xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 4461568aa4e565de2c336f4875ddf912f26da8a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  * @vf: the VF associated with this VSI, if any
170  *
171  * Return 0 on success and a negative value on error
172  */
173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
174 {
175 	enum ice_vsi_type vsi_type = vsi->type;
176 	struct ice_pf *pf = vsi->back;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 void ice_vsi_delete(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
295 	if (!ctxt)
296 		return;
297 
298 	if (vsi->type == ICE_VSI_VF)
299 		ctxt->vf_num = vsi->vf->vf_id;
300 	ctxt->vsi_num = vsi->vsi_num;
301 
302 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
303 
304 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
305 	if (status)
306 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
307 			vsi->vsi_num, status);
308 
309 	kfree(ctxt);
310 }
311 
312 /**
313  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
314  * @vsi: pointer to VSI being cleared
315  */
316 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
317 {
318 	struct ice_pf *pf = vsi->back;
319 	struct device *dev;
320 
321 	dev = ice_pf_to_dev(pf);
322 
323 	if (vsi->af_xdp_zc_qps) {
324 		bitmap_free(vsi->af_xdp_zc_qps);
325 		vsi->af_xdp_zc_qps = NULL;
326 	}
327 	/* free the ring and vector containers */
328 	if (vsi->q_vectors) {
329 		devm_kfree(dev, vsi->q_vectors);
330 		vsi->q_vectors = NULL;
331 	}
332 	if (vsi->tx_rings) {
333 		devm_kfree(dev, vsi->tx_rings);
334 		vsi->tx_rings = NULL;
335 	}
336 	if (vsi->rx_rings) {
337 		devm_kfree(dev, vsi->rx_rings);
338 		vsi->rx_rings = NULL;
339 	}
340 	if (vsi->txq_map) {
341 		devm_kfree(dev, vsi->txq_map);
342 		vsi->txq_map = NULL;
343 	}
344 	if (vsi->rxq_map) {
345 		devm_kfree(dev, vsi->rxq_map);
346 		vsi->rxq_map = NULL;
347 	}
348 }
349 
350 /**
351  * ice_vsi_clear - clean up and deallocate the provided VSI
352  * @vsi: pointer to VSI being cleared
353  *
354  * This deallocates the VSI's queue resources, removes it from the PF's
355  * VSI array if necessary, and deallocates the VSI
356  *
357  * Returns 0 on success, negative on failure
358  */
359 int ice_vsi_clear(struct ice_vsi *vsi)
360 {
361 	struct ice_pf *pf = NULL;
362 	struct device *dev;
363 
364 	if (!vsi)
365 		return 0;
366 
367 	if (!vsi->back)
368 		return -EINVAL;
369 
370 	pf = vsi->back;
371 	dev = ice_pf_to_dev(pf);
372 
373 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
374 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
375 		return -EINVAL;
376 	}
377 
378 	mutex_lock(&pf->sw_mutex);
379 	/* updates the PF for this cleared VSI */
380 
381 	pf->vsi[vsi->idx] = NULL;
382 	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
383 		pf->next_vsi = vsi->idx;
384 	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
385 		pf->next_vsi = vsi->idx;
386 
387 	ice_vsi_free_arrays(vsi);
388 	mutex_unlock(&pf->sw_mutex);
389 	devm_kfree(dev, vsi);
390 
391 	return 0;
392 }
393 
394 /**
395  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
396  * @irq: interrupt number
397  * @data: pointer to a q_vector
398  */
399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
400 {
401 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
402 
403 	if (!q_vector->tx.tx_ring)
404 		return IRQ_HANDLED;
405 
406 #define FDIR_RX_DESC_CLEAN_BUDGET 64
407 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
408 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
409 
410 	return IRQ_HANDLED;
411 }
412 
413 /**
414  * ice_msix_clean_rings - MSIX mode Interrupt Handler
415  * @irq: interrupt number
416  * @data: pointer to a q_vector
417  */
418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
419 {
420 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
421 
422 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
423 		return IRQ_HANDLED;
424 
425 	q_vector->total_events++;
426 
427 	napi_schedule(&q_vector->napi);
428 
429 	return IRQ_HANDLED;
430 }
431 
432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
433 {
434 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
435 	struct ice_pf *pf = q_vector->vsi->back;
436 	struct ice_vf *vf;
437 	unsigned int bkt;
438 
439 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
440 		return IRQ_HANDLED;
441 
442 	rcu_read_lock();
443 	ice_for_each_vf_rcu(pf, bkt, vf)
444 		napi_schedule(&vf->repr->q_vector->napi);
445 	rcu_read_unlock();
446 
447 	return IRQ_HANDLED;
448 }
449 
450 /**
451  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
452  * @pf: board private structure
453  * @vsi_type: type of VSI
454  * @ch: ptr to channel
455  * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
456  *
457  * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
458  * it may be NULL in the case there is no association with a VF. For
459  * ICE_VSI_VF the VF pointer *must not* be NULL.
460  *
461  * returns a pointer to a VSI on success, NULL on failure.
462  */
463 static struct ice_vsi *
464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
465 	      struct ice_channel *ch, struct ice_vf *vf)
466 {
467 	struct device *dev = ice_pf_to_dev(pf);
468 	struct ice_vsi *vsi = NULL;
469 
470 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
471 		return NULL;
472 
473 	/* Need to protect the allocation of the VSIs at the PF level */
474 	mutex_lock(&pf->sw_mutex);
475 
476 	/* If we have already allocated our maximum number of VSIs,
477 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
478 	 * is available to be populated
479 	 */
480 	if (pf->next_vsi == ICE_NO_VSI) {
481 		dev_dbg(dev, "out of VSI slots!\n");
482 		goto unlock_pf;
483 	}
484 
485 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
486 	if (!vsi)
487 		goto unlock_pf;
488 
489 	vsi->type = vsi_type;
490 	vsi->back = pf;
491 	set_bit(ICE_VSI_DOWN, vsi->state);
492 
493 	if (vsi_type == ICE_VSI_VF)
494 		ice_vsi_set_num_qs(vsi, vf);
495 	else if (vsi_type != ICE_VSI_CHNL)
496 		ice_vsi_set_num_qs(vsi, NULL);
497 
498 	switch (vsi->type) {
499 	case ICE_VSI_SWITCHDEV_CTRL:
500 		if (ice_vsi_alloc_arrays(vsi))
501 			goto err_rings;
502 
503 		/* Setup eswitch MSIX irq handler for VSI */
504 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
505 		break;
506 	case ICE_VSI_PF:
507 		if (ice_vsi_alloc_arrays(vsi))
508 			goto err_rings;
509 
510 		/* Setup default MSIX irq handler for VSI */
511 		vsi->irq_handler = ice_msix_clean_rings;
512 		break;
513 	case ICE_VSI_CTRL:
514 		if (ice_vsi_alloc_arrays(vsi))
515 			goto err_rings;
516 
517 		/* Setup ctrl VSI MSIX irq handler */
518 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
519 
520 		/* For the PF control VSI this is NULL, for the VF control VSI
521 		 * this will be the first VF to allocate it.
522 		 */
523 		vsi->vf = vf;
524 		break;
525 	case ICE_VSI_VF:
526 		if (ice_vsi_alloc_arrays(vsi))
527 			goto err_rings;
528 		vsi->vf = vf;
529 		break;
530 	case ICE_VSI_CHNL:
531 		if (!ch)
532 			goto err_rings;
533 		vsi->num_rxq = ch->num_rxq;
534 		vsi->num_txq = ch->num_txq;
535 		vsi->next_base_q = ch->base_q;
536 		break;
537 	case ICE_VSI_LB:
538 		if (ice_vsi_alloc_arrays(vsi))
539 			goto err_rings;
540 		break;
541 	default:
542 		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
543 		goto unlock_pf;
544 	}
545 
546 	if (vsi->type == ICE_VSI_CTRL && !vf) {
547 		/* Use the last VSI slot as the index for PF control VSI */
548 		vsi->idx = pf->num_alloc_vsi - 1;
549 		pf->ctrl_vsi_idx = vsi->idx;
550 		pf->vsi[vsi->idx] = vsi;
551 	} else {
552 		/* fill slot and make note of the index */
553 		vsi->idx = pf->next_vsi;
554 		pf->vsi[pf->next_vsi] = vsi;
555 
556 		/* prepare pf->next_vsi for next use */
557 		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
558 						 pf->next_vsi);
559 	}
560 
561 	if (vsi->type == ICE_VSI_CTRL && vf)
562 		vf->ctrl_vsi_idx = vsi->idx;
563 	goto unlock_pf;
564 
565 err_rings:
566 	devm_kfree(dev, vsi);
567 	vsi = NULL;
568 unlock_pf:
569 	mutex_unlock(&pf->sw_mutex);
570 	return vsi;
571 }
572 
573 /**
574  * ice_alloc_fd_res - Allocate FD resource for a VSI
575  * @vsi: pointer to the ice_vsi
576  *
577  * This allocates the FD resources
578  *
579  * Returns 0 on success, -EPERM on no-op or -EIO on failure
580  */
581 static int ice_alloc_fd_res(struct ice_vsi *vsi)
582 {
583 	struct ice_pf *pf = vsi->back;
584 	u32 g_val, b_val;
585 
586 	/* Flow Director filters are only allocated/assigned to the PF VSI or
587 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
588 	 * add/delete filters so resources are not allocated to it
589 	 */
590 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
591 		return -EPERM;
592 
593 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
594 	      vsi->type == ICE_VSI_CHNL))
595 		return -EPERM;
596 
597 	/* FD filters from guaranteed pool per VSI */
598 	g_val = pf->hw.func_caps.fd_fltr_guar;
599 	if (!g_val)
600 		return -EPERM;
601 
602 	/* FD filters from best effort pool */
603 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
604 	if (!b_val)
605 		return -EPERM;
606 
607 	/* PF main VSI gets only 64 FD resources from guaranteed pool
608 	 * when ADQ is configured.
609 	 */
610 #define ICE_PF_VSI_GFLTR	64
611 
612 	/* determine FD filter resources per VSI from shared(best effort) and
613 	 * dedicated pool
614 	 */
615 	if (vsi->type == ICE_VSI_PF) {
616 		vsi->num_gfltr = g_val;
617 		/* if MQPRIO is configured, main VSI doesn't get all FD
618 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
619 		 */
620 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
621 			if (g_val < ICE_PF_VSI_GFLTR)
622 				return -EPERM;
623 			/* allow bare minimum entries for PF VSI */
624 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
625 		}
626 
627 		/* each VSI gets same "best_effort" quota */
628 		vsi->num_bfltr = b_val;
629 	} else if (vsi->type == ICE_VSI_VF) {
630 		vsi->num_gfltr = 0;
631 
632 		/* each VSI gets same "best_effort" quota */
633 		vsi->num_bfltr = b_val;
634 	} else {
635 		struct ice_vsi *main_vsi;
636 		int numtc;
637 
638 		main_vsi = ice_get_main_vsi(pf);
639 		if (!main_vsi)
640 			return -EPERM;
641 
642 		if (!main_vsi->all_numtc)
643 			return -EINVAL;
644 
645 		/* figure out ADQ numtc */
646 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
647 
648 		/* only one TC but still asking resources for channels,
649 		 * invalid config
650 		 */
651 		if (numtc < ICE_CHNL_START_TC)
652 			return -EPERM;
653 
654 		g_val -= ICE_PF_VSI_GFLTR;
655 		/* channel VSIs gets equal share from guaranteed pool */
656 		vsi->num_gfltr = g_val / numtc;
657 
658 		/* each VSI gets same "best_effort" quota */
659 		vsi->num_bfltr = b_val;
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * ice_vsi_get_qs - Assign queues from PF to VSI
667  * @vsi: the VSI to assign queues to
668  *
669  * Returns 0 on success and a negative value on error
670  */
671 static int ice_vsi_get_qs(struct ice_vsi *vsi)
672 {
673 	struct ice_pf *pf = vsi->back;
674 	struct ice_qs_cfg tx_qs_cfg = {
675 		.qs_mutex = &pf->avail_q_mutex,
676 		.pf_map = pf->avail_txqs,
677 		.pf_map_size = pf->max_pf_txqs,
678 		.q_count = vsi->alloc_txq,
679 		.scatter_count = ICE_MAX_SCATTER_TXQS,
680 		.vsi_map = vsi->txq_map,
681 		.vsi_map_offset = 0,
682 		.mapping_mode = ICE_VSI_MAP_CONTIG
683 	};
684 	struct ice_qs_cfg rx_qs_cfg = {
685 		.qs_mutex = &pf->avail_q_mutex,
686 		.pf_map = pf->avail_rxqs,
687 		.pf_map_size = pf->max_pf_rxqs,
688 		.q_count = vsi->alloc_rxq,
689 		.scatter_count = ICE_MAX_SCATTER_RXQS,
690 		.vsi_map = vsi->rxq_map,
691 		.vsi_map_offset = 0,
692 		.mapping_mode = ICE_VSI_MAP_CONTIG
693 	};
694 	int ret;
695 
696 	if (vsi->type == ICE_VSI_CHNL)
697 		return 0;
698 
699 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
700 	if (ret)
701 		return ret;
702 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
703 
704 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
705 	if (ret)
706 		return ret;
707 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
708 
709 	return 0;
710 }
711 
712 /**
713  * ice_vsi_put_qs - Release queues from VSI to PF
714  * @vsi: the VSI that is going to release queues
715  */
716 static void ice_vsi_put_qs(struct ice_vsi *vsi)
717 {
718 	struct ice_pf *pf = vsi->back;
719 	int i;
720 
721 	mutex_lock(&pf->avail_q_mutex);
722 
723 	ice_for_each_alloc_txq(vsi, i) {
724 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
725 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
726 	}
727 
728 	ice_for_each_alloc_rxq(vsi, i) {
729 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
730 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
731 	}
732 
733 	mutex_unlock(&pf->avail_q_mutex);
734 }
735 
736 /**
737  * ice_is_safe_mode
738  * @pf: pointer to the PF struct
739  *
740  * returns true if driver is in safe mode, false otherwise
741  */
742 bool ice_is_safe_mode(struct ice_pf *pf)
743 {
744 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
745 }
746 
747 /**
748  * ice_is_rdma_ena
749  * @pf: pointer to the PF struct
750  *
751  * returns true if RDMA is currently supported, false otherwise
752  */
753 bool ice_is_rdma_ena(struct ice_pf *pf)
754 {
755 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
756 }
757 
758 /**
759  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
760  * @vsi: the VSI being cleaned up
761  *
762  * This function deletes RSS input set for all flows that were configured
763  * for this VSI
764  */
765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
766 {
767 	struct ice_pf *pf = vsi->back;
768 	int status;
769 
770 	if (ice_is_safe_mode(pf))
771 		return;
772 
773 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
774 	if (status)
775 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
776 			vsi->vsi_num, status);
777 }
778 
779 /**
780  * ice_rss_clean - Delete RSS related VSI structures and configuration
781  * @vsi: the VSI being removed
782  */
783 static void ice_rss_clean(struct ice_vsi *vsi)
784 {
785 	struct ice_pf *pf = vsi->back;
786 	struct device *dev;
787 
788 	dev = ice_pf_to_dev(pf);
789 
790 	if (vsi->rss_hkey_user)
791 		devm_kfree(dev, vsi->rss_hkey_user);
792 	if (vsi->rss_lut_user)
793 		devm_kfree(dev, vsi->rss_lut_user);
794 
795 	ice_vsi_clean_rss_flow_fld(vsi);
796 	/* remove RSS replay list */
797 	if (!ice_is_safe_mode(pf))
798 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
799 }
800 
801 /**
802  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
803  * @vsi: the VSI being configured
804  */
805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
806 {
807 	struct ice_hw_common_caps *cap;
808 	struct ice_pf *pf = vsi->back;
809 
810 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
811 		vsi->rss_size = 1;
812 		return;
813 	}
814 
815 	cap = &pf->hw.func_caps.common_cap;
816 	switch (vsi->type) {
817 	case ICE_VSI_CHNL:
818 	case ICE_VSI_PF:
819 		/* PF VSI will inherit RSS instance of PF */
820 		vsi->rss_table_size = (u16)cap->rss_table_size;
821 		if (vsi->type == ICE_VSI_CHNL)
822 			vsi->rss_size = min_t(u16, vsi->num_rxq,
823 					      BIT(cap->rss_table_entry_width));
824 		else
825 			vsi->rss_size = min_t(u16, num_online_cpus(),
826 					      BIT(cap->rss_table_entry_width));
827 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
828 		break;
829 	case ICE_VSI_SWITCHDEV_CTRL:
830 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
831 		vsi->rss_size = min_t(u16, num_online_cpus(),
832 				      BIT(cap->rss_table_entry_width));
833 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
834 		break;
835 	case ICE_VSI_VF:
836 		/* VF VSI will get a small RSS table.
