1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 9 /** 10 * ice_vsi_type_str - maps VSI type enum to string equivalents 11 * @type: VSI type enum 12 */ 13 const char *ice_vsi_type_str(enum ice_vsi_type type) 14 { 15 switch (type) { 16 case ICE_VSI_PF: 17 return "ICE_VSI_PF"; 18 case ICE_VSI_VF: 19 return "ICE_VSI_VF"; 20 case ICE_VSI_LB: 21 return "ICE_VSI_LB"; 22 default: 23 return "unknown"; 24 } 25 } 26 27 /** 28 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings 29 * @vsi: the VSI being configured 30 * @ena: start or stop the Rx rings 31 */ 32 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena) 33 { 34 int i, ret = 0; 35 36 for (i = 0; i < vsi->num_rxq; i++) { 37 ret = ice_vsi_ctrl_rx_ring(vsi, ena, i); 38 if (ret) 39 break; 40 } 41 42 return ret; 43 } 44 45 /** 46 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 47 * @vsi: VSI pointer 48 * 49 * On error: returns error code (negative) 50 * On success: returns 0 51 */ 52 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 53 { 54 struct ice_pf *pf = vsi->back; 55 56 /* allocate memory for both Tx and Rx ring pointers */ 57 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq, 58 sizeof(*vsi->tx_rings), GFP_KERNEL); 59 if (!vsi->tx_rings) 60 return -ENOMEM; 61 62 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 63 sizeof(*vsi->rx_rings), GFP_KERNEL); 64 if (!vsi->rx_rings) 65 goto err_rings; 66 67 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 68 vsi->txq_map = devm_kcalloc(&pf->pdev->dev, (2 * vsi->alloc_txq), 69 sizeof(*vsi->txq_map), GFP_KERNEL); 70 71 if (!vsi->txq_map) 72 goto err_txq_map; 73 74 vsi->rxq_map = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq, 75 sizeof(*vsi->rxq_map), GFP_KERNEL); 76 if (!vsi->rxq_map) 77 goto err_rxq_map; 78 79 /* There is no need to allocate q_vectors for a loopback VSI. */ 80 if (vsi->type == ICE_VSI_LB) 81 return 0; 82 83 /* allocate memory for q_vector pointers */ 84 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev, vsi->num_q_vectors, 85 sizeof(*vsi->q_vectors), GFP_KERNEL); 86 if (!vsi->q_vectors) 87 goto err_vectors; 88 89 return 0; 90 91 err_vectors: 92 devm_kfree(&pf->pdev->dev, vsi->rxq_map); 93 err_rxq_map: 94 devm_kfree(&pf->pdev->dev, vsi->txq_map); 95 err_txq_map: 96 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 97 err_rings: 98 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 99 return -ENOMEM; 100 } 101 102 /** 103 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 104 * @vsi: the VSI being configured 105 */ 106 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 107 { 108 switch (vsi->type) { 109 case ICE_VSI_PF: 110 /* fall through */ 111 case ICE_VSI_LB: 112 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 113 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 114 break; 115 default: 116 dev_dbg(&vsi->back->pdev->dev, 117 "Not setting number of Tx/Rx descriptors for VSI type %d\n", 118 vsi->type); 119 break; 120 } 121 } 122 123 /** 124 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 125 * @vsi: the VSI being configured 126 * @vf_id: ID of the VF being configured 127 * 128 * Return 0 on success and a negative value on error 129 */ 130 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 131 { 132 struct ice_pf *pf = vsi->back; 133 struct ice_vf *vf = NULL; 134 135 if (vsi->type == ICE_VSI_VF) 136 vsi->vf_id = vf_id; 137 138 switch (vsi->type) { 139 case ICE_VSI_PF: 140 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 141 num_online_cpus()); 142 143 pf->num_lan_tx = vsi->alloc_txq; 144 145 /* only 1 Rx queue unless RSS is enabled */ 146 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 147 vsi->alloc_rxq = 1; 148 else 149 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 150 num_online_cpus()); 151 152 pf->num_lan_rx = vsi->alloc_rxq; 153 154 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 155 break; 156 case ICE_VSI_VF: 157 vf = &pf->vf[vsi->vf_id]; 158 vsi->alloc_txq = vf->num_vf_qs; 159 vsi->alloc_rxq = vf->num_vf_qs; 160 /* pf->num_vf_msix includes (VF miscellaneous vector + 161 * data queue interrupts). Since vsi->num_q_vectors is number 162 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 163 * original vector count 164 */ 165 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 166 break; 167 case ICE_VSI_LB: 168 vsi->alloc_txq = 1; 169 vsi->alloc_rxq = 1; 170 break; 171 default: 172 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 173 break; 174 } 175 176 ice_vsi_set_num_desc(vsi); 177 } 178 179 /** 180 * ice_get_free_slot - get the next non-NULL location index in array 181 * @array: array to search 182 * @size: size of the array 183 * @curr: last known occupied index to be used as a search hint 184 * 185 * void * is being used to keep the functionality generic. This lets us use this 186 * function on any array of pointers. 187 */ 188 static int ice_get_free_slot(void *array, int size, int curr) 189 { 190 int **tmp_array = (int **)array; 191 int next; 192 193 if (curr < (size - 1) && !tmp_array[curr + 1]) { 194 next = curr + 1; 195 } else { 196 int i = 0; 197 198 while ((i < size) && (tmp_array[i])) 199 i++; 200 if (i == size) 201 next = ICE_NO_VSI; 202 else 203 next = i; 204 } 205 return next; 206 } 207 208 /** 209 * ice_vsi_delete - delete a VSI from the switch 210 * @vsi: pointer to VSI being removed 211 */ 212 void ice_vsi_delete(struct ice_vsi *vsi) 213 { 214 struct ice_pf *pf = vsi->back; 215 struct ice_vsi_ctx *ctxt; 216 enum ice_status status; 217 218 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 219 if (!ctxt) 220 return; 221 222 if (vsi->type == ICE_VSI_VF) 223 ctxt->vf_num = vsi->vf_id; 224 ctxt->vsi_num = vsi->vsi_num; 225 226 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 227 228 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 229 if (status) 230 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n", 231 vsi->vsi_num); 232 233 devm_kfree(&pf->pdev->dev, ctxt); 234 } 235 236 /** 237 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 238 * @vsi: pointer to VSI being cleared 239 */ 240 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 241 { 242 struct ice_pf *pf = vsi->back; 243 244 /* free the ring and vector containers */ 245 if (vsi->q_vectors) { 246 devm_kfree(&pf->pdev->dev, vsi->q_vectors); 247 vsi->q_vectors = NULL; 248 } 249 if (vsi->tx_rings) { 250 devm_kfree(&pf->pdev->dev, vsi->tx_rings); 251 vsi->tx_rings = NULL; 252 } 253 if (vsi->rx_rings) { 254 devm_kfree(&pf->pdev->dev, vsi->rx_rings); 255 vsi->rx_rings = NULL; 256 } 257 if (vsi->txq_map) { 258 devm_kfree(&pf->pdev->dev, vsi->txq_map); 259 vsi->txq_map = NULL; 260 } 261 if (vsi->rxq_map) { 262 devm_kfree(&pf->pdev->dev, vsi->rxq_map); 263 vsi->rxq_map = NULL; 264 } 265 } 266 267 /** 268 * ice_vsi_clear - clean up and deallocate the provided VSI 269 * @vsi: pointer to VSI being cleared 270 * 271 * This deallocates the VSI's queue resources, removes it from the PF's 272 * VSI array if necessary, and deallocates the VSI 273 * 274 * Returns 0 on success, negative on failure 275 */ 276 int ice_vsi_clear(struct ice_vsi *vsi) 277 { 278 struct ice_pf *pf = NULL; 279 280 if (!vsi) 281 return 0; 282 283 if (!vsi->back) 284 return -EINVAL; 285 286 pf = vsi->back; 287 288 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 289 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n", 290 vsi->idx); 291 return -EINVAL; 292 } 293 294 mutex_lock(&pf->sw_mutex); 295 /* updates the PF for this cleared VSI */ 296 297 pf->vsi[vsi->idx] = NULL; 298 if (vsi->idx < pf->next_vsi) 299 pf->next_vsi = vsi->idx; 300 301 ice_vsi_free_arrays(vsi); 302 mutex_unlock(&pf->sw_mutex); 303 devm_kfree(&pf->pdev->dev, vsi); 304 305 return 0; 306 } 307 308 /** 309 * ice_msix_clean_rings - MSIX mode Interrupt Handler 310 * @irq: interrupt number 311 * @data: pointer to a q_vector 312 */ 313 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 314 { 315 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 316 317 if (!q_vector->tx.ring && !q_vector->rx.ring) 318 return IRQ_HANDLED; 319 320 napi_schedule(&q_vector->napi); 321 322 return IRQ_HANDLED; 323 } 324 325 /** 326 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 327 * @pf: board private structure 328 * @type: type of VSI 329 * @vf_id: ID of the VF being configured 330 * 331 * returns a pointer to a VSI on success, NULL on failure. 