1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * @vf: the VF associated with this VSI, if any 170 * 171 * Return 0 on success and a negative value on error 172 */ 173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf) 174 { 175 enum ice_vsi_type vsi_type = vsi->type; 176 struct ice_pf *pf = vsi->back; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 void ice_vsi_delete(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_clear - clean up and deallocate the provided VSI 352 * @vsi: pointer to VSI being cleared 353 * 354 * This deallocates the VSI's queue resources, removes it from the PF's 355 * VSI array if necessary, and deallocates the VSI 356 * 357 * Returns 0 on success, negative on failure 358 */ 359 int ice_vsi_clear(struct ice_vsi *vsi) 360 { 361 struct ice_pf *pf = NULL; 362 struct device *dev; 363 364 if (!vsi) 365 return 0; 366 367 if (!vsi->back) 368 return -EINVAL; 369 370 pf = vsi->back; 371 dev = ice_pf_to_dev(pf); 372 373 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 374 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 375 return -EINVAL; 376 } 377 378 mutex_lock(&pf->sw_mutex); 379 /* updates the PF for this cleared VSI */ 380 381 pf->vsi[vsi->idx] = NULL; 382 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 383 pf->next_vsi = vsi->idx; 384 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf) 385 pf->next_vsi = vsi->idx; 386 387 ice_vsi_free_arrays(vsi); 388 mutex_unlock(&pf->sw_mutex); 389 devm_kfree(dev, vsi); 390 391 return 0; 392 } 393 394 /** 395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 396 * @irq: interrupt number 397 * @data: pointer to a q_vector 398 */ 399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 400 { 401 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 402 403 if (!q_vector->tx.tx_ring) 404 return IRQ_HANDLED; 405 406 #define FDIR_RX_DESC_CLEAN_BUDGET 64 407 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 408 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 409 410 return IRQ_HANDLED; 411 } 412 413 /** 414 * ice_msix_clean_rings - MSIX mode Interrupt Handler 415 * @irq: interrupt number 416 * @data: pointer to a q_vector 417 */ 418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 419 { 420 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 421 422 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 423 return IRQ_HANDLED; 424 425 q_vector->total_events++; 426 427 napi_schedule(&q_vector->napi); 428 429 return IRQ_HANDLED; 430 } 431 432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 433 { 434 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 435 struct ice_pf *pf = q_vector->vsi->back; 436 struct ice_vf *vf; 437 unsigned int bkt; 438 439 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 440 return IRQ_HANDLED; 441 442 rcu_read_lock(); 443 ice_for_each_vf_rcu(pf, bkt, vf) 444 napi_schedule(&vf->repr->q_vector->napi); 445 rcu_read_unlock(); 446 447 return IRQ_HANDLED; 448 } 449 450 /** 451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 452 * @pf: board private structure 453 * @vsi_type: type of VSI 454 * @ch: ptr to channel 455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL 456 * 457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL, 458 * it may be NULL in the case there is no association with a VF. For 459 * ICE_VSI_VF the VF pointer *must not* be NULL. 460 * 461 * returns a pointer to a VSI on success, NULL on failure. 462 */ 463 static struct ice_vsi * 464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, 465 struct ice_channel *ch, struct ice_vf *vf) 466 { 467 struct device *dev = ice_pf_to_dev(pf); 468 struct ice_vsi *vsi = NULL; 469 470 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 471 return NULL; 472 473 /* Need to protect the allocation of the VSIs at the PF level */ 474 mutex_lock(&pf->sw_mutex); 475 476 /* If we have already allocated our maximum number of VSIs, 477 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 478 * is available to be populated 479 */ 480 if (pf->next_vsi == ICE_NO_VSI) { 481 dev_dbg(dev, "out of VSI slots!\n"); 482 goto unlock_pf; 483 } 484 485 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 486 if (!vsi) 487 goto unlock_pf; 488 489 vsi->type = vsi_type; 490 vsi->back = pf; 491 set_bit(ICE_VSI_DOWN, vsi->state); 492 493 if (vsi_type == ICE_VSI_VF) 494 ice_vsi_set_num_qs(vsi, vf); 495 else if (vsi_type != ICE_VSI_CHNL) 496 ice_vsi_set_num_qs(vsi, NULL); 497 498 switch (vsi->type) { 499 case ICE_VSI_SWITCHDEV_CTRL: 500 if (ice_vsi_alloc_arrays(vsi)) 501 goto err_rings; 502 503 /* Setup eswitch MSIX irq handler for VSI */ 504 vsi->irq_handler = ice_eswitch_msix_clean_rings; 505 break; 506 case ICE_VSI_PF: 507 if (ice_vsi_alloc_arrays(vsi)) 508 goto err_rings; 509 510 /* Setup default MSIX irq handler for VSI */ 511 vsi->irq_handler = ice_msix_clean_rings; 512 break; 513 case ICE_VSI_CTRL: 514 if (ice_vsi_alloc_arrays(vsi)) 515 goto err_rings; 516 517 /* Setup ctrl VSI MSIX irq handler */ 518 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 519 520 /* For the PF control VSI this is NULL, for the VF control VSI 521 * this will be the first VF to allocate it. 522 */ 523 vsi->vf = vf; 524 break; 525 case ICE_VSI_VF: 526 if (ice_vsi_alloc_arrays(vsi)) 527 goto err_rings; 528 vsi->vf = vf; 529 break; 530 case ICE_VSI_CHNL: 531 if (!ch) 532 goto err_rings; 533 vsi->num_rxq = ch->num_rxq; 534 vsi->num_txq = ch->num_txq; 535 vsi->next_base_q = ch->base_q; 536 break; 537 case ICE_VSI_LB: 538 if (ice_vsi_alloc_arrays(vsi)) 539 goto err_rings; 540 break; 541 default: 542 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 543 goto unlock_pf; 544 } 545 546 if (vsi->type == ICE_VSI_CTRL && !vf) { 547 /* Use the last VSI slot as the index for PF control VSI */ 548 vsi->idx = pf->num_alloc_vsi - 1; 549 pf->ctrl_vsi_idx = vsi->idx; 550 pf->vsi[vsi->idx] = vsi; 551 } else { 552 /* fill slot and make note of the index */ 553 vsi->idx = pf->next_vsi; 554 pf->vsi[pf->next_vsi] = vsi; 555 556 /* prepare pf->next_vsi for next use */ 557 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 558 pf->next_vsi); 559 } 560 561 if (vsi->type == ICE_VSI_CTRL && vf) 562 vf->ctrl_vsi_idx = vsi->idx; 563 goto unlock_pf; 564 565 err_rings: 566 devm_kfree(dev, vsi); 567 vsi = NULL; 568 unlock_pf: 569 mutex_unlock(&pf->sw_mutex); 570 return vsi; 571 } 572 573 /** 574 * ice_alloc_fd_res - Allocate FD resource for a VSI 575 * @vsi: pointer to the ice_vsi 576 * 577 * This allocates the FD resources 578 * 579 * Returns 0 on success, -EPERM on no-op or -EIO on failure 580 */ 581 static int ice_alloc_fd_res(struct ice_vsi *vsi) 582 { 583 struct ice_pf *pf = vsi->back; 584 u32 g_val, b_val; 585 586 /* Flow Director filters are only allocated/assigned to the PF VSI or 587 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 588 * add/delete filters so resources are not allocated to it 589 */ 590 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 591 return -EPERM; 592 593 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 594 vsi->type == ICE_VSI_CHNL)) 595 return -EPERM; 596 597 /* FD filters from guaranteed pool per VSI */ 598 g_val = pf->hw.func_caps.fd_fltr_guar; 599 if (!g_val) 600 return -EPERM; 601 602 /* FD filters from best effort pool */ 603 b_val = pf->hw.func_caps.fd_fltr_best_effort; 604 if (!b_val) 605 return -EPERM; 606 607 /* PF main VSI gets only 64 FD resources from guaranteed pool 608 * when ADQ is configured. 609 */ 610 #define ICE_PF_VSI_GFLTR 64 611 612 /* determine FD filter resources per VSI from shared(best effort) and 613 * dedicated pool 614 */ 615 if (vsi->type == ICE_VSI_PF) { 616 vsi->num_gfltr = g_val; 617 /* if MQPRIO is configured, main VSI doesn't get all FD 618 * resources from guaranteed pool. PF VSI gets 64 FD resources 619 */ 620 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 621 if (g_val < ICE_PF_VSI_GFLTR) 622 return -EPERM; 623 /* allow bare minimum entries for PF VSI */ 624 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 625 } 626 627 /* each VSI gets same "best_effort" quota */ 628 vsi->num_bfltr = b_val; 629 } else if (vsi->type == ICE_VSI_VF) { 630 vsi->num_gfltr = 0; 631 632 /* each VSI gets same "best_effort" quota */ 633 vsi->num_bfltr = b_val; 634 } else { 635 struct ice_vsi *main_vsi; 636 int numtc; 637 638 main_vsi = ice_get_main_vsi(pf); 639 if (!main_vsi) 640 return -EPERM; 641 642 if (!main_vsi->all_numtc) 643 return -EINVAL; 644 645 /* figure out ADQ numtc */ 646 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 647 648 /* only one TC but still asking resources for channels, 649 * invalid config 650 */ 651 if (numtc < ICE_CHNL_START_TC) 652 return -EPERM; 653 654 g_val -= ICE_PF_VSI_GFLTR; 655 /* channel VSIs gets equal share from guaranteed pool */ 656 vsi->num_gfltr = g_val / numtc; 657 658 /* each VSI gets same "best_effort" quota */ 659 vsi->num_bfltr = b_val; 660 } 661 662 return 0; 663 } 664 665 /** 666 * ice_vsi_get_qs - Assign queues from PF to VSI 667 * @vsi: the VSI to assign queues to 668 * 669 * Returns 0 on success and a negative value on error 670 */ 671 static int ice_vsi_get_qs(struct ice_vsi *vsi) 672 { 673 struct ice_pf *pf = vsi->back; 674 struct ice_qs_cfg tx_qs_cfg = { 675 .qs_mutex = &pf->avail_q_mutex, 676 .pf_map = pf->avail_txqs, 677 .pf_map_size = pf->max_pf_txqs, 678 .q_count = vsi->alloc_txq, 679 .scatter_count = ICE_MAX_SCATTER_TXQS, 680 .vsi_map = vsi->txq_map, 681 .vsi_map_offset = 0, 682 .mapping_mode = ICE_VSI_MAP_CONTIG 683 }; 684 struct ice_qs_cfg rx_qs_cfg = { 685 .qs_mutex = &pf->avail_q_mutex, 686 .pf_map = pf->avail_rxqs, 687 .pf_map_size = pf->max_pf_rxqs, 688 .q_count = vsi->alloc_rxq, 689 .scatter_count = ICE_MAX_SCATTER_RXQS, 690 .vsi_map = vsi->rxq_map, 691 .vsi_map_offset = 0, 692 .mapping_mode = ICE_VSI_MAP_CONTIG 693 }; 694 int ret; 695 696 if (vsi->type == ICE_VSI_CHNL) 697 return 0; 698 699 ret = __ice_vsi_get_qs(&tx_qs_cfg); 700 if (ret) 701 return ret; 702 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 703 704 ret = __ice_vsi_get_qs(&rx_qs_cfg); 705 if (ret) 706 return ret; 707 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 708 709 return 0; 710 } 711 712 /** 713 * ice_vsi_put_qs - Release queues from VSI to PF 714 * @vsi: the VSI that is going to release queues 715 */ 716 static void ice_vsi_put_qs(struct ice_vsi *vsi) 717 { 718 struct ice_pf *pf = vsi->back; 719 int i; 720 721 mutex_lock(&pf->avail_q_mutex); 722 723 ice_for_each_alloc_txq(vsi, i) { 724 clear_bit(vsi->txq_map[i], pf->avail_txqs); 725 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 726 } 727 728 ice_for_each_alloc_rxq(vsi, i) { 729 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 730 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 731 } 732 733 mutex_unlock(&pf->avail_q_mutex); 734 } 735 736 /** 737 * ice_is_safe_mode 738 * @pf: pointer to the PF struct 739 * 740 * returns true if driver is in safe mode, false otherwise 741 */ 742 bool ice_is_safe_mode(struct ice_pf *pf) 743 { 744 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 745 } 746 747 /** 748 * ice_is_rdma_ena 749 * @pf: pointer to the PF struct 750 * 751 * returns true if RDMA is currently supported, false otherwise 752 */ 753 bool ice_is_rdma_ena(struct ice_pf *pf) 754 { 755 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 756 } 757 758 /** 759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 760 * @vsi: the VSI being cleaned up 761 * 762 * This function deletes RSS input set for all flows that were configured 763 * for this VSI 764 */ 765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 766 { 767 struct ice_pf *pf = vsi->back; 768 int status; 769 770 if (ice_is_safe_mode(pf)) 771 return; 772 773 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 774 if (status) 775 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 776 vsi->vsi_num, status); 777 } 778 779 /** 780 * ice_rss_clean - Delete RSS related VSI structures and configuration 781 * @vsi: the VSI being removed 782 */ 783 static void ice_rss_clean(struct ice_vsi *vsi) 784 { 785 struct ice_pf *pf = vsi->back; 786 struct device *dev; 787 788 dev = ice_pf_to_dev(pf); 789 790 if (vsi->rss_hkey_user) 791 devm_kfree(dev, vsi->rss_hkey_user); 792 if (vsi->rss_lut_user) 793 devm_kfree(dev, vsi->rss_lut_user); 794 795 ice_vsi_clean_rss_flow_fld(vsi); 796 /* remove RSS replay list */ 797 if (!ice_is_safe_mode(pf)) 798 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 799 } 800 801 /** 802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 803 * @vsi: the VSI being configured 804 */ 805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 806 { 807 struct ice_hw_common_caps *cap; 808 struct ice_pf *pf = vsi->back; 809 810 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 811 vsi->rss_size = 1; 812 return; 813 } 814 815 cap = &pf->hw.func_caps.common_cap; 816 switch (vsi->type) { 817 case ICE_VSI_CHNL: 818 case ICE_VSI_PF: 819 /* PF VSI will inherit RSS instance of PF */ 820 vsi->rss_table_size = (u16)cap->rss_table_size; 821 if (vsi->type == ICE_VSI_CHNL) 822 vsi->rss_size = min_t(u16, vsi->num_rxq, 823 BIT(cap->rss_table_entry_width)); 824 else 825 vsi->rss_size = min_t(u16, num_online_cpus(), 826 BIT(cap->rss_table_entry_width)); 827 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 828 break; 829 case ICE_VSI_SWITCHDEV_CTRL: 830 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 831 vsi->rss_size = min_t(u16, num_online_cpus(), 832 BIT(cap->rss_table_entry_width)); 833 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 834 break; 835 case ICE_VSI_VF: 836 /* VF VSI will get a small RSS table. 837 * For VSI_LUT, LUT size should be set to 64 bytes. 838 */ 839 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 840 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 841 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 842 break; 843 case ICE_VSI_LB: 844 break; 845 default: 846 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 847 ice_vsi_type_str(vsi->type)); 848 break; 849 } 850 } 851 852 /** 853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 854 * @hw: HW structure used to determine the VLAN mode of the device 855 * @ctxt: the VSI context being set 856 * 857 * This initializes a default VSI context for all sections except the Queues. 