837 		 * For VSI_LUT, LUT size should be set to 64 bytes.
838 		 */
839 		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
840 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
841 		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
842 		break;
843 	case ICE_VSI_LB:
844 		break;
845 	default:
846 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
847 			ice_vsi_type_str(vsi->type));
848 		break;
849 	}
850 }
851 
852 /**
853  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
854  * @hw: HW structure used to determine the VLAN mode of the device
855  * @ctxt: the VSI context being set
856  *
857  * This initializes a default VSI context for all sections except the Queues.
858  */
859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
860 {
861 	u32 table = 0;
862 
863 	memset(&ctxt->info, 0, sizeof(ctxt->info));
864 	/* VSI's should be allocated from shared pool */
865 	ctxt->alloc_from_pool = true;
866 	/* Src pruning enabled by default */
867 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
868 	/* Traffic from VSI can be sent to LAN */
869 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
870 	/* allow all untagged/tagged packets by default on Tx */
871 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
872 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
873 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
874 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
875 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
876 	 *
877 	 * DVM - leave inner VLAN in packet by default
878 	 */
879 	if (ice_is_dvm_ena(hw)) {
880 		ctxt->info.inner_vlan_flags |=
881 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
882 		ctxt->info.outer_vlan_flags =
883 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
884 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
885 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
886 		ctxt->info.outer_vlan_flags |=
887 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
888 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
889 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
890 		ctxt->info.outer_vlan_flags |=
891 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
892 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
893 	}
894 	/* Have 1:1 UP mapping for both ingress/egress tables */
895 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
896 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
897 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
898 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
899 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
900 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
901 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
902 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
903 	ctxt->info.ingress_table = cpu_to_le32(table);
904 	ctxt->info.egress_table = cpu_to_le32(table);
905 	/* Have 1:1 UP mapping for outer to inner UP table */
906 	ctxt->info.outer_up_table = cpu_to_le32(table);
907 	/* No Outer tag support outer_tag_flags remains to zero */
908 }
909 
910 /**
911  * ice_vsi_setup_q_map - Setup a VSI queue map
912  * @vsi: the VSI being configured
913  * @ctxt: VSI context structure
914  */
915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
916 {
917 	u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
918 	u16 num_txq_per_tc, num_rxq_per_tc;
919 	u16 qcount_tx = vsi->alloc_txq;
920 	u16 qcount_rx = vsi->alloc_rxq;
921 	u8 netdev_tc = 0;
922 	int i;
923 
924 	if (!vsi->tc_cfg.numtc) {
925 		/* at least TC0 should be enabled by default */
926 		vsi->tc_cfg.numtc = 1;
927 		vsi->tc_cfg.ena_tc = 1;
928 	}
929 
930 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
931 	if (!num_rxq_per_tc)
932 		num_rxq_per_tc = 1;
933 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
934 	if (!num_txq_per_tc)
935 		num_txq_per_tc = 1;
936 
937 	/* find the (rounded up) power-of-2 of qcount */
938 	pow = (u16)order_base_2(num_rxq_per_tc);
939 
940 	/* TC mapping is a function of the number of Rx queues assigned to the
941 	 * VSI for each traffic class and the offset of these queues.
942 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
943 	 * queues allocated to TC0. No:of queues is a power-of-2.
944 	 *
945 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
946 	 * queue, this way, traffic for the given TC will be sent to the default
947 	 * queue.
948 	 *
949 	 * Setup number and offset of Rx queues for all TCs for the VSI
950 	 */
951 	ice_for_each_traffic_class(i) {
952 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
953 			/* TC is not enabled */
954 			vsi->tc_cfg.tc_info[i].qoffset = 0;
955 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
956 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
957 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
958 			ctxt->info.tc_mapping[i] = 0;
959 			continue;
960 		}
961 
962 		/* TC is enabled */
963 		vsi->tc_cfg.tc_info[i].qoffset = offset;
964 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
965 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
966 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
967 
968 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
969 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
970 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
971 			 ICE_AQ_VSI_TC_Q_NUM_M);
972 		offset += num_rxq_per_tc;
973 		tx_count += num_txq_per_tc;
974 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
975 	}
976 
977 	/* if offset is non-zero, means it is calculated correctly based on
978 	 * enabled TCs for a given VSI otherwise qcount_rx will always
979 	 * be correct and non-zero because it is based off - VSI's
980 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
981 	 * at least 1)
982 	 */
983 	if (offset)
984 		vsi->num_rxq = offset;
985 	else
986 		vsi->num_rxq = num_rxq_per_tc;
987 
988 	if (vsi->num_rxq > vsi->alloc_rxq) {
989 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
990 			vsi->num_rxq, vsi->alloc_rxq);
991 		return -EINVAL;
992 	}
993 
994 	vsi->num_txq = tx_count;
995 	if (vsi->num_txq > vsi->alloc_txq) {
996 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
997 			vsi->num_txq, vsi->alloc_txq);
998 		return -EINVAL;
999 	}
1000 
1001 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1002 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1003 		/* since there is a chance that num_rxq could have been changed
1004 		 * in the above for loop, make num_txq equal to num_rxq.
1005 		 */
1006 		vsi->num_txq = vsi->num_rxq;
1007 	}
1008 
1009 	/* Rx queue mapping */
1010 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1011 	/* q_mapping buffer holds the info for the first queue allocated for
1012 	 * this VSI in the PF space and also the number of queues associated
1013 	 * with this VSI.
1014 	 */
1015 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1016 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1017 
1018 	return 0;
1019 }
1020 
1021 /**
1022  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1023  * @ctxt: the VSI context being set
1024  * @vsi: the VSI being configured
1025  */
1026 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1027 {
1028 	u8 dflt_q_group, dflt_q_prio;
1029 	u16 dflt_q, report_q, val;
1030 
1031 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1032 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1033 		return;
1034 
1035 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1036 	ctxt->info.valid_sections |= cpu_to_le16(val);
1037 	dflt_q = 0;
1038 	dflt_q_group = 0;
1039 	report_q = 0;
1040 	dflt_q_prio = 0;
1041 
1042 	/* enable flow director filtering/programming */
1043 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1044 	ctxt->info.fd_options = cpu_to_le16(val);
1045 	/* max of allocated flow director filters */
1046 	ctxt->info.max_fd_fltr_dedicated =
1047 			cpu_to_le16(vsi->num_gfltr);
1048 	/* max of shared flow director filters any VSI may program */
1049 	ctxt->info.max_fd_fltr_shared =
1050 			cpu_to_le16(vsi->num_bfltr);
1051 	/* default queue index within the VSI of the default FD */
1052 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1053 	       ICE_AQ_VSI_FD_DEF_Q_M);
1054 	/* target queue or queue group to the FD filter */
1055 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1056 		ICE_AQ_VSI_FD_DEF_GRP_M);
1057 	ctxt->info.fd_def_q = cpu_to_le16(val);
1058 	/* queue index on which FD filter completion is reported */
1059 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1060 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1061 	/* priority of the default qindex action */
1062 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1063 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1064 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1065 }
1066 
1067 /**
1068  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1069  * @ctxt: the VSI context being set
1070  * @vsi: the VSI being configured
1071  */
1072 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1073 {
1074 	u8 lut_type, hash_type;
1075 	struct device *dev;
1076 	struct ice_pf *pf;
1077 
1078 	pf = vsi->back;
1079 	dev = ice_pf_to_dev(pf);
1080 
1081 	switch (vsi->type) {
1082 	case ICE_VSI_CHNL:
1083 	case ICE_VSI_PF:
1084 		/* PF VSI will inherit RSS instance of PF */
1085 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1086 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1087 		break;
1088 	case ICE_VSI_VF:
1089 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1090 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1091 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1092 		break;
1093 	default:
1094 		dev_dbg(dev, "Unsupported VSI type %s\n",
1095 			ice_vsi_type_str(vsi->type));
1096 		return;
1097 	}
1098 
1099 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1100 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1101 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1102 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1103 }
1104 
1105 static void
1106 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1107 {
1108 	struct ice_pf *pf = vsi->back;
1109 	u16 qcount, qmap;
1110 	u8 offset = 0;
1111 	int pow;
1112 
1113 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1114 
1115 	pow = order_base_2(qcount);
1116 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1117 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1118 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1119 		   ICE_AQ_VSI_TC_Q_NUM_M);
1120 
1121 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1122 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1123 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1124 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1125 }
1126 
1127 /**
1128  * ice_vsi_init - Create and initialize a VSI
1129  * @vsi: the VSI being configured
1130  * @init_vsi: is this call creating a VSI
1131  *
1132  * This initializes a VSI context depending on the VSI type to be added and
1133  * passes it down to the add_vsi aq command to create a new VSI.