332 */ 333 static struct ice_vsi * 334 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 335 { 336 struct ice_vsi *vsi = NULL; 337 338 /* Need to protect the allocation of the VSIs at the PF level */ 339 mutex_lock(&pf->sw_mutex); 340 341 /* If we have already allocated our maximum number of VSIs, 342 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 343 * is available to be populated 344 */ 345 if (pf->next_vsi == ICE_NO_VSI) { 346 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n"); 347 goto unlock_pf; 348 } 349 350 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL); 351 if (!vsi) 352 goto unlock_pf; 353 354 vsi->type = type; 355 vsi->back = pf; 356 set_bit(__ICE_DOWN, vsi->state); 357 358 vsi->idx = pf->next_vsi; 359 360 if (type == ICE_VSI_VF) 361 ice_vsi_set_num_qs(vsi, vf_id); 362 else 363 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 364 365 switch (vsi->type) { 366 case ICE_VSI_PF: 367 if (ice_vsi_alloc_arrays(vsi)) 368 goto err_rings; 369 370 /* Setup default MSIX irq handler for VSI */ 371 vsi->irq_handler = ice_msix_clean_rings; 372 break; 373 case ICE_VSI_VF: 374 if (ice_vsi_alloc_arrays(vsi)) 375 goto err_rings; 376 break; 377 case ICE_VSI_LB: 378 if (ice_vsi_alloc_arrays(vsi)) 379 goto err_rings; 380 break; 381 default: 382 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 383 goto unlock_pf; 384 } 385 386 /* fill VSI slot in the PF struct */ 387 pf->vsi[pf->next_vsi] = vsi; 388 389 /* prepare pf->next_vsi for next use */ 390 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 391 pf->next_vsi); 392 goto unlock_pf; 393 394 err_rings: 395 devm_kfree(&pf->pdev->dev, vsi); 396 vsi = NULL; 397 unlock_pf: 398 mutex_unlock(&pf->sw_mutex); 399 return vsi; 400 } 401 402 /** 403 * ice_vsi_get_qs - Assign queues from PF to VSI 404 * @vsi: the VSI to assign queues to 405 * 406 * Returns 0 on success and a negative value on error 407 */ 408 static int ice_vsi_get_qs(struct ice_vsi *vsi) 409 { 410 struct ice_pf *pf = vsi->back; 411 struct ice_qs_cfg tx_qs_cfg = { 412 .qs_mutex = &pf->avail_q_mutex, 413 .pf_map = pf->avail_txqs, 414 .pf_map_size = pf->max_pf_txqs, 415 .q_count = vsi->alloc_txq, 416 .scatter_count = ICE_MAX_SCATTER_TXQS, 417 .vsi_map = vsi->txq_map, 418 .vsi_map_offset = 0, 419 .mapping_mode = vsi->tx_mapping_mode 420 }; 421 struct ice_qs_cfg rx_qs_cfg = { 422 .qs_mutex = &pf->avail_q_mutex, 423 .pf_map = pf->avail_rxqs, 424 .pf_map_size = pf->max_pf_rxqs, 425 .q_count = vsi->alloc_rxq, 426 .scatter_count = ICE_MAX_SCATTER_RXQS, 427 .vsi_map = vsi->rxq_map, 428 .vsi_map_offset = 0, 429 .mapping_mode = vsi->rx_mapping_mode 430 }; 431 int ret = 0; 432 433 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG; 434 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG; 435 436 ret = __ice_vsi_get_qs(&tx_qs_cfg); 437 if (!ret) 438 ret = __ice_vsi_get_qs(&rx_qs_cfg); 439 440 return ret; 441 } 442 443 /** 444 * ice_vsi_put_qs - Release queues from VSI to PF 445 * @vsi: the VSI that is going to release queues 446 */ 447 void ice_vsi_put_qs(struct ice_vsi *vsi) 448 { 449 struct ice_pf *pf = vsi->back; 450 int i; 451 452 mutex_lock(&pf->avail_q_mutex); 453 454 for (i = 0; i < vsi->alloc_txq; i++) { 455 clear_bit(vsi->txq_map[i], pf->avail_txqs); 456 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 457 } 458 459 for (i = 0; i < vsi->alloc_rxq; i++) { 460 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 461 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 462 } 463 464 mutex_unlock(&pf->avail_q_mutex); 465 } 466 467 /** 468 * ice_is_safe_mode 469 * @pf: pointer to the PF struct 470 * 471 * returns true if driver is in safe mode, false otherwise 472 */ 473 bool ice_is_safe_mode(struct ice_pf *pf) 474 { 475 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 476 } 477 478 /** 479 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs 480 * @vsi: the VSI being removed 481 */ 482 static void ice_rss_clean(struct ice_vsi *vsi) 483 { 484 struct ice_pf *pf; 485 486 pf = vsi->back; 487 488 if (vsi->rss_hkey_user) 489 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user); 490 if (vsi->rss_lut_user) 491 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user); 492 } 493 494 /** 495 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 496 * @vsi: the VSI being configured 497 */ 498 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 499 { 500 struct ice_hw_common_caps *cap; 501 struct ice_pf *pf = vsi->back; 502 503 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 504 vsi->rss_size = 1; 505 return; 506 } 507 508 cap = &pf->hw.func_caps.common_cap; 509 switch (vsi->type) { 510 case ICE_VSI_PF: 511 /* PF VSI will inherit RSS instance of PF */ 512 vsi->rss_table_size = cap->rss_table_size; 513 vsi->rss_size = min_t(int, num_online_cpus(), 514 BIT(cap->rss_table_entry_width)); 515 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 516 break; 517 case ICE_VSI_VF: 518 /* VF VSI will gets a small RSS table 519 * For VSI_LUT, LUT size should be set to 64 bytes 520 */ 521 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 522 vsi->rss_size = min_t(int, num_online_cpus(), 523 BIT(cap->rss_table_entry_width)); 524 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 525 break; 526 case ICE_VSI_LB: 527 break; 528 default: 529 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", 530 vsi->type); 531 break; 532 } 533 } 534 535 /** 536 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 537 * @ctxt: the VSI context being set 538 * 539 * This initializes a default VSI context for all sections except the Queues. 540 */ 541 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 542 { 543 u32 table = 0; 544 545 memset(&ctxt->info, 0, sizeof(ctxt->info)); 546 /* VSI's should be allocated from shared pool */ 547 ctxt->alloc_from_pool = true; 548 /* Src pruning enabled by default */ 549 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 550 /* Traffic from VSI can be sent to LAN */ 551 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 552 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 553 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 554 * packets untagged/tagged. 555 */ 556 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 557 ICE_AQ_VSI_VLAN_MODE_M) >> 558 ICE_AQ_VSI_VLAN_MODE_S); 559 /* Have 1:1 UP mapping for both ingress/egress tables */ 560 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 561 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 562 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 563 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 564 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 565 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 566 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 567 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 568 ctxt->info.ingress_table = cpu_to_le32(table); 569 ctxt->info.egress_table = cpu_to_le32(table); 570 /* Have 1:1 UP mapping for outer to inner UP table */ 571 ctxt->info.outer_up_table = cpu_to_le32(table); 572 /* No Outer tag support outer_tag_flags remains to zero */ 573 } 574 575 /** 576 * ice_vsi_setup_q_map - Setup a VSI queue map 577 * @vsi: the VSI being configured 578 * @ctxt: VSI context structure 579 */ 580 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 581 { 582 u16 offset = 0, qmap = 0, tx_count = 0; 583 u16 qcount_tx = vsi->alloc_txq; 584 u16 qcount_rx = vsi->alloc_rxq; 585 u16 tx_numq_tc, rx_numq_tc; 586 u16 pow = 0, max_rss = 0; 587 bool ena_tc0 = false; 588 u8 netdev_tc = 0; 589 int i; 590 591 /* at least TC0 should be enabled by default */ 592 if (vsi->tc_cfg.numtc) { 593 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 594 ena_tc0 = true; 595 } else { 596 ena_tc0 = true; 597 } 598 599 if (ena_tc0) { 600 vsi->tc_cfg.numtc++; 601 vsi->tc_cfg.ena_tc |= 1; 602 } 603 604 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 605 if (!rx_numq_tc) 606 rx_numq_tc = 1; 607 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 608 if (!tx_numq_tc) 609 tx_numq_tc = 1; 610 611 /* TC mapping is a function of the number of Rx queues assigned to the 612 * VSI for each traffic class and the offset of these queues. 613 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 614 * queues allocated to TC0. No:of queues is a power-of-2. 615 * 616 * If TC is not enabled, the queue offset is set to 0, and allocate one 617 * queue, this way, traffic for the given TC will be sent to the default 618 * queue. 619 * 620 * Setup number and offset of Rx queues for all TCs for the VSI 621 */ 622 623 qcount_rx = rx_numq_tc; 624 625 /* qcount will change if RSS is enabled */ 626 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 627 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 628 if (vsi->type == ICE_VSI_PF) 629 max_rss = ICE_MAX_LG_RSS_QS; 630 else 631 max_rss = ICE_MAX_SMALL_RSS_QS; 632 qcount_rx = min_t(int, rx_numq_tc, max_rss); 633 qcount_rx = min_t(int, qcount_rx, vsi->rss_size); 634 } 635 } 636 637 /* find the (rounded up) power-of-2 of qcount */ 638 pow = order_base_2(qcount_rx); 639 640 ice_for_each_traffic_class(i) { 641 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 642 /* TC is not enabled */ 643 vsi->tc_cfg.tc_info[i].qoffset = 0; 644 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 645 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 646 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 647 ctxt->info.tc_mapping[i] = 0; 648 continue; 649 } 650 651 /* TC is enabled */ 652 vsi->tc_cfg.tc_info[i].qoffset = offset; 653 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 654 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 655 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 656 657 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 658 ICE_AQ_VSI_TC_Q_OFFSET_M) | 659 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 660 ICE_AQ_VSI_TC_Q_NUM_M); 661 offset += qcount_rx; 662 tx_count += tx_numq_tc; 663 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 664 } 665 666 /* if offset is non-zero, means it is calculated correctly based on 667 * enabled TCs for a given VSI otherwise qcount_rx will always 668 * be correct and non-zero because it is based off - VSI's 669 * allocated Rx queues which is at least 1 (hence qcount_tx will be 670 * at least 1) 671 */ 672 if (offset) 673 vsi->num_rxq = offset; 674 else 675 vsi->num_rxq = qcount_rx; 676 677 vsi->num_txq = tx_count; 678 679 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 680 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 681 /* since