1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 173 { 174 enum ice_vsi_type vsi_type = vsi->type; 175 struct ice_pf *pf = vsi->back; 176 struct ice_vf *vf = vsi->vf; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of PRs 216 * Each ring is associated to the corresponding VF_PR netdev. 217 * Tx and Rx rings are always equal 218 */ 219 if (vsi->req_txq && vsi->req_rxq) { 220 vsi->alloc_txq = vsi->req_txq; 221 vsi->alloc_rxq = vsi->req_rxq; 222 } else { 223 vsi->alloc_txq = 1; 224 vsi->alloc_rxq = 1; 225 } 226 227 vsi->num_q_vectors = 1; 228 break; 229 case ICE_VSI_VF: 230 if (vf->num_req_qs) 231 vf->num_vf_qs = vf->num_req_qs; 232 vsi->alloc_txq = vf->num_vf_qs; 233 vsi->alloc_rxq = vf->num_vf_qs; 234 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 235 * data queue interrupts). Since vsi->num_q_vectors is number 236 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 237 * original vector count 238 */ 239 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF; 240 break; 241 case ICE_VSI_CTRL: 242 vsi->alloc_txq = 1; 243 vsi->alloc_rxq = 1; 244 vsi->num_q_vectors = 1; 245 break; 246 case ICE_VSI_CHNL: 247 vsi->alloc_txq = 0; 248 vsi->alloc_rxq = 0; 249 break; 250 case ICE_VSI_LB: 251 vsi->alloc_txq = 1; 252 vsi->alloc_rxq = 1; 253 break; 254 default: 255 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 256 break; 257 } 258 259 ice_vsi_set_num_desc(vsi); 260 } 261 262 /** 263 * ice_get_free_slot - get the next non-NULL location index in array 264 * @array: array to search 265 * @size: size of the array 266 * @curr: last known occupied index to be used as a search hint 267 * 268 * void * is being used to keep the functionality generic. This lets us use this 269 * function on any array of pointers. 270 */ 271 static int ice_get_free_slot(void *array, int size, int curr) 272 { 273 int **tmp_array = (int **)array; 274 int next; 275 276 if (curr < (size - 1) && !tmp_array[curr + 1]) { 277 next = curr + 1; 278 } else { 279 int i = 0; 280 281 while ((i < size) && (tmp_array[i])) 282 i++; 283 if (i == size) 284 next = ICE_NO_VSI; 285 else 286 next = i; 287 } 288 return next; 289 } 290 291 /** 292 * ice_vsi_delete_from_hw - delete a VSI from the switch 293 * @vsi: pointer to VSI being removed 294 */ 295 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 296 { 297 struct ice_pf *pf = vsi->back; 298 struct ice_vsi_ctx *ctxt; 299 int status; 300 301 ice_fltr_remove_all(vsi); 302 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 303 if (!ctxt) 304 return; 305 306 if (vsi->type == ICE_VSI_VF) 307 ctxt->vf_num = vsi->vf->vf_id; 308 ctxt->vsi_num = vsi->vsi_num; 309 310 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 311 312 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 313 if (status) 314 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 315 vsi->vsi_num, status); 316 317 kfree(ctxt); 318 } 319 320 /** 321 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 322 * @vsi: pointer to VSI being cleared 323 */ 324 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 325 { 326 struct ice_pf *pf = vsi->back; 327 struct device *dev; 328 329 dev = ice_pf_to_dev(pf); 330 331 bitmap_free(vsi->af_xdp_zc_qps); 332 vsi->af_xdp_zc_qps = NULL; 333 /* free the ring and vector containers */ 334 devm_kfree(dev, vsi->q_vectors); 335 vsi->q_vectors = NULL; 336 devm_kfree(dev, vsi->tx_rings); 337 vsi->tx_rings = NULL; 338 devm_kfree(dev, vsi->rx_rings); 339 vsi->rx_rings = NULL; 340 devm_kfree(dev, vsi->txq_map); 341 vsi->txq_map = NULL; 342 devm_kfree(dev, vsi->rxq_map); 343 vsi->rxq_map = NULL; 344 } 345 346 /** 347 * ice_vsi_free_stats - Free the ring statistics structures 348 * @vsi: VSI pointer 349 */ 350 static void ice_vsi_free_stats(struct ice_vsi *vsi) 351 { 352 struct ice_vsi_stats *vsi_stat; 353 struct ice_pf *pf = vsi->back; 354 int i; 355 356 if (vsi->type == ICE_VSI_CHNL) 357 return; 358 if (!pf->vsi_stats) 359 return; 360 361 vsi_stat = pf->vsi_stats[vsi->idx]; 362 if (!vsi_stat) 363 return; 364 365 ice_for_each_alloc_txq(vsi, i) { 366 if (vsi_stat->tx_ring_stats[i]) { 367 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 368 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 369 } 370 } 371 372 ice_for_each_alloc_rxq(vsi, i) { 373 if (vsi_stat->rx_ring_stats[i]) { 374 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 375 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 376 } 377 } 378 379 kfree(vsi_stat->tx_ring_stats); 380 kfree(vsi_stat->rx_ring_stats); 381 kfree(vsi_stat); 382 pf->vsi_stats[vsi->idx] = NULL; 383 } 384 385 /** 386 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 387 * @vsi: VSI which is having stats allocated 388 */ 389 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 390 { 391 struct ice_ring_stats **tx_ring_stats; 392 struct ice_ring_stats **rx_ring_stats; 393 struct ice_vsi_stats *vsi_stats; 394 struct ice_pf *pf = vsi->back; 395 u16 i; 396 397 vsi_stats = pf->vsi_stats[vsi->idx]; 398 tx_ring_stats = vsi_stats->tx_ring_stats; 399 rx_ring_stats = vsi_stats->rx_ring_stats; 400 401 /* Allocate Tx ring stats */ 402 ice_for_each_alloc_txq(vsi, i) { 403 struct ice_ring_stats *ring_stats; 404 struct ice_tx_ring *ring; 405 406 ring = vsi->tx_rings[i]; 407 ring_stats = tx_ring_stats[i]; 408 409 if (!ring_stats) { 410 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 411 if (!ring_stats) 412 goto err_out; 413 414 WRITE_ONCE(tx_ring_stats[i], ring_stats); 415 } 416 417 ring->ring_stats = ring_stats; 418 } 419 420 /* Allocate Rx ring stats */ 421 ice_for_each_alloc_rxq(vsi, i) { 422 struct ice_ring_stats *ring_stats; 423 struct ice_rx_ring *ring; 424 425 ring = vsi->rx_rings[i]; 426 ring_stats = rx_ring_stats[i]; 427 428 if (!ring_stats) { 429 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 430 if (!ring_stats) 431 goto err_out; 432 433 WRITE_ONCE(rx_ring_stats[i], ring_stats); 434 } 435 436 ring->ring_stats = ring_stats; 437 } 438 439 return 0; 440 441 err_out: 442 ice_vsi_free_stats(vsi); 443 return -ENOMEM; 444 } 445 446 /** 447 * ice_vsi_free - clean up and deallocate the provided VSI 448 * @vsi: pointer to VSI being cleared 449 * 450 * This deallocates the VSI's queue resources, removes it from the PF's 451 * VSI array if necessary, and deallocates the VSI 452 */ 453 static void ice_vsi_free(struct ice_vsi *vsi) 454 { 455 struct ice_pf *pf = NULL; 456 struct device *dev; 457 458 if (!vsi || !vsi->back) 459 return; 460 461 pf = vsi->back; 462 dev = ice_pf_to_dev(pf); 463 464 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 465 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 466 return; 467 } 468 469 mutex_lock(&pf->sw_mutex); 470 /* updates the PF for this cleared VSI */ 471 472 pf->vsi[vsi->idx] = NULL; 473 pf->next_vsi = vsi->idx; 474 475 ice_vsi_free_stats(vsi); 476 ice_vsi_free_arrays(vsi); 477 mutex_unlock(&pf->sw_mutex); 478 devm_kfree(dev, vsi); 479 } 480 481 void ice_vsi_delete(struct ice_vsi *vsi) 482 { 483 ice_vsi_delete_from_hw(vsi); 484 ice_vsi_free(vsi); 485 } 486 487 /** 488 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 489 * @irq: interrupt number 490 * @data: pointer to a q_vector 491 */ 492 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 493 { 494 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 495 496 if (!q_vector->tx.tx_ring) 497 return IRQ_HANDLED; 498 499 #define FDIR_RX_DESC_CLEAN_BUDGET 64 500 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 501 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 502 503 return IRQ_HANDLED; 504 } 505 506 /** 507 * ice_msix_clean_rings - MSIX mode Interrupt Handler 508 * @irq: interrupt number 509 * @data: pointer to a q_vector 510 */ 511 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 512 { 513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 514 515 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 516 return IRQ_HANDLED; 517 518 q_vector->total_events++; 519 520 napi_schedule(&q_vector->napi); 521 522 return IRQ_HANDLED; 523 } 524 525 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 526 { 527 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 528 struct ice_pf *pf = q_vector->vsi->back; 529 struct ice_repr *repr; 530 unsigned long id; 531 532 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 533 return IRQ_HANDLED; 534 535 xa_for_each(&pf->eswitch.reprs, id, repr) 536 napi_schedule(&repr->q_vector->napi); 537 538 return IRQ_HANDLED; 539 } 540 541 /** 542 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 543 * @vsi: VSI pointer 544 */ 545 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 546 { 547 struct ice_vsi_stats *vsi_stat; 548 struct ice_pf *pf = vsi->back; 549 550 if (vsi->type == ICE_VSI_CHNL) 551 return 0; 552 if (!pf->vsi_stats) 553 return -ENOENT; 554 555 if (pf->vsi_stats[vsi->idx]) 556 /* realloc will happen in rebuild path */ 557 return 0; 558 559 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 560 if (!vsi_stat) 561 return -ENOMEM; 562 563 vsi_stat->tx_ring_stats = 564 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 565 GFP_KERNEL); 566 if (!vsi_stat->tx_ring_stats) 567 goto err_alloc_tx; 568 569 vsi_stat->rx_ring_stats = 570 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 571 GFP_KERNEL); 572 if (!vsi_stat->rx_ring_stats) 573 goto err_alloc_rx; 574 575 pf->vsi_stats[vsi->idx] = vsi_stat; 576 577 return 0; 578 579 err_alloc_rx: 580 kfree(vsi_stat->rx_ring_stats); 581 err_alloc_tx: 582 kfree(vsi_stat->tx_ring_stats); 583 kfree(vsi_stat); 584 pf->vsi_stats[vsi->idx] = NULL; 585 return -ENOMEM; 586 } 587 588 /** 589 * ice_vsi_alloc_def - set default values for already allocated VSI 590 * @vsi: ptr to VSI 591 * @ch: ptr to channel 592 */ 593 static int 594 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 595 { 596 if (vsi->type != ICE_VSI_CHNL) { 597 ice_vsi_set_num_qs(vsi); 598 if (ice_vsi_alloc_arrays(vsi)) 599 return -ENOMEM; 600 } 601 602 switch (vsi->type) { 603 case ICE_VSI_SWITCHDEV_CTRL: 604 /* Setup eswitch MSIX irq handler for VSI */ 605 vsi->irq_handler = ice_eswitch_msix_clean_rings; 606 break; 607 case ICE_VSI_PF: 608 /* Setup default MSIX irq handler for VSI */ 609 vsi->irq_handler = ice_msix_clean_rings; 610 break; 611 case ICE_VSI_CTRL: 612 /* Setup ctrl VSI MSIX irq handler */ 613 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 614 break; 615 case ICE_VSI_CHNL: 616 if (!ch) 617 return -EINVAL; 618 619 vsi->num_rxq = ch->num_rxq; 620 vsi->num_txq = ch->num_txq; 621 vsi->next_base_q = ch->base_q; 622 break; 623 case ICE_VSI_VF: 624 case ICE_VSI_LB: 625 break; 626 default: 627 ice_vsi_free_arrays(vsi); 628 return -EINVAL; 629 } 630 631 return 0; 632 } 633 634 /** 635 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 636 * @pf: board private structure 637 * 638 * Reserves a VSI index from the PF and allocates an empty VSI structure 639 * without a type. The VSI structure must later be initialized by calling 640 * ice_vsi_cfg(). 641 * 642 * returns a pointer to a VSI on success, NULL on failure. 643 */ 644 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 645 { 646 struct device *dev = ice_pf_to_dev(pf); 647 struct ice_vsi *vsi = NULL; 648 649 /* Need to protect the allocation of the VSIs at the PF level */ 650 mutex_lock(&pf->sw_mutex); 651 652 /* If we have already allocated our maximum number of VSIs, 653 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 654 * is available to be populated 655 */ 656 if (pf->next_vsi == ICE_NO_VSI) { 657 dev_dbg(dev, "out of VSI slots!\n"); 658 goto unlock_pf; 659 } 660 661 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 662 if (!vsi) 663 goto unlock_pf; 664 665 vsi->back = pf; 666 set_bit(ICE_VSI_DOWN, vsi->state); 667 668 /* fill slot and make note of the index */ 669 vsi->idx = pf->next_vsi; 670 pf->vsi[pf->next_vsi] = vsi; 671 672 /* prepare pf->next_vsi for next use */ 673 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 674 pf->next_vsi); 675 676 unlock_pf: 677 mutex_unlock(&pf->sw_mutex); 678 return vsi; 679 } 680 681 /** 682 * ice_alloc_fd_res - Allocate FD resource for a VSI 683 * @vsi: pointer to the ice_vsi 684 * 685 * This allocates the FD resources 686 * 687 * Returns 0 on success, -EPERM on no-op or -EIO on failure 688 */ 689 static int ice_alloc_fd_res(struct ice_vsi *vsi) 690 { 691 struct ice_pf *pf = vsi->back; 692 u32 g_val, b_val; 693 694 /* Flow Director filters are only allocated/assigned to the PF VSI or 695 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 696 * add/delete filters so resources are not allocated to it 697 */ 698 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 699 return -EPERM; 700 701 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 702 vsi->type == ICE_VSI_CHNL)) 703 return -EPERM; 704 705 /* FD filters from guaranteed pool per VSI */ 706 g_val = pf->hw.func_caps.fd_fltr_guar; 707 if (!g_val) 708 return -EPERM; 709 710 /* FD filters from best effort pool */ 711 b_val = pf->hw.func_caps.fd_fltr_best_effort; 712 if (!b_val) 713 return -EPERM; 714 715 /* PF main VSI gets only 64 FD resources from guaranteed pool 716 * when ADQ is configured. 