435 * @vsi: VSI getting set as the default forwarding VSI on the switch 3436 * 3437 * If the VSI passed in is already the default VSI and it's enabled just return 3438 * success. 3439 * 3440 * If there is already a default VSI on the switch and it's enabled then return 3441 * -EEXIST since there can only be one default VSI per switch. 3442 * 3443 * Otherwise try to set the VSI passed in as the switch's default VSI and 3444 * return the result. 3445 */ 3446 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3447 { 3448 enum ice_status status; 3449 struct device *dev; 3450 3451 if (!sw || !vsi) 3452 return -EINVAL; 3453 3454 dev = ice_pf_to_dev(vsi->back); 3455 3456 /* the VSI passed in is already the default VSI */ 3457 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3458 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3459 vsi->vsi_num); 3460 return 0; 3461 } 3462 3463 /* another VSI is already the default VSI for this switch */ 3464 if (ice_is_dflt_vsi_in_use(sw)) { 3465 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3466 sw->dflt_vsi->vsi_num); 3467 return -EEXIST; 3468 } 3469 3470 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3471 if (status) { 3472 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3473 vsi->vsi_num, ice_stat_str(status)); 3474 return -EIO; 3475 } 3476 3477 sw->dflt_vsi = vsi; 3478 sw->dflt_vsi_ena = true; 3479 3480 return 0; 3481 } 3482 3483 /** 3484 * ice_clear_dflt_vsi - clear the default forwarding VSI 3485 * @sw: switch used to clear the default VSI 3486 * 3487 * If the switch has no default VSI or it's not enabled then return error. 3488 * 3489 * Otherwise try to clear the default VSI and return the result. 3490 */ 3491 int ice_clear_dflt_vsi(struct ice_sw *sw) 3492 { 3493 struct ice_vsi *dflt_vsi; 3494 enum ice_status status; 3495 struct device *dev; 3496 3497 if (!sw) 3498 return -EINVAL; 3499 3500 dev = ice_pf_to_dev(sw->pf); 3501 3502 dflt_vsi = sw->dflt_vsi; 3503 3504 /* there is no default VSI configured */ 3505 if (!ice_is_dflt_vsi_in_use(sw)) 3506 return -ENODEV; 3507 3508 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3509 ICE_FLTR_RX); 3510 if (status) { 3511 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3512 dflt_vsi->vsi_num, ice_stat_str(status)); 3513 return -EIO; 3514 } 3515 3516 sw->dflt_vsi = NULL; 3517 sw->dflt_vsi_ena = false; 3518 3519 return 0; 3520 } 3521 3522 /** 3523 * ice_set_link - turn on/off physical link 3524 * @vsi: VSI to modify physical link on 3525 * @ena: turn on/off physical link 3526 */ 3527 int ice_set_link(struct ice_vsi *vsi, bool ena) 3528 { 3529 struct device *dev = ice_pf_to_dev(vsi->back); 3530 struct ice_port_info *pi = vsi->port_info; 3531 struct ice_hw *hw = pi->hw; 3532 enum ice_status status; 3533 3534 if (vsi->type != ICE_VSI_PF) 3535 return -EINVAL; 3536 3537 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3538 3539 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3540 * this is not a fatal error, so print a warning message and return 3541 * a success code. Return an error if FW returns an error code other 3542 * than ICE_AQ_RC_EMODE 3543 */ 3544 if (status == ICE_ERR_AQ_ERROR) { 3545 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3546 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3547 (ena ? "ON" : "OFF"), ice_stat_str(status), 3548 ice_aq_str(hw->adminq.sq_last_status)); 3549 } else if (status) { 3550 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3551 (ena ? "ON" : "OFF"), ice_stat_str(status), 3552 ice_aq_str(hw->adminq.sq_last_status)); 3553 return -EIO; 3554 } 3555 3556 return 0; 3557 } 3558