there is a chance that num_rxq could have been changed 682 * in the above for loop, make num_txq equal to num_rxq. 683 */ 684 vsi->num_txq = vsi->num_rxq; 685 } 686 687 /* Rx queue mapping */ 688 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 689 /* q_mapping buffer holds the info for the first queue allocated for 690 * this VSI in the PF space and also the number of queues associated 691 * with this VSI. 692 */ 693 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 694 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 695 } 696 697 /** 698 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 699 * @ctxt: the VSI context being set 700 * @vsi: the VSI being configured 701 */ 702 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 703 { 704 u8 lut_type, hash_type; 705 struct ice_pf *pf; 706 707 pf = vsi->back; 708 709 switch (vsi->type) { 710 case ICE_VSI_PF: 711 /* PF VSI will inherit RSS instance of PF */ 712 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 713 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 714 break; 715 case ICE_VSI_VF: 716 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 717 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 718 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 719 break; 720 case ICE_VSI_LB: 721 dev_dbg(&pf->pdev->dev, "Unsupported VSI type %s\n", 722 ice_vsi_type_str(vsi->type)); 723 return; 724 default: 725 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type); 726 return; 727 } 728 729 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 730 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 731 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 732 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 733 } 734 735 /** 736 * ice_vsi_init - Create and initialize a VSI 737 * @vsi: the VSI being configured 738 * 739 * This initializes a VSI context depending on the VSI type to be added and 740 * passes it down to the add_vsi aq command to create a new VSI. 741 */ 742 static int ice_vsi_init(struct ice_vsi *vsi) 743 { 744 struct ice_pf *pf = vsi->back; 745 struct ice_hw *hw = &pf->hw; 746 struct ice_vsi_ctx *ctxt; 747 int ret = 0; 748 749 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL); 750 if (!ctxt) 751 return -ENOMEM; 752 753 ctxt->info = vsi->info; 754 switch (vsi->type) { 755 case ICE_VSI_LB: 756 /* fall through */ 757 case ICE_VSI_PF: 758 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 759 break; 760 case ICE_VSI_VF: 761 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 762 /* VF number here is the absolute VF number (0-255) */ 763 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 764 break; 765 default: 766 return -ENODEV; 767 } 768 769 ice_set_dflt_vsi_ctx(ctxt); 770 /* if the switch is in VEB mode, allow VSI loopback */ 771 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 772 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 773 774 /* Set LUT type and HASH type if RSS is enabled */ 775 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 776 ice_set_rss_vsi_ctx(ctxt, vsi); 777 778 ctxt->info.sw_id = vsi->port_info->sw_id; 779 ice_vsi_setup_q_map(vsi, ctxt); 780 781 /* Enable MAC Antispoof with new VSI being initialized or updated */ 782 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) { 783 ctxt->info.valid_sections |= 784 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 785 ctxt->info.sec_flags |= 786 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; 787 } 788 789 /* Allow control frames out of main VSI */ 790 if (vsi->type == ICE_VSI_PF) { 791 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 792 ctxt->info.valid_sections |= 793 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 794 } 795 796 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 797 if (ret) { 798 dev_err(&pf->pdev->dev, 799 "Add VSI failed, err %d\n", ret); 800 return -EIO; 801 } 802 803 /* keep context for update VSI operations */ 804 vsi->info = ctxt->info; 805 806 /* record VSI number returned */ 807 vsi->vsi_num = ctxt->vsi_num; 808 809 devm_kfree(&pf->pdev->dev, ctxt); 810 return ret; 811 } 812 813 /** 814 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 815 * @vsi: ptr to the VSI 816 * 817 * This should only be called after ice_vsi_alloc() which allocates the 818 * corresponding SW VSI structure and initializes num_queue_pairs for the 819 * newly allocated VSI. 820 * 821 * Returns 0 on success or negative on failure 822 */ 823 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 824 { 825 struct ice_pf *pf = vsi->back; 826 u16 num_q_vectors; 827 828 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 829 if (vsi->type == ICE_VSI_VF) 830 return 0; 831 832 if (vsi->base_vector) { 833 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 834 vsi->vsi_num, vsi->base_vector); 835 return -EEXIST; 836 } 837 838 num_q_vectors = vsi->num_q_vectors; 839 /* reserve slots from OS requested IRQs */ 840 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 841 vsi->idx); 842 if (vsi->base_vector < 0) { 843 dev_err(&pf->pdev->dev, 844 "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 845 num_q_vectors, vsi->vsi_num, vsi->base_vector); 846 return -ENOENT; 847 } 848 pf->num_avail_sw_msix -= num_q_vectors; 849 850 return 0; 851 } 852 853 /** 854 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 855 * @vsi: the VSI having rings deallocated 856 */ 857 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 858 { 859 int i; 860 861 if (vsi->tx_rings) { 862 for (i = 0; i < vsi->alloc_txq; i++) { 863 if (vsi->tx_rings[i]) { 864 kfree_rcu(vsi->tx_rings[i], rcu); 865 vsi->tx_rings[i] = NULL; 866 } 867 } 868 } 869 if (vsi->rx_rings) { 870 for (i = 0; i < vsi->alloc_rxq; i++) { 871 if (vsi->rx_rings[i]) { 872 kfree_rcu(vsi->rx_rings[i], rcu); 873 vsi->rx_rings[i] = NULL; 874 } 875 } 876 } 877 } 878 879 /** 880 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 881 * @vsi: VSI which is having rings allocated 882 */ 883 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 884 { 885 struct ice_pf *pf = vsi->back; 886 int i; 887 888 /* Allocate Tx rings */ 889 for (i = 0; i < vsi->alloc_txq; i++) { 890 struct ice_ring *ring; 891 892 /* allocate with kzalloc(), free with kfree_rcu() */ 893 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 894 895 if (!ring) 896 goto err_out; 897 898 ring->q_index = i; 899 ring->reg_idx = vsi->txq_map[i]; 900 ring->ring_active = false; 901 ring->vsi = vsi; 902 ring->dev = &pf->pdev->dev; 903 ring->count = vsi->num_tx_desc; 904 vsi->tx_rings[i] = ring; 905 } 906 907 /* Allocate Rx rings */ 908 for (i = 0; i < vsi->alloc_rxq; i++) { 909 struct ice_ring *ring; 910 911 /* allocate with kzalloc(), free with kfree_rcu() */ 912 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 913 if (!ring) 914 goto err_out; 915 916 ring->q_index = i; 917 ring->reg_idx = vsi->rxq_map[i]; 918 ring->ring_active = false; 919 ring->vsi = vsi; 920 ring->netdev = vsi->netdev; 921 ring->dev = &pf->pdev->dev; 922 ring->count = vsi->num_rx_desc; 923 vsi->rx_rings[i] = ring; 924 } 925 926 return 0; 927 928 err_out: 929 ice_vsi_clear_rings(vsi); 930 return -ENOMEM; 931 } 932 933 /** 934 * ice_vsi_manage_rss_lut - disable/enable RSS 935 * @vsi: the VSI being changed 936 * @ena: boolean value indicating if this is an enable or disable request 937 * 938 * In the event of disable request for RSS, this function will zero out RSS 939 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 940 * LUT. 941 */ 942 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 943 { 944 int err = 0; 945 u8 *lut; 946 947 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size, 948 GFP_KERNEL); 949 if (!lut) 950 return -ENOMEM; 951 952 if (ena) { 953 if (vsi->rss_lut_user) 954 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 955 else 956 ice_fill_rss_lut(lut, vsi->rss_table_size, 957 vsi->rss_size); 958 } 959 960 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 961 devm_kfree(&vsi->back->pdev->dev, lut); 962 return err; 963 } 964 965 /** 966 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 967 * @vsi: VSI to be configured 968 */ 969 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 970 { 971 struct ice_aqc_get_set_rss_keys *key; 972 struct ice_pf *pf = vsi->back; 973 enum ice_status status; 974 int err = 0; 975 u8 *lut; 976 977 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 978 979 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL); 980 if (!lut) 981 return -ENOMEM; 982 983 if (vsi->rss_lut_user) 984 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 985 else 986 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 987 988 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 989 vsi->rss_table_size); 990 991 if (status) { 992 dev_err(&pf->pdev->dev, 993 "set_rss_lut failed, error %d\n", status); 994 err = -EIO; 995 goto ice_vsi_cfg_rss_exit; 996 } 997 998 key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL); 999 if (!key) { 1000 err = -ENOMEM; 1001 goto ice_vsi_cfg_rss_exit; 1002 } 1003 1004 if (vsi->rss_hkey_user) 1005 memcpy(key, 1006 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1007 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1008 else 1009 netdev_rss_key_fill((void *)key, 1010 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1011 1012 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1013 1014 if (status) { 1015 dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n", 1016 status); 1017 err = -EIO; 1018 } 1019 1020 devm_kfree(&pf->pdev->dev, key); 1021 ice_vsi_cfg_rss_exit: 1022 devm_kfree(&pf->pdev->dev, lut); 1023 return err; 1024 } 1025 1026 /** 1027 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1028 * @vsi: the VSI to be forwarded to 1029 * @add_list: pointer to the list which contains MAC filter entries 1030 * @macaddr: the MAC address to be added. 