717 */ 718 #define ICE_PF_VSI_GFLTR 64 719 720 /* determine FD filter resources per VSI from shared(best effort) and 721 * dedicated pool 722 */ 723 if (vsi->type == ICE_VSI_PF) { 724 vsi->num_gfltr = g_val; 725 /* if MQPRIO is configured, main VSI doesn't get all FD 726 * resources from guaranteed pool. PF VSI gets 64 FD resources 727 */ 728 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 729 if (g_val < ICE_PF_VSI_GFLTR) 730 return -EPERM; 731 /* allow bare minimum entries for PF VSI */ 732 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 733 } 734 735 /* each VSI gets same "best_effort" quota */ 736 vsi->num_bfltr = b_val; 737 } else if (vsi->type == ICE_VSI_VF) { 738 vsi->num_gfltr = 0; 739 740 /* each VSI gets same "best_effort" quota */ 741 vsi->num_bfltr = b_val; 742 } else { 743 struct ice_vsi *main_vsi; 744 int numtc; 745 746 main_vsi = ice_get_main_vsi(pf); 747 if (!main_vsi) 748 return -EPERM; 749 750 if (!main_vsi->all_numtc) 751 return -EINVAL; 752 753 /* figure out ADQ numtc */ 754 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 755 756 /* only one TC but still asking resources for channels, 757 * invalid config 758 */ 759 if (numtc < ICE_CHNL_START_TC) 760 return -EPERM; 761 762 g_val -= ICE_PF_VSI_GFLTR; 763 /* channel VSIs gets equal share from guaranteed pool */ 764 vsi->num_gfltr = g_val / numtc; 765 766 /* each VSI gets same "best_effort" quota */ 767 vsi->num_bfltr = b_val; 768 } 769 770 return 0; 771 } 772 773 /** 774 * ice_vsi_get_qs - Assign queues from PF to VSI 775 * @vsi: the VSI to assign queues to 776 * 777 * Returns 0 on success and a negative value on error 778 */ 779 static int ice_vsi_get_qs(struct ice_vsi *vsi) 780 { 781 struct ice_pf *pf = vsi->back; 782 struct ice_qs_cfg tx_qs_cfg = { 783 .qs_mutex = &pf->avail_q_mutex, 784 .pf_map = pf->avail_txqs, 785 .pf_map_size = pf->max_pf_txqs, 786 .q_count = vsi->alloc_txq, 787 .scatter_count = ICE_MAX_SCATTER_TXQS, 788 .vsi_map = vsi->txq_map, 789 .vsi_map_offset = 0, 790 .mapping_mode = ICE_VSI_MAP_CONTIG 791 }; 792 struct ice_qs_cfg rx_qs_cfg = { 793 .qs_mutex = &pf->avail_q_mutex, 794 .pf_map = pf->avail_rxqs, 795 .pf_map_size = pf->max_pf_rxqs, 796 .q_count = vsi->alloc_rxq, 797 .scatter_count = ICE_MAX_SCATTER_RXQS, 798 .vsi_map = vsi->rxq_map, 799 .vsi_map_offset = 0, 800 .mapping_mode = ICE_VSI_MAP_CONTIG 801 }; 802 int ret; 803 804 if (vsi->type == ICE_VSI_CHNL) 805 return 0; 806 807 ret = __ice_vsi_get_qs(&tx_qs_cfg); 808 if (ret) 809 return ret; 810 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 811 812 ret = __ice_vsi_get_qs(&rx_qs_cfg); 813 if (ret) 814 return ret; 815 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 816 817 return 0; 818 } 819 820 /** 821 * ice_vsi_put_qs - Release queues from VSI to PF 822 * @vsi: the VSI that is going to release queues 823 */ 824 static void ice_vsi_put_qs(struct ice_vsi *vsi) 825 { 826 struct ice_pf *pf = vsi->back; 827 int i; 828 829 mutex_lock(&pf->avail_q_mutex); 830 831 ice_for_each_alloc_txq(vsi, i) { 832 clear_bit(vsi->txq_map[i], pf->avail_txqs); 833 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 834 } 835 836 ice_for_each_alloc_rxq(vsi, i) { 837 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 838 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 839 } 840 841 mutex_unlock(&pf->avail_q_mutex); 842 } 843 844 /** 845 * ice_is_safe_mode 846 * @pf: pointer to the PF struct 847 * 848 * returns true if driver is in safe mode, false otherwise 849 */ 850 bool ice_is_safe_mode(struct ice_pf *pf) 851 { 852 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 853 } 854 855 /** 856 * ice_is_rdma_ena 857 * @pf: pointer to the PF struct 858 * 859 * returns true if RDMA is currently supported, false otherwise 860 */ 861 bool ice_is_rdma_ena(struct ice_pf *pf) 862 { 863 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 864 } 865 866 /** 867 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 868 * @vsi: the VSI being cleaned up 869 * 870 * This function deletes RSS input set for all flows that were configured 871 * for this VSI 872 */ 873 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 874 { 875 struct ice_pf *pf = vsi->back; 876 int status; 877 878 if (ice_is_safe_mode(pf)) 879 return; 880 881 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 882 if (status) 883 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 884 vsi->vsi_num, status); 885 } 886 887 /** 888 * ice_rss_clean - Delete RSS related VSI structures and configuration 889 * @vsi: the VSI being removed 890 */ 891 static void ice_rss_clean(struct ice_vsi *vsi) 892 { 893 struct ice_pf *pf = vsi->back; 894 struct device *dev; 895 896 dev = ice_pf_to_dev(pf); 897 898 devm_kfree(dev, vsi->rss_hkey_user); 899 devm_kfree(dev, vsi->rss_lut_user); 900 901 ice_vsi_clean_rss_flow_fld(vsi); 902 /* remove RSS replay list */ 903 if (!ice_is_safe_mode(pf)) 904 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 905 } 906 907 /** 908 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 909 * @vsi: the VSI being configured 910 */ 911 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 912 { 913 struct ice_hw_common_caps *cap; 914 struct ice_pf *pf = vsi->back; 915 u16 max_rss_size; 916 917 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 918 vsi->rss_size = 1; 919 return; 920 } 921 922 cap = &pf->hw.func_caps.common_cap; 923 max_rss_size = BIT(cap->rss_table_entry_width); 924 switch (vsi->type) { 925 case ICE_VSI_CHNL: 926 case ICE_VSI_PF: 927 /* PF VSI will inherit RSS instance of PF */ 928 vsi->rss_table_size = (u16)cap->rss_table_size; 929 if (vsi->type == ICE_VSI_CHNL) 930 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 931 else 932 vsi->rss_size = min_t(u16, num_online_cpus(), 933 max_rss_size); 934 vsi->rss_lut_type = ICE_LUT_PF; 935 break; 936 case ICE_VSI_SWITCHDEV_CTRL: 937 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 938 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); 939 vsi->rss_lut_type = ICE_LUT_VSI; 940 break; 941 case ICE_VSI_VF: 942 /* VF VSI will get a small RSS table. 943 * For VSI_LUT, LUT size should be set to 64 bytes. 944 */ 945 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 946 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 947 vsi->rss_lut_type = ICE_LUT_VSI; 948 break; 949 case ICE_VSI_LB: 950 break; 951 default: 952 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 953 ice_vsi_type_str(vsi->type)); 954 break; 955 } 956 } 957 958 /** 959 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 960 * @hw: HW structure used to determine the VLAN mode of the device 961 * @ctxt: the VSI context being set 962 * 963 * This initializes a default VSI context for all sections except the Queues. 964 */ 965 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 966 { 967 u32 table = 0; 968 969 memset(&ctxt->info, 0, sizeof(ctxt->info)); 970 /* VSI's should be allocated from shared pool */ 971 ctxt->alloc_from_pool = true; 972 /* Src pruning enabled by default */ 973 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 974 /* Traffic from VSI can be sent to LAN */ 975 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 976 /* allow all untagged/tagged packets by default on Tx */ 977 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M, 978 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL); 979 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 980 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 981 * 982 * DVM - leave inner VLAN in packet by default 983 */ 984 if (ice_is_dvm_ena(hw)) { 985 ctxt->info.inner_vlan_flags |= 986 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M, 987 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING); 988 ctxt->info.outer_vlan_flags = 989 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M, 990 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL); 991 ctxt->info.outer_vlan_flags |= 992 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M, 993 ICE_AQ_VSI_OUTER_TAG_VLAN_8100); 994 ctxt->info.outer_vlan_flags |= 995 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 996 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 997 } 998 /* Have 1:1 UP mapping for both ingress/egress tables */ 999 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 1000 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 1001 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 1002 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 1003 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 1004 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 1005 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 1006 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 1007 ctxt->info.ingress_table = cpu_to_le32(table); 1008 ctxt->info.egress_table = cpu_to_le32(table); 1009 /* Have 1:1 UP mapping for outer to inner UP table */ 1010 ctxt->info.outer_up_table = cpu_to_le32(table); 1011 /* No Outer tag support outer_tag_flags remains to zero */ 1012 } 1013 1014 /** 1015 * ice_vsi_setup_q_map - Setup a VSI queue map 1016 * @vsi: the VSI being configured 1017 * @ctxt: VSI context structure 1018 */ 1019 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1020 { 1021 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1022 u16 num_txq_per_tc, num_rxq_per_tc; 1023 u16 qcount_tx = vsi->alloc_txq; 1024 u16 qcount_rx = vsi->alloc_rxq; 1025 u8 netdev_tc = 0; 1026 int i; 1027 1028 if (!vsi->tc_cfg.numtc) { 1029 /* at least TC0 should be enabled by default */ 1030 vsi->tc_cfg.numtc = 1; 1031 vsi->tc_cfg.ena_tc = 1; 1032 } 1033 1034 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1035 if (!num_rxq_per_tc) 1036 num_rxq_per_tc = 1; 1037 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1038 if (!num_txq_per_tc) 1039 num_txq_per_tc = 1; 1040 1041 /* find the (rounded up) power-of-2 of qcount */ 1042 pow = (u16)order_base_2(num_rxq_per_tc); 1043 1044 /* TC mapping is a function of the number of Rx queues assigned to the 1045 * VSI for each traffic class and the offset of these queues. 1046 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1047 * queues allocated to TC0. No:of queues is a power-of-2. 1048 * 1049 * If TC is not enabled, the queue offset is set to 0, and allocate one 1050 * queue, this way, traffic for the given TC will be sent to the default 1051 * queue. 1052 * 1053 * Setup number and offset of Rx queues for all TCs for the VSI 1054 */ 1055 ice_for_each_traffic_class(i) { 1056 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1057 /* TC is not enabled */ 1058 vsi->tc_cfg.tc_info[i].qoffset = 0; 1059 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1060 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1061 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1062 ctxt->info.tc_mapping[i] = 0; 1063 continue; 1064 } 1065 1066 /* TC is enabled */ 1067 vsi->tc_cfg.tc_info[i].qoffset = offset; 1068 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1069 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1070 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1071 1072 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1073 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1074 offset += num_rxq_per_tc; 1075 tx_count += num_txq_per_tc; 1076 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1077 } 1078 1079 /* if offset is non-zero, means it is calculated correctly based on 1080 * enabled TCs for a given VSI otherwise qcount_rx will always 1081 * be correct and non-zero because it is based off - VSI's 1082 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1083 * at least 1) 1084 */ 1085 if (offset) 1086 rx_count = offset; 1087 else 1088 rx_count = num_rxq_per_tc; 1089 1090 if (rx_count > vsi->alloc_rxq) { 1091 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1092 rx_count, vsi->alloc_rxq); 1093 return -EINVAL; 1094 } 1095 1096 if (tx_count > vsi->alloc_txq) { 1097 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1098 tx_count, vsi->alloc_txq); 1099 return -EINVAL; 1100 } 1101 1102 vsi->num_txq = tx_count; 1103 vsi->num_rxq = rx_count; 1104 1105 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1106 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1107 /* since there is a chance that num_rxq could have been changed 1108 * in the above for loop, make num_txq equal to num_rxq. 1109 */ 1110 vsi->num_txq = vsi->num_rxq; 1111 } 1112 1113 /* Rx queue mapping */ 1114 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1115 /* q_mapping buffer holds the info for the first queue allocated for 1116 * this VSI in the PF space and also the number of queues associated 1117 * with this VSI. 1118 */ 1119 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1120 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1127 * @ctxt: the VSI context being set 1128 * @vsi: the VSI being configured 1129 */ 1130 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1131 { 1132 u8 dflt_q_group, dflt_q_prio; 1133 u16 dflt_q, report_q, val; 1134 1135 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1136 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1137 return; 1138 1139 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1140 ctxt->info.valid_sections |= cpu_to_le16(val); 1141 dflt_q = 0; 1142 dflt_q_group = 0; 1143 report_q = 0; 1144 dflt_q_prio = 0; 1145 1146 /* enable flow director filtering/programming */ 1147 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1148 ctxt->info.fd_options = cpu_to_le16(val); 1149 /* max of allocated flow director filters */ 1150 ctxt->info.max_fd_fltr_dedicated = 1151 cpu_to_le16(vsi->num_gfltr); 1152 /* max of shared flow director filters any VSI may program */ 1153 ctxt->info.max_fd_fltr_shared = 1154 cpu_to_le16(vsi->num_bfltr); 1155 /* default queue index within the VSI of the default FD */ 1156 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q); 1157 /* target queue or queue group to the FD filter */ 1158 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group); 1159 ctxt->info.fd_def_q = cpu_to_le16(val); 1160 /* queue index on which FD filter completion is reported */ 1161 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q); 1162 /* priority of the default qindex action */ 1163 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio); 1164 ctxt->info.fd_report_opt = cpu_to_le16(val); 1165 } 1166 1167 /** 1168 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1169 * @ctxt: the VSI context being set 1170 * @vsi: the VSI being configured 1171 */ 1172 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1173 { 1174 u8 lut_type, hash_type; 1175 struct device *dev; 1176 struct ice_pf *pf; 1177 1178 pf = vsi->back; 1179 dev = ice_pf_to_dev(pf); 1180 1181 switch (vsi->type) { 1182 case ICE_VSI_CHNL: 1183 case ICE_VSI_PF: 1184 /* PF VSI will inherit RSS instance of PF */ 1185 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1186 break; 1187 case ICE_VSI_VF: 1188 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1189 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1190 break; 1191 default: 1192 dev_dbg(dev, "Unsupported VSI type %s\n", 1193 ice_vsi_type_str(vsi->type)); 1194 return; 1195 } 1196 1197 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1198 vsi->rss_hfunc = hash_type; 1199 1200 ctxt->info.q_opt_rss = 1201 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 1202 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 1203 } 1204 1205 static void 1206 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1207 { 1208 struct ice_pf *pf = vsi->back; 1209 u16 qcount, qmap; 1210 u8 offset = 0; 1211 int pow; 1212 1213 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1214 1215 pow = order_base_2(qcount); 1216 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1217 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1218 1219 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1220 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1221 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1222 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1223 } 1224 1225 /** 1226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1227 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1228 * 1229 * returns true if Rx VLAN pruning is enabled and false otherwise. 