1134  */
1135 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1136 {
1137 	struct ice_pf *pf = vsi->back;
1138 	struct ice_hw *hw = &pf->hw;
1139 	struct ice_vsi_ctx *ctxt;
1140 	struct device *dev;
1141 	int ret = 0;
1142 
1143 	dev = ice_pf_to_dev(pf);
1144 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1145 	if (!ctxt)
1146 		return -ENOMEM;
1147 
1148 	switch (vsi->type) {
1149 	case ICE_VSI_CTRL:
1150 	case ICE_VSI_LB:
1151 	case ICE_VSI_PF:
1152 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1153 		break;
1154 	case ICE_VSI_SWITCHDEV_CTRL:
1155 	case ICE_VSI_CHNL:
1156 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1157 		break;
1158 	case ICE_VSI_VF:
1159 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1160 		/* VF number here is the absolute VF number (0-255) */
1161 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1162 		break;
1163 	default:
1164 		ret = -ENODEV;
1165 		goto out;
1166 	}
1167 
1168 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1169 	 * prune enabled
1170 	 */
1171 	if (vsi->type == ICE_VSI_CHNL) {
1172 		struct ice_vsi *main_vsi;
1173 
1174 		main_vsi = ice_get_main_vsi(pf);
1175 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1176 			ctxt->info.sw_flags2 |=
1177 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1178 		else
1179 			ctxt->info.sw_flags2 &=
1180 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1181 	}
1182 
1183 	ice_set_dflt_vsi_ctx(hw, ctxt);
1184 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1185 		ice_set_fd_vsi_ctx(ctxt, vsi);
1186 	/* if the switch is in VEB mode, allow VSI loopback */
1187 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1188 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1189 
1190 	/* Set LUT type and HASH type if RSS is enabled */
1191 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1192 	    vsi->type != ICE_VSI_CTRL) {
1193 		ice_set_rss_vsi_ctx(ctxt, vsi);
1194 		/* if updating VSI context, make sure to set valid_section:
1195 		 * to indicate which section of VSI context being updated
1196 		 */
1197 		if (!init_vsi)
1198 			ctxt->info.valid_sections |=
1199 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1200 	}
1201 
1202 	ctxt->info.sw_id = vsi->port_info->sw_id;
1203 	if (vsi->type == ICE_VSI_CHNL) {
1204 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1205 	} else {
1206 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1207 		if (ret)
1208 			goto out;
1209 
1210 		if (!init_vsi) /* means VSI being updated */
1211 			/* must to indicate which section of VSI context are
1212 			 * being modified
1213 			 */
1214 			ctxt->info.valid_sections |=
1215 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1216 	}
1217 
1218 	/* Allow control frames out of main VSI */
1219 	if (vsi->type == ICE_VSI_PF) {
1220 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1221 		ctxt->info.valid_sections |=
1222 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1223 	}
1224 
1225 	if (init_vsi) {
1226 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1227 		if (ret) {
1228 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1229 			ret = -EIO;
1230 			goto out;
1231 		}
1232 	} else {
1233 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1234 		if (ret) {
1235 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1236 			ret = -EIO;
1237 			goto out;
1238 		}
1239 	}
1240 
1241 	/* keep context for update VSI operations */
1242 	vsi->info = ctxt->info;
1243 
1244 	/* record VSI number returned */
1245 	vsi->vsi_num = ctxt->vsi_num;
1246 
1247 out:
1248 	kfree(ctxt);
1249 	return ret;
1250 }
1251 
1252 /**
1253  * ice_free_res - free a block of resources
1254  * @res: pointer to the resource
1255  * @index: starting index previously returned by ice_get_res
1256  * @id: identifier to track owner
1257  *
1258  * Returns number of resources freed
1259  */
1260 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1261 {
1262 	int count = 0;
1263 	int i;
1264 
1265 	if (!res || index >= res->end)
1266 		return -EINVAL;
1267 
1268 	id |= ICE_RES_VALID_BIT;
1269 	for (i = index; i < res->end && res->list[i] == id; i++) {
1270 		res->list[i] = 0;
1271 		count++;
1272 	}
1273 
1274 	return count;
1275 }
1276 
1277 /**
1278  * ice_search_res - Search the tracker for a block of resources
1279  * @res: pointer to the resource
1280  * @needed: size of the block needed
1281  * @id: identifier to track owner
1282  *
1283  * Returns the base item index of the block, or -ENOMEM for error
1284  */
1285 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1286 {
1287 	u16 start = 0, end = 0;
1288 
1289 	if (needed > res->end)
1290 		return -ENOMEM;
1291 
1292 	id |= ICE_RES_VALID_BIT;
1293 
1294 	do {
1295 		/* skip already allocated entries */
1296 		if (res->list[end++] & ICE_RES_VALID_BIT) {
1297 			start = end;
1298 			if ((start + needed) > res->end)
1299 				break;
1300 		}
1301 
1302 		if (end == (start + needed)) {
1303 			int i = start;
1304 
1305 			/* there was enough, so assign it to the requestor */
1306 			while (i != end)
1307 				res->list[i++] = id;
1308 
1309 			return start;
1310 		}
1311 	} while (end < res->end);
1312 
1313 	return -ENOMEM;
1314 }
1315 
1316 /**
1317  * ice_get_free_res_count - Get free count from a resource tracker
1318  * @res: Resource tracker instance
1319  */
1320 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1321 {
1322 	u16 i, count = 0;
1323 
1324 	for (i = 0; i < res->end; i++)
1325 		if (!(res->list[i] & ICE_RES_VALID_BIT))
1326 			count++;
1327 
1328 	return count;
1329 }
1330 
1331 /**
1332  * ice_get_res - get a block of resources
1333  * @pf: board private structure
1334  * @res: pointer to the resource
1335  * @needed: size of the block needed
1336  * @id: identifier to track owner
1337  *
1338  * Returns the base item index of the block, or negative for error
1339  */
1340 int
1341 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1342 {
1343 	if (!res || !pf)
1344 		return -EINVAL;
1345 
1346 	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1347 		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1348 			needed, res->num_entries, id);
1349 		return -EINVAL;
1350 	}
1351 
1352 	return ice_search_res(res, needed, id);
1353 }
1354 
1355 /**
1356  * ice_get_vf_ctrl_res - Get VF control VSI resource
1357  * @pf: pointer to the PF structure
1358  * @vsi: the VSI to allocate a resource for
1359  *
1360  * Look up whether another VF has already allocated the control VSI resource.
1361  * If so, re-use this resource so that we share it among all VFs.
1362  *
1363  * Otherwise, allocate the resource and return it.
1364  */
1365 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1366 {
1367 	struct ice_vf *vf;
1368 	unsigned int bkt;
1369 	int base;
1370 
1371 	rcu_read_lock();
1372 	ice_for_each_vf_rcu(pf, bkt, vf) {
1373 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1374 			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1375 			rcu_read_unlock();
1376 			return base;
1377 		}
1378 	}
1379 	rcu_read_unlock();
1380 
1381 	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1382 			   ICE_RES_VF_CTRL_VEC_ID);
1383 }
1384 
1385 /**
1386  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1387  * @vsi: ptr to the VSI
1388  *
1389  * This should only be called after ice_vsi_alloc() which allocates the
1390  * corresponding SW VSI structure and initializes num_queue_pairs for the
1391  * newly allocated VSI.
1392  *
1393  * Returns 0 on success or negative on failure
1394  */
1395 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1396 {
1397 	struct ice_pf *pf = vsi->back;
1398 	struct device *dev;
1399 	u16 num_q_vectors;
1400 	int base;
1401 
1402 	dev = ice_pf_to_dev(pf);
1403 	/* SRIOV doesn't grab irq_tracker entries for each VSI */
1404 	if (vsi->type == ICE_VSI_VF)
1405 		return 0;
1406 	if (vsi->type == ICE_VSI_CHNL)
1407 		return 0;
1408 
1409 	if (vsi->base_vector) {
1410 		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1411 			vsi->vsi_num, vsi->base_vector);
1412 		return -EEXIST;
1413 	}
1414 
1415 	num_q_vectors = vsi->num_q_vectors;
1416 	/* reserve slots from OS requested IRQs */
1417 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1418 		base = ice_get_vf_ctrl_res(pf, vsi);
1419 	} else {
1420 		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1421 				   vsi->idx);
1422 	}
1423 
1424 	if (base < 0) {
1425 		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1426 			ice_get_free_res_count(pf->irq_tracker),
1427 			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1428 		return -ENOENT;
1429 	}
1430 	vsi->base_vector = (u16)base;
1431 	pf->num_avail_sw_msix -= num_q_vectors;
1432 
1433 	return 0;
1434 }
1435 
1436 /**
1437  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1438  * @vsi: the VSI having rings deallocated
1439  */
1440 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1441 {
1442 	int i;
1443 
1444 	/* Avoid stale references by clearing map from vector to ring */
1445 	if (vsi->q_vectors) {
1446 		ice_for_each_q_vector(vsi, i) {
1447 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1448 
1449 			if (q_vector) {
1450 				q_vector->tx.tx_ring = NULL;
1451 				q_vector->rx.rx_ring = NULL;
1452 			}
1453 		}
1454 	}
1455 
1456 	if (vsi->tx_rings) {
1457 		ice_for_each_alloc_txq(vsi, i) {
1458 			if (vsi->tx_rings[i]) {
1459 				kfree_rcu(vsi->tx_rings[i], rcu);
1460 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1461 			}
1462 		}
1463 	}
1464 	if (vsi->rx_rings) {
1465 		ice_for_each_alloc_rxq(vsi, i) {
1466 			if (vsi->rx_rings[i]) {
1467 				kfree_rcu(vsi->rx_rings[i], rcu);
1468 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1469 			}
1470 		}
1471 	}
1472 }
1473 
1474 /**
1475  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1476  * @vsi: VSI which is having rings allocated
1477  */
1478 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1479 {
1480 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1481 	struct ice_pf *pf = vsi->back;
1482 	struct device *dev;
1483 	u16 i;
1484 
1485 	dev = ice_pf_to_dev(pf);
1486 	/* Allocate Tx rings */
1487 	ice_for_each_alloc_txq(vsi, i) {
1488 		struct ice_tx_ring *ring;
1489 
1490 		/* allocate with kzalloc(), free with kfree_rcu() */
1491 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1492 
1493 		if (!ring)
1494 			goto err_out;
1495 
1496 		ring->q_index = i;
1497 		ring->reg_idx = vsi->txq_map[i];
1498 		ring->vsi = vsi;
1499 		ring->tx_tstamps = &pf->ptp.port.tx;
1500 		ring->dev = dev;
1501 		ring->count = vsi->num_tx_desc;
1502 		ring->txq_teid = ICE_INVAL_TEID;
1503 		if (dvm_ena)
1504 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1505 		else
1506 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1507 		WRITE_ONCE(vsi->tx_rings[i], ring);
1508 	}
1509 
1510 	/* Allocate Rx rings */
1511 	ice_for_each_alloc_rxq(vsi, i) {
1512 		struct ice_rx_ring *ring;
1513 
1514 		/* allocate with kzalloc(), free with kfree_rcu() */
1515 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1516 		if (!ring)
1517 			goto err_out;
1518 
1519 		ring->q_index = i;
1520 		ring->reg_idx = vsi->rxq_map[i];
1521 		ring->vsi = vsi;
1522 		ring->netdev = vsi->netdev;
1523 		ring->dev = dev;
1524 		ring->count = vsi->num_rx_desc;
1525 		ring->cached_phctime = pf->ptp.cached_phc_time;
1526 		WRITE_ONCE(vsi->rx_rings[i], ring);
1527 	}
1528 
1529 	return 0;
1530 
1531 err_out:
1532 	ice_vsi_clear_rings(vsi);
1533 	return -ENOMEM;
1534 }
1535 
1536 /**
1537  * ice_vsi_manage_rss_lut - disable/enable RSS
1538  * @vsi: the VSI being changed
1539  * @ena: boolean value indicating if this is an enable or disable request
1540  *
1541  * In the event of disable request for RSS, this function will zero out RSS
1542  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1543  * LUT.
1544  */
1545 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1546 {
1547 	u8 *lut;
1548 
1549 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1550 	if (!lut)
1551 		return;
1552 
1553 	if (ena) {
1554 		if (vsi->rss_lut_user)
1555 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1556 		else
1557 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1558 					 vsi->rss_size);
1559 	}
1560 
1561 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1562 	kfree(lut);
1563 }
1564 
1565 /**
1566  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1567  * @vsi: VSI to be configured
1568  * @disable: set to true to have FCS / CRC in the frame data
1569  */
1570 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1571 {
1572 	int i;
1573 
1574 	ice_for_each_rxq(vsi, i)
1575 		if (disable)
1576 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1577 		else
1578 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1579 }
1580 
1581 /**
1582  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1583  * @vsi: VSI to be configured
1584  */
1585 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1586 {
1587 	struct ice_pf *pf = vsi->back;
1588 	struct device *dev;
1589 	u8 *lut, *key;
1590 	int err;
1591 
1592 	dev = ice_pf_to_dev(pf);
1593 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1594 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1595 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1596 	} else {
1597 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1598 
1599 		/* If orig_rss_size is valid and it is less than determined
1600 		 * main VSI's rss_size, update main VSI's rss_size to be
1601 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1602 		 * RSS table gets programmed to be correct (whatever it was
1603 		 * to begin with (prior to setup-tc for ADQ config)
1604 		 */
1605 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1606 		    vsi->orig_rss_size <= vsi->num_rxq) {
1607 			vsi->rss_size = vsi->orig_rss_size;
1608 			/* now orig_rss_size is used, reset it to zero */
1609 			vsi->orig_rss_size = 0;
1610 		}
1611 	}
1612 
1613 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1614 	if (!lut)
1615 		return -ENOMEM;
1616 
1617 	if (vsi->rss_lut_user)
1618 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1619 	else
1620 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1621 
1622 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1623 	if (err) {
1624 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1625 		goto ice_vsi_cfg_rss_exit;
1626 	}
1627 
1628 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1629 	if (!key) {
1630 		err = -ENOMEM;
1631 		goto ice_vsi_cfg_rss_exit;
1632 	}
1633 
1634 	if (vsi->rss_hkey_user)
1635 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1636 	else
1637 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1638 
1639 	err = ice_set_rss_key(vsi, key);
1640 	if (err)
1641 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1642 
1643 	kfree(key);
1644 ice_vsi_cfg_rss_exit:
1645 	kfree(lut);
1646 	return err;
1647 }
1648 
1649 /**
1650  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1651  * @vsi: VSI to be configured
1652  *
1653  * This function will only be called during the VF VSI setup. Upon successful
1654  * completion of package download, this function will configure default RSS
1655  * input sets for VF VSI.
1656  */
1657 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1658 {
1659 	struct ice_pf *pf = vsi->back;
1660 	struct device *dev;
1661 	int status;
1662 
1663 	dev = ice_pf_to_dev(pf);
1664 	if (ice_is_safe_mode(pf)) {
1665 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1666 			vsi->vsi_num);
1667 		return;
1668 	}
1669 
1670 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1671 	if (status)
1672 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1673 			vsi->vsi_num, status);
1674 }
1675 
1676 /**
1677  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1678  * @vsi: VSI to be configured
1679  *
1680  * This function will only be called after successful download package call
1681  * during initialization of PF. Since the downloaded package will erase the
1682  * RSS section, this function will configure RSS input sets for different
1683  * flow types. The last profile added has the highest priority, therefore 2
1684  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1685  * (i.e. IPv4 src/dst TCP src/dst port).
1686  */
1687 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1688 {
1689 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1690 	struct ice_pf *pf = vsi->back;
1691 	struct ice_hw *hw = &pf->hw;
1692 	struct device *dev;
1693 	int status;
1694 
1695 	dev = ice_pf_to_dev(pf);
1696 	if (ice_is_safe_mode(pf)) {
1697 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1698 			vsi_num);
1699 		return;
1700 	}
1701 	/* configure RSS for IPv4 with input set IP src/dst */
1702 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1703 				 ICE_FLOW_SEG_HDR_IPV4);
1704 	if (status)
1705 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1706 			vsi_num, status);
1707 
1708 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1709 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1710 				 ICE_FLOW_SEG_HDR_IPV6);
1711 	if (status)
1712 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1713 			vsi_num, status);
1714 
1715 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1716 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1717 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1718 	if (status)
1719 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1720 			vsi_num, status);
1721 
1722 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1723 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1724 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1725 	if (status)
1726 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1727 			vsi_num, status);
1728 
1729 	/* configure RSS for sctp4 with input set IP src/dst */
1730 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1731 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1732 	if (status)
1733 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1734 			vsi_num, status);
1735 
1736 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1737 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1738 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1739 	if (status)
1740 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1741 			vsi_num, status);
1742 
1743 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1744 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1745 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1746 	if (status)
1747 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1748 			vsi_num, status);
1749 
1750 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1751 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1752 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1753 	if (status)
1754 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1755 			vsi_num, status);
1756 
1757 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1758 				 ICE_FLOW_SEG_HDR_ESP);
1759 	if (status)
1760 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1761 			vsi_num, status);
1762 }
1763 
1764 /**
1765  * ice_pf_state_is_nominal - checks the PF for nominal state
1766  * @pf: pointer to PF to check
1767  *
1768  * Check the PF's state for a collection of bits that would indicate
1769  * the PF is in a state that would inhibit normal operation for
1770  * driver functionality.