1031 * 1032 * Adds MAC address filter entry to the temp list 1033 * 1034 * Returns 0 on success or ENOMEM on failure. 1035 */ 1036 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1037 const u8 *macaddr) 1038 { 1039 struct ice_fltr_list_entry *tmp; 1040 struct ice_pf *pf = vsi->back; 1041 1042 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC); 1043 if (!tmp) 1044 return -ENOMEM; 1045 1046 tmp->fltr_info.flag = ICE_FLTR_TX; 1047 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1048 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1049 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1050 tmp->fltr_info.vsi_handle = vsi->idx; 1051 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1052 1053 INIT_LIST_HEAD(&tmp->list_entry); 1054 list_add(&tmp->list_entry, add_list); 1055 1056 return 0; 1057 } 1058 1059 /** 1060 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1061 * @vsi: the VSI to be updated 1062 */ 1063 void ice_update_eth_stats(struct ice_vsi *vsi) 1064 { 1065 struct ice_eth_stats *prev_es, *cur_es; 1066 struct ice_hw *hw = &vsi->back->hw; 1067 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1068 1069 prev_es = &vsi->eth_stats_prev; 1070 cur_es = &vsi->eth_stats; 1071 1072 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1073 &prev_es->rx_bytes, &cur_es->rx_bytes); 1074 1075 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1076 &prev_es->rx_unicast, &cur_es->rx_unicast); 1077 1078 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1079 &prev_es->rx_multicast, &cur_es->rx_multicast); 1080 1081 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1082 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1083 1084 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1085 &prev_es->rx_discards, &cur_es->rx_discards); 1086 1087 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1088 &prev_es->tx_bytes, &cur_es->tx_bytes); 1089 1090 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1091 &prev_es->tx_unicast, &cur_es->tx_unicast); 1092 1093 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1094 &prev_es->tx_multicast, &cur_es->tx_multicast); 1095 1096 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1097 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1098 1099 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1100 &prev_es->tx_errors, &cur_es->tx_errors); 1101 1102 vsi->stat_offsets_loaded = true; 1103 } 1104 1105 /** 1106 * ice_free_fltr_list - free filter lists helper 1107 * @dev: pointer to the device struct 1108 * @h: pointer to the list head to be freed 1109 * 1110 * Helper function to free filter lists previously created using 1111 * ice_add_mac_to_list 1112 */ 1113 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1114 { 1115 struct ice_fltr_list_entry *e, *tmp; 1116 1117 list_for_each_entry_safe(e, tmp, h, list_entry) { 1118 list_del(&e->list_entry); 1119 devm_kfree(dev, e); 1120 } 1121 } 1122 1123 /** 1124 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1125 * @vsi: the VSI being configured 1126 * @vid: VLAN ID to be added 1127 */ 1128 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1129 { 1130 struct ice_fltr_list_entry *tmp; 1131 struct ice_pf *pf = vsi->back; 1132 LIST_HEAD(tmp_add_list); 1133 enum ice_status status; 1134 int err = 0; 1135 1136 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL); 1137 if (!tmp) 1138 return -ENOMEM; 1139 1140 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1141 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1142 tmp->fltr_info.flag = ICE_FLTR_TX; 1143 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1144 tmp->fltr_info.vsi_handle = vsi->idx; 1145 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1146 1147 INIT_LIST_HEAD(&tmp->list_entry); 1148 list_add(&tmp->list_entry, &tmp_add_list); 1149 1150 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1151 if (status) { 1152 err = -ENODEV; 1153 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n", 1154 vid, vsi->vsi_num); 1155 } 1156 1157 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1158 return err; 1159 } 1160 1161 /** 1162 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1163 * @vsi: the VSI being configured 1164 * @vid: VLAN ID to be removed 1165 * 1166 * Returns 0 on success and negative on failure 1167 */ 1168 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1169 { 1170 struct ice_fltr_list_entry *list; 1171 struct ice_pf *pf = vsi->back; 1172 LIST_HEAD(tmp_add_list); 1173 enum ice_status status; 1174 int err = 0; 1175 1176 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1177 if (!list) 1178 return -ENOMEM; 1179 1180 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1181 list->fltr_info.vsi_handle = vsi->idx; 1182 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1183 list->fltr_info.l_data.vlan.vlan_id = vid; 1184 list->fltr_info.flag = ICE_FLTR_TX; 1185 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1186 1187 INIT_LIST_HEAD(&list->list_entry); 1188 list_add(&list->list_entry, &tmp_add_list); 1189 1190 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1191 if (status == ICE_ERR_DOES_NOT_EXIST) { 1192 dev_dbg(&pf->pdev->dev, 1193 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1194 vid, vsi->vsi_num, status); 1195 } else if (status) { 1196 dev_err(&pf->pdev->dev, 1197 "Error removing VLAN %d on vsi %i error: %d\n", 1198 vid, vsi->vsi_num, status); 1199 err = -EIO; 1200 } 1201 1202 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1203 return err; 1204 } 1205 1206 /** 1207 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1208 * @vsi: VSI 1209 */ 1210 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1211 { 1212 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1213 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1214 vsi->rx_buf_len = ICE_RXBUF_2048; 1215 #if (PAGE_SIZE < 8192) 1216 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1217 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1218 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1219 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1220 #endif 1221 } else { 1222 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1223 #if (PAGE_SIZE < 8192) 1224 vsi->rx_buf_len = ICE_RXBUF_3072; 1225 #else 1226 vsi->rx_buf_len = ICE_RXBUF_2048; 1227 #endif 1228 } 1229 } 1230 1231 /** 1232 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1233 * @vsi: the VSI being configured 1234 * 1235 * Return 0 on success and a negative value on error 1236 * Configure the Rx VSI for operation. 1237 */ 1238 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1239 { 1240 u16 i; 1241 1242 if (vsi->type == ICE_VSI_VF) 1243 goto setup_rings; 1244 1245 ice_vsi_cfg_frame_size(vsi); 1246 setup_rings: 1247 /* set up individual rings */ 1248 for (i = 0; i < vsi->num_rxq; i++) { 1249 int err; 1250 1251 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1252 if (err) { 1253 dev_err(&vsi->back->pdev->dev, 1254 "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1255 i, err); 1256 return err; 1257 } 1258 } 1259 1260 return 0; 1261 } 1262 1263 /** 1264 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1265 * @vsi: the VSI being configured 1266 * @rings: Tx ring array to be configured 1267 * 1268 * Return 0 on success and a negative value on error 1269 * Configure the Tx VSI for operation. 1270 */ 1271 static int 1272 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1273 { 1274 struct ice_aqc_add_tx_qgrp *qg_buf; 1275 u16 q_idx = 0; 1276 int err = 0; 1277 1278 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1279 if (!qg_buf) 1280 return -ENOMEM; 1281 1282 qg_buf->num_txqs = 1; 1283 1284 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1285 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1286 if (err) 1287 goto err_cfg_txqs; 1288 } 1289 1290 err_cfg_txqs: 1291 kfree(qg_buf); 1292 return err; 1293 } 1294 1295 /** 1296 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1297 * @vsi: the VSI being configured 1298 * 1299 * Return 0 on success and a negative value on error 1300 * Configure the Tx VSI for operation. 1301 */ 1302 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1303 { 1304 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1305 } 1306 1307 /** 1308 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1309 * @vsi: the VSI being configured 1310 * 1311 * Return 0 on success and a negative value on error 1312 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1313 */ 1314 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1315 { 1316 int ret; 1317 int i; 1318 1319 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1320 if (ret) 1321 return ret; 1322 1323 for (i = 0; i < vsi->num_xdp_txq; i++) 1324 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1325 1326 return ret; 1327 } 1328 1329 /** 1330 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1331 * @intrl: interrupt rate limit in usecs 1332 * @gran: interrupt rate limit granularity in usecs 1333 * 1334 * This function converts a decimal interrupt rate limit in usecs to the format 1335 * expected by firmware. 