xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 4e887471e8e3a513607495d18333c44f59a82c5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of PRs
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 * Tx and Rx rings are always equal
218 		 */
219 		if (vsi->req_txq && vsi->req_rxq) {
220 			vsi->alloc_txq = vsi->req_txq;
221 			vsi->alloc_rxq = vsi->req_rxq;
222 		} else {
223 			vsi->alloc_txq = 1;
224 			vsi->alloc_rxq = 1;
225 		}
226 
227 		vsi->num_q_vectors = 1;
228 		break;
229 	case ICE_VSI_VF:
230 		if (vf->num_req_qs)
231 			vf->num_vf_qs = vf->num_req_qs;
232 		vsi->alloc_txq = vf->num_vf_qs;
233 		vsi->alloc_rxq = vf->num_vf_qs;
234 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
235 		 * data queue interrupts). Since vsi->num_q_vectors is number
236 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
237 		 * original vector count
238 		 */
239 		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
240 		break;
241 	case ICE_VSI_CTRL:
242 		vsi->alloc_txq = 1;
243 		vsi->alloc_rxq = 1;
244 		vsi->num_q_vectors = 1;
245 		break;
246 	case ICE_VSI_CHNL:
247 		vsi->alloc_txq = 0;
248 		vsi->alloc_rxq = 0;
249 		break;
250 	case ICE_VSI_LB:
251 		vsi->alloc_txq = 1;
252 		vsi->alloc_rxq = 1;
253 		break;
254 	default:
255 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
256 		break;
257 	}
258 
259 	ice_vsi_set_num_desc(vsi);
260 }
261 
262 /**
263  * ice_get_free_slot - get the next non-NULL location index in array
264  * @array: array to search
265  * @size: size of the array
266  * @curr: last known occupied index to be used as a search hint
267  *
268  * void * is being used to keep the functionality generic. This lets us use this
269  * function on any array of pointers.
270  */
271 static int ice_get_free_slot(void *array, int size, int curr)
272 {
273 	int **tmp_array = (int **)array;
274 	int next;
275 
276 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
277 		next = curr + 1;
278 	} else {
279 		int i = 0;
280 
281 		while ((i < size) && (tmp_array[i]))
282 			i++;
283 		if (i == size)
284 			next = ICE_NO_VSI;
285 		else
286 			next = i;
287 	}
288 	return next;
289 }
290 
291 /**
292  * ice_vsi_delete_from_hw - delete a VSI from the switch
293  * @vsi: pointer to VSI being removed
294  */
295 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
296 {
297 	struct ice_pf *pf = vsi->back;
298 	struct ice_vsi_ctx *ctxt;
299 	int status;
300 
301 	ice_fltr_remove_all(vsi);
302 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
303 	if (!ctxt)
304 		return;
305 
306 	if (vsi->type == ICE_VSI_VF)
307 		ctxt->vf_num = vsi->vf->vf_id;
308 	ctxt->vsi_num = vsi->vsi_num;
309 
310 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
311 
312 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
313 	if (status)
314 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
315 			vsi->vsi_num, status);
316 
317 	kfree(ctxt);
318 }
319 
320 /**
321  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
322  * @vsi: pointer to VSI being cleared
323  */
324 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
325 {
326 	struct ice_pf *pf = vsi->back;
327 	struct device *dev;
328 
329 	dev = ice_pf_to_dev(pf);
330 
331 	bitmap_free(vsi->af_xdp_zc_qps);
332 	vsi->af_xdp_zc_qps = NULL;
333 	/* free the ring and vector containers */
334 	devm_kfree(dev, vsi->q_vectors);
335 	vsi->q_vectors = NULL;
336 	devm_kfree(dev, vsi->tx_rings);
337 	vsi->tx_rings = NULL;
338 	devm_kfree(dev, vsi->rx_rings);
339 	vsi->rx_rings = NULL;
340 	devm_kfree(dev, vsi->txq_map);
341 	vsi->txq_map = NULL;
342 	devm_kfree(dev, vsi->rxq_map);
343 	vsi->rxq_map = NULL;
344 }
345 
346 /**
347  * ice_vsi_free_stats - Free the ring statistics structures
348  * @vsi: VSI pointer
349  */
350 static void ice_vsi_free_stats(struct ice_vsi *vsi)
351 {
352 	struct ice_vsi_stats *vsi_stat;
353 	struct ice_pf *pf = vsi->back;
354 	int i;
355 
356 	if (vsi->type == ICE_VSI_CHNL)
357 		return;
358 	if (!pf->vsi_stats)
359 		return;
360 
361 	vsi_stat = pf->vsi_stats[vsi->idx];
362 	if (!vsi_stat)
363 		return;
364 
365 	ice_for_each_alloc_txq(vsi, i) {
366 		if (vsi_stat->tx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	ice_for_each_alloc_rxq(vsi, i) {
373 		if (vsi_stat->rx_ring_stats[i]) {
374 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
375 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
376 		}
377 	}
378 
379 	kfree(vsi_stat->tx_ring_stats);
380 	kfree(vsi_stat->rx_ring_stats);
381 	kfree(vsi_stat);
382 	pf->vsi_stats[vsi->idx] = NULL;
383 }
384 
385 /**
386  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
387  * @vsi: VSI which is having stats allocated
388  */
389 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
390 {
391 	struct ice_ring_stats **tx_ring_stats;
392 	struct ice_ring_stats **rx_ring_stats;
393 	struct ice_vsi_stats *vsi_stats;
394 	struct ice_pf *pf = vsi->back;
395 	u16 i;
396 
397 	vsi_stats = pf->vsi_stats[vsi->idx];
398 	tx_ring_stats = vsi_stats->tx_ring_stats;
399 	rx_ring_stats = vsi_stats->rx_ring_stats;
400 
401 	/* Allocate Tx ring stats */
402 	ice_for_each_alloc_txq(vsi, i) {
403 		struct ice_ring_stats *ring_stats;
404 		struct ice_tx_ring *ring;
405 
406 		ring = vsi->tx_rings[i];
407 		ring_stats = tx_ring_stats[i];
408 
409 		if (!ring_stats) {
410 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
411 			if (!ring_stats)
412 				goto err_out;
413 
414 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
415 		}
416 
417 		ring->ring_stats = ring_stats;
418 	}
419 
420 	/* Allocate Rx ring stats */
421 	ice_for_each_alloc_rxq(vsi, i) {
422 		struct ice_ring_stats *ring_stats;
423 		struct ice_rx_ring *ring;
424 
425 		ring = vsi->rx_rings[i];
426 		ring_stats = rx_ring_stats[i];
427 
428 		if (!ring_stats) {
429 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
430 			if (!ring_stats)
431 				goto err_out;
432 
433 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
434 		}
435 
436 		ring->ring_stats = ring_stats;
437 	}
438 
439 	return 0;
440 
441 err_out:
442 	ice_vsi_free_stats(vsi);
443 	return -ENOMEM;
444 }
445 
446 /**
447  * ice_vsi_free - clean up and deallocate the provided VSI
448  * @vsi: pointer to VSI being cleared
449  *
450  * This deallocates the VSI's queue resources, removes it from the PF's
451  * VSI array if necessary, and deallocates the VSI
452  */
453 static void ice_vsi_free(struct ice_vsi *vsi)
454 {
455 	struct ice_pf *pf = NULL;
456 	struct device *dev;
457 
458 	if (!vsi || !vsi->back)
459 		return;
460 
461 	pf = vsi->back;
462 	dev = ice_pf_to_dev(pf);
463 
464 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
465 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
466 		return;
467 	}
468 
469 	mutex_lock(&pf->sw_mutex);
470 	/* updates the PF for this cleared VSI */
471 
472 	pf->vsi[vsi->idx] = NULL;
473 	pf->next_vsi = vsi->idx;
474 
475 	ice_vsi_free_stats(vsi);
476 	ice_vsi_free_arrays(vsi);
477 	mutex_unlock(&pf->sw_mutex);
478 	devm_kfree(dev, vsi);
479 }
480 
481 void ice_vsi_delete(struct ice_vsi *vsi)
482 {
483 	ice_vsi_delete_from_hw(vsi);
484 	ice_vsi_free(vsi);
485 }
486 
487 /**
488  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
489  * @irq: interrupt number
490  * @data: pointer to a q_vector
491  */
492 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
493 {
494 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
495 
496 	if (!q_vector->tx.tx_ring)
497 		return IRQ_HANDLED;
498 
499 #define FDIR_RX_DESC_CLEAN_BUDGET 64
500 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
501 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
502 
503 	return IRQ_HANDLED;
504 }
505 
506 /**
507  * ice_msix_clean_rings - MSIX mode Interrupt Handler
508  * @irq: interrupt number
509  * @data: pointer to a q_vector
510  */
511 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
512 {
513 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514 
515 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
516 		return IRQ_HANDLED;
517 
518 	q_vector->total_events++;
519 
520 	napi_schedule(&q_vector->napi);
521 
522 	return IRQ_HANDLED;
523 }
524 
525 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
526 {
527 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
528 	struct ice_pf *pf = q_vector->vsi->back;
529 	struct ice_repr *repr;
530 	unsigned long id;
531 
532 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
533 		return IRQ_HANDLED;
534 
535 	xa_for_each(&pf->eswitch.reprs, id, repr)
536 		napi_schedule(&repr->q_vector->napi);
537 
538 	return IRQ_HANDLED;
539 }
540 
541 /**
542  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
543  * @vsi: VSI pointer
544  */
545 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
546 {
547 	struct ice_vsi_stats *vsi_stat;
548 	struct ice_pf *pf = vsi->back;
549 
550 	if (vsi->type == ICE_VSI_CHNL)
551 		return 0;
552 	if (!pf->vsi_stats)
553 		return -ENOENT;
554 
555 	if (pf->vsi_stats[vsi->idx])
556 	/* realloc will happen in rebuild path */
557 		return 0;
558 
559 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
560 	if (!vsi_stat)
561 		return -ENOMEM;
562 
563 	vsi_stat->tx_ring_stats =
564 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
565 			GFP_KERNEL);
566 	if (!vsi_stat->tx_ring_stats)
567 		goto err_alloc_tx;
568 
569 	vsi_stat->rx_ring_stats =
570 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
571 			GFP_KERNEL);
572 	if (!vsi_stat->rx_ring_stats)
573 		goto err_alloc_rx;
574 
575 	pf->vsi_stats[vsi->idx] = vsi_stat;
576 
577 	return 0;
578 
579 err_alloc_rx:
580 	kfree(vsi_stat->rx_ring_stats);
581 err_alloc_tx:
582 	kfree(vsi_stat->tx_ring_stats);
583 	kfree(vsi_stat);
584 	pf->vsi_stats[vsi->idx] = NULL;
585 	return -ENOMEM;
586 }
587 
588 /**
589  * ice_vsi_alloc_def - set default values for already allocated VSI
590  * @vsi: ptr to VSI
591  * @ch: ptr to channel
592  */
593 static int
594 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
595 {
596 	if (vsi->type != ICE_VSI_CHNL) {
597 		ice_vsi_set_num_qs(vsi);
598 		if (ice_vsi_alloc_arrays(vsi))
599 			return -ENOMEM;
600 	}
601 
602 	switch (vsi->type) {
603 	case ICE_VSI_SWITCHDEV_CTRL:
604 		/* Setup eswitch MSIX irq handler for VSI */
605 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
606 		break;
607 	case ICE_VSI_PF:
608 		/* Setup default MSIX irq handler for VSI */
609 		vsi->irq_handler = ice_msix_clean_rings;
610 		break;
611 	case ICE_VSI_CTRL:
612 		/* Setup ctrl VSI MSIX irq handler */
613 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
614 		break;
615 	case ICE_VSI_CHNL:
616 		if (!ch)
617 			return -EINVAL;
618 
619 		vsi->num_rxq = ch->num_rxq;
620 		vsi->num_txq = ch->num_txq;
621 		vsi->next_base_q = ch->base_q;
622 		break;
623 	case ICE_VSI_VF:
624 	case ICE_VSI_LB:
625 		break;
626 	default:
627 		ice_vsi_free_arrays(vsi);
628 		return -EINVAL;
629 	}
630 
631 	return 0;
632 }
633 
634 /**
635  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
636  * @pf: board private structure
637  *
638  * Reserves a VSI index from the PF and allocates an empty VSI structure
639  * without a type. The VSI structure must later be initialized by calling
640  * ice_vsi_cfg().
641  *
642  * returns a pointer to a VSI on success, NULL on failure.
