1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 ctxt->info.outer_vlan_flags |= 891 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 892 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 893 } 894 /* Have 1:1 UP mapping for both ingress/egress tables */ 895 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 896 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 897 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 898 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 899 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 900 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 901 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 902 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 903 ctxt->info.ingress_table = cpu_to_le32(table); 904 ctxt->info.egress_table = cpu_to_le32(table); 905 /* Have 1:1 UP mapping for outer to inner UP table */ 906 ctxt->info.outer_up_table = cpu_to_le32(table); 907 /* No Outer tag support outer_tag_flags remains to zero */ 908 } 909 910 /** 911 * ice_vsi_setup_q_map - Setup a VSI queue map 912 * @vsi: the VSI being configured 913 * @ctxt: VSI context structure 914 */ 915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 916 { 917 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 918 u16 num_txq_per_tc, num_rxq_per_tc; 919 u16 qcount_tx = vsi->alloc_txq; 920 u16 qcount_rx = vsi->alloc_rxq; 921 u8 netdev_tc = 0; 922 int i; 923 924 if (!vsi->tc_cfg.numtc) { 925 /* at least TC0 should be enabled by default */ 926 vsi->tc_cfg.numtc = 1; 927 vsi->tc_cfg.ena_tc = 1; 928 } 929 930 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 931 if (!num_rxq_per_tc) 932 num_rxq_per_tc = 1; 933 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 934 if (!num_txq_per_tc) 935 num_txq_per_tc = 1; 936 937 /* find the (rounded up) power-of-2 of qcount */ 938 pow = (u16)order_base_2(num_rxq_per_tc); 939 940 /* TC mapping is a function of the number of Rx queues assigned to the 941 * VSI for each traffic class and the offset of these queues. 942 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 943 * queues allocated to TC0. No:of queues is a power-of-2. 944 * 945 * If TC is not enabled, the queue offset is set to 0, and allocate one 946 * queue, this way, traffic for the given TC will be sent to the default 947 * queue. 948 * 949 * Setup number and offset of Rx queues for all TCs for the VSI 950 */ 951 ice_for_each_traffic_class(i) { 952 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 953 /* TC is not enabled */ 954 vsi->tc_cfg.tc_info[i].qoffset = 0; 955 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 956 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 957 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 958 ctxt->info.tc_mapping[i] = 0; 959 continue; 960 } 961 962 /* TC is enabled */ 963 vsi->tc_cfg.tc_info[i].qoffset = offset; 964 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 965 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 966 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 967 968 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 969 ICE_AQ_VSI_TC_Q_OFFSET_M) | 970 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 971 ICE_AQ_VSI_TC_Q_NUM_M); 972 offset += num_rxq_per_tc; 973 tx_count += num_txq_per_tc; 974 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 975 } 976 977 /* if offset is non-zero, means it is calculated correctly based on 978 * enabled TCs for a given VSI otherwise qcount_rx will always 979 * be correct and non-zero because it is based off - VSI's 980 * allocated Rx queues which is at least 1 (hence qcount_tx will be 981 * at least 1) 982 */ 983 if (offset) 984 vsi->num_rxq = offset; 985 else 986 vsi->num_rxq = num_rxq_per_tc; 987 988 if (vsi->num_rxq > vsi->alloc_rxq) { 989 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 990 vsi->num_rxq, vsi->alloc_rxq); 991 return -EINVAL; 992 } 993 994 vsi->num_txq = tx_count; 995 if (vsi->num_txq > vsi->alloc_txq) { 996 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 997 vsi->num_txq, vsi->alloc_txq); 998 return -EINVAL; 999 } 1000 1001 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1002 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1003 /* since there is a chance that num_rxq could have been changed 1004 * in the above for loop, make num_txq equal to num_rxq. 1005 */ 1006 vsi->num_txq = vsi->num_rxq; 1007 } 1008 1009 /* Rx queue mapping */ 1010 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1011 /* q_mapping buffer holds the info for the first queue allocated for 1012 * this VSI in the PF space and also the number of queues associated 1013 * with this VSI. 1014 */ 1015 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1016 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1023 * @ctxt: the VSI context being set 1024 * @vsi: the VSI being configured 1025 */ 1026 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1027 { 1028 u8 dflt_q_group, dflt_q_prio; 1029 u16 dflt_q, report_q, val; 1030 1031 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1032 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1033 return; 1034 1035 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1036 ctxt->info.valid_sections |= cpu_to_le16(val); 1037 dflt_q = 0; 1038 dflt_q_group = 0; 1039 report_q = 0; 1040 dflt_q_prio = 0; 1041 1042 /* enable flow director filtering/programming */ 1043 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1044 ctxt->info.fd_options = cpu_to_le16(val); 1045 /* max of allocated flow director filters */ 1046 ctxt->info.max_fd_fltr_dedicated = 1047 cpu_to_le16(vsi->num_gfltr); 1048 /* max of shared flow director filters any VSI may program */ 1049 ctxt->info.max_fd_fltr_shared = 1050 cpu_to_le16(vsi->num_bfltr); 1051 /* default queue index within the VSI of the default FD */ 1052 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1053 ICE_AQ_VSI_FD_DEF_Q_M); 1054 /* target queue or queue group to the FD filter */ 1055 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1056 ICE_AQ_VSI_FD_DEF_GRP_M); 1057 ctxt->info.fd_def_q = cpu_to_le16(val); 1058 /* queue index on which FD filter completion is reported */ 1059 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1060 ICE_AQ_VSI_FD_REPORT_Q_M); 1061 /* priority of the default qindex action */ 1062 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1063 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1064 ctxt->info.fd_report_opt = cpu_to_le16(val); 1065 } 1066 1067 /** 1068 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1069 * @ctxt: the VSI context being set 1070 * @vsi: the VSI being configured 1071 */ 1072 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1073 { 1074 u8 lut_type, hash_type; 1075 struct device *dev; 1076 struct ice_pf *pf; 1077 1078 pf = vsi->back; 1079 dev = ice_pf_to_dev(pf); 1080 1081 switch (vsi->type) { 1082 case ICE_VSI_CHNL: 1083 case ICE_VSI_PF: 1084 /* PF VSI will inherit RSS instance of PF */ 1085 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1086 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1087 break; 1088 case ICE_VSI_VF: 1089 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1090 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1091 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1092 break; 1093 default: 1094 dev_dbg(dev, "Unsupported VSI type %s\n", 1095 ice_vsi_type_str(vsi->type)); 1096 return; 1097 } 1098 1099 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1100 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1101 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1102 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1103 } 1104 1105 static void 1106 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1107 { 1108 struct ice_pf *pf = vsi->back; 1109 u16 qcount, qmap; 1110 u8 offset = 0; 1111 int pow; 1112 1113 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1114 1115 pow = order_base_2(qcount); 1116 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1117 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1118 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1119 ICE_AQ_VSI_TC_Q_NUM_M); 1120 1121 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1122 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1123 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1124 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1125 } 1126 1127 /** 1128 * ice_vsi_init - Create and initialize a VSI 1129 * @vsi: the VSI being configured 1130 * @init_vsi: is this call creating a VSI 1131 * 1132 * This initializes a VSI context depending on the VSI type to be added and 1133 * passes it down to the add_vsi aq command to create a new VSI. 1134 */ 1135 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1136 { 1137 struct ice_pf *pf = vsi->back; 1138 struct ice_hw *hw = &pf->hw; 1139 struct ice_vsi_ctx *ctxt; 1140 struct device *dev; 1141 int ret = 0; 1142 1143 dev = ice_pf_to_dev(pf); 1144 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1145 if (!ctxt) 1146 return -ENOMEM; 1147 1148 switch (vsi->type) { 1149 case ICE_VSI_CTRL: 1150 case ICE_VSI_LB: 1151 case ICE_VSI_PF: 1152 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1153 break; 1154 case ICE_VSI_SWITCHDEV_CTRL: 1155 case ICE_VSI_CHNL: 1156 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1157 break; 1158 case ICE_VSI_VF: 1159 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1160 /* VF number here is the absolute VF number (0-255) */ 1161 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1162 break; 1163 default: 1164 ret = -ENODEV; 1165 goto out; 1166 } 1167 1168 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1169 * prune enabled 1170 */ 1171 if (vsi->type == ICE_VSI_CHNL) { 1172 struct ice_vsi *main_vsi; 1173 1174 main_vsi = ice_get_main_vsi(pf); 1175 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1176 ctxt->info.sw_flags2 |= 1177 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1178 else 1179 ctxt->info.sw_flags2 &= 1180 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1181 } 1182 1183 ice_set_dflt_vsi_ctx(hw, ctxt); 1184 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1185 ice_set_fd_vsi_ctx(ctxt, vsi); 1186 /* if the switch is in VEB mode, allow VSI loopback */ 1187 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1188 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1189 1190 /* Set LUT type and HASH type if RSS is enabled */ 1191 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1192 vsi->type != ICE_VSI_CTRL) { 1193 ice_set_rss_vsi_ctx(ctxt, vsi); 1194 /* if updating VSI context, make sure to set valid_section: 1195 * to indicate which section of VSI context being updated 1196 */ 1197 if (!init_vsi) 1198 ctxt->info.valid_sections |= 1199 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1200 } 1201 1202 ctxt->info.sw_id = vsi->port_info->sw_id; 1203 if (vsi->type == ICE_VSI_CHNL) { 1204 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1205 } else { 1206 ret = ice_vsi_setup_q_map(vsi, ctxt); 1207 if (ret) 1208 goto out; 1209 1210 if (!init_vsi) /* means VSI being updated */ 1211 /* must to indicate which section of VSI context are 1212 * being modified 1213 */ 1214 ctxt->info.valid_sections |= 1215 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1216 } 1217 1218 /* Allow control frames out of main VSI */ 1219 if (vsi->type == ICE_VSI_PF) { 1220 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1221 ctxt->info.valid_sections |= 1222 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1223 } 1224 1225 if (init_vsi) { 1226 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1227 if (ret) { 1228 dev_err(dev, "Add VSI failed, err %d\n", ret); 1229 ret = -EIO; 1230 goto out; 1231 } 1232 } else { 1233 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1234 if (ret) { 1235 dev_err(dev, "Update VSI failed, err %d\n", ret); 1236 ret = -EIO; 1237 goto out; 1238 } 1239 } 1240 1241 /* keep context for update VSI operations */ 1242 vsi->info = ctxt->info; 1243 1244 /* record VSI number returned */ 1245 vsi->vsi_num = ctxt->vsi_num; 1246 1247 out: 1248 kfree(ctxt); 1249 return ret; 1250 } 1251 1252 /** 1253 * ice_free_res - free a block of resources 1254 * @res: pointer to the resource 1255 * @index: starting index previously returned by ice_get_res 1256 * @id: identifier to track owner 1257 * 1258 * Returns number of resources freed 1259 */ 1260 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1261 { 1262 int count = 0; 1263 int i; 1264 1265 if (!res || index >= res->end) 