858 */ 859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 860 { 861 u32 table = 0; 862 863 memset(&ctxt->info, 0, sizeof(ctxt->info)); 864 /* VSI's should be allocated from shared pool */ 865 ctxt->alloc_from_pool = true; 866 /* Src pruning enabled by default */ 867 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 868 /* Traffic from VSI can be sent to LAN */ 869 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 870 /* allow all untagged/tagged packets by default on Tx */ 871 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 872 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 873 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 874 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 875 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 876 * 877 * DVM - leave inner VLAN in packet by default 878 */ 879 if (ice_is_dvm_ena(hw)) { 880 ctxt->info.inner_vlan_flags |= 881 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 882 ctxt->info.outer_vlan_flags = 883 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 884 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 885 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 886 ctxt->info.outer_vlan_flags |= 887 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 888 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 889 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 890 ctxt->info.outer_vlan_flags |= 891 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 892 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 893 } 894 /* Have 1:1 UP mapping for both ingress/egress tables */ 895 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 896 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 897 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 898 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 899 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 900 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 901 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 902 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 903 ctxt->info.ingress_table = cpu_to_le32(table); 904 ctxt->info.egress_table = cpu_to_le32(table); 905 /* Have 1:1 UP mapping for outer to inner UP table */ 906 ctxt->info.outer_up_table = cpu_to_le32(table); 907 /* No Outer tag support outer_tag_flags remains to zero */ 908 } 909 910 /** 911 * ice_vsi_setup_q_map - Setup a VSI queue map 912 * @vsi: the VSI being configured 913 * @ctxt: VSI context structure 914 */ 915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 916 { 917 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 918 u16 num_txq_per_tc, num_rxq_per_tc; 919 u16 qcount_tx = vsi->alloc_txq; 920 u16 qcount_rx = vsi->alloc_rxq; 921 u8 netdev_tc = 0; 922 int i; 923 924 if (!vsi->tc_cfg.numtc) { 925 /* at least TC0 should be enabled by default */ 926 vsi->tc_cfg.numtc = 1; 927 vsi->tc_cfg.ena_tc = 1; 928 } 929 930 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 931 if (!num_rxq_per_tc) 932 num_rxq_per_tc = 1; 933 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 934 if (!num_txq_per_tc) 935 num_txq_per_tc = 1; 936 937 /* find the (rounded up) power-of-2 of qcount */ 938 pow = (u16)order_base_2(num_rxq_per_tc); 939 940 /* TC mapping is a function of the number of Rx queues assigned to the 941 * VSI for each traffic class and the offset of these queues. 942 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 943 * queues allocated to TC0. No:of queues is a power-of-2. 944 * 945 * If TC is not enabled, the queue offset is set to 0, and allocate one 946 * queue, this way, traffic for the given TC will be sent to the default 947 * queue. 948 * 949 * Setup number and offset of Rx queues for all TCs for the VSI 950 */ 951 ice_for_each_traffic_class(i) { 952 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 953 /* TC is not enabled */ 954 vsi->tc_cfg.tc_info[i].qoffset = 0; 955 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 956 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 957 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 958 ctxt->info.tc_mapping[i] = 0; 959 continue; 960 } 961 962 /* TC is enabled */ 963 vsi->tc_cfg.tc_info[i].qoffset = offset; 964 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 965 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 966 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 967 968 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 969 ICE_AQ_VSI_TC_Q_OFFSET_M) | 970 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 971 ICE_AQ_VSI_TC_Q_NUM_M); 972 offset += num_rxq_per_tc; 973 tx_count += num_txq_per_tc; 974 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 975 } 976 977 /* if offset is non-zero, means it is calculated correctly based on 978 * enabled TCs for a given VSI otherwise qcount_rx will always 979 * be correct and non-zero because it is based off - VSI's 980 * allocated Rx queues which is at least 1 (hence qcount_tx will be 981 * at least 1) 982 */ 983 if (offset) 984 rx_count = offset; 985 else 986 rx_count = num_rxq_per_tc; 987 988 if (rx_count > vsi->alloc_rxq) { 989 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 990 rx_count, vsi->alloc_rxq); 991 return -EINVAL; 992 } 993 994 if (tx_count > vsi->alloc_txq) { 995 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 996 tx_count, vsi->alloc_txq); 997 return -EINVAL; 998 } 999 1000 vsi->num_txq = tx_count; 1001 vsi->num_rxq = rx_count; 1002 1003 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1004 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1005 /* since there is a chance that num_rxq could have been changed 1006 * in the above for loop, make num_txq equal to num_rxq. 1007 */ 1008 vsi->num_txq = vsi->num_rxq; 1009 } 1010 1011 /* Rx queue mapping */ 1012 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1013 /* q_mapping buffer holds the info for the first queue allocated for 1014 * this VSI in the PF space and also the number of queues associated 1015 * with this VSI. 1016 */ 1017 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1018 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1019 1020 return 0; 1021 } 1022 1023 /** 1024 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1025 * @ctxt: the VSI context being set 1026 * @vsi: the VSI being configured 1027 */ 1028 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1029 { 1030 u8 dflt_q_group, dflt_q_prio; 1031 u16 dflt_q, report_q, val; 1032 1033 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1034 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1035 return; 1036 1037 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1038 ctxt->info.valid_sections |= cpu_to_le16(val); 1039 dflt_q = 0; 1040 dflt_q_group = 0; 1041 report_q = 0; 1042 dflt_q_prio = 0; 1043 1044 /* enable flow director filtering/programming */ 1045 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1046 ctxt->info.fd_options = cpu_to_le16(val); 1047 /* max of allocated flow director filters */ 1048 ctxt->info.max_fd_fltr_dedicated = 1049 cpu_to_le16(vsi->num_gfltr); 1050 /* max of shared flow director filters any VSI may program */ 1051 ctxt->info.max_fd_fltr_shared = 1052 cpu_to_le16(vsi->num_bfltr); 1053 /* default queue index within the VSI of the default FD */ 1054 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1055 ICE_AQ_VSI_FD_DEF_Q_M); 1056 /* target queue or queue group to the FD filter */ 1057 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1058 ICE_AQ_VSI_FD_DEF_GRP_M); 1059 ctxt->info.fd_def_q = cpu_to_le16(val); 1060 /* queue index on which FD filter completion is reported */ 1061 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1062 ICE_AQ_VSI_FD_REPORT_Q_M); 1063 /* priority of the default qindex action */ 1064 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1065 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1066 ctxt->info.fd_report_opt = cpu_to_le16(val); 1067 } 1068 1069 /** 1070 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1071 * @ctxt: the VSI context being set 1072 * @vsi: the VSI being configured 1073 */ 1074 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1075 { 1076 u8 lut_type, hash_type; 1077 struct device *dev; 1078 struct ice_pf *pf; 1079 1080 pf = vsi->back; 1081 dev = ice_pf_to_dev(pf); 1082 1083 switch (vsi->type) { 1084 case ICE_VSI_CHNL: 1085 case ICE_VSI_PF: 1086 /* PF VSI will inherit RSS instance of PF */ 1087 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1088 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1089 break; 1090 case ICE_VSI_VF: 1091 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1092 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1093 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1094 break; 1095 default: 1096 dev_dbg(dev, "Unsupported VSI type %s\n", 1097 ice_vsi_type_str(vsi->type)); 1098 return; 1099 } 1100 1101 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1102 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1103 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1104 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1105 } 1106 1107 static void 1108 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1109 { 1110 struct ice_pf *pf = vsi->back; 1111 u16 qcount, qmap; 1112 u8 offset = 0; 1113 int pow; 1114 1115 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1116 1117 pow = order_base_2(qcount); 1118 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1119 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1120 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1121 ICE_AQ_VSI_TC_Q_NUM_M); 1122 1123 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1124 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1125 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1126 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1127 } 1128 1129 /** 1130 * ice_vsi_init - Create and initialize a VSI 1131 * @vsi: the VSI being configured 1132 * @init_vsi: is this call creating a VSI 1133 * 1134 * This initializes a VSI context depending on the VSI type to be added and 1135 * passes it down to the add_vsi aq command to create a new VSI. 1136 */ 1137 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1138 { 1139 struct ice_pf *pf = vsi->back; 1140 struct ice_hw *hw = &pf->hw; 1141 struct ice_vsi_ctx *ctxt; 1142 struct device *dev; 1143 int ret = 0; 1144 1145 dev = ice_pf_to_dev(pf); 1146 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1147 if (!ctxt) 1148 return -ENOMEM; 1149 1150 switch (vsi->type) { 1151 case ICE_VSI_CTRL: 1152 case ICE_VSI_LB: 1153 case ICE_VSI_PF: 1154 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1155 break; 1156 case ICE_VSI_SWITCHDEV_CTRL: 1157 case ICE_VSI_CHNL: 1158 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1159 break; 1160 case ICE_VSI_VF: 1161 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1162 /* VF number here is the absolute VF number (0-255) */ 1163 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1164 break; 1165 default: 1166 ret = -ENODEV; 1167 goto out; 1168 } 1169 1170 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1171 * prune enabled 1172 */ 1173 if (vsi->type == ICE_VSI_CHNL) { 1174 struct ice_vsi *main_vsi; 1175 1176 main_vsi = ice_get_main_vsi(pf); 1177 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1178 ctxt->info.sw_flags2 |= 1179 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1180 else 1181 ctxt->info.sw_flags2 &= 1182 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1183 } 1184 1185 ice_set_dflt_vsi_ctx(hw, ctxt); 1186 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1187 ice_set_fd_vsi_ctx(ctxt, vsi); 1188 /* if the switch is in VEB mode, allow VSI loopback */ 1189 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1190 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1191 1192 /* Set LUT type and HASH type if RSS is enabled */ 1193 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1194 vsi->type != ICE_VSI_CTRL) { 1195 ice_set_rss_vsi_ctx(ctxt, vsi); 1196 /* if updating VSI context, make sure to set valid_section: 1197 * to indicate which section of VSI context being updated 1198 */ 1199 if (!init_vsi) 1200 ctxt->info.valid_sections |= 1201 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1202 } 1203 1204 ctxt->info.sw_id = vsi->port_info->sw_id; 1205 if (vsi->type == ICE_VSI_CHNL) { 1206 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1207 } else { 1208 ret = ice_vsi_setup_q_map(vsi, ctxt); 1209 if (ret) 1210 goto out; 1211 1212 if (!init_vsi) /* means VSI being updated */ 1213 /* must to indicate which section of VSI context are 1214 * being modified 1215 */ 1216 ctxt->info.valid_sections |= 1217 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1218 } 1219 1220 /* Allow control frames out of main VSI */ 1221 if (vsi->type == ICE_VSI_PF) { 1222 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1223 ctxt->info.valid_sections |= 1224 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1225 } 1226 1227 if (init_vsi) { 1228 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1229 if (ret) { 1230 dev_err(dev, "Add VSI failed, err %d\n", ret); 1231 ret = -EIO; 1232 goto out; 1233 } 1234 } else { 1235 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1236 if (ret) { 1237 dev_err(dev, "Update VSI failed, err %d\n", ret); 1238 ret = -EIO; 1239 goto out; 1240 } 1241 } 1242 1243 /* keep context for update VSI operations */ 1244 vsi->info = ctxt->info; 1245 1246 /* record VSI number returned */ 1247 vsi->vsi_num = ctxt->vsi_num; 1248 1249 out: 1250 kfree(ctxt); 1251 return ret; 1252 } 1253 1254 /** 1255 * ice_free_res - free a block of resources 1256 * @res: pointer to the resource 1257 * @index: starting index previously returned by ice_get_res 1258 * @id: identifier to track owner 1259 * 1260 * Returns number of resources freed 1261 */ 1262 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1263 { 1264 int count = 0; 1265 int i; 1266 1267 if (!res || index >= res->end) 1268 return -EINVAL; 1269 1270 id |= ICE_RES_VALID_BIT; 1271 for (i = index; i < res->end && res->list[i] == id; i++) { 1272 res->list[i] = 0; 1273 count++; 1274 } 1275 1276 return count; 1277 } 1278 1279 /** 1280 * ice_search_res - Search the tracker for a block of resources 1281 * @res: pointer to the resource 1282 * @needed: size of the block needed 1283 * @id: identifier to track owner 1284 * 1285 * Returns the base item index of the block, or -ENOMEM for error 1286 */ 1287 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1288 { 1289 u16 start = 0, end = 0; 1290 1291 if (needed > res->end) 1292 return -ENOMEM; 1293 1294 id |= ICE_RES_VALID_BIT; 1295 1296 do { 1297 /* skip already allocated entries */ 1298 if (res->list[end++] & ICE_RES_VALID_BIT) { 1299 start = end; 1300 if ((start + needed) > res->end) 1301 break; 1302 } 1303 1304 if (end == (start + needed)) { 1305 int i = start; 1306 1307 /* there was enough, so assign it to the requestor */ 1308 while (i != end) 1309 res->list[i++] = id; 1310 1311 return start; 1312 } 1313 } while (end < res->end); 1314 1315 return -ENOMEM; 1316 } 1317 1318 /** 1319 * ice_get_free_res_count - Get free count from a resource tracker 1320 * @res: Resource tracker instance 1321 */ 1322 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1323 { 1324 u16 i, count = 0; 1325 1326 for (i = 0; i < res->end; i++) 1327 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1328 count++; 1329 1330 return count; 1331 } 1332 1333 /** 1334 * ice_get_res - get a block of resources 1335 * @pf: board private structure 1336 * @res: pointer to the resource 1337 * @needed: size of the block needed 1338 * @id: identifier to track owner 1339 * 1340 * Returns the base item index of the block, or negative for error 1341 */ 1342 int 1343 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1344 { 1345 if (!res || !pf) 1346 return -EINVAL; 1347 1348 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1349 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1350 needed, res->num_entries, id); 1351 return -EINVAL; 1352 } 1353 1354 return ice_search_res(res, needed, id); 1355 } 1356 1357 /** 1358 * ice_get_vf_ctrl_res - Get VF control VSI resource 1359 * @pf: pointer to the PF structure 1360 * @vsi: the VSI to allocate a resource for 1361 * 1362 * Look up whether another VF has already allocated the control VSI resource. 