643  */
644 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
645 {
646 	struct device *dev = ice_pf_to_dev(pf);
647 	struct ice_vsi *vsi = NULL;
648 
649 	/* Need to protect the allocation of the VSIs at the PF level */
650 	mutex_lock(&pf->sw_mutex);
651 
652 	/* If we have already allocated our maximum number of VSIs,
653 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
654 	 * is available to be populated
655 	 */
656 	if (pf->next_vsi == ICE_NO_VSI) {
657 		dev_dbg(dev, "out of VSI slots!\n");
658 		goto unlock_pf;
659 	}
660 
661 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
662 	if (!vsi)
663 		goto unlock_pf;
664 
665 	vsi->back = pf;
666 	set_bit(ICE_VSI_DOWN, vsi->state);
667 
668 	/* fill slot and make note of the index */
669 	vsi->idx = pf->next_vsi;
670 	pf->vsi[pf->next_vsi] = vsi;
671 
672 	/* prepare pf->next_vsi for next use */
673 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
674 					 pf->next_vsi);
675 
676 unlock_pf:
677 	mutex_unlock(&pf->sw_mutex);
678 	return vsi;
679 }
680 
681 /**
682  * ice_alloc_fd_res - Allocate FD resource for a VSI
683  * @vsi: pointer to the ice_vsi
684  *
685  * This allocates the FD resources
686  *
687  * Returns 0 on success, -EPERM on no-op or -EIO on failure
688  */
689 static int ice_alloc_fd_res(struct ice_vsi *vsi)
690 {
691 	struct ice_pf *pf = vsi->back;
692 	u32 g_val, b_val;
693 
694 	/* Flow Director filters are only allocated/assigned to the PF VSI or
695 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
696 	 * add/delete filters so resources are not allocated to it
697 	 */
698 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
699 		return -EPERM;
700 
701 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
702 	      vsi->type == ICE_VSI_CHNL))
703 		return -EPERM;
704 
705 	/* FD filters from guaranteed pool per VSI */
706 	g_val = pf->hw.func_caps.fd_fltr_guar;
707 	if (!g_val)
708 		return -EPERM;
709 
710 	/* FD filters from best effort pool */
711 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
712 	if (!b_val)
713 		return -EPERM;
714 
715 	/* PF main VSI gets only 64 FD resources from guaranteed pool
716 	 * when ADQ is configured.
717 	 */
718 #define ICE_PF_VSI_GFLTR	64
719 
720 	/* determine FD filter resources per VSI from shared(best effort) and
721 	 * dedicated pool
722 	 */
723 	if (vsi->type == ICE_VSI_PF) {
724 		vsi->num_gfltr = g_val;
725 		/* if MQPRIO is configured, main VSI doesn't get all FD
726 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
727 		 */
728 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
729 			if (g_val < ICE_PF_VSI_GFLTR)
730 				return -EPERM;
731 			/* allow bare minimum entries for PF VSI */
732 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
733 		}
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else if (vsi->type == ICE_VSI_VF) {
738 		vsi->num_gfltr = 0;
739 
740 		/* each VSI gets same "best_effort" quota */
741 		vsi->num_bfltr = b_val;
742 	} else {
743 		struct ice_vsi *main_vsi;
744 		int numtc;
745 
746 		main_vsi = ice_get_main_vsi(pf);
747 		if (!main_vsi)
748 			return -EPERM;
749 
750 		if (!main_vsi->all_numtc)
751 			return -EINVAL;
752 
753 		/* figure out ADQ numtc */
754 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
755 
756 		/* only one TC but still asking resources for channels,
757 		 * invalid config
758 		 */
759 		if (numtc < ICE_CHNL_START_TC)
760 			return -EPERM;
761 
762 		g_val -= ICE_PF_VSI_GFLTR;
763 		/* channel VSIs gets equal share from guaranteed pool */
764 		vsi->num_gfltr = g_val / numtc;
765 
766 		/* each VSI gets same "best_effort" quota */
767 		vsi->num_bfltr = b_val;
768 	}
769 
770 	return 0;
771 }
772 
773 /**
774  * ice_vsi_get_qs - Assign queues from PF to VSI
775  * @vsi: the VSI to assign queues to
776  *
777  * Returns 0 on success and a negative value on error
778  */
779 static int ice_vsi_get_qs(struct ice_vsi *vsi)
780 {
781 	struct ice_pf *pf = vsi->back;
782 	struct ice_qs_cfg tx_qs_cfg = {
783 		.qs_mutex = &pf->avail_q_mutex,
784 		.pf_map = pf->avail_txqs,
785 		.pf_map_size = pf->max_pf_txqs,
786 		.q_count = vsi->alloc_txq,
787 		.scatter_count = ICE_MAX_SCATTER_TXQS,
788 		.vsi_map = vsi->txq_map,
789 		.vsi_map_offset = 0,
790 		.mapping_mode = ICE_VSI_MAP_CONTIG
791 	};
792 	struct ice_qs_cfg rx_qs_cfg = {
793 		.qs_mutex = &pf->avail_q_mutex,
794 		.pf_map = pf->avail_rxqs,
795 		.pf_map_size = pf->max_pf_rxqs,
796 		.q_count = vsi->alloc_rxq,
797 		.scatter_count = ICE_MAX_SCATTER_RXQS,
798 		.vsi_map = vsi->rxq_map,
799 		.vsi_map_offset = 0,
800 		.mapping_mode = ICE_VSI_MAP_CONTIG
801 	};
802 	int ret;
803 
804 	if (vsi->type == ICE_VSI_CHNL)
805 		return 0;
806 
807 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
811 
812 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
813 	if (ret)
814 		return ret;
815 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
816 
817 	return 0;
818 }
819 
820 /**
821  * ice_vsi_put_qs - Release queues from VSI to PF
822  * @vsi: the VSI that is going to release queues
823  */
824 static void ice_vsi_put_qs(struct ice_vsi *vsi)
825 {
826 	struct ice_pf *pf = vsi->back;
827 	int i;
828 
829 	mutex_lock(&pf->avail_q_mutex);
830 
831 	ice_for_each_alloc_txq(vsi, i) {
832 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
833 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	ice_for_each_alloc_rxq(vsi, i) {
837 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
838 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
839 	}
840 
841 	mutex_unlock(&pf->avail_q_mutex);
842 }
843 
844 /**
845  * ice_is_safe_mode
846  * @pf: pointer to the PF struct
847  *
848  * returns true if driver is in safe mode, false otherwise
849  */
850 bool ice_is_safe_mode(struct ice_pf *pf)
851 {
852 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
853 }
854 
855 /**
856  * ice_is_rdma_ena
857  * @pf: pointer to the PF struct
858  *
859  * returns true if RDMA is currently supported, false otherwise
860  */
861 bool ice_is_rdma_ena(struct ice_pf *pf)
862 {
863 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
864 }
865 
866 /**
867  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
868  * @vsi: the VSI being cleaned up
869  *
870  * This function deletes RSS input set for all flows that were configured
871  * for this VSI
872  */
873 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
874 {
875 	struct ice_pf *pf = vsi->back;
876 	int status;
877 
878 	if (ice_is_safe_mode(pf))
879 		return;
880 
881 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
882 	if (status)
883 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
884 			vsi->vsi_num, status);
885 }
886 
887 /**
888  * ice_rss_clean - Delete RSS related VSI structures and configuration
889  * @vsi: the VSI being removed
890  */
891 static void ice_rss_clean(struct ice_vsi *vsi)
892 {
893 	struct ice_pf *pf = vsi->back;
894 	struct device *dev;
895 
896 	dev = ice_pf_to_dev(pf);
897 
898 	devm_kfree(dev, vsi->rss_hkey_user);
899 	devm_kfree(dev, vsi->rss_lut_user);
900 
901 	ice_vsi_clean_rss_flow_fld(vsi);
902 	/* remove RSS replay list */
903 	if (!ice_is_safe_mode(pf))
904 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
905 }
906 
907 /**
908  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
909  * @vsi: the VSI being configured
910  */
911 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
912 {
913 	struct ice_hw_common_caps *cap;
914 	struct ice_pf *pf = vsi->back;
915 	u16 max_rss_size;
916 
917 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
918 		vsi->rss_size = 1;
919 		return;
920 	}
921 
922 	cap = &pf->hw.func_caps.common_cap;
923 	max_rss_size = BIT(cap->rss_table_entry_width);
924 	switch (vsi->type) {
925 	case ICE_VSI_CHNL:
926 	case ICE_VSI_PF:
927 		/* PF VSI will inherit RSS instance of PF */
928 		vsi->rss_table_size = (u16)cap->rss_table_size;
929 		if (vsi->type == ICE_VSI_CHNL)
930 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
931 		else
932 			vsi->rss_size = min_t(u16, num_online_cpus(),
933 					      max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_PF;
935 		break;
936 	case ICE_VSI_SWITCHDEV_CTRL:
937 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
938 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
939 		vsi->rss_lut_type = ICE_LUT_VSI;
940 		break;
941 	case ICE_VSI_VF:
942 		/* VF VSI will get a small RSS table.
943 		 * For VSI_LUT, LUT size should be set to 64 bytes.
944 		 */
945 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
946 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
947 		vsi->rss_lut_type = ICE_LUT_VSI;
948 		break;
949 	case ICE_VSI_LB:
950 		break;
951 	default:
952 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
953 			ice_vsi_type_str(vsi->type));
954 		break;
955 	}
956 }
957 
958 /**
959  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
960  * @hw: HW structure used to determine the VLAN mode of the device
961  * @ctxt: the VSI context being set
962  *
963  * This initializes a default VSI context for all sections except the Queues.
964  */
965 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
966 {
967 	u32 table = 0;
968 
969 	memset(&ctxt->info, 0, sizeof(ctxt->info));
970 	/* VSI's should be allocated from shared pool */
971 	ctxt->alloc_from_pool = true;
972 	/* Src pruning enabled by default */
973 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
974 	/* Traffic from VSI can be sent to LAN */
975 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
976 	/* allow all untagged/tagged packets by default on Tx */
977 	ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
978 						 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
979 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
980 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
981 	 *
982 	 * DVM - leave inner VLAN in packet by default
983 	 */
984 	if (ice_is_dvm_ena(hw)) {
985 		ctxt->info.inner_vlan_flags |=
986 			FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
987 				   ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
988 		ctxt->info.outer_vlan_flags =
989 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
990 				   ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
993 				   ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
994 		ctxt->info.outer_vlan_flags |=
995 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
996 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
997 	}
998 	/* Have 1:1 UP mapping for both ingress/egress tables */
999 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1000 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1001 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1002 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1003 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1004 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1005 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1006 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1007 	ctxt->info.ingress_table = cpu_to_le32(table);
1008 	ctxt->info.egress_table = cpu_to_le32(table);
1009 	/* Have 1:1 UP mapping for outer to inner UP table */
1010 	ctxt->info.outer_up_table = cpu_to_le32(table);
1011 	/* No Outer tag support outer_tag_flags remains to zero */
1012 }
1013 
1014 /**
1015  * ice_vsi_setup_q_map - Setup a VSI queue map
1016  * @vsi: the VSI being configured
1017  * @ctxt: VSI context structure
1018  */
1019 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1020 {
1021 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1022 	u16 num_txq_per_tc, num_rxq_per_tc;
1023 	u16 qcount_tx = vsi->alloc_txq;
1024 	u16 qcount_rx = vsi->alloc_rxq;
1025 	u8 netdev_tc = 0;
1026 	int i;
1027 
1028 	if (!vsi->tc_cfg.numtc) {
1029 		/* at least TC0 should be enabled by default */
1030 		vsi->tc_cfg.numtc = 1;
1031 		vsi->tc_cfg.ena_tc = 1;
1032 	}
1033 
1034 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1035 	if (!num_rxq_per_tc)
1036 		num_rxq_per_tc = 1;
1037 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1038 	if (!num_txq_per_tc)
1039 		num_txq_per_tc = 1;
1040 
1041 	/* find the (rounded up) power-of-2 of qcount */
1042 	pow = (u16)order_base_2(num_rxq_per_tc);
1043 
1044 	/* TC mapping is a function of the number of Rx queues assigned to the
1045 	 * VSI for each traffic class and the offset of these queues.
1046 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1047 	 * queues allocated to TC0. No:of queues is a power-of-2.
1048 	 *
1049 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1050 	 * queue, this way, traffic for the given TC will be sent to the default
1051 	 * queue.
1052 	 *
1053 	 * Setup number and offset of Rx queues for all TCs for the VSI
1054 	 */
1055 	ice_for_each_traffic_class(i) {
1056 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1057 			/* TC is not enabled */
1058 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1059 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1060 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1061 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1062 			ctxt->info.tc_mapping[i] = 0;
1063 			continue;
1064 		}
1065 
1066 		/* TC is enabled */
1067 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1068 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1069 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1070 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1071 
1072 		qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1073 		qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1074 		offset += num_rxq_per_tc;
1075 		tx_count += num_txq_per_tc;
1076 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077 	}
1078 
1079 	/* if offset is non-zero, means it is calculated correctly based on
1080 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1081 	 * be correct and non-zero because it is based off - VSI's
1082 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083 	 * at least 1)
1084 	 */
1085 	if (offset)
1086 		rx_count = offset;
1087 	else
1088 		rx_count = num_rxq_per_tc;
1089 
1090 	if (rx_count > vsi->alloc_rxq) {
1091 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092 			rx_count, vsi->alloc_rxq);
1093 		return -EINVAL;
1094 	}
1095 
1096 	if (tx_count > vsi->alloc_txq) {
1097 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098 			tx_count, vsi->alloc_txq);
1099 		return -EINVAL;
1100 	}
1101 
1102 	vsi->num_txq = tx_count;
1103 	vsi->num_rxq = rx_count;
1104 
1105 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107 		/* since there is a chance that num_rxq could have been changed
1108 		 * in the above for loop, make num_txq equal to num_rxq.
1109 		 */
1110 		vsi->num_txq = vsi->num_rxq;
1111 	}
1112 
1113 	/* Rx queue mapping */
1114 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115 	/* q_mapping buffer holds the info for the first queue allocated for
1116 	 * this VSI in the PF space and also the number of queues associated
1117 	 * with this VSI.