1266 return -EINVAL; 1267 1268 id |= ICE_RES_VALID_BIT; 1269 for (i = index; i < res->end && res->list[i] == id; i++) { 1270 res->list[i] = 0; 1271 count++; 1272 } 1273 1274 return count; 1275 } 1276 1277 /** 1278 * ice_search_res - Search the tracker for a block of resources 1279 * @res: pointer to the resource 1280 * @needed: size of the block needed 1281 * @id: identifier to track owner 1282 * 1283 * Returns the base item index of the block, or -ENOMEM for error 1284 */ 1285 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1286 { 1287 u16 start = 0, end = 0; 1288 1289 if (needed > res->end) 1290 return -ENOMEM; 1291 1292 id |= ICE_RES_VALID_BIT; 1293 1294 do { 1295 /* skip already allocated entries */ 1296 if (res->list[end++] & ICE_RES_VALID_BIT) { 1297 start = end; 1298 if ((start + needed) > res->end) 1299 break; 1300 } 1301 1302 if (end == (start + needed)) { 1303 int i = start; 1304 1305 /* there was enough, so assign it to the requestor */ 1306 while (i != end) 1307 res->list[i++] = id; 1308 1309 return start; 1310 } 1311 } while (end < res->end); 1312 1313 return -ENOMEM; 1314 } 1315 1316 /** 1317 * ice_get_free_res_count - Get free count from a resource tracker 1318 * @res: Resource tracker instance 1319 */ 1320 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1321 { 1322 u16 i, count = 0; 1323 1324 for (i = 0; i < res->end; i++) 1325 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1326 count++; 1327 1328 return count; 1329 } 1330 1331 /** 1332 * ice_get_res - get a block of resources 1333 * @pf: board private structure 1334 * @res: pointer to the resource 1335 * @needed: size of the block needed 1336 * @id: identifier to track owner 1337 * 1338 * Returns the base item index of the block, or negative for error 1339 */ 1340 int 1341 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1342 { 1343 if (!res || !pf) 1344 return -EINVAL; 1345 1346 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1347 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1348 needed, res->num_entries, id); 1349 return -EINVAL; 1350 } 1351 1352 return ice_search_res(res, needed, id); 1353 } 1354 1355 /** 1356 * ice_get_vf_ctrl_res - Get VF control VSI resource 1357 * @pf: pointer to the PF structure 1358 * @vsi: the VSI to allocate a resource for 1359 * 1360 * Look up whether another VF has already allocated the control VSI resource. 1361 * If so, re-use this resource so that we share it among all VFs. 1362 * 1363 * Otherwise, allocate the resource and return it. 1364 */ 1365 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1366 { 1367 struct ice_vf *vf; 1368 unsigned int bkt; 1369 int base; 1370 1371 rcu_read_lock(); 1372 ice_for_each_vf_rcu(pf, bkt, vf) { 1373 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1374 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1375 rcu_read_unlock(); 1376 return base; 1377 } 1378 } 1379 rcu_read_unlock(); 1380 1381 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1382 ICE_RES_VF_CTRL_VEC_ID); 1383 } 1384 1385 /** 1386 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1387 * @vsi: ptr to the VSI 1388 * 1389 * This should only be called after ice_vsi_alloc() which allocates the 1390 * corresponding SW VSI structure and initializes num_queue_pairs for the 1391 * newly allocated VSI. 1392 * 1393 * Returns 0 on success or negative on failure 1394 */ 1395 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1396 { 1397 struct ice_pf *pf = vsi->back; 1398 struct device *dev; 1399 u16 num_q_vectors; 1400 int base; 1401 1402 dev = ice_pf_to_dev(pf); 1403 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1404 if (vsi->type == ICE_VSI_VF) 1405 return 0; 1406 if (vsi->type == ICE_VSI_CHNL) 1407 return 0; 1408 1409 if (vsi->base_vector) { 1410 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1411 vsi->vsi_num, vsi->base_vector); 1412 return -EEXIST; 1413 } 1414 1415 num_q_vectors = vsi->num_q_vectors; 1416 /* reserve slots from OS requested IRQs */ 1417 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1418 base = ice_get_vf_ctrl_res(pf, vsi); 1419 } else { 1420 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1421 vsi->idx); 1422 } 1423 1424 if (base < 0) { 1425 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1426 ice_get_free_res_count(pf->irq_tracker), 1427 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1428 return -ENOENT; 1429 } 1430 vsi->base_vector = (u16)base; 1431 pf->num_avail_sw_msix -= num_q_vectors; 1432 1433 return 0; 1434 } 1435 1436 /** 1437 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1438 * @vsi: the VSI having rings deallocated 1439 */ 1440 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1441 { 1442 int i; 1443 1444 /* Avoid stale references by clearing map from vector to ring */ 1445 if (vsi->q_vectors) { 1446 ice_for_each_q_vector(vsi, i) { 1447 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1448 1449 if (q_vector) { 1450 q_vector->tx.tx_ring = NULL; 1451 q_vector->rx.rx_ring = NULL; 1452 } 1453 } 1454 } 1455 1456 if (vsi->tx_rings) { 1457 ice_for_each_alloc_txq(vsi, i) { 1458 if (vsi->tx_rings[i]) { 1459 kfree_rcu(vsi->tx_rings[i], rcu); 1460 WRITE_ONCE(vsi->tx_rings[i], NULL); 1461 } 1462 } 1463 } 1464 if (vsi->rx_rings) { 1465 ice_for_each_alloc_rxq(vsi, i) { 1466 if (vsi->rx_rings[i]) { 1467 kfree_rcu(vsi->rx_rings[i], rcu); 1468 WRITE_ONCE(vsi->rx_rings[i], NULL); 1469 } 1470 } 1471 } 1472 } 1473 1474 /** 1475 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1476 * @vsi: VSI which is having rings allocated 1477 */ 1478 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1479 { 1480 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1481 struct ice_pf *pf = vsi->back; 1482 struct device *dev; 1483 u16 i; 1484 1485 dev = ice_pf_to_dev(pf); 1486 /* Allocate Tx rings */ 1487 ice_for_each_alloc_txq(vsi, i) { 1488 struct ice_tx_ring *ring; 1489 1490 /* allocate with kzalloc(), free with kfree_rcu() */ 1491 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1492 1493 if (!ring) 1494 goto err_out; 1495 1496 ring->q_index = i; 1497 ring->reg_idx = vsi->txq_map[i]; 1498 ring->vsi = vsi; 1499 ring->tx_tstamps = &pf->ptp.port.tx; 1500 ring->dev = dev; 1501 ring->count = vsi->num_tx_desc; 1502 ring->txq_teid = ICE_INVAL_TEID; 1503 if (dvm_ena) 1504 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1505 else 1506 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1507 WRITE_ONCE(vsi->tx_rings[i], ring); 1508 } 1509 1510 /* Allocate Rx rings */ 1511 ice_for_each_alloc_rxq(vsi, i) { 1512 struct ice_rx_ring *ring; 1513 1514 /* allocate with kzalloc(), free with kfree_rcu() */ 1515 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1516 if (!ring) 1517 goto err_out; 1518 1519 ring->q_index = i; 1520 ring->reg_idx = vsi->rxq_map[i]; 1521 ring->vsi = vsi; 1522 ring->netdev = vsi->netdev; 1523 ring->dev = dev; 1524 ring->count = vsi->num_rx_desc; 1525 ring->cached_phctime = pf->ptp.cached_phc_time; 1526 WRITE_ONCE(vsi->rx_rings[i], ring); 1527 } 1528 1529 return 0; 1530 1531 err_out: 1532 ice_vsi_clear_rings(vsi); 1533 return -ENOMEM; 1534 } 1535 1536 /** 1537 * ice_vsi_manage_rss_lut - disable/enable RSS 1538 * @vsi: the VSI being changed 1539 * @ena: boolean value indicating if this is an enable or disable request 1540 * 1541 * In the event of disable request for RSS, this function will zero out RSS 1542 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1543 * LUT. 1544 */ 1545 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1546 { 1547 u8 *lut; 1548 1549 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1550 if (!lut) 1551 return; 1552 1553 if (ena) { 1554 if (vsi->rss_lut_user) 1555 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1556 else 1557 ice_fill_rss_lut(lut, vsi->rss_table_size, 1558 vsi->rss_size); 1559 } 1560 1561 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1562 kfree(lut); 1563 } 1564 1565 /** 1566 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1567 * @vsi: VSI to be configured 1568 * @disable: set to true to have FCS / CRC in the frame data 1569 */ 1570 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1571 { 1572 int i; 1573 1574 ice_for_each_rxq(vsi, i) 1575 if (disable) 1576 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1577 else 1578 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1579 } 1580 1581 /** 1582 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1583 * @vsi: VSI to be configured 1584 */ 1585 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1586 { 1587 struct ice_pf *pf = vsi->back; 1588 struct device *dev; 1589 u8 *lut, *key; 1590 int err; 1591 1592 dev = ice_pf_to_dev(pf); 1593 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1594 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1595 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1596 } else { 1597 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1598 1599 /* If orig_rss_size is valid and it is less than determined 1600 * main VSI's rss_size, update main VSI's rss_size to be 1601 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1602 * RSS table gets programmed to be correct (whatever it was 1603 * to begin with (prior to setup-tc for ADQ config) 1604 */ 1605 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1606 vsi->orig_rss_size <= vsi->num_rxq) { 1607 vsi->rss_size = vsi->orig_rss_size; 1608 /* now orig_rss_size is used, reset it to zero */ 1609 vsi->orig_rss_size = 0; 1610 } 1611 } 1612 1613 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1614 if (!lut) 1615 return -ENOMEM; 1616 1617 if (vsi->rss_lut_user) 1618 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1619 else 1620 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1621 1622 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1623 if (err) { 1624 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1625 goto ice_vsi_cfg_rss_exit; 1626 } 1627 1628 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1629 if (!key) { 1630 err = -ENOMEM; 1631 goto ice_vsi_cfg_rss_exit; 1632 } 1633 1634 if (vsi->rss_hkey_user) 1635 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1636 else 1637 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1638 1639 err = ice_set_rss_key(vsi, key); 1640 if (err) 1641 dev_err(dev, "set_rss_key failed, error %d\n", err); 1642 1643 kfree(key); 1644 ice_vsi_cfg_rss_exit: 1645 kfree(lut); 1646 return err; 1647 } 1648 1649 /** 1650 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1651 * @vsi: VSI to be configured 1652 * 1653 * This function will only be called during the VF VSI setup. Upon successful 1654 * completion of package download, this function will configure default RSS 1655 * input sets for VF VSI. 1656 */ 1657 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1658 { 1659 struct ice_pf *pf = vsi->back; 1660 struct device *dev; 1661 int status; 1662 1663 dev = ice_pf_to_dev(pf); 1664 if (ice_is_safe_mode(pf)) { 1665 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1666 vsi->vsi_num); 1667 return; 1668 } 1669 1670 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1671 if (status) 1672 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1673 vsi->vsi_num, status); 1674 } 1675 1676 /** 1677 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1678 * @vsi: VSI to be configured 1679 * 1680 * This function will only be called after successful download package call 1681 * during initialization of PF. Since the downloaded package will erase the 1682 * RSS section, this function will configure RSS input sets for different 1683 * flow types. The last profile added has the highest priority, therefore 2 1684 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1685 * (i.e. IPv4 src/dst TCP src/dst port). 