1363 * If so, re-use this resource so that we share it among all VFs. 1364 * 1365 * Otherwise, allocate the resource and return it. 1366 */ 1367 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1368 { 1369 struct ice_vf *vf; 1370 unsigned int bkt; 1371 int base; 1372 1373 rcu_read_lock(); 1374 ice_for_each_vf_rcu(pf, bkt, vf) { 1375 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1376 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1377 rcu_read_unlock(); 1378 return base; 1379 } 1380 } 1381 rcu_read_unlock(); 1382 1383 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1384 ICE_RES_VF_CTRL_VEC_ID); 1385 } 1386 1387 /** 1388 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1389 * @vsi: ptr to the VSI 1390 * 1391 * This should only be called after ice_vsi_alloc() which allocates the 1392 * corresponding SW VSI structure and initializes num_queue_pairs for the 1393 * newly allocated VSI. 1394 * 1395 * Returns 0 on success or negative on failure 1396 */ 1397 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1398 { 1399 struct ice_pf *pf = vsi->back; 1400 struct device *dev; 1401 u16 num_q_vectors; 1402 int base; 1403 1404 dev = ice_pf_to_dev(pf); 1405 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1406 if (vsi->type == ICE_VSI_VF) 1407 return 0; 1408 if (vsi->type == ICE_VSI_CHNL) 1409 return 0; 1410 1411 if (vsi->base_vector) { 1412 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1413 vsi->vsi_num, vsi->base_vector); 1414 return -EEXIST; 1415 } 1416 1417 num_q_vectors = vsi->num_q_vectors; 1418 /* reserve slots from OS requested IRQs */ 1419 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1420 base = ice_get_vf_ctrl_res(pf, vsi); 1421 } else { 1422 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1423 vsi->idx); 1424 } 1425 1426 if (base < 0) { 1427 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1428 ice_get_free_res_count(pf->irq_tracker), 1429 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1430 return -ENOENT; 1431 } 1432 vsi->base_vector = (u16)base; 1433 pf->num_avail_sw_msix -= num_q_vectors; 1434 1435 return 0; 1436 } 1437 1438 /** 1439 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1440 * @vsi: the VSI having rings deallocated 1441 */ 1442 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1443 { 1444 int i; 1445 1446 /* Avoid stale references by clearing map from vector to ring */ 1447 if (vsi->q_vectors) { 1448 ice_for_each_q_vector(vsi, i) { 1449 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1450 1451 if (q_vector) { 1452 q_vector->tx.tx_ring = NULL; 1453 q_vector->rx.rx_ring = NULL; 1454 } 1455 } 1456 } 1457 1458 if (vsi->tx_rings) { 1459 ice_for_each_alloc_txq(vsi, i) { 1460 if (vsi->tx_rings[i]) { 1461 kfree_rcu(vsi->tx_rings[i], rcu); 1462 WRITE_ONCE(vsi->tx_rings[i], NULL); 1463 } 1464 } 1465 } 1466 if (vsi->rx_rings) { 1467 ice_for_each_alloc_rxq(vsi, i) { 1468 if (vsi->rx_rings[i]) { 1469 kfree_rcu(vsi->rx_rings[i], rcu); 1470 WRITE_ONCE(vsi->rx_rings[i], NULL); 1471 } 1472 } 1473 } 1474 } 1475 1476 /** 1477 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1478 * @vsi: VSI which is having rings allocated 1479 */ 1480 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1481 { 1482 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1483 struct ice_pf *pf = vsi->back; 1484 struct device *dev; 1485 u16 i; 1486 1487 dev = ice_pf_to_dev(pf); 1488 /* Allocate Tx rings */ 1489 ice_for_each_alloc_txq(vsi, i) { 1490 struct ice_tx_ring *ring; 1491 1492 /* allocate with kzalloc(), free with kfree_rcu() */ 1493 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1494 1495 if (!ring) 1496 goto err_out; 1497 1498 ring->q_index = i; 1499 ring->reg_idx = vsi->txq_map[i]; 1500 ring->vsi = vsi; 1501 ring->tx_tstamps = &pf->ptp.port.tx; 1502 ring->dev = dev; 1503 ring->count = vsi->num_tx_desc; 1504 ring->txq_teid = ICE_INVAL_TEID; 1505 if (dvm_ena) 1506 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1507 else 1508 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1509 WRITE_ONCE(vsi->tx_rings[i], ring); 1510 } 1511 1512 /* Allocate Rx rings */ 1513 ice_for_each_alloc_rxq(vsi, i) { 1514 struct ice_rx_ring *ring; 1515 1516 /* allocate with kzalloc(), free with kfree_rcu() */ 1517 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1518 if (!ring) 1519 goto err_out; 1520 1521 ring->q_index = i; 1522 ring->reg_idx = vsi->rxq_map[i]; 1523 ring->vsi = vsi; 1524 ring->netdev = vsi->netdev; 1525 ring->dev = dev; 1526 ring->count = vsi->num_rx_desc; 1527 WRITE_ONCE(vsi->rx_rings[i], ring); 1528 } 1529 1530 return 0; 1531 1532 err_out: 1533 ice_vsi_clear_rings(vsi); 1534 return -ENOMEM; 1535 } 1536 1537 /** 1538 * ice_vsi_manage_rss_lut - disable/enable RSS 1539 * @vsi: the VSI being changed 1540 * @ena: boolean value indicating if this is an enable or disable request 1541 * 1542 * In the event of disable request for RSS, this function will zero out RSS 1543 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1544 * LUT. 1545 */ 1546 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1547 { 1548 u8 *lut; 1549 1550 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1551 if (!lut) 1552 return; 1553 1554 if (ena) { 1555 if (vsi->rss_lut_user) 1556 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1557 else 1558 ice_fill_rss_lut(lut, vsi->rss_table_size, 1559 vsi->rss_size); 1560 } 1561 1562 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1563 kfree(lut); 1564 } 1565 1566 /** 1567 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1568 * @vsi: VSI to be configured 1569 */ 1570 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1571 { 1572 struct ice_pf *pf = vsi->back; 1573 struct device *dev; 1574 u8 *lut, *key; 1575 int err; 1576 1577 dev = ice_pf_to_dev(pf); 1578 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1579 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1580 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1581 } else { 1582 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1583 1584 /* If orig_rss_size is valid and it is less than determined 1585 * main VSI's rss_size, update main VSI's rss_size to be 1586 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1587 * RSS table gets programmed to be correct (whatever it was 1588 * to begin with (prior to setup-tc for ADQ config) 1589 */ 1590 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1591 vsi->orig_rss_size <= vsi->num_rxq) { 1592 vsi->rss_size = vsi->orig_rss_size; 1593 /* now orig_rss_size is used, reset it to zero */ 1594 vsi->orig_rss_size = 0; 1595 } 1596 } 1597 1598 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1599 if (!lut) 1600 return -ENOMEM; 1601 1602 if (vsi->rss_lut_user) 1603 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1604 else 1605 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1606 1607 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1608 if (err) { 1609 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1610 goto ice_vsi_cfg_rss_exit; 1611 } 1612 1613 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1614 if (!key) { 1615 err = -ENOMEM; 1616 goto ice_vsi_cfg_rss_exit; 1617 } 1618 1619 if (vsi->rss_hkey_user) 1620 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1621 else 1622 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1623 1624 err = ice_set_rss_key(vsi, key); 1625 if (err) 1626 dev_err(dev, "set_rss_key failed, error %d\n", err); 1627 1628 kfree(key); 1629 ice_vsi_cfg_rss_exit: 1630 kfree(lut); 1631 return err; 1632 } 1633 1634 /** 1635 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1636 * @vsi: VSI to be configured 1637 * 1638 * This function will only be called during the VF VSI setup. Upon successful 1639 * completion of package download, this function will configure default RSS 1640 * input sets for VF VSI. 1641 */ 1642 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1643 { 1644 struct ice_pf *pf = vsi->back; 1645 struct device *dev; 1646 int status; 1647 1648 dev = ice_pf_to_dev(pf); 1649 if (ice_is_safe_mode(pf)) { 1650 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1651 vsi->vsi_num); 1652 return; 1653 } 1654 1655 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1656 if (status) 1657 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1658 vsi->vsi_num, status); 1659 } 1660 1661 /** 1662 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1663 * @vsi: VSI to be configured 1664 * 1665 * This function will only be called after successful download package call 1666 * during initialization of PF. Since the downloaded package will erase the 1667 * RSS section, this function will configure RSS input sets for different 1668 * flow types. The last profile added has the highest priority, therefore 2 1669 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1670 * (i.e. IPv4 src/dst TCP src/dst port). 1671 */ 1672 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1673 { 1674 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1675 struct ice_pf *pf = vsi->back; 1676 struct ice_hw *hw = &pf->hw; 1677 struct device *dev; 1678 int status; 1679 1680 dev = ice_pf_to_dev(pf); 1681 if (ice_is_safe_mode(pf)) { 1682 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1683 vsi_num); 1684 return; 1685 } 1686 /* configure RSS for IPv4 with input set IP src/dst */ 1687 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1688 ICE_FLOW_SEG_HDR_IPV4); 1689 if (status) 1690 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1691 vsi_num, status); 1692 1693 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1694 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1695 ICE_FLOW_SEG_HDR_IPV6); 1696 if (status) 1697 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1698 vsi_num, status); 1699 1700 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1701 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1702 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1703 if (status) 1704 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1705 vsi_num, status); 1706 1707 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1708 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1709 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1710 if (status) 1711 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1712 vsi_num, status); 1713 1714 /* configure RSS for sctp4 with input set IP src/dst */ 1715 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1716 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1717 if (status) 1718 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1719 vsi_num, status); 1720 1721 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1722 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1723 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1724 if (status) 1725 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1726 vsi_num, status); 1727 1728 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1729 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1730 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1731 if (status) 1732 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1733 vsi_num, status); 1734 1735 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1736 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1737 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1738 if (status) 1739 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1740 vsi_num, status); 1741 1742 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1743 ICE_FLOW_SEG_HDR_ESP); 1744 if (status) 1745 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1746 vsi_num, status); 1747 } 1748 1749 /** 1750 * ice_pf_state_is_nominal - checks the PF for nominal state 1751 * @pf: pointer to PF to check 1752 * 1753 * Check the PF's state for a collection of bits that would indicate 1754 * the PF is in a state that would inhibit normal operation for 1755 * driver functionality. 