1230 */ 1231 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1232 { 1233 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1234 } 1235 1236 /** 1237 * ice_vsi_init - Create and initialize a VSI 1238 * @vsi: the VSI being configured 1239 * @vsi_flags: VSI configuration flags 1240 * 1241 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1242 * reconfigure an existing context. 1243 * 1244 * This initializes a VSI context depending on the VSI type to be added and 1245 * passes it down to the add_vsi aq command to create a new VSI. 1246 */ 1247 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1248 { 1249 struct ice_pf *pf = vsi->back; 1250 struct ice_hw *hw = &pf->hw; 1251 struct ice_vsi_ctx *ctxt; 1252 struct device *dev; 1253 int ret = 0; 1254 1255 dev = ice_pf_to_dev(pf); 1256 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1257 if (!ctxt) 1258 return -ENOMEM; 1259 1260 switch (vsi->type) { 1261 case ICE_VSI_CTRL: 1262 case ICE_VSI_LB: 1263 case ICE_VSI_PF: 1264 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1265 break; 1266 case ICE_VSI_SWITCHDEV_CTRL: 1267 case ICE_VSI_CHNL: 1268 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1269 break; 1270 case ICE_VSI_VF: 1271 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1272 /* VF number here is the absolute VF number (0-255) */ 1273 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1274 break; 1275 default: 1276 ret = -ENODEV; 1277 goto out; 1278 } 1279 1280 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1281 * prune enabled 1282 */ 1283 if (vsi->type == ICE_VSI_CHNL) { 1284 struct ice_vsi *main_vsi; 1285 1286 main_vsi = ice_get_main_vsi(pf); 1287 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1288 ctxt->info.sw_flags2 |= 1289 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1290 else 1291 ctxt->info.sw_flags2 &= 1292 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1293 } 1294 1295 ice_set_dflt_vsi_ctx(hw, ctxt); 1296 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1297 ice_set_fd_vsi_ctx(ctxt, vsi); 1298 /* if the switch is in VEB mode, allow VSI loopback */ 1299 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1300 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1301 1302 /* Set LUT type and HASH type if RSS is enabled */ 1303 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1304 vsi->type != ICE_VSI_CTRL) { 1305 ice_set_rss_vsi_ctx(ctxt, vsi); 1306 /* if updating VSI context, make sure to set valid_section: 1307 * to indicate which section of VSI context being updated 1308 */ 1309 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1310 ctxt->info.valid_sections |= 1311 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1312 } 1313 1314 ctxt->info.sw_id = vsi->port_info->sw_id; 1315 if (vsi->type == ICE_VSI_CHNL) { 1316 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1317 } else { 1318 ret = ice_vsi_setup_q_map(vsi, ctxt); 1319 if (ret) 1320 goto out; 1321 1322 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1323 /* means VSI being updated */ 1324 /* must to indicate which section of VSI context are 1325 * being modified 1326 */ 1327 ctxt->info.valid_sections |= 1328 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1329 } 1330 1331 /* Allow control frames out of main VSI */ 1332 if (vsi->type == ICE_VSI_PF) { 1333 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1334 ctxt->info.valid_sections |= 1335 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1336 } 1337 1338 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1339 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1340 if (ret) { 1341 dev_err(dev, "Add VSI failed, err %d\n", ret); 1342 ret = -EIO; 1343 goto out; 1344 } 1345 } else { 1346 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1347 if (ret) { 1348 dev_err(dev, "Update VSI failed, err %d\n", ret); 1349 ret = -EIO; 1350 goto out; 1351 } 1352 } 1353 1354 /* keep context for update VSI operations */ 1355 vsi->info = ctxt->info; 1356 1357 /* record VSI number returned */ 1358 vsi->vsi_num = ctxt->vsi_num; 1359 1360 out: 1361 kfree(ctxt); 1362 return ret; 1363 } 1364 1365 /** 1366 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1367 * @vsi: the VSI having rings deallocated 1368 */ 1369 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1370 { 1371 int i; 1372 1373 /* Avoid stale references by clearing map from vector to ring */ 1374 if (vsi->q_vectors) { 1375 ice_for_each_q_vector(vsi, i) { 1376 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1377 1378 if (q_vector) { 1379 q_vector->tx.tx_ring = NULL; 1380 q_vector->rx.rx_ring = NULL; 1381 } 1382 } 1383 } 1384 1385 if (vsi->tx_rings) { 1386 ice_for_each_alloc_txq(vsi, i) { 1387 if (vsi->tx_rings[i]) { 1388 kfree_rcu(vsi->tx_rings[i], rcu); 1389 WRITE_ONCE(vsi->tx_rings[i], NULL); 1390 } 1391 } 1392 } 1393 if (vsi->rx_rings) { 1394 ice_for_each_alloc_rxq(vsi, i) { 1395 if (vsi->rx_rings[i]) { 1396 kfree_rcu(vsi->rx_rings[i], rcu); 1397 WRITE_ONCE(vsi->rx_rings[i], NULL); 1398 } 1399 } 1400 } 1401 } 1402 1403 /** 1404 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1405 * @vsi: VSI which is having rings allocated 1406 */ 1407 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1408 { 1409 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1410 struct ice_pf *pf = vsi->back; 1411 struct device *dev; 1412 u16 i; 1413 1414 dev = ice_pf_to_dev(pf); 1415 /* Allocate Tx rings */ 1416 ice_for_each_alloc_txq(vsi, i) { 1417 struct ice_tx_ring *ring; 1418 1419 /* allocate with kzalloc(), free with kfree_rcu() */ 1420 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1421 1422 if (!ring) 1423 goto err_out; 1424 1425 ring->q_index = i; 1426 ring->reg_idx = vsi->txq_map[i]; 1427 ring->vsi = vsi; 1428 ring->tx_tstamps = &pf->ptp.port.tx; 1429 ring->dev = dev; 1430 ring->count = vsi->num_tx_desc; 1431 ring->txq_teid = ICE_INVAL_TEID; 1432 if (dvm_ena) 1433 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1434 else 1435 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1436 WRITE_ONCE(vsi->tx_rings[i], ring); 1437 } 1438 1439 /* Allocate Rx rings */ 1440 ice_for_each_alloc_rxq(vsi, i) { 1441 struct ice_rx_ring *ring; 1442 1443 /* allocate with kzalloc(), free with kfree_rcu() */ 1444 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1445 if (!ring) 1446 goto err_out; 1447 1448 ring->q_index = i; 1449 ring->reg_idx = vsi->rxq_map[i]; 1450 ring->vsi = vsi; 1451 ring->netdev = vsi->netdev; 1452 ring->dev = dev; 1453 ring->count = vsi->num_rx_desc; 1454 ring->cached_phctime = pf->ptp.cached_phc_time; 1455 WRITE_ONCE(vsi->rx_rings[i], ring); 1456 } 1457 1458 return 0; 1459 1460 err_out: 1461 ice_vsi_clear_rings(vsi); 1462 return -ENOMEM; 1463 } 1464 1465 /** 1466 * ice_vsi_manage_rss_lut - disable/enable RSS 1467 * @vsi: the VSI being changed 1468 * @ena: boolean value indicating if this is an enable or disable request 1469 * 1470 * In the event of disable request for RSS, this function will zero out RSS 1471 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1472 * LUT. 1473 */ 1474 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1475 { 1476 u8 *lut; 1477 1478 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1479 if (!lut) 1480 return; 1481 1482 if (ena) { 1483 if (vsi->rss_lut_user) 1484 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1485 else 1486 ice_fill_rss_lut(lut, vsi->rss_table_size, 1487 vsi->rss_size); 1488 } 1489 1490 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1491 kfree(lut); 1492 } 1493 1494 /** 1495 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1496 * @vsi: VSI to be configured 1497 * @disable: set to true to have FCS / CRC in the frame data 1498 */ 1499 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1500 { 1501 int i; 1502 1503 ice_for_each_rxq(vsi, i) 1504 if (disable) 1505 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1506 else 1507 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1508 } 1509 1510 /** 1511 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1512 * @vsi: VSI to be configured 1513 */ 1514 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1515 { 1516 struct ice_pf *pf = vsi->back; 1517 struct device *dev; 1518 u8 *lut, *key; 1519 int err; 1520 1521 dev = ice_pf_to_dev(pf); 1522 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1523 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1524 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1525 } else { 1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1527 1528 /* If orig_rss_size is valid and it is less than determined 1529 * main VSI's rss_size, update main VSI's rss_size to be 1530 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1531 * RSS table gets programmed to be correct (whatever it was 1532 * to begin with (prior to setup-tc for ADQ config) 1533 */ 1534 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1535 vsi->orig_rss_size <= vsi->num_rxq) { 1536 vsi->rss_size = vsi->orig_rss_size; 1537 /* now orig_rss_size is used, reset it to zero */ 1538 vsi->orig_rss_size = 0; 1539 } 1540 } 1541 1542 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1543 if (!lut) 1544 return -ENOMEM; 1545 1546 if (vsi->rss_lut_user) 1547 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1548 else 1549 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1550 1551 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1552 if (err) { 1553 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1554 goto ice_vsi_cfg_rss_exit; 1555 } 1556 1557 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1558 if (!key) { 1559 err = -ENOMEM; 1560 goto ice_vsi_cfg_rss_exit; 1561 } 1562 1563 if (vsi->rss_hkey_user) 1564 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1565 else 1566 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1567 1568 err = ice_set_rss_key(vsi, key); 1569 if (err) 1570 dev_err(dev, "set_rss_key failed, error %d\n", err); 1571 1572 kfree(key); 1573 ice_vsi_cfg_rss_exit: 1574 kfree(lut); 1575 return err; 1576 } 1577 1578 /** 1579 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1580 * @vsi: VSI to be configured 1581 * 1582 * This function will only be called during the VF VSI setup. Upon successful 1583 * completion of package download, this function will configure default RSS 1584 * input sets for VF VSI. 1585 */ 1586 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1587 { 1588 struct ice_pf *pf = vsi->back; 1589 struct device *dev; 1590 int status; 1591 1592 dev = ice_pf_to_dev(pf); 1593 if (ice_is_safe_mode(pf)) { 1594 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1595 vsi->vsi_num); 1596 return; 1597 } 1598 1599 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA); 1600 if (status) 1601 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1602 vsi->vsi_num, status); 1603 } 1604 1605 static const struct ice_rss_hash_cfg default_rss_cfgs[] = { 1606 /* configure RSS for IPv4 with input set IP src/dst */ 1607 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false}, 1608 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1609 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false}, 1610 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1611 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4, 1612 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1613 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1614 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4, 1615 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1616 /* configure RSS for sctp4 with input set IP src/dst - only support 1617 * RSS on SCTPv4 on outer headers (non-tunneled) 1618 */ 1619 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4, 1620 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1621 /* configure RSS for gtpc4 with input set IPv4 src/dst */ 1622 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4, 1623 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1624 /* configure RSS for gtpc4t with input set IPv4 src/dst */ 1625 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4, 1626 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, 1627 /* configure RSS for gtpu4 with input set IPv4 src/dst */ 1628 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4, 1629 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, 1630 /* configure RSS for gtpu4e with input set IPv4 src/dst */ 1631 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4, 1632 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false}, 1633 /* configure RSS for gtpu4u with input set IPv4 src/dst */ 1634 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4, 1635 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false}, 1636 /* configure RSS for gtpu4d with input set IPv4 src/dst */ 1637 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4, 1638 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false}, 1639 1640 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1641 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6, 1642 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1643 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1644 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6, 1645 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1646 /* configure RSS for sctp6 with input set IPv6 src/dst - only support 1647 * RSS on SCTPv6 on outer headers (non-tunneled) 1648 */ 1649 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6, 1650 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1651 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */ 1652 {ICE_FLOW_SEG_HDR_ESP, 1653 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false}, 1654 /* configure RSS for gtpc6 with input set IPv6 src/dst */ 1655 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6, 1656 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1657 /* configure RSS for gtpc6t with input set IPv6 src/dst */ 1658 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6, 1659 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, 1660 /* configure RSS for gtpu6 with input set IPv6 src/dst */ 1661 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6, 1662 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, 1663 /* configure RSS for gtpu6e with input set IPv6 src/dst */ 1664 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6, 1665 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false}, 1666 /* configure RSS for gtpu6u with input set IPv6 src/dst */ 1667 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6, 1668 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false}, 1669 /* configure RSS for gtpu6d with input set IPv6 src/dst */ 1670 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6, 1671 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false}, 1672 }; 1673 1674 /** 1675 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1676 * @vsi: VSI to be configured 1677 * 1678 * This function will only be called after successful download package call 1679 * during initialization of PF. Since the downloaded package will erase the 1680 * RSS section, this function will configure RSS input sets for different 1681 * flow types. The last profile added has the highest priority, therefore 2 1682 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1683 * (i.e. IPv4 src/dst TCP src/dst port). 