1686 */ 1687 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1688 { 1689 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1690 struct ice_pf *pf = vsi->back; 1691 struct ice_hw *hw = &pf->hw; 1692 struct device *dev; 1693 int status; 1694 1695 dev = ice_pf_to_dev(pf); 1696 if (ice_is_safe_mode(pf)) { 1697 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1698 vsi_num); 1699 return; 1700 } 1701 /* configure RSS for IPv4 with input set IP src/dst */ 1702 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1703 ICE_FLOW_SEG_HDR_IPV4); 1704 if (status) 1705 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1706 vsi_num, status); 1707 1708 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1709 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1710 ICE_FLOW_SEG_HDR_IPV6); 1711 if (status) 1712 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1713 vsi_num, status); 1714 1715 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1716 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1717 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1718 if (status) 1719 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1720 vsi_num, status); 1721 1722 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1723 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1724 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1725 if (status) 1726 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1727 vsi_num, status); 1728 1729 /* configure RSS for sctp4 with input set IP src/dst */ 1730 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1731 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1732 if (status) 1733 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1734 vsi_num, status); 1735 1736 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1737 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1738 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1739 if (status) 1740 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1741 vsi_num, status); 1742 1743 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1744 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1745 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1746 if (status) 1747 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1748 vsi_num, status); 1749 1750 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1751 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1752 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1753 if (status) 1754 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1755 vsi_num, status); 1756 1757 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1758 ICE_FLOW_SEG_HDR_ESP); 1759 if (status) 1760 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1761 vsi_num, status); 1762 } 1763 1764 /** 1765 * ice_pf_state_is_nominal - checks the PF for nominal state 1766 * @pf: pointer to PF to check 1767 * 1768 * Check the PF's state for a collection of bits that would indicate 1769 * the PF is in a state that would inhibit normal operation for 1770 * driver functionality. 1771 * 1772 * Returns true if PF is in a nominal state, false otherwise 1773 */ 1774 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1775 { 1776 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1777 1778 if (!pf) 1779 return false; 1780 1781 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1782 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1783 return false; 1784 1785 return true; 1786 } 1787 1788 /** 1789 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1790 * @vsi: the VSI to be updated 1791 */ 1792 void ice_update_eth_stats(struct ice_vsi *vsi) 1793 { 1794 struct ice_eth_stats *prev_es, *cur_es; 1795 struct ice_hw *hw = &vsi->back->hw; 1796 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1797 1798 prev_es = &vsi->eth_stats_prev; 1799 cur_es = &vsi->eth_stats; 1800 1801 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1802 &prev_es->rx_bytes, &cur_es->rx_bytes); 1803 1804 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1805 &prev_es->rx_unicast, &cur_es->rx_unicast); 1806 1807 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1808 &prev_es->rx_multicast, &cur_es->rx_multicast); 1809 1810 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1811 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1812 1813 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1814 &prev_es->rx_discards, &cur_es->rx_discards); 1815 1816 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1817 &prev_es->tx_bytes, &cur_es->tx_bytes); 1818 1819 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1820 &prev_es->tx_unicast, &cur_es->tx_unicast); 1821 1822 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1823 &prev_es->tx_multicast, &cur_es->tx_multicast); 1824 1825 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1826 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1827 1828 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1829 &prev_es->tx_errors, &cur_es->tx_errors); 1830 1831 vsi->stat_offsets_loaded = true; 1832 } 1833 1834 /** 1835 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1836 * @vsi: VSI 1837 */ 1838 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1839 { 1840 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1841 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1842 vsi->rx_buf_len = ICE_RXBUF_2048; 1843 #if (PAGE_SIZE < 8192) 1844 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1845 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1846 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1847 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1848 #endif 1849 } else { 1850 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1851 #if (PAGE_SIZE < 8192) 1852 vsi->rx_buf_len = ICE_RXBUF_3072; 1853 #else 1854 vsi->rx_buf_len = ICE_RXBUF_2048; 1855 #endif 1856 } 1857 } 1858 1859 /** 1860 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1861 * @hw: HW pointer 1862 * @pf_q: index of the Rx queue in the PF's queue space 1863 * @rxdid: flexible descriptor RXDID 1864 * @prio: priority for the RXDID for this queue 1865 * @ena_ts: true to enable timestamp and false to disable timestamp 1866 */ 1867 void 1868 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1869 bool ena_ts) 1870 { 1871 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1872 1873 /* clear any previous values */ 1874 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1875 QRXFLXP_CNTXT_RXDID_PRIO_M | 1876 QRXFLXP_CNTXT_TS_M); 1877 1878 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1879 QRXFLXP_CNTXT_RXDID_IDX_M; 1880 1881 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1882 QRXFLXP_CNTXT_RXDID_PRIO_M; 1883 1884 if (ena_ts) 1885 /* Enable TimeSync on this queue */ 1886 regval |= QRXFLXP_CNTXT_TS_M; 1887 1888 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1889 } 1890 1891 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1892 { 1893 if (q_idx >= vsi->num_rxq) 1894 return -EINVAL; 1895 1896 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1897 } 1898 1899 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1900 { 1901 struct ice_aqc_add_tx_qgrp *qg_buf; 1902 int err; 1903 1904 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1905 return -EINVAL; 1906 1907 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1908 if (!qg_buf) 1909 return -ENOMEM; 1910 1911 qg_buf->num_txqs = 1; 1912 1913 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1914 kfree(qg_buf); 1915 return err; 1916 } 1917 1918 /** 1919 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1920 * @vsi: the VSI being configured 1921 * 1922 * Return 0 on success and a negative value on error 1923 * Configure the Rx VSI for operation. 1924 */ 1925 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1926 { 1927 u16 i; 1928 1929 if (vsi->type == ICE_VSI_VF) 1930 goto setup_rings; 1931 1932 ice_vsi_cfg_frame_size(vsi); 1933 setup_rings: 1934 /* set up individual rings */ 1935 ice_for_each_rxq(vsi, i) { 1936 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1937 1938 if (err) 1939 return err; 1940 } 1941 1942 return 0; 1943 } 1944 1945 /** 1946 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1947 * @vsi: the VSI being configured 1948 * @rings: Tx ring array to be configured 1949 * @count: number of Tx ring array elements 1950 * 1951 * Return 0 on success and a negative value on error 1952 * Configure the Tx VSI for operation. 1953 */ 1954 static int 1955 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1956 { 1957 struct ice_aqc_add_tx_qgrp *qg_buf; 1958 u16 q_idx = 0; 1959 int err = 0; 1960 1961 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1962 if (!qg_buf) 1963 return -ENOMEM; 1964 1965 qg_buf->num_txqs = 1; 1966 1967 for (q_idx = 0; q_idx < count; q_idx++) { 1968 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1969 if (err) 1970 goto err_cfg_txqs; 1971 } 1972 1973 err_cfg_txqs: 1974 kfree(qg_buf); 1975 return err; 1976 } 1977 1978 /** 1979 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1980 * @vsi: the VSI being configured 1981 * 1982 * Return 0 on success and a negative value on error 1983 * Configure the Tx VSI for operation. 1984 */ 1985 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1986 { 1987 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1988 } 1989 1990 /** 1991 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1992 * @vsi: the VSI being configured 1993 * 1994 * Return 0 on success and a negative value on error 1995 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1996 */ 1997 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1998 { 1999 int ret; 2000 int i; 2001 2002 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 2003 if (ret) 2004 return ret; 2005 2006 ice_for_each_rxq(vsi, i) 2007 ice_tx_xsk_pool(vsi, i); 2008 2009 return ret; 2010 } 2011 2012 /** 2013 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 2014 * @intrl: interrupt rate limit in usecs 2015 * @gran: interrupt rate limit granularity in usecs 2016 * 2017 * This function converts a decimal interrupt rate limit in usecs to the format 2018 * expected by firmware. 2019 */ 2020 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2021 { 2022 u32 val = intrl / gran; 2023 2024 if (val) 2025 return val | GLINT_RATE_INTRL_ENA_M; 2026 return 0; 2027 } 2028 2029 /** 2030 * ice_write_intrl - write throttle rate limit to interrupt specific register 2031 * @q_vector: pointer to interrupt specific structure 2032 * @intrl: throttle rate limit in microseconds to write 2033 */ 2034 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2035 { 2036 struct ice_hw *hw = &q_vector->vsi->back->hw; 2037 2038 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2039 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2040 } 2041 2042 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2043 { 2044 switch (rc->type) { 2045 case ICE_RX_CONTAINER: 2046 if (rc->rx_ring) 2047 return rc->rx_ring->q_vector; 2048 break; 2049 case ICE_TX_CONTAINER: 2050 if (rc->tx_ring) 2051 return rc->tx_ring->q_vector; 2052 break; 2053 default: 2054 break; 2055 } 2056 2057 return NULL; 2058 } 2059 2060 /** 2061 * __ice_write_itr - write throttle rate to register 2062 * @q_vector: pointer to interrupt data structure 2063 * @rc: pointer to ring container 2064 * @itr: throttle rate in microseconds to write 2065 */ 2066 static void __ice_write_itr(struct ice_q_vector *q_vector, 2067 struct ice_ring_container *rc, u16 itr) 2068 { 2069 struct ice_hw *hw = &q_vector->vsi->back->hw; 2070 2071 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2072 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2073 } 2074 2075 /** 2076 * ice_write_itr - write throttle rate to queue specific register 2077 * @rc: pointer to ring container 2078 * @itr: throttle rate in microseconds to write 2079 */ 2080 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2081 { 2082 struct ice_q_vector *q_vector; 2083 2084 q_vector = ice_pull_qvec_from_rc(rc); 2085 if (!q_vector) 2086 return; 2087 2088 __ice_write_itr(q_vector, rc, itr); 2089 } 2090 2091 /** 2092 * ice_set_q_vector_intrl - set up interrupt rate limiting 2093 * @q_vector: the vector to be configured 2094 * 2095 * Interrupt rate limiting is local to the vector, not per-queue so we must 2096 * detect if either ring container has dynamic moderation enabled to decide 2097 * what to set the interrupt rate limit to via INTRL settings. In the case that 2098 * dynamic moderation is disabled on both, write the value with the cached 2099 * setting to make sure INTRL register matches the user visible value. 2100 */ 2101 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2102 { 2103 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2104 /* in the case of dynamic enabled, cap each vector to no more 2105 * than (4 us) 250,000 ints/sec, which allows low latency 2106 * but still less than 500,000 interrupts per second, which 2107 * reduces CPU a bit in the case of the lowest latency 2108 * setting. The 4 here is a value in microseconds. 