1756 * 1757 * Returns true if PF is in a nominal state, false otherwise 1758 */ 1759 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1760 { 1761 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1762 1763 if (!pf) 1764 return false; 1765 1766 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1767 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1768 return false; 1769 1770 return true; 1771 } 1772 1773 /** 1774 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1775 * @vsi: the VSI to be updated 1776 */ 1777 void ice_update_eth_stats(struct ice_vsi *vsi) 1778 { 1779 struct ice_eth_stats *prev_es, *cur_es; 1780 struct ice_hw *hw = &vsi->back->hw; 1781 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1782 1783 prev_es = &vsi->eth_stats_prev; 1784 cur_es = &vsi->eth_stats; 1785 1786 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1787 &prev_es->rx_bytes, &cur_es->rx_bytes); 1788 1789 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1790 &prev_es->rx_unicast, &cur_es->rx_unicast); 1791 1792 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1793 &prev_es->rx_multicast, &cur_es->rx_multicast); 1794 1795 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1796 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1797 1798 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1799 &prev_es->rx_discards, &cur_es->rx_discards); 1800 1801 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1802 &prev_es->tx_bytes, &cur_es->tx_bytes); 1803 1804 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1805 &prev_es->tx_unicast, &cur_es->tx_unicast); 1806 1807 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1808 &prev_es->tx_multicast, &cur_es->tx_multicast); 1809 1810 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1811 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1812 1813 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1814 &prev_es->tx_errors, &cur_es->tx_errors); 1815 1816 vsi->stat_offsets_loaded = true; 1817 } 1818 1819 /** 1820 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1821 * @vsi: VSI 1822 */ 1823 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1824 { 1825 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1826 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1827 vsi->rx_buf_len = ICE_RXBUF_2048; 1828 #if (PAGE_SIZE < 8192) 1829 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1830 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1831 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1832 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1833 #endif 1834 } else { 1835 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1836 #if (PAGE_SIZE < 8192) 1837 vsi->rx_buf_len = ICE_RXBUF_3072; 1838 #else 1839 vsi->rx_buf_len = ICE_RXBUF_2048; 1840 #endif 1841 } 1842 } 1843 1844 /** 1845 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1846 * @hw: HW pointer 1847 * @pf_q: index of the Rx queue in the PF's queue space 1848 * @rxdid: flexible descriptor RXDID 1849 * @prio: priority for the RXDID for this queue 1850 * @ena_ts: true to enable timestamp and false to disable timestamp 1851 */ 1852 void 1853 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1854 bool ena_ts) 1855 { 1856 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1857 1858 /* clear any previous values */ 1859 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1860 QRXFLXP_CNTXT_RXDID_PRIO_M | 1861 QRXFLXP_CNTXT_TS_M); 1862 1863 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1864 QRXFLXP_CNTXT_RXDID_IDX_M; 1865 1866 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1867 QRXFLXP_CNTXT_RXDID_PRIO_M; 1868 1869 if (ena_ts) 1870 /* Enable TimeSync on this queue */ 1871 regval |= QRXFLXP_CNTXT_TS_M; 1872 1873 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1874 } 1875 1876 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1877 { 1878 if (q_idx >= vsi->num_rxq) 1879 return -EINVAL; 1880 1881 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1882 } 1883 1884 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 1885 { 1886 struct ice_aqc_add_tx_qgrp *qg_buf; 1887 int err; 1888 1889 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1890 return -EINVAL; 1891 1892 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1893 if (!qg_buf) 1894 return -ENOMEM; 1895 1896 qg_buf->num_txqs = 1; 1897 1898 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1899 kfree(qg_buf); 1900 return err; 1901 } 1902 1903 /** 1904 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1905 * @vsi: the VSI being configured 1906 * 1907 * Return 0 on success and a negative value on error 1908 * Configure the Rx VSI for operation. 1909 */ 1910 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1911 { 1912 u16 i; 1913 1914 if (vsi->type == ICE_VSI_VF) 1915 goto setup_rings; 1916 1917 ice_vsi_cfg_frame_size(vsi); 1918 setup_rings: 1919 /* set up individual rings */ 1920 ice_for_each_rxq(vsi, i) { 1921 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1922 1923 if (err) 1924 return err; 1925 } 1926 1927 return 0; 1928 } 1929 1930 /** 1931 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1932 * @vsi: the VSI being configured 1933 * @rings: Tx ring array to be configured 1934 * @count: number of Tx ring array elements 1935 * 1936 * Return 0 on success and a negative value on error 1937 * Configure the Tx VSI for operation. 1938 */ 1939 static int 1940 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 1941 { 1942 struct ice_aqc_add_tx_qgrp *qg_buf; 1943 u16 q_idx = 0; 1944 int err = 0; 1945 1946 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1947 if (!qg_buf) 1948 return -ENOMEM; 1949 1950 qg_buf->num_txqs = 1; 1951 1952 for (q_idx = 0; q_idx < count; q_idx++) { 1953 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1954 if (err) 1955 goto err_cfg_txqs; 1956 } 1957 1958 err_cfg_txqs: 1959 kfree(qg_buf); 1960 return err; 1961 } 1962 1963 /** 1964 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1965 * @vsi: the VSI being configured 1966 * 1967 * Return 0 on success and a negative value on error 1968 * Configure the Tx VSI for operation. 1969 */ 1970 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1971 { 1972 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1973 } 1974 1975 /** 1976 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1977 * @vsi: the VSI being configured 1978 * 1979 * Return 0 on success and a negative value on error 1980 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1981 */ 1982 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1983 { 1984 int ret; 1985 int i; 1986 1987 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1988 if (ret) 1989 return ret; 1990 1991 ice_for_each_rxq(vsi, i) 1992 ice_tx_xsk_pool(vsi, i); 1993 1994 return ret; 1995 } 1996 1997 /** 1998 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1999 * @intrl: interrupt rate limit in usecs 2000 * @gran: interrupt rate limit granularity in usecs 2001 * 2002 * This function converts a decimal interrupt rate limit in usecs to the format 2003 * expected by firmware. 2004 */ 2005 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2006 { 2007 u32 val = intrl / gran; 2008 2009 if (val) 2010 return val | GLINT_RATE_INTRL_ENA_M; 2011 return 0; 2012 } 2013 2014 /** 2015 * ice_write_intrl - write throttle rate limit to interrupt specific register 2016 * @q_vector: pointer to interrupt specific structure 2017 * @intrl: throttle rate limit in microseconds to write 2018 */ 2019 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2020 { 2021 struct ice_hw *hw = &q_vector->vsi->back->hw; 2022 2023 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2024 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2025 } 2026 2027 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2028 { 2029 switch (rc->type) { 2030 case ICE_RX_CONTAINER: 2031 if (rc->rx_ring) 2032 return rc->rx_ring->q_vector; 2033 break; 2034 case ICE_TX_CONTAINER: 2035 if (rc->tx_ring) 2036 return rc->tx_ring->q_vector; 2037 break; 2038 default: 2039 break; 2040 } 2041 2042 return NULL; 2043 } 2044 2045 /** 2046 * __ice_write_itr - write throttle rate to register 2047 * @q_vector: pointer to interrupt data structure 2048 * @rc: pointer to ring container 2049 * @itr: throttle rate in microseconds to write 2050 */ 2051 static void __ice_write_itr(struct ice_q_vector *q_vector, 2052 struct ice_ring_container *rc, u16 itr) 2053 { 2054 struct ice_hw *hw = &q_vector->vsi->back->hw; 2055 2056 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2057 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2058 } 2059 2060 /** 2061 * ice_write_itr - write throttle rate to queue specific register 2062 * @rc: pointer to ring container 2063 * @itr: throttle rate in microseconds to write 2064 */ 2065 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2066 { 2067 struct ice_q_vector *q_vector; 2068 2069 q_vector = ice_pull_qvec_from_rc(rc); 2070 if (!q_vector) 2071 return; 2072 2073 __ice_write_itr(q_vector, rc, itr); 2074 } 2075 2076 /** 2077 * ice_set_q_vector_intrl - set up interrupt rate limiting 2078 * @q_vector: the vector to be configured 2079 * 2080 * Interrupt rate limiting is local to the vector, not per-queue so we must 2081 * detect if either ring container has dynamic moderation enabled to decide 2082 * what to set the interrupt rate limit to via INTRL settings. In the case that 2083 * dynamic moderation is disabled on both, write the value with the cached 2084 * setting to make sure INTRL register matches the user visible value. 2085 */ 2086 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2087 { 2088 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2089 /* in the case of dynamic enabled, cap each vector to no more 2090 * than (4 us) 250,000 ints/sec, which allows low latency 2091 * but still less than 500,000 interrupts per second, which 2092 * reduces CPU a bit in the case of the lowest latency 2093 * setting. The 4 here is a value in microseconds. 2094 */ 2095 ice_write_intrl(q_vector, 4); 2096 } else { 2097 ice_write_intrl(q_vector, q_vector->intrl); 2098 } 2099 } 2100 2101 /** 2102 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2103 * @vsi: the VSI being configured 2104 * 2105 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2106 * for the VF VSI. 2107 */ 2108 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2109 { 2110 struct ice_pf *pf = vsi->back; 2111 struct ice_hw *hw = &pf->hw; 2112 u16 txq = 0, rxq = 0; 2113 int i, q; 2114 2115 ice_for_each_q_vector(vsi, i) { 2116 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2117 u16 reg_idx = q_vector->reg_idx; 2118 2119 ice_cfg_itr(hw, q_vector); 2120 2121 /* Both Transmit Queue Interrupt Cause Control register 2122 * and Receive Queue Interrupt Cause control register 2123 * expects MSIX_INDX field to be the vector index 2124 * within the function space and not the absolute 2125 * vector index across PF or across device. 2126 * For SR-IOV VF VSIs queue vector index always starts 2127 * with 1 since first vector index(0) is used for OICR 2128 * in VF space. Since VMDq and other PF VSIs are within 2129 * the PF function space, use the vector index that is 2130 * tracked for this PF. 2131 */ 2132 for (q = 0; q < q_vector->num_ring_tx; q++) { 2133 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2134 q_vector->tx.itr_idx); 2135 txq++; 2136 } 2137 2138 for (q = 0; q < q_vector->num_ring_rx; q++) { 2139 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2140 q_vector->rx.itr_idx); 2141 rxq++; 2142 } 2143 } 2144 } 2145 2146 /** 2147 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2148 * @vsi: the VSI whose rings are to be enabled 2149 * 2150 * Returns 0 on success and a negative value on error 2151 */ 2152 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2153 { 2154 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2155 } 2156 2157 /** 2158 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2159 * @vsi: the VSI whose rings are to be disabled 2160 * 2161 * Returns 0 on success and a negative value on error 2162 */ 2163 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2164 { 2165 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2166 } 2167 2168 /** 2169 * ice_vsi_stop_tx_rings - Disable Tx rings 2170 * @vsi: the VSI being configured 2171 * @rst_src: reset source 2172 * @rel_vmvf_num: Relative ID of VF/VM 2173 * @rings: Tx ring array to be stopped 2174 * @count: number of Tx ring array elements 2175 */ 2176 static int 2177 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2178 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2179 { 2180 u16 q_idx; 2181 2182 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2183 return -EINVAL; 2184 2185 for (q_idx = 0; q_idx < count; q_idx++) { 2186 struct ice_txq_meta txq_meta = { }; 2187 int status; 2188 2189 if (!rings || !rings[q_idx]) 2190 return -EINVAL; 2191 2192 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2193 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2194 rings[q_idx], &txq_meta); 2195 2196 if (status) 2197 return status; 2198 } 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2205 * @vsi: the VSI being configured 2206 * @rst_src: reset source 2207 * @rel_vmvf_num: Relative ID of VF/VM 2208 */ 2209 int 2210 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2211 u16 rel_vmvf_num) 2212 { 2213 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2214 } 2215 2216 /** 2217 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2218 * @vsi: the VSI being configured 2219 */ 2220 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2221 { 2222 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2223 } 2224 2225 /** 2226 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2227 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2228 * 2229 * returns true if Rx VLAN pruning is enabled and false otherwise. 