1684 */ 1685 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1686 { 1687 u16 vsi_num = vsi->vsi_num; 1688 struct ice_pf *pf = vsi->back; 1689 struct ice_hw *hw = &pf->hw; 1690 struct device *dev; 1691 int status; 1692 u32 i; 1693 1694 dev = ice_pf_to_dev(pf); 1695 if (ice_is_safe_mode(pf)) { 1696 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1697 vsi_num); 1698 return; 1699 } 1700 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) { 1701 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i]; 1702 1703 status = ice_add_rss_cfg(hw, vsi, cfg); 1704 if (status) 1705 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n", 1706 cfg->addl_hdrs, cfg->hash_flds, 1707 cfg->hdr_type, cfg->symm); 1708 } 1709 } 1710 1711 /** 1712 * ice_pf_state_is_nominal - checks the PF for nominal state 1713 * @pf: pointer to PF to check 1714 * 1715 * Check the PF's state for a collection of bits that would indicate 1716 * the PF is in a state that would inhibit normal operation for 1717 * driver functionality. 1718 * 1719 * Returns true if PF is in a nominal state, false otherwise 1720 */ 1721 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1722 { 1723 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1724 1725 if (!pf) 1726 return false; 1727 1728 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1729 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1730 return false; 1731 1732 return true; 1733 } 1734 1735 /** 1736 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1737 * @vsi: the VSI to be updated 1738 */ 1739 void ice_update_eth_stats(struct ice_vsi *vsi) 1740 { 1741 struct ice_eth_stats *prev_es, *cur_es; 1742 struct ice_hw *hw = &vsi->back->hw; 1743 struct ice_pf *pf = vsi->back; 1744 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1745 1746 prev_es = &vsi->eth_stats_prev; 1747 cur_es = &vsi->eth_stats; 1748 1749 if (ice_is_reset_in_progress(pf->state)) 1750 vsi->stat_offsets_loaded = false; 1751 1752 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1753 &prev_es->rx_bytes, &cur_es->rx_bytes); 1754 1755 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1756 &prev_es->rx_unicast, &cur_es->rx_unicast); 1757 1758 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1759 &prev_es->rx_multicast, &cur_es->rx_multicast); 1760 1761 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1762 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1763 1764 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1765 &prev_es->rx_discards, &cur_es->rx_discards); 1766 1767 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1768 &prev_es->tx_bytes, &cur_es->tx_bytes); 1769 1770 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1771 &prev_es->tx_unicast, &cur_es->tx_unicast); 1772 1773 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1774 &prev_es->tx_multicast, &cur_es->tx_multicast); 1775 1776 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1777 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1778 1779 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1780 &prev_es->tx_errors, &cur_es->tx_errors); 1781 1782 vsi->stat_offsets_loaded = true; 1783 } 1784 1785 /** 1786 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1787 * @hw: HW pointer 1788 * @pf_q: index of the Rx queue in the PF's queue space 1789 * @rxdid: flexible descriptor RXDID 1790 * @prio: priority for the RXDID for this queue 1791 * @ena_ts: true to enable timestamp and false to disable timestamp 1792 */ 1793 void 1794 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1795 bool ena_ts) 1796 { 1797 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1798 1799 /* clear any previous values */ 1800 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1801 QRXFLXP_CNTXT_RXDID_PRIO_M | 1802 QRXFLXP_CNTXT_TS_M); 1803 1804 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid); 1805 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio); 1806 1807 if (ena_ts) 1808 /* Enable TimeSync on this queue */ 1809 regval |= QRXFLXP_CNTXT_TS_M; 1810 1811 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1812 } 1813 1814 /** 1815 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1816 * @intrl: interrupt rate limit in usecs 1817 * @gran: interrupt rate limit granularity in usecs 1818 * 1819 * This function converts a decimal interrupt rate limit in usecs to the format 1820 * expected by firmware. 1821 */ 1822 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1823 { 1824 u32 val = intrl / gran; 1825 1826 if (val) 1827 return val | GLINT_RATE_INTRL_ENA_M; 1828 return 0; 1829 } 1830 1831 /** 1832 * ice_write_intrl - write throttle rate limit to interrupt specific register 1833 * @q_vector: pointer to interrupt specific structure 1834 * @intrl: throttle rate limit in microseconds to write 1835 */ 1836 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1837 { 1838 struct ice_hw *hw = &q_vector->vsi->back->hw; 1839 1840 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1841 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1842 } 1843 1844 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1845 { 1846 switch (rc->type) { 1847 case ICE_RX_CONTAINER: 1848 if (rc->rx_ring) 1849 return rc->rx_ring->q_vector; 1850 break; 1851 case ICE_TX_CONTAINER: 1852 if (rc->tx_ring) 1853 return rc->tx_ring->q_vector; 1854 break; 1855 default: 1856 break; 1857 } 1858 1859 return NULL; 1860 } 1861 1862 /** 1863 * __ice_write_itr - write throttle rate to register 1864 * @q_vector: pointer to interrupt data structure 1865 * @rc: pointer to ring container 1866 * @itr: throttle rate in microseconds to write 1867 */ 1868 static void __ice_write_itr(struct ice_q_vector *q_vector, 1869 struct ice_ring_container *rc, u16 itr) 1870 { 1871 struct ice_hw *hw = &q_vector->vsi->back->hw; 1872 1873 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1874 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1875 } 1876 1877 /** 1878 * ice_write_itr - write throttle rate to queue specific register 1879 * @rc: pointer to ring container 1880 * @itr: throttle rate in microseconds to write 1881 */ 1882 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1883 { 1884 struct ice_q_vector *q_vector; 1885 1886 q_vector = ice_pull_qvec_from_rc(rc); 1887 if (!q_vector) 1888 return; 1889 1890 __ice_write_itr(q_vector, rc, itr); 1891 } 1892 1893 /** 1894 * ice_set_q_vector_intrl - set up interrupt rate limiting 1895 * @q_vector: the vector to be configured 1896 * 1897 * Interrupt rate limiting is local to the vector, not per-queue so we must 1898 * detect if either ring container has dynamic moderation enabled to decide 1899 * what to set the interrupt rate limit to via INTRL settings. In the case that 1900 * dynamic moderation is disabled on both, write the value with the cached 1901 * setting to make sure INTRL register matches the user visible value. 1902 */ 1903 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 1904 { 1905 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 1906 /* in the case of dynamic enabled, cap each vector to no more 1907 * than (4 us) 250,000 ints/sec, which allows low latency 1908 * but still less than 500,000 interrupts per second, which 1909 * reduces CPU a bit in the case of the lowest latency 1910 * setting. The 4 here is a value in microseconds. 1911 */ 1912 ice_write_intrl(q_vector, 4); 1913 } else { 1914 ice_write_intrl(q_vector, q_vector->intrl); 1915 } 1916 } 1917 1918 /** 1919 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1920 * @vsi: the VSI being configured 1921 * 1922 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1923 * for the VF VSI. 1924 */ 1925 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1926 { 1927 struct ice_pf *pf = vsi->back; 1928 struct ice_hw *hw = &pf->hw; 1929 u16 txq = 0, rxq = 0; 1930 int i, q; 1931 1932 ice_for_each_q_vector(vsi, i) { 1933 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1934 u16 reg_idx = q_vector->reg_idx; 1935 1936 ice_cfg_itr(hw, q_vector); 1937 1938 /* Both Transmit Queue Interrupt Cause Control register 1939 * and Receive Queue Interrupt Cause control register 1940 * expects MSIX_INDX field to be the vector index 1941 * within the function space and not the absolute 1942 * vector index across PF or across device. 1943 * For SR-IOV VF VSIs queue vector index always starts 1944 * with 1 since first vector index(0) is used for OICR 1945 * in VF space. Since VMDq and other PF VSIs are within 1946 * the PF function space, use the vector index that is 1947 * tracked for this PF. 1948 */ 1949 for (q = 0; q < q_vector->num_ring_tx; q++) { 1950 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1951 q_vector->tx.itr_idx); 1952 txq++; 1953 } 1954 1955 for (q = 0; q < q_vector->num_ring_rx; q++) { 1956 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1957 q_vector->rx.itr_idx); 1958 rxq++; 1959 } 1960 } 1961 } 1962 1963 /** 1964 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1965 * @vsi: the VSI whose rings are to be enabled 1966 * 1967 * Returns 0 on success and a negative value on error 1968 */ 1969 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1970 { 1971 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1972 } 1973 1974 /** 1975 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1976 * @vsi: the VSI whose rings are to be disabled 1977 * 1978 * Returns 0 on success and a negative value on error 1979 */ 1980 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1981 { 1982 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1983 } 1984 1985 /** 1986 * ice_vsi_stop_tx_rings - Disable Tx rings 1987 * @vsi: the VSI being configured 1988 * @rst_src: reset source 1989 * @rel_vmvf_num: Relative ID of VF/VM 1990 * @rings: Tx ring array to be stopped 1991 * @count: number of Tx ring array elements 1992 */ 1993 static int 1994 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1995 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 1996 { 1997 u16 q_idx; 1998 1999 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2000 return -EINVAL; 2001 2002 for (q_idx = 0; q_idx < count; q_idx++) { 2003 struct ice_txq_meta txq_meta = { }; 2004 int status; 2005 2006 if (!rings || !rings[q_idx]) 2007 return -EINVAL; 2008 2009 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2010 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2011 rings[q_idx], &txq_meta); 2012 2013 if (status) 2014 return status; 2015 } 2016 2017 return 0; 2018 } 2019 2020 /** 2021 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2022 * @vsi: the VSI being configured 2023 * @rst_src: reset source 2024 * @rel_vmvf_num: Relative ID of VF/VM 2025 */ 2026 int 2027 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2028 u16 rel_vmvf_num) 2029 { 2030 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2031 } 2032 2033 /** 2034 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2035 * @vsi: the VSI being configured 2036 */ 2037 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2038 { 2039 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2040 } 2041 2042 /** 2043 * ice_vsi_is_rx_queue_active 2044 * @vsi: the VSI being configured 2045 * 2046 * Return true if at least one queue is active. 