1336 */ 1337 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1338 { 1339 u32 val = intrl / gran; 1340 1341 if (val) 1342 return val | GLINT_RATE_INTRL_ENA_M; 1343 return 0; 1344 } 1345 1346 /** 1347 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1348 * @vsi: the VSI being configured 1349 * 1350 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1351 * for the VF VSI. 1352 */ 1353 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1354 { 1355 struct ice_pf *pf = vsi->back; 1356 struct ice_hw *hw = &pf->hw; 1357 u32 txq = 0, rxq = 0; 1358 int i, q; 1359 1360 for (i = 0; i < vsi->num_q_vectors; i++) { 1361 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1362 u16 reg_idx = q_vector->reg_idx; 1363 1364 ice_cfg_itr(hw, q_vector); 1365 1366 wr32(hw, GLINT_RATE(reg_idx), 1367 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1368 1369 /* Both Transmit Queue Interrupt Cause Control register 1370 * and Receive Queue Interrupt Cause control register 1371 * expects MSIX_INDX field to be the vector index 1372 * within the function space and not the absolute 1373 * vector index across PF or across device. 1374 * For SR-IOV VF VSIs queue vector index always starts 1375 * with 1 since first vector index(0) is used for OICR 1376 * in VF space. Since VMDq and other PF VSIs are within 1377 * the PF function space, use the vector index that is 1378 * tracked for this PF. 1379 */ 1380 for (q = 0; q < q_vector->num_ring_tx; q++) { 1381 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1382 q_vector->tx.itr_idx); 1383 txq++; 1384 } 1385 1386 for (q = 0; q < q_vector->num_ring_rx; q++) { 1387 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1388 q_vector->rx.itr_idx); 1389 rxq++; 1390 } 1391 } 1392 } 1393 1394 /** 1395 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1396 * @vsi: the VSI being changed 1397 */ 1398 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1399 { 1400 struct device *dev = &vsi->back->pdev->dev; 1401 struct ice_hw *hw = &vsi->back->hw; 1402 struct ice_vsi_ctx *ctxt; 1403 enum ice_status status; 1404 int ret = 0; 1405 1406 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1407 if (!ctxt) 1408 return -ENOMEM; 1409 1410 /* Here we are configuring the VSI to let the driver add VLAN tags by 1411 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1412 * insertion happens in the Tx hot path, in ice_tx_map. 1413 */ 1414 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1415 1416 /* Preserve existing VLAN strip setting */ 1417 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1418 ICE_AQ_VSI_VLAN_EMOD_M); 1419 1420 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1421 1422 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1423 if (status) { 1424 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n", 1425 status, hw->adminq.sq_last_status); 1426 ret = -EIO; 1427 goto out; 1428 } 1429 1430 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1431 out: 1432 devm_kfree(dev, ctxt); 1433 return ret; 1434 } 1435 1436 /** 1437 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1438 * @vsi: the VSI being changed 1439 * @ena: boolean value indicating if this is a enable or disable request 1440 */ 1441 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1442 { 1443 struct device *dev = &vsi->back->pdev->dev; 1444 struct ice_hw *hw = &vsi->back->hw; 1445 struct ice_vsi_ctx *ctxt; 1446 enum ice_status status; 1447 int ret = 0; 1448 1449 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1450 if (!ctxt) 1451 return -ENOMEM; 1452 1453 /* Here we are configuring what the VSI should do with the VLAN tag in 1454 * the Rx packet. We can either leave the tag in the packet or put it in 1455 * the Rx descriptor. 1456 */ 1457 if (ena) 1458 /* Strip VLAN tag from Rx packet and put it in the desc */ 1459 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1460 else 1461 /* Disable stripping. Leave tag in packet */ 1462 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1463 1464 /* Allow all packets untagged/tagged */ 1465 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1466 1467 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1468 1469 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1470 if (status) { 1471 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1472 ena, status, hw->adminq.sq_last_status); 1473 ret = -EIO; 1474 goto out; 1475 } 1476 1477 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1478 out: 1479 devm_kfree(dev, ctxt); 1480 return ret; 1481 } 1482 1483 /** 1484 * ice_vsi_start_rx_rings - start VSI's Rx rings 1485 * @vsi: the VSI whose rings are to be started 1486 * 1487 * Returns 0 on success and a negative value on error 1488 */ 1489 int ice_vsi_start_rx_rings(struct ice_vsi *vsi) 1490 { 1491 return ice_vsi_ctrl_rx_rings(vsi, true); 1492 } 1493 1494 /** 1495 * ice_vsi_stop_rx_rings - stop VSI's Rx rings 1496 * @vsi: the VSI 1497 * 1498 * Returns 0 on success and a negative value on error 1499 */ 1500 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) 1501 { 1502 return ice_vsi_ctrl_rx_rings(vsi, false); 1503 } 1504 1505 /** 1506 * ice_vsi_stop_tx_rings - Disable Tx rings 1507 * @vsi: the VSI being configured 1508 * @rst_src: reset source 1509 * @rel_vmvf_num: Relative ID of VF/VM 1510 * @rings: Tx ring array to be stopped 1511 */ 1512 static int 1513 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1514 u16 rel_vmvf_num, struct ice_ring **rings) 1515 { 1516 u16 q_idx; 1517 1518 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1519 return -EINVAL; 1520 1521 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1522 struct ice_txq_meta txq_meta = { }; 1523 int status; 1524 1525 if (!rings || !rings[q_idx]) 1526 return -EINVAL; 1527 1528 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1529 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1530 rings[q_idx], &txq_meta); 1531 1532 if (status) 1533 return status; 1534 } 1535 1536 return 0; 1537 } 1538 1539 /** 1540 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1541 * @vsi: the VSI being configured 1542 * @rst_src: reset source 1543 * @rel_vmvf_num: Relative ID of VF/VM 1544 */ 1545 int 1546 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1547 u16 rel_vmvf_num) 1548 { 1549 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1550 } 1551 1552 /** 1553 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1554 * @vsi: the VSI being configured 1555 */ 1556 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1557 { 1558 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1559 } 1560 1561 /** 1562 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1563 * @vsi: VSI to enable or disable VLAN pruning on 1564 * @ena: set to true to enable VLAN pruning and false to disable it 1565 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1566 * 1567 * returns 0 if VSI is updated, negative otherwise 1568 */ 1569 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1570 { 1571 struct ice_vsi_ctx *ctxt; 1572 struct device *dev; 1573 struct ice_pf *pf; 1574 int status; 1575 1576 if (!vsi) 1577 return -EINVAL; 1578 1579 pf = vsi->back; 1580 dev = &pf->pdev->dev; 1581 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 1582 if (!ctxt) 1583 return -ENOMEM; 1584 1585 ctxt->info = vsi->info; 1586 1587 if (ena) { 1588 ctxt->info.sec_flags |= 1589 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1590 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 1591 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1592 } else { 1593 ctxt->info.sec_flags &= 1594 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1595 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1596 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1597 } 1598 1599 if (!vlan_promisc) 1600 ctxt->info.valid_sections = 1601 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID | 1602 ICE_AQ_VSI_PROP_SW_VALID); 1603 1604 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 1605 if (status) { 1606 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 1607 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 1608 pf->hw.adminq.sq_last_status); 1609 goto err_out; 1610 } 1611 1612 vsi->info.sec_flags = ctxt->info.sec_flags; 1613 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 1614 1615 devm_kfree(dev, ctxt); 1616 return 0; 1617 1618 err_out: 1619 devm_kfree(dev, ctxt); 1620 return -EIO; 1621 } 1622 1623 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 1624 { 1625 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 1626 1627 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 1628 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 1629 } 1630 1631 /** 1632 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 1633 * @vsi: VSI to set the q_vectors register index on 1634 */ 1635 static int 1636 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 1637 { 1638 u16 i; 1639 1640 if (!vsi || !vsi->q_vectors) 1641 return -EINVAL; 1642 1643 ice_for_each_q_vector(vsi, i) { 1644 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1645 1646 if (!q_vector) { 1647 dev_err(&vsi->back->pdev->dev, 1648 "Failed to set reg_idx on q_vector %d VSI %d\n", 1649 i, vsi->vsi_num); 1650 goto clear_reg_idx; 1651 } 1652 1653 if (vsi->type == ICE_VSI_VF) { 1654 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 1655 1656 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 1657 } else { 1658 q_vector->reg_idx = 1659 q_vector->v_idx + vsi->base_vector; 