1771  *
1772  * Returns true if PF is in a nominal state, false otherwise
1773  */
1774 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1775 {
1776 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1777 
1778 	if (!pf)
1779 		return false;
1780 
1781 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1782 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1783 		return false;
1784 
1785 	return true;
1786 }
1787 
1788 /**
1789  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1790  * @vsi: the VSI to be updated
1791  */
1792 void ice_update_eth_stats(struct ice_vsi *vsi)
1793 {
1794 	struct ice_eth_stats *prev_es, *cur_es;
1795 	struct ice_hw *hw = &vsi->back->hw;
1796 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1797 
1798 	prev_es = &vsi->eth_stats_prev;
1799 	cur_es = &vsi->eth_stats;
1800 
1801 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1802 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1803 
1804 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1805 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1806 
1807 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1808 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1809 
1810 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1811 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1812 
1813 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1814 			  &prev_es->rx_discards, &cur_es->rx_discards);
1815 
1816 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1817 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1818 
1819 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1820 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1821 
1822 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1823 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1824 
1825 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1826 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1827 
1828 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1829 			  &prev_es->tx_errors, &cur_es->tx_errors);
1830 
1831 	vsi->stat_offsets_loaded = true;
1832 }
1833 
1834 /**
1835  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1836  * @vsi: VSI
1837  */
1838 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1839 {
1840 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1841 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1842 		vsi->rx_buf_len = ICE_RXBUF_2048;
1843 #if (PAGE_SIZE < 8192)
1844 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1845 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1846 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1847 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1848 #endif
1849 	} else {
1850 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1851 #if (PAGE_SIZE < 8192)
1852 		vsi->rx_buf_len = ICE_RXBUF_3072;
1853 #else
1854 		vsi->rx_buf_len = ICE_RXBUF_2048;
1855 #endif
1856 	}
1857 }
1858 
1859 /**
1860  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1861  * @hw: HW pointer
1862  * @pf_q: index of the Rx queue in the PF's queue space
1863  * @rxdid: flexible descriptor RXDID
1864  * @prio: priority for the RXDID for this queue
1865  * @ena_ts: true to enable timestamp and false to disable timestamp
1866  */
1867 void
1868 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1869 			bool ena_ts)
1870 {
1871 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1872 
1873 	/* clear any previous values */
1874 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1875 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1876 		    QRXFLXP_CNTXT_TS_M);
1877 
1878 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1879 		QRXFLXP_CNTXT_RXDID_IDX_M;
1880 
1881 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1882 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1883 
1884 	if (ena_ts)
1885 		/* Enable TimeSync on this queue */
1886 		regval |= QRXFLXP_CNTXT_TS_M;
1887 
1888 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1889 }
1890 
1891 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1892 {
1893 	if (q_idx >= vsi->num_rxq)
1894 		return -EINVAL;
1895 
1896 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1897 }
1898 
1899 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1900 {
1901 	struct ice_aqc_add_tx_qgrp *qg_buf;
1902 	int err;
1903 
1904 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1905 		return -EINVAL;
1906 
1907 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1908 	if (!qg_buf)
1909 		return -ENOMEM;
1910 
1911 	qg_buf->num_txqs = 1;
1912 
1913 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1914 	kfree(qg_buf);
1915 	return err;
1916 }
1917 
1918 /**
1919  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1920  * @vsi: the VSI being configured
1921  *
1922  * Return 0 on success and a negative value on error
1923  * Configure the Rx VSI for operation.
1924  */
1925 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1926 {
1927 	u16 i;
1928 
1929 	if (vsi->type == ICE_VSI_VF)
1930 		goto setup_rings;
1931 
1932 	ice_vsi_cfg_frame_size(vsi);
1933 setup_rings:
1934 	/* set up individual rings */
1935 	ice_for_each_rxq(vsi, i) {
1936 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1937 
1938 		if (err)
1939 			return err;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 /**
1946  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1947  * @vsi: the VSI being configured
1948  * @rings: Tx ring array to be configured
1949  * @count: number of Tx ring array elements
1950  *
1951  * Return 0 on success and a negative value on error
1952  * Configure the Tx VSI for operation.
1953  */
1954 static int
1955 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1956 {
1957 	struct ice_aqc_add_tx_qgrp *qg_buf;
1958 	u16 q_idx = 0;
1959 	int err = 0;
1960 
1961 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1962 	if (!qg_buf)
1963 		return -ENOMEM;
1964 
1965 	qg_buf->num_txqs = 1;
1966 
1967 	for (q_idx = 0; q_idx < count; q_idx++) {
1968 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1969 		if (err)
1970 			goto err_cfg_txqs;
1971 	}
1972 
1973 err_cfg_txqs:
1974 	kfree(qg_buf);
1975 	return err;
1976 }
1977 
1978 /**
1979  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1980  * @vsi: the VSI being configured
1981  *
1982  * Return 0 on success and a negative value on error
1983  * Configure the Tx VSI for operation.
1984  */
1985 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1986 {
1987 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1988 }
1989 
1990 /**
1991  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1992  * @vsi: the VSI being configured
1993  *
1994  * Return 0 on success and a negative value on error
1995  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1996  */
1997 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1998 {
1999 	int ret;
2000 	int i;
2001 
2002 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
2003 	if (ret)
2004 		return ret;
2005 
2006 	ice_for_each_rxq(vsi, i)
2007 		ice_tx_xsk_pool(vsi, i);
2008 
2009 	return ret;
2010 }
2011 
2012 /**
2013  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
2014  * @intrl: interrupt rate limit in usecs
2015  * @gran: interrupt rate limit granularity in usecs
2016  *
2017  * This function converts a decimal interrupt rate limit in usecs to the format
2018  * expected by firmware.
2019  */
2020 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2021 {
2022 	u32 val = intrl / gran;
2023 
2024 	if (val)
2025 		return val | GLINT_RATE_INTRL_ENA_M;
2026 	return 0;
2027 }
2028 
2029 /**
2030  * ice_write_intrl - write throttle rate limit to interrupt specific register
2031  * @q_vector: pointer to interrupt specific structure
2032  * @intrl: throttle rate limit in microseconds to write
2033  */
2034 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2035 {
2036 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2037 
2038 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
2039 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2040 }
2041 
2042 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2043 {
2044 	switch (rc->type) {
2045 	case ICE_RX_CONTAINER:
2046 		if (rc->rx_ring)
2047 			return rc->rx_ring->q_vector;
2048 		break;
2049 	case ICE_TX_CONTAINER:
2050 		if (rc->tx_ring)
2051 			return rc->tx_ring->q_vector;
2052 		break;
2053 	default:
2054 		break;
2055 	}
2056 
2057 	return NULL;
2058 }
2059 
2060 /**
2061  * __ice_write_itr - write throttle rate to register
2062  * @q_vector: pointer to interrupt data structure
2063  * @rc: pointer to ring container
2064  * @itr: throttle rate in microseconds to write
2065  */
2066 static void __ice_write_itr(struct ice_q_vector *q_vector,
2067 			    struct ice_ring_container *rc, u16 itr)
2068 {
2069 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2070 
2071 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2072 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2073 }
2074 
2075 /**
2076  * ice_write_itr - write throttle rate to queue specific register
2077  * @rc: pointer to ring container
2078  * @itr: throttle rate in microseconds to write
2079  */
2080 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2081 {
2082 	struct ice_q_vector *q_vector;
2083 
2084 	q_vector = ice_pull_qvec_from_rc(rc);
2085 	if (!q_vector)
2086 		return;
2087 
2088 	__ice_write_itr(q_vector, rc, itr);
2089 }
2090 
2091 /**
2092  * ice_set_q_vector_intrl - set up interrupt rate limiting
2093  * @q_vector: the vector to be configured
2094  *
2095  * Interrupt rate limiting is local to the vector, not per-queue so we must
2096  * detect if either ring container has dynamic moderation enabled to decide
2097  * what to set the interrupt rate limit to via INTRL settings. In the case that
2098  * dynamic moderation is disabled on both, write the value with the cached
2099  * setting to make sure INTRL register matches the user visible value.
2100  */
2101 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2102 {
2103 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2104 		/* in the case of dynamic enabled, cap each vector to no more
2105 		 * than (4 us) 250,000 ints/sec, which allows low latency
2106 		 * but still less than 500,000 interrupts per second, which
2107 		 * reduces CPU a bit in the case of the lowest latency
2108 		 * setting. The 4 here is a value in microseconds.
2109 		 */
2110 		ice_write_intrl(q_vector, 4);
2111 	} else {
2112 		ice_write_intrl(q_vector, q_vector->intrl);
2113 	}
2114 }
2115 
2116 /**
2117  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2118  * @vsi: the VSI being configured
2119  *
2120  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2121  * for the VF VSI.
2122  */
2123 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2124 {
2125 	struct ice_pf *pf = vsi->back;
2126 	struct ice_hw *hw = &pf->hw;
2127 	u16 txq = 0, rxq = 0;
2128 	int i, q;
2129 
2130 	ice_for_each_q_vector(vsi, i) {
2131 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2132 		u16 reg_idx = q_vector->reg_idx;
2133 
2134 		ice_cfg_itr(hw, q_vector);
2135 
2136 		/* Both Transmit Queue Interrupt Cause Control register
2137 		 * and Receive Queue Interrupt Cause control register
2138 		 * expects MSIX_INDX field to be the vector index
2139 		 * within the function space and not the absolute
2140 		 * vector index across PF or across device.
2141 		 * For SR-IOV VF VSIs queue vector index always starts
2142 		 * with 1 since first vector index(0) is used for OICR
2143 		 * in VF space. Since VMDq and other PF VSIs are within
2144 		 * the PF function space, use the vector index that is
2145 		 * tracked for this PF.
2146 		 */
2147 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2148 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2149 					      q_vector->tx.itr_idx);
2150 			txq++;
2151 		}
2152 
2153 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2154 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2155 					      q_vector->rx.itr_idx);
2156 			rxq++;
2157 		}
2158 	}
2159 }
2160 
2161 /**
2162  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2163  * @vsi: the VSI whose rings are to be enabled
2164  *
2165  * Returns 0 on success and a negative value on error
2166  */
2167 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2168 {
2169 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2170 }
2171 
2172 /**
2173  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2174  * @vsi: the VSI whose rings are to be disabled
2175  *
2176  * Returns 0 on success and a negative value on error
2177  */
2178 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2179 {
2180 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2181 }
2182 
2183 /**
2184  * ice_vsi_stop_tx_rings - Disable Tx rings
2185  * @vsi: the VSI being configured
2186  * @rst_src: reset source
2187  * @rel_vmvf_num: Relative ID of VF/VM
2188  * @rings: Tx ring array to be stopped
2189  * @count: number of Tx ring array elements
2190  */
2191 static int
2192 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2193 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2194 {
2195 	u16 q_idx;
2196 
2197 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2198 		return -EINVAL;
2199 
2200 	for (q_idx = 0; q_idx < count; q_idx++) {
2201 		struct ice_txq_meta txq_meta = { };
2202 		int status;
2203 
2204 		if (!rings || !rings[q_idx])
2205 			return -EINVAL;
2206 
2207 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2208 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2209 					      rings[q_idx], &txq_meta);
2210 
2211 		if (status)
2212 			return status;
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2220  * @vsi: the VSI being configured
2221  * @rst_src: reset source
2222  * @rel_vmvf_num: Relative ID of VF/VM
2223  */
2224 int
2225 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2226 			  u16 rel_vmvf_num)
2227 {
2228 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2229 }
2230 
2231 /**
2232  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2233  * @vsi: the VSI being configured
2234  */
2235 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2236 {
2237 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2238 }
2239 
2240 /**
2241  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2242  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2243  *
2244  * returns true if Rx VLAN pruning is enabled and false otherwise.
2245  */
2246 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2247 {
2248 	if (!vsi)
2249 		return false;
2250 
2251 	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2252 }
2253 
2254 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2255 {
2256 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2257 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2258 		vsi->tc_cfg.numtc = 1;
2259 		return;
2260 	}
2261 
2262 	/* set VSI TC information based on DCB config */
2263 	ice_vsi_set_dcb_tc_cfg(vsi);
2264 }
2265 
2266 /**
2267  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2268  * @vsi: VSI to set the q_vectors register index on
2269  */
2270 static int
2271 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2272 {
2273 	u16 i;
2274 
2275 	if (!vsi || !vsi->q_vectors)
2276 		return -EINVAL;
2277 
2278 	ice_for_each_q_vector(vsi, i) {
2279 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2280 
2281 		if (!q_vector) {
2282 			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2283 				i, vsi->vsi_num);
2284 			goto clear_reg_idx;
2285 		}
2286 
2287 		if (vsi->type == ICE_VSI_VF) {
2288 			struct ice_vf *vf = vsi->vf;
2289 
2290 			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2291 		} else {
2292 			q_vector->reg_idx =
2293 				q_vector->v_idx + vsi->base_vector;
2294 		}
2295 	}
2296 
2297 	return 0;
2298 
2299 clear_reg_idx:
2300 	ice_for_each_q_vector(vsi, i) {
2301 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2302 
2303 		if (q_vector)
2304 			q_vector->reg_idx = 0;
2305 	}
2306 
2307 	return -EINVAL;
2308 }
2309 
2310 /**
2311  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2312  * @vsi: the VSI being configured
2313  * @tx: bool to determine Tx or Rx rule
2314  * @create: bool to determine create or remove Rule
2315  */
2316 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2317 {
2318 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2319 			enum ice_sw_fwd_act_type act);
2320 	struct ice_pf *pf = vsi->back;
2321 	struct device *dev;
2322 	int status;
2323 
2324 	dev = ice_pf_to_dev(pf);
2325 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2326 
2327 	if (tx) {
2328 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2329 				  ICE_DROP_PACKET);
2330 	} else {
2331 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2332 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2333 							  create);
2334 		} else {
2335 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2336 					  ICE_FWD_TO_VSI);
2337 		}
2338 	}
2339 
2340 	if (status)
2341 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2342 			create ? "adding" : "removing", tx ? "TX" : "RX",
2343 			vsi->vsi_num, status);
2344 }
2345 
2346 /**
2347  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2348  * @vsi: pointer to the VSI
2349  *
2350  * This function will allocate new scheduler aggregator now if needed and will
2351  * move specified VSI into it.