2047 */ 2048 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2049 { 2050 struct ice_pf *pf = vsi->back; 2051 struct ice_hw *hw = &pf->hw; 2052 int i; 2053 2054 ice_for_each_rxq(vsi, i) { 2055 u32 rx_reg; 2056 int pf_q; 2057 2058 pf_q = vsi->rxq_map[i]; 2059 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2060 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2061 return true; 2062 } 2063 2064 return false; 2065 } 2066 2067 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2068 { 2069 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2070 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2071 vsi->tc_cfg.numtc = 1; 2072 return; 2073 } 2074 2075 /* set VSI TC information based on DCB config */ 2076 ice_vsi_set_dcb_tc_cfg(vsi); 2077 } 2078 2079 /** 2080 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2081 * @vsi: the VSI being configured 2082 * @tx: bool to determine Tx or Rx rule 2083 * @create: bool to determine create or remove Rule 2084 */ 2085 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2086 { 2087 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2088 enum ice_sw_fwd_act_type act); 2089 struct ice_pf *pf = vsi->back; 2090 struct device *dev; 2091 int status; 2092 2093 dev = ice_pf_to_dev(pf); 2094 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2095 2096 if (tx) { 2097 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2098 ICE_DROP_PACKET); 2099 } else { 2100 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2101 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2102 create); 2103 } else { 2104 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2105 ICE_FWD_TO_VSI); 2106 } 2107 } 2108 2109 if (status) 2110 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2111 create ? "adding" : "removing", tx ? "TX" : "RX", 2112 vsi->vsi_num, status); 2113 } 2114 2115 /** 2116 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2117 * @vsi: pointer to the VSI 2118 * 2119 * This function will allocate new scheduler aggregator now if needed and will 2120 * move specified VSI into it. 2121 */ 2122 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2123 { 2124 struct device *dev = ice_pf_to_dev(vsi->back); 2125 struct ice_agg_node *agg_node_iter = NULL; 2126 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2127 struct ice_agg_node *agg_node = NULL; 2128 int node_offset, max_agg_nodes = 0; 2129 struct ice_port_info *port_info; 2130 struct ice_pf *pf = vsi->back; 2131 u32 agg_node_id_start = 0; 2132 int status; 2133 2134 /* create (as needed) scheduler aggregator node and move VSI into 2135 * corresponding aggregator node 2136 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2137 * - VF aggregator nodes will contain VF VSI 2138 */ 2139 port_info = pf->hw.port_info; 2140 if (!port_info) 2141 return; 2142 2143 switch (vsi->type) { 2144 case ICE_VSI_CTRL: 2145 case ICE_VSI_CHNL: 2146 case ICE_VSI_LB: 2147 case ICE_VSI_PF: 2148 case ICE_VSI_SWITCHDEV_CTRL: 2149 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2150 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2151 agg_node_iter = &pf->pf_agg_node[0]; 2152 break; 2153 case ICE_VSI_VF: 2154 /* user can create 'n' VFs on a given PF, but since max children 2155 * per aggregator node can be only 64. Following code handles 2156 * aggregator(s) for VF VSIs, either selects a agg_node which 2157 * was already created provided num_vsis < 64, otherwise 2158 * select next available node, which will be created 2159 */ 2160 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2161 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2162 agg_node_iter = &pf->vf_agg_node[0]; 2163 break; 2164 default: 2165 /* other VSI type, handle later if needed */ 2166 dev_dbg(dev, "unexpected VSI type %s\n", 2167 ice_vsi_type_str(vsi->type)); 2168 return; 2169 } 2170 2171 /* find the appropriate aggregator node */ 2172 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2173 /* see if we can find space in previously created 2174 * node if num_vsis < 64, otherwise skip 2175 */ 2176 if (agg_node_iter->num_vsis && 2177 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2178 agg_node_iter++; 2179 continue; 2180 } 2181 2182 if (agg_node_iter->valid && 2183 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2184 agg_id = agg_node_iter->agg_id; 2185 agg_node = agg_node_iter; 2186 break; 2187 } 2188 2189 /* find unclaimed agg_id */ 2190 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2191 agg_id = node_offset + agg_node_id_start; 2192 agg_node = agg_node_iter; 2193 break; 2194 } 2195 /* move to next agg_node */ 2196 agg_node_iter++; 2197 } 2198 2199 if (!agg_node) 2200 return; 2201 2202 /* if selected aggregator node was not created, create it */ 2203 if (!agg_node->valid) { 2204 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2205 (u8)vsi->tc_cfg.ena_tc); 2206 if (status) { 2207 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2208 agg_id); 2209 return; 2210 } 2211 /* aggregator node is created, store the needed info */ 2212 agg_node->valid = true; 2213 agg_node->agg_id = agg_id; 2214 } 2215 2216 /* move VSI to corresponding aggregator node */ 2217 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2218 (u8)vsi->tc_cfg.ena_tc); 2219 if (status) { 2220 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2221 vsi->idx, agg_id); 2222 return; 2223 } 2224 2225 /* keep active children count for aggregator node */ 2226 agg_node->num_vsis++; 2227 2228 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2229 * to aggregator node 2230 */ 2231 vsi->agg_node = agg_node; 2232 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2233 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2234 vsi->agg_node->num_vsis); 2235 } 2236 2237 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2238 { 2239 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2240 struct device *dev = ice_pf_to_dev(pf); 2241 int ret, i; 2242 2243 /* configure VSI nodes based on number of queues and TC's */ 2244 ice_for_each_traffic_class(i) { 2245 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2246 continue; 2247 2248 if (vsi->type == ICE_VSI_CHNL) { 2249 if (!vsi->alloc_txq && vsi->num_txq) 2250 max_txqs[i] = vsi->num_txq; 2251 else 2252 max_txqs[i] = pf->num_lan_tx; 2253 } else { 2254 max_txqs[i] = vsi->alloc_txq; 2255 } 2256 2257 if (vsi->type == ICE_VSI_PF) 2258 max_txqs[i] += vsi->num_xdp_txq; 2259 } 2260 2261 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2262 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2263 max_txqs); 2264 if (ret) { 2265 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2266 vsi->vsi_num, ret); 2267 return ret; 2268 } 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * ice_vsi_cfg_def - configure default VSI based on the type 2275 * @vsi: pointer to VSI 2276 * @params: the parameters to configure this VSI with 2277 */ 2278 static int 2279 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2280 { 2281 struct device *dev = ice_pf_to_dev(vsi->back); 2282 struct ice_pf *pf = vsi->back; 2283 int ret; 2284 2285 vsi->vsw = pf->first_sw; 2286 2287 ret = ice_vsi_alloc_def(vsi, params->ch); 2288 if (ret) 2289 return ret; 2290 2291 /* allocate memory for Tx/Rx ring stat pointers */ 2292 ret = ice_vsi_alloc_stat_arrays(vsi); 2293 if (ret) 2294 goto unroll_vsi_alloc; 2295 2296 ice_alloc_fd_res(vsi); 2297 2298 ret = ice_vsi_get_qs(vsi); 2299 if (ret) { 2300 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2301 vsi->idx); 2302 goto unroll_vsi_alloc_stat; 2303 } 2304 2305 /* set RSS capabilities */ 2306 ice_vsi_set_rss_params(vsi); 2307 2308 /* set TC configuration */ 2309 ice_vsi_set_tc_cfg(vsi); 2310 2311 /* create the VSI */ 2312 ret = ice_vsi_init(vsi, params->flags); 2313 if (ret) 2314 goto unroll_get_qs; 2315 2316 ice_vsi_init_vlan_ops(vsi); 2317 2318 switch (vsi->type) { 2319 case ICE_VSI_CTRL: 2320 case ICE_VSI_SWITCHDEV_CTRL: 2321 case ICE_VSI_PF: 2322 ret = ice_vsi_alloc_q_vectors(vsi); 2323 if (ret) 2324 goto unroll_vsi_init; 2325 2326 ret = ice_vsi_alloc_rings(vsi); 2327 if (ret) 2328 goto unroll_vector_base; 2329 2330 ret = ice_vsi_alloc_ring_stats(vsi); 2331 if (ret) 2332 goto unroll_vector_base; 2333 2334 ice_vsi_map_rings_to_vectors(vsi); 2335 2336 /* Associate q_vector rings to napi */ 2337 ice_vsi_set_napi_queues(vsi); 2338 2339 vsi->stat_offsets_loaded = false; 2340 2341 if (ice_is_xdp_ena_vsi(vsi)) { 2342 ret = ice_vsi_determine_xdp_res(vsi); 2343 if (ret) 2344 goto unroll_vector_base; 2345 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2346 if (ret) 2347 goto unroll_vector_base; 2348 } 2349 2350 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2351 if (vsi->type != ICE_VSI_CTRL) 2352 /* Do not exit if configuring RSS had an issue, at 2353 * least receive traffic on first queue. Hence no 2354 * need to capture return value 2355 */ 2356 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2357 ice_vsi_cfg_rss_lut_key(vsi); 2358 ice_vsi_set_rss_flow_fld(vsi); 2359 } 2360 ice_init_arfs(vsi); 2361 break; 2362 case ICE_VSI_CHNL: 2363 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2364 ice_vsi_cfg_rss_lut_key(vsi); 2365 ice_vsi_set_rss_flow_fld(vsi); 2366 } 2367 break; 2368 case ICE_VSI_VF: 2369 /* VF driver will take care of creating netdev for this type and 2370 * map queues to vectors through Virtchnl, PF driver only 2371 * creates a VSI and corresponding structures for bookkeeping 2372 * purpose 2373 */ 2374 ret = ice_vsi_alloc_q_vectors(vsi); 2375 if (ret) 2376 goto unroll_vsi_init; 2377 2378 ret = ice_vsi_alloc_rings(vsi); 2379 if (ret) 2380 goto unroll_alloc_q_vector; 2381 2382 ret = ice_vsi_alloc_ring_stats(vsi); 2383 if (ret) 2384 goto unroll_vector_base; 2385 2386 vsi->stat_offsets_loaded = false; 2387 2388 /* Do not exit if configuring RSS had an issue, at least 2389 * receive traffic on first queue. Hence no need to capture 2390 * return value 2391 */ 2392 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2393 ice_vsi_cfg_rss_lut_key(vsi); 2394 ice_vsi_set_vf_rss_flow_fld(vsi); 2395 } 2396 break; 2397 case ICE_VSI_LB: 2398 ret = ice_vsi_alloc_rings(vsi); 2399 if (ret) 2400 goto unroll_vsi_init; 2401 2402 ret = ice_vsi_alloc_ring_stats(vsi); 2403 if (ret) 2404 goto unroll_vector_base; 2405 2406 break; 2407 default: 2408 /* clean up the resources and exit */ 2409 ret = -EINVAL; 2410 goto unroll_vsi_init; 2411 } 2412 2413 return 0; 2414 2415 unroll_vector_base: 2416 /* reclaim SW interrupts back to the common pool */ 2417 unroll_alloc_q_vector: 2418 ice_vsi_free_q_vectors(vsi); 2419 unroll_vsi_init: 2420 ice_vsi_delete_from_hw(vsi); 2421 unroll_get_qs: 2422 ice_vsi_put_qs(vsi); 2423 unroll_vsi_alloc_stat: 2424 ice_vsi_free_stats(vsi); 2425 unroll_vsi_alloc: 2426 ice_vsi_free_arrays(vsi); 2427 return ret; 2428 } 2429 2430 /** 2431 * ice_vsi_cfg - configure a previously allocated VSI 2432 * @vsi: pointer to VSI 2433 * @params: parameters used to configure this VSI 2434 */ 2435 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2436 { 2437 struct ice_pf *pf = vsi->back; 2438 int ret; 2439 2440 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2441 return -EINVAL; 2442 2443 vsi->type = params->type; 2444 vsi->port_info = params->pi; 2445 2446 /* For VSIs which don't have a connected VF, this will be NULL */ 2447 vsi->vf = params->vf; 2448 2449 ret = ice_vsi_cfg_def(vsi, params); 2450 if (ret) 2451 return ret; 2452 2453 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2454 if (ret) 2455 ice_vsi_decfg(vsi); 2456 2457 if (vsi->type == ICE_VSI_CTRL) { 2458 if (vsi->vf) { 2459 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2460 vsi->vf->ctrl_vsi_idx = vsi->idx; 2461 } else { 2462 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2463 pf->ctrl_vsi_idx = vsi->idx; 2464 } 2465 } 2466 2467 return ret; 2468 } 2469 2470 /** 2471 * ice_vsi_decfg - remove all VSI configuration 2472 * @vsi: pointer to VSI 2473 */ 2474 void ice_vsi_decfg(struct ice_vsi *vsi) 2475 { 2476 struct ice_pf *pf = vsi->back; 2477 int err; 2478 2479 /* The Rx rule will only exist to remove if the LLDP FW 2480 * engine is currently stopped 2481 */ 2482 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2483 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2484 ice_cfg_sw_lldp(vsi, false, false); 2485 2486 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2487 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2488 if (err) 2489 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2490 vsi->vsi_num, err); 2491 2492 if (ice_is_xdp_ena_vsi(vsi)) 2493 /* return value check can be skipped here, it always returns 2494 * 0 if reset is in progress 2495 */ 2496 ice_destroy_xdp_rings(vsi); 2497 2498 ice_vsi_clear_rings(vsi); 2499 ice_vsi_free_q_vectors(vsi); 2500 ice_vsi_put_qs(vsi); 2501 ice_vsi_free_arrays(vsi); 2502 2503 /* SR-IOV determines needed MSIX resources all at once instead of per 2504 * VSI since when VFs are spawned we know how many VFs there are and how 2505 * many interrupts each VF needs. SR-IOV MSIX resources are also 2506 * cleared in the same manner. 2507 */ 2508 2509 if (vsi->type == ICE_VSI_VF && 2510 vsi->agg_node && vsi->agg_node->valid) 2511 vsi->agg_node->num_vsis--; 2512 } 2513 2514 /** 2515 * ice_vsi_setup - Set up a VSI by a given type 2516 * @pf: board private structure 2517 * @params: parameters to use when creating the VSI 2518 * 2519 * This allocates the sw VSI structure and its queue resources. 2520 * 2521 * Returns pointer to the successfully allocated and configured VSI sw struct on 2522 * success, NULL on failure. 2523 */ 2524 struct ice_vsi * 2525 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2526 { 2527 struct device *dev = ice_pf_to_dev(pf); 2528 struct ice_vsi *vsi; 2529 int ret; 2530 2531 /* ice_vsi_setup can only initialize a new VSI, and we must have 2532 * a port_info structure for it. 2533 */ 2534 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2535 WARN_ON(!params->pi)) 2536 return NULL; 2537 2538 vsi = ice_vsi_alloc(pf); 2539 if (!vsi) { 2540 dev_err(dev, "could not allocate VSI\n"); 2541 return NULL; 2542 } 2543 2544 ret = ice_vsi_cfg(vsi, params); 2545 if (ret) 2546 goto err_vsi_cfg; 2547 2548 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2549 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2550 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2551 * The rule is added once for PF VSI in order to create appropriate 2552 * recipe, since VSI/VSI list is ignored with drop action... 