1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_dcb_lib.h" 9 10 /** 11 * ice_vsi_type_str - maps VSI type enum to string equivalents 12 * @type: VSI type enum 13 */ 14 const char *ice_vsi_type_str(enum ice_vsi_type type) 15 { 16 switch (type) { 17 case ICE_VSI_PF: 18 return "ICE_VSI_PF"; 19 case ICE_VSI_VF: 20 return "ICE_VSI_VF"; 21 case ICE_VSI_LB: 22 return "ICE_VSI_LB"; 23 default: 24 return "unknown"; 25 } 26 } 27 28 /** 29 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 30 * @vsi: the VSI being configured 31 * @ena: start or stop the Rx rings 32 * 33 * First enable/disable all of the Rx rings, flush any remaining writes, and 34 * then verify that they have all been enabled/disabled successfully. This will 35 * let all of the register writes complete when enabling/disabling the Rx rings 36 * before waiting for the change in hardware to complete. 37 */ 38 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 39 { 40 int i, ret = 0; 41 42 for (i = 0; i < vsi->num_rxq; i++) 43 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 44 45 ice_flush(&vsi->back->hw); 46 47 for (i = 0; i < vsi->num_rxq; i++) { 48 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 49 if (ret) 50 break; 51 } 52 53 return ret; 54 } 55 56 /** 57 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 58 * @vsi: VSI pointer 59 * 60 * On error: returns error code (negative) 61 * On success: returns 0 62 */ 63 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 64 { 65 struct ice_pf *pf = vsi->back; 66 struct device *dev; 67 68 dev = ice_pf_to_dev(pf); 69 70 /* allocate memory for both Tx and Rx ring pointers */ 71 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 72 sizeof(*vsi->tx_rings), GFP_KERNEL); 73 if (!vsi->tx_rings) 74 return -ENOMEM; 75 76 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 77 sizeof(*vsi->rx_rings), GFP_KERNEL); 78 if (!vsi->rx_rings) 79 goto err_rings; 80 81 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 82 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 83 sizeof(*vsi->txq_map), GFP_KERNEL); 84 85 if (!vsi->txq_map) 86 goto err_txq_map; 87 88 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rxq_map), GFP_KERNEL); 90 if (!vsi->rxq_map) 91 goto err_rxq_map; 92 93 /* There is no need to allocate q_vectors for a loopback VSI. */ 94 if (vsi->type == ICE_VSI_LB) 95 return 0; 96 97 /* allocate memory for q_vector pointers */ 98 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 99 sizeof(*vsi->q_vectors), GFP_KERNEL); 100 if (!vsi->q_vectors) 101 goto err_vectors; 102 103 return 0; 104 105 err_vectors: 106 devm_kfree(dev, vsi->rxq_map); 107 err_rxq_map: 108 devm_kfree(dev, vsi->txq_map); 109 err_txq_map: 110 devm_kfree(dev, vsi->rx_rings); 111 err_rings: 112 devm_kfree(dev, vsi->tx_rings); 113 return -ENOMEM; 114 } 115 116 /** 117 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 118 * @vsi: the VSI being configured 119 */ 120 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 121 { 122 switch (vsi->type) { 123 case ICE_VSI_PF: 124 case ICE_VSI_LB: 125 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 126 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 127 break; 128 default: 129 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 130 vsi->type); 131 break; 132 } 133 } 134 135 /** 136 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 137 * @vsi: the VSI being configured 138 * @vf_id: ID of the VF being configured 139 * 140 * Return 0 on success and a negative value on error 141 */ 142 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 143 { 144 struct ice_pf *pf = vsi->back; 145 struct ice_vf *vf = NULL; 146 147 if (vsi->type == ICE_VSI_VF) 148 vsi->vf_id = vf_id; 149 150 switch (vsi->type) { 151 case ICE_VSI_PF: 152 vsi->alloc_txq = min_t(int, ice_get_avail_txq_count(pf), 153 num_online_cpus()); 154 if (vsi->req_txq) { 155 vsi->alloc_txq = vsi->req_txq; 156 vsi->num_txq = vsi->req_txq; 157 } 158 159 pf->num_lan_tx = vsi->alloc_txq; 160 161 /* only 1 Rx queue unless RSS is enabled */ 162 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 