2109 */ 2110 ice_write_intrl(q_vector, 4); 2111 } else { 2112 ice_write_intrl(q_vector, q_vector->intrl); 2113 } 2114 } 2115 2116 /** 2117 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2118 * @vsi: the VSI being configured 2119 * 2120 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2121 * for the VF VSI. 2122 */ 2123 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2124 { 2125 struct ice_pf *pf = vsi->back; 2126 struct ice_hw *hw = &pf->hw; 2127 u16 txq = 0, rxq = 0; 2128 int i, q; 2129 2130 ice_for_each_q_vector(vsi, i) { 2131 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2132 u16 reg_idx = q_vector->reg_idx; 2133 2134 ice_cfg_itr(hw, q_vector); 2135 2136 /* Both Transmit Queue Interrupt Cause Control register 2137 * and Receive Queue Interrupt Cause control register 2138 * expects MSIX_INDX field to be the vector index 2139 * within the function space and not the absolute 2140 * vector index across PF or across device. 2141 * For SR-IOV VF VSIs queue vector index always starts 2142 * with 1 since first vector index(0) is used for OICR 2143 * in VF space. Since VMDq and other PF VSIs are within 2144 * the PF function space, use the vector index that is 2145 * tracked for this PF. 2146 */ 2147 for (q = 0; q < q_vector->num_ring_tx; q++) { 2148 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2149 q_vector->tx.itr_idx); 2150 txq++; 2151 } 2152 2153 for (q = 0; q < q_vector->num_ring_rx; q++) { 2154 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2155 q_vector->rx.itr_idx); 2156 rxq++; 2157 } 2158 } 2159 } 2160 2161 /** 2162 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2163 * @vsi: the VSI whose rings are to be enabled 2164 * 2165 * Returns 0 on success and a negative value on error 2166 */ 2167 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2168 { 2169 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2170 } 2171 2172 /** 2173 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2174 * @vsi: the VSI whose rings are to be disabled 2175 * 2176 * Returns 0 on success and a negative value on error 2177 */ 2178 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2179 { 2180 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2181 } 2182 2183 /** 2184 * ice_vsi_stop_tx_rings - Disable Tx rings 2185 * @vsi: the VSI being configured 2186 * @rst_src: reset source 2187 * @rel_vmvf_num: Relative ID of VF/VM 2188 * @rings: Tx ring array to be stopped 2189 * @count: number of Tx ring array elements 2190 */ 2191 static int 2192 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2193 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2194 { 2195 u16 q_idx; 2196 2197 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2198 return -EINVAL; 2199 2200 for (q_idx = 0; q_idx < count; q_idx++) { 2201 struct ice_txq_meta txq_meta = { }; 2202 int status; 2203 2204 if (!rings || !rings[q_idx]) 2205 return -EINVAL; 2206 2207 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2208 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2209 rings[q_idx], &txq_meta); 2210 2211 if (status) 2212 return status; 2213 } 2214 2215 return 0; 2216 } 2217 2218 /** 2219 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2220 * @vsi: the VSI being configured 2221 * @rst_src: reset source 2222 * @rel_vmvf_num: Relative ID of VF/VM 2223 */ 2224 int 2225 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2226 u16 rel_vmvf_num) 2227 { 2228 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2229 } 2230 2231 /** 2232 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2233 * @vsi: the VSI being configured 2234 */ 2235 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2236 { 2237 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2238 } 2239 2240 /** 2241 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2242 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2243 * 2244 * returns true if Rx VLAN pruning is enabled and false otherwise. 2245 */ 2246 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2247 { 2248 if (!vsi) 2249 return false; 2250 2251 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2252 } 2253 2254 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2255 { 2256 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2257 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2258 vsi->tc_cfg.numtc = 1; 2259 return; 2260 } 2261 2262 /* set VSI TC information based on DCB config */ 2263 ice_vsi_set_dcb_tc_cfg(vsi); 2264 } 2265 2266 /** 2267 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2268 * @vsi: VSI to set the q_vectors register index on 2269 */ 2270 static int 2271 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2272 { 2273 u16 i; 2274 2275 if (!vsi || !vsi->q_vectors) 2276 return -EINVAL; 2277 2278 ice_for_each_q_vector(vsi, i) { 2279 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2280 2281 if (!q_vector) { 2282 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2283 i, vsi->vsi_num); 2284 goto clear_reg_idx; 2285 } 2286 2287 if (vsi->type == ICE_VSI_VF) { 2288 struct ice_vf *vf = vsi->vf; 2289 2290 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2291 } else { 2292 q_vector->reg_idx = 2293 q_vector->v_idx + vsi->base_vector; 2294 } 2295 } 2296 2297 return 0; 2298 2299 clear_reg_idx: 2300 ice_for_each_q_vector(vsi, i) { 2301 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2302 2303 if (q_vector) 2304 q_vector->reg_idx = 0; 2305 } 2306 2307 return -EINVAL; 2308 } 2309 2310 /** 2311 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2312 * @vsi: the VSI being configured 2313 * @tx: bool to determine Tx or Rx rule 2314 * @create: bool to determine create or remove Rule 2315 */ 2316 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2317 { 2318 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2319 enum ice_sw_fwd_act_type act); 2320 struct ice_pf *pf = vsi->back; 2321 struct device *dev; 2322 int status; 2323 2324 dev = ice_pf_to_dev(pf); 2325 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2326 2327 if (tx) { 2328 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2329 ICE_DROP_PACKET); 2330 } else { 2331 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2332 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2333 create); 2334 } else { 2335 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2336 ICE_FWD_TO_VSI); 2337 } 2338 } 2339 2340 if (status) 2341 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2342 create ? "adding" : "removing", tx ? "TX" : "RX", 2343 vsi->vsi_num, status); 2344 } 2345 2346 /** 2347 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2348 * @vsi: pointer to the VSI 2349 * 2350 * This function will allocate new scheduler aggregator now if needed and will 2351 * move specified VSI into it. 2352 */ 2353 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2354 { 2355 struct device *dev = ice_pf_to_dev(vsi->back); 2356 struct ice_agg_node *agg_node_iter = NULL; 2357 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2358 struct ice_agg_node *agg_node = NULL; 2359 int node_offset, max_agg_nodes = 0; 2360 struct ice_port_info *port_info; 2361 struct ice_pf *pf = vsi->back; 2362 u32 agg_node_id_start = 0; 2363 int status; 2364 2365 /* create (as needed) scheduler aggregator node and move VSI into 2366 * corresponding aggregator node 2367 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2368 * - VF aggregator nodes will contain VF VSI 2369 */ 2370 port_info = pf->hw.port_info; 2371 if (!port_info) 2372 return; 2373 2374 switch (vsi->type) { 2375 case ICE_VSI_CTRL: 2376 case ICE_VSI_CHNL: 2377 case ICE_VSI_LB: 2378 case ICE_VSI_PF: 2379 case ICE_VSI_SWITCHDEV_CTRL: 2380 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2381 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2382 agg_node_iter = &pf->pf_agg_node[0]; 2383 break; 2384 case ICE_VSI_VF: 2385 /* user can create 'n' VFs on a given PF, but since max children 2386 * per aggregator node can be only 64. Following code handles 2387 * aggregator(s) for VF VSIs, either selects a agg_node which 2388 * was already created provided num_vsis < 64, otherwise 2389 * select next available node, which will be created 2390 */ 2391 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2392 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2393 agg_node_iter = &pf->vf_agg_node[0]; 2394 break; 2395 default: 2396 /* other VSI type, handle later if needed */ 2397 dev_dbg(dev, "unexpected VSI type %s\n", 2398 ice_vsi_type_str(vsi->type)); 2399 return; 2400 } 2401 2402 /* find the appropriate aggregator node */ 2403 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2404 /* see if we can find space in previously created 2405 * node if num_vsis < 64, otherwise skip 2406 */ 2407 if (agg_node_iter->num_vsis && 2408 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2409 agg_node_iter++; 2410 continue; 2411 } 2412 2413 if (agg_node_iter->valid && 2414 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2415 agg_id = agg_node_iter->agg_id; 2416 agg_node = agg_node_iter; 2417 break; 2418 } 2419 2420 /* find unclaimed agg_id */ 2421 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2422 agg_id = node_offset + agg_node_id_start; 2423 agg_node = agg_node_iter; 2424 break; 2425 } 2426 /* move to next agg_node */ 2427 agg_node_iter++; 2428 } 2429 2430 if (!agg_node) 2431 return; 2432 2433 /* if selected aggregator node was not created, create it */ 2434 if (!agg_node->valid) { 2435 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2436 (u8)vsi->tc_cfg.ena_tc); 2437 if (status) { 2438 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2439 agg_id); 2440 return; 2441 } 2442 /* aggregator node is created, store the needed info */ 2443 agg_node->valid = true; 2444 agg_node->agg_id = agg_id; 2445 } 2446 2447 /* move VSI to corresponding aggregator node */ 2448 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2449 (u8)vsi->tc_cfg.ena_tc); 2450 if (status) { 2451 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2452 vsi->idx, agg_id); 2453 return; 2454 } 2455 2456 /* keep active children count for aggregator node */ 2457 agg_node->num_vsis++; 2458 2459 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2460 * to aggregator node 2461 */ 2462 vsi->agg_node = agg_node; 2463 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2464 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2465 vsi->agg_node->num_vsis); 2466 } 2467 2468 /** 2469 * ice_vsi_setup - Set up a VSI by a given type 2470 * @pf: board private structure 2471 * @pi: pointer to the port_info instance 2472 * @vsi_type: VSI type 2473 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2474 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2475 * @ch: ptr to channel 2476 * 2477 * This allocates the sw VSI structure and its queue resources. 2478 * 2479 * Returns pointer to the successfully allocated and configured VSI sw struct on 2480 * success, NULL on failure. 2481 */ 2482 struct ice_vsi * 2483 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2484 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2485 struct ice_channel *ch) 2486 { 2487 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2488 struct device *dev = ice_pf_to_dev(pf); 2489 struct ice_vsi *vsi; 2490 int ret, i; 2491 2492 if (vsi_type == ICE_VSI_CHNL) 2493 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2494 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2495 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2496 else 2497 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2498 2499 if (!vsi) { 2500 dev_err(dev, "could not allocate VSI\n"); 2501 return NULL; 2502 } 2503 2504 vsi->port_info = pi; 2505 vsi->vsw = pf->first_sw; 2506 if (vsi->type == ICE_VSI_PF) 2507 vsi->ethtype = ETH_P_PAUSE; 2508 2509 ice_alloc_fd_res(vsi); 2510 2511 if (vsi_type != ICE_VSI_CHNL) { 2512 if (ice_vsi_get_qs(vsi)) { 2513 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2514 vsi->idx); 2515 goto unroll_vsi_alloc; 2516 } 2517 } 2518 2519 /* set RSS capabilities */ 2520 ice_vsi_set_rss_params(vsi); 2521 2522 /* set TC configuration */ 2523 ice_vsi_set_tc_cfg(vsi); 2524 2525 /* create the VSI */ 2526 ret = ice_vsi_init(vsi, true); 2527 if (ret) 2528 goto unroll_get_qs; 2529 2530 ice_vsi_init_vlan_ops(vsi); 2531 2532 switch (vsi->type) { 2533 case ICE_VSI_CTRL: 2534 case ICE_VSI_SWITCHDEV_CTRL: 2535 case ICE_VSI_PF: 2536 ret = ice_vsi_alloc_q_vectors(vsi); 2537 if (ret) 2538 goto unroll_vsi_init; 2539 2540 ret = ice_vsi_setup_vector_base(vsi); 2541 if (ret) 2542 goto unroll_alloc_q_vector; 2543 2544 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2545 if (ret) 2546 goto unroll_vector_base; 2547 2548 ret = ice_vsi_alloc_rings(vsi); 2549 if (ret) 2550 goto unroll_vector_base; 2551 2552 ice_vsi_map_rings_to_vectors(vsi); 2553 2554 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2555 