2553 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2554 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2555 * settings in the HW. 2556 */ 2557 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2558 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2559 ICE_DROP_PACKET); 2560 ice_cfg_sw_lldp(vsi, true, true); 2561 } 2562 2563 if (!vsi->agg_node) 2564 ice_set_agg_vsi(vsi); 2565 2566 return vsi; 2567 2568 err_vsi_cfg: 2569 ice_vsi_free(vsi); 2570 2571 return NULL; 2572 } 2573 2574 /** 2575 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2576 * @vsi: the VSI being cleaned up 2577 */ 2578 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2579 { 2580 struct ice_pf *pf = vsi->back; 2581 struct ice_hw *hw = &pf->hw; 2582 u32 txq = 0; 2583 u32 rxq = 0; 2584 int i, q; 2585 2586 ice_for_each_q_vector(vsi, i) { 2587 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2588 2589 ice_write_intrl(q_vector, 0); 2590 for (q = 0; q < q_vector->num_ring_tx; q++) { 2591 ice_write_itr(&q_vector->tx, 0); 2592 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2593 if (ice_is_xdp_ena_vsi(vsi)) { 2594 u32 xdp_txq = txq + vsi->num_xdp_txq; 2595 2596 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2597 } 2598 txq++; 2599 } 2600 2601 for (q = 0; q < q_vector->num_ring_rx; q++) { 2602 ice_write_itr(&q_vector->rx, 0); 2603 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2604 rxq++; 2605 } 2606 } 2607 2608 ice_flush(hw); 2609 } 2610 2611 /** 2612 * ice_vsi_free_irq - Free the IRQ association with the OS 2613 * @vsi: the VSI being configured 2614 */ 2615 void ice_vsi_free_irq(struct ice_vsi *vsi) 2616 { 2617 struct ice_pf *pf = vsi->back; 2618 int i; 2619 2620 if (!vsi->q_vectors || !vsi->irqs_ready) 2621 return; 2622 2623 ice_vsi_release_msix(vsi); 2624 if (vsi->type == ICE_VSI_VF) 2625 return; 2626 2627 vsi->irqs_ready = false; 2628 ice_free_cpu_rx_rmap(vsi); 2629 2630 ice_for_each_q_vector(vsi, i) { 2631 int irq_num; 2632 2633 irq_num = vsi->q_vectors[i]->irq.virq; 2634 2635 /* free only the irqs that were actually requested */ 2636 if (!vsi->q_vectors[i] || 2637 !(vsi->q_vectors[i]->num_ring_tx || 2638 vsi->q_vectors[i]->num_ring_rx)) 2639 continue; 2640 2641 /* clear the affinity notifier in the IRQ descriptor */ 2642 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2643 irq_set_affinity_notifier(irq_num, NULL); 2644 2645 /* clear the affinity_mask in the IRQ descriptor */ 2646 irq_set_affinity_hint(irq_num, NULL); 2647 synchronize_irq(irq_num); 2648 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2649 } 2650 } 2651 2652 /** 2653 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2654 * @vsi: the VSI having resources freed 2655 */ 2656 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2657 { 2658 int i; 2659 2660 if (!vsi->tx_rings) 2661 return; 2662 2663 ice_for_each_txq(vsi, i) 2664 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2665 ice_free_tx_ring(vsi->tx_rings[i]); 2666 } 2667 2668 /** 2669 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2670 * @vsi: the VSI having resources freed 2671 */ 2672 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2673 { 2674 int i; 2675 2676 if (!vsi->rx_rings) 2677 return; 2678 2679 ice_for_each_rxq(vsi, i) 2680 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2681 ice_free_rx_ring(vsi->rx_rings[i]); 2682 } 2683 2684 /** 2685 * ice_vsi_close - Shut down a VSI 2686 * @vsi: the VSI being shut down 2687 */ 2688 void ice_vsi_close(struct ice_vsi *vsi) 2689 { 2690 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2691 ice_down(vsi); 2692 2693 ice_vsi_free_irq(vsi); 2694 ice_vsi_free_tx_rings(vsi); 2695 ice_vsi_free_rx_rings(vsi); 2696 } 2697 2698 /** 2699 * ice_ena_vsi - resume a VSI 2700 * @vsi: the VSI being resume 2701 * @locked: is the rtnl_lock already held 2702 */ 2703 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2704 { 2705 int err = 0; 2706 2707 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2708 return 0; 2709 2710 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2711 2712 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2713 if (netif_running(vsi->netdev)) { 2714 if (!locked) 2715 rtnl_lock(); 2716 2717 err = ice_open_internal(vsi->netdev); 2718 2719 if (!locked) 2720 rtnl_unlock(); 2721 } 2722 } else if (vsi->type == ICE_VSI_CTRL) { 2723 err = ice_vsi_open_ctrl(vsi); 2724 } 2725 2726 return err; 2727 } 2728 2729 /** 2730 * ice_dis_vsi - pause a VSI 2731 * @vsi: the VSI being paused 2732 * @locked: is the rtnl_lock already held 2733 */ 2734 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2735 { 2736 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2737 return; 2738 2739 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2740 2741 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2742 if (netif_running(vsi->netdev)) { 2743 if (!locked) 2744 rtnl_lock(); 2745 2746 ice_vsi_close(vsi); 2747 2748 if (!locked) 2749 rtnl_unlock(); 2750 } else { 2751 ice_vsi_close(vsi); 2752 } 2753 } else if (vsi->type == ICE_VSI_CTRL || 2754 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2755 ice_vsi_close(vsi); 2756 } 2757 } 2758 2759 /** 2760 * __ice_queue_set_napi - Set the napi instance for the queue 2761 * @dev: device to which NAPI and queue belong 2762 * @queue_index: Index of queue 2763 * @type: queue type as RX or TX 2764 * @napi: NAPI context 2765 * @locked: is the rtnl_lock already held 2766 * 2767 * Set the napi instance for the queue. Caller indicates the lock status. 2768 */ 2769 static void 2770 __ice_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2771 enum netdev_queue_type type, struct napi_struct *napi, 2772 bool locked) 2773 { 2774 if (!locked) 2775 rtnl_lock(); 2776 netif_queue_set_napi(dev, queue_index, type, napi); 2777 if (!locked) 2778 rtnl_unlock(); 2779 } 2780 2781 /** 2782 * ice_queue_set_napi - Set the napi instance for the queue 2783 * @vsi: VSI being configured 2784 * @queue_index: Index of queue 2785 * @type: queue type as RX or TX 2786 * @napi: NAPI context 2787 * 2788 * Set the napi instance for the queue. The rtnl lock state is derived from the 2789 * execution path. 2790 */ 2791 void 2792 ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index, 2793 enum netdev_queue_type type, struct napi_struct *napi) 2794 { 2795 struct ice_pf *pf = vsi->back; 2796 2797 if (!vsi->netdev) 2798 return; 2799 2800 if (current_work() == &pf->serv_task || 2801 test_bit(ICE_PREPARED_FOR_RESET, pf->state) || 2802 test_bit(ICE_DOWN, pf->state) || 2803 test_bit(ICE_SUSPENDED, pf->state)) 2804 __ice_queue_set_napi(vsi->netdev, queue_index, type, napi, 2805 false); 2806 else 2807 __ice_queue_set_napi(vsi->netdev, queue_index, type, napi, 2808 true); 2809 } 2810 2811 /** 2812 * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi 2813 * @q_vector: q_vector pointer 2814 * @locked: is the rtnl_lock already held 2815 * 2816 * Associate the q_vector napi with all the queue[s] on the vector. 2817 * Caller indicates the lock status. 2818 */ 2819 void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked) 2820 { 2821 struct ice_rx_ring *rx_ring; 2822 struct ice_tx_ring *tx_ring; 2823 2824 ice_for_each_rx_ring(rx_ring, q_vector->rx) 2825 __ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index, 2826 NETDEV_QUEUE_TYPE_RX, &q_vector->napi, 2827 locked); 2828 2829 ice_for_each_tx_ring(tx_ring, q_vector->tx) 2830 __ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index, 2831 NETDEV_QUEUE_TYPE_TX, &q_vector->napi, 2832 locked); 2833 /* Also set the interrupt number for the NAPI */ 2834 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); 2835 } 2836 2837 /** 2838 * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi 2839 * @q_vector: q_vector pointer 2840 * 2841 * Associate the q_vector napi with all the queue[s] on the vector 2842 */ 2843 void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector) 2844 { 2845 struct ice_rx_ring *rx_ring; 2846 struct ice_tx_ring *tx_ring; 2847 2848 ice_for_each_rx_ring(rx_ring, q_vector->rx) 2849 ice_queue_set_napi(q_vector->vsi, rx_ring->q_index, 2850 NETDEV_QUEUE_TYPE_RX, &q_vector->napi); 2851 2852 ice_for_each_tx_ring(tx_ring, q_vector->tx) 2853 ice_queue_set_napi(q_vector->vsi, tx_ring->q_index, 2854 NETDEV_QUEUE_TYPE_TX, &q_vector->napi); 2855 /* Also set the interrupt number for the NAPI */ 2856 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); 2857 } 2858 2859 /** 2860 * ice_vsi_set_napi_queues 2861 * @vsi: VSI pointer 2862 * 2863 * Associate queue[s] with napi for all vectors 2864 */ 2865 void ice_vsi_set_napi_queues(struct ice_vsi *vsi) 2866 { 2867 int i; 2868 2869 if (!vsi->netdev) 2870 return; 2871 2872 ice_for_each_q_vector(vsi, i) 2873 ice_q_vector_set_napi_queues(vsi->q_vectors[i]); 2874 } 2875 2876 /** 2877 * ice_vsi_release - Delete a VSI and free its resources 2878 * @vsi: the VSI being removed 2879 * 2880 * Returns 0 on success or < 0 on error 2881 */ 2882 int ice_vsi_release(struct ice_vsi *vsi) 2883 { 2884 struct ice_pf *pf; 2885 2886 if (!vsi->back) 2887 return -ENODEV; 2888 pf = vsi->back; 2889 2890 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2891 ice_rss_clean(vsi); 2892 2893 ice_vsi_close(vsi); 2894 ice_vsi_decfg(vsi); 2895 2896 /* retain SW VSI data structure since it is needed to unregister and 2897 * free VSI netdev when PF is not in reset recovery pending state,\ 2898 * for ex: during rmmod. 2899 */ 2900 if (!ice_is_reset_in_progress(pf->state)) 2901 ice_vsi_delete(vsi); 2902 2903 return 0; 2904 } 2905 2906 /** 2907 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2908 * @vsi: VSI connected with q_vectors 2909 * @coalesce: array of struct with stored coalesce 2910 * 2911 * Returns array size. 2912 */ 2913 static int 2914 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2915 struct ice_coalesce_stored *coalesce) 2916 { 2917 int i; 2918 2919 ice_for_each_q_vector(vsi, i) { 2920 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2921 2922 coalesce[i].itr_tx = q_vector->tx.itr_settings; 2923 coalesce[i].itr_rx = q_vector->rx.itr_settings; 2924 coalesce[i].intrl = q_vector->intrl; 2925 2926 if (i < vsi->num_txq) 2927 coalesce[i].tx_valid = true; 2928 if (i < vsi->num_rxq) 2929 coalesce[i].rx_valid = true; 2930 } 2931 2932 return vsi->num_q_vectors; 2933 } 2934 2935 /** 2936 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2937 * @vsi: VSI connected with q_vectors 2938 * @coalesce: pointer to array of struct with stored coalesce 2939 * @size: size of coalesce array 2940 * 2941 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2942 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2943 * to default value. 2944 */ 2945 static void 2946 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2947 struct ice_coalesce_stored *coalesce, int size) 2948 { 2949 struct ice_ring_container *rc; 2950 int i; 2951 2952 if ((size && !coalesce) || !vsi) 2953 return; 2954 2955 /* There are a couple of cases that have to be handled here: 2956 * 1. The case where the number of queue vectors stays the same, but 2957 * the number of Tx or Rx rings changes (the first for loop) 2958 * 2. The case where the number of queue vectors increased (the 2959 * second for loop) 2960 */ 2961 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2962 /* There are 2 cases to handle here and they are the same for 2963 * both Tx and Rx: 2964 * if the entry was valid previously (coalesce[i].[tr]x_valid 2965 * and the loop variable is less than the number of rings 2966 * allocated, then write the previous values 2967 * 2968 * if the entry was not valid previously, but the number of 2969 * rings is less than are allocated (this means the number of 2970 * rings increased from previously), then write out the 2971 * values in the first element 2972 * 2973 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2974 * as there is no harm because the dynamic algorithm 2975 * will just overwrite. 2976 */ 2977 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2978 rc = &vsi->q_vectors[i]->rx; 2979 rc->itr_settings = coalesce[i].itr_rx; 2980 ice_write_itr(rc, rc->itr_setting); 2981 } else if (i < vsi->alloc_rxq) { 2982 rc = &vsi->q_vectors[i]->rx; 2983 rc->itr_settings = coalesce[0].itr_rx; 2984 ice_write_itr(rc, rc->itr_setting); 2985 } 2986 2987 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2988 rc = &vsi->q_vectors[i]->tx; 2989 rc->itr_settings = coalesce[i].itr_tx; 2990 ice_write_itr(rc, rc->itr_setting); 2991 } else if (i < vsi->alloc_txq) { 2992 rc = &vsi->q_vectors[i]->tx; 2993 rc->itr_settings = coalesce[0].itr_tx; 2994 ice_write_itr(rc, rc->itr_setting); 2995 } 2996 2997 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2998 ice_set_q_vector_intrl(vsi->q_vectors[i]); 2999 } 3000 3001 /* the number of queue vectors increased so write whatever is in 3002 * the first element 3003 */ 3004 for (; i < vsi->num_q_vectors; i++) { 3005 /* transmit */ 3006 rc = &vsi->q_vectors[i]->tx; 3007 rc->itr_settings = coalesce[0].itr_tx; 3008 ice_write_itr(rc, rc->itr_setting); 3009 3010 /* receive */ 3011 rc = &vsi->q_vectors[i]->rx; 3012 rc->itr_settings = coalesce[0].itr_rx; 3013 ice_write_itr(rc, rc->itr_setting); 3014 3015 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3016 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3017 } 3018 } 3019 3020 /** 3021 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones 3022 * @vsi: VSI pointer 3023 */ 3024 static int 3025 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) 3026 { 3027 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; 3028 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; 3029 struct ice_ring_stats **tx_ring_stats; 3030 struct ice_ring_stats **rx_ring_stats; 3031 struct ice_vsi_stats *vsi_stat; 3032 struct ice_pf *pf = vsi->back; 3033 u16 prev_txq = vsi->alloc_txq; 3034 u16 prev_rxq = vsi->alloc_rxq; 3035 int i; 3036 3037 vsi_stat = pf->vsi_stats[vsi->idx]; 3038 3039 if (req_txq < prev_txq) { 3040 for (i = req_txq; i < prev_txq; i++) { 3041 if (vsi_stat->tx_ring_stats[i]) { 3042 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3043 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3044 } 3045 } 3046 } 3047 3048 tx_ring_stats = vsi_stat->tx_ring_stats; 3049 vsi_stat->tx_ring_stats = 3050 krealloc_array(vsi_stat->tx_ring_stats, req_txq, 3051 sizeof(*vsi_stat->tx_ring_stats), 3052 GFP_KERNEL | __GFP_ZERO); 3053 if (!vsi_stat->tx_ring_stats) { 3054 vsi_stat->tx_ring_stats = tx_ring_stats; 3055 return -ENOMEM; 3056 } 3057 3058 if (req_rxq < prev_rxq) { 3059 for (i = req_rxq; i < prev_rxq; i++) { 3060 if (vsi_stat->rx_ring_stats[i]) { 3061 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3062 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3063 } 3064 } 3065 } 3066 3067 rx_ring_stats = vsi_stat->rx_ring_stats; 3068 vsi_stat->rx_ring_stats = 3069 krealloc_array(vsi_stat->rx_ring_stats, req_rxq, 3070 sizeof(*vsi_stat->rx_ring_stats), 3071 GFP_KERNEL | __GFP_ZERO); 3072 if (!vsi_stat->rx_ring_stats) { 3073 vsi_stat->rx_ring_stats = rx_ring_stats; 3074 return -ENOMEM; 3075 } 3076 3077 return 0; 3078 } 3079 3080 /** 3081 * ice_vsi_rebuild - Rebuild VSI after reset 3082 * @vsi: VSI to be rebuild 3083 * @vsi_flags: flags used for VSI rebuild flow 3084 * 3085 