2352  */
2353 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2354 {
2355 	struct device *dev = ice_pf_to_dev(vsi->back);
2356 	struct ice_agg_node *agg_node_iter = NULL;
2357 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2358 	struct ice_agg_node *agg_node = NULL;
2359 	int node_offset, max_agg_nodes = 0;
2360 	struct ice_port_info *port_info;
2361 	struct ice_pf *pf = vsi->back;
2362 	u32 agg_node_id_start = 0;
2363 	int status;
2364 
2365 	/* create (as needed) scheduler aggregator node and move VSI into
2366 	 * corresponding aggregator node
2367 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2368 	 * - VF aggregator nodes will contain VF VSI
2369 	 */
2370 	port_info = pf->hw.port_info;
2371 	if (!port_info)
2372 		return;
2373 
2374 	switch (vsi->type) {
2375 	case ICE_VSI_CTRL:
2376 	case ICE_VSI_CHNL:
2377 	case ICE_VSI_LB:
2378 	case ICE_VSI_PF:
2379 	case ICE_VSI_SWITCHDEV_CTRL:
2380 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2381 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2382 		agg_node_iter = &pf->pf_agg_node[0];
2383 		break;
2384 	case ICE_VSI_VF:
2385 		/* user can create 'n' VFs on a given PF, but since max children
2386 		 * per aggregator node can be only 64. Following code handles
2387 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2388 		 * was already created provided num_vsis < 64, otherwise
2389 		 * select next available node, which will be created
2390 		 */
2391 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2392 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2393 		agg_node_iter = &pf->vf_agg_node[0];
2394 		break;
2395 	default:
2396 		/* other VSI type, handle later if needed */
2397 		dev_dbg(dev, "unexpected VSI type %s\n",
2398 			ice_vsi_type_str(vsi->type));
2399 		return;
2400 	}
2401 
2402 	/* find the appropriate aggregator node */
2403 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2404 		/* see if we can find space in previously created
2405 		 * node if num_vsis < 64, otherwise skip
2406 		 */
2407 		if (agg_node_iter->num_vsis &&
2408 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2409 			agg_node_iter++;
2410 			continue;
2411 		}
2412 
2413 		if (agg_node_iter->valid &&
2414 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2415 			agg_id = agg_node_iter->agg_id;
2416 			agg_node = agg_node_iter;
2417 			break;
2418 		}
2419 
2420 		/* find unclaimed agg_id */
2421 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2422 			agg_id = node_offset + agg_node_id_start;
2423 			agg_node = agg_node_iter;
2424 			break;
2425 		}
2426 		/* move to next agg_node */
2427 		agg_node_iter++;
2428 	}
2429 
2430 	if (!agg_node)
2431 		return;
2432 
2433 	/* if selected aggregator node was not created, create it */
2434 	if (!agg_node->valid) {
2435 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2436 				     (u8)vsi->tc_cfg.ena_tc);
2437 		if (status) {
2438 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2439 				agg_id);
2440 			return;
2441 		}
2442 		/* aggregator node is created, store the needed info */
2443 		agg_node->valid = true;
2444 		agg_node->agg_id = agg_id;
2445 	}
2446 
2447 	/* move VSI to corresponding aggregator node */
2448 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2449 				     (u8)vsi->tc_cfg.ena_tc);
2450 	if (status) {
2451 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2452 			vsi->idx, agg_id);
2453 		return;
2454 	}
2455 
2456 	/* keep active children count for aggregator node */
2457 	agg_node->num_vsis++;
2458 
2459 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2460 	 * to aggregator node
2461 	 */
2462 	vsi->agg_node = agg_node;
2463 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2464 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2465 		vsi->agg_node->num_vsis);
2466 }
2467 
2468 /**
2469  * ice_vsi_setup - Set up a VSI by a given type
2470  * @pf: board private structure
2471  * @pi: pointer to the port_info instance
2472  * @vsi_type: VSI type
2473  * @vf: pointer to VF to which this VSI connects. This field is used primarily
2474  *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2475  * @ch: ptr to channel
2476  *
2477  * This allocates the sw VSI structure and its queue resources.
2478  *
2479  * Returns pointer to the successfully allocated and configured VSI sw struct on
2480  * success, NULL on failure.
2481  */
2482 struct ice_vsi *
2483 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2484 	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
2485 	      struct ice_channel *ch)
2486 {
2487 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2488 	struct device *dev = ice_pf_to_dev(pf);
2489 	struct ice_vsi *vsi;
2490 	int ret, i;
2491 
2492 	if (vsi_type == ICE_VSI_CHNL)
2493 		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2494 	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2495 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2496 	else
2497 		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2498 
2499 	if (!vsi) {
2500 		dev_err(dev, "could not allocate VSI\n");
2501 		return NULL;
2502 	}
2503 
2504 	vsi->port_info = pi;
2505 	vsi->vsw = pf->first_sw;
2506 	if (vsi->type == ICE_VSI_PF)
2507 		vsi->ethtype = ETH_P_PAUSE;
2508 
2509 	ice_alloc_fd_res(vsi);
2510 
2511 	if (vsi_type != ICE_VSI_CHNL) {
2512 		if (ice_vsi_get_qs(vsi)) {
2513 			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2514 				vsi->idx);
2515 			goto unroll_vsi_alloc;
2516 		}
2517 	}
2518 
2519 	/* set RSS capabilities */
2520 	ice_vsi_set_rss_params(vsi);
2521 
2522 	/* set TC configuration */
2523 	ice_vsi_set_tc_cfg(vsi);
2524 
2525 	/* create the VSI */
2526 	ret = ice_vsi_init(vsi, true);
2527 	if (ret)
2528 		goto unroll_get_qs;
2529 
2530 	ice_vsi_init_vlan_ops(vsi);
2531 
2532 	switch (vsi->type) {
2533 	case ICE_VSI_CTRL:
2534 	case ICE_VSI_SWITCHDEV_CTRL:
2535 	case ICE_VSI_PF:
2536 		ret = ice_vsi_alloc_q_vectors(vsi);
2537 		if (ret)
2538 			goto unroll_vsi_init;
2539 
2540 		ret = ice_vsi_setup_vector_base(vsi);
2541 		if (ret)
2542 			goto unroll_alloc_q_vector;
2543 
2544 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2545 		if (ret)
2546 			goto unroll_vector_base;
2547 
2548 		ret = ice_vsi_alloc_rings(vsi);
2549 		if (ret)
2550 			goto unroll_vector_base;
2551 
2552 		ice_vsi_map_rings_to_vectors(vsi);
2553 
2554 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2555 		if (vsi->type != ICE_VSI_CTRL)
2556 			/* Do not exit if configuring RSS had an issue, at
2557 			 * least receive traffic on first queue. Hence no
2558 			 * need to capture return value
2559 			 */
2560 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2561 				ice_vsi_cfg_rss_lut_key(vsi);
2562 				ice_vsi_set_rss_flow_fld(vsi);
2563 			}
2564 		ice_init_arfs(vsi);
2565 		break;
2566 	case ICE_VSI_CHNL:
2567 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2568 			ice_vsi_cfg_rss_lut_key(vsi);
2569 			ice_vsi_set_rss_flow_fld(vsi);
2570 		}
2571 		break;
2572 	case ICE_VSI_VF:
2573 		/* VF driver will take care of creating netdev for this type and
2574 		 * map queues to vectors through Virtchnl, PF driver only
2575 		 * creates a VSI and corresponding structures for bookkeeping
2576 		 * purpose
2577 		 */
2578 		ret = ice_vsi_alloc_q_vectors(vsi);
2579 		if (ret)
2580 			goto unroll_vsi_init;
2581 
2582 		ret = ice_vsi_alloc_rings(vsi);
2583 		if (ret)
2584 			goto unroll_alloc_q_vector;
2585 
2586 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2587 		if (ret)
2588 			goto unroll_vector_base;
2589 
2590 		/* Do not exit if configuring RSS had an issue, at least
2591 		 * receive traffic on first queue. Hence no need to capture
2592 		 * return value
2593 		 */
2594 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2595 			ice_vsi_cfg_rss_lut_key(vsi);
2596 			ice_vsi_set_vf_rss_flow_fld(vsi);
2597 		}
2598 		break;
2599 	case ICE_VSI_LB:
2600 		ret = ice_vsi_alloc_rings(vsi);
2601 		if (ret)
2602 			goto unroll_vsi_init;
2603 		break;
2604 	default:
2605 		/* clean up the resources and exit */
2606 		goto unroll_vsi_init;
2607 	}
2608 
2609 	/* configure VSI nodes based on number of queues and TC's */
2610 	ice_for_each_traffic_class(i) {
2611 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2612 			continue;
2613 
2614 		if (vsi->type == ICE_VSI_CHNL) {
2615 			if (!vsi->alloc_txq && vsi->num_txq)
2616 				max_txqs[i] = vsi->num_txq;
2617 			else
2618 				max_txqs[i] = pf->num_lan_tx;
2619 		} else {
2620 			max_txqs[i] = vsi->alloc_txq;
2621 		}
2622 	}
2623 
2624 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2625 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2626 			      max_txqs);
2627 	if (ret) {
2628 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2629 			vsi->vsi_num, ret);
2630 		goto unroll_clear_rings;
2631 	}
2632 
2633 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2634 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2635 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2636 	 * The rule is added once for PF VSI in order to create appropriate
2637 	 * recipe, since VSI/VSI list is ignored with drop action...
2638 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2639 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2640 	 * settings in the HW.
2641 	 */
2642 	if (!ice_is_safe_mode(pf))
2643 		if (vsi->type == ICE_VSI_PF) {
2644 			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2645 					 ICE_DROP_PACKET);
2646 			ice_cfg_sw_lldp(vsi, true, true);
2647 		}
2648 
2649 	if (!vsi->agg_node)
2650 		ice_set_agg_vsi(vsi);
2651 	return vsi;
2652 
2653 unroll_clear_rings:
2654 	ice_vsi_clear_rings(vsi);
2655 unroll_vector_base:
2656 	/* reclaim SW interrupts back to the common pool */
2657 	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2658 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2659 unroll_alloc_q_vector:
2660 	ice_vsi_free_q_vectors(vsi);
2661 unroll_vsi_init:
2662 	ice_vsi_delete(vsi);
2663 unroll_get_qs:
2664 	ice_vsi_put_qs(vsi);
2665 unroll_vsi_alloc:
2666 	if (vsi_type == ICE_VSI_VF)
2667 		ice_enable_lag(pf->lag);
2668 	ice_vsi_clear(vsi);
2669 
2670 	return NULL;
2671 }
2672 
2673 /**
2674  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2675  * @vsi: the VSI being cleaned up
2676  */
2677 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2678 {
2679 	struct ice_pf *pf = vsi->back;
2680 	struct ice_hw *hw = &pf->hw;
2681 	u32 txq = 0;
2682 	u32 rxq = 0;
2683 	int i, q;
2684 
2685 	ice_for_each_q_vector(vsi, i) {
2686 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2687 
2688 		ice_write_intrl(q_vector, 0);
2689 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2690 			ice_write_itr(&q_vector->tx, 0);
2691 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2692 			if (ice_is_xdp_ena_vsi(vsi)) {
2693 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2694 
2695 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2696 			}
2697 			txq++;
2698 		}
2699 
2700 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2701 			ice_write_itr(&q_vector->rx, 0);
2702 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2703 			rxq++;
2704 		}
2705 	}
2706 
2707 	ice_flush(hw);
2708 }
2709 
2710 /**
2711  * ice_vsi_free_irq - Free the IRQ association with the OS
2712  * @vsi: the VSI being configured
2713  */
2714 void ice_vsi_free_irq(struct ice_vsi *vsi)
2715 {
2716 	struct ice_pf *pf = vsi->back;
2717 	int base = vsi->base_vector;
2718 	int i;
2719 
2720 	if (!vsi->q_vectors || !vsi->irqs_ready)
2721 		return;
2722 
2723 	ice_vsi_release_msix(vsi);
2724 	if (vsi->type == ICE_VSI_VF)
2725 		return;
2726 
2727 	vsi->irqs_ready = false;
2728 	ice_free_cpu_rx_rmap(vsi);
2729 
2730 	ice_for_each_q_vector(vsi, i) {
2731 		u16 vector = i + base;
2732 		int irq_num;
2733 
2734 		irq_num = pf->msix_entries[vector].vector;
2735 
2736 		/* free only the irqs that were actually requested */
2737 		if (!vsi->q_vectors[i] ||
2738 		    !(vsi->q_vectors[i]->num_ring_tx ||
2739 		      vsi->q_vectors[i]->num_ring_rx))
2740 			continue;
2741 
2742 		/* clear the affinity notifier in the IRQ descriptor */
2743 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2744 			irq_set_affinity_notifier(irq_num, NULL);
2745 
2746 		/* clear the affinity_mask in the IRQ descriptor */
2747 		irq_set_affinity_hint(irq_num, NULL);
2748 		synchronize_irq(irq_num);
2749 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2750 	}
2751 }
2752 
2753 /**
2754  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2755  * @vsi: the VSI having resources freed
2756  */
2757 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2758 {
2759 	int i;
2760 
2761 	if (!vsi->tx_rings)
2762 		return;
2763 
2764 	ice_for_each_txq(vsi, i)
2765 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2766 			ice_free_tx_ring(vsi->tx_rings[i]);
2767 }
2768 
2769 /**
2770  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2771  * @vsi: the VSI having resources freed
2772  */
2773 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2774 {
2775 	int i;
2776 
2777 	if (!vsi->rx_rings)
2778 		return;
2779 
2780 	ice_for_each_rxq(vsi, i)
2781 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2782 			ice_free_rx_ring(vsi->rx_rings[i]);
2783 }
2784 
2785 /**
2786  * ice_vsi_close - Shut down a VSI
2787  * @vsi: the VSI being shut down
2788  */
2789 void ice_vsi_close(struct ice_vsi *vsi)
2790 {
2791 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2792 		ice_down(vsi);
2793 
2794 	ice_vsi_free_irq(vsi);
2795 	ice_vsi_free_tx_rings(vsi);
2796 	ice_vsi_free_rx_rings(vsi);
2797 }
2798 
2799 /**
2800  * ice_ena_vsi - resume a VSI
2801  * @vsi: the VSI being resume
2802  * @locked: is the rtnl_lock already held
2803  */
2804 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2805 {
2806 	int err = 0;
2807 
2808 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2809 		return 0;
2810 
2811 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2812 
2813 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2814 		if (netif_running(vsi->netdev)) {
2815 			if (!locked)
2816 				rtnl_lock();
2817 
2818 			err = ice_open_internal(vsi->netdev);
2819 
2820 			if (!locked)
2821 				rtnl_unlock();
2822 		}
2823 	} else if (vsi->type == ICE_VSI_CTRL) {
2824 		err = ice_vsi_open_ctrl(vsi);
2825 	}
2826 
2827 	return err;
2828 }
2829 
2830 /**
2831  * ice_dis_vsi - pause a VSI
2832  * @vsi: the VSI being paused
2833  * @locked: is the rtnl_lock already held
2834  */
2835 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2836 {
2837 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2838 		return;
2839 
2840 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2841 
2842 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2843 		if (netif_running(vsi->netdev)) {
2844 			if (!locked)
2845 				rtnl_lock();
2846 
2847 			ice_vsi_close(vsi);
2848 
2849 			if (!locked)
2850 				rtnl_unlock();
2851 		} else {
2852 			ice_vsi_close(vsi);
2853 		}
2854 	} else if (vsi->type == ICE_VSI_CTRL ||
2855 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2856 		ice_vsi_close(vsi);
2857 	}
2858 }
2859 
2860 /**
2861  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2862  * @vsi: the VSI being un-configured
2863  */
2864 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2865 {
2866 	int base = vsi->base_vector;
2867 	struct ice_pf *pf = vsi->back;
2868 	struct ice_hw *hw = &pf->hw;
2869 	u32 val;
2870 	int i;
2871 
2872 	/* disable interrupt causation from each queue */
2873 	if (vsi->tx_rings) {
2874 		ice_for_each_txq(vsi, i) {
2875 			if (vsi->tx_rings[i]) {
2876 				u16 reg;
2877 
2878 				reg = vsi->tx_rings[i]->reg_idx;
2879 				val = rd32(hw, QINT_TQCTL(reg));
2880 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2881 				wr32(hw, QINT_TQCTL(reg), val);
2882 			}
2883 		}
2884 	}
2885 
2886 	if (vsi->rx_rings) {
2887 		ice_for_each_rxq(vsi, i) {
2888 			if (vsi->rx_rings[i]) {
2889 				u16 reg;
2890 
2891 				reg = vsi->rx_rings[i]->reg_idx;
2892 				val = rd32(hw, QINT_RQCTL(reg));
2893 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2894 				wr32(hw, QINT_RQCTL(reg), val);
2895 			}
2896 		}
2897 	}
2898 
2899 	/* disable each interrupt */
2900 	ice_for_each_q_vector(vsi, i) {
2901 		if (!vsi->q_vectors[i])
2902 			continue;
2903 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2904 	}
2905 
2906 	ice_flush(hw);
2907 
2908 	/* don't call synchronize_irq() for VF's from the host */
2909 	if (vsi->type == ICE_VSI_VF)
2910 		return;
2911 
2912 	ice_for_each_q_vector(vsi, i)
2913 		synchronize_irq(pf->msix_entries[i + base].vector);
2914 }
2915 
2916 /**
2917  * ice_napi_del - Remove NAPI handler for the VSI
2918  * @vsi: VSI for which NAPI handler is to be removed
2919  */
2920 void ice_napi_del(struct ice_vsi *vsi)
2921 {
2922 	int v_idx;
2923 
2924 	if (!vsi->netdev)
2925 		return;
2926 
2927 	ice_for_each_q_vector(vsi, v_idx)
2928 		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2929 }
2930 
2931 /**
2932  * ice_free_vf_ctrl_res - Free the VF control VSI resource
2933  * @pf: pointer to PF structure
2934  * @vsi: the VSI to free resources for
2935  *
2936  * Check if the VF control VSI resource is still in use. If no VF is using it
2937  * any more, release the VSI resource. Otherwise, leave it to be cleaned up
2938  * once no other VF uses it.