1118 	 */
1119 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127  * @ctxt: the VSI context being set
1128  * @vsi: the VSI being configured
1129  */
1130 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131 {
1132 	u8 dflt_q_group, dflt_q_prio;
1133 	u16 dflt_q, report_q, val;
1134 
1135 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137 		return;
1138 
1139 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140 	ctxt->info.valid_sections |= cpu_to_le16(val);
1141 	dflt_q = 0;
1142 	dflt_q_group = 0;
1143 	report_q = 0;
1144 	dflt_q_prio = 0;
1145 
1146 	/* enable flow director filtering/programming */
1147 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148 	ctxt->info.fd_options = cpu_to_le16(val);
1149 	/* max of allocated flow director filters */
1150 	ctxt->info.max_fd_fltr_dedicated =
1151 			cpu_to_le16(vsi->num_gfltr);
1152 	/* max of shared flow director filters any VSI may program */
1153 	ctxt->info.max_fd_fltr_shared =
1154 			cpu_to_le16(vsi->num_bfltr);
1155 	/* default queue index within the VSI of the default FD */
1156 	val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1159 	ctxt->info.fd_def_q = cpu_to_le16(val);
1160 	/* queue index on which FD filter completion is reported */
1161 	val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1162 	/* priority of the default qindex action */
1163 	val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1164 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1165 }
1166 
1167 /**
1168  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1169  * @ctxt: the VSI context being set
1170  * @vsi: the VSI being configured
1171  */
1172 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1173 {
1174 	u8 lut_type, hash_type;
1175 	struct device *dev;
1176 	struct ice_pf *pf;
1177 
1178 	pf = vsi->back;
1179 	dev = ice_pf_to_dev(pf);
1180 
1181 	switch (vsi->type) {
1182 	case ICE_VSI_CHNL:
1183 	case ICE_VSI_PF:
1184 		/* PF VSI will inherit RSS instance of PF */
1185 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1186 		break;
1187 	case ICE_VSI_VF:
1188 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1189 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1190 		break;
1191 	default:
1192 		dev_dbg(dev, "Unsupported VSI type %s\n",
1193 			ice_vsi_type_str(vsi->type));
1194 		return;
1195 	}
1196 
1197 	hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1198 	vsi->rss_hfunc = hash_type;
1199 
1200 	ctxt->info.q_opt_rss =
1201 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1202 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1203 }
1204 
1205 static void
1206 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207 {
1208 	struct ice_pf *pf = vsi->back;
1209 	u16 qcount, qmap;
1210 	u8 offset = 0;
1211 	int pow;
1212 
1213 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214 
1215 	pow = order_base_2(qcount);
1216 	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1217 	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1218 
1219 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1220 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1221 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1222 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1223 }
1224 
1225 /**
1226  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1227  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1228  *
1229  * returns true if Rx VLAN pruning is enabled and false otherwise.
1230  */
1231 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1232 {
1233 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1234 }
1235 
1236 /**
1237  * ice_vsi_init - Create and initialize a VSI
1238  * @vsi: the VSI being configured
1239  * @vsi_flags: VSI configuration flags
1240  *
1241  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1242  * reconfigure an existing context.
1243  *
1244  * This initializes a VSI context depending on the VSI type to be added and
1245  * passes it down to the add_vsi aq command to create a new VSI.
1246  */
1247 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1248 {
1249 	struct ice_pf *pf = vsi->back;
1250 	struct ice_hw *hw = &pf->hw;
1251 	struct ice_vsi_ctx *ctxt;
1252 	struct device *dev;
1253 	int ret = 0;
1254 
1255 	dev = ice_pf_to_dev(pf);
1256 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1257 	if (!ctxt)
1258 		return -ENOMEM;
1259 
1260 	switch (vsi->type) {
1261 	case ICE_VSI_CTRL:
1262 	case ICE_VSI_LB:
1263 	case ICE_VSI_PF:
1264 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1265 		break;
1266 	case ICE_VSI_SWITCHDEV_CTRL:
1267 	case ICE_VSI_CHNL:
1268 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1269 		break;
1270 	case ICE_VSI_VF:
1271 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1272 		/* VF number here is the absolute VF number (0-255) */
1273 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1274 		break;
1275 	default:
1276 		ret = -ENODEV;
1277 		goto out;
1278 	}
1279 
1280 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1281 	 * prune enabled
1282 	 */
1283 	if (vsi->type == ICE_VSI_CHNL) {
1284 		struct ice_vsi *main_vsi;
1285 
1286 		main_vsi = ice_get_main_vsi(pf);
1287 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1288 			ctxt->info.sw_flags2 |=
1289 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1290 		else
1291 			ctxt->info.sw_flags2 &=
1292 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1293 	}
1294 
1295 	ice_set_dflt_vsi_ctx(hw, ctxt);
1296 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1297 		ice_set_fd_vsi_ctx(ctxt, vsi);
1298 	/* if the switch is in VEB mode, allow VSI loopback */
1299 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1300 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1301 
1302 	/* Set LUT type and HASH type if RSS is enabled */
1303 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1304 	    vsi->type != ICE_VSI_CTRL) {
1305 		ice_set_rss_vsi_ctx(ctxt, vsi);
1306 		/* if updating VSI context, make sure to set valid_section:
1307 		 * to indicate which section of VSI context being updated
1308 		 */
1309 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1310 			ctxt->info.valid_sections |=
1311 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1312 	}
1313 
1314 	ctxt->info.sw_id = vsi->port_info->sw_id;
1315 	if (vsi->type == ICE_VSI_CHNL) {
1316 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1317 	} else {
1318 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1319 		if (ret)
1320 			goto out;
1321 
1322 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1323 			/* means VSI being updated */
1324 			/* must to indicate which section of VSI context are
1325 			 * being modified
1326 			 */
1327 			ctxt->info.valid_sections |=
1328 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1329 	}
1330 
1331 	/* Allow control frames out of main VSI */
1332 	if (vsi->type == ICE_VSI_PF) {
1333 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1334 		ctxt->info.valid_sections |=
1335 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1336 	}
1337 
1338 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1339 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1340 		if (ret) {
1341 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1342 			ret = -EIO;
1343 			goto out;
1344 		}
1345 	} else {
1346 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1347 		if (ret) {
1348 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1349 			ret = -EIO;
1350 			goto out;
1351 		}
1352 	}
1353 
1354 	/* keep context for update VSI operations */
1355 	vsi->info = ctxt->info;
1356 
1357 	/* record VSI number returned */
1358 	vsi->vsi_num = ctxt->vsi_num;
1359 
1360 out:
1361 	kfree(ctxt);
1362 	return ret;
1363 }
1364 
1365 /**
1366  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1367  * @vsi: the VSI having rings deallocated
1368  */
1369 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1370 {
1371 	int i;
1372 
1373 	/* Avoid stale references by clearing map from vector to ring */
1374 	if (vsi->q_vectors) {
1375 		ice_for_each_q_vector(vsi, i) {
1376 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1377 
1378 			if (q_vector) {
1379 				q_vector->tx.tx_ring = NULL;
1380 				q_vector->rx.rx_ring = NULL;
1381 			}
1382 		}
1383 	}
1384 
1385 	if (vsi->tx_rings) {
1386 		ice_for_each_alloc_txq(vsi, i) {
1387 			if (vsi->tx_rings[i]) {
1388 				kfree_rcu(vsi->tx_rings[i], rcu);
1389 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1390 			}
1391 		}
1392 	}
1393 	if (vsi->rx_rings) {
1394 		ice_for_each_alloc_rxq(vsi, i) {
1395 			if (vsi->rx_rings[i]) {
1396 				kfree_rcu(vsi->rx_rings[i], rcu);
1397 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1398 			}
1399 		}
1400 	}
1401 }
1402 
1403 /**
1404  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1405  * @vsi: VSI which is having rings allocated
1406  */
1407 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1408 {
1409 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1410 	struct ice_pf *pf = vsi->back;
1411 	struct device *dev;
1412 	u16 i;
1413 
1414 	dev = ice_pf_to_dev(pf);
1415 	/* Allocate Tx rings */
1416 	ice_for_each_alloc_txq(vsi, i) {
1417 		struct ice_tx_ring *ring;
1418 
1419 		/* allocate with kzalloc(), free with kfree_rcu() */
1420 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1421 
1422 		if (!ring)
1423 			goto err_out;
1424 
1425 		ring->q_index = i;
1426 		ring->reg_idx = vsi->txq_map[i];
1427 		ring->vsi = vsi;
1428 		ring->tx_tstamps = &pf->ptp.port.tx;
1429 		ring->dev = dev;
1430 		ring->count = vsi->num_tx_desc;
1431 		ring->txq_teid = ICE_INVAL_TEID;
1432 		if (dvm_ena)
1433 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1434 		else
1435 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1436 		WRITE_ONCE(vsi->tx_rings[i], ring);
1437 	}
1438 
1439 	/* Allocate Rx rings */
1440 	ice_for_each_alloc_rxq(vsi, i) {
1441 		struct ice_rx_ring *ring;
1442 
1443 		/* allocate with kzalloc(), free with kfree_rcu() */
1444 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1445 		if (!ring)
1446 			goto err_out;
1447 
1448 		ring->q_index = i;
1449 		ring->reg_idx = vsi->rxq_map[i];
1450 		ring->vsi = vsi;
1451 		ring->netdev = vsi->netdev;
1452 		ring->dev = dev;
1453 		ring->count = vsi->num_rx_desc;
1454 		ring->cached_phctime = pf->ptp.cached_phc_time;
1455 		WRITE_ONCE(vsi->rx_rings[i], ring);
1456 	}
1457 
1458 	return 0;
1459 
1460 err_out:
1461 	ice_vsi_clear_rings(vsi);
1462 	return -ENOMEM;
1463 }
1464 
1465 /**
1466  * ice_vsi_manage_rss_lut - disable/enable RSS
1467  * @vsi: the VSI being changed
1468  * @ena: boolean value indicating if this is an enable or disable request
1469  *
1470  * In the event of disable request for RSS, this function will zero out RSS
1471  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1472  * LUT.
1473  */
1474 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1475 {
1476 	u8 *lut;
1477 
1478 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1479 	if (!lut)
1480 		return;
1481 
1482 	if (ena) {
1483 		if (vsi->rss_lut_user)
1484 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1485 		else
1486 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1487 					 vsi->rss_size);
1488 	}
1489 
1490 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1491 	kfree(lut);
1492 }
1493 
1494 /**
1495  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1496  * @vsi: VSI to be configured
1497  * @disable: set to true to have FCS / CRC in the frame data
1498  */
1499 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1500 {
1501 	int i;
1502 
1503 	ice_for_each_rxq(vsi, i)
1504 		if (disable)
1505 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1506 		else
1507 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1508 }
1509 
1510 /**
1511  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1512  * @vsi: VSI to be configured
1513  */
1514 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1515 {
1516 	struct ice_pf *pf = vsi->back;
1517 	struct device *dev;
1518 	u8 *lut, *key;
1519 	int err;
1520 
1521 	dev = ice_pf_to_dev(pf);
1522 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1523 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1524 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1525 	} else {
1526 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1527 
1528 		/* If orig_rss_size is valid and it is less than determined
1529 		 * main VSI's rss_size, update main VSI's rss_size to be
1530 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1531 		 * RSS table gets programmed to be correct (whatever it was
1532 		 * to begin with (prior to setup-tc for ADQ config)
1533 		 */
1534 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1535 		    vsi->orig_rss_size <= vsi->num_rxq) {
1536 			vsi->rss_size = vsi->orig_rss_size;
1537 			/* now orig_rss_size is used, reset it to zero */
1538 			vsi->orig_rss_size = 0;
1539 		}
1540 	}
1541 
1542 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1543 	if (!lut)
1544 		return -ENOMEM;
1545 
1546 	if (vsi->rss_lut_user)
1547 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1548 	else
1549 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1550 
1551 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1552 	if (err) {
1553 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1554 		goto ice_vsi_cfg_rss_exit;
1555 	}
1556 
1557 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1558 	if (!key) {
1559 		err = -ENOMEM;
1560 		goto ice_vsi_cfg_rss_exit;
1561 	}
1562 
1563 	if (vsi->rss_hkey_user)
1564 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1565 	else
1566 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567 
1568 	err = ice_set_rss_key(vsi, key);
1569 	if (err)
1570 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1571 
1572 	kfree(key);
1573 ice_vsi_cfg_rss_exit:
1574 	kfree(lut);
1575 	return err;
1576 }
1577 
1578 /**
1579  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1580  * @vsi: VSI to be configured
1581  *
1582  * This function will only be called during the VF VSI setup. Upon successful
1583  * completion of package download, this function will configure default RSS
1584  * input sets for VF VSI.
1585  */
1586 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1587 {
1588 	struct ice_pf *pf = vsi->back;
1589 	struct device *dev;
1590 	int status;
1591 
1592 	dev = ice_pf_to_dev(pf);
1593 	if (ice_is_safe_mode(pf)) {
1594 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1595 			vsi->vsi_num);
1596 		return;
1597 	}
1598 
1599 	status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1600 	if (status)
1601 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1602 			vsi->vsi_num, status);
1603 }
1604 
1605 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1606 	/* configure RSS for IPv4 with input set IP src/dst */
1607 	{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1608 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1609 	{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1610 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1611 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1612 				ICE_HASH_TCP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1613 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1614 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1615 				ICE_HASH_UDP_IPV4,  ICE_RSS_ANY_HEADERS, false},
1616 	/* configure RSS for sctp4 with input set IP src/dst - only support
1617 	 * RSS on SCTPv4 on outer headers (non-tunneled)
1618 	 */
1619 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1620 		ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1621 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1622 	{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1623 				ICE_HASH_TCP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1624 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1625 	{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1626 				ICE_HASH_UDP_IPV6,  ICE_RSS_ANY_HEADERS, false},
1627 	/* configure RSS for sctp6 with input set IPv6 src/dst - only support
1628 	 * RSS on SCTPv6 on outer headers (non-tunneled)
1629 	 */
1630 	{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1631 		ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1632 	/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1633 	{ICE_FLOW_SEG_HDR_ESP,
1634 		ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1635 };
1636 
1637 /**
1638  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1639  * @vsi: VSI to be configured
1640  *
1641  * This function will only be called after successful download package call
1642  * during initialization of PF. Since the downloaded package will erase the
1643  * RSS section, this function will configure RSS input sets for different
1644  * flow types. The last profile added has the highest priority, therefore 2
1645  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1646  * (i.e. IPv4 src/dst TCP src/dst port).