if (vsi->type != ICE_VSI_CTRL) 2556 /* Do not exit if configuring RSS had an issue, at 2557 * least receive traffic on first queue. Hence no 2558 * need to capture return value 2559 */ 2560 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2561 ice_vsi_cfg_rss_lut_key(vsi); 2562 ice_vsi_set_rss_flow_fld(vsi); 2563 } 2564 ice_init_arfs(vsi); 2565 break; 2566 case ICE_VSI_CHNL: 2567 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2568 ice_vsi_cfg_rss_lut_key(vsi); 2569 ice_vsi_set_rss_flow_fld(vsi); 2570 } 2571 break; 2572 case ICE_VSI_VF: 2573 /* VF driver will take care of creating netdev for this type and 2574 * map queues to vectors through Virtchnl, PF driver only 2575 * creates a VSI and corresponding structures for bookkeeping 2576 * purpose 2577 */ 2578 ret = ice_vsi_alloc_q_vectors(vsi); 2579 if (ret) 2580 goto unroll_vsi_init; 2581 2582 ret = ice_vsi_alloc_rings(vsi); 2583 if (ret) 2584 goto unroll_alloc_q_vector; 2585 2586 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2587 if (ret) 2588 goto unroll_vector_base; 2589 2590 /* Do not exit if configuring RSS had an issue, at least 2591 * receive traffic on first queue. Hence no need to capture 2592 * return value 2593 */ 2594 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2595 ice_vsi_cfg_rss_lut_key(vsi); 2596 ice_vsi_set_vf_rss_flow_fld(vsi); 2597 } 2598 break; 2599 case ICE_VSI_LB: 2600 ret = ice_vsi_alloc_rings(vsi); 2601 if (ret) 2602 goto unroll_vsi_init; 2603 break; 2604 default: 2605 /* clean up the resources and exit */ 2606 goto unroll_vsi_init; 2607 } 2608 2609 /* configure VSI nodes based on number of queues and TC's */ 2610 ice_for_each_traffic_class(i) { 2611 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2612 continue; 2613 2614 if (vsi->type == ICE_VSI_CHNL) { 2615 if (!vsi->alloc_txq && vsi->num_txq) 2616 max_txqs[i] = vsi->num_txq; 2617 else 2618 max_txqs[i] = pf->num_lan_tx; 2619 } else { 2620 max_txqs[i] = vsi->alloc_txq; 2621 } 2622 } 2623 2624 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2625 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2626 max_txqs); 2627 if (ret) { 2628 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2629 vsi->vsi_num, ret); 2630 goto unroll_clear_rings; 2631 } 2632 2633 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2634 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2635 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2636 * The rule is added once for PF VSI in order to create appropriate 2637 * recipe, since VSI/VSI list is ignored with drop action... 2638 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2639 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2640 * settings in the HW. 2641 */ 2642 if (!ice_is_safe_mode(pf)) 2643 if (vsi->type == ICE_VSI_PF) { 2644 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2645 ICE_DROP_PACKET); 2646 ice_cfg_sw_lldp(vsi, true, true); 2647 } 2648 2649 if (!vsi->agg_node) 2650 ice_set_agg_vsi(vsi); 2651 return vsi; 2652 2653 unroll_clear_rings: 2654 ice_vsi_clear_rings(vsi); 2655 unroll_vector_base: 2656 /* reclaim SW interrupts back to the common pool */ 2657 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2658 pf->num_avail_sw_msix += vsi->num_q_vectors; 2659 unroll_alloc_q_vector: 2660 ice_vsi_free_q_vectors(vsi); 2661 unroll_vsi_init: 2662 ice_vsi_delete(vsi); 2663 unroll_get_qs: 2664 ice_vsi_put_qs(vsi); 2665 unroll_vsi_alloc: 2666 if (vsi_type == ICE_VSI_VF) 2667 ice_enable_lag(pf->lag); 2668 ice_vsi_clear(vsi); 2669 2670 return NULL; 2671 } 2672 2673 /** 2674 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2675 * @vsi: the VSI being cleaned up 2676 */ 2677 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2678 { 2679 struct ice_pf *pf = vsi->back; 2680 struct ice_hw *hw = &pf->hw; 2681 u32 txq = 0; 2682 u32 rxq = 0; 2683 int i, q; 2684 2685 ice_for_each_q_vector(vsi, i) { 2686 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2687 2688 ice_write_intrl(q_vector, 0); 2689 for (q = 0; q < q_vector->num_ring_tx; q++) { 2690 ice_write_itr(&q_vector->tx, 0); 2691 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2692 if (ice_is_xdp_ena_vsi(vsi)) { 2693 u32 xdp_txq = txq + vsi->num_xdp_txq; 2694 2695 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2696 } 2697 txq++; 2698 } 2699 2700 for (q = 0; q < q_vector->num_ring_rx; q++) { 2701 ice_write_itr(&q_vector->rx, 0); 2702 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2703 rxq++; 2704 } 2705 } 2706 2707 ice_flush(hw); 2708 } 2709 2710 /** 2711 * ice_vsi_free_irq - Free the IRQ association with the OS 2712 * @vsi: the VSI being configured 2713 */ 2714 void ice_vsi_free_irq(struct ice_vsi *vsi) 2715 { 2716 struct ice_pf *pf = vsi->back; 2717 int base = vsi->base_vector; 2718 int i; 2719 2720 if (!vsi->q_vectors || !vsi->irqs_ready) 2721 return; 2722 2723 ice_vsi_release_msix(vsi); 2724 if (vsi->type == ICE_VSI_VF) 2725 return; 2726 2727 vsi->irqs_ready = false; 2728 ice_free_cpu_rx_rmap(vsi); 2729 2730 ice_for_each_q_vector(vsi, i) { 2731 u16 vector = i + base; 2732 int irq_num; 2733 2734 irq_num = pf->msix_entries[vector].vector; 2735 2736 /* free only the irqs that were actually requested */ 2737 if (!vsi->q_vectors[i] || 2738 !(vsi->q_vectors[i]->num_ring_tx || 2739 vsi->q_vectors[i]->num_ring_rx)) 2740 continue; 2741 2742 /* clear the affinity notifier in the IRQ descriptor */ 2743 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2744 irq_set_affinity_notifier(irq_num, NULL); 2745 2746 /* clear the affinity_mask in the IRQ descriptor */ 2747 irq_set_affinity_hint(irq_num, NULL); 2748 synchronize_irq(irq_num); 2749 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2750 } 2751 } 2752 2753 /** 2754 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2755 * @vsi: the VSI having resources freed 2756 */ 2757 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2758 { 2759 int i; 2760 2761 if (!vsi->tx_rings) 2762 return; 2763 2764 ice_for_each_txq(vsi, i) 2765 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2766 ice_free_tx_ring(vsi->tx_rings[i]); 2767 } 2768 2769 /** 2770 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2771 * @vsi: the VSI having resources freed 2772 */ 2773 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2774 { 2775 int i; 2776 2777 if (!vsi->rx_rings) 2778 return; 2779 2780 ice_for_each_rxq(vsi, i) 2781 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2782 ice_free_rx_ring(vsi->rx_rings[i]); 2783 } 2784 2785 /** 2786 * ice_vsi_close - Shut down a VSI 2787 * @vsi: the VSI being shut down 2788 */ 2789 void ice_vsi_close(struct ice_vsi *vsi) 2790 { 2791 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2792 ice_down(vsi); 2793 2794 ice_vsi_free_irq(vsi); 2795 ice_vsi_free_tx_rings(vsi); 2796 ice_vsi_free_rx_rings(vsi); 2797 } 2798 2799 /** 2800 * ice_ena_vsi - resume a VSI 2801 * @vsi: the VSI being resume 2802 * @locked: is the rtnl_lock already held 2803 */ 2804 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2805 { 2806 int err = 0; 2807 2808 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2809 return 0; 2810 2811 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2812 2813 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2814 if (netif_running(vsi->netdev)) { 2815 if (!locked) 2816 rtnl_lock(); 2817 2818 err = ice_open_internal(vsi->netdev); 2819 2820 if (!locked) 2821 rtnl_unlock(); 2822 } 2823 } else if (vsi->type == ICE_VSI_CTRL) { 2824 err = ice_vsi_open_ctrl(vsi); 2825 } 2826 2827 return err; 2828 } 2829 2830 /** 2831 * ice_dis_vsi - pause a VSI 2832 * @vsi: the VSI being paused 2833 * @locked: is the rtnl_lock already held 2834 */ 2835 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2836 { 2837 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2838 return; 2839 2840 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2841 2842 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2843 if (netif_running(vsi->netdev)) { 2844 if (!locked) 2845 rtnl_lock(); 2846 2847 ice_vsi_close(vsi); 2848 2849 if (!locked) 2850 rtnl_unlock(); 2851 } else { 2852 ice_vsi_close(vsi); 2853 } 2854 } else if (vsi->type == ICE_VSI_CTRL || 2855 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2856 ice_vsi_close(vsi); 2857 } 2858 } 2859 2860 /** 2861 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2862 * @vsi: the VSI being un-configured 2863 */ 2864 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2865 { 2866 int base = vsi->base_vector; 2867 struct ice_pf *pf = vsi->back; 2868 struct ice_hw *hw = &pf->hw; 2869 u32 val; 2870 int i; 2871 2872 /* disable interrupt causation from each queue */ 2873 if (vsi->tx_rings) { 2874 ice_for_each_txq(vsi, i) { 2875 if (vsi->tx_rings[i]) { 2876 u16 reg; 2877 2878 reg = vsi->tx_rings[i]->reg_idx; 2879 val = rd32(hw, QINT_TQCTL(reg)); 2880 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2881 wr32(hw, QINT_TQCTL(reg), val); 2882 } 2883 } 2884 } 2885 2886 if (vsi->rx_rings) { 2887 ice_for_each_rxq(vsi, i) { 2888 if (vsi->rx_rings[i]) { 2889 u16 reg; 2890 2891 reg = vsi->rx_rings[i]->reg_idx; 2892 val = rd32(hw, QINT_RQCTL(reg)); 2893 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2894 wr32(hw, QINT_RQCTL(reg), val); 2895 } 2896 } 2897 } 2898 2899 /* disable each interrupt */ 2900 ice_for_each_q_vector(vsi, i) { 2901 if (!vsi->q_vectors[i]) 2902 continue; 2903 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2904 } 2905 2906 ice_flush(hw); 2907 2908 /* don't call synchronize_irq() for VF's from the host */ 2909 if (vsi->type == ICE_VSI_VF) 2910 return; 2911 2912 ice_for_each_q_vector(vsi, i) 2913 synchronize_irq(pf->msix_entries[i + base].vector); 2914 } 2915 2916 /** 2917 * ice_napi_del - Remove NAPI handler for the VSI 2918 * @vsi: VSI for which NAPI handler is to be removed 2919 */ 2920 void ice_napi_del(struct ice_vsi *vsi) 2921 { 2922 int v_idx; 2923 2924 if (!vsi->netdev) 2925 return; 2926 2927 ice_for_each_q_vector(vsi, v_idx) 2928 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2929 } 2930 2931 /** 2932 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2933 * @pf: pointer to PF structure 2934 * @vsi: the VSI to free resources for 2935 * 2936 * Check if the VF control VSI resource is still in use. If no VF is using it 2937 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2938 * once no other VF uses it. 2939 */ 2940 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2941 { 2942 struct ice_vf *vf; 2943 unsigned int bkt; 2944 2945 rcu_read_lock(); 2946 ice_for_each_vf_rcu(pf, bkt, vf) { 2947 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2948 rcu_read_unlock(); 2949 return; 2950 } 2951 } 2952 rcu_read_unlock(); 2953 2954 /* No other VFs left that have control VSI. It is now safe to reclaim 2955 * SW interrupts back to the common pool. 2956 */ 2957 ice_free_res(pf->irq_tracker, vsi->base_vector, 2958 ICE_RES_VF_CTRL_VEC_ID); 2959 pf->num_avail_sw_msix += vsi->num_q_vectors; 2960 } 2961 2962 /** 2963 * ice_vsi_release - Delete a VSI and free its resources 2964 * @vsi: the VSI being removed 2965 * 2966 * Returns 0 on success or < 0 on error 2967 */ 2968 int ice_vsi_release(struct ice_vsi *vsi) 2969 { 2970 struct ice_pf *pf; 2971 int err; 2972 2973 if (!vsi->back) 2974 return -ENODEV; 2975 pf = vsi->back; 2976 2977 /* do not unregister while driver is in the reset recovery pending 2978 * state. Since reset/rebuild happens through PF service task workqueue, 2979 * it's not a good idea to unregister netdev that is associated to the 2980 * PF that is running the work queue items currently. This is done to 2981 * avoid check_flush_dependency() warning on this wq 2982 */ 2983 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2984 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2985 unregister_netdev(vsi->netdev); 2986 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2987 } 2988 2989 if (vsi->type == ICE_VSI_PF) 2990 ice_devlink_destroy_pf_port(pf); 2991 2992 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2993 ice_rss_clean(vsi); 2994 2995 /* Disable VSI and free resources */ 2996 if (vsi->type != ICE_VSI_LB) 2997 ice_vsi_dis_irq(vsi); 2998 ice_vsi_close(vsi); 2999 3000 /* SR-IOV determines needed MSIX resources all at once instead of per 3001 * VSI since when VFs are spawned we know how many VFs there are and how 3002 * many interrupts each VF needs. SR-IOV MSIX resources are also 3003 * cleared in the same manner. 