163 vsi->alloc_rxq = 1; 164 } else { 165 vsi->alloc_rxq = min_t(int, ice_get_avail_rxq_count(pf), 166 num_online_cpus()); 167 if (vsi->req_rxq) { 168 vsi->alloc_rxq = vsi->req_rxq; 169 vsi->num_rxq = vsi->req_rxq; 170 } 171 } 172 173 pf->num_lan_rx = vsi->alloc_rxq; 174 175 vsi->num_q_vectors = max_t(int, vsi->alloc_rxq, vsi->alloc_txq); 176 break; 177 case ICE_VSI_VF: 178 vf = &pf->vf[vsi->vf_id]; 179 vsi->alloc_txq = vf->num_vf_qs; 180 vsi->alloc_rxq = vf->num_vf_qs; 181 /* pf->num_vf_msix includes (VF miscellaneous vector + 182 * data queue interrupts). Since vsi->num_q_vectors is number 183 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 184 * original vector count 185 */ 186 vsi->num_q_vectors = pf->num_vf_msix - ICE_NONQ_VECS_VF; 187 break; 188 case ICE_VSI_LB: 189 vsi->alloc_txq = 1; 190 vsi->alloc_rxq = 1; 191 break; 192 default: 193 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 194 break; 195 } 196 197 ice_vsi_set_num_desc(vsi); 198 } 199 200 /** 201 * ice_get_free_slot - get the next non-NULL location index in array 202 * @array: array to search 203 * @size: size of the array 204 * @curr: last known occupied index to be used as a search hint 205 * 206 * void * is being used to keep the functionality generic. This lets us use this 207 * function on any array of pointers. 208 */ 209 static int ice_get_free_slot(void *array, int size, int curr) 210 { 211 int **tmp_array = (int **)array; 212 int next; 213 214 if (curr < (size - 1) && !tmp_array[curr + 1]) { 215 next = curr + 1; 216 } else { 217 int i = 0; 218 219 while ((i < size) && (tmp_array[i])) 220 i++; 221 if (i == size) 222 next = ICE_NO_VSI; 223 else 224 next = i; 225 } 226 return next; 227 } 228 229 /** 230 * ice_vsi_delete - delete a VSI from the switch 231 * @vsi: pointer to VSI being removed 232 */ 233 void ice_vsi_delete(struct ice_vsi *vsi) 234 { 235 struct ice_pf *pf = vsi->back; 236 struct ice_vsi_ctx *ctxt; 237 enum ice_status status; 238 239 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 240 if (!ctxt) 241 return; 242 243 if (vsi->type == ICE_VSI_VF) 244 ctxt->vf_num = vsi->vf_id; 245 ctxt->vsi_num = vsi->vsi_num; 246 247 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 248 249 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 250 if (status) 251 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 252 vsi->vsi_num, status); 253 254 kfree(ctxt); 255 } 256 257 /** 258 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 259 * @vsi: pointer to VSI being cleared 260 */ 261 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 262 { 263 struct ice_pf *pf = vsi->back; 264 struct device *dev; 265 266 dev = ice_pf_to_dev(pf); 267 268 /* free the ring and vector containers */ 269 if (vsi->q_vectors) { 270 devm_kfree(dev, vsi->q_vectors); 271 vsi->q_vectors = NULL; 272 } 273 if (vsi->tx_rings) { 274 devm_kfree(dev, vsi->tx_rings); 275 vsi->tx_rings = NULL; 276 } 277 if (vsi->rx_rings) { 278 devm_kfree(dev, vsi->rx_rings); 279 vsi->rx_rings = NULL; 280 } 281 if (vsi->txq_map) { 282 devm_kfree(dev, vsi->txq_map); 283 vsi->txq_map = NULL; 284 } 285 if (vsi->rxq_map) { 286 devm_kfree(dev, vsi->rxq_map); 287 vsi->rxq_map = NULL; 288 } 289 } 290 291 /** 292 * ice_vsi_clear - clean up and deallocate the provided VSI 293 * @vsi: pointer to VSI being cleared 294 * 295 * This deallocates the VSI's queue resources, removes it from the PF's 296 * VSI array if necessary, and deallocates the VSI 297 * 298 * Returns 0 on success, negative on failure 299 */ 300 int ice_vsi_clear(struct ice_vsi *vsi) 301 { 302 struct ice_pf *pf = NULL; 303 struct device *dev; 304 305 if (!vsi) 306 return 0; 307 308 if (!vsi->back) 309 return -EINVAL; 310 311 pf = vsi->back; 312 dev = ice_pf_to_dev(pf); 313 314 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 315 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 316 return -EINVAL; 317 } 318 319 mutex_lock(&pf->sw_mutex); 320 /* updates the PF for this cleared VSI */ 321 322 pf->vsi[vsi->idx] = NULL; 323 if (vsi->idx < pf->next_vsi) 324 pf->next_vsi = vsi->idx; 325 326 ice_vsi_free_arrays(vsi); 327 mutex_unlock(&pf->sw_mutex); 328 devm_kfree(dev, vsi); 329 330 return 0; 331 } 332 333 /** 334 * ice_msix_clean_rings - MSIX mode Interrupt Handler 335 * @irq: interrupt number 336 * @data: pointer to a q_vector 337 */ 338 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 339 { 340 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 341 342 if (!q_vector->tx.ring && !q_vector->rx.ring) 343 return IRQ_HANDLED; 344 345 napi_schedule(&q_vector->napi); 346 347 return IRQ_HANDLED; 348 } 349 350 /** 351 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 352 * @pf: board private structure 353 * @type: type of VSI 354 * @vf_id: ID of the VF being configured 355 * 356 * returns a pointer to a VSI on success, NULL on failure. 357 */ 358 static struct ice_vsi * 359 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id) 360 { 361 struct device *dev = ice_pf_to_dev(pf); 362 struct ice_vsi *vsi = NULL; 363 364 /* Need to protect the allocation of the VSIs at the PF level */ 365 mutex_lock(&pf->sw_mutex); 366 367 /* If we have already allocated our maximum number of VSIs, 368 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 369 * is available to be populated 370 */ 371 if (pf->next_vsi == ICE_NO_VSI) { 372 dev_dbg(dev, "out of VSI slots!\n"); 373 goto unlock_pf; 374 } 375 376 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 377 if (!vsi) 378 goto unlock_pf; 379 380 vsi->type = type; 381 vsi->back = pf; 382 set_bit(__ICE_DOWN, vsi->state); 383 384 vsi->idx = pf->next_vsi; 385 386 if (type == ICE_VSI_VF) 387 ice_vsi_set_num_qs(vsi, vf_id); 388 else 389 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 390 391 switch (vsi->type) { 392 case ICE_VSI_PF: 393 if (ice_vsi_alloc_arrays(vsi)) 394 goto err_rings; 395 396 /* Setup default MSIX irq handler for VSI */ 397 vsi->irq_handler = ice_msix_clean_rings; 398 break; 399 case ICE_VSI_VF: 400 if (ice_vsi_alloc_arrays(vsi)) 401 goto err_rings; 402 break; 403 case ICE_VSI_LB: 404 if (ice_vsi_alloc_arrays(vsi)) 405 goto err_rings; 406 break; 407 default: 408 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 409 goto unlock_pf; 410 } 411 412 /* fill VSI slot in the PF struct */ 413 pf->vsi[pf->next_vsi] = vsi; 414 415 /* prepare pf->next_vsi for next use */ 416 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 417 pf->next_vsi); 418 goto unlock_pf; 419 420 err_rings: 421 devm_kfree(dev, vsi); 422 vsi = NULL; 423 unlock_pf: 424 mutex_unlock(&pf->sw_mutex); 425 return vsi; 426 } 427 428 /** 429 * ice_vsi_get_qs - Assign queues from PF to VSI 430 * @vsi: the VSI to assign queues to 431 * 432 * Returns 0 on success and a negative value on error 433 */ 434 static int ice_vsi_get_qs(struct ice_vsi *vsi) 435 { 436 struct ice_pf *pf = vsi->back; 437 struct ice_qs_cfg tx_qs_cfg = { 438 .qs_mutex = &pf->avail_q_mutex, 439 .pf_map = pf->avail_txqs, 440 .pf_map_size = pf->max_pf_txqs, 441 .q_count = vsi->alloc_txq, 442 .scatter_count = ICE_MAX_SCATTER_TXQS, 443 .vsi_map = vsi->txq_map, 444 .vsi_map_offset = 0, 445 .mapping_mode = ICE_VSI_MAP_CONTIG 446 }; 447 struct ice_qs_cfg rx_qs_cfg = { 448 .qs_mutex = &pf->avail_q_mutex, 449 .pf_map = pf->avail_rxqs, 450 .pf_map_size = pf->max_pf_rxqs, 451 .q_count = vsi->alloc_rxq, 452 .scatter_count = ICE_MAX_SCATTER_RXQS, 453 .vsi_map = vsi->rxq_map, 454 .vsi_map_offset = 0, 455 .mapping_mode = ICE_VSI_MAP_CONTIG 456 }; 457 int ret; 458 459 ret = __ice_vsi_get_qs(&tx_qs_cfg); 460 if (ret) 461 return ret; 462 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 463 464 ret = __ice_vsi_get_qs(&rx_qs_cfg); 465 if (ret) 466 return ret; 467 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 468 469 return 0; 470 } 471 472 /** 473 * ice_vsi_put_qs - Release queues from VSI to PF 474 * @vsi: the VSI that is going to release queues 475 */ 476 void ice_vsi_put_qs(struct ice_vsi *vsi) 477 { 478 struct ice_pf *pf = vsi->back; 479 int i; 480 481 mutex_lock(&pf->avail_q_mutex); 482 483 for (i = 0; i < vsi->alloc_txq; i++) { 484 clear_bit(vsi->txq_map[i], pf->avail_txqs); 