1647  */
1648 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1649 {
1650 	u16 vsi_num = vsi->vsi_num;
1651 	struct ice_pf *pf = vsi->back;
1652 	struct ice_hw *hw = &pf->hw;
1653 	struct device *dev;
1654 	int status;
1655 	u32 i;
1656 
1657 	dev = ice_pf_to_dev(pf);
1658 	if (ice_is_safe_mode(pf)) {
1659 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1660 			vsi_num);
1661 		return;
1662 	}
1663 	for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1664 		const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1665 
1666 		status = ice_add_rss_cfg(hw, vsi, cfg);
1667 		if (status)
1668 			dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1669 				cfg->addl_hdrs, cfg->hash_flds,
1670 				cfg->hdr_type, cfg->symm);
1671 	}
1672 }
1673 
1674 /**
1675  * ice_pf_state_is_nominal - checks the PF for nominal state
1676  * @pf: pointer to PF to check
1677  *
1678  * Check the PF's state for a collection of bits that would indicate
1679  * the PF is in a state that would inhibit normal operation for
1680  * driver functionality.
1681  *
1682  * Returns true if PF is in a nominal state, false otherwise
1683  */
1684 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1685 {
1686 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1687 
1688 	if (!pf)
1689 		return false;
1690 
1691 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1692 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1693 		return false;
1694 
1695 	return true;
1696 }
1697 
1698 /**
1699  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1700  * @vsi: the VSI to be updated
1701  */
1702 void ice_update_eth_stats(struct ice_vsi *vsi)
1703 {
1704 	struct ice_eth_stats *prev_es, *cur_es;
1705 	struct ice_hw *hw = &vsi->back->hw;
1706 	struct ice_pf *pf = vsi->back;
1707 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1708 
1709 	prev_es = &vsi->eth_stats_prev;
1710 	cur_es = &vsi->eth_stats;
1711 
1712 	if (ice_is_reset_in_progress(pf->state))
1713 		vsi->stat_offsets_loaded = false;
1714 
1715 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1716 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1717 
1718 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1719 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1720 
1721 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1722 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1723 
1724 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1725 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1726 
1727 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1728 			  &prev_es->rx_discards, &cur_es->rx_discards);
1729 
1730 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1731 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1732 
1733 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1734 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1735 
1736 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1737 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1738 
1739 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1740 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1741 
1742 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1743 			  &prev_es->tx_errors, &cur_es->tx_errors);
1744 
1745 	vsi->stat_offsets_loaded = true;
1746 }
1747 
1748 /**
1749  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1750  * @hw: HW pointer
1751  * @pf_q: index of the Rx queue in the PF's queue space
1752  * @rxdid: flexible descriptor RXDID
1753  * @prio: priority for the RXDID for this queue
1754  * @ena_ts: true to enable timestamp and false to disable timestamp
1755  */
1756 void
1757 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1758 			bool ena_ts)
1759 {
1760 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1761 
1762 	/* clear any previous values */
1763 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1764 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1765 		    QRXFLXP_CNTXT_TS_M);
1766 
1767 	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1768 	regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1769 
1770 	if (ena_ts)
1771 		/* Enable TimeSync on this queue */
1772 		regval |= QRXFLXP_CNTXT_TS_M;
1773 
1774 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1775 }
1776 
1777 /**
1778  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1779  * @intrl: interrupt rate limit in usecs
1780  * @gran: interrupt rate limit granularity in usecs
1781  *
1782  * This function converts a decimal interrupt rate limit in usecs to the format
1783  * expected by firmware.
1784  */
1785 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1786 {
1787 	u32 val = intrl / gran;
1788 
1789 	if (val)
1790 		return val | GLINT_RATE_INTRL_ENA_M;
1791 	return 0;
1792 }
1793 
1794 /**
1795  * ice_write_intrl - write throttle rate limit to interrupt specific register
1796  * @q_vector: pointer to interrupt specific structure
1797  * @intrl: throttle rate limit in microseconds to write
1798  */
1799 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1800 {
1801 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1802 
1803 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1804 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1805 }
1806 
1807 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1808 {
1809 	switch (rc->type) {
1810 	case ICE_RX_CONTAINER:
1811 		if (rc->rx_ring)
1812 			return rc->rx_ring->q_vector;
1813 		break;
1814 	case ICE_TX_CONTAINER:
1815 		if (rc->tx_ring)
1816 			return rc->tx_ring->q_vector;
1817 		break;
1818 	default:
1819 		break;
1820 	}
1821 
1822 	return NULL;
1823 }
1824 
1825 /**
1826  * __ice_write_itr - write throttle rate to register
1827  * @q_vector: pointer to interrupt data structure
1828  * @rc: pointer to ring container
1829  * @itr: throttle rate in microseconds to write
1830  */
1831 static void __ice_write_itr(struct ice_q_vector *q_vector,
1832 			    struct ice_ring_container *rc, u16 itr)
1833 {
1834 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1835 
1836 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1837 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1838 }
1839 
1840 /**
1841  * ice_write_itr - write throttle rate to queue specific register
1842  * @rc: pointer to ring container
1843  * @itr: throttle rate in microseconds to write
1844  */
1845 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1846 {
1847 	struct ice_q_vector *q_vector;
1848 
1849 	q_vector = ice_pull_qvec_from_rc(rc);
1850 	if (!q_vector)
1851 		return;
1852 
1853 	__ice_write_itr(q_vector, rc, itr);
1854 }
1855 
1856 /**
1857  * ice_set_q_vector_intrl - set up interrupt rate limiting
1858  * @q_vector: the vector to be configured
1859  *
1860  * Interrupt rate limiting is local to the vector, not per-queue so we must
1861  * detect if either ring container has dynamic moderation enabled to decide
1862  * what to set the interrupt rate limit to via INTRL settings. In the case that
1863  * dynamic moderation is disabled on both, write the value with the cached
1864  * setting to make sure INTRL register matches the user visible value.
1865  */
1866 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1867 {
1868 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1869 		/* in the case of dynamic enabled, cap each vector to no more
1870 		 * than (4 us) 250,000 ints/sec, which allows low latency
1871 		 * but still less than 500,000 interrupts per second, which
1872 		 * reduces CPU a bit in the case of the lowest latency
1873 		 * setting. The 4 here is a value in microseconds.
1874 		 */
1875 		ice_write_intrl(q_vector, 4);
1876 	} else {
1877 		ice_write_intrl(q_vector, q_vector->intrl);
1878 	}
1879 }
1880 
1881 /**
1882  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1883  * @vsi: the VSI being configured
1884  *
1885  * This configures MSIX mode interrupts for the PF VSI, and should not be used
1886  * for the VF VSI.
1887  */
1888 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1889 {
1890 	struct ice_pf *pf = vsi->back;
1891 	struct ice_hw *hw = &pf->hw;
1892 	u16 txq = 0, rxq = 0;
1893 	int i, q;
1894 
1895 	ice_for_each_q_vector(vsi, i) {
1896 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1897 		u16 reg_idx = q_vector->reg_idx;
1898 
1899 		ice_cfg_itr(hw, q_vector);
1900 
1901 		/* Both Transmit Queue Interrupt Cause Control register
1902 		 * and Receive Queue Interrupt Cause control register
1903 		 * expects MSIX_INDX field to be the vector index
1904 		 * within the function space and not the absolute
1905 		 * vector index across PF or across device.
1906 		 * For SR-IOV VF VSIs queue vector index always starts
1907 		 * with 1 since first vector index(0) is used for OICR
1908 		 * in VF space. Since VMDq and other PF VSIs are within
1909 		 * the PF function space, use the vector index that is
1910 		 * tracked for this PF.
1911 		 */
1912 		for (q = 0; q < q_vector->num_ring_tx; q++) {
1913 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1914 					      q_vector->tx.itr_idx);
1915 			txq++;
1916 		}
1917 
1918 		for (q = 0; q < q_vector->num_ring_rx; q++) {
1919 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1920 					      q_vector->rx.itr_idx);
1921 			rxq++;
1922 		}
1923 	}
1924 }
1925 
1926 /**
1927  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1928  * @vsi: the VSI whose rings are to be enabled
1929  *
1930  * Returns 0 on success and a negative value on error
1931  */
1932 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1933 {
1934 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
1935 }
1936 
1937 /**
1938  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1939  * @vsi: the VSI whose rings are to be disabled
1940  *
1941  * Returns 0 on success and a negative value on error
1942  */
1943 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1944 {
1945 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
1946 }
1947 
1948 /**
1949  * ice_vsi_stop_tx_rings - Disable Tx rings
1950  * @vsi: the VSI being configured
1951  * @rst_src: reset source
1952  * @rel_vmvf_num: Relative ID of VF/VM
1953  * @rings: Tx ring array to be stopped
1954  * @count: number of Tx ring array elements
1955  */
1956 static int
1957 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1958 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1959 {
1960 	u16 q_idx;
1961 
1962 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1963 		return -EINVAL;
1964 
1965 	for (q_idx = 0; q_idx < count; q_idx++) {
1966 		struct ice_txq_meta txq_meta = { };
1967 		int status;
1968 
1969 		if (!rings || !rings[q_idx])
1970 			return -EINVAL;
1971 
1972 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1973 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1974 					      rings[q_idx], &txq_meta);
1975 
1976 		if (status)
1977 			return status;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1985  * @vsi: the VSI being configured
1986  * @rst_src: reset source
1987  * @rel_vmvf_num: Relative ID of VF/VM
1988  */
1989 int
1990 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1991 			  u16 rel_vmvf_num)
1992 {
1993 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
1994 }
1995 
1996 /**
1997  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
1998  * @vsi: the VSI being configured
1999  */
2000 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2001 {
2002 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2003 }
2004 
2005 /**
2006  * ice_vsi_is_rx_queue_active
2007  * @vsi: the VSI being configured
2008  *
2009  * Return true if at least one queue is active.
2010  */
2011 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2012 {
2013 	struct ice_pf *pf = vsi->back;
2014 	struct ice_hw *hw = &pf->hw;
2015 	int i;
2016 
2017 	ice_for_each_rxq(vsi, i) {
2018 		u32 rx_reg;
2019 		int pf_q;
2020 
2021 		pf_q = vsi->rxq_map[i];
2022 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2023 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2024 			return true;
2025 	}
2026 
2027 	return false;
2028 }
2029 
2030 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2031 {
2032 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2033 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2034 		vsi->tc_cfg.numtc = 1;
2035 		return;
2036 	}
2037 
2038 	/* set VSI TC information based on DCB config */
2039 	ice_vsi_set_dcb_tc_cfg(vsi);
2040 }
2041 
2042 /**
2043  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2044  * @vsi: the VSI being configured
2045  * @tx: bool to determine Tx or Rx rule
2046  * @create: bool to determine create or remove Rule
2047  */
2048 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2049 {
2050 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2051 			enum ice_sw_fwd_act_type act);
2052 	struct ice_pf *pf = vsi->back;
2053 	struct device *dev;
2054 	int status;
2055 
2056 	dev = ice_pf_to_dev(pf);
2057 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2058 
2059 	if (tx) {
2060 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2061 				  ICE_DROP_PACKET);
2062 	} else {
2063 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2064 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2065 							  create);
2066 		} else {
2067 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2068 					  ICE_FWD_TO_VSI);
2069 		}
2070 	}
2071 
2072 	if (status)
2073 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2074 			create ? "adding" : "removing", tx ? "TX" : "RX",
2075 			vsi->vsi_num, status);
2076 }
2077 
2078 /**
2079  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2080  * @vsi: pointer to the VSI
2081  *
2082  * This function will allocate new scheduler aggregator now if needed and will
2083  * move specified VSI into it.