3004 */ 3005 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 3006 ice_free_vf_ctrl_res(pf, vsi); 3007 } else if (vsi->type != ICE_VSI_VF) { 3008 /* reclaim SW interrupts back to the common pool */ 3009 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3010 pf->num_avail_sw_msix += vsi->num_q_vectors; 3011 } 3012 3013 if (!ice_is_safe_mode(pf)) { 3014 if (vsi->type == ICE_VSI_PF) { 3015 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3016 ICE_DROP_PACKET); 3017 ice_cfg_sw_lldp(vsi, true, false); 3018 /* The Rx rule will only exist to remove if the LLDP FW 3019 * engine is currently stopped 3020 */ 3021 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3022 ice_cfg_sw_lldp(vsi, false, false); 3023 } 3024 } 3025 3026 if (ice_is_vsi_dflt_vsi(vsi)) 3027 ice_clear_dflt_vsi(vsi); 3028 ice_fltr_remove_all(vsi); 3029 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3030 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3031 if (err) 3032 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3033 vsi->vsi_num, err); 3034 ice_vsi_delete(vsi); 3035 ice_vsi_free_q_vectors(vsi); 3036 3037 if (vsi->netdev) { 3038 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3039 unregister_netdev(vsi->netdev); 3040 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3041 } 3042 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3043 free_netdev(vsi->netdev); 3044 vsi->netdev = NULL; 3045 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3046 } 3047 } 3048 3049 if (vsi->type == ICE_VSI_VF && 3050 vsi->agg_node && vsi->agg_node->valid) 3051 vsi->agg_node->num_vsis--; 3052 ice_vsi_clear_rings(vsi); 3053 3054 ice_vsi_put_qs(vsi); 3055 3056 /* retain SW VSI data structure since it is needed to unregister and 3057 * free VSI netdev when PF is not in reset recovery pending state,\ 3058 * for ex: during rmmod. 3059 */ 3060 if (!ice_is_reset_in_progress(pf->state)) 3061 ice_vsi_clear(vsi); 3062 3063 return 0; 3064 } 3065 3066 /** 3067 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3068 * @vsi: VSI connected with q_vectors 3069 * @coalesce: array of struct with stored coalesce 3070 * 3071 * Returns array size. 3072 */ 3073 static int 3074 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3075 struct ice_coalesce_stored *coalesce) 3076 { 3077 int i; 3078 3079 ice_for_each_q_vector(vsi, i) { 3080 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3081 3082 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3083 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3084 coalesce[i].intrl = q_vector->intrl; 3085 3086 if (i < vsi->num_txq) 3087 coalesce[i].tx_valid = true; 3088 if (i < vsi->num_rxq) 3089 coalesce[i].rx_valid = true; 3090 } 3091 3092 return vsi->num_q_vectors; 3093 } 3094 3095 /** 3096 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3097 * @vsi: VSI connected with q_vectors 3098 * @coalesce: pointer to array of struct with stored coalesce 3099 * @size: size of coalesce array 3100 * 3101 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3102 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3103 * to default value. 3104 */ 3105 static void 3106 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3107 struct ice_coalesce_stored *coalesce, int size) 3108 { 3109 struct ice_ring_container *rc; 3110 int i; 3111 3112 if ((size && !coalesce) || !vsi) 3113 return; 3114 3115 /* There are a couple of cases that have to be handled here: 3116 * 1. The case where the number of queue vectors stays the same, but 3117 * the number of Tx or Rx rings changes (the first for loop) 3118 * 2. The case where the number of queue vectors increased (the 3119 * second for loop) 3120 */ 3121 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3122 /* There are 2 cases to handle here and they are the same for 3123 * both Tx and Rx: 3124 * if the entry was valid previously (coalesce[i].[tr]x_valid 3125 * and the loop variable is less than the number of rings 3126 * allocated, then write the previous values 3127 * 3128 * if the entry was not valid previously, but the number of 3129 * rings is less than are allocated (this means the number of 3130 * rings increased from previously), then write out the 3131 * values in the first element 3132 * 3133 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3134 * as there is no harm because the dynamic algorithm 3135 * will just overwrite. 3136 */ 3137 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3138 rc = &vsi->q_vectors[i]->rx; 3139 rc->itr_settings = coalesce[i].itr_rx; 3140 ice_write_itr(rc, rc->itr_setting); 3141 } else if (i < vsi->alloc_rxq) { 3142 rc = &vsi->q_vectors[i]->rx; 3143 rc->itr_settings = coalesce[0].itr_rx; 3144 ice_write_itr(rc, rc->itr_setting); 3145 } 3146 3147 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3148 rc = &vsi->q_vectors[i]->tx; 3149 rc->itr_settings = coalesce[i].itr_tx; 3150 ice_write_itr(rc, rc->itr_setting); 3151 } else if (i < vsi->alloc_txq) { 3152 rc = &vsi->q_vectors[i]->tx; 3153 rc->itr_settings = coalesce[0].itr_tx; 3154 ice_write_itr(rc, rc->itr_setting); 3155 } 3156 3157 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3158 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3159 } 3160 3161 /* the number of queue vectors increased so write whatever is in 3162 * the first element 3163 */ 3164 for (; i < vsi->num_q_vectors; i++) { 3165 /* transmit */ 3166 rc = &vsi->q_vectors[i]->tx; 3167 rc->itr_settings = coalesce[0].itr_tx; 3168 ice_write_itr(rc, rc->itr_setting); 3169 3170 /* receive */ 3171 rc = &vsi->q_vectors[i]->rx; 3172 rc->itr_settings = coalesce[0].itr_rx; 3173 ice_write_itr(rc, rc->itr_setting); 3174 3175 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3176 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3177 } 3178 } 3179 3180 /** 3181 * ice_vsi_rebuild - Rebuild VSI after reset 3182 * @vsi: VSI to be rebuild 3183 * @init_vsi: is this an initialization or a reconfigure of the VSI 3184 * 3185 * Returns 0 on success and negative value on failure 3186 */ 3187 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3188 { 3189 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3190 struct ice_coalesce_stored *coalesce; 3191 int prev_num_q_vectors = 0; 3192 enum ice_vsi_type vtype; 3193 struct ice_pf *pf; 3194 int ret, i; 3195 3196 if (!vsi) 3197 return -EINVAL; 3198 3199 pf = vsi->back; 3200 vtype = vsi->type; 3201 if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf)) 3202 return -EINVAL; 3203 3204 ice_vsi_init_vlan_ops(vsi); 3205 3206 coalesce = kcalloc(vsi->num_q_vectors, 3207 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3208 if (!coalesce) 3209 return -ENOMEM; 3210 3211 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3212 3213 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3214 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3215 if (ret) 3216 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3217 vsi->vsi_num, ret); 3218 ice_vsi_free_q_vectors(vsi); 3219 3220 /* SR-IOV determines needed MSIX resources all at once instead of per 3221 * VSI since when VFs are spawned we know how many VFs there are and how 3222 * many interrupts each VF needs. SR-IOV MSIX resources are also 3223 * cleared in the same manner. 3224 */ 3225 if (vtype != ICE_VSI_VF) { 3226 /* reclaim SW interrupts back to the common pool */ 3227 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3228 pf->num_avail_sw_msix += vsi->num_q_vectors; 3229 vsi->base_vector = 0; 3230 } 3231 3232 if (ice_is_xdp_ena_vsi(vsi)) 3233 /* return value check can be skipped here, it always returns 3234 * 0 if reset is in progress 3235 */ 3236 ice_destroy_xdp_rings(vsi); 3237 ice_vsi_put_qs(vsi); 3238 ice_vsi_clear_rings(vsi); 3239 ice_vsi_free_arrays(vsi); 3240 if (vtype == ICE_VSI_VF) 3241 ice_vsi_set_num_qs(vsi, vsi->vf); 3242 else 3243 ice_vsi_set_num_qs(vsi, NULL); 3244 3245 ret = ice_vsi_alloc_arrays(vsi); 3246 if (ret < 0) 3247 goto err_vsi; 3248 3249 ice_vsi_get_qs(vsi); 3250 3251 ice_alloc_fd_res(vsi); 3252 ice_vsi_set_tc_cfg(vsi); 3253 3254 /* Initialize VSI struct elements and create VSI in FW */ 3255 ret = ice_vsi_init(vsi, init_vsi); 3256 if (ret < 0) 3257 goto err_vsi; 3258 3259 switch (vtype) { 3260 case ICE_VSI_CTRL: 3261 case ICE_VSI_SWITCHDEV_CTRL: 3262 case ICE_VSI_PF: 3263 ret = ice_vsi_alloc_q_vectors(vsi); 3264 if (ret) 3265 goto err_rings; 3266 3267 ret = ice_vsi_setup_vector_base(vsi); 3268 if (ret) 3269 goto err_vectors; 3270 3271 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3272 if (ret) 3273 goto err_vectors; 3274 3275 ret = ice_vsi_alloc_rings(vsi); 3276 if (ret) 3277 goto err_vectors; 3278 3279 ice_vsi_map_rings_to_vectors(vsi); 3280 if (ice_is_xdp_ena_vsi(vsi)) { 3281 ret = ice_vsi_determine_xdp_res(vsi); 3282 if (ret) 3283 goto err_vectors; 3284 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3285 if (ret) 3286 goto err_vectors; 3287 } 3288 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3289 if (vtype != ICE_VSI_CTRL) 3290 /* Do not exit if configuring RSS had an issue, at 3291 * least receive traffic on first queue. Hence no 3292 * need to capture return value 3293 */ 3294 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3295 ice_vsi_cfg_rss_lut_key(vsi); 3296 3297 /* disable or enable CRC stripping */ 3298 if (vsi->netdev) 3299 ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features & 3300 NETIF_F_RXFCS)); 3301 3302 break; 3303 case ICE_VSI_VF: 3304 ret = ice_vsi_alloc_q_vectors(vsi); 3305 if (ret) 3306 goto err_rings; 3307 3308 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3309 if (ret) 3310 goto err_vectors; 3311 3312 ret = ice_vsi_alloc_rings(vsi); 3313 if (ret) 3314 goto err_vectors; 3315 3316 break; 3317 case ICE_VSI_CHNL: 3318 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3319 ice_vsi_cfg_rss_lut_key(vsi); 3320 ice_vsi_set_rss_flow_fld(vsi); 3321 } 3322 break; 3323 default: 3324 break; 3325 } 3326 3327 /* configure VSI nodes based on number of queues and TC's */ 3328 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3329 /* configure VSI nodes based on number of queues and TC's. 3330 * ADQ creates VSIs for each TC/Channel but doesn't 3331 * allocate queues instead it reconfigures the PF queues 3332 * as per the TC command. So max_txqs should point to the 3333 * PF Tx queues. 3334 */ 3335 if (vtype == ICE_VSI_CHNL) 3336 max_txqs[i] = pf->num_lan_tx; 3337 else 3338 max_txqs[i] = vsi->alloc_txq; 3339 3340 if (ice_is_xdp_ena_vsi(vsi)) 3341 max_txqs[i] += vsi->num_xdp_txq; 3342 } 3343 3344 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3345 /* If MQPRIO is set, means channel code path, hence for main 3346 * VSI's, use TC as 1 3347 */ 3348 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3349 else 3350 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3351 vsi->tc_cfg.ena_tc, max_txqs); 3352 3353 if (ret) { 3354 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3355 vsi->vsi_num, ret); 3356 if (init_vsi) { 3357 ret = -EIO; 3358 goto err_vectors; 3359 } else { 3360 return ice_schedule_reset(pf, ICE_RESET_PFR); 3361 } 3362 } 3363 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3364 kfree(coalesce); 3365 3366 return 0; 3367 3368 err_vectors: 3369 ice_vsi_free_q_vectors(vsi); 3370 err_rings: 3371 if (vsi->netdev) { 3372 vsi->current_netdev_flags = 0; 3373 unregister_netdev(vsi->netdev); 3374 free_netdev(vsi->netdev); 3375 vsi->netdev = NULL; 3376 } 3377 err_vsi: 3378 ice_vsi_clear(vsi); 3379 set_bit(ICE_RESET_FAILED, pf->state); 3380 kfree(coalesce); 3381 return ret; 3382 } 3383 3384 /** 3385 * ice_is_reset_in_progress - check for a reset in progress 3386 * @state: PF state field 3387 */ 3388 bool ice_is_reset_in_progress(unsigned long *state) 3389 { 3390 return test_bit(ICE_RESET_OICR_RECV, state) || 3391 test_bit(ICE_PFR_REQ, state) || 3392 test_bit(ICE_CORER_REQ, state) || 3393 test_bit(ICE_GLOBR_REQ, state); 3394 } 3395 3396 /** 3397 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3398 * @pf: pointer to the PF structure 3399 * @timeout: length of time to wait, in jiffies 3400 * 3401 * Wait (sleep) for a short time until the driver finishes cleaning up from 3402 * a device reset. The caller must be able to sleep. Use this to delay 3403 * operations that could fail while the driver is cleaning up after a device 3404 * reset. 3405 * 3406 * Returns 0 on success, -EBUSY if the reset is not finished within the 3407 * timeout, and -ERESTARTSYS if the thread was interrupted. 