1660 } 1661 } 1662 1663 return 0; 1664 1665 clear_reg_idx: 1666 ice_for_each_q_vector(vsi, i) { 1667 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1668 1669 if (q_vector) 1670 q_vector->reg_idx = 0; 1671 } 1672 1673 return -EINVAL; 1674 } 1675 1676 /** 1677 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 1678 * @vsi: the VSI being configured 1679 * @add_rule: boolean value to add or remove ethertype filter rule 1680 */ 1681 static void 1682 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 1683 { 1684 struct ice_fltr_list_entry *list; 1685 struct ice_pf *pf = vsi->back; 1686 LIST_HEAD(tmp_add_list); 1687 enum ice_status status; 1688 1689 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1690 if (!list) 1691 return; 1692 1693 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1694 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1695 list->fltr_info.flag = ICE_FLTR_TX; 1696 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1697 list->fltr_info.vsi_handle = vsi->idx; 1698 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 1699 1700 INIT_LIST_HEAD(&list->list_entry); 1701 list_add(&list->list_entry, &tmp_add_list); 1702 1703 if (add_rule) 1704 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1705 else 1706 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1707 1708 if (status) 1709 dev_err(&pf->pdev->dev, 1710 "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 1711 vsi->vsi_num, status); 1712 1713 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1714 } 1715 1716 /** 1717 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 1718 * @vsi: the VSI being configured 1719 * @tx: bool to determine Tx or Rx rule 1720 * @create: bool to determine create or remove Rule 1721 */ 1722 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 1723 { 1724 struct ice_fltr_list_entry *list; 1725 struct ice_pf *pf = vsi->back; 1726 LIST_HEAD(tmp_add_list); 1727 enum ice_status status; 1728 1729 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL); 1730 if (!list) 1731 return; 1732 1733 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1734 list->fltr_info.vsi_handle = vsi->idx; 1735 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 1736 1737 if (tx) { 1738 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1739 list->fltr_info.flag = ICE_FLTR_TX; 1740 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1741 } else { 1742 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1743 list->fltr_info.flag = ICE_FLTR_RX; 1744 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 1745 } 1746 1747 INIT_LIST_HEAD(&list->list_entry); 1748 list_add(&list->list_entry, &tmp_add_list); 1749 1750 if (create) 1751 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1752 else 1753 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1754 1755 if (status) 1756 dev_err(&pf->pdev->dev, 1757 "Fail %s %s LLDP rule on VSI %i error: %d\n", 1758 create ? "adding" : "removing", tx ? "TX" : "RX", 1759 vsi->vsi_num, status); 1760 1761 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list); 1762 } 1763 1764 /** 1765 * ice_vsi_setup - Set up a VSI by a given type 1766 * @pf: board private structure 1767 * @pi: pointer to the port_info instance 1768 * @type: VSI type 1769 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 1770 * used only for ICE_VSI_VF VSI type. For other VSI types, should 1771 * fill-in ICE_INVAL_VFID as input. 1772 * 1773 * This allocates the sw VSI structure and its queue resources. 1774 * 1775 * Returns pointer to the successfully allocated and configured VSI sw struct on 1776 * success, NULL on failure. 1777 */ 1778 struct ice_vsi * 1779 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 1780 enum ice_vsi_type type, u16 vf_id) 1781 { 1782 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1783 struct device *dev = &pf->pdev->dev; 1784 enum ice_status status; 1785 struct ice_vsi *vsi; 1786 int ret, i; 1787 1788 if (type == ICE_VSI_VF) 1789 vsi = ice_vsi_alloc(pf, type, vf_id); 1790 else 1791 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 1792 1793 if (!vsi) { 1794 dev_err(dev, "could not allocate VSI\n"); 1795 return NULL; 1796 } 1797 1798 vsi->port_info = pi; 1799 vsi->vsw = pf->first_sw; 1800 if (vsi->type == ICE_VSI_PF) 1801 vsi->ethtype = ETH_P_PAUSE; 1802 1803 if (vsi->type == ICE_VSI_VF) 1804 vsi->vf_id = vf_id; 1805 1806 if (ice_vsi_get_qs(vsi)) { 1807 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 1808 vsi->idx); 1809 goto unroll_get_qs; 1810 } 1811 1812 /* set RSS capabilities */ 1813 ice_vsi_set_rss_params(vsi); 1814 1815 /* set TC configuration */ 1816 ice_vsi_set_tc_cfg(vsi); 1817 1818 /* create the VSI */ 1819 ret = ice_vsi_init(vsi); 1820 if (ret) 1821 goto unroll_get_qs; 1822 1823 switch (vsi->type) { 1824 case ICE_VSI_PF: 1825 ret = ice_vsi_alloc_q_vectors(vsi); 1826 if (ret) 1827 goto unroll_vsi_init; 1828 1829 ret = ice_vsi_setup_vector_base(vsi); 1830 if (ret) 1831 goto unroll_alloc_q_vector; 1832 1833 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 1834 if (ret) 1835 goto unroll_vector_base; 1836 1837 ret = ice_vsi_alloc_rings(vsi); 1838 if (ret) 1839 goto unroll_vector_base; 1840 1841 ice_vsi_map_rings_to_vectors(vsi); 1842 1843 /* Do not exit if configuring RSS had an issue, at least 1844 * receive traffic on first queue. Hence no need to capture 1845 * return value 1846 */ 1847 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1848 ice_vsi_cfg_rss_lut_key(vsi); 1849 break; 1850 case ICE_VSI_VF: 1851 /* VF driver will take care of creating netdev for this type and 1852 * map queues to vectors through Virtchnl, PF driver only 1853 * creates a VSI and corresponding structures for bookkeeping 1854 * purpose 1855 */ 1856 ret = ice_vsi_alloc_q_vectors(vsi); 1857 if (ret) 1858 goto unroll_vsi_init; 1859 1860 ret = ice_vsi_alloc_rings(vsi); 1861 if (ret) 1862 goto unroll_alloc_q_vector; 1863 1864 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 1865 if (ret) 1866 goto unroll_vector_base; 1867 1868 /* Do not exit if configuring RSS had an issue, at least 1869 * receive traffic on first queue. Hence no need to capture 1870 * return value 1871 */ 1872 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 1873 ice_vsi_cfg_rss_lut_key(vsi); 1874 break; 1875 case ICE_VSI_LB: 1876 ret = ice_vsi_alloc_rings(vsi); 1877 if (ret) 1878 goto unroll_vsi_init; 1879 break; 1880 default: 1881 /* clean up the resources and exit */ 1882 goto unroll_vsi_init; 1883 } 1884 1885 /* configure VSI nodes based on number of queues and TC's */ 1886 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1887 max_txqs[i] = vsi->alloc_txq; 1888 1889 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1890 max_txqs); 1891 if (status) { 1892 dev_err(&pf->pdev->dev, 1893 "VSI %d failed lan queue config, error %d\n", 1894 vsi->vsi_num, status); 1895 goto unroll_vector_base; 1896 } 1897 1898 /* Add switch rule to drop all Tx Flow Control Frames, of look up 1899 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 1900 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 1901 * The rule is added once for PF VSI in order to create appropriate 1902 * recipe, since VSI/VSI list is ignored with drop action... 1903 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 1904 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 1905 * settings in the HW. 1906 */ 1907 if (!ice_is_safe_mode(pf)) 1908 if (vsi->type == ICE_VSI_PF) { 1909 ice_vsi_add_rem_eth_mac(vsi, true); 1910 1911 /* Tx LLDP packets */ 1912 ice_cfg_sw_lldp(vsi, true, true); 1913 } 1914 1915 return vsi; 1916 1917 unroll_vector_base: 1918 /* reclaim SW interrupts back to the common pool */ 1919 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 1920 pf->num_avail_sw_msix += vsi->num_q_vectors; 1921 unroll_alloc_q_vector: 1922 ice_vsi_free_q_vectors(vsi); 1923 unroll_vsi_init: 1924 ice_vsi_delete(vsi); 1925 unroll_get_qs: 1926 ice_vsi_put_qs(vsi); 1927 ice_vsi_clear(vsi); 1928 1929 return NULL; 1930 } 1931 1932 /** 1933 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 1934 * @vsi: the VSI being cleaned up 1935 */ 1936 static void ice_vsi_release_msix(struct ice_vsi *vsi) 1937 { 1938 struct ice_pf *pf = vsi->back; 1939 struct ice_hw *hw = &pf->hw; 1940 u32 txq = 0; 1941 u32 rxq = 0; 1942 int i, q; 1943 1944 for (i = 0; i < vsi->num_q_vectors; i++) { 1945 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1946 u16 reg_idx = q_vector->reg_idx; 1947 1948 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 1949 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 1950 for (q = 0; q < q_vector->num_ring_tx; q++) { 1951 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 1952 if (ice_is_xdp_ena_vsi(vsi)) { 1953 u32 xdp_txq = txq + vsi->num_xdp_txq; 1954 1955 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 1956 } 1957 txq++; 1958 } 1959 1960 for (q = 0; q < q_vector->num_ring_rx; q++) { 1961 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 1962 rxq++; 1963 } 1964 } 1965 1966 ice_flush(hw); 1967 } 1968 1969 /** 1970 * ice_vsi_free_irq - Free the IRQ association with the OS 1971 * @vsi: the VSI being configured 1972 */ 1973 void ice_vsi_free_irq(struct ice_vsi *vsi) 1974 { 1975 struct ice_pf *pf = vsi->back; 1976 int base = vsi->base_vector; 1977 int i; 1978 1979 if (!vsi->q_vectors || !vsi->irqs_ready) 1980 return; 1981 1982 ice_vsi_release_msix(vsi); 1983 if (vsi->type == ICE_VSI_VF) 1984 return; 1985 1986 vsi->irqs_ready = false; 1987 ice_for_each_q_vector(vsi, i) { 1988 u16 vector = i + base; 1989 int irq_num; 1990 1991 irq_num = pf->msix_entries[vector].vector; 1992 1993 /* free only the irqs that were actually requested */ 1994 if (!vsi->q_vectors[i] || 1995 !