2084  */
2085 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2086 {
2087 	struct device *dev = ice_pf_to_dev(vsi->back);
2088 	struct ice_agg_node *agg_node_iter = NULL;
2089 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2090 	struct ice_agg_node *agg_node = NULL;
2091 	int node_offset, max_agg_nodes = 0;
2092 	struct ice_port_info *port_info;
2093 	struct ice_pf *pf = vsi->back;
2094 	u32 agg_node_id_start = 0;
2095 	int status;
2096 
2097 	/* create (as needed) scheduler aggregator node and move VSI into
2098 	 * corresponding aggregator node
2099 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2100 	 * - VF aggregator nodes will contain VF VSI
2101 	 */
2102 	port_info = pf->hw.port_info;
2103 	if (!port_info)
2104 		return;
2105 
2106 	switch (vsi->type) {
2107 	case ICE_VSI_CTRL:
2108 	case ICE_VSI_CHNL:
2109 	case ICE_VSI_LB:
2110 	case ICE_VSI_PF:
2111 	case ICE_VSI_SWITCHDEV_CTRL:
2112 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2113 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2114 		agg_node_iter = &pf->pf_agg_node[0];
2115 		break;
2116 	case ICE_VSI_VF:
2117 		/* user can create 'n' VFs on a given PF, but since max children
2118 		 * per aggregator node can be only 64. Following code handles
2119 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2120 		 * was already created provided num_vsis < 64, otherwise
2121 		 * select next available node, which will be created
2122 		 */
2123 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2124 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2125 		agg_node_iter = &pf->vf_agg_node[0];
2126 		break;
2127 	default:
2128 		/* other VSI type, handle later if needed */
2129 		dev_dbg(dev, "unexpected VSI type %s\n",
2130 			ice_vsi_type_str(vsi->type));
2131 		return;
2132 	}
2133 
2134 	/* find the appropriate aggregator node */
2135 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2136 		/* see if we can find space in previously created
2137 		 * node if num_vsis < 64, otherwise skip
2138 		 */
2139 		if (agg_node_iter->num_vsis &&
2140 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2141 			agg_node_iter++;
2142 			continue;
2143 		}
2144 
2145 		if (agg_node_iter->valid &&
2146 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2147 			agg_id = agg_node_iter->agg_id;
2148 			agg_node = agg_node_iter;
2149 			break;
2150 		}
2151 
2152 		/* find unclaimed agg_id */
2153 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2154 			agg_id = node_offset + agg_node_id_start;
2155 			agg_node = agg_node_iter;
2156 			break;
2157 		}
2158 		/* move to next agg_node */
2159 		agg_node_iter++;
2160 	}
2161 
2162 	if (!agg_node)
2163 		return;
2164 
2165 	/* if selected aggregator node was not created, create it */
2166 	if (!agg_node->valid) {
2167 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2168 				     (u8)vsi->tc_cfg.ena_tc);
2169 		if (status) {
2170 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2171 				agg_id);
2172 			return;
2173 		}
2174 		/* aggregator node is created, store the needed info */
2175 		agg_node->valid = true;
2176 		agg_node->agg_id = agg_id;
2177 	}
2178 
2179 	/* move VSI to corresponding aggregator node */
2180 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2181 				     (u8)vsi->tc_cfg.ena_tc);
2182 	if (status) {
2183 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2184 			vsi->idx, agg_id);
2185 		return;
2186 	}
2187 
2188 	/* keep active children count for aggregator node */
2189 	agg_node->num_vsis++;
2190 
2191 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2192 	 * to aggregator node
2193 	 */
2194 	vsi->agg_node = agg_node;
2195 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2196 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2197 		vsi->agg_node->num_vsis);
2198 }
2199 
2200 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2201 {
2202 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2203 	struct device *dev = ice_pf_to_dev(pf);
2204 	int ret, i;
2205 
2206 	/* configure VSI nodes based on number of queues and TC's */
2207 	ice_for_each_traffic_class(i) {
2208 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2209 			continue;
2210 
2211 		if (vsi->type == ICE_VSI_CHNL) {
2212 			if (!vsi->alloc_txq && vsi->num_txq)
2213 				max_txqs[i] = vsi->num_txq;
2214 			else
2215 				max_txqs[i] = pf->num_lan_tx;
2216 		} else {
2217 			max_txqs[i] = vsi->alloc_txq;
2218 		}
2219 
2220 		if (vsi->type == ICE_VSI_PF)
2221 			max_txqs[i] += vsi->num_xdp_txq;
2222 	}
2223 
2224 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2225 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2226 			      max_txqs);
2227 	if (ret) {
2228 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2229 			vsi->vsi_num, ret);
2230 		return ret;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 /**
2237  * ice_vsi_cfg_def - configure default VSI based on the type
2238  * @vsi: pointer to VSI
2239  * @params: the parameters to configure this VSI with
2240  */
2241 static int
2242 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2243 {
2244 	struct device *dev = ice_pf_to_dev(vsi->back);
2245 	struct ice_pf *pf = vsi->back;
2246 	int ret;
2247 
2248 	vsi->vsw = pf->first_sw;
2249 
2250 	ret = ice_vsi_alloc_def(vsi, params->ch);
2251 	if (ret)
2252 		return ret;
2253 
2254 	/* allocate memory for Tx/Rx ring stat pointers */
2255 	ret = ice_vsi_alloc_stat_arrays(vsi);
2256 	if (ret)
2257 		goto unroll_vsi_alloc;
2258 
2259 	ice_alloc_fd_res(vsi);
2260 
2261 	ret = ice_vsi_get_qs(vsi);
2262 	if (ret) {
2263 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2264 			vsi->idx);
2265 		goto unroll_vsi_alloc_stat;
2266 	}
2267 
2268 	/* set RSS capabilities */
2269 	ice_vsi_set_rss_params(vsi);
2270 
2271 	/* set TC configuration */
2272 	ice_vsi_set_tc_cfg(vsi);
2273 
2274 	/* create the VSI */
2275 	ret = ice_vsi_init(vsi, params->flags);
2276 	if (ret)
2277 		goto unroll_get_qs;
2278 
2279 	ice_vsi_init_vlan_ops(vsi);
2280 
2281 	switch (vsi->type) {
2282 	case ICE_VSI_CTRL:
2283 	case ICE_VSI_SWITCHDEV_CTRL:
2284 	case ICE_VSI_PF:
2285 		ret = ice_vsi_alloc_q_vectors(vsi);
2286 		if (ret)
2287 			goto unroll_vsi_init;
2288 
2289 		ret = ice_vsi_alloc_rings(vsi);
2290 		if (ret)
2291 			goto unroll_vector_base;
2292 
2293 		ret = ice_vsi_alloc_ring_stats(vsi);
2294 		if (ret)
2295 			goto unroll_vector_base;
2296 
2297 		ice_vsi_map_rings_to_vectors(vsi);
2298 
2299 		/* Associate q_vector rings to napi */
2300 		ice_vsi_set_napi_queues(vsi);
2301 
2302 		vsi->stat_offsets_loaded = false;
2303 
2304 		if (ice_is_xdp_ena_vsi(vsi)) {
2305 			ret = ice_vsi_determine_xdp_res(vsi);
2306 			if (ret)
2307 				goto unroll_vector_base;
2308 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2309 			if (ret)
2310 				goto unroll_vector_base;
2311 		}
2312 
2313 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2314 		if (vsi->type != ICE_VSI_CTRL)
2315 			/* Do not exit if configuring RSS had an issue, at
2316 			 * least receive traffic on first queue. Hence no
2317 			 * need to capture return value
2318 			 */
2319 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2320 				ice_vsi_cfg_rss_lut_key(vsi);
2321 				ice_vsi_set_rss_flow_fld(vsi);
2322 			}
2323 		ice_init_arfs(vsi);
2324 		break;
2325 	case ICE_VSI_CHNL:
2326 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2327 			ice_vsi_cfg_rss_lut_key(vsi);
2328 			ice_vsi_set_rss_flow_fld(vsi);
2329 		}
2330 		break;
2331 	case ICE_VSI_VF:
2332 		/* VF driver will take care of creating netdev for this type and
2333 		 * map queues to vectors through Virtchnl, PF driver only
2334 		 * creates a VSI and corresponding structures for bookkeeping
2335 		 * purpose
2336 		 */
2337 		ret = ice_vsi_alloc_q_vectors(vsi);
2338 		if (ret)
2339 			goto unroll_vsi_init;
2340 
2341 		ret = ice_vsi_alloc_rings(vsi);
2342 		if (ret)
2343 			goto unroll_alloc_q_vector;
2344 
2345 		ret = ice_vsi_alloc_ring_stats(vsi);
2346 		if (ret)
2347 			goto unroll_vector_base;
2348 
2349 		vsi->stat_offsets_loaded = false;
2350 
2351 		/* Do not exit if configuring RSS had an issue, at least
2352 		 * receive traffic on first queue. Hence no need to capture
2353 		 * return value
2354 		 */
2355 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2356 			ice_vsi_cfg_rss_lut_key(vsi);
2357 			ice_vsi_set_vf_rss_flow_fld(vsi);
2358 		}
2359 		break;
2360 	case ICE_VSI_LB:
2361 		ret = ice_vsi_alloc_rings(vsi);
2362 		if (ret)
2363 			goto unroll_vsi_init;
2364 
2365 		ret = ice_vsi_alloc_ring_stats(vsi);
2366 		if (ret)
2367 			goto unroll_vector_base;
2368 
2369 		break;
2370 	default:
2371 		/* clean up the resources and exit */
2372 		ret = -EINVAL;
2373 		goto unroll_vsi_init;
2374 	}
2375 
2376 	return 0;
2377 
2378 unroll_vector_base:
2379 	/* reclaim SW interrupts back to the common pool */
2380 unroll_alloc_q_vector:
2381 	ice_vsi_free_q_vectors(vsi);
2382 unroll_vsi_init:
2383 	ice_vsi_delete_from_hw(vsi);
2384 unroll_get_qs:
2385 	ice_vsi_put_qs(vsi);
2386 unroll_vsi_alloc_stat:
2387 	ice_vsi_free_stats(vsi);
2388 unroll_vsi_alloc:
2389 	ice_vsi_free_arrays(vsi);
2390 	return ret;
2391 }
2392 
2393 /**
2394  * ice_vsi_cfg - configure a previously allocated VSI
2395  * @vsi: pointer to VSI
2396  * @params: parameters used to configure this VSI
2397  */
2398 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2399 {
2400 	struct ice_pf *pf = vsi->back;
2401 	int ret;
2402 
2403 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2404 		return -EINVAL;
2405 
2406 	vsi->type = params->type;
2407 	vsi->port_info = params->pi;
2408 
2409 	/* For VSIs which don't have a connected VF, this will be NULL */
2410 	vsi->vf = params->vf;
2411 
2412 	ret = ice_vsi_cfg_def(vsi, params);
2413 	if (ret)
2414 		return ret;
2415 
2416 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2417 	if (ret)
2418 		ice_vsi_decfg(vsi);
2419 
2420 	if (vsi->type == ICE_VSI_CTRL) {
2421 		if (vsi->vf) {
2422 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2423 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2424 		} else {
2425 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2426 			pf->ctrl_vsi_idx = vsi->idx;
2427 		}
2428 	}
2429 
2430 	return ret;
2431 }
2432 
2433 /**
2434  * ice_vsi_decfg - remove all VSI configuration
2435  * @vsi: pointer to VSI
2436  */
2437 void ice_vsi_decfg(struct ice_vsi *vsi)
2438 {
2439 	struct ice_pf *pf = vsi->back;
2440 	int err;
2441 
2442 	/* The Rx rule will only exist to remove if the LLDP FW
2443 	 * engine is currently stopped
2444 	 */
2445 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2446 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2447 		ice_cfg_sw_lldp(vsi, false, false);
2448 
2449 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2450 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2451 	if (err)
2452 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2453 			vsi->vsi_num, err);
2454 
2455 	if (ice_is_xdp_ena_vsi(vsi))
2456 		/* return value check can be skipped here, it always returns
2457 		 * 0 if reset is in progress
2458 		 */
2459 		ice_destroy_xdp_rings(vsi);
2460 
2461 	ice_vsi_clear_rings(vsi);
2462 	ice_vsi_free_q_vectors(vsi);
2463 	ice_vsi_put_qs(vsi);
2464 	ice_vsi_free_arrays(vsi);
2465 
2466 	/* SR-IOV determines needed MSIX resources all at once instead of per
2467 	 * VSI since when VFs are spawned we know how many VFs there are and how
2468 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2469 	 * cleared in the same manner.
2470 	 */
2471 
2472 	if (vsi->type == ICE_VSI_VF &&
2473 	    vsi->agg_node && vsi->agg_node->valid)
2474 		vsi->agg_node->num_vsis--;
2475 }
2476 
2477 /**
2478  * ice_vsi_setup - Set up a VSI by a given type
2479  * @pf: board private structure
2480  * @params: parameters to use when creating the VSI
2481  *
2482  * This allocates the sw VSI structure and its queue resources.
2483  *
2484  * Returns pointer to the successfully allocated and configured VSI sw struct on
2485  * success, NULL on failure.
2486  */
2487 struct ice_vsi *
2488 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2489 {
2490 	struct device *dev = ice_pf_to_dev(pf);
2491 	struct ice_vsi *vsi;
2492 	int ret;
2493 
2494 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2495 	 * a port_info structure for it.
2496 	 */
2497 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2498 	    WARN_ON(!params->pi))
2499 		return NULL;
2500 
2501 	vsi = ice_vsi_alloc(pf);
2502 	if (!vsi) {
2503 		dev_err(dev, "could not allocate VSI\n");
2504 		return NULL;
2505 	}
2506 
2507 	ret = ice_vsi_cfg(vsi, params);
2508 	if (ret)
2509 		goto err_vsi_cfg;
2510 
2511 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2512 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2513 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2514 	 * The rule is added once for PF VSI in order to create appropriate
2515 	 * recipe, since VSI/VSI list is ignored with drop action...
2516 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2517 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2518 	 * settings in the HW.