3408 */ 3409 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3410 { 3411 long ret; 3412 3413 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3414 !ice_is_reset_in_progress(pf->state), 3415 timeout); 3416 if (ret < 0) 3417 return ret; 3418 else if (!ret) 3419 return -EBUSY; 3420 else 3421 return 0; 3422 } 3423 3424 /** 3425 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3426 * @vsi: VSI being configured 3427 * @ctx: the context buffer returned from AQ VSI update command 3428 */ 3429 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3430 { 3431 vsi->info.mapping_flags = ctx->info.mapping_flags; 3432 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3433 sizeof(vsi->info.q_mapping)); 3434 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3435 sizeof(vsi->info.tc_mapping)); 3436 } 3437 3438 /** 3439 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3440 * @vsi: the VSI being configured 3441 * @ena_tc: TC map to be enabled 3442 */ 3443 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3444 { 3445 struct net_device *netdev = vsi->netdev; 3446 struct ice_pf *pf = vsi->back; 3447 int numtc = vsi->tc_cfg.numtc; 3448 struct ice_dcbx_cfg *dcbcfg; 3449 u8 netdev_tc; 3450 int i; 3451 3452 if (!netdev) 3453 return; 3454 3455 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3456 if (vsi->type == ICE_VSI_CHNL) 3457 return; 3458 3459 if (!ena_tc) { 3460 netdev_reset_tc(netdev); 3461 return; 3462 } 3463 3464 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3465 numtc = vsi->all_numtc; 3466 3467 if (netdev_set_num_tc(netdev, numtc)) 3468 return; 3469 3470 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3471 3472 ice_for_each_traffic_class(i) 3473 if (vsi->tc_cfg.ena_tc & BIT(i)) 3474 netdev_set_tc_queue(netdev, 3475 vsi->tc_cfg.tc_info[i].netdev_tc, 3476 vsi->tc_cfg.tc_info[i].qcount_tx, 3477 vsi->tc_cfg.tc_info[i].qoffset); 3478 /* setup TC queue map for CHNL TCs */ 3479 ice_for_each_chnl_tc(i) { 3480 if (!(vsi->all_enatc & BIT(i))) 3481 break; 3482 if (!vsi->mqprio_qopt.qopt.count[i]) 3483 break; 3484 netdev_set_tc_queue(netdev, i, 3485 vsi->mqprio_qopt.qopt.count[i], 3486 vsi->mqprio_qopt.qopt.offset[i]); 3487 } 3488 3489 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3490 return; 3491 3492 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3493 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3494 3495 /* Get the mapped netdev TC# for the UP */ 3496 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3497 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3498 } 3499 } 3500 3501 /** 3502 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3503 * @vsi: the VSI being configured, 3504 * @ctxt: VSI context structure 3505 * @ena_tc: number of traffic classes to enable 3506 * 3507 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3508 */ 3509 static int 3510 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3511 u8 ena_tc) 3512 { 3513 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3514 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3515 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3516 u8 netdev_tc = 0; 3517 int i; 3518 3519 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3520 3521 pow = order_base_2(tc0_qcount); 3522 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3523 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3524 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3525 3526 ice_for_each_traffic_class(i) { 3527 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3528 /* TC is not enabled */ 3529 vsi->tc_cfg.tc_info[i].qoffset = 0; 3530 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3531 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3532 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3533 ctxt->info.tc_mapping[i] = 0; 3534 continue; 3535 } 3536 3537 offset = vsi->mqprio_qopt.qopt.offset[i]; 3538 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3539 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3540 vsi->tc_cfg.tc_info[i].qoffset = offset; 3541 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3542 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3543 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3544 } 3545 3546 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3547 ice_for_each_chnl_tc(i) { 3548 if (!(vsi->all_enatc & BIT(i))) 3549 continue; 3550 offset = vsi->mqprio_qopt.qopt.offset[i]; 3551 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3552 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3553 } 3554 } 3555 3556 /* Set actual Tx/Rx queue pairs */ 3557 vsi->num_txq = offset + qcount_tx; 3558 if (vsi->num_txq > vsi->alloc_txq) { 3559 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3560 vsi->num_txq, vsi->alloc_txq); 3561 return -EINVAL; 3562 } 3563 3564 vsi->num_rxq = offset + qcount_rx; 3565 if (vsi->num_rxq > vsi->alloc_rxq) { 3566 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3567 vsi->num_rxq, vsi->alloc_rxq); 3568 return -EINVAL; 3569 } 3570 3571 /* Setup queue TC[0].qmap for given VSI context */ 3572 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3573 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3574 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3575 3576 /* Find queue count available for channel VSIs and starting offset 3577 * for channel VSIs 3578 */ 3579 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3580 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3581 vsi->next_base_q = tc0_qcount; 3582 } 3583 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3584 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3585 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3586 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3587 3588 return 0; 3589 } 3590 3591 /** 3592 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3593 * @vsi: VSI to be configured 3594 * @ena_tc: TC bitmap 3595 * 3596 * VSI queues expected to be quiesced before calling this function 3597 */ 3598 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3599 { 3600 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3601 struct ice_pf *pf = vsi->back; 3602 struct ice_vsi_ctx *ctx; 3603 struct device *dev; 3604 int i, ret = 0; 3605 u8 num_tc = 0; 3606 3607 dev = ice_pf_to_dev(pf); 3608 if (vsi->tc_cfg.ena_tc == ena_tc && 3609 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3610 return ret; 3611 3612 ice_for_each_traffic_class(i) { 3613 /* build bitmap of enabled TCs */ 3614 if (ena_tc & BIT(i)) 3615 num_tc++; 3616 /* populate max_txqs per TC */ 3617 max_txqs[i] = vsi->alloc_txq; 3618 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3619 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3620 */ 3621 if (vsi->type == ICE_VSI_CHNL && 3622 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3623 max_txqs[i] = vsi->num_txq; 3624 } 3625 3626 vsi->tc_cfg.ena_tc = ena_tc; 3627 vsi->tc_cfg.numtc = num_tc; 3628 3629 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3630 if (!ctx) 3631 return -ENOMEM; 3632 3633 ctx->vf_num = 0; 3634 ctx->info = vsi->info; 3635 3636 if (vsi->type == ICE_VSI_PF && 3637 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3638 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3639 else 3640 ret = ice_vsi_setup_q_map(vsi, ctx); 3641 3642 if (ret) 3643 goto out; 3644 3645 /* must to indicate which section of VSI context are being modified */ 3646 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3647 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3648 if (ret) { 3649 dev_info(dev, "Failed VSI Update\n"); 3650 goto out; 3651 } 3652 3653 if (vsi->type == ICE_VSI_PF && 3654 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3655 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3656 else 3657 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3658 vsi->tc_cfg.ena_tc, max_txqs); 3659 3660 if (ret) { 3661 dev_err(dev, "VSI %d failed TC config, error %d\n", 3662 vsi->vsi_num, ret); 3663 goto out; 3664 } 3665 ice_vsi_update_q_map(vsi, ctx); 3666 vsi->info.valid_sections = 0; 3667 3668 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3669 out: 3670 kfree(ctx); 3671 return ret; 3672 } 3673 3674 /** 3675 * ice_update_ring_stats - Update ring statistics 3676 * @stats: stats to be updated 3677 * @pkts: number of processed packets 3678 * @bytes: number of processed bytes 3679 * 3680 * This function assumes that caller has acquired a u64_stats_sync lock. 3681 */ 3682 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3683 { 3684 stats->bytes += bytes; 3685 stats->pkts += pkts; 3686 } 3687 3688 /** 3689 * ice_update_tx_ring_stats - Update Tx ring specific counters 3690 * @tx_ring: ring to update 3691 * @pkts: number of processed packets 3692 * @bytes: number of processed bytes 3693 */ 3694 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3695 { 3696 u64_stats_update_begin(&tx_ring->syncp); 3697 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3698 u64_stats_update_end(&tx_ring->syncp); 3699 } 3700 3701 /** 3702 * ice_update_rx_ring_stats - Update Rx ring specific counters 3703 * @rx_ring: ring to update 3704 * @pkts: number of processed packets 3705 * @bytes: number of processed bytes 3706 */ 3707 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3708 { 3709 u64_stats_update_begin(&rx_ring->syncp); 3710 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3711 u64_stats_update_end(&rx_ring->syncp); 3712 } 3713 3714 /** 3715 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3716 * @pi: port info of the switch with default VSI 3717 * 3718 * Return true if the there is a single VSI in default forwarding VSI list 3719 */ 3720 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3721 { 3722 bool exists = false; 3723 3724 ice_check_if_dflt_vsi(pi, 0, &exists); 3725 return exists; 3726 } 3727 3728 /** 3729 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3730 * @vsi: VSI to compare against default forwarding VSI 3731 * 3732 * If this VSI passed in is the default forwarding VSI then return true, else 3733 * return false 3734 */ 3735 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3736 { 3737 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3738 } 3739 3740 /** 3741 * ice_set_dflt_vsi - set the default forwarding VSI 3742 * @vsi: VSI getting set as the default forwarding VSI on the switch 3743 * 3744 * If the VSI passed in is already the default VSI and it's enabled just return 3745 * success. 3746 * 3747 * Otherwise try to set the VSI passed in as the switch's default VSI and 3748 * return the result. 3749 */ 3750 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3751 { 3752 struct device *dev; 3753 int status; 3754 3755 if (!vsi) 3756 return -EINVAL; 3757 3758 dev = ice_pf_to_dev(vsi->back); 3759 3760 /* the VSI passed in is already the default VSI */ 3761 if (ice_is_vsi_dflt_vsi(vsi)) { 3762 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3763 vsi->vsi_num); 3764 return 0; 3765 } 3766 3767 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3768 if (status) { 3769 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3770 vsi->vsi_num, status); 3771 return status; 3772 } 3773 3774 return 0; 3775 } 3776 3777 /** 3778 * ice_clear_dflt_vsi - clear the default forwarding VSI 3779 * @vsi: VSI to remove from filter list 3780 * 3781 * If the switch has no default VSI or it's not enabled then return error. 3782 * 3783 * Otherwise try to clear the default VSI and return the result. 3784 */ 3785 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3786 { 3787 struct device *dev; 3788 int status; 3789 3790 if (!vsi) 3791 return -EINVAL; 3792 3793 dev = ice_pf_to_dev(vsi->back); 3794 3795 /* there is no default VSI configured */ 3796 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3797 return -ENODEV; 3798 3799 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3800 ICE_FLTR_RX); 3801 if (status) { 3802 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3803 vsi->vsi_num, status); 3804 return -EIO; 3805 } 3806 3807 return 0; 3808 } 3809 3810 /** 3811 * ice_get_link_speed_mbps - get link speed in Mbps 3812 * @vsi: the VSI whose link speed is being queried 3813 * 3814 * Return current VSI link speed and 0 if the speed is unknown. 