485 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 486 } 487 488 for (i = 0; i < vsi->alloc_rxq; i++) { 489 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 490 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 491 } 492 493 mutex_unlock(&pf->avail_q_mutex); 494 } 495 496 /** 497 * ice_is_safe_mode 498 * @pf: pointer to the PF struct 499 * 500 * returns true if driver is in safe mode, false otherwise 501 */ 502 bool ice_is_safe_mode(struct ice_pf *pf) 503 { 504 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 505 } 506 507 /** 508 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 509 * @vsi: the VSI being cleaned up 510 * 511 * This function deletes RSS input set for all flows that were configured 512 * for this VSI 513 */ 514 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 515 { 516 struct ice_pf *pf = vsi->back; 517 enum ice_status status; 518 519 if (ice_is_safe_mode(pf)) 520 return; 521 522 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 523 if (status) 524 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 525 vsi->vsi_num, status); 526 } 527 528 /** 529 * ice_rss_clean - Delete RSS related VSI structures and configuration 530 * @vsi: the VSI being removed 531 */ 532 static void ice_rss_clean(struct ice_vsi *vsi) 533 { 534 struct ice_pf *pf = vsi->back; 535 struct device *dev; 536 537 dev = ice_pf_to_dev(pf); 538 539 if (vsi->rss_hkey_user) 540 devm_kfree(dev, vsi->rss_hkey_user); 541 if (vsi->rss_lut_user) 542 devm_kfree(dev, vsi->rss_lut_user); 543 544 ice_vsi_clean_rss_flow_fld(vsi); 545 /* remove RSS replay list */ 546 if (!ice_is_safe_mode(pf)) 547 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 548 } 549 550 /** 551 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 552 * @vsi: the VSI being configured 553 */ 554 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 555 { 556 struct ice_hw_common_caps *cap; 557 struct ice_pf *pf = vsi->back; 558 559 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 560 vsi->rss_size = 1; 561 return; 562 } 563 564 cap = &pf->hw.func_caps.common_cap; 565 switch (vsi->type) { 566 case ICE_VSI_PF: 567 /* PF VSI will inherit RSS instance of PF */ 568 vsi->rss_table_size = cap->rss_table_size; 569 vsi->rss_size = min_t(int, num_online_cpus(), 570 BIT(cap->rss_table_entry_width)); 571 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 572 break; 573 case ICE_VSI_VF: 574 /* VF VSI will gets a small RSS table 575 * For VSI_LUT, LUT size should be set to 64 bytes 576 */ 577 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 578 vsi->rss_size = min_t(int, num_online_cpus(), 579 BIT(cap->rss_table_entry_width)); 580 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 581 break; 582 case ICE_VSI_LB: 583 break; 584 default: 585 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", 586 vsi->type); 587 break; 588 } 589 } 590 591 /** 592 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 593 * @ctxt: the VSI context being set 594 * 595 * This initializes a default VSI context for all sections except the Queues. 596 */ 597 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 598 { 599 u32 table = 0; 600 601 memset(&ctxt->info, 0, sizeof(ctxt->info)); 602 /* VSI's should be allocated from shared pool */ 603 ctxt->alloc_from_pool = true; 604 /* Src pruning enabled by default */ 605 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 606 /* Traffic from VSI can be sent to LAN */ 607 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 608 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 609 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 610 * packets untagged/tagged. 