2519 	 */
2520 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2521 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2522 				 ICE_DROP_PACKET);
2523 		ice_cfg_sw_lldp(vsi, true, true);
2524 	}
2525 
2526 	if (!vsi->agg_node)
2527 		ice_set_agg_vsi(vsi);
2528 
2529 	return vsi;
2530 
2531 err_vsi_cfg:
2532 	ice_vsi_free(vsi);
2533 
2534 	return NULL;
2535 }
2536 
2537 /**
2538  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2539  * @vsi: the VSI being cleaned up
2540  */
2541 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2542 {
2543 	struct ice_pf *pf = vsi->back;
2544 	struct ice_hw *hw = &pf->hw;
2545 	u32 txq = 0;
2546 	u32 rxq = 0;
2547 	int i, q;
2548 
2549 	ice_for_each_q_vector(vsi, i) {
2550 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2551 
2552 		ice_write_intrl(q_vector, 0);
2553 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2554 			ice_write_itr(&q_vector->tx, 0);
2555 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2556 			if (ice_is_xdp_ena_vsi(vsi)) {
2557 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2558 
2559 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2560 			}
2561 			txq++;
2562 		}
2563 
2564 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2565 			ice_write_itr(&q_vector->rx, 0);
2566 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2567 			rxq++;
2568 		}
2569 	}
2570 
2571 	ice_flush(hw);
2572 }
2573 
2574 /**
2575  * ice_vsi_free_irq - Free the IRQ association with the OS
2576  * @vsi: the VSI being configured
2577  */
2578 void ice_vsi_free_irq(struct ice_vsi *vsi)
2579 {
2580 	struct ice_pf *pf = vsi->back;
2581 	int i;
2582 
2583 	if (!vsi->q_vectors || !vsi->irqs_ready)
2584 		return;
2585 
2586 	ice_vsi_release_msix(vsi);
2587 	if (vsi->type == ICE_VSI_VF)
2588 		return;
2589 
2590 	vsi->irqs_ready = false;
2591 	ice_free_cpu_rx_rmap(vsi);
2592 
2593 	ice_for_each_q_vector(vsi, i) {
2594 		int irq_num;
2595 
2596 		irq_num = vsi->q_vectors[i]->irq.virq;
2597 
2598 		/* free only the irqs that were actually requested */
2599 		if (!vsi->q_vectors[i] ||
2600 		    !(vsi->q_vectors[i]->num_ring_tx ||
2601 		      vsi->q_vectors[i]->num_ring_rx))
2602 			continue;
2603 
2604 		/* clear the affinity notifier in the IRQ descriptor */
2605 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2606 			irq_set_affinity_notifier(irq_num, NULL);
2607 
2608 		/* clear the affinity_mask in the IRQ descriptor */
2609 		irq_set_affinity_hint(irq_num, NULL);
2610 		synchronize_irq(irq_num);
2611 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2612 	}
2613 }
2614 
2615 /**
2616  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2617  * @vsi: the VSI having resources freed
2618  */
2619 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2620 {
2621 	int i;
2622 
2623 	if (!vsi->tx_rings)
2624 		return;
2625 
2626 	ice_for_each_txq(vsi, i)
2627 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2628 			ice_free_tx_ring(vsi->tx_rings[i]);
2629 }
2630 
2631 /**
2632  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2633  * @vsi: the VSI having resources freed
2634  */
2635 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2636 {
2637 	int i;
2638 
2639 	if (!vsi->rx_rings)
2640 		return;
2641 
2642 	ice_for_each_rxq(vsi, i)
2643 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2644 			ice_free_rx_ring(vsi->rx_rings[i]);
2645 }
2646 
2647 /**
2648  * ice_vsi_close - Shut down a VSI
2649  * @vsi: the VSI being shut down
2650  */
2651 void ice_vsi_close(struct ice_vsi *vsi)
2652 {
2653 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2654 		ice_down(vsi);
2655 
2656 	ice_vsi_free_irq(vsi);
2657 	ice_vsi_free_tx_rings(vsi);
2658 	ice_vsi_free_rx_rings(vsi);
2659 }
2660 
2661 /**
2662  * ice_ena_vsi - resume a VSI
2663  * @vsi: the VSI being resume
2664  * @locked: is the rtnl_lock already held
2665  */
2666 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2667 {
2668 	int err = 0;
2669 
2670 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2671 		return 0;
2672 
2673 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2674 
2675 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2676 		if (netif_running(vsi->netdev)) {
2677 			if (!locked)
2678 				rtnl_lock();
2679 
2680 			err = ice_open_internal(vsi->netdev);
2681 
2682 			if (!locked)
2683 				rtnl_unlock();
2684 		}
2685 	} else if (vsi->type == ICE_VSI_CTRL) {
2686 		err = ice_vsi_open_ctrl(vsi);
2687 	}
2688 
2689 	return err;
2690 }
2691 
2692 /**
2693  * ice_dis_vsi - pause a VSI
2694  * @vsi: the VSI being paused
2695  * @locked: is the rtnl_lock already held
2696  */
2697 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2698 {
2699 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2700 		return;
2701 
2702 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2703 
2704 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2705 		if (netif_running(vsi->netdev)) {
2706 			if (!locked)
2707 				rtnl_lock();
2708 
2709 			ice_vsi_close(vsi);
2710 
2711 			if (!locked)
2712 				rtnl_unlock();
2713 		} else {
2714 			ice_vsi_close(vsi);
2715 		}
2716 	} else if (vsi->type == ICE_VSI_CTRL ||
2717 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2718 		ice_vsi_close(vsi);
2719 	}
2720 }
2721 
2722 /**
2723  * __ice_queue_set_napi - Set the napi instance for the queue
2724  * @dev: device to which NAPI and queue belong
2725  * @queue_index: Index of queue
2726  * @type: queue type as RX or TX
2727  * @napi: NAPI context
2728  * @locked: is the rtnl_lock already held
2729  *
2730  * Set the napi instance for the queue. Caller indicates the lock status.
2731  */
2732 static void
2733 __ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2734 		     enum netdev_queue_type type, struct napi_struct *napi,
2735 		     bool locked)
2736 {
2737 	if (!locked)
2738 		rtnl_lock();
2739 	netif_queue_set_napi(dev, queue_index, type, napi);
2740 	if (!locked)
2741 		rtnl_unlock();
2742 }
2743 
2744 /**
2745  * ice_queue_set_napi - Set the napi instance for the queue
2746  * @vsi: VSI being configured
2747  * @queue_index: Index of queue
2748  * @type: queue type as RX or TX
2749  * @napi: NAPI context
2750  *
2751  * Set the napi instance for the queue. The rtnl lock state is derived from the
2752  * execution path.
2753  */
2754 void
2755 ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
2756 		   enum netdev_queue_type type, struct napi_struct *napi)
2757 {
2758 	struct ice_pf *pf = vsi->back;
2759 
2760 	if (!vsi->netdev)
2761 		return;
2762 
2763 	if (current_work() == &pf->serv_task ||
2764 	    test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
2765 	    test_bit(ICE_DOWN, pf->state) ||
2766 	    test_bit(ICE_SUSPENDED, pf->state))
2767 		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2768 				     false);
2769 	else
2770 		__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
2771 				     true);
2772 }
2773 
2774 /**
2775  * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2776  * @q_vector: q_vector pointer
2777  * @locked: is the rtnl_lock already held
2778  *
2779  * Associate the q_vector napi with all the queue[s] on the vector.
2780  * Caller indicates the lock status.
2781  */
2782 void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
2783 {
2784 	struct ice_rx_ring *rx_ring;
2785 	struct ice_tx_ring *tx_ring;
2786 
2787 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2788 		__ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
2789 				     NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
2790 				     locked);
2791 
2792 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2793 		__ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
2794 				     NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
2795 				     locked);
2796 	/* Also set the interrupt number for the NAPI */
2797 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2798 }
2799 
2800 /**
2801  * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
2802  * @q_vector: q_vector pointer
2803  *
2804  * Associate the q_vector napi with all the queue[s] on the vector
2805  */
2806 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
2807 {
2808 	struct ice_rx_ring *rx_ring;
2809 	struct ice_tx_ring *tx_ring;
2810 
2811 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
2812 		ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
2813 				   NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
2814 
2815 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
2816 		ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
2817 				   NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
2818 	/* Also set the interrupt number for the NAPI */
2819 	netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2820 }
2821 
2822 /**
2823  * ice_vsi_set_napi_queues
2824  * @vsi: VSI pointer
2825  *
2826  * Associate queue[s] with napi for all vectors
2827  */
2828 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2829 {
2830 	int i;
2831 
2832 	if (!vsi->netdev)
2833 		return;
2834 
2835 	ice_for_each_q_vector(vsi, i)
2836 		ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
2837 }
2838 
2839 /**
2840  * ice_vsi_release - Delete a VSI and free its resources
2841  * @vsi: the VSI being removed
2842  *
2843  * Returns 0 on success or < 0 on error
2844  */
2845 int ice_vsi_release(struct ice_vsi *vsi)
2846 {
2847 	struct ice_pf *pf;
2848 
2849 	if (!vsi->back)
2850 		return -ENODEV;
2851 	pf = vsi->back;
2852 
2853 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2854 		ice_rss_clean(vsi);
2855 
2856 	ice_vsi_close(vsi);
2857 	ice_vsi_decfg(vsi);
2858 
2859 	/* retain SW VSI data structure since it is needed to unregister and
2860 	 * free VSI netdev when PF is not in reset recovery pending state,\
2861 	 * for ex: during rmmod.
2862 	 */
2863 	if (!ice_is_reset_in_progress(pf->state))
2864 		ice_vsi_delete(vsi);
2865 
2866 	return 0;
2867 }
2868 
2869 /**
2870  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2871  * @vsi: VSI connected with q_vectors
2872  * @coalesce: array of struct with stored coalesce
2873  *
2874  * Returns array size.
2875  */
2876 static int
2877 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2878 			     struct ice_coalesce_stored *coalesce)
2879 {
2880 	int i;
2881 
2882 	ice_for_each_q_vector(vsi, i) {
2883 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2884 
2885 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2886 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2887 		coalesce[i].intrl = q_vector->intrl;
2888 
2889 		if (i < vsi->num_txq)
2890 			coalesce[i].tx_valid = true;
2891 		if (i < vsi->num_rxq)
2892 			coalesce[i].rx_valid = true;
2893 	}
2894 
2895 	return vsi->num_q_vectors;
2896 }
2897 
2898 /**
2899  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2900  * @vsi: VSI connected with q_vectors
2901  * @coalesce: pointer to array of struct with stored coalesce
2902  * @size: size of coalesce array
2903  *
2904  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2905  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2906  * to default value.
2907  */
2908 static void
2909 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2910 			     struct ice_coalesce_stored *coalesce, int size)
2911 {
2912 	struct ice_ring_container *rc;
2913 	int i;
2914 
2915 	if ((size && !coalesce) || !vsi)
2916 		return;
2917 
2918 	/* There are a couple of cases that have to be handled here:
2919 	 *   1. The case where the number of queue vectors stays the same, but
2920 	 *      the number of Tx or Rx rings changes (the first for loop)
2921 	 *   2. The case where the number of queue vectors increased (the
2922 	 *      second for loop)
2923 	 */
2924 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2925 		/* There are 2 cases to handle here and they are the same for
2926 		 * both Tx and Rx:
2927 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
2928 		 *   and the loop variable is less than the number of rings
2929 		 *   allocated, then write the previous values
2930 		 *
2931 		 *   if the entry was not valid previously, but the number of
2932 		 *   rings is less than are allocated (this means the number of
2933 		 *   rings increased from previously), then write out the
2934 		 *   values in the first element
2935 		 *
2936 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
2937 		 *   as there is no harm because the dynamic algorithm
2938 		 *   will just overwrite.