3815 */ 3816 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3817 { 3818 switch (vsi->port_info->phy.link_info.link_speed) { 3819 case ICE_AQ_LINK_SPEED_100GB: 3820 return SPEED_100000; 3821 case ICE_AQ_LINK_SPEED_50GB: 3822 return SPEED_50000; 3823 case ICE_AQ_LINK_SPEED_40GB: 3824 return SPEED_40000; 3825 case ICE_AQ_LINK_SPEED_25GB: 3826 return SPEED_25000; 3827 case ICE_AQ_LINK_SPEED_20GB: 3828 return SPEED_20000; 3829 case ICE_AQ_LINK_SPEED_10GB: 3830 return SPEED_10000; 3831 case ICE_AQ_LINK_SPEED_5GB: 3832 return SPEED_5000; 3833 case ICE_AQ_LINK_SPEED_2500MB: 3834 return SPEED_2500; 3835 case ICE_AQ_LINK_SPEED_1000MB: 3836 return SPEED_1000; 3837 case ICE_AQ_LINK_SPEED_100MB: 3838 return SPEED_100; 3839 case ICE_AQ_LINK_SPEED_10MB: 3840 return SPEED_10; 3841 case ICE_AQ_LINK_SPEED_UNKNOWN: 3842 default: 3843 return 0; 3844 } 3845 } 3846 3847 /** 3848 * ice_get_link_speed_kbps - get link speed in Kbps 3849 * @vsi: the VSI whose link speed is being queried 3850 * 3851 * Return current VSI link speed and 0 if the speed is unknown. 3852 */ 3853 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3854 { 3855 int speed_mbps; 3856 3857 speed_mbps = ice_get_link_speed_mbps(vsi); 3858 3859 return speed_mbps * 1000; 3860 } 3861 3862 /** 3863 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3864 * @vsi: VSI to be configured 3865 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3866 * 3867 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3868 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3869 * on TC 0. 3870 */ 3871 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3872 { 3873 struct ice_pf *pf = vsi->back; 3874 struct device *dev; 3875 int status; 3876 int speed; 3877 3878 dev = ice_pf_to_dev(pf); 3879 if (!vsi->port_info) { 3880 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3881 vsi->idx, vsi->type); 3882 return -EINVAL; 3883 } 3884 3885 speed = ice_get_link_speed_kbps(vsi); 3886 if (min_tx_rate > (u64)speed) { 3887 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3888 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3889 speed); 3890 return -EINVAL; 3891 } 3892 3893 /* Configure min BW for VSI limit */ 3894 if (min_tx_rate) { 3895 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3896 ICE_MIN_BW, min_tx_rate); 3897 if (status) { 3898 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3899 min_tx_rate, ice_vsi_type_str(vsi->type), 3900 vsi->idx); 3901 return status; 3902 } 3903 3904 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3905 min_tx_rate, ice_vsi_type_str(vsi->type)); 3906 } else { 3907 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3908 vsi->idx, 0, 3909 ICE_MIN_BW); 3910 if (status) { 3911 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3912 ice_vsi_type_str(vsi->type), vsi->idx); 3913 return status; 3914 } 3915 3916 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3917 ice_vsi_type_str(vsi->type), vsi->idx); 3918 } 3919 3920 return 0; 3921 } 3922 3923 /** 3924 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3925 * @vsi: VSI to be configured 3926 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3927 * 3928 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3929 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3930 * on TC 0. 3931 */ 3932 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3933 { 3934 struct ice_pf *pf = vsi->back; 3935 struct device *dev; 3936 int status; 3937 int speed; 3938 3939 dev = ice_pf_to_dev(pf); 3940 if (!vsi->port_info) { 3941 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3942 vsi->idx, vsi->type); 3943 return -EINVAL; 3944 } 3945 3946 speed = ice_get_link_speed_kbps(vsi); 3947 if (max_tx_rate > (u64)speed) { 3948 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3949 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3950 speed); 3951 return -EINVAL; 3952 } 3953 3954 /* Configure max BW for VSI limit */ 3955 if (max_tx_rate) { 3956 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3957 ICE_MAX_BW, max_tx_rate); 3958 if (status) { 3959 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3960 max_tx_rate, ice_vsi_type_str(vsi->type), 3961 vsi->idx); 3962 return status; 3963 } 3964 3965 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3966 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3967 } else { 3968 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3969 vsi->idx, 0, 3970 ICE_MAX_BW); 3971 if (status) { 3972 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3973 ice_vsi_type_str(vsi->type), vsi->idx); 3974 return status; 3975 } 3976 3977 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3978 ice_vsi_type_str(vsi->type), vsi->idx); 3979 } 3980 3981 return 0; 3982 } 3983 3984 /** 3985 * ice_set_link - turn on/off physical link 3986 * @vsi: VSI to modify physical link on 3987 * @ena: turn on/off physical link 3988 */ 3989 int ice_set_link(struct ice_vsi *vsi, bool ena) 3990 { 3991 struct device *dev = ice_pf_to_dev(vsi->back); 3992 struct ice_port_info *pi = vsi->port_info; 3993 struct ice_hw *hw = pi->hw; 3994 int status; 3995 3996 if (vsi->type != ICE_VSI_PF) 3997 return -EINVAL; 3998 3999 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4000 4001 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4002 * this is not a fatal error, so print a warning message and return 4003 * a success code. Return an error if FW returns an error code other 4004 * than ICE_AQ_RC_EMODE 4005 */ 4006 if (status == -EIO) { 4007 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4008 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4009 (ena ? "ON" : "OFF"), status, 4010 ice_aq_str(hw->adminq.sq_last_status)); 4011 } else if (status) { 4012 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4013 (ena ? "ON" : "OFF"), status, 4014 ice_aq_str(hw->adminq.sq_last_status)); 4015 return status; 4016 } 4017 4018 return 0; 4019 } 4020 4021 /** 4022 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4023 * @vsi: VSI used to add VLAN filters 4024 * 4025 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4026 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4027 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4028 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4029 * 4030 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4031 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4032 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4033 * 4034 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4035 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4036 * part of filtering. 4037 */ 4038 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4039 { 4040 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4041 struct ice_vlan vlan; 4042 int err; 4043 4044 vlan = ICE_VLAN(0, 0, 0); 4045 err = vlan_ops->add_vlan(vsi, &vlan); 4046 if (err && err != -EEXIST) 4047 return err; 4048 4049 /* in SVM both VLAN 0 filters are identical */ 4050 if (!ice_is_dvm_ena(&vsi->back->hw)) 4051 return 0; 4052 4053 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4054 err = vlan_ops->add_vlan(vsi, &vlan); 4055 if (err && err != -EEXIST) 4056 return err; 4057 4058 return 0; 4059 } 4060 4061 /** 4062 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4063 * @vsi: VSI used to add VLAN filters 4064 * 4065 * Delete the VLAN 0 filters in the same manner that they were added in 4066 * ice_vsi_add_vlan_zero. 4067 */ 4068 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4069 { 4070 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4071 struct ice_vlan vlan; 4072 int err; 4073 4074 vlan = ICE_VLAN(0, 0, 0); 4075 err = vlan_ops->del_vlan(vsi, &vlan); 4076 if (err && err != -EEXIST) 4077 return err; 4078 4079 /* in SVM both VLAN 0 filters are identical */ 4080 if (!ice_is_dvm_ena(&vsi->back->hw)) 4081 return 0; 4082 4083 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4084 err = vlan_ops->del_vlan(vsi, &vlan); 4085 if (err && err != -EEXIST) 4086 return err; 4087 4088 /* when deleting the last VLAN filter, make sure to disable the VLAN 4089 * promisc mode so the filter isn't left by accident 4090 */ 4091 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 4092 ICE_MCAST_VLAN_PROMISC_BITS, 0); 4093 } 4094 4095 /** 4096 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4097 * @vsi: VSI used to get the VLAN mode 4098 * 4099 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4100 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4101 */ 4102 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4103 { 4104 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4105 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4106 /* no VLAN 0 filter is created when a port VLAN is active */ 4107 if (vsi->type == ICE_VSI_VF) { 4108 if (WARN_ON(!vsi->vf)) 4109 return 0; 4110 4111 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4112 return 0; 4113 } 4114 4115 if (ice_is_dvm_ena(&vsi->back->hw)) 4116 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4117 else 4118 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4119 } 4120 4121 /** 4122 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4123 * @vsi: VSI used to determine if any non-zero VLANs have been added 4124 */ 4125 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4126 { 4127 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4128 } 4129 4130 /** 4131 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4132 * @vsi: VSI used to get the number of non-zero VLANs added 4133 */ 4134 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4135 { 4136 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4137 } 4138 4139 /** 4140 * ice_is_feature_supported 4141 * @pf: pointer to the struct ice_pf instance 4142 * @f: feature enum to be checked 4143 * 4144 * returns true if feature is supported, false otherwise 4145 */ 4146 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4147 { 4148 if (f < 0 || f >= ICE_F_MAX) 4149 return false; 4150 4151 return test_bit(f, pf->features); 4152 } 4153 4154 /** 4155 * ice_set_feature_support 4156 * @pf: pointer to the struct ice_pf instance 4157 * @f: feature enum to set 4158 */ 4159 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4160 { 4161 if (f < 0 || f >= ICE_F_MAX) 4162 return; 4163 4164 set_bit(f, pf->features); 4165 } 4166 4167 /** 4168 * ice_clear_feature_support 4169 * @pf: pointer to the struct ice_pf instance 4170 * @f: feature enum to clear 4171 */ 4172 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4173 { 4174 if (f < 0 || f >= ICE_F_MAX) 4175 return; 4176 4177 clear_bit(f, pf->features); 4178 } 4179 4180 /** 4181 * ice_init_feature_support 4182 * @pf: pointer to the struct ice_pf instance 4183 * 4184 * called during init to setup supported feature 4185 */ 4186 void ice_init_feature_support(struct ice_pf *pf) 4187 { 4188 switch (pf->hw.device_id) { 4189 case ICE_DEV_ID_E810C_BACKPLANE: 4190 case ICE_DEV_ID_E810C_QSFP: 4191 case ICE_DEV_ID_E810C_SFP: 4192 ice_set_feature_support(pf, ICE_F_DSCP); 4193 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4194 if (ice_is_e810t(&pf->hw)) { 4195 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4196 if (ice_gnss_is_gps_present(&pf->hw)) 4197 ice_set_feature_support(pf, ICE_F_GNSS); 4198 } 4199 break; 4200 default: 4201 break; 4202 } 4203 } 4204 4205 /** 4206 * ice_vsi_update_security - update security block in VSI 4207 * @vsi: pointer to VSI structure 4208 * @fill: function pointer to fill ctx 4209 */ 4210 int 4211 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4212 { 4213 struct ice_vsi_ctx ctx = { 0 }; 4214 4215 ctx.info = vsi->info; 4216 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4217 fill(&ctx); 4218 4219 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4220 return -ENODEV; 4221 4222 vsi->info = ctx.info; 4223 return 0; 4224 } 4225 4226 /** 4227 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4228 * @ctx: pointer to VSI ctx structure 4229 */ 4230 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4231 { 4232 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4233 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4234 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4235 } 4236 4237 /** 4238 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4239 * @ctx: pointer to VSI ctx structure 4240 */ 4241 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4242 { 4243 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4244 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4245 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4246 } 4247 4248 /** 4249 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4250 * @ctx: pointer to VSI ctx structure 4251 */ 4252 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4253 { 4254 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4255 } 4256 4257 /** 4258 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4259 * @ctx: pointer to VSI ctx structure 4260 */ 4261 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4262 { 4263 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4264 } 4265