(vsi->q_vectors[i]->num_ring_tx || 1996 vsi->q_vectors[i]->num_ring_rx)) 1997 continue; 1998 1999 /* clear the affinity notifier in the IRQ descriptor */ 2000 irq_set_affinity_notifier(irq_num, NULL); 2001 2002 /* clear the affinity_mask in the IRQ descriptor */ 2003 irq_set_affinity_hint(irq_num, NULL); 2004 synchronize_irq(irq_num); 2005 devm_free_irq(&pf->pdev->dev, irq_num, 2006 vsi->q_vectors[i]); 2007 } 2008 } 2009 2010 /** 2011 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2012 * @vsi: the VSI having resources freed 2013 */ 2014 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2015 { 2016 int i; 2017 2018 if (!vsi->tx_rings) 2019 return; 2020 2021 ice_for_each_txq(vsi, i) 2022 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2023 ice_free_tx_ring(vsi->tx_rings[i]); 2024 } 2025 2026 /** 2027 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2028 * @vsi: the VSI having resources freed 2029 */ 2030 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2031 { 2032 int i; 2033 2034 if (!vsi->rx_rings) 2035 return; 2036 2037 ice_for_each_rxq(vsi, i) 2038 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2039 ice_free_rx_ring(vsi->rx_rings[i]); 2040 } 2041 2042 /** 2043 * ice_vsi_close - Shut down a VSI 2044 * @vsi: the VSI being shut down 2045 */ 2046 void ice_vsi_close(struct ice_vsi *vsi) 2047 { 2048 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2049 ice_down(vsi); 2050 2051 ice_vsi_free_irq(vsi); 2052 ice_vsi_free_tx_rings(vsi); 2053 ice_vsi_free_rx_rings(vsi); 2054 } 2055 2056 /** 2057 * ice_ena_vsi - resume a VSI 2058 * @vsi: the VSI being resume 2059 * @locked: is the rtnl_lock already held 2060 */ 2061 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2062 { 2063 int err = 0; 2064 2065 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2066 return 0; 2067 2068 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2069 2070 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2071 if (netif_running(vsi->netdev)) { 2072 if (!locked) 2073 rtnl_lock(); 2074 2075 err = ice_open(vsi->netdev); 2076 2077 if (!locked) 2078 rtnl_unlock(); 2079 } 2080 } 2081 2082 return err; 2083 } 2084 2085 /** 2086 * ice_dis_vsi - pause a VSI 2087 * @vsi: the VSI being paused 2088 * @locked: is the rtnl_lock already held 2089 */ 2090 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2091 { 2092 if (test_bit(__ICE_DOWN, vsi->state)) 2093 return; 2094 2095 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2096 2097 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2098 if (netif_running(vsi->netdev)) { 2099 if (!locked) 2100 rtnl_lock(); 2101 2102 ice_stop(vsi->netdev); 2103 2104 if (!locked) 2105 rtnl_unlock(); 2106 } else { 2107 ice_vsi_close(vsi); 2108 } 2109 } 2110 } 2111 2112 /** 2113 * ice_free_res - free a block of resources 2114 * @res: pointer to the resource 2115 * @index: starting index previously returned by ice_get_res 2116 * @id: identifier to track owner 2117 * 2118 * Returns number of resources freed 2119 */ 2120 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2121 { 2122 int count = 0; 2123 int i; 2124 2125 if (!res || index >= res->end) 2126 return -EINVAL; 2127 2128 id |= ICE_RES_VALID_BIT; 2129 for (i = index; i < res->end && res->list[i] == id; i++) { 2130 res->list[i] = 0; 2131 count++; 2132 } 2133 2134 return count; 2135 } 2136 2137 /** 2138 * ice_search_res - Search the tracker for a block of resources 2139 * @res: pointer to the resource 2140 * @needed: size of the block needed 2141 * @id: identifier to track owner 2142 * 2143 * Returns the base item index of the block, or -ENOMEM for error 2144 */ 2145 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2146 { 2147 int start = 0, end = 0; 2148 2149 if (needed > res->end) 2150 return -ENOMEM; 2151 2152 id |= ICE_RES_VALID_BIT; 2153 2154 do { 2155 /* skip already allocated entries */ 2156 if (res->list[end++] & ICE_RES_VALID_BIT) { 2157 start = end; 2158 if ((start + needed) > res->end) 2159 break; 2160 } 2161 2162 if (end == (start + needed)) { 2163 int i = start; 2164 2165 /* there was enough, so assign it to the requestor */ 2166 while (i != end) 2167 res->list[i++] = id; 2168 2169 return start; 2170 } 2171 } while (end < res->end); 2172 2173 return -ENOMEM; 2174 } 2175 2176 /** 2177 * ice_get_res - get a block of resources 2178 * @pf: board private structure 2179 * @res: pointer to the resource 2180 * @needed: size of the block needed 2181 * @id: identifier to track owner 2182 * 2183 * Returns the base item index of the block, or negative for error 2184 */ 2185 int 2186 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2187 { 2188 if (!res || !pf) 2189 return -EINVAL; 2190 2191 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2192 dev_err(&pf->pdev->dev, 2193 "param err: needed=%d, num_entries = %d id=0x%04x\n", 2194 needed, res->num_entries, id); 2195 return -EINVAL; 2196 } 2197 2198 return ice_search_res(res, needed, id); 2199 } 2200 2201 /** 2202 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2203 * @vsi: the VSI being un-configured 2204 */ 2205 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2206 { 2207 int base = vsi->base_vector; 2208 struct ice_pf *pf = vsi->back; 2209 struct ice_hw *hw = &pf->hw; 2210 u32 val; 2211 int i; 2212 2213 /* disable interrupt causation from each queue */ 2214 if (vsi->tx_rings) { 2215 ice_for_each_txq(vsi, i) { 2216 if (vsi->tx_rings[i]) { 2217 u16 reg; 2218 2219 reg = vsi->tx_rings[i]->reg_idx; 2220 val = rd32(hw, QINT_TQCTL(reg)); 2221 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2222 wr32(hw, QINT_TQCTL(reg), val); 2223 } 2224 } 2225 } 2226 2227 if (vsi->rx_rings) { 2228 ice_for_each_rxq(vsi, i) { 2229 if (vsi->rx_rings[i]) { 2230 u16 reg; 2231 2232 reg = vsi->rx_rings[i]->reg_idx; 2233 val = rd32(hw, QINT_RQCTL(reg)); 2234 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2235 wr32(hw, QINT_RQCTL(reg), val); 2236 } 2237 } 2238 } 2239 2240 /* disable each interrupt */ 2241 ice_for_each_q_vector(vsi, i) { 2242 if (!vsi->q_vectors[i]) 2243 continue; 2244 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2245 } 2246 2247 ice_flush(hw); 2248 2249 /* don't call synchronize_irq() for VF's from the host */ 2250 if (vsi->type == ICE_VSI_VF) 2251 return; 2252 2253 ice_for_each_q_vector(vsi, i) 2254 synchronize_irq(pf->msix_entries[i + base].vector); 2255 } 2256 2257 /** 2258 * ice_napi_del - Remove NAPI handler for the VSI 2259 * @vsi: VSI for which NAPI handler is to be removed 2260 */ 2261 void ice_napi_del(struct ice_vsi *vsi) 2262 { 2263 int v_idx; 2264 2265 if (!vsi->netdev) 2266 return; 2267 2268 ice_for_each_q_vector(vsi, v_idx) 2269 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2270 } 2271 2272 /** 2273 * ice_vsi_release - Delete a VSI and free its resources 2274 * @vsi: the VSI being removed 2275 * 2276 * Returns 0 on success or < 0 on error 2277 */ 2278 int ice_vsi_release(struct ice_vsi *vsi) 2279 { 2280 struct ice_pf *pf; 2281 2282 if (!vsi->back) 2283 return -ENODEV; 2284 pf = vsi->back; 2285 2286 /* do not unregister while driver is in the reset recovery pending 2287 * state. Since reset/rebuild happens through PF service task workqueue, 2288 * it's not a good idea to unregister netdev that is associated to the 2289 * PF that is running the work queue items currently. This is done to 2290 * avoid check_flush_dependency() warning on this wq 2291 */ 2292 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2293 unregister_netdev(vsi->netdev); 2294 2295 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2296 ice_rss_clean(vsi); 2297 2298 /* Disable VSI and free resources */ 2299 if (vsi->type != ICE_VSI_LB) 2300 ice_vsi_dis_irq(vsi); 2301 ice_vsi_close(vsi); 2302 2303 /* SR-IOV determines needed MSIX resources all at once instead of per 2304 * VSI since when VFs are spawned we know how many VFs there are and how 2305 * many interrupts each VF needs. SR-IOV MSIX resources are also 2306 * cleared in the same manner. 2307 */ 2308 if (vsi->type != ICE_VSI_VF) { 2309 /* reclaim SW interrupts back to the common pool */ 2310 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2311 pf->num_avail_sw_msix += vsi->num_q_vectors; 2312 } 2313 2314 if (!ice_is_safe_mode(pf)) { 2315 if (vsi->type == ICE_VSI_PF) { 2316 ice_vsi_add_rem_eth_mac(vsi, false); 2317 ice_cfg_sw_lldp(vsi, true, false); 2318 /* The Rx rule will only exist to remove if the LLDP FW 2319 * engine is currently stopped 2320 */ 2321 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2322 ice_cfg_sw_lldp(vsi, false, false); 2323 } 2324 } 2325 2326 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2327 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2328 ice_vsi_delete(vsi); 2329 ice_vsi_free_q_vectors(vsi); 2330 2331 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2332 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2333 free_netdev(vsi->netdev); 2334 vsi->netdev = NULL; 2335 } 2336 2337 ice_vsi_clear_rings(vsi); 2338 2339 ice_vsi_put_qs(vsi); 2340 2341 /* retain SW VSI data structure since it is needed to unregister and 2342 * free VSI netdev when PF is not in reset recovery pending state,\ 2343 * for ex: during rmmod. 