2939 		 */
2940 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2941 			rc = &vsi->q_vectors[i]->rx;
2942 			rc->itr_settings = coalesce[i].itr_rx;
2943 			ice_write_itr(rc, rc->itr_setting);
2944 		} else if (i < vsi->alloc_rxq) {
2945 			rc = &vsi->q_vectors[i]->rx;
2946 			rc->itr_settings = coalesce[0].itr_rx;
2947 			ice_write_itr(rc, rc->itr_setting);
2948 		}
2949 
2950 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2951 			rc = &vsi->q_vectors[i]->tx;
2952 			rc->itr_settings = coalesce[i].itr_tx;
2953 			ice_write_itr(rc, rc->itr_setting);
2954 		} else if (i < vsi->alloc_txq) {
2955 			rc = &vsi->q_vectors[i]->tx;
2956 			rc->itr_settings = coalesce[0].itr_tx;
2957 			ice_write_itr(rc, rc->itr_setting);
2958 		}
2959 
2960 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2961 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2962 	}
2963 
2964 	/* the number of queue vectors increased so write whatever is in
2965 	 * the first element
2966 	 */
2967 	for (; i < vsi->num_q_vectors; i++) {
2968 		/* transmit */
2969 		rc = &vsi->q_vectors[i]->tx;
2970 		rc->itr_settings = coalesce[0].itr_tx;
2971 		ice_write_itr(rc, rc->itr_setting);
2972 
2973 		/* receive */
2974 		rc = &vsi->q_vectors[i]->rx;
2975 		rc->itr_settings = coalesce[0].itr_rx;
2976 		ice_write_itr(rc, rc->itr_setting);
2977 
2978 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2979 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
2980 	}
2981 }
2982 
2983 /**
2984  * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2985  * @vsi: VSI pointer
2986  */
2987 static int
2988 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2989 {
2990 	u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2991 	u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2992 	struct ice_ring_stats **tx_ring_stats;
2993 	struct ice_ring_stats **rx_ring_stats;
2994 	struct ice_vsi_stats *vsi_stat;
2995 	struct ice_pf *pf = vsi->back;
2996 	u16 prev_txq = vsi->alloc_txq;
2997 	u16 prev_rxq = vsi->alloc_rxq;
2998 	int i;
2999 
3000 	vsi_stat = pf->vsi_stats[vsi->idx];
3001 
3002 	if (req_txq < prev_txq) {
3003 		for (i = req_txq; i < prev_txq; i++) {
3004 			if (vsi_stat->tx_ring_stats[i]) {
3005 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3006 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3007 			}
3008 		}
3009 	}
3010 
3011 	tx_ring_stats = vsi_stat->rx_ring_stats;
3012 	vsi_stat->tx_ring_stats =
3013 		krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3014 			       sizeof(*vsi_stat->tx_ring_stats),
3015 			       GFP_KERNEL | __GFP_ZERO);
3016 	if (!vsi_stat->tx_ring_stats) {
3017 		vsi_stat->tx_ring_stats = tx_ring_stats;
3018 		return -ENOMEM;
3019 	}
3020 
3021 	if (req_rxq < prev_rxq) {
3022 		for (i = req_rxq; i < prev_rxq; i++) {
3023 			if (vsi_stat->rx_ring_stats[i]) {
3024 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3025 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3026 			}
3027 		}
3028 	}
3029 
3030 	rx_ring_stats = vsi_stat->rx_ring_stats;
3031 	vsi_stat->rx_ring_stats =
3032 		krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3033 			       sizeof(*vsi_stat->rx_ring_stats),
3034 			       GFP_KERNEL | __GFP_ZERO);
3035 	if (!vsi_stat->rx_ring_stats) {
3036 		vsi_stat->rx_ring_stats = rx_ring_stats;
3037 		return -ENOMEM;
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 /**
3044  * ice_vsi_rebuild - Rebuild VSI after reset
3045  * @vsi: VSI to be rebuild
3046  * @vsi_flags: flags used for VSI rebuild flow
3047  *
3048  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3049  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3050  *
3051  * Returns 0 on success and negative value on failure
3052  */
3053 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3054 {
3055 	struct ice_vsi_cfg_params params = {};
3056 	struct ice_coalesce_stored *coalesce;
3057 	int prev_num_q_vectors = 0;
3058 	struct ice_pf *pf;
3059 	int ret;
3060 
3061 	if (!vsi)
3062 		return -EINVAL;
3063 
3064 	params = ice_vsi_to_params(vsi);
3065 	params.flags = vsi_flags;
3066 
3067 	pf = vsi->back;
3068 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3069 		return -EINVAL;
3070 
3071 	coalesce = kcalloc(vsi->num_q_vectors,
3072 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3073 	if (!coalesce)
3074 		return -ENOMEM;
3075 
3076 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3077 
3078 	ret = ice_vsi_realloc_stat_arrays(vsi);
3079 	if (ret)
3080 		goto err_vsi_cfg;
3081 
3082 	ice_vsi_decfg(vsi);
3083 	ret = ice_vsi_cfg_def(vsi, &params);
3084 	if (ret)
3085 		goto err_vsi_cfg;
3086 
3087 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3088 	if (ret) {
3089 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3090 			ret = -EIO;
3091 			goto err_vsi_cfg_tc_lan;
3092 		}
3093 
3094 		kfree(coalesce);
3095 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3096 	}
3097 
3098 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3099 	kfree(coalesce);
3100 
3101 	return 0;
3102 
3103 err_vsi_cfg_tc_lan:
3104 	ice_vsi_decfg(vsi);
3105 err_vsi_cfg:
3106 	kfree(coalesce);
3107 	return ret;
3108 }
3109 
3110 /**
3111  * ice_is_reset_in_progress - check for a reset in progress
3112  * @state: PF state field
3113  */
3114 bool ice_is_reset_in_progress(unsigned long *state)
3115 {
3116 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3117 	       test_bit(ICE_PFR_REQ, state) ||
3118 	       test_bit(ICE_CORER_REQ, state) ||
3119 	       test_bit(ICE_GLOBR_REQ, state);
3120 }
3121 
3122 /**
3123  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3124  * @pf: pointer to the PF structure
3125  * @timeout: length of time to wait, in jiffies
3126  *
3127  * Wait (sleep) for a short time until the driver finishes cleaning up from
3128  * a device reset. The caller must be able to sleep. Use this to delay
3129  * operations that could fail while the driver is cleaning up after a device
3130  * reset.
3131  *
3132  * Returns 0 on success, -EBUSY if the reset is not finished within the
3133  * timeout, and -ERESTARTSYS if the thread was interrupted.
3134  */
3135 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3136 {
3137 	long ret;
3138 
3139 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3140 					       !ice_is_reset_in_progress(pf->state),
3141 					       timeout);
3142 	if (ret < 0)
3143 		return ret;
3144 	else if (!ret)
3145 		return -EBUSY;
3146 	else
3147 		return 0;
3148 }
3149 
3150 /**
3151  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3152  * @vsi: VSI being configured
3153  * @ctx: the context buffer returned from AQ VSI update command
3154  */
3155 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3156 {
3157 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3158 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3159 	       sizeof(vsi->info.q_mapping));
3160 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3161 	       sizeof(vsi->info.tc_mapping));
3162 }
3163 
3164 /**
3165  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3166  * @vsi: the VSI being configured
3167  * @ena_tc: TC map to be enabled
3168  */
3169 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3170 {
3171 	struct net_device *netdev = vsi->netdev;
3172 	struct ice_pf *pf = vsi->back;
3173 	int numtc = vsi->tc_cfg.numtc;
3174 	struct ice_dcbx_cfg *dcbcfg;
3175 	u8 netdev_tc;
3176 	int i;
3177 
3178 	if (!netdev)
3179 		return;
3180 
3181 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3182 	if (vsi->type == ICE_VSI_CHNL)
3183 		return;
3184 
3185 	if (!ena_tc) {
3186 		netdev_reset_tc(netdev);
3187 		return;
3188 	}
3189 
3190 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3191 		numtc = vsi->all_numtc;
3192 
3193 	if (netdev_set_num_tc(netdev, numtc))
3194 		return;
3195 
3196 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3197 
3198 	ice_for_each_traffic_class(i)
3199 		if (vsi->tc_cfg.ena_tc & BIT(i))
3200 			netdev_set_tc_queue(netdev,
3201 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3202 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3203 					    vsi->tc_cfg.tc_info[i].qoffset);
3204 	/* setup TC queue map for CHNL TCs */
3205 	ice_for_each_chnl_tc(i) {
3206 		if (!(vsi->all_enatc & BIT(i)))
3207 			break;
3208 		if (!vsi->mqprio_qopt.qopt.count[i])
3209 			break;
3210 		netdev_set_tc_queue(netdev, i,
3211 				    vsi->mqprio_qopt.qopt.count[i],
3212 				    vsi->mqprio_qopt.qopt.offset[i]);
3213 	}
3214 
3215 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3216 		return;
3217 
3218 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3219 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3220 
3221 		/* Get the mapped netdev TC# for the UP */
3222 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3223 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3224 	}
3225 }
3226 
3227 /**
3228  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3229  * @vsi: the VSI being configured,
3230  * @ctxt: VSI context structure
3231  * @ena_tc: number of traffic classes to enable
3232  *
3233  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3234  */
3235 static int
3236 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3237 			   u8 ena_tc)
3238 {
3239 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3240 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3241 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3242 	u16 new_txq, new_rxq;
3243 	u8 netdev_tc = 0;
3244 	int i;
3245 
3246 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3247 
3248 	pow = order_base_2(tc0_qcount);
3249 	qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3250 	qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3251 
3252 	ice_for_each_traffic_class(i) {
3253 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3254 			/* TC is not enabled */
3255 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3256 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3257 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3258 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3259 			ctxt->info.tc_mapping[i] = 0;
3260 			continue;
3261 		}
3262 
3263 		offset = vsi->mqprio_qopt.qopt.offset[i];
3264 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3265 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3266 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3267 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3268 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3269 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3270 	}
3271 
3272 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3273 		ice_for_each_chnl_tc(i) {
3274 			if (!(vsi->all_enatc & BIT(i)))
3275 				continue;
3276 			offset = vsi->mqprio_qopt.qopt.offset[i];
3277 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3278 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3279 		}
3280 	}
3281 
3282 	new_txq = offset + qcount_tx;
3283 	if (new_txq > vsi->alloc_txq) {
3284 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3285 			new_txq, vsi->alloc_txq);
3286 		return -EINVAL;
3287 	}
3288 
3289 	new_rxq = offset + qcount_rx;
3290 	if (new_rxq > vsi->alloc_rxq) {
3291 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3292 			new_rxq, vsi->alloc_rxq);
3293 		return -EINVAL;
3294 	}
3295 
3296 	/* Set actual Tx/Rx queue pairs */
3297 	vsi->num_txq = new_txq;
3298 	vsi->num_rxq = new_rxq;
3299 
3300 	/* Setup queue TC[0].qmap for given VSI context */
3301 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3302 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3303 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3304 
3305 	/* Find queue count available for channel VSIs and starting offset
3306 	 * for channel VSIs
3307 	 */
3308 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3309 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3310 		vsi->next_base_q = tc0_qcount;
3311 	}
3312 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3313 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3314 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3315 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3316 
3317 	return 0;
3318 }
3319 
3320 /**
3321  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3322  * @vsi: VSI to be configured
3323  * @ena_tc: TC bitmap
3324  *
3325  * VSI queues expected to be quiesced before calling this function
3326  */
3327 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3328 {
3329 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3330 	struct ice_pf *pf = vsi->back;
3331 	struct ice_tc_cfg old_tc_cfg;
3332 	struct ice_vsi_ctx *ctx;
3333 	struct device *dev;
3334 	int i, ret = 0;
3335 	u8 num_tc = 0;
3336 
3337 	dev = ice_pf_to_dev(pf);
3338 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3339 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3340 		return 0;
3341 
3342 	ice_for_each_traffic_class(i) {
3343 		/* build bitmap of enabled TCs */
3344 		if (ena_tc & BIT(i))
3345 			num_tc++;
3346 		/* populate max_txqs per TC */
3347 		max_txqs[i] = vsi->alloc_txq;
3348 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3349 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3350 		 */
3351 		if (vsi->type == ICE_VSI_CHNL &&
3352 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3353 			max_txqs[i] = vsi->num_txq;
3354 	}
3355 
3356 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3357 	vsi->tc_cfg.ena_tc = ena_tc;
3358 	vsi->tc_cfg.numtc = num_tc;
3359 
3360 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3361 	if (!ctx)
3362 		return -ENOMEM;
3363 
3364 	ctx->vf_num = 0;
3365 	ctx->info = vsi->info;
3366 
3367 	if (vsi->type == ICE_VSI_PF &&
3368 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3369 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3370 	else
3371 		ret = ice_vsi_setup_q_map(vsi, ctx);
3372 
3373 	if (ret) {
3374 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3375 		goto out;
3376 	}
3377 
3378 	/* must to indicate which section of VSI context are being modified */
3379 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3380 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3381 	if (ret) {
3382 		dev_info(dev, "Failed VSI Update\n");
3383 		goto out;
3384 	}
3385 
3386 	if (vsi->type == ICE_VSI_PF &&
3387 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3388 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3389 	else
3390 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3391 				      vsi->tc_cfg.ena_tc, max_txqs);
3392 
3393 	if (ret) {
3394 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3395 			vsi->vsi_num, ret);
3396 		goto out;
3397 	}
3398 	ice_vsi_update_q_map(vsi, ctx);
3399 	vsi->info.valid_sections = 0;
3400 
3401 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3402 out:
3403 	kfree(ctx);
3404 	return ret;
3405 }
3406 
3407 /**
3408  * ice_update_ring_stats - Update ring statistics
3409  * @stats: stats to be updated
3410  * @pkts: number of processed packets
3411  * @bytes: number of processed bytes
3412  *
3413  * This function assumes that caller has acquired a u64_stats_sync lock.
3414  */
3415 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3416 {
3417 	stats->bytes += bytes;
3418 	stats->pkts += pkts;
3419 }
3420 
3421 /**
3422  * ice_update_tx_ring_stats - Update Tx ring specific counters
3423  * @tx_ring: ring to update
3424  * @pkts: number of processed packets
3425  * @bytes: number of processed bytes
3426  */
3427 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3428 {
3429 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3430 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3431 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3432 }
3433 
3434 /**
3435  * ice_update_rx_ring_stats - Update Rx ring specific counters
3436  * @rx_ring: ring to update
3437  * @pkts: number of processed packets
3438  * @bytes: number of processed bytes
3439  */
3440 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3441 {
3442 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3443 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3444 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3445 }
3446 
3447 /**
3448  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3449  * @pi: port info of the switch with default VSI
3450  *
3451  * Return true if the there is a single VSI in default forwarding VSI list
3452  */
3453 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3454 {
3455 	bool exists = false;
3456 
3457 	ice_check_if_dflt_vsi(pi, 0, &exists);
3458 	return exists;
3459 }
3460 
3461 /**
3462  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3463  * @vsi: VSI to compare against default forwarding VSI
3464  *
3465  * If this VSI passed in is the default forwarding VSI then return true, else
3466  * return false
3467  */
3468 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3469 {
3470 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3471 }
3472 
3473 /**
3474  * ice_set_dflt_vsi - set the default forwarding VSI
3475  * @vsi: VSI getting set as the default forwarding VSI on the switch
3476  *
3477  * If the VSI passed in is already the default VSI and it's enabled just return
3478  * success.