611 */ 612 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 613 ICE_AQ_VSI_VLAN_MODE_M) >> 614 ICE_AQ_VSI_VLAN_MODE_S); 615 /* Have 1:1 UP mapping for both ingress/egress tables */ 616 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 617 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 618 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 619 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 620 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 621 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 622 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 623 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 624 ctxt->info.ingress_table = cpu_to_le32(table); 625 ctxt->info.egress_table = cpu_to_le32(table); 626 /* Have 1:1 UP mapping for outer to inner UP table */ 627 ctxt->info.outer_up_table = cpu_to_le32(table); 628 /* No Outer tag support outer_tag_flags remains to zero */ 629 } 630 631 /** 632 * ice_vsi_setup_q_map - Setup a VSI queue map 633 * @vsi: the VSI being configured 634 * @ctxt: VSI context structure 635 */ 636 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 637 { 638 u16 offset = 0, qmap = 0, tx_count = 0; 639 u16 qcount_tx = vsi->alloc_txq; 640 u16 qcount_rx = vsi->alloc_rxq; 641 u16 tx_numq_tc, rx_numq_tc; 642 u16 pow = 0, max_rss = 0; 643 bool ena_tc0 = false; 644 u8 netdev_tc = 0; 645 int i; 646 647 /* at least TC0 should be enabled by default */ 648 if (vsi->tc_cfg.numtc) { 649 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 650 ena_tc0 = true; 651 } else { 652 ena_tc0 = true; 653 } 654 655 if (ena_tc0) { 656 vsi->tc_cfg.numtc++; 657 vsi->tc_cfg.ena_tc |= 1; 658 } 659 660 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 661 if (!rx_numq_tc) 662 rx_numq_tc = 1; 663 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 664 if (!tx_numq_tc) 665 tx_numq_tc = 1; 666 667 /* TC mapping is a function of the number of Rx queues assigned to the 668 * VSI for each traffic class and the offset of these queues. 669 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 670 * queues allocated to TC0. No:of queues is a power-of-2. 671 * 672 * If TC is not enabled, the queue offset is set to 0, and allocate one 673 * queue, this way, traffic for the given TC will be sent to the default 674 * queue. 675 * 676 * Setup number and offset of Rx queues for all TCs for the VSI 677 */ 678 679 qcount_rx = rx_numq_tc; 680 681 /* qcount will change if RSS is enabled */ 682 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 683 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 684 if (vsi->type == ICE_VSI_PF) 685 max_rss = ICE_MAX_LG_RSS_QS; 686 else 687 max_rss = ICE_MAX_SMALL_RSS_QS; 688 qcount_rx = min_t(int, rx_numq_tc, max_rss); 689 if (!vsi->req_rxq) 690 qcount_rx = min_t(int, qcount_rx, 691 vsi->rss_size); 692 } 693 } 694 695 /* find the (rounded up) power-of-2 of qcount */ 696 pow = order_base_2(qcount_rx); 697 698 ice_for_each_traffic_class(i) { 699 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 700 /* TC is not enabled */ 701 vsi->tc_cfg.tc_info[i].qoffset = 0; 702 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 703 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 704 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 705 ctxt->info.tc_mapping[i] = 0; 706 continue; 707 } 708 709 /* TC is enabled */ 710 vsi->tc_cfg.tc_info[i].qoffset = offset; 711 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 712 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 713 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 714 715 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 716 ICE_AQ_VSI_TC_Q_OFFSET_M) | 717 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 718 ICE_AQ_VSI_TC_Q_NUM_M); 719 offset += qcount_rx; 720 tx_count += tx_numq_tc; 721 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 722 } 723 724 /* if offset is non-zero, means it is calculated correctly based on 725 * enabled TCs for a given VSI otherwise qcount_rx will always 726 * be correct and non-zero because it is based off - VSI's 727 * allocated Rx queues which is at least 1 (hence qcount_tx will be 728 * at least 1) 729 */ 730 if (offset) 731 vsi->num_rxq = offset; 732 else 733 vsi->num_rxq = qcount_rx; 734 735 vsi->num_txq = tx_count; 736 737 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 738 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 739 /* since there is a chance that num_rxq could have been changed 740 * in the above for loop, make num_txq equal to num_rxq. 741 */ 742 vsi->num_txq = vsi->num_rxq; 743 } 744 745 /* Rx queue mapping */ 746 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 747 /* q_mapping buffer holds the info for the first queue allocated for 748 * this VSI in the PF space and also the number of queues associated 749 * with this VSI. 750 */ 751 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 752 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 753 } 754 755 /** 756 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 757 * @ctxt: the VSI context being set 758 * @vsi: the VSI being configured 759 */ 760 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 761 { 762 u8 lut_type, hash_type; 763 struct device *dev; 764 struct ice_pf *pf; 765 766 pf = vsi->back; 767 dev = ice_pf_to_dev(pf); 768 769 switch (vsi->type) { 770 case ICE_VSI_PF: 771 /* PF VSI will inherit RSS instance of PF */ 772 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 773 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 774 break; 775 case ICE_VSI_VF: 776 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 777 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 778 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 779 break; 780 case ICE_VSI_LB: 781 dev_dbg(dev, "Unsupported VSI type %s\n", 782 ice_vsi_type_str(vsi->type)); 783 return; 784 default: 785 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 786 return; 787 } 788 789 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 790 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 791 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 792 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 793 } 794 795 /** 796 * ice_vsi_init - Create and initialize a VSI 797 * @vsi: the VSI being configured 798 * @init_vsi: is this call creating a VSI 799 * 800 * This initializes a VSI context depending on the VSI type to be added and 801 * passes it down to the add_vsi aq command to create a new VSI. 802 */ 803 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 804 { 805 struct ice_pf *pf = vsi->back; 806 struct ice_hw *hw = &pf->hw; 807 struct ice_vsi_ctx *ctxt; 808 struct device *dev; 809 int ret = 0; 810 811 dev = ice_pf_to_dev(pf); 812 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 813 if (!ctxt) 814 return -ENOMEM; 815 816 ctxt->info = vsi->info; 817 switch (vsi->type) { 818 case ICE_VSI_LB: 819 case ICE_VSI_PF: 820 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 821 break; 822 case ICE_VSI_VF: 823 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 824 /* VF number here is the absolute VF number (0-255) */ 825 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 826 break; 827 default: 828 ret = -ENODEV; 829 goto out; 830 } 831 832 ice_set_dflt_vsi_ctx(ctxt); 833 /* if the switch is in VEB mode, allow VSI loopback */ 834 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 835 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 836 837 /* Set LUT type and HASH type if RSS is enabled */ 838 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 839 ice_set_rss_vsi_ctx(ctxt, vsi); 840 /* if updating VSI context, make sure to set valid_section: 841 * to indicate which section of VSI context being updated 842 */ 843 if (!init_vsi) 844 ctxt->info.valid_sections |= 845 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 846 } 847 848 ctxt->info.sw_id = vsi->port_info->sw_id; 849 ice_vsi_setup_q_map(vsi, ctxt); 850 if (!init_vsi) /* means VSI being updated */ 851 /* must to indicate which section of VSI context are 852 * being modified 853 */ 854 ctxt->info.valid_sections |= 855 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 856 857 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 858 * respectively 859 */ 860 if (vsi->type == ICE_VSI_VF) { 861 ctxt->info.valid_sections |= 862 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 863 if (pf->vf[vsi->vf_id].spoofchk) { 864 ctxt->info.sec_flags |= 865 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 866 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 