2939  */
2940 static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
2941 {
2942 	struct ice_vf *vf;
2943 	unsigned int bkt;
2944 
2945 	rcu_read_lock();
2946 	ice_for_each_vf_rcu(pf, bkt, vf) {
2947 		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
2948 			rcu_read_unlock();
2949 			return;
2950 		}
2951 	}
2952 	rcu_read_unlock();
2953 
2954 	/* No other VFs left that have control VSI. It is now safe to reclaim
2955 	 * SW interrupts back to the common pool.
2956 	 */
2957 	ice_free_res(pf->irq_tracker, vsi->base_vector,
2958 		     ICE_RES_VF_CTRL_VEC_ID);
2959 	pf->num_avail_sw_msix += vsi->num_q_vectors;
2960 }
2961 
2962 /**
2963  * ice_vsi_release - Delete a VSI and free its resources
2964  * @vsi: the VSI being removed
2965  *
2966  * Returns 0 on success or < 0 on error
2967  */
2968 int ice_vsi_release(struct ice_vsi *vsi)
2969 {
2970 	struct ice_pf *pf;
2971 	int err;
2972 
2973 	if (!vsi->back)
2974 		return -ENODEV;
2975 	pf = vsi->back;
2976 
2977 	/* do not unregister while driver is in the reset recovery pending
2978 	 * state. Since reset/rebuild happens through PF service task workqueue,
2979 	 * it's not a good idea to unregister netdev that is associated to the
2980 	 * PF that is running the work queue items currently. This is done to
2981 	 * avoid check_flush_dependency() warning on this wq
2982 	 */
2983 	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2984 	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2985 		unregister_netdev(vsi->netdev);
2986 		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2987 	}
2988 
2989 	if (vsi->type == ICE_VSI_PF)
2990 		ice_devlink_destroy_pf_port(pf);
2991 
2992 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2993 		ice_rss_clean(vsi);
2994 
2995 	/* Disable VSI and free resources */
2996 	if (vsi->type != ICE_VSI_LB)
2997 		ice_vsi_dis_irq(vsi);
2998 	ice_vsi_close(vsi);
2999 
3000 	/* SR-IOV determines needed MSIX resources all at once instead of per
3001 	 * VSI since when VFs are spawned we know how many VFs there are and how
3002 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3003 	 * cleared in the same manner.
3004 	 */
3005 	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
3006 		ice_free_vf_ctrl_res(pf, vsi);
3007 	} else if (vsi->type != ICE_VSI_VF) {
3008 		/* reclaim SW interrupts back to the common pool */
3009 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3010 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3011 	}
3012 
3013 	if (!ice_is_safe_mode(pf)) {
3014 		if (vsi->type == ICE_VSI_PF) {
3015 			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
3016 					    ICE_DROP_PACKET);
3017 			ice_cfg_sw_lldp(vsi, true, false);
3018 			/* The Rx rule will only exist to remove if the LLDP FW
3019 			 * engine is currently stopped
3020 			 */
3021 			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3022 				ice_cfg_sw_lldp(vsi, false, false);
3023 		}
3024 	}
3025 
3026 	if (ice_is_vsi_dflt_vsi(vsi))
3027 		ice_clear_dflt_vsi(vsi);
3028 	ice_fltr_remove_all(vsi);
3029 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3030 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3031 	if (err)
3032 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3033 			vsi->vsi_num, err);
3034 	ice_vsi_delete(vsi);
3035 	ice_vsi_free_q_vectors(vsi);
3036 
3037 	if (vsi->netdev) {
3038 		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3039 			unregister_netdev(vsi->netdev);
3040 			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3041 		}
3042 		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3043 			free_netdev(vsi->netdev);
3044 			vsi->netdev = NULL;
3045 			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3046 		}
3047 	}
3048 
3049 	if (vsi->type == ICE_VSI_VF &&
3050 	    vsi->agg_node && vsi->agg_node->valid)
3051 		vsi->agg_node->num_vsis--;
3052 	ice_vsi_clear_rings(vsi);
3053 
3054 	ice_vsi_put_qs(vsi);
3055 
3056 	/* retain SW VSI data structure since it is needed to unregister and
3057 	 * free VSI netdev when PF is not in reset recovery pending state,\
3058 	 * for ex: during rmmod.
3059 	 */
3060 	if (!ice_is_reset_in_progress(pf->state))
3061 		ice_vsi_clear(vsi);
3062 
3063 	return 0;
3064 }
3065 
3066 /**
3067  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3068  * @vsi: VSI connected with q_vectors
3069  * @coalesce: array of struct with stored coalesce
3070  *
3071  * Returns array size.
3072  */
3073 static int
3074 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3075 			     struct ice_coalesce_stored *coalesce)
3076 {
3077 	int i;
3078 
3079 	ice_for_each_q_vector(vsi, i) {
3080 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
3081 
3082 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
3083 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
3084 		coalesce[i].intrl = q_vector->intrl;
3085 
3086 		if (i < vsi->num_txq)
3087 			coalesce[i].tx_valid = true;
3088 		if (i < vsi->num_rxq)
3089 			coalesce[i].rx_valid = true;
3090 	}
3091 
3092 	return vsi->num_q_vectors;
3093 }
3094 
3095 /**
3096  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3097  * @vsi: VSI connected with q_vectors
3098  * @coalesce: pointer to array of struct with stored coalesce
3099  * @size: size of coalesce array
3100  *
3101  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3102  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3103  * to default value.
3104  */
3105 static void
3106 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3107 			     struct ice_coalesce_stored *coalesce, int size)
3108 {
3109 	struct ice_ring_container *rc;
3110 	int i;
3111 
3112 	if ((size && !coalesce) || !vsi)
3113 		return;
3114 
3115 	/* There are a couple of cases that have to be handled here:
3116 	 *   1. The case where the number of queue vectors stays the same, but
3117 	 *      the number of Tx or Rx rings changes (the first for loop)
3118 	 *   2. The case where the number of queue vectors increased (the
3119 	 *      second for loop)
3120 	 */
3121 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3122 		/* There are 2 cases to handle here and they are the same for
3123 		 * both Tx and Rx:
3124 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3125 		 *   and the loop variable is less than the number of rings
3126 		 *   allocated, then write the previous values
3127 		 *
3128 		 *   if the entry was not valid previously, but the number of
3129 		 *   rings is less than are allocated (this means the number of
3130 		 *   rings increased from previously), then write out the
3131 		 *   values in the first element
3132 		 *
3133 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3134 		 *   as there is no harm because the dynamic algorithm
3135 		 *   will just overwrite.
3136 		 */
3137 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3138 			rc = &vsi->q_vectors[i]->rx;
3139 			rc->itr_settings = coalesce[i].itr_rx;
3140 			ice_write_itr(rc, rc->itr_setting);
3141 		} else if (i < vsi->alloc_rxq) {
3142 			rc = &vsi->q_vectors[i]->rx;
3143 			rc->itr_settings = coalesce[0].itr_rx;
3144 			ice_write_itr(rc, rc->itr_setting);
3145 		}
3146 
3147 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3148 			rc = &vsi->q_vectors[i]->tx;
3149 			rc->itr_settings = coalesce[i].itr_tx;
3150 			ice_write_itr(rc, rc->itr_setting);
3151 		} else if (i < vsi->alloc_txq) {
3152 			rc = &vsi->q_vectors[i]->tx;
3153 			rc->itr_settings = coalesce[0].itr_tx;
3154 			ice_write_itr(rc, rc->itr_setting);
3155 		}
3156 
3157 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3158 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3159 	}
3160 
3161 	/* the number of queue vectors increased so write whatever is in
3162 	 * the first element
3163 	 */
3164 	for (; i < vsi->num_q_vectors; i++) {
3165 		/* transmit */
3166 		rc = &vsi->q_vectors[i]->tx;
3167 		rc->itr_settings = coalesce[0].itr_tx;
3168 		ice_write_itr(rc, rc->itr_setting);
3169 
3170 		/* receive */
3171 		rc = &vsi->q_vectors[i]->rx;
3172 		rc->itr_settings = coalesce[0].itr_rx;
3173 		ice_write_itr(rc, rc->itr_setting);
3174 
3175 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3176 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3177 	}
3178 }
3179 
3180 /**
3181  * ice_vsi_rebuild - Rebuild VSI after reset
3182  * @vsi: VSI to be rebuild
3183  * @init_vsi: is this an initialization or a reconfigure of the VSI
3184  *
3185  * Returns 0 on success and negative value on failure
3186  */
3187 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3188 {
3189 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3190 	struct ice_coalesce_stored *coalesce;
3191 	int prev_num_q_vectors = 0;
3192 	enum ice_vsi_type vtype;
3193 	struct ice_pf *pf;
3194 	int ret, i;
3195 
3196 	if (!vsi)
3197 		return -EINVAL;
3198 
3199 	pf = vsi->back;
3200 	vtype = vsi->type;
3201 	if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf))
3202 		return -EINVAL;
3203 
3204 	ice_vsi_init_vlan_ops(vsi);
3205 
3206 	coalesce = kcalloc(vsi->num_q_vectors,
3207 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3208 	if (!coalesce)
3209 		return -ENOMEM;
3210 
3211 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3212 
3213 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3214 	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3215 	if (ret)
3216 		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3217 			vsi->vsi_num, ret);
3218 	ice_vsi_free_q_vectors(vsi);
3219 
3220 	/* SR-IOV determines needed MSIX resources all at once instead of per
3221 	 * VSI since when VFs are spawned we know how many VFs there are and how
3222 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
3223 	 * cleared in the same manner.