3479  *
3480  * Otherwise try to set the VSI passed in as the switch's default VSI and
3481  * return the result.
3482  */
3483 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3484 {
3485 	struct device *dev;
3486 	int status;
3487 
3488 	if (!vsi)
3489 		return -EINVAL;
3490 
3491 	dev = ice_pf_to_dev(vsi->back);
3492 
3493 	if (ice_lag_is_switchdev_running(vsi->back)) {
3494 		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3495 			vsi->vsi_num);
3496 		return 0;
3497 	}
3498 
3499 	/* the VSI passed in is already the default VSI */
3500 	if (ice_is_vsi_dflt_vsi(vsi)) {
3501 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3502 			vsi->vsi_num);
3503 		return 0;
3504 	}
3505 
3506 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3507 	if (status) {
3508 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3509 			vsi->vsi_num, status);
3510 		return status;
3511 	}
3512 
3513 	return 0;
3514 }
3515 
3516 /**
3517  * ice_clear_dflt_vsi - clear the default forwarding VSI
3518  * @vsi: VSI to remove from filter list
3519  *
3520  * If the switch has no default VSI or it's not enabled then return error.
3521  *
3522  * Otherwise try to clear the default VSI and return the result.
3523  */
3524 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3525 {
3526 	struct device *dev;
3527 	int status;
3528 
3529 	if (!vsi)
3530 		return -EINVAL;
3531 
3532 	dev = ice_pf_to_dev(vsi->back);
3533 
3534 	/* there is no default VSI configured */
3535 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3536 		return -ENODEV;
3537 
3538 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3539 				  ICE_FLTR_RX);
3540 	if (status) {
3541 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3542 			vsi->vsi_num, status);
3543 		return -EIO;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 /**
3550  * ice_get_link_speed_mbps - get link speed in Mbps
3551  * @vsi: the VSI whose link speed is being queried
3552  *
3553  * Return current VSI link speed and 0 if the speed is unknown.
3554  */
3555 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3556 {
3557 	unsigned int link_speed;
3558 
3559 	link_speed = vsi->port_info->phy.link_info.link_speed;
3560 
3561 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3562 }
3563 
3564 /**
3565  * ice_get_link_speed_kbps - get link speed in Kbps
3566  * @vsi: the VSI whose link speed is being queried
3567  *
3568  * Return current VSI link speed and 0 if the speed is unknown.
3569  */
3570 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3571 {
3572 	int speed_mbps;
3573 
3574 	speed_mbps = ice_get_link_speed_mbps(vsi);
3575 
3576 	return speed_mbps * 1000;
3577 }
3578 
3579 /**
3580  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3581  * @vsi: VSI to be configured
3582  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3583  *
3584  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3585  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3586  * on TC 0.
3587  */
3588 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3589 {
3590 	struct ice_pf *pf = vsi->back;
3591 	struct device *dev;
3592 	int status;
3593 	int speed;
3594 
3595 	dev = ice_pf_to_dev(pf);
3596 	if (!vsi->port_info) {
3597 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3598 			vsi->idx, vsi->type);
3599 		return -EINVAL;
3600 	}
3601 
3602 	speed = ice_get_link_speed_kbps(vsi);
3603 	if (min_tx_rate > (u64)speed) {
3604 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3605 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3606 			speed);
3607 		return -EINVAL;
3608 	}
3609 
3610 	/* Configure min BW for VSI limit */
3611 	if (min_tx_rate) {
3612 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3613 						   ICE_MIN_BW, min_tx_rate);
3614 		if (status) {
3615 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3616 				min_tx_rate, ice_vsi_type_str(vsi->type),
3617 				vsi->idx);
3618 			return status;
3619 		}
3620 
3621 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3622 			min_tx_rate, ice_vsi_type_str(vsi->type));
3623 	} else {
3624 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3625 							vsi->idx, 0,
3626 							ICE_MIN_BW);
3627 		if (status) {
3628 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3629 				ice_vsi_type_str(vsi->type), vsi->idx);
3630 			return status;
3631 		}
3632 
3633 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3634 			ice_vsi_type_str(vsi->type), vsi->idx);
3635 	}
3636 
3637 	return 0;
3638 }
3639 
3640 /**
3641  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3642  * @vsi: VSI to be configured
3643  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3644  *
3645  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3646  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3647  * on TC 0.
3648  */
3649 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3650 {
3651 	struct ice_pf *pf = vsi->back;
3652 	struct device *dev;
3653 	int status;
3654 	int speed;
3655 
3656 	dev = ice_pf_to_dev(pf);
3657 	if (!vsi->port_info) {
3658 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3659 			vsi->idx, vsi->type);
3660 		return -EINVAL;
3661 	}
3662 
3663 	speed = ice_get_link_speed_kbps(vsi);
3664 	if (max_tx_rate > (u64)speed) {
3665 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3666 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3667 			speed);
3668 		return -EINVAL;
3669 	}
3670 
3671 	/* Configure max BW for VSI limit */
3672 	if (max_tx_rate) {
3673 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3674 						   ICE_MAX_BW, max_tx_rate);
3675 		if (status) {
3676 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3677 				max_tx_rate, ice_vsi_type_str(vsi->type),
3678 				vsi->idx);
3679 			return status;
3680 		}
3681 
3682 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3683 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3684 	} else {
3685 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3686 							vsi->idx, 0,
3687 							ICE_MAX_BW);
3688 		if (status) {
3689 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3690 				ice_vsi_type_str(vsi->type), vsi->idx);
3691 			return status;
3692 		}
3693 
3694 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3695 			ice_vsi_type_str(vsi->type), vsi->idx);
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 /**
3702  * ice_set_link - turn on/off physical link
3703  * @vsi: VSI to modify physical link on
3704  * @ena: turn on/off physical link
3705  */
3706 int ice_set_link(struct ice_vsi *vsi, bool ena)
3707 {
3708 	struct device *dev = ice_pf_to_dev(vsi->back);
3709 	struct ice_port_info *pi = vsi->port_info;
3710 	struct ice_hw *hw = pi->hw;
3711 	int status;
3712 
3713 	if (vsi->type != ICE_VSI_PF)
3714 		return -EINVAL;
3715 
3716 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3717 
3718 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3719 	 * this is not a fatal error, so print a warning message and return
3720 	 * a success code. Return an error if FW returns an error code other
3721 	 * than ICE_AQ_RC_EMODE
3722 	 */
3723 	if (status == -EIO) {
3724 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3725 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3726 				(ena ? "ON" : "OFF"), status,
3727 				ice_aq_str(hw->adminq.sq_last_status));
3728 	} else if (status) {
3729 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3730 			(ena ? "ON" : "OFF"), status,
3731 			ice_aq_str(hw->adminq.sq_last_status));
3732 		return status;
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 /**
3739  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3740  * @vsi: VSI used to add VLAN filters
3741  *
3742  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3743  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3744  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3745  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3746  *
3747  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3748  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3749  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3750  *
3751  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3752  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3753  * part of filtering.
3754  */
3755 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3756 {
3757 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3758 	struct ice_vlan vlan;
3759 	int err;
3760 
3761 	vlan = ICE_VLAN(0, 0, 0);
3762 	err = vlan_ops->add_vlan(vsi, &vlan);
3763 	if (err && err != -EEXIST)
3764 		return err;
3765 
3766 	/* in SVM both VLAN 0 filters are identical */
3767 	if (!ice_is_dvm_ena(&vsi->back->hw))
3768 		return 0;
3769 
3770 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3771 	err = vlan_ops->add_vlan(vsi, &vlan);
3772 	if (err && err != -EEXIST)
3773 		return err;
3774 
3775 	return 0;
3776 }
3777 
3778 /**
3779  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3780  * @vsi: VSI used to add VLAN filters
3781  *
3782  * Delete the VLAN 0 filters in the same manner that they were added in
3783  * ice_vsi_add_vlan_zero.
3784  */
3785 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3786 {
3787 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3788 	struct ice_vlan vlan;
3789 	int err;
3790 
3791 	vlan = ICE_VLAN(0, 0, 0);
3792 	err = vlan_ops->del_vlan(vsi, &vlan);
3793 	if (err && err != -EEXIST)
3794 		return err;
3795 
3796 	/* in SVM both VLAN 0 filters are identical */
3797 	if (!ice_is_dvm_ena(&vsi->back->hw))
3798 		return 0;
3799 
3800 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3801 	err = vlan_ops->del_vlan(vsi, &vlan);
3802 	if (err && err != -EEXIST)
3803 		return err;
3804 
3805 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3806 	 * promisc mode so the filter isn't left by accident
3807 	 */
3808 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3809 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3810 }
3811 
3812 /**
3813  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3814  * @vsi: VSI used to get the VLAN mode
3815  *
3816  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3817  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3818  */
3819 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3820 {
3821 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3822 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3823 	/* no VLAN 0 filter is created when a port VLAN is active */
3824 	if (vsi->type == ICE_VSI_VF) {
3825 		if (WARN_ON(!vsi->vf))
3826 			return 0;
3827 
3828 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3829 			return 0;
3830 	}
3831 
3832 	if (ice_is_dvm_ena(&vsi->back->hw))
3833 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3834 	else
3835 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3836 }
3837 
3838 /**
3839  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3840  * @vsi: VSI used to determine if any non-zero VLANs have been added
3841  */
3842 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3843 {
3844 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3845 }
3846 
3847 /**
3848  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3849  * @vsi: VSI used to get the number of non-zero VLANs added
3850  */
3851 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3852 {
3853 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3854 }
3855 
3856 /**
3857  * ice_is_feature_supported
3858  * @pf: pointer to the struct ice_pf instance
3859  * @f: feature enum to be checked
3860  *
3861  * returns true if feature is supported, false otherwise
3862  */
3863 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3864 {
3865 	if (f < 0 || f >= ICE_F_MAX)
3866 		return false;
3867 
3868 	return test_bit(f, pf->features);
3869 }
3870 
3871 /**
3872  * ice_set_feature_support
3873  * @pf: pointer to the struct ice_pf instance
3874  * @f: feature enum to set
3875  */
3876 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3877 {
3878 	if (f < 0 || f >= ICE_F_MAX)
3879 		return;
3880 
3881 	set_bit(f, pf->features);
3882 }
3883 
3884 /**
3885  * ice_clear_feature_support
3886  * @pf: pointer to the struct ice_pf instance
3887  * @f: feature enum to clear
3888  */
3889 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3890 {
3891 	if (f < 0 || f >= ICE_F_MAX)
3892 		return;
3893 
3894 	clear_bit(f, pf->features);
3895 }
3896 
3897 /**
3898  * ice_init_feature_support
3899  * @pf: pointer to the struct ice_pf instance
3900  *
3901  * called during init to setup supported feature
3902  */
3903 void ice_init_feature_support(struct ice_pf *pf)
3904 {
3905 	switch (pf->hw.device_id) {
3906 	case ICE_DEV_ID_E810C_BACKPLANE:
3907 	case ICE_DEV_ID_E810C_QSFP:
3908 	case ICE_DEV_ID_E810C_SFP:
3909 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3910 	case ICE_DEV_ID_E810_XXV_QSFP:
3911 	case ICE_DEV_ID_E810_XXV_SFP:
3912 		ice_set_feature_support(pf, ICE_F_DSCP);
3913 		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3914 			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3915 		/* If we don't own the timer - don't enable other caps */
3916 		if (!ice_pf_src_tmr_owned(pf))
3917 			break;
3918 		if (ice_is_cgu_in_netlist(&pf->hw))
3919 			ice_set_feature_support(pf, ICE_F_CGU);
3920 		if (ice_is_clock_mux_in_netlist(&pf->hw))
3921 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3922 		if (ice_gnss_is_gps_present(&pf->hw))
3923 			ice_set_feature_support(pf, ICE_F_GNSS);
3924 		break;
3925 	default:
3926 		break;
3927 	}
3928 }
3929 
3930 /**
3931  * ice_vsi_update_security - update security block in VSI
3932  * @vsi: pointer to VSI structure
3933  * @fill: function pointer to fill ctx
3934  */
3935 int
3936 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3937 {
3938 	struct ice_vsi_ctx ctx = { 0 };
3939 
3940 	ctx.info = vsi->info;
3941 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3942 	fill(&ctx);
3943 
3944 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3945 		return -ENODEV;
3946 
3947 	vsi->info = ctx.info;
3948 	return 0;
3949 }
3950 
3951 /**
3952  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3953  * @ctx: pointer to VSI ctx structure
3954  */
3955 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3956 {
3957 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3958 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3959 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3960 }
3961 
3962 /**
3963  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3964  * @ctx: pointer to VSI ctx structure
3965  */
3966 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3967 {
3968 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3969 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3970 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3971 }
3972 
3973 /**
3974  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
3975  * @ctx: pointer to VSI ctx structure
3976  */
3977 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
3978 {
3979 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3980 }
3981 
3982 /**
3983  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
3984  * @ctx: pointer to VSI ctx structure
3985  */
3986 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
3987 {
3988 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
3989 }
3990 
3991 /**
3992  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3993  * @vsi: pointer to VSI structure
3994  * @set: set or unset the bit
3995  */
3996 int
3997 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3998 {
3999 	struct ice_vsi_ctx ctx = {
4000 		.info	= vsi->info,
4001 	};
4002 
4003 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4004 	if (set)
4005 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4006 	else
4007 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4008 
4009 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4010 		return -ENODEV;
4011 
4012 	vsi->info = ctx.info;
4013 	return 0;
4014 }
4015