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3086 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3087 * 3088 * Returns 0 on success and negative value on failure 3089 */ 3090 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3091 { 3092 struct ice_vsi_cfg_params params = {}; 3093 struct ice_coalesce_stored *coalesce; 3094 int prev_num_q_vectors = 0; 3095 struct ice_pf *pf; 3096 int ret; 3097 3098 if (!vsi) 3099 return -EINVAL; 3100 3101 params = ice_vsi_to_params(vsi); 3102 params.flags = vsi_flags; 3103 3104 pf = vsi->back; 3105 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3106 return -EINVAL; 3107 3108 coalesce = kcalloc(vsi->num_q_vectors, 3109 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3110 if (!coalesce) 3111 return -ENOMEM; 3112 3113 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3114 3115 ret = ice_vsi_realloc_stat_arrays(vsi); 3116 if (ret) 3117 goto err_vsi_cfg; 3118 3119 ice_vsi_decfg(vsi); 3120 ret = ice_vsi_cfg_def(vsi, ¶ms); 3121 if (ret) 3122 goto err_vsi_cfg; 3123 3124 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3125 if (ret) { 3126 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3127 ret = -EIO; 3128 goto err_vsi_cfg_tc_lan; 3129 } 3130 3131 kfree(coalesce); 3132 return ice_schedule_reset(pf, ICE_RESET_PFR); 3133 } 3134 3135 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3136 kfree(coalesce); 3137 3138 return 0; 3139 3140 err_vsi_cfg_tc_lan: 3141 ice_vsi_decfg(vsi); 3142 err_vsi_cfg: 3143 kfree(coalesce); 3144 return ret; 3145 } 3146 3147 /** 3148 * ice_is_reset_in_progress - check for a reset in progress 3149 * @state: PF state field 3150 */ 3151 bool ice_is_reset_in_progress(unsigned long *state) 3152 { 3153 return test_bit(ICE_RESET_OICR_RECV, state) || 3154 test_bit(ICE_PFR_REQ, state) || 3155 test_bit(ICE_CORER_REQ, state) || 3156 test_bit(ICE_GLOBR_REQ, state); 3157 } 3158 3159 /** 3160 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3161 * @pf: pointer to the PF structure 3162 * @timeout: length of time to wait, in jiffies 3163 * 3164 * Wait (sleep) for a short time until the driver finishes cleaning up from 3165 * a device reset. The caller must be able to sleep. Use this to delay 3166 * operations that could fail while the driver is cleaning up after a device 3167 * reset. 3168 * 3169 * Returns 0 on success, -EBUSY if the reset is not finished within the 3170 * timeout, and -ERESTARTSYS if the thread was interrupted. 3171 */ 3172 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3173 { 3174 long ret; 3175 3176 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3177 !ice_is_reset_in_progress(pf->state), 3178 timeout); 3179 if (ret < 0) 3180 return ret; 3181 else if (!ret) 3182 return -EBUSY; 3183 else 3184 return 0; 3185 } 3186 3187 /** 3188 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3189 * @vsi: VSI being configured 3190 * @ctx: the context buffer returned from AQ VSI update command 3191 */ 3192 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3193 { 3194 vsi->info.mapping_flags = ctx->info.mapping_flags; 3195 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3196 sizeof(vsi->info.q_mapping)); 3197 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3198 sizeof(vsi->info.tc_mapping)); 3199 } 3200 3201 /** 3202 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3203 * @vsi: the VSI being configured 3204 * @ena_tc: TC map to be enabled 3205 */ 3206 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3207 { 3208 struct net_device *netdev = vsi->netdev; 3209 struct ice_pf *pf = vsi->back; 3210 int numtc = vsi->tc_cfg.numtc; 3211 struct ice_dcbx_cfg *dcbcfg; 3212 u8 netdev_tc; 3213 int i; 3214 3215 if (!netdev) 3216 return; 3217 3218 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3219 if (vsi->type == ICE_VSI_CHNL) 3220 return; 3221 3222 if (!ena_tc) { 3223 netdev_reset_tc(netdev); 3224 return; 3225 } 3226 3227 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3228 numtc = vsi->all_numtc; 3229 3230 if (netdev_set_num_tc(netdev, numtc)) 3231 return; 3232 3233 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3234 3235 ice_for_each_traffic_class(i) 3236 if (vsi->tc_cfg.ena_tc & BIT(i)) 3237 netdev_set_tc_queue(netdev, 3238 vsi->tc_cfg.tc_info[i].netdev_tc, 3239 vsi->tc_cfg.tc_info[i].qcount_tx, 3240 vsi->tc_cfg.tc_info[i].qoffset); 3241 /* setup TC queue map for CHNL TCs */ 3242 ice_for_each_chnl_tc(i) { 3243 if (!(vsi->all_enatc & BIT(i))) 3244 break; 3245 if (!vsi->mqprio_qopt.qopt.count[i]) 3246 break; 3247 netdev_set_tc_queue(netdev, i, 3248 vsi->mqprio_qopt.qopt.count[i], 3249 vsi->mqprio_qopt.qopt.offset[i]); 3250 } 3251 3252 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3253 return; 3254 3255 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3256 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3257 3258 /* Get the mapped netdev TC# for the UP */ 3259 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3260 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3261 } 3262 } 3263 3264 /** 3265 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3266 * @vsi: the VSI being configured, 3267 * @ctxt: VSI context structure 3268 * @ena_tc: number of traffic classes to enable 3269 * 3270 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3271 */ 3272 static int 3273 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3274 u8 ena_tc) 3275 { 3276 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3277 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3278 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3279 u16 new_txq, new_rxq; 3280 u8 netdev_tc = 0; 3281 int i; 3282 3283 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3284 3285 pow = order_base_2(tc0_qcount); 3286 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset); 3287 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 3288 3289 ice_for_each_traffic_class(i) { 3290 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3291 /* TC is not enabled */ 3292 vsi->tc_cfg.tc_info[i].qoffset = 0; 3293 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3294 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3295 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3296 ctxt->info.tc_mapping[i] = 0; 3297 continue; 3298 } 3299 3300 offset = vsi->mqprio_qopt.qopt.offset[i]; 3301 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3302 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3303 vsi->tc_cfg.tc_info[i].qoffset = offset; 3304 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3305 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3306 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3307 } 3308 3309 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3310 ice_for_each_chnl_tc(i) { 3311 if (!(vsi->all_enatc & BIT(i))) 3312 continue; 3313 offset = vsi->mqprio_qopt.qopt.offset[i]; 3314 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3315 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3316 } 3317 } 3318 3319 new_txq = offset + qcount_tx; 3320 if (new_txq > vsi->alloc_txq) { 3321 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3322 new_txq, vsi->alloc_txq); 3323 return -EINVAL; 3324 } 3325 3326 new_rxq = offset + qcount_rx; 3327 if (new_rxq > vsi->alloc_rxq) { 3328 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3329 new_rxq, vsi->alloc_rxq); 3330 return -EINVAL; 3331 } 3332 3333 /* Set actual Tx/Rx queue pairs */ 3334 vsi->num_txq = new_txq; 3335 vsi->num_rxq = new_rxq; 3336 3337 /* Setup queue TC[0].qmap for given VSI context */ 3338 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3339 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3340 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3341 3342 /* Find queue count available for channel VSIs and starting offset 3343 * for channel VSIs 3344 */ 3345 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3346 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3347 vsi->next_base_q = tc0_qcount; 3348 } 3349 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3350 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3351 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3352 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3353 3354 return 0; 3355 } 3356 3357 /** 3358 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3359 * @vsi: VSI to be configured 3360 * @ena_tc: TC bitmap 3361 * 3362 * VSI queues expected to be quiesced before calling this function 3363 */ 3364 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3365 { 3366 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3367 struct ice_pf *pf = vsi->back; 3368 struct ice_tc_cfg old_tc_cfg; 3369 struct ice_vsi_ctx *ctx; 3370 struct device *dev; 3371 int i, ret = 0; 3372 u8 num_tc = 0; 3373 3374 dev = ice_pf_to_dev(pf); 3375 if (vsi->tc_cfg.ena_tc == ena_tc && 3376 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3377 return 0; 3378 3379 ice_for_each_traffic_class(i) { 3380 /* build bitmap of enabled TCs */ 3381 if (ena_tc & BIT(i)) 3382 num_tc++; 3383 /* populate max_txqs per TC */ 3384 max_txqs[i] = vsi->alloc_txq; 3385 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3386 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3387 */ 3388 if (vsi->type == ICE_VSI_CHNL && 3389 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3390 max_txqs[i] = vsi->num_txq; 3391 } 3392 3393 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3394 vsi->tc_cfg.ena_tc = ena_tc; 3395 vsi->tc_cfg.numtc = num_tc; 3396 3397 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3398 if (!ctx) 3399 return -ENOMEM; 3400 3401 ctx->vf_num = 0; 3402 ctx->info = vsi->info; 3403 3404 if (vsi->type == ICE_VSI_PF && 3405 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3406 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3407 else 3408 ret = ice_vsi_setup_q_map(vsi, ctx); 3409 3410 if (ret) { 3411 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3412 goto out; 3413 } 3414 3415 /* must to indicate which section of VSI context are being modified */ 3416 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3417 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3418 if (ret) { 3419 dev_info(dev, "Failed VSI Update\n"); 3420 goto out; 3421 } 3422 3423 if (vsi->type == ICE_VSI_PF && 3424 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3425 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3426 else 3427 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3428 vsi->tc_cfg.ena_tc, max_txqs); 3429 3430 if (ret) { 3431 dev_err(dev, "VSI %d failed TC config, error %d\n", 3432 vsi->vsi_num, ret); 3433 goto out; 3434 } 3435 ice_vsi_update_q_map(vsi, ctx); 3436 vsi->info.valid_sections = 0; 3437 3438 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3439 out: 3440 kfree(ctx); 3441 return ret; 3442 } 3443 3444 /** 3445 * ice_update_ring_stats - Update ring statistics 3446 * @stats: stats to be updated 3447 * @pkts: number of processed packets 3448 * @bytes: number of processed bytes 3449 * 3450 * This function assumes that caller has acquired a u64_stats_sync lock. 3451 */ 3452 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3453 { 3454 stats->bytes += bytes; 3455 stats->pkts += pkts; 3456 } 3457 3458 /** 3459 * ice_update_tx_ring_stats - Update Tx ring specific counters 3460 * @tx_ring: ring to update 3461 * @pkts: number of processed packets 3462 * @bytes: number of processed bytes 3463 */ 3464 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3465 { 3466 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3467 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3468 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3469 } 3470 3471 /** 3472 * ice_update_rx_ring_stats - Update Rx ring specific counters 3473 * @rx_ring: ring to update 3474 * @pkts: number of processed packets 3475 * @bytes: number of processed bytes 3476 */ 3477 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3478 { 3479 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3480 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3481 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3482 } 3483 3484 /** 3485 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3486 * @pi: port info of the switch with default VSI 3487 * 3488 * Return true if the there is a single VSI in default forwarding VSI list 3489 */ 3490 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3491 { 3492 bool exists = false; 3493 3494 ice_check_if_dflt_vsi(pi, 0, &exists); 3495 return exists; 3496 } 3497 3498 /** 3499 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3500 * @vsi: VSI to compare against default forwarding VSI 3501 * 3502 * If this VSI passed in is the default forwarding VSI then return true, else 3503 * return false 3504 */ 3505 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3506 { 3507 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3508 } 3509 3510 /** 3511 * ice_set_dflt_vsi - set the default forwarding VSI 3512 * @vsi: VSI getting set as the default forwarding VSI on the switch 3513 * 3514 * If the VSI passed in is already the default VSI and it's enabled just return 3515 * success. 3516 * 3517 * Otherwise try to set the VSI passed in as the switch's default VSI and 3518 * return the result. 3519 */ 3520 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3521 { 3522 struct device *dev; 3523 int status; 3524 3525 if (!vsi) 3526 return -EINVAL; 3527 3528 dev = ice_pf_to_dev(vsi->back); 3529 3530 if (ice_lag_is_switchdev_running(vsi->back)) { 3531 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3532 vsi->vsi_num); 3533 return 0; 3534 } 3535 3536 /* the VSI passed in is already the default VSI */ 3537 if (ice_is_vsi_dflt_vsi(vsi)) { 3538 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3539 vsi->vsi_num); 3540 return 0; 3541 } 3542 3543 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3544 if (status) { 3545 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3546 vsi->vsi_num, status); 3547 return status; 3548 } 3549 3550 return 0; 3551 } 3552 3553 /** 3554 * ice_clear_dflt_vsi - clear the default forwarding VSI 3555 * @vsi: VSI to remove from filter list 3556 * 3557 * If the switch has no default VSI or it's not enabled then return error. 3558 * 3559 * Otherwise try to clear the default VSI and return the result. 