2230 */ 2231 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2232 { 2233 if (!vsi) 2234 return false; 2235 2236 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2237 } 2238 2239 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2240 { 2241 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2242 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2243 vsi->tc_cfg.numtc = 1; 2244 return; 2245 } 2246 2247 /* set VSI TC information based on DCB config */ 2248 ice_vsi_set_dcb_tc_cfg(vsi); 2249 } 2250 2251 /** 2252 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2253 * @vsi: VSI to set the q_vectors register index on 2254 */ 2255 static int 2256 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2257 { 2258 u16 i; 2259 2260 if (!vsi || !vsi->q_vectors) 2261 return -EINVAL; 2262 2263 ice_for_each_q_vector(vsi, i) { 2264 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2265 2266 if (!q_vector) { 2267 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2268 i, vsi->vsi_num); 2269 goto clear_reg_idx; 2270 } 2271 2272 if (vsi->type == ICE_VSI_VF) { 2273 struct ice_vf *vf = vsi->vf; 2274 2275 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2276 } else { 2277 q_vector->reg_idx = 2278 q_vector->v_idx + vsi->base_vector; 2279 } 2280 } 2281 2282 return 0; 2283 2284 clear_reg_idx: 2285 ice_for_each_q_vector(vsi, i) { 2286 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2287 2288 if (q_vector) 2289 q_vector->reg_idx = 0; 2290 } 2291 2292 return -EINVAL; 2293 } 2294 2295 /** 2296 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2297 * @vsi: the VSI being configured 2298 * @tx: bool to determine Tx or Rx rule 2299 * @create: bool to determine create or remove Rule 2300 */ 2301 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2302 { 2303 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2304 enum ice_sw_fwd_act_type act); 2305 struct ice_pf *pf = vsi->back; 2306 struct device *dev; 2307 int status; 2308 2309 dev = ice_pf_to_dev(pf); 2310 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2311 2312 if (tx) { 2313 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2314 ICE_DROP_PACKET); 2315 } else { 2316 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2317 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2318 create); 2319 } else { 2320 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2321 ICE_FWD_TO_VSI); 2322 } 2323 } 2324 2325 if (status) 2326 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2327 create ? "adding" : "removing", tx ? "TX" : "RX", 2328 vsi->vsi_num, status); 2329 } 2330 2331 /** 2332 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2333 * @vsi: pointer to the VSI 2334 * 2335 * This function will allocate new scheduler aggregator now if needed and will 2336 * move specified VSI into it. 2337 */ 2338 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2339 { 2340 struct device *dev = ice_pf_to_dev(vsi->back); 2341 struct ice_agg_node *agg_node_iter = NULL; 2342 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2343 struct ice_agg_node *agg_node = NULL; 2344 int node_offset, max_agg_nodes = 0; 2345 struct ice_port_info *port_info; 2346 struct ice_pf *pf = vsi->back; 2347 u32 agg_node_id_start = 0; 2348 int status; 2349 2350 /* create (as needed) scheduler aggregator node and move VSI into 2351 * corresponding aggregator node 2352 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2353 * - VF aggregator nodes will contain VF VSI 2354 */ 2355 port_info = pf->hw.port_info; 2356 if (!port_info) 2357 return; 2358 2359 switch (vsi->type) { 2360 case ICE_VSI_CTRL: 2361 case ICE_VSI_CHNL: 2362 case ICE_VSI_LB: 2363 case ICE_VSI_PF: 2364 case ICE_VSI_SWITCHDEV_CTRL: 2365 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2366 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2367 agg_node_iter = &pf->pf_agg_node[0]; 2368 break; 2369 case ICE_VSI_VF: 2370 /* user can create 'n' VFs on a given PF, but since max children 2371 * per aggregator node can be only 64. Following code handles 2372 * aggregator(s) for VF VSIs, either selects a agg_node which 2373 * was already created provided num_vsis < 64, otherwise 2374 * select next available node, which will be created 2375 */ 2376 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2377 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2378 agg_node_iter = &pf->vf_agg_node[0]; 2379 break; 2380 default: 2381 /* other VSI type, handle later if needed */ 2382 dev_dbg(dev, "unexpected VSI type %s\n", 2383 ice_vsi_type_str(vsi->type)); 2384 return; 2385 } 2386 2387 /* find the appropriate aggregator node */ 2388 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2389 /* see if we can find space in previously created 2390 * node if num_vsis < 64, otherwise skip 2391 */ 2392 if (agg_node_iter->num_vsis && 2393 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2394 agg_node_iter++; 2395 continue; 2396 } 2397 2398 if (agg_node_iter->valid && 2399 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2400 agg_id = agg_node_iter->agg_id; 2401 agg_node = agg_node_iter; 2402 break; 2403 } 2404 2405 /* find unclaimed agg_id */ 2406 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2407 agg_id = node_offset + agg_node_id_start; 2408 agg_node = agg_node_iter; 2409 break; 2410 } 2411 /* move to next agg_node */ 2412 agg_node_iter++; 2413 } 2414 2415 if (!agg_node) 2416 return; 2417 2418 /* if selected aggregator node was not created, create it */ 2419 if (!agg_node->valid) { 2420 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2421 (u8)vsi->tc_cfg.ena_tc); 2422 if (status) { 2423 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2424 agg_id); 2425 return; 2426 } 2427 /* aggregator node is created, store the needed info */ 2428 agg_node->valid = true; 2429 agg_node->agg_id = agg_id; 2430 } 2431 2432 /* move VSI to corresponding aggregator node */ 2433 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2434 (u8)vsi->tc_cfg.ena_tc); 2435 if (status) { 2436 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2437 vsi->idx, agg_id); 2438 return; 2439 } 2440 2441 /* keep active children count for aggregator node */ 2442 agg_node->num_vsis++; 2443 2444 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2445 * to aggregator node 2446 */ 2447 vsi->agg_node = agg_node; 2448 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2449 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2450 vsi->agg_node->num_vsis); 2451 } 2452 2453 /** 2454 * ice_vsi_setup - Set up a VSI by a given type 2455 * @pf: board private structure 2456 * @pi: pointer to the port_info instance 2457 * @vsi_type: VSI type 2458 * @vf: pointer to VF to which this VSI connects. This field is used primarily 2459 * for the ICE_VSI_VF type. Other VSI types should pass NULL. 2460 * @ch: ptr to channel 2461 * 2462 * This allocates the sw VSI structure and its queue resources. 2463 * 2464 * Returns pointer to the successfully allocated and configured VSI sw struct on 2465 * success, NULL on failure. 2466 */ 2467 struct ice_vsi * 2468 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2469 enum ice_vsi_type vsi_type, struct ice_vf *vf, 2470 struct ice_channel *ch) 2471 { 2472 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2473 struct device *dev = ice_pf_to_dev(pf); 2474 struct ice_vsi *vsi; 2475 int ret, i; 2476 2477 if (vsi_type == ICE_VSI_CHNL) 2478 vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL); 2479 else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2480 vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf); 2481 else 2482 vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL); 2483 2484 if (!vsi) { 2485 dev_err(dev, "could not allocate VSI\n"); 2486 return NULL; 2487 } 2488 2489 vsi->port_info = pi; 2490 vsi->vsw = pf->first_sw; 2491 if (vsi->type == ICE_VSI_PF) 2492 vsi->ethtype = ETH_P_PAUSE; 2493 2494 ice_alloc_fd_res(vsi); 2495 2496 if (vsi_type != ICE_VSI_CHNL) { 2497 if (ice_vsi_get_qs(vsi)) { 2498 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2499 vsi->idx); 2500 goto unroll_vsi_alloc; 2501 } 2502 } 2503 2504 /* set RSS capabilities */ 2505 ice_vsi_set_rss_params(vsi); 2506 2507 /* set TC configuration */ 2508 ice_vsi_set_tc_cfg(vsi); 2509 2510 /* create the VSI */ 2511 ret = ice_vsi_init(vsi, true); 2512 if (ret) 2513 goto unroll_get_qs; 2514 2515 ice_vsi_init_vlan_ops(vsi); 2516 2517 switch (vsi->type) { 2518 case ICE_VSI_CTRL: 2519 case ICE_VSI_SWITCHDEV_CTRL: 2520 case ICE_VSI_PF: 2521 ret = ice_vsi_alloc_q_vectors(vsi); 2522 if (ret) 2523 goto unroll_vsi_init; 2524 2525 ret = ice_vsi_setup_vector_base(vsi); 2526 if (ret) 2527 goto unroll_alloc_q_vector; 2528 2529 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2530 if (ret) 2531 goto unroll_vector_base; 2532 2533 ret = ice_vsi_alloc_rings(vsi); 2534 if (ret) 2535 goto unroll_vector_base; 2536 2537 ice_vsi_map_rings_to_vectors(vsi); 2538 2539 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2540 if (vsi->type != ICE_VSI_CTRL) 2541 /* Do not exit if configuring RSS had an issue, at 2542 * least receive traffic on first queue. Hence no 2543 * need to capture return value 2544 */ 2545 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2546 ice_vsi_cfg_rss_lut_key(vsi); 2547 ice_vsi_set_rss_flow_fld(vsi); 2548 } 2549 ice_init_arfs(vsi); 2550 break; 2551 case ICE_VSI_CHNL: 2552 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2553 ice_vsi_cfg_rss_lut_key(vsi); 2554 ice_vsi_set_rss_flow_fld(vsi); 2555 } 2556 break; 2557 case ICE_VSI_VF: 2558 /* VF driver will take care of creating netdev for this type and 2559 * map queues to vectors through Virtchnl, PF driver only 2560 * creates a VSI and corresponding structures for bookkeeping 2561 * purpose 2562 */ 2563 ret = ice_vsi_alloc_q_vectors(vsi); 2564 if (ret) 2565 goto unroll_vsi_init; 2566 2567 ret = ice_vsi_alloc_rings(vsi); 2568 if (ret) 2569 goto unroll_alloc_q_vector; 2570 2571 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2572 if (ret) 2573 goto unroll_vector_base; 2574 2575 /* Do not exit if configuring RSS had an issue, at least 2576 * receive traffic on first queue. Hence no need to capture 2577 * return value 2578 */ 2579 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2580 ice_vsi_cfg_rss_lut_key(vsi); 2581 ice_vsi_set_vf_rss_flow_fld(vsi); 2582 } 2583 break; 2584 case ICE_VSI_LB: 2585 ret = ice_vsi_alloc_rings(vsi); 2586 if (ret) 2587 goto unroll_vsi_init; 2588 break; 2589 default: 2590 /* clean up the resources and exit */ 2591 goto unroll_vsi_init; 2592 } 2593 2594 /* configure VSI nodes based on number of queues and TC's */ 2595 ice_for_each_traffic_class(i) { 2596 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2597 continue; 2598 2599 if (vsi->type == ICE_VSI_CHNL) { 2600 if (!vsi->alloc_txq && vsi->num_txq) 2601 max_txqs[i] = vsi->num_txq; 2602 else 2603 max_txqs[i] = pf->num_lan_tx; 2604 } else { 2605 max_txqs[i] = vsi->alloc_txq; 2606 } 2607 } 2608 2609 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2610 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2611 max_txqs); 2612 if (ret) { 2613 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2614 vsi->vsi_num, ret); 2615 goto unroll_clear_rings; 2616 } 2617 2618 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2619 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2620 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2621 * The rule is added once for PF VSI in order to create appropriate 2622 * recipe, since VSI/VSI list is ignored with drop action... 2623 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2624 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2625 * settings in the HW. 2626 */ 2627 if (!ice_is_safe_mode(pf)) 2628 if (vsi->type == ICE_VSI_PF) { 2629 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2630 ICE_DROP_PACKET); 2631 ice_cfg_sw_lldp(vsi, true, true); 2632 } 2633 2634 if (!vsi->agg_node) 2635 ice_set_agg_vsi(vsi); 2636 return vsi; 2637 2638 unroll_clear_rings: 2639 ice_vsi_clear_rings(vsi); 2640 unroll_vector_base: 2641 /* reclaim SW interrupts back to the common pool */ 2642 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2643 pf->num_avail_sw_msix += vsi->num_q_vectors; 2644 unroll_alloc_q_vector: 2645 ice_vsi_free_q_vectors(vsi); 2646 unroll_vsi_init: 2647 ice_vsi_delete(vsi); 2648 unroll_get_qs: 2649 ice_vsi_put_qs(vsi); 2650 unroll_vsi_alloc: 2651 if (vsi_type == ICE_VSI_VF) 2652 ice_enable_lag(pf->lag); 2653 ice_vsi_clear(vsi); 2654 2655 return NULL; 2656 } 2657 2658 /** 2659 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2660 * @vsi: the VSI being cleaned up 2661 */ 2662 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2663 { 2664 struct ice_pf *pf = vsi->back; 2665 struct ice_hw *hw = &pf->hw; 2666 u32 txq = 0; 2667 u32 rxq = 0; 2668 int i, q; 2669 2670 ice_for_each_q_vector(vsi, i) { 2671 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2672 2673 ice_write_intrl(q_vector, 0); 2674 for (q = 0; q < q_vector->num_ring_tx; q++) { 2675 ice_write_itr(&q_vector->tx, 0); 2676 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2677 if (ice_is_xdp_ena_vsi(vsi)) { 2678 u32 xdp_txq = txq + vsi->num_xdp_txq; 2679 2680 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2681 } 2682 txq++; 2683 } 2684 2685 for (q = 0; q < q_vector->num_ring_rx; q++) { 2686 ice_write_itr(&q_vector->rx, 0); 2687 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2688 rxq++; 2689 } 2690 } 2691 2692 ice_flush(hw); 2693 } 2694 2695 /** 2696 * ice_vsi_free_irq - Free the IRQ association with the OS 2697 * @vsi: the VSI being configured 2698 */ 2699 void ice_vsi_free_irq(struct ice_vsi *vsi) 2700 { 2701 struct ice_pf *pf = vsi->back; 2702 int base = vsi->base_vector; 2703 int i; 2704 2705 if (!vsi->q_vectors || !vsi->irqs_ready) 2706 return; 2707 2708 ice_vsi_release_msix(vsi); 2709 if (vsi->type == ICE_VSI_VF) 2710 return; 2711 2712 vsi->irqs_ready = false; 2713 ice_free_cpu_rx_rmap(vsi); 2714 2715 ice_for_each_q_vector(vsi, i) { 2716 u16 vector = i + base; 2717 int irq_num; 2718 2719 irq_num = pf->msix_entries[vector].vector; 2720 2721 /* free only the irqs that were actually requested */ 2722 if (!vsi->q_vectors[i] || 2723 !