2344 */ 2345 if (!ice_is_reset_in_progress(pf->state)) 2346 ice_vsi_clear(vsi); 2347 2348 return 0; 2349 } 2350 2351 /** 2352 * ice_vsi_rebuild - Rebuild VSI after reset 2353 * @vsi: VSI to be rebuild 2354 * 2355 * Returns 0 on success and negative value on failure 2356 */ 2357 int ice_vsi_rebuild(struct ice_vsi *vsi) 2358 { 2359 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2360 struct ice_vf *vf = NULL; 2361 enum ice_status status; 2362 struct ice_pf *pf; 2363 int ret, i; 2364 2365 if (!vsi) 2366 return -EINVAL; 2367 2368 pf = vsi->back; 2369 if (vsi->type == ICE_VSI_VF) 2370 vf = &pf->vf[vsi->vf_id]; 2371 2372 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2373 ice_vsi_free_q_vectors(vsi); 2374 2375 /* SR-IOV determines needed MSIX resources all at once instead of per 2376 * VSI since when VFs are spawned we know how many VFs there are and how 2377 * many interrupts each VF needs. SR-IOV MSIX resources are also 2378 * cleared in the same manner. 2379 */ 2380 if (vsi->type != ICE_VSI_VF) { 2381 /* reclaim SW interrupts back to the common pool */ 2382 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2383 pf->num_avail_sw_msix += vsi->num_q_vectors; 2384 vsi->base_vector = 0; 2385 } 2386 2387 if (ice_is_xdp_ena_vsi(vsi)) 2388 /* return value check can be skipped here, it always returns 2389 * 0 if reset is in progress 2390 */ 2391 ice_destroy_xdp_rings(vsi); 2392 ice_vsi_put_qs(vsi); 2393 ice_vsi_clear_rings(vsi); 2394 ice_vsi_free_arrays(vsi); 2395 ice_dev_onetime_setup(&pf->hw); 2396 if (vsi->type == ICE_VSI_VF) 2397 ice_vsi_set_num_qs(vsi, vf->vf_id); 2398 else 2399 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2400 2401 ret = ice_vsi_alloc_arrays(vsi); 2402 if (ret < 0) 2403 goto err_vsi; 2404 2405 ice_vsi_get_qs(vsi); 2406 ice_vsi_set_tc_cfg(vsi); 2407 2408 /* Initialize VSI struct elements and create VSI in FW */ 2409 ret = ice_vsi_init(vsi); 2410 if (ret < 0) 2411 goto err_vsi; 2412 2413 switch (vsi->type) { 2414 case ICE_VSI_PF: 2415 ret = ice_vsi_alloc_q_vectors(vsi); 2416 if (ret) 2417 goto err_rings; 2418 2419 ret = ice_vsi_setup_vector_base(vsi); 2420 if (ret) 2421 goto err_vectors; 2422 2423 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2424 if (ret) 2425 goto err_vectors; 2426 2427 ret = ice_vsi_alloc_rings(vsi); 2428 if (ret) 2429 goto err_vectors; 2430 2431 ice_vsi_map_rings_to_vectors(vsi); 2432 if (ice_is_xdp_ena_vsi(vsi)) { 2433 vsi->num_xdp_txq = vsi->alloc_txq; 2434 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2435 if (ret) 2436 goto err_vectors; 2437 } 2438 /* Do not exit if configuring RSS had an issue, at least 2439 * receive traffic on first queue. Hence no need to capture 2440 * return value 2441 */ 2442 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2443 ice_vsi_cfg_rss_lut_key(vsi); 2444 break; 2445 case ICE_VSI_VF: 2446 ret = ice_vsi_alloc_q_vectors(vsi); 2447 if (ret) 2448 goto err_rings; 2449 2450 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2451 if (ret) 2452 goto err_vectors; 2453 2454 ret = ice_vsi_alloc_rings(vsi); 2455 if (ret) 2456 goto err_vectors; 2457 2458 break; 2459 default: 2460 break; 2461 } 2462 2463 /* configure VSI nodes based on number of queues and TC's */ 2464 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2465 max_txqs[i] = vsi->alloc_txq; 2466 2467 if (ice_is_xdp_ena_vsi(vsi)) 2468 max_txqs[i] += vsi->num_xdp_txq; 2469 } 2470 2471 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2472 max_txqs); 2473 if (status) { 2474 dev_err(&pf->pdev->dev, 2475 "VSI %d failed lan queue config, error %d\n", 2476 vsi->vsi_num, status); 2477 goto err_vectors; 2478 } 2479 return 0; 2480 2481 err_vectors: 2482 ice_vsi_free_q_vectors(vsi); 2483 err_rings: 2484 if (vsi->netdev) { 2485 vsi->current_netdev_flags = 0; 2486 unregister_netdev(vsi->netdev); 2487 free_netdev(vsi->netdev); 2488 vsi->netdev = NULL; 2489 } 2490 err_vsi: 2491 ice_vsi_clear(vsi); 2492 set_bit(__ICE_RESET_FAILED, pf->state); 2493 return ret; 2494 } 2495 2496 /** 2497 * ice_is_reset_in_progress - check for a reset in progress 2498 * @state: PF state field 2499 */ 2500 bool ice_is_reset_in_progress(unsigned long *state) 2501 { 2502 return test_bit(__ICE_RESET_OICR_RECV, state) || 2503 test_bit(__ICE_DCBNL_DEVRESET, state) || 2504 test_bit(__ICE_PFR_REQ, state) || 2505 test_bit(__ICE_CORER_REQ, state) || 2506 test_bit(__ICE_GLOBR_REQ, state); 2507 } 2508 2509 #ifdef CONFIG_DCB 2510 /** 2511 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2512 * @vsi: VSI being configured 2513 * @ctx: the context buffer returned from AQ VSI update command 2514 */ 2515 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2516 { 2517 vsi->info.mapping_flags = ctx->info.mapping_flags; 2518 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2519 sizeof(vsi->info.q_mapping)); 2520 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2521 sizeof(vsi->info.tc_mapping)); 2522 } 2523 2524 /** 2525 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2526 * @vsi: VSI to be configured 2527 * @ena_tc: TC bitmap 2528 * 2529 * VSI queues expected to be quiesced before calling this function 2530 */ 2531 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2532 { 2533 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2534 struct ice_vsi_ctx *ctx; 2535 struct ice_pf *pf = vsi->back; 2536 enum ice_status status; 2537 int i, ret = 0; 2538 u8 num_tc = 0; 2539 2540 ice_for_each_traffic_class(i) { 2541 /* build bitmap of enabled TCs */ 2542 if (ena_tc & BIT(i)) 2543 num_tc++; 2544 /* populate max_txqs per TC */ 2545 max_txqs[i] = vsi->alloc_txq; 2546 } 2547 2548 vsi->tc_cfg.ena_tc = ena_tc; 2549 vsi->tc_cfg.numtc = num_tc; 2550 2551 ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL); 2552 if (!ctx) 2553 return -ENOMEM; 2554 2555 ctx->vf_num = 0; 2556 ctx->info = vsi->info; 2557 2558 ice_vsi_setup_q_map(vsi, ctx); 2559 2560 /* must to indicate which section of VSI context are being modified */ 2561 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2562 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2563 if (status) { 2564 dev_info(&pf->pdev->dev, "Failed VSI Update\n"); 2565 ret = -EIO; 2566 goto out; 2567 } 2568 2569 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2570 max_txqs); 2571 2572 if (status) { 2573 dev_err(&pf->pdev->dev, 2574 "VSI %d failed TC config, error %d\n", 2575 vsi->vsi_num, status); 2576 ret = -EIO; 2577 goto out; 2578 } 2579 ice_vsi_update_q_map(vsi, ctx); 2580 vsi->info.valid_sections = 0; 2581 2582 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2583 out: 2584 devm_kfree(&pf->pdev->dev, ctx); 2585 return ret; 2586 } 2587 #endif /* CONFIG_DCB */ 2588 2589 /** 2590 * ice_nvm_version_str - format the NVM version strings 2591 * @hw: ptr to the hardware info 2592 */ 2593 char *ice_nvm_version_str(struct ice_hw *hw) 2594 { 2595 u8 oem_ver, oem_patch, ver_hi, ver_lo; 2596 static char buf[ICE_NVM_VER_LEN]; 2597 u16 oem_build; 2598 2599 ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi, 2600 &ver_lo); 2601 2602 snprintf(buf, sizeof(buf), "%x.%02x 0x%x %d.%d.%d", ver_hi, ver_lo, 2603 hw->nvm.eetrack, oem_ver, oem_build, oem_patch); 2604 2605 return buf; 2606 } 2607 2608 /** 2609 * ice_update_ring_stats - Update ring statistics 2610 * @ring: ring to update 2611 * @cont: used to increment per-vector counters 2612 * @pkts: number of processed packets 2613 * @bytes: number of processed bytes 2614 * 2615 * This function assumes that caller has acquired a u64_stats_sync lock. 2616 */ 2617 static void 2618 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2619 u64 pkts, u64 bytes) 2620 { 2621 ring->stats.bytes += bytes; 2622 ring->stats.pkts += pkts; 2623 cont->total_bytes += bytes; 2624 cont->total_pkts += pkts; 2625 } 2626 2627 /** 2628 * ice_update_tx_ring_stats - Update Tx ring specific counters 2629 * @tx_ring: ring to update 2630 * @pkts: number of processed packets 2631 * @bytes: number of processed bytes 2632 */ 2633 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 2634 { 2635 u64_stats_update_begin(&tx_ring->syncp); 2636 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 2637 u64_stats_update_end(&tx_ring->syncp); 2638 } 2639 2640 /** 2641 * ice_update_rx_ring_stats - Update Rx ring specific counters 2642 * @rx_ring: ring to update 2643 * @pkts: number of processed packets 2644 * @bytes: number of processed bytes 2645 */ 2646 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 2647 { 2648 u64_stats_update_begin(&rx_ring->syncp); 2649 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 2650 u64_stats_update_end(&rx_ring->syncp); 2651 } 2652 2653 /** 2654 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 2655 * @vsi: the VSI being configured MAC filter 2656 * @macaddr: the MAC address to be added. 2657 * @set: Add or delete a MAC filter 2658 * 2659 * Adds or removes MAC address filter entry for VF VSI 2660 */ 2661 enum ice_status 2662 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 2663 { 2664 LIST_HEAD(tmp_add_list); 2665 enum ice_status status; 2666 2667 /* Update MAC filter list to be added or removed for a VSI */ 2668 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 2669 status = ICE_ERR_NO_MEMORY; 2670 goto cfg_mac_fltr_exit; 2671 } 2672 2673 if (set) 2674 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 2675 else 2676 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 2677 2678 cfg_mac_fltr_exit: 2679 ice_free_fltr_list(&vsi->back->pdev->dev, &tmp_add_list); 2680 return status; 2681 } 2682