3224 	 */
3225 	if (vtype != ICE_VSI_VF) {
3226 		/* reclaim SW interrupts back to the common pool */
3227 		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3228 		pf->num_avail_sw_msix += vsi->num_q_vectors;
3229 		vsi->base_vector = 0;
3230 	}
3231 
3232 	if (ice_is_xdp_ena_vsi(vsi))
3233 		/* return value check can be skipped here, it always returns
3234 		 * 0 if reset is in progress
3235 		 */
3236 		ice_destroy_xdp_rings(vsi);
3237 	ice_vsi_put_qs(vsi);
3238 	ice_vsi_clear_rings(vsi);
3239 	ice_vsi_free_arrays(vsi);
3240 	if (vtype == ICE_VSI_VF)
3241 		ice_vsi_set_num_qs(vsi, vsi->vf);
3242 	else
3243 		ice_vsi_set_num_qs(vsi, NULL);
3244 
3245 	ret = ice_vsi_alloc_arrays(vsi);
3246 	if (ret < 0)
3247 		goto err_vsi;
3248 
3249 	ice_vsi_get_qs(vsi);
3250 
3251 	ice_alloc_fd_res(vsi);
3252 	ice_vsi_set_tc_cfg(vsi);
3253 
3254 	/* Initialize VSI struct elements and create VSI in FW */
3255 	ret = ice_vsi_init(vsi, init_vsi);
3256 	if (ret < 0)
3257 		goto err_vsi;
3258 
3259 	switch (vtype) {
3260 	case ICE_VSI_CTRL:
3261 	case ICE_VSI_SWITCHDEV_CTRL:
3262 	case ICE_VSI_PF:
3263 		ret = ice_vsi_alloc_q_vectors(vsi);
3264 		if (ret)
3265 			goto err_rings;
3266 
3267 		ret = ice_vsi_setup_vector_base(vsi);
3268 		if (ret)
3269 			goto err_vectors;
3270 
3271 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3272 		if (ret)
3273 			goto err_vectors;
3274 
3275 		ret = ice_vsi_alloc_rings(vsi);
3276 		if (ret)
3277 			goto err_vectors;
3278 
3279 		ice_vsi_map_rings_to_vectors(vsi);
3280 		if (ice_is_xdp_ena_vsi(vsi)) {
3281 			ret = ice_vsi_determine_xdp_res(vsi);
3282 			if (ret)
3283 				goto err_vectors;
3284 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3285 			if (ret)
3286 				goto err_vectors;
3287 		}
3288 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3289 		if (vtype != ICE_VSI_CTRL)
3290 			/* Do not exit if configuring RSS had an issue, at
3291 			 * least receive traffic on first queue. Hence no
3292 			 * need to capture return value
3293 			 */
3294 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3295 				ice_vsi_cfg_rss_lut_key(vsi);
3296 
3297 		/* disable or enable CRC stripping */
3298 		if (vsi->netdev)
3299 			ice_vsi_cfg_crc_strip(vsi, !!(vsi->netdev->features &
3300 					      NETIF_F_RXFCS));
3301 
3302 		break;
3303 	case ICE_VSI_VF:
3304 		ret = ice_vsi_alloc_q_vectors(vsi);
3305 		if (ret)
3306 			goto err_rings;
3307 
3308 		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3309 		if (ret)
3310 			goto err_vectors;
3311 
3312 		ret = ice_vsi_alloc_rings(vsi);
3313 		if (ret)
3314 			goto err_vectors;
3315 
3316 		break;
3317 	case ICE_VSI_CHNL:
3318 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3319 			ice_vsi_cfg_rss_lut_key(vsi);
3320 			ice_vsi_set_rss_flow_fld(vsi);
3321 		}
3322 		break;
3323 	default:
3324 		break;
3325 	}
3326 
3327 	/* configure VSI nodes based on number of queues and TC's */
3328 	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3329 		/* configure VSI nodes based on number of queues and TC's.
3330 		 * ADQ creates VSIs for each TC/Channel but doesn't
3331 		 * allocate queues instead it reconfigures the PF queues
3332 		 * as per the TC command. So max_txqs should point to the
3333 		 * PF Tx queues.
3334 		 */
3335 		if (vtype == ICE_VSI_CHNL)
3336 			max_txqs[i] = pf->num_lan_tx;
3337 		else
3338 			max_txqs[i] = vsi->alloc_txq;
3339 
3340 		if (ice_is_xdp_ena_vsi(vsi))
3341 			max_txqs[i] += vsi->num_xdp_txq;
3342 	}
3343 
3344 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3345 		/* If MQPRIO is set, means channel code path, hence for main
3346 		 * VSI's, use TC as 1
3347 		 */
3348 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3349 	else
3350 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3351 				      vsi->tc_cfg.ena_tc, max_txqs);
3352 
3353 	if (ret) {
3354 		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3355 			vsi->vsi_num, ret);
3356 		if (init_vsi) {
3357 			ret = -EIO;
3358 			goto err_vectors;
3359 		} else {
3360 			return ice_schedule_reset(pf, ICE_RESET_PFR);
3361 		}
3362 	}
3363 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3364 	kfree(coalesce);
3365 
3366 	return 0;
3367 
3368 err_vectors:
3369 	ice_vsi_free_q_vectors(vsi);
3370 err_rings:
3371 	if (vsi->netdev) {
3372 		vsi->current_netdev_flags = 0;
3373 		unregister_netdev(vsi->netdev);
3374 		free_netdev(vsi->netdev);
3375 		vsi->netdev = NULL;
3376 	}
3377 err_vsi:
3378 	ice_vsi_clear(vsi);
3379 	set_bit(ICE_RESET_FAILED, pf->state);
3380 	kfree(coalesce);
3381 	return ret;
3382 }
3383 
3384 /**
3385  * ice_is_reset_in_progress - check for a reset in progress
3386  * @state: PF state field
3387  */
3388 bool ice_is_reset_in_progress(unsigned long *state)
3389 {
3390 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3391 	       test_bit(ICE_PFR_REQ, state) ||
3392 	       test_bit(ICE_CORER_REQ, state) ||
3393 	       test_bit(ICE_GLOBR_REQ, state);
3394 }
3395 
3396 /**
3397  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3398  * @pf: pointer to the PF structure
3399  * @timeout: length of time to wait, in jiffies
3400  *
3401  * Wait (sleep) for a short time until the driver finishes cleaning up from
3402  * a device reset. The caller must be able to sleep. Use this to delay
3403  * operations that could fail while the driver is cleaning up after a device
3404  * reset.
3405  *
3406  * Returns 0 on success, -EBUSY if the reset is not finished within the
3407  * timeout, and -ERESTARTSYS if the thread was interrupted.
3408  */
3409 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3410 {
3411 	long ret;
3412 
3413 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3414 					       !ice_is_reset_in_progress(pf->state),
3415 					       timeout);
3416 	if (ret < 0)
3417 		return ret;
3418 	else if (!ret)
3419 		return -EBUSY;
3420 	else
3421 		return 0;
3422 }
3423 
3424 /**
3425  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3426  * @vsi: VSI being configured
3427  * @ctx: the context buffer returned from AQ VSI update command
3428  */
3429 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3430 {
3431 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3432 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3433 	       sizeof(vsi->info.q_mapping));
3434 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3435 	       sizeof(vsi->info.tc_mapping));
3436 }
3437 
3438 /**
3439  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3440  * @vsi: the VSI being configured
3441  * @ena_tc: TC map to be enabled
3442  */
3443 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3444 {
3445 	struct net_device *netdev = vsi->netdev;
3446 	struct ice_pf *pf = vsi->back;
3447 	int numtc = vsi->tc_cfg.numtc;
3448 	struct ice_dcbx_cfg *dcbcfg;
3449 	u8 netdev_tc;
3450 	int i;
3451 
3452 	if (!netdev)
3453 		return;
3454 
3455 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3456 	if (vsi->type == ICE_VSI_CHNL)
3457 		return;
3458 
3459 	if (!ena_tc) {
3460 		netdev_reset_tc(netdev);
3461 		return;
3462 	}
3463 
3464 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3465 		numtc = vsi->all_numtc;
3466 
3467 	if (netdev_set_num_tc(netdev, numtc))
3468 		return;
3469 
3470 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3471 
3472 	ice_for_each_traffic_class(i)
3473 		if (vsi->tc_cfg.ena_tc & BIT(i))
3474 			netdev_set_tc_queue(netdev,
3475 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3476 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3477 					    vsi->tc_cfg.tc_info[i].qoffset);
3478 	/* setup TC queue map for CHNL TCs */
3479 	ice_for_each_chnl_tc(i) {
3480 		if (!(vsi->all_enatc & BIT(i)))
3481 			break;
3482 		if (!vsi->mqprio_qopt.qopt.count[i])
3483 			break;
3484 		netdev_set_tc_queue(netdev, i,
3485 				    vsi->mqprio_qopt.qopt.count[i],
3486 				    vsi->mqprio_qopt.qopt.offset[i]);
3487 	}
3488 
3489 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3490 		return;
3491 
3492 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3493 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3494 
3495 		/* Get the mapped netdev TC# for the UP */
3496 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3497 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3498 	}
3499 }
3500 
3501 /**
3502  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3503  * @vsi: the VSI being configured,
3504  * @ctxt: VSI context structure
3505  * @ena_tc: number of traffic classes to enable
3506  *
3507  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3508  */
3509 static int
3510 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3511 			   u8 ena_tc)
3512 {
3513 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3514 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3515 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3516 	u8 netdev_tc = 0;
3517 	int i;
3518 
3519 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3520 
3521 	pow = order_base_2(tc0_qcount);
3522 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3523 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3524 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3525 
3526 	ice_for_each_traffic_class(i) {
3527 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3528 			/* TC is not enabled */
3529 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3530 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3531 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3532 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3533 			ctxt->info.tc_mapping[i] = 0;
3534 			continue;
3535 		}
3536 
3537 		offset = vsi->mqprio_qopt.qopt.offset[i];
3538 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3539 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3540 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3541 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3542 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3543 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3544 	}
3545 
3546 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3547 		ice_for_each_chnl_tc(i) {
3548 			if (!(vsi->all_enatc & BIT(i)))
3549 				continue;
3550 			offset = vsi->mqprio_qopt.qopt.offset[i];
3551 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3552 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3553 		}
3554 	}
3555 
3556 	/* Set actual Tx/Rx queue pairs */
3557 	vsi->num_txq = offset + qcount_tx;
3558 	if (vsi->num_txq > vsi->alloc_txq) {
3559 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3560 			vsi->num_txq, vsi->alloc_txq);
3561 		return -EINVAL;
3562 	}
3563 
3564 	vsi->num_rxq = offset + qcount_rx;
3565 	if (vsi->num_rxq > vsi->alloc_rxq) {
3566 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3567 			vsi->num_rxq, vsi->alloc_rxq);
3568 		return -EINVAL;
3569 	}
3570 
3571 	/* Setup queue TC[0].qmap for given VSI context */
3572 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3573 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3574 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3575 
3576 	/* Find queue count available for channel VSIs and starting offset
3577 	 * for channel VSIs
3578 	 */
3579 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3580 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3581 		vsi->next_base_q = tc0_qcount;
3582 	}
3583 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3584 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3585 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3586 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3587 
3588 	return 0;
3589 }
3590 
3591 /**
3592  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3593  * @vsi: VSI to be configured
3594  * @ena_tc: TC bitmap
3595  *
3596  * VSI queues expected to be quiesced before calling this function
3597  */
3598 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3599 {
3600 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3601 	struct ice_pf *pf = vsi->back;
3602 	struct ice_vsi_ctx *ctx;
3603 	struct device *dev;
3604 	int i, ret = 0;
3605 	u8 num_tc = 0;
3606 
3607 	dev = ice_pf_to_dev(pf);
3608 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3609 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3610 		return ret;
3611 
3612 	ice_for_each_traffic_class(i) {
3613 		/* build bitmap of enabled TCs */
3614 		if (ena_tc & BIT(i))
3615 			num_tc++;
3616 		/* populate max_txqs per TC */
3617 		max_txqs[i] = vsi->alloc_txq;
3618 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3619 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3620 		 */
3621 		if (vsi->type == ICE_VSI_CHNL &&
3622 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3623 			max_txqs[i] = vsi->num_txq;
3624 	}
3625 
3626 	vsi->tc_cfg.ena_tc = ena_tc;
3627 	vsi->tc_cfg.numtc = num_tc;
3628 
3629 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3630 	if (!ctx)
3631 		return -ENOMEM;
3632 
3633 	ctx->vf_num = 0;
3634 	ctx->info = vsi->info;
3635 
3636 	if (vsi->type == ICE_VSI_PF &&
3637 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3638 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3639 	else
3640 		ret = ice_vsi_setup_q_map(vsi, ctx);
3641 
3642 	if (ret)
3643 		goto out;
3644 
3645 	/* must to indicate which section of VSI context are being modified */
3646 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3647 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3648 	if (ret) {
3649 		dev_info(dev, "Failed VSI Update\n");
3650 		goto out;
3651 	}
3652 
3653 	if (vsi->type == ICE_VSI_PF &&
3654 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3655 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3656 	else
3657 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3658 				      vsi->tc_cfg.ena_tc, max_txqs);
3659 
3660 	if (ret) {
3661 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3662 			vsi->vsi_num, ret);
3663 		goto out;
3664 	}
3665 	ice_vsi_update_q_map(vsi, ctx);
3666 	vsi->info.valid_sections = 0;
3667 
3668 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3669 out:
3670 	kfree(ctx);
3671 	return ret;
3672 }
3673 
3674 /**
3675  * ice_update_ring_stats - Update ring statistics
3676  * @stats: stats to be updated
3677  * @pkts: number of processed packets
3678  * @bytes: number of processed bytes
3679  *
3680  * This function assumes that caller has acquired a u64_stats_sync lock.
3681  */
3682 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3683 {
3684 	stats->bytes += bytes;
3685 	stats->pkts += pkts;
3686 }
3687 
3688 /**
3689  * ice_update_tx_ring_stats - Update Tx ring specific counters
3690  * @tx_ring: ring to update
3691  * @pkts: number of processed packets
3692  * @bytes: number of processed bytes
3693  */
3694 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3695 {
3696 	u64_stats_update_begin(&tx_ring->syncp);
3697 	ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
3698 	u64_stats_update_end(&tx_ring->syncp);
3699 }
3700 
3701 /**
3702  * ice_update_rx_ring_stats - Update Rx ring specific counters
3703  * @rx_ring: ring to update
3704  * @pkts: number of processed packets
3705  * @bytes: number of processed bytes
3706  */
3707 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3708 {
3709 	u64_stats_update_begin(&rx_ring->syncp);
3710 	ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
3711 	u64_stats_update_end(&rx_ring->syncp);
3712 }
3713 
3714 /**
3715  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3716  * @pi: port info of the switch with default VSI
3717  *
3718  * Return true if the there is a single VSI in default forwarding VSI list
3719  */
3720 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3721 {
3722 	bool exists = false;
3723 
3724 	ice_check_if_dflt_vsi(pi, 0, &exists);
3725 	return exists;
3726 }
3727 
3728 /**
3729  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3730  * @vsi: VSI to compare against default forwarding VSI
3731  *
3732  * If this VSI passed in is the default forwarding VSI then return true, else
3733  * return false
3734  */
3735 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3736 {
3737 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3738 }
3739 
3740 /**
3741  * ice_set_dflt_vsi - set the default forwarding VSI
3742  * @vsi: VSI getting set as the default forwarding VSI on the switch
3743  *
3744  * If the VSI passed in is already the default VSI and it's enabled just return
3745  * success.