(vsi->q_vectors[i]->num_ring_tx || 2724 vsi->q_vectors[i]->num_ring_rx)) 2725 continue; 2726 2727 /* clear the affinity notifier in the IRQ descriptor */ 2728 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2729 irq_set_affinity_notifier(irq_num, NULL); 2730 2731 /* clear the affinity_mask in the IRQ descriptor */ 2732 irq_set_affinity_hint(irq_num, NULL); 2733 synchronize_irq(irq_num); 2734 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2735 } 2736 } 2737 2738 /** 2739 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2740 * @vsi: the VSI having resources freed 2741 */ 2742 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2743 { 2744 int i; 2745 2746 if (!vsi->tx_rings) 2747 return; 2748 2749 ice_for_each_txq(vsi, i) 2750 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2751 ice_free_tx_ring(vsi->tx_rings[i]); 2752 } 2753 2754 /** 2755 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2756 * @vsi: the VSI having resources freed 2757 */ 2758 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2759 { 2760 int i; 2761 2762 if (!vsi->rx_rings) 2763 return; 2764 2765 ice_for_each_rxq(vsi, i) 2766 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2767 ice_free_rx_ring(vsi->rx_rings[i]); 2768 } 2769 2770 /** 2771 * ice_vsi_close - Shut down a VSI 2772 * @vsi: the VSI being shut down 2773 */ 2774 void ice_vsi_close(struct ice_vsi *vsi) 2775 { 2776 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2777 ice_down(vsi); 2778 2779 ice_vsi_free_irq(vsi); 2780 ice_vsi_free_tx_rings(vsi); 2781 ice_vsi_free_rx_rings(vsi); 2782 } 2783 2784 /** 2785 * ice_ena_vsi - resume a VSI 2786 * @vsi: the VSI being resume 2787 * @locked: is the rtnl_lock already held 2788 */ 2789 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2790 { 2791 int err = 0; 2792 2793 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2794 return 0; 2795 2796 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2797 2798 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2799 if (netif_running(vsi->netdev)) { 2800 if (!locked) 2801 rtnl_lock(); 2802 2803 err = ice_open_internal(vsi->netdev); 2804 2805 if (!locked) 2806 rtnl_unlock(); 2807 } 2808 } else if (vsi->type == ICE_VSI_CTRL) { 2809 err = ice_vsi_open_ctrl(vsi); 2810 } 2811 2812 return err; 2813 } 2814 2815 /** 2816 * ice_dis_vsi - pause a VSI 2817 * @vsi: the VSI being paused 2818 * @locked: is the rtnl_lock already held 2819 */ 2820 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2821 { 2822 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2823 return; 2824 2825 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2826 2827 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2828 if (netif_running(vsi->netdev)) { 2829 if (!locked) 2830 rtnl_lock(); 2831 2832 ice_vsi_close(vsi); 2833 2834 if (!locked) 2835 rtnl_unlock(); 2836 } else { 2837 ice_vsi_close(vsi); 2838 } 2839 } else if (vsi->type == ICE_VSI_CTRL || 2840 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2841 ice_vsi_close(vsi); 2842 } 2843 } 2844 2845 /** 2846 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2847 * @vsi: the VSI being un-configured 2848 */ 2849 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2850 { 2851 int base = vsi->base_vector; 2852 struct ice_pf *pf = vsi->back; 2853 struct ice_hw *hw = &pf->hw; 2854 u32 val; 2855 int i; 2856 2857 /* disable interrupt causation from each queue */ 2858 if (vsi->tx_rings) { 2859 ice_for_each_txq(vsi, i) { 2860 if (vsi->tx_rings[i]) { 2861 u16 reg; 2862 2863 reg = vsi->tx_rings[i]->reg_idx; 2864 val = rd32(hw, QINT_TQCTL(reg)); 2865 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2866 wr32(hw, QINT_TQCTL(reg), val); 2867 } 2868 } 2869 } 2870 2871 if (vsi->rx_rings) { 2872 ice_for_each_rxq(vsi, i) { 2873 if (vsi->rx_rings[i]) { 2874 u16 reg; 2875 2876 reg = vsi->rx_rings[i]->reg_idx; 2877 val = rd32(hw, QINT_RQCTL(reg)); 2878 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2879 wr32(hw, QINT_RQCTL(reg), val); 2880 } 2881 } 2882 } 2883 2884 /* disable each interrupt */ 2885 ice_for_each_q_vector(vsi, i) { 2886 if (!vsi->q_vectors[i]) 2887 continue; 2888 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2889 } 2890 2891 ice_flush(hw); 2892 2893 /* don't call synchronize_irq() for VF's from the host */ 2894 if (vsi->type == ICE_VSI_VF) 2895 return; 2896 2897 ice_for_each_q_vector(vsi, i) 2898 synchronize_irq(pf->msix_entries[i + base].vector); 2899 } 2900 2901 /** 2902 * ice_napi_del - Remove NAPI handler for the VSI 2903 * @vsi: VSI for which NAPI handler is to be removed 2904 */ 2905 void ice_napi_del(struct ice_vsi *vsi) 2906 { 2907 int v_idx; 2908 2909 if (!vsi->netdev) 2910 return; 2911 2912 ice_for_each_q_vector(vsi, v_idx) 2913 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2914 } 2915 2916 /** 2917 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2918 * @pf: pointer to PF structure 2919 * @vsi: the VSI to free resources for 2920 * 2921 * Check if the VF control VSI resource is still in use. If no VF is using it 2922 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2923 * once no other VF uses it. 2924 */ 2925 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2926 { 2927 struct ice_vf *vf; 2928 unsigned int bkt; 2929 2930 rcu_read_lock(); 2931 ice_for_each_vf_rcu(pf, bkt, vf) { 2932 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2933 rcu_read_unlock(); 2934 return; 2935 } 2936 } 2937 rcu_read_unlock(); 2938 2939 /* No other VFs left that have control VSI. It is now safe to reclaim 2940 * SW interrupts back to the common pool. 2941 */ 2942 ice_free_res(pf->irq_tracker, vsi->base_vector, 2943 ICE_RES_VF_CTRL_VEC_ID); 2944 pf->num_avail_sw_msix += vsi->num_q_vectors; 2945 } 2946 2947 /** 2948 * ice_vsi_release - Delete a VSI and free its resources 2949 * @vsi: the VSI being removed 2950 * 2951 * Returns 0 on success or < 0 on error 2952 */ 2953 int ice_vsi_release(struct ice_vsi *vsi) 2954 { 2955 struct ice_pf *pf; 2956 int err; 2957 2958 if (!vsi->back) 2959 return -ENODEV; 2960 pf = vsi->back; 2961 2962 /* do not unregister while driver is in the reset recovery pending 2963 * state. Since reset/rebuild happens through PF service task workqueue, 2964 * it's not a good idea to unregister netdev that is associated to the 2965 * PF that is running the work queue items currently. This is done to 2966 * avoid check_flush_dependency() warning on this wq 2967 */ 2968 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2969 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2970 unregister_netdev(vsi->netdev); 2971 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2972 } 2973 2974 if (vsi->type == ICE_VSI_PF) 2975 ice_devlink_destroy_pf_port(pf); 2976 2977 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2978 ice_rss_clean(vsi); 2979 2980 /* Disable VSI and free resources */ 2981 if (vsi->type != ICE_VSI_LB) 2982 ice_vsi_dis_irq(vsi); 2983 ice_vsi_close(vsi); 2984 2985 /* SR-IOV determines needed MSIX resources all at once instead of per 2986 * VSI since when VFs are spawned we know how many VFs there are and how 2987 * many interrupts each VF needs. SR-IOV MSIX resources are also 2988 * cleared in the same manner. 2989 */ 2990 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2991 ice_free_vf_ctrl_res(pf, vsi); 2992 } else if (vsi->type != ICE_VSI_VF) { 2993 /* reclaim SW interrupts back to the common pool */ 2994 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2995 pf->num_avail_sw_msix += vsi->num_q_vectors; 2996 } 2997 2998 if (!ice_is_safe_mode(pf)) { 2999 if (vsi->type == ICE_VSI_PF) { 3000 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 3001 ICE_DROP_PACKET); 3002 ice_cfg_sw_lldp(vsi, true, false); 3003 /* The Rx rule will only exist to remove if the LLDP FW 3004 * engine is currently stopped 3005 */ 3006 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 3007 ice_cfg_sw_lldp(vsi, false, false); 3008 } 3009 } 3010 3011 if (ice_is_vsi_dflt_vsi(vsi)) 3012 ice_clear_dflt_vsi(vsi); 3013 ice_fltr_remove_all(vsi); 3014 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3015 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3016 if (err) 3017 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3018 vsi->vsi_num, err); 3019 ice_vsi_delete(vsi); 3020 ice_vsi_free_q_vectors(vsi); 3021 3022 if (vsi->netdev) { 3023 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3024 unregister_netdev(vsi->netdev); 3025 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3026 } 3027 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3028 free_netdev(vsi->netdev); 3029 vsi->netdev = NULL; 3030 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3031 } 3032 } 3033 3034 if (vsi->type == ICE_VSI_VF && 3035 vsi->agg_node && vsi->agg_node->valid) 3036 vsi->agg_node->num_vsis--; 3037 ice_vsi_clear_rings(vsi); 3038 3039 ice_vsi_put_qs(vsi); 3040 3041 /* retain SW VSI data structure since it is needed to unregister and 3042 * free VSI netdev when PF is not in reset recovery pending state,\ 3043 * for ex: during rmmod. 3044 */ 3045 if (!ice_is_reset_in_progress(pf->state)) 3046 ice_vsi_clear(vsi); 3047 3048 return 0; 3049 } 3050 3051 /** 3052 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3053 * @vsi: VSI connected with q_vectors 3054 * @coalesce: array of struct with stored coalesce 3055 * 3056 * Returns array size. 3057 */ 3058 static int 3059 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3060 struct ice_coalesce_stored *coalesce) 3061 { 3062 int i; 3063 3064 ice_for_each_q_vector(vsi, i) { 3065 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3066 3067 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3068 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3069 coalesce[i].intrl = q_vector->intrl; 3070 3071 if (i < vsi->num_txq) 3072 coalesce[i].tx_valid = true; 3073 if (i < vsi->num_rxq) 3074 coalesce[i].rx_valid = true; 3075 } 3076 3077 return vsi->num_q_vectors; 3078 } 3079 3080 /** 3081 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3082 * @vsi: VSI connected with q_vectors 3083 * @coalesce: pointer to array of struct with stored coalesce 3084 * @size: size of coalesce array 3085 * 3086 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3087 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3088 * to default value. 3089 */ 3090 static void 3091 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3092 struct ice_coalesce_stored *coalesce, int size) 3093 { 3094 struct ice_ring_container *rc; 3095 int i; 3096 3097 if ((size && !coalesce) || !vsi) 3098 return; 3099 3100 /* There are a couple of cases that have to be handled here: 3101 * 1. The case where the number of queue vectors stays the same, but 3102 * the number of Tx or Rx rings changes (the first for loop) 3103 * 2. The case where the number of queue vectors increased (the 3104 * second for loop) 3105 */ 3106 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3107 /* There are 2 cases to handle here and they are the same for 3108 * both Tx and Rx: 3109 * if the entry was valid previously (coalesce[i].[tr]x_valid 3110 * and the loop variable is less than the number of rings 3111 * allocated, then write the previous values 3112 * 3113 * if the entry was not valid previously, but the number of 3114 * rings is less than are allocated (this means the number of 3115 * rings increased from previously), then write out the 3116 * values in the first element 3117 * 3118 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3119 * as there is no harm because the dynamic algorithm 3120 * will just overwrite. 3121 */ 3122 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3123 rc = &vsi->q_vectors[i]->rx; 3124 rc->itr_settings = coalesce[i].itr_rx; 3125 ice_write_itr(rc, rc->itr_setting); 3126 } else if (i < vsi->alloc_rxq) { 3127 rc = &vsi->q_vectors[i]->rx; 3128 rc->itr_settings = coalesce[0].itr_rx; 3129 ice_write_itr(rc, rc->itr_setting); 3130 } 3131 3132 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3133 rc = &vsi->q_vectors[i]->tx; 3134 rc->itr_settings = coalesce[i].itr_tx; 3135 ice_write_itr(rc, rc->itr_setting); 3136 } else if (i < vsi->alloc_txq) { 3137 rc = &vsi->q_vectors[i]->tx; 3138 rc->itr_settings = coalesce[0].itr_tx; 3139 ice_write_itr(rc, rc->itr_setting); 3140 } 3141 3142 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3143 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3144 } 3145 3146 /* the number of queue vectors increased so write whatever is in 3147 * the first element 3148 */ 3149 for (; i < vsi->num_q_vectors; i++) { 3150 /* transmit */ 3151 rc = &vsi->q_vectors[i]->tx; 3152 rc->itr_settings = coalesce[0].itr_tx; 3153 ice_write_itr(rc, rc->itr_setting); 3154 3155 /* receive */ 3156 rc = &vsi->q_vectors[i]->rx; 3157 rc->itr_settings = coalesce[0].itr_rx; 3158 ice_write_itr(rc, rc->itr_setting); 3159 3160 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3161 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3162 } 3163 } 3164 3165 /** 3166 * ice_vsi_rebuild - Rebuild VSI after reset 3167 * @vsi: VSI to be rebuild 3168 * @init_vsi: is this an initialization or a reconfigure of the VSI 3169 * 3170 * Returns 0 on success and negative value on failure 3171 */ 3172 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3173 { 3174 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3175 struct ice_coalesce_stored *coalesce; 3176 int prev_num_q_vectors = 0; 3177 enum ice_vsi_type vtype; 3178 struct ice_pf *pf; 3179 int ret, i; 3180 3181 if (!vsi) 3182 return -EINVAL; 3183 3184 pf = vsi->back; 3185 vtype = vsi->type; 3186 if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf)) 3187 return -EINVAL; 3188 3189 ice_vsi_init_vlan_ops(vsi); 3190 3191 coalesce = kcalloc(vsi->num_q_vectors, 3192 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3193 if (!coalesce) 3194 return -ENOMEM; 3195 3196 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3197 3198 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3199 ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 3200 if (ret) 3201 dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 3202 vsi->vsi_num, ret); 3203 ice_vsi_free_q_vectors(vsi); 3204 3205 /* SR-IOV determines needed MSIX resources all at once instead of per 3206 * VSI since when VFs are spawned we know how many VFs there are and how 3207 * many interrupts each VF needs. SR-IOV MSIX resources are also 3208 * cleared in the same manner. 3209 */ 3210 if (vtype != ICE_VSI_VF) { 3211 /* reclaim SW interrupts back to the common pool */ 3212 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3213 pf->num_avail_sw_msix += vsi->num_q_vectors; 3214 vsi->base_vector = 0; 3215 } 3216 3217 if (ice_is_xdp_ena_vsi(vsi)) 3218 /* return value check can be skipped here, it always returns 3219 * 0 if reset is in progress 3220 */ 3221 ice_destroy_xdp_rings(vsi); 3222 ice_vsi_put_qs(vsi); 3223 ice_vsi_clear_rings(vsi); 3224 ice_vsi_free_arrays(vsi); 3225 if (vtype == ICE_VSI_VF) 3226 ice_vsi_set_num_qs(vsi, vsi->vf); 3227 else 3228 ice_vsi_set_num_qs(vsi, NULL); 3229 3230 ret = ice_vsi_alloc_arrays(vsi); 3231 if (ret < 0) 3232 goto err_vsi; 3233 3234 ice_vsi_get_qs(vsi); 3235 3236 ice_alloc_fd_res(vsi); 3237 ice_vsi_set_tc_cfg(vsi); 3238 3239 /* Initialize VSI struct elements and create VSI in FW */ 3240 ret = ice_vsi_init(vsi, init_vsi); 3241 if (ret < 0) 3242 goto err_vsi; 3243 3244 switch (vtype) { 3245 case ICE_VSI_CTRL: 3246 case ICE_VSI_SWITCHDEV_CTRL: 3247 case ICE_VSI_PF: 3248 ret = ice_vsi_alloc_q_vectors(vsi); 3249 if (ret) 3250 goto err_rings; 3251 3252 ret = ice_vsi_setup_vector_base(vsi); 3253 if (ret) 3254 goto err_vectors; 3255 3256 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3257 if (ret) 3258 goto err_vectors; 3259 3260 ret = ice_vsi_alloc_rings(vsi); 3261 if (ret) 3262 goto err_vectors; 3263 3264 ice_vsi_map_rings_to_vectors(vsi); 3265 if (ice_is_xdp_ena_vsi(vsi)) { 3266 ret = ice_vsi_determine_xdp_res(vsi); 3267 if (ret) 3268 goto err_vectors; 3269 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3270 if (ret) 3271 goto err_vectors; 3272 } 3273 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3274 if (vtype != ICE_VSI_CTRL) 3275 /* Do not exit if configuring RSS had an issue, at 3276 * least receive traffic on first queue. Hence no 3277 * need to capture return value 3278 */ 3279 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3280 ice_vsi_cfg_rss_lut_key(vsi); 3281 break; 3282 case ICE_VSI_VF: 3283 ret = ice_vsi_alloc_q_vectors(vsi); 3284 if (ret) 3285 goto err_rings; 3286 3287 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3288 if (ret) 3289 goto err_vectors; 3290 3291 ret = ice_vsi_alloc_rings(vsi); 3292 if (ret) 3293 goto err_vectors; 3294 3295 break; 3296 case ICE_VSI_CHNL: 3297 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3298 ice_vsi_cfg_rss_lut_key(vsi); 3299 ice_vsi_set_rss_flow_fld(vsi); 3300 } 3301 break; 3302 default: 3303 break; 3304 } 3305 3306 /* configure VSI nodes based on number of queues and TC's */ 3307 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3308 /* configure VSI nodes based on number of queues and TC's. 3309 * ADQ creates VSIs for each TC/Channel but doesn't 3310 * allocate queues instead it reconfigures the PF queues 3311 * as per the TC command. So max_txqs should point to the 3312 * PF Tx queues. 