3560 */ 3561 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3562 { 3563 struct device *dev; 3564 int status; 3565 3566 if (!vsi) 3567 return -EINVAL; 3568 3569 dev = ice_pf_to_dev(vsi->back); 3570 3571 /* there is no default VSI configured */ 3572 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3573 return -ENODEV; 3574 3575 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3576 ICE_FLTR_RX); 3577 if (status) { 3578 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3579 vsi->vsi_num, status); 3580 return -EIO; 3581 } 3582 3583 return 0; 3584 } 3585 3586 /** 3587 * ice_get_link_speed_mbps - get link speed in Mbps 3588 * @vsi: the VSI whose link speed is being queried 3589 * 3590 * Return current VSI link speed and 0 if the speed is unknown. 3591 */ 3592 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3593 { 3594 unsigned int link_speed; 3595 3596 link_speed = vsi->port_info->phy.link_info.link_speed; 3597 3598 return (int)ice_get_link_speed(fls(link_speed) - 1); 3599 } 3600 3601 /** 3602 * ice_get_link_speed_kbps - get link speed in Kbps 3603 * @vsi: the VSI whose link speed is being queried 3604 * 3605 * Return current VSI link speed and 0 if the speed is unknown. 3606 */ 3607 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3608 { 3609 int speed_mbps; 3610 3611 speed_mbps = ice_get_link_speed_mbps(vsi); 3612 3613 return speed_mbps * 1000; 3614 } 3615 3616 /** 3617 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3618 * @vsi: VSI to be configured 3619 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3620 * 3621 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3622 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3623 * on TC 0. 3624 */ 3625 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3626 { 3627 struct ice_pf *pf = vsi->back; 3628 struct device *dev; 3629 int status; 3630 int speed; 3631 3632 dev = ice_pf_to_dev(pf); 3633 if (!vsi->port_info) { 3634 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3635 vsi->idx, vsi->type); 3636 return -EINVAL; 3637 } 3638 3639 speed = ice_get_link_speed_kbps(vsi); 3640 if (min_tx_rate > (u64)speed) { 3641 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3642 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3643 speed); 3644 return -EINVAL; 3645 } 3646 3647 /* Configure min BW for VSI limit */ 3648 if (min_tx_rate) { 3649 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3650 ICE_MIN_BW, min_tx_rate); 3651 if (status) { 3652 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3653 min_tx_rate, ice_vsi_type_str(vsi->type), 3654 vsi->idx); 3655 return status; 3656 } 3657 3658 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3659 min_tx_rate, ice_vsi_type_str(vsi->type)); 3660 } else { 3661 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3662 vsi->idx, 0, 3663 ICE_MIN_BW); 3664 if (status) { 3665 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3666 ice_vsi_type_str(vsi->type), vsi->idx); 3667 return status; 3668 } 3669 3670 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3671 ice_vsi_type_str(vsi->type), vsi->idx); 3672 } 3673 3674 return 0; 3675 } 3676 3677 /** 3678 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3679 * @vsi: VSI to be configured 3680 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3681 * 3682 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3683 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3684 * on TC 0. 3685 */ 3686 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3687 { 3688 struct ice_pf *pf = vsi->back; 3689 struct device *dev; 3690 int status; 3691 int speed; 3692 3693 dev = ice_pf_to_dev(pf); 3694 if (!vsi->port_info) { 3695 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3696 vsi->idx, vsi->type); 3697 return -EINVAL; 3698 } 3699 3700 speed = ice_get_link_speed_kbps(vsi); 3701 if (max_tx_rate > (u64)speed) { 3702 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3703 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3704 speed); 3705 return -EINVAL; 3706 } 3707 3708 /* Configure max BW for VSI limit */ 3709 if (max_tx_rate) { 3710 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3711 ICE_MAX_BW, max_tx_rate); 3712 if (status) { 3713 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3714 max_tx_rate, ice_vsi_type_str(vsi->type), 3715 vsi->idx); 3716 return status; 3717 } 3718 3719 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3720 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3721 } else { 3722 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3723 vsi->idx, 0, 3724 ICE_MAX_BW); 3725 if (status) { 3726 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3727 ice_vsi_type_str(vsi->type), vsi->idx); 3728 return status; 3729 } 3730 3731 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3732 ice_vsi_type_str(vsi->type), vsi->idx); 3733 } 3734 3735 return 0; 3736 } 3737 3738 /** 3739 * ice_set_link - turn on/off physical link 3740 * @vsi: VSI to modify physical link on 3741 * @ena: turn on/off physical link 3742 */ 3743 int ice_set_link(struct ice_vsi *vsi, bool ena) 3744 { 3745 struct device *dev = ice_pf_to_dev(vsi->back); 3746 struct ice_port_info *pi = vsi->port_info; 3747 struct ice_hw *hw = pi->hw; 3748 int status; 3749 3750 if (vsi->type != ICE_VSI_PF) 3751 return -EINVAL; 3752 3753 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3754 3755 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3756 * this is not a fatal error, so print a warning message and return 3757 * a success code. Return an error if FW returns an error code other 3758 * than ICE_AQ_RC_EMODE 3759 */ 3760 if (status == -EIO) { 3761 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3762 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3763 (ena ? "ON" : "OFF"), status, 3764 ice_aq_str(hw->adminq.sq_last_status)); 3765 } else if (status) { 3766 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3767 (ena ? "ON" : "OFF"), status, 3768 ice_aq_str(hw->adminq.sq_last_status)); 3769 return status; 3770 } 3771 3772 return 0; 3773 } 3774 3775 /** 3776 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3777 * @vsi: VSI used to add VLAN filters 3778 * 3779 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3780 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3781 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3782 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3783 * 3784 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3785 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3786 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3787 * 3788 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3789 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3790 * part of filtering. 3791 */ 3792 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3793 { 3794 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3795 struct ice_vlan vlan; 3796 int err; 3797 3798 vlan = ICE_VLAN(0, 0, 0); 3799 err = vlan_ops->add_vlan(vsi, &vlan); 3800 if (err && err != -EEXIST) 3801 return err; 3802 3803 /* in SVM both VLAN 0 filters are identical */ 3804 if (!ice_is_dvm_ena(&vsi->back->hw)) 3805 return 0; 3806 3807 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3808 err = vlan_ops->add_vlan(vsi, &vlan); 3809 if (err && err != -EEXIST) 3810 return err; 3811 3812 return 0; 3813 } 3814 3815 /** 3816 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3817 * @vsi: VSI used to add VLAN filters 3818 * 3819 * Delete the VLAN 0 filters in the same manner that they were added in 3820 * ice_vsi_add_vlan_zero. 3821 */ 3822 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3823 { 3824 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3825 struct ice_vlan vlan; 3826 int err; 3827 3828 vlan = ICE_VLAN(0, 0, 0); 3829 err = vlan_ops->del_vlan(vsi, &vlan); 3830 if (err && err != -EEXIST) 3831 return err; 3832 3833 /* in SVM both VLAN 0 filters are identical */ 3834 if (!ice_is_dvm_ena(&vsi->back->hw)) 3835 return 0; 3836 3837 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3838 err = vlan_ops->del_vlan(vsi, &vlan); 3839 if (err && err != -EEXIST) 3840 return err; 3841 3842 /* when deleting the last VLAN filter, make sure to disable the VLAN 3843 * promisc mode so the filter isn't left by accident 3844 */ 3845 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3846 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3847 } 3848 3849 /** 3850 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3851 * @vsi: VSI used to get the VLAN mode 3852 * 3853 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3854 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3855 */ 3856 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3857 { 3858 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3859 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3860 /* no VLAN 0 filter is created when a port VLAN is active */ 3861 if (vsi->type == ICE_VSI_VF) { 3862 if (WARN_ON(!vsi->vf)) 3863 return 0; 3864 3865 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3866 return 0; 3867 } 3868 3869 if (ice_is_dvm_ena(&vsi->back->hw)) 3870 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3871 else 3872 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3873 } 3874 3875 /** 3876 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3877 * @vsi: VSI used to determine if any non-zero VLANs have been added 3878 */ 3879 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3880 { 3881 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3882 } 3883 3884 /** 3885 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3886 * @vsi: VSI used to get the number of non-zero VLANs added 3887 */ 3888 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3889 { 3890 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 3891 } 3892 3893 /** 3894 * ice_is_feature_supported 3895 * @pf: pointer to the struct ice_pf instance 3896 * @f: feature enum to be checked 3897 * 3898 * returns true if feature is supported, false otherwise 3899 */ 3900 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3901 { 3902 if (f < 0 || f >= ICE_F_MAX) 3903 return false; 3904 3905 return test_bit(f, pf->features); 3906 } 3907 3908 /** 3909 * ice_set_feature_support 3910 * @pf: pointer to the struct ice_pf instance 3911 * @f: feature enum to set 3912 */ 3913 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 3914 { 3915 if (f < 0 || f >= ICE_F_MAX) 3916 return; 3917 3918 set_bit(f, pf->features); 3919 } 3920 3921 /** 3922 * ice_clear_feature_support 3923 * @pf: pointer to the struct ice_pf instance 3924 * @f: feature enum to clear 3925 */ 3926 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 3927 { 3928 if (f < 0 || f >= ICE_F_MAX) 3929 return; 3930 3931 clear_bit(f, pf->features); 3932 } 3933 3934 /** 3935 * ice_init_feature_support 3936 * @pf: pointer to the struct ice_pf instance 3937 * 3938 * called during init to setup supported feature 3939 */ 3940 void ice_init_feature_support(struct ice_pf *pf) 3941 { 3942 switch (pf->hw.device_id) { 3943 case ICE_DEV_ID_E810C_BACKPLANE: 3944 case ICE_DEV_ID_E810C_QSFP: 3945 case ICE_DEV_ID_E810C_SFP: 3946 case ICE_DEV_ID_E810_XXV_BACKPLANE: 3947 case ICE_DEV_ID_E810_XXV_QSFP: 3948 case ICE_DEV_ID_E810_XXV_SFP: 3949 ice_set_feature_support(pf, ICE_F_DSCP); 3950 if (ice_is_phy_rclk_in_netlist(&pf->hw)) 3951 ice_set_feature_support(pf, ICE_F_PHY_RCLK); 3952 /* If we don't own the timer - don't enable other caps */ 3953 if (!ice_pf_src_tmr_owned(pf)) 3954 break; 3955 if (ice_is_cgu_in_netlist(&pf->hw)) 3956 ice_set_feature_support(pf, ICE_F_CGU); 3957 if (ice_is_clock_mux_in_netlist(&pf->hw)) 3958 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 3959 if (ice_gnss_is_gps_present(&pf->hw)) 3960 ice_set_feature_support(pf, ICE_F_GNSS); 3961 break; 3962 default: 3963 break; 3964 } 3965 } 3966 3967 /** 3968 * ice_vsi_update_security - update security block in VSI 3969 * @vsi: pointer to VSI structure 3970 * @fill: function pointer to fill ctx 3971 */ 3972 int 3973 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 3974 { 3975 struct ice_vsi_ctx ctx = { 0 }; 3976 3977 ctx.info = vsi->info; 3978 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 3979 fill(&ctx); 3980 3981 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 3982 return -ENODEV; 3983 3984 vsi->info = ctx.info; 3985 return 0; 3986 } 3987 3988 /** 3989 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 3990 * @ctx: pointer to VSI ctx structure 3991 */ 3992 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 3993 { 3994 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 3995 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3996 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3997 } 3998 3999 /** 4000 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4001 * @ctx: pointer to VSI ctx structure 4002 */ 4003 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4004 { 4005 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4006 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4007 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4008 } 4009 4010 /** 4011 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4012 * @ctx: pointer to VSI ctx structure 4013 */ 4014 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4015 { 4016 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4017 } 4018 4019 /** 4020 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4021 * @ctx: pointer to VSI ctx structure 4022 */ 4023 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4024 { 4025 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4026 } 4027 4028 /** 4029 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 4030 * @vsi: pointer to VSI structure 4031 * @set: set or unset the bit 4032 */ 4033 int 4034 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 4035 { 4036 struct ice_vsi_ctx ctx = { 4037 .info = vsi->info, 4038 }; 4039 4040 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4041 if (set) 4042 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4043 else 4044 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 4045 4046 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4047 return -ENODEV; 4048 4049 vsi->info = ctx.info; 4050 return 0; 4051 } 4052