3746  *
3747  * Otherwise try to set the VSI passed in as the switch's default VSI and
3748  * return the result.
3749  */
3750 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3751 {
3752 	struct device *dev;
3753 	int status;
3754 
3755 	if (!vsi)
3756 		return -EINVAL;
3757 
3758 	dev = ice_pf_to_dev(vsi->back);
3759 
3760 	/* the VSI passed in is already the default VSI */
3761 	if (ice_is_vsi_dflt_vsi(vsi)) {
3762 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3763 			vsi->vsi_num);
3764 		return 0;
3765 	}
3766 
3767 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3768 	if (status) {
3769 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3770 			vsi->vsi_num, status);
3771 		return status;
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 /**
3778  * ice_clear_dflt_vsi - clear the default forwarding VSI
3779  * @vsi: VSI to remove from filter list
3780  *
3781  * If the switch has no default VSI or it's not enabled then return error.
3782  *
3783  * Otherwise try to clear the default VSI and return the result.
3784  */
3785 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3786 {
3787 	struct device *dev;
3788 	int status;
3789 
3790 	if (!vsi)
3791 		return -EINVAL;
3792 
3793 	dev = ice_pf_to_dev(vsi->back);
3794 
3795 	/* there is no default VSI configured */
3796 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3797 		return -ENODEV;
3798 
3799 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3800 				  ICE_FLTR_RX);
3801 	if (status) {
3802 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3803 			vsi->vsi_num, status);
3804 		return -EIO;
3805 	}
3806 
3807 	return 0;
3808 }
3809 
3810 /**
3811  * ice_get_link_speed_mbps - get link speed in Mbps
3812  * @vsi: the VSI whose link speed is being queried
3813  *
3814  * Return current VSI link speed and 0 if the speed is unknown.
3815  */
3816 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3817 {
3818 	switch (vsi->port_info->phy.link_info.link_speed) {
3819 	case ICE_AQ_LINK_SPEED_100GB:
3820 		return SPEED_100000;
3821 	case ICE_AQ_LINK_SPEED_50GB:
3822 		return SPEED_50000;
3823 	case ICE_AQ_LINK_SPEED_40GB:
3824 		return SPEED_40000;
3825 	case ICE_AQ_LINK_SPEED_25GB:
3826 		return SPEED_25000;
3827 	case ICE_AQ_LINK_SPEED_20GB:
3828 		return SPEED_20000;
3829 	case ICE_AQ_LINK_SPEED_10GB:
3830 		return SPEED_10000;
3831 	case ICE_AQ_LINK_SPEED_5GB:
3832 		return SPEED_5000;
3833 	case ICE_AQ_LINK_SPEED_2500MB:
3834 		return SPEED_2500;
3835 	case ICE_AQ_LINK_SPEED_1000MB:
3836 		return SPEED_1000;
3837 	case ICE_AQ_LINK_SPEED_100MB:
3838 		return SPEED_100;
3839 	case ICE_AQ_LINK_SPEED_10MB:
3840 		return SPEED_10;
3841 	case ICE_AQ_LINK_SPEED_UNKNOWN:
3842 	default:
3843 		return 0;
3844 	}
3845 }
3846 
3847 /**
3848  * ice_get_link_speed_kbps - get link speed in Kbps
3849  * @vsi: the VSI whose link speed is being queried
3850  *
3851  * Return current VSI link speed and 0 if the speed is unknown.
3852  */
3853 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3854 {
3855 	int speed_mbps;
3856 
3857 	speed_mbps = ice_get_link_speed_mbps(vsi);
3858 
3859 	return speed_mbps * 1000;
3860 }
3861 
3862 /**
3863  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3864  * @vsi: VSI to be configured
3865  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3866  *
3867  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3868  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3869  * on TC 0.
3870  */
3871 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3872 {
3873 	struct ice_pf *pf = vsi->back;
3874 	struct device *dev;
3875 	int status;
3876 	int speed;
3877 
3878 	dev = ice_pf_to_dev(pf);
3879 	if (!vsi->port_info) {
3880 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3881 			vsi->idx, vsi->type);
3882 		return -EINVAL;
3883 	}
3884 
3885 	speed = ice_get_link_speed_kbps(vsi);
3886 	if (min_tx_rate > (u64)speed) {
3887 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3888 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3889 			speed);
3890 		return -EINVAL;
3891 	}
3892 
3893 	/* Configure min BW for VSI limit */
3894 	if (min_tx_rate) {
3895 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3896 						   ICE_MIN_BW, min_tx_rate);
3897 		if (status) {
3898 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3899 				min_tx_rate, ice_vsi_type_str(vsi->type),
3900 				vsi->idx);
3901 			return status;
3902 		}
3903 
3904 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3905 			min_tx_rate, ice_vsi_type_str(vsi->type));
3906 	} else {
3907 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3908 							vsi->idx, 0,
3909 							ICE_MIN_BW);
3910 		if (status) {
3911 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3912 				ice_vsi_type_str(vsi->type), vsi->idx);
3913 			return status;
3914 		}
3915 
3916 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3917 			ice_vsi_type_str(vsi->type), vsi->idx);
3918 	}
3919 
3920 	return 0;
3921 }
3922 
3923 /**
3924  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3925  * @vsi: VSI to be configured
3926  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3927  *
3928  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3929  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3930  * on TC 0.
3931  */
3932 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3933 {
3934 	struct ice_pf *pf = vsi->back;
3935 	struct device *dev;
3936 	int status;
3937 	int speed;
3938 
3939 	dev = ice_pf_to_dev(pf);
3940 	if (!vsi->port_info) {
3941 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3942 			vsi->idx, vsi->type);
3943 		return -EINVAL;
3944 	}
3945 
3946 	speed = ice_get_link_speed_kbps(vsi);
3947 	if (max_tx_rate > (u64)speed) {
3948 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3949 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3950 			speed);
3951 		return -EINVAL;
3952 	}
3953 
3954 	/* Configure max BW for VSI limit */
3955 	if (max_tx_rate) {
3956 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3957 						   ICE_MAX_BW, max_tx_rate);
3958 		if (status) {
3959 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3960 				max_tx_rate, ice_vsi_type_str(vsi->type),
3961 				vsi->idx);
3962 			return status;
3963 		}
3964 
3965 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3966 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3967 	} else {
3968 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3969 							vsi->idx, 0,
3970 							ICE_MAX_BW);
3971 		if (status) {
3972 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3973 				ice_vsi_type_str(vsi->type), vsi->idx);
3974 			return status;
3975 		}
3976 
3977 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3978 			ice_vsi_type_str(vsi->type), vsi->idx);
3979 	}
3980 
3981 	return 0;
3982 }
3983 
3984 /**
3985  * ice_set_link - turn on/off physical link
3986  * @vsi: VSI to modify physical link on
3987  * @ena: turn on/off physical link
3988  */
3989 int ice_set_link(struct ice_vsi *vsi, bool ena)
3990 {
3991 	struct device *dev = ice_pf_to_dev(vsi->back);
3992 	struct ice_port_info *pi = vsi->port_info;
3993 	struct ice_hw *hw = pi->hw;
3994 	int status;
3995 
3996 	if (vsi->type != ICE_VSI_PF)
3997 		return -EINVAL;
3998 
3999 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
4000 
4001 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
4002 	 * this is not a fatal error, so print a warning message and return
4003 	 * a success code. Return an error if FW returns an error code other
4004 	 * than ICE_AQ_RC_EMODE
4005 	 */
4006 	if (status == -EIO) {
4007 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
4008 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
4009 				(ena ? "ON" : "OFF"), status,
4010 				ice_aq_str(hw->adminq.sq_last_status));
4011 	} else if (status) {
4012 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4013 			(ena ? "ON" : "OFF"), status,
4014 			ice_aq_str(hw->adminq.sq_last_status));
4015 		return status;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 /**
4022  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4023  * @vsi: VSI used to add VLAN filters
4024  *
4025  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4026  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4027  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4028  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4029  *
4030  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4031  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4032  * traffic in SVM, since the VLAN TPID isn't part of filtering.
4033  *
4034  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4035  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4036  * part of filtering.
4037  */
4038 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4039 {
4040 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4041 	struct ice_vlan vlan;
4042 	int err;
4043 
4044 	vlan = ICE_VLAN(0, 0, 0);
4045 	err = vlan_ops->add_vlan(vsi, &vlan);
4046 	if (err && err != -EEXIST)
4047 		return err;
4048 
4049 	/* in SVM both VLAN 0 filters are identical */
4050 	if (!ice_is_dvm_ena(&vsi->back->hw))
4051 		return 0;
4052 
4053 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4054 	err = vlan_ops->add_vlan(vsi, &vlan);
4055 	if (err && err != -EEXIST)
4056 		return err;
4057 
4058 	return 0;
4059 }
4060 
4061 /**
4062  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4063  * @vsi: VSI used to add VLAN filters
4064  *
4065  * Delete the VLAN 0 filters in the same manner that they were added in
4066  * ice_vsi_add_vlan_zero.
4067  */
4068 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4069 {
4070 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4071 	struct ice_vlan vlan;
4072 	int err;
4073 
4074 	vlan = ICE_VLAN(0, 0, 0);
4075 	err = vlan_ops->del_vlan(vsi, &vlan);
4076 	if (err && err != -EEXIST)
4077 		return err;
4078 
4079 	/* in SVM both VLAN 0 filters are identical */
4080 	if (!ice_is_dvm_ena(&vsi->back->hw))
4081 		return 0;
4082 
4083 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4084 	err = vlan_ops->del_vlan(vsi, &vlan);
4085 	if (err && err != -EEXIST)
4086 		return err;
4087 
4088 	/* when deleting the last VLAN filter, make sure to disable the VLAN
4089 	 * promisc mode so the filter isn't left by accident
4090 	 */
4091 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
4092 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
4093 }
4094 
4095 /**
4096  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4097  * @vsi: VSI used to get the VLAN mode
4098  *
4099  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4100  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4101  */
4102 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4103 {
4104 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
4105 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
4106 	/* no VLAN 0 filter is created when a port VLAN is active */
4107 	if (vsi->type == ICE_VSI_VF) {
4108 		if (WARN_ON(!vsi->vf))
4109 			return 0;
4110 
4111 		if (ice_vf_is_port_vlan_ena(vsi->vf))
4112 			return 0;
4113 	}
4114 
4115 	if (ice_is_dvm_ena(&vsi->back->hw))
4116 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4117 	else
4118 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4119 }
4120 
4121 /**
4122  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4123  * @vsi: VSI used to determine if any non-zero VLANs have been added
4124  */
4125 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4126 {
4127 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4128 }
4129 
4130 /**
4131  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4132  * @vsi: VSI used to get the number of non-zero VLANs added
4133  */
4134 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4135 {
4136 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4137 }
4138 
4139 /**
4140  * ice_is_feature_supported
4141  * @pf: pointer to the struct ice_pf instance
4142  * @f: feature enum to be checked
4143  *
4144  * returns true if feature is supported, false otherwise
4145  */
4146 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4147 {
4148 	if (f < 0 || f >= ICE_F_MAX)
4149 		return false;
4150 
4151 	return test_bit(f, pf->features);
4152 }
4153 
4154 /**
4155  * ice_set_feature_support
4156  * @pf: pointer to the struct ice_pf instance
4157  * @f: feature enum to set
4158  */
4159 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4160 {
4161 	if (f < 0 || f >= ICE_F_MAX)
4162 		return;
4163 
4164 	set_bit(f, pf->features);
4165 }
4166 
4167 /**
4168  * ice_clear_feature_support
4169  * @pf: pointer to the struct ice_pf instance
4170  * @f: feature enum to clear
4171  */
4172 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4173 {
4174 	if (f < 0 || f >= ICE_F_MAX)
4175 		return;
4176 
4177 	clear_bit(f, pf->features);
4178 }
4179 
4180 /**
4181  * ice_init_feature_support
4182  * @pf: pointer to the struct ice_pf instance
4183  *
4184  * called during init to setup supported feature
4185  */
4186 void ice_init_feature_support(struct ice_pf *pf)
4187 {
4188 	switch (pf->hw.device_id) {
4189 	case ICE_DEV_ID_E810C_BACKPLANE:
4190 	case ICE_DEV_ID_E810C_QSFP:
4191 	case ICE_DEV_ID_E810C_SFP:
4192 		ice_set_feature_support(pf, ICE_F_DSCP);
4193 		ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4194 		if (ice_is_e810t(&pf->hw)) {
4195 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4196 			if (ice_gnss_is_gps_present(&pf->hw))
4197 				ice_set_feature_support(pf, ICE_F_GNSS);
4198 		}
4199 		break;
4200 	default:
4201 		break;
4202 	}
4203 }
4204 
4205 /**
4206  * ice_vsi_update_security - update security block in VSI
4207  * @vsi: pointer to VSI structure
4208  * @fill: function pointer to fill ctx
4209  */
4210 int
4211 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4212 {
4213 	struct ice_vsi_ctx ctx = { 0 };
4214 
4215 	ctx.info = vsi->info;
4216 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4217 	fill(&ctx);
4218 
4219 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4220 		return -ENODEV;
4221 
4222 	vsi->info = ctx.info;
4223 	return 0;
4224 }
4225 
4226 /**
4227  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4228  * @ctx: pointer to VSI ctx structure
4229  */
4230 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4231 {
4232 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4233 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4234 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4235 }
4236 
4237 /**
4238  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4239  * @ctx: pointer to VSI ctx structure
4240  */
4241 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4242 {
4243 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4244 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4245 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4246 }
4247 
4248 /**
4249  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4250  * @ctx: pointer to VSI ctx structure
4251  */
4252 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4253 {
4254 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4255 }
4256 
4257 /**
4258  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4259  * @ctx: pointer to VSI ctx structure
4260  */
4261 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4262 {
4263 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4264 }
4265