3313 */ 3314 if (vtype == ICE_VSI_CHNL) 3315 max_txqs[i] = pf->num_lan_tx; 3316 else 3317 max_txqs[i] = vsi->alloc_txq; 3318 3319 if (ice_is_xdp_ena_vsi(vsi)) 3320 max_txqs[i] += vsi->num_xdp_txq; 3321 } 3322 3323 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3324 /* If MQPRIO is set, means channel code path, hence for main 3325 * VSI's, use TC as 1 3326 */ 3327 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3328 else 3329 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3330 vsi->tc_cfg.ena_tc, max_txqs); 3331 3332 if (ret) { 3333 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 3334 vsi->vsi_num, ret); 3335 if (init_vsi) { 3336 ret = -EIO; 3337 goto err_vectors; 3338 } else { 3339 return ice_schedule_reset(pf, ICE_RESET_PFR); 3340 } 3341 } 3342 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3343 kfree(coalesce); 3344 3345 return 0; 3346 3347 err_vectors: 3348 ice_vsi_free_q_vectors(vsi); 3349 err_rings: 3350 if (vsi->netdev) { 3351 vsi->current_netdev_flags = 0; 3352 unregister_netdev(vsi->netdev); 3353 free_netdev(vsi->netdev); 3354 vsi->netdev = NULL; 3355 } 3356 err_vsi: 3357 ice_vsi_clear(vsi); 3358 set_bit(ICE_RESET_FAILED, pf->state); 3359 kfree(coalesce); 3360 return ret; 3361 } 3362 3363 /** 3364 * ice_is_reset_in_progress - check for a reset in progress 3365 * @state: PF state field 3366 */ 3367 bool ice_is_reset_in_progress(unsigned long *state) 3368 { 3369 return test_bit(ICE_RESET_OICR_RECV, state) || 3370 test_bit(ICE_PFR_REQ, state) || 3371 test_bit(ICE_CORER_REQ, state) || 3372 test_bit(ICE_GLOBR_REQ, state); 3373 } 3374 3375 /** 3376 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3377 * @pf: pointer to the PF structure 3378 * @timeout: length of time to wait, in jiffies 3379 * 3380 * Wait (sleep) for a short time until the driver finishes cleaning up from 3381 * a device reset. The caller must be able to sleep. Use this to delay 3382 * operations that could fail while the driver is cleaning up after a device 3383 * reset. 3384 * 3385 * Returns 0 on success, -EBUSY if the reset is not finished within the 3386 * timeout, and -ERESTARTSYS if the thread was interrupted. 3387 */ 3388 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3389 { 3390 long ret; 3391 3392 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3393 !ice_is_reset_in_progress(pf->state), 3394 timeout); 3395 if (ret < 0) 3396 return ret; 3397 else if (!ret) 3398 return -EBUSY; 3399 else 3400 return 0; 3401 } 3402 3403 /** 3404 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3405 * @vsi: VSI being configured 3406 * @ctx: the context buffer returned from AQ VSI update command 3407 */ 3408 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3409 { 3410 vsi->info.mapping_flags = ctx->info.mapping_flags; 3411 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3412 sizeof(vsi->info.q_mapping)); 3413 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3414 sizeof(vsi->info.tc_mapping)); 3415 } 3416 3417 /** 3418 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3419 * @vsi: the VSI being configured 3420 * @ena_tc: TC map to be enabled 3421 */ 3422 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3423 { 3424 struct net_device *netdev = vsi->netdev; 3425 struct ice_pf *pf = vsi->back; 3426 int numtc = vsi->tc_cfg.numtc; 3427 struct ice_dcbx_cfg *dcbcfg; 3428 u8 netdev_tc; 3429 int i; 3430 3431 if (!netdev) 3432 return; 3433 3434 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3435 if (vsi->type == ICE_VSI_CHNL) 3436 return; 3437 3438 if (!ena_tc) { 3439 netdev_reset_tc(netdev); 3440 return; 3441 } 3442 3443 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3444 numtc = vsi->all_numtc; 3445 3446 if (netdev_set_num_tc(netdev, numtc)) 3447 return; 3448 3449 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3450 3451 ice_for_each_traffic_class(i) 3452 if (vsi->tc_cfg.ena_tc & BIT(i)) 3453 netdev_set_tc_queue(netdev, 3454 vsi->tc_cfg.tc_info[i].netdev_tc, 3455 vsi->tc_cfg.tc_info[i].qcount_tx, 3456 vsi->tc_cfg.tc_info[i].qoffset); 3457 /* setup TC queue map for CHNL TCs */ 3458 ice_for_each_chnl_tc(i) { 3459 if (!(vsi->all_enatc & BIT(i))) 3460 break; 3461 if (!vsi->mqprio_qopt.qopt.count[i]) 3462 break; 3463 netdev_set_tc_queue(netdev, i, 3464 vsi->mqprio_qopt.qopt.count[i], 3465 vsi->mqprio_qopt.qopt.offset[i]); 3466 } 3467 3468 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3469 return; 3470 3471 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3472 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3473 3474 /* Get the mapped netdev TC# for the UP */ 3475 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3476 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3477 } 3478 } 3479 3480 /** 3481 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3482 * @vsi: the VSI being configured, 3483 * @ctxt: VSI context structure 3484 * @ena_tc: number of traffic classes to enable 3485 * 3486 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3487 */ 3488 static int 3489 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3490 u8 ena_tc) 3491 { 3492 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3493 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3494 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3495 u16 new_txq, new_rxq; 3496 u8 netdev_tc = 0; 3497 int i; 3498 3499 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3500 3501 pow = order_base_2(tc0_qcount); 3502 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3503 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3504 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3505 3506 ice_for_each_traffic_class(i) { 3507 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3508 /* TC is not enabled */ 3509 vsi->tc_cfg.tc_info[i].qoffset = 0; 3510 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3511 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3512 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3513 ctxt->info.tc_mapping[i] = 0; 3514 continue; 3515 } 3516 3517 offset = vsi->mqprio_qopt.qopt.offset[i]; 3518 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3519 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3520 vsi->tc_cfg.tc_info[i].qoffset = offset; 3521 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3522 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3523 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3524 } 3525 3526 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3527 ice_for_each_chnl_tc(i) { 3528 if (!(vsi->all_enatc & BIT(i))) 3529 continue; 3530 offset = vsi->mqprio_qopt.qopt.offset[i]; 3531 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3532 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3533 } 3534 } 3535 3536 new_txq = offset + qcount_tx; 3537 if (new_txq > vsi->alloc_txq) { 3538 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3539 new_txq, vsi->alloc_txq); 3540 return -EINVAL; 3541 } 3542 3543 new_rxq = offset + qcount_rx; 3544 if (new_rxq > vsi->alloc_rxq) { 3545 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3546 new_rxq, vsi->alloc_rxq); 3547 return -EINVAL; 3548 } 3549 3550 /* Set actual Tx/Rx queue pairs */ 3551 vsi->num_txq = new_txq; 3552 vsi->num_rxq = new_rxq; 3553 3554 /* Setup queue TC[0].qmap for given VSI context */ 3555 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3556 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3557 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3558 3559 /* Find queue count available for channel VSIs and starting offset 3560 * for channel VSIs 3561 */ 3562 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3563 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3564 vsi->next_base_q = tc0_qcount; 3565 } 3566 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3567 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3568 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3569 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3570 3571 return 0; 3572 } 3573 3574 /** 3575 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3576 * @vsi: VSI to be configured 3577 * @ena_tc: TC bitmap 3578 * 3579 * VSI queues expected to be quiesced before calling this function 3580 */ 3581 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3582 { 3583 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3584 struct ice_pf *pf = vsi->back; 3585 struct ice_tc_cfg old_tc_cfg; 3586 struct ice_vsi_ctx *ctx; 3587 struct device *dev; 3588 int i, ret = 0; 3589 u8 num_tc = 0; 3590 3591 dev = ice_pf_to_dev(pf); 3592 if (vsi->tc_cfg.ena_tc == ena_tc && 3593 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3594 return ret; 3595 3596 ice_for_each_traffic_class(i) { 3597 /* build bitmap of enabled TCs */ 3598 if (ena_tc & BIT(i)) 3599 num_tc++; 3600 /* populate max_txqs per TC */ 3601 max_txqs[i] = vsi->alloc_txq; 3602 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3603 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3604 */ 3605 if (vsi->type == ICE_VSI_CHNL && 3606 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3607 max_txqs[i] = vsi->num_txq; 3608 } 3609 3610 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3611 vsi->tc_cfg.ena_tc = ena_tc; 3612 vsi->tc_cfg.numtc = num_tc; 3613 3614 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3615 if (!ctx) 3616 return -ENOMEM; 3617 3618 ctx->vf_num = 0; 3619 ctx->info = vsi->info; 3620 3621 if (vsi->type == ICE_VSI_PF && 3622 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3623 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3624 else 3625 ret = ice_vsi_setup_q_map(vsi, ctx); 3626 3627 if (ret) { 3628 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3629 goto out; 3630 } 3631 3632 /* must to indicate which section of VSI context are being modified */ 3633 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3634 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3635 if (ret) { 3636 dev_info(dev, "Failed VSI Update\n"); 3637 goto out; 3638 } 3639 3640 if (vsi->type == ICE_VSI_PF && 3641 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3642 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3643 else 3644 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3645 vsi->tc_cfg.ena_tc, max_txqs); 3646 3647 if (ret) { 3648 dev_err(dev, "VSI %d failed TC config, error %d\n", 3649 vsi->vsi_num, ret); 3650 goto out; 3651 } 3652 ice_vsi_update_q_map(vsi, ctx); 3653 vsi->info.valid_sections = 0; 3654 3655 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3656 out: 3657 kfree(ctx); 3658 return ret; 3659 } 3660 3661 /** 3662 * ice_update_ring_stats - Update ring statistics 3663 * @stats: stats to be updated 3664 * @pkts: number of processed packets 3665 * @bytes: number of processed bytes 3666 * 3667 * This function assumes that caller has acquired a u64_stats_sync lock. 3668 */ 3669 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3670 { 3671 stats->bytes += bytes; 3672 stats->pkts += pkts; 3673 } 3674 3675 /** 3676 * ice_update_tx_ring_stats - Update Tx ring specific counters 3677 * @tx_ring: ring to update 3678 * @pkts: number of processed packets 3679 * @bytes: number of processed bytes 3680 */ 3681 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3682 { 3683 u64_stats_update_begin(&tx_ring->syncp); 3684 ice_update_ring_stats(&tx_ring->stats, pkts, bytes); 3685 u64_stats_update_end(&tx_ring->syncp); 3686 } 3687 3688 /** 3689 * ice_update_rx_ring_stats - Update Rx ring specific counters 3690 * @rx_ring: ring to update 3691 * @pkts: number of processed packets 3692 * @bytes: number of processed bytes 3693 */ 3694 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3695 { 3696 u64_stats_update_begin(&rx_ring->syncp); 3697 ice_update_ring_stats(&rx_ring->stats, pkts, bytes); 3698 u64_stats_update_end(&rx_ring->syncp); 3699 } 3700 3701 /** 3702 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3703 * @pi: port info of the switch with default VSI 3704 * 3705 * Return true if the there is a single VSI in default forwarding VSI list 3706 */ 3707 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3708 { 3709 bool exists = false; 3710 3711 ice_check_if_dflt_vsi(pi, 0, &exists); 3712 return exists; 3713 } 3714 3715 /** 3716 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3717 * @vsi: VSI to compare against default forwarding VSI 3718 * 3719 * If this VSI passed in is the default forwarding VSI then return true, else 3720 * return false 3721 */ 3722 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3723 { 3724 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3725 } 3726 3727 /** 3728 * ice_set_dflt_vsi - set the default forwarding VSI 3729 * @vsi: VSI getting set as the default forwarding VSI on the switch 3730 * 3731 * If the VSI passed in is already the default VSI and it's enabled just return 3732 * success. 3733 * 3734 * Otherwise try to set the VSI passed in as the switch's default VSI and 3735 * return the result. 3736 */ 3737 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3738 { 3739 struct device *dev; 3740 int status; 3741 3742 if (!vsi) 3743 return -EINVAL; 3744 3745 dev = ice_pf_to_dev(vsi->back); 3746 3747 /* the VSI passed in is already the default VSI */ 3748 if (ice_is_vsi_dflt_vsi(vsi)) { 3749 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3750 vsi->vsi_num); 3751 return 0; 3752 } 3753 3754 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3755 if (status) { 3756 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3757 vsi->vsi_num, status); 3758 return status; 3759 } 3760 3761 return 0; 3762 } 3763 3764 /** 3765 * ice_clear_dflt_vsi - clear the default forwarding VSI 3766 * @vsi: VSI to remove from filter list 3767 * 3768 * If the switch has no default VSI or it's not enabled then return error. 3769 * 3770 * Otherwise try to clear the default VSI and return the result. 3771 */ 3772 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3773 { 3774 struct device *dev; 3775 int status; 3776 3777 if (!vsi) 3778 return -EINVAL; 3779 3780 dev = ice_pf_to_dev(vsi->back); 3781 3782 /* there is no default VSI configured */ 3783 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3784 return -ENODEV; 3785 3786 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3787 ICE_FLTR_RX); 3788 if (status) { 3789 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3790 vsi->vsi_num, status); 3791 return -EIO; 3792 } 3793 3794 return 0; 3795 } 3796 3797 /** 3798 * ice_get_link_speed_mbps - get link speed in Mbps 3799 * @vsi: the VSI whose link speed is being queried 3800 * 3801 * Return current VSI link speed and 0 if the speed is unknown. 3802 */ 3803 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3804 { 3805 switch (vsi->port_info->phy.link_info.link_speed) { 3806 case ICE_AQ_LINK_SPEED_100GB: 3807 return SPEED_100000; 3808 case ICE_AQ_LINK_SPEED_50GB: 3809 return SPEED_50000; 3810 case ICE_AQ_LINK_SPEED_40GB: 3811 return SPEED_40000; 3812 case ICE_AQ_LINK_SPEED_25GB: 3813 return SPEED_25000; 3814 case ICE_AQ_LINK_SPEED_20GB: 3815 return SPEED_20000; 3816 case ICE_AQ_LINK_SPEED_10GB: 3817 return SPEED_10000; 3818 case ICE_AQ_LINK_SPEED_5GB: 3819 return SPEED_5000; 3820 case ICE_AQ_LINK_SPEED_2500MB: 3821 return SPEED_2500; 3822 case ICE_AQ_LINK_SPEED_1000MB: 3823 return SPEED_1000; 3824 case ICE_AQ_LINK_SPEED_100MB: 3825 return SPEED_100; 3826 case ICE_AQ_LINK_SPEED_10MB: 3827 return SPEED_10; 3828 case ICE_AQ_LINK_SPEED_UNKNOWN: 3829 default: 3830 return 0; 3831 } 3832 } 3833 3834 /** 3835 * ice_get_link_speed_kbps - get link speed in Kbps 3836 * @vsi: the VSI whose link speed is being queried 3837 * 3838 * Return current VSI link speed and 0 if the speed is unknown. 3839 */ 3840 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3841 { 3842 int speed_mbps; 3843 3844 speed_mbps = ice_get_link_speed_mbps(vsi); 3845 3846 return speed_mbps * 1000; 3847 } 3848 3849 /** 3850 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3851 * @vsi: VSI to be configured 3852 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3853 * 3854 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3855 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3856 * on TC 0. 3857 */ 3858 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3859 { 3860 struct ice_pf *pf = vsi->back; 3861 struct device *dev; 3862 int status; 3863 int speed; 3864 3865 dev = ice_pf_to_dev(pf); 3866 if (!vsi->port_info) { 3867 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3868 vsi->idx, vsi->type); 3869 return -EINVAL; 3870 } 3871 3872 speed = ice_get_link_speed_kbps(vsi); 3873 if (min_tx_rate > (u64)speed) { 3874 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3875 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3876 speed); 3877 return -EINVAL; 3878 } 3879 3880 /* Configure min BW for VSI limit */ 3881 if (min_tx_rate) { 3882 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3883 ICE_MIN_BW, min_tx_rate); 3884 if (status) { 3885 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3886 min_tx_rate, ice_vsi_type_str(vsi->type), 3887 vsi->idx); 3888 return status; 3889 } 3890 3891 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3892 min_tx_rate, ice_vsi_type_str(vsi->type)); 3893 } else { 3894 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3895 vsi->idx, 0, 3896 ICE_MIN_BW); 3897 if (status) { 3898 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3899 ice_vsi_type_str(vsi->type), vsi->idx); 3900 return status; 3901 } 3902 3903 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3904 ice_vsi_type_str(vsi->type), vsi->idx); 3905 } 3906 3907 return 0; 3908 } 3909 3910 /** 3911 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3912 * @vsi: VSI to be configured 3913 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3914 * 3915 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3916 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3917 * on TC 0. 3918 */ 3919 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3920 { 3921 struct ice_pf *pf = vsi->back; 3922 struct device *dev; 3923 int status; 3924 int speed; 3925 3926 dev = ice_pf_to_dev(pf); 3927 if (!vsi->port_info) { 3928 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3929 vsi->idx, vsi->type); 3930 return -EINVAL; 3931 } 3932 3933 speed = ice_get_link_speed_kbps(vsi); 3934 if (max_tx_rate > (u64)speed) { 3935 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3936 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3937 speed); 3938 return -EINVAL; 3939 } 3940 3941 /* Configure max BW for VSI limit */ 3942 if (max_tx_rate) { 3943 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3944 ICE_MAX_BW, max_tx_rate); 3945 if (status) { 3946 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3947 max_tx_rate, ice_vsi_type_str(vsi->type), 3948 vsi->idx); 3949 return status; 3950 } 3951 3952 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3953 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3954 } else { 3955 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3956 vsi->idx, 0, 3957 ICE_MAX_BW); 3958 if (status) { 3959 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3960 ice_vsi_type_str(vsi->type), vsi->idx); 3961 return status; 3962 } 3963 3964 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3965 ice_vsi_type_str(vsi->type), vsi->idx); 3966 } 3967 3968 return 0; 3969 } 3970 3971 /** 3972 * ice_set_link - turn on/off physical link 3973 * @vsi: VSI to modify physical link on 3974 * @ena: turn on/off physical link 3975 */ 3976 int ice_set_link(struct ice_vsi *vsi, bool ena) 3977 { 3978 struct device *dev = ice_pf_to_dev(vsi->back); 3979 struct ice_port_info *pi = vsi->port_info; 3980 struct ice_hw *hw = pi->hw; 3981 int status; 3982 3983 if (vsi->type != ICE_VSI_PF) 3984 return -EINVAL; 3985 3986 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3987 3988 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3989 * this is not a fatal error, so print a warning message and return 3990 * a success code. Return an error if FW returns an error code other 3991 * than ICE_AQ_RC_EMODE 3992 */ 3993 if (status == -EIO) { 3994 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3995 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3996 (ena ? "ON" : "OFF"), status, 3997 ice_aq_str(hw->adminq.sq_last_status)); 3998 } else if (status) { 3999 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4000 (ena ? "ON" : "OFF"), status, 4001 ice_aq_str(hw->adminq.sq_last_status)); 4002 return status; 4003 } 4004 4005 return 0; 4006 } 4007 4008 /** 4009 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4010 * @vsi: VSI used to add VLAN filters 4011 * 4012 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4013 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4014 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4015 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4016 * 4017 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4018 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4019 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4020 * 4021 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4022 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4023 * part of filtering. 4024 */ 4025 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4026 { 4027 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4028 struct ice_vlan vlan; 4029 int err; 4030 4031 vlan = ICE_VLAN(0, 0, 0); 4032 err = vlan_ops->add_vlan(vsi, &vlan); 4033 if (err && err != -EEXIST) 4034 return err; 4035 4036 /* in SVM both VLAN 0 filters are identical */ 4037 if (!ice_is_dvm_ena(&vsi->back->hw)) 4038 return 0; 4039 4040 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4041 err = vlan_ops->add_vlan(vsi, &vlan); 4042 if (err && err != -EEXIST) 4043 return err; 4044 4045 return 0; 4046 } 4047 4048 /** 4049 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4050 * @vsi: VSI used to add VLAN filters 4051 * 4052 * Delete the VLAN 0 filters in the same manner that they were added in 4053 * ice_vsi_add_vlan_zero. 4054 */ 4055 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4056 { 4057 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4058 struct ice_vlan vlan; 4059 int err; 4060 4061 vlan = ICE_VLAN(0, 0, 0); 4062 err = vlan_ops->del_vlan(vsi, &vlan); 4063 if (err && err != -EEXIST) 4064 return err; 4065 4066 /* in SVM both VLAN 0 filters are identical */ 4067 if (!ice_is_dvm_ena(&vsi->back->hw)) 4068 return 0; 4069 4070 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4071 err = vlan_ops->del_vlan(vsi, &vlan); 4072 if (err && err != -EEXIST) 4073 return err; 4074 4075 /* when deleting the last VLAN filter, make sure to disable the VLAN 4076 * promisc mode so the filter isn't left by accident 4077 */ 4078 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 4079 ICE_MCAST_VLAN_PROMISC_BITS, 0); 4080 } 4081 4082 /** 4083 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4084 * @vsi: VSI used to get the VLAN mode 4085 * 4086 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4087 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4088 */ 4089 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4090 { 4091 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4092 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4093 /* no VLAN 0 filter is created when a port VLAN is active */ 4094 if (vsi->type == ICE_VSI_VF) { 4095 if (WARN_ON(!vsi->vf)) 4096 return 0; 4097 4098 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4099 return 0; 4100 } 4101 4102 if (ice_is_dvm_ena(&vsi->back->hw)) 4103 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4104 else 4105 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4106 } 4107 4108 /** 4109 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4110 * @vsi: VSI used to determine if any non-zero VLANs have been added 4111 */ 4112 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4113 { 4114 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4115 } 4116 4117 /** 4118 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4119 * @vsi: VSI used to get the number of non-zero VLANs added 4120 */ 4121 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4122 { 4123 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4124 } 4125 4126 /** 4127 * ice_is_feature_supported 4128 * @pf: pointer to the struct ice_pf instance 4129 * @f: feature enum to be checked 4130 * 4131 * returns true if feature is supported, false otherwise 4132 */ 4133 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4134 { 4135 if (f < 0 || f >= ICE_F_MAX) 4136 return false; 4137 4138 return test_bit(f, pf->features); 4139 } 4140 4141 /** 4142 * ice_set_feature_support 4143 * @pf: pointer to the struct ice_pf instance 4144 * @f: feature enum to set 4145 */ 4146 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4147 { 4148 if (f < 0 || f >= ICE_F_MAX) 4149 return; 4150 4151 set_bit(f, pf->features); 4152 } 4153 4154 /** 4155 * ice_clear_feature_support 4156 * @pf: pointer to the struct ice_pf instance 4157 * @f: feature enum to clear 4158 */ 4159 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4160 { 4161 if (f < 0 || f >= ICE_F_MAX) 4162 return; 4163 4164 clear_bit(f, pf->features); 4165 } 4166 4167 /** 4168 * ice_init_feature_support 4169 * @pf: pointer to the struct ice_pf instance 4170 * 4171 * called during init to setup supported feature 4172 */ 4173 void ice_init_feature_support(struct ice_pf *pf) 4174 { 4175 switch (pf->hw.device_id) { 4176 case ICE_DEV_ID_E810C_BACKPLANE: 4177 case ICE_DEV_ID_E810C_QSFP: 4178 case ICE_DEV_ID_E810C_SFP: 4179 ice_set_feature_support(pf, ICE_F_DSCP); 4180 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4181 if (ice_is_e810t(&pf->hw)) { 4182 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4183 if (ice_gnss_is_gps_present(&pf->hw)) 4184 ice_set_feature_support(pf, ICE_F_GNSS); 4185 } 4186 break; 4187 default: 4188 break; 4189 } 4190 } 4191 4192 /** 4193 * ice_vsi_update_security - update security block in VSI 4194 * @vsi: pointer to VSI structure 4195 * @fill: function pointer to fill ctx 4196 */ 4197 int 4198 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4199 { 4200 struct ice_vsi_ctx ctx = { 0 }; 4201 4202 ctx.info = vsi->info; 4203 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4204 fill(&ctx); 4205 4206 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4207 return -ENODEV; 4208 4209 vsi->info = ctx.info; 4210 return 0; 4211 } 4212 4213 /** 4214 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4215 * @ctx: pointer to VSI ctx structure 4216 */ 4217 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4218 { 4219 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4220 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4221 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4222 } 4223 4224 /** 4225 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4226 * @ctx: pointer to VSI ctx structure 4227 */ 4228 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4229 { 4230 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4231 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4232 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4233 } 4234 4235 /** 4236 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4237 * @ctx: pointer to VSI ctx structure 4238 */ 4239 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4240 { 4241 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4242 } 4243 4244 /** 4245 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4246 * @ctx: pointer to VSI ctx structure 4247 */ 4248 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4249 { 4250 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4251 } 4252