867 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 868 } else { 869 ctxt->info.sec_flags &= 870 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 871 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 872 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 873 } 874 } 875 876 /* Allow control frames out of main VSI */ 877 if (vsi->type == ICE_VSI_PF) { 878 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 879 ctxt->info.valid_sections |= 880 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 881 } 882 883 if (init_vsi) { 884 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 885 if (ret) { 886 dev_err(dev, "Add VSI failed, err %d\n", ret); 887 ret = -EIO; 888 goto out; 889 } 890 } else { 891 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 892 if (ret) { 893 dev_err(dev, "Update VSI failed, err %d\n", ret); 894 ret = -EIO; 895 goto out; 896 } 897 } 898 899 /* keep context for update VSI operations */ 900 vsi->info = ctxt->info; 901 902 /* record VSI number returned */ 903 vsi->vsi_num = ctxt->vsi_num; 904 905 out: 906 kfree(ctxt); 907 return ret; 908 } 909 910 /** 911 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 912 * @vsi: ptr to the VSI 913 * 914 * This should only be called after ice_vsi_alloc() which allocates the 915 * corresponding SW VSI structure and initializes num_queue_pairs for the 916 * newly allocated VSI. 917 * 918 * Returns 0 on success or negative on failure 919 */ 920 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 921 { 922 struct ice_pf *pf = vsi->back; 923 struct device *dev; 924 u16 num_q_vectors; 925 926 dev = ice_pf_to_dev(pf); 927 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 928 if (vsi->type == ICE_VSI_VF) 929 return 0; 930 931 if (vsi->base_vector) { 932 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 933 vsi->vsi_num, vsi->base_vector); 934 return -EEXIST; 935 } 936 937 num_q_vectors = vsi->num_q_vectors; 938 /* reserve slots from OS requested IRQs */ 939 vsi->base_vector = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 940 vsi->idx); 941 if (vsi->base_vector < 0) { 942 dev_err(dev, "Failed to get tracking for %d vectors for VSI %d, err=%d\n", 943 num_q_vectors, vsi->vsi_num, vsi->base_vector); 944 return -ENOENT; 945 } 946 pf->num_avail_sw_msix -= num_q_vectors; 947 948 return 0; 949 } 950 951 /** 952 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 953 * @vsi: the VSI having rings deallocated 954 */ 955 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 956 { 957 int i; 958 959 if (vsi->tx_rings) { 960 for (i = 0; i < vsi->alloc_txq; i++) { 961 if (vsi->tx_rings[i]) { 962 kfree_rcu(vsi->tx_rings[i], rcu); 963 vsi->tx_rings[i] = NULL; 964 } 965 } 966 } 967 if (vsi->rx_rings) { 968 for (i = 0; i < vsi->alloc_rxq; i++) { 969 if (vsi->rx_rings[i]) { 970 kfree_rcu(vsi->rx_rings[i], rcu); 971 vsi->rx_rings[i] = NULL; 972 } 973 } 974 } 975 } 976 977 /** 978 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 979 * @vsi: VSI which is having rings allocated 980 */ 981 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 982 { 983 struct ice_pf *pf = vsi->back; 984 struct device *dev; 985 int i; 986 987 dev = ice_pf_to_dev(pf); 988 /* Allocate Tx rings */ 989 for (i = 0; i < vsi->alloc_txq; i++) { 990 struct ice_ring *ring; 991 992 /* allocate with kzalloc(), free with kfree_rcu() */ 993 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 994 995 if (!ring) 996 goto err_out; 997 998 ring->q_index = i; 999 ring->reg_idx = vsi->txq_map[i]; 1000 ring->ring_active = false; 1001 ring->vsi = vsi; 1002 ring->dev = dev; 1003 ring->count = vsi->num_tx_desc; 1004 vsi->tx_rings[i] = ring; 1005 } 1006 1007 /* Allocate Rx rings */ 1008 for (i = 0; i < vsi->alloc_rxq; i++) { 1009 struct ice_ring *ring; 1010 1011 /* allocate with kzalloc(), free with kfree_rcu() */ 1012 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1013 if (!ring) 1014 goto err_out; 1015 1016 ring->q_index = i; 1017 ring->reg_idx = vsi->rxq_map[i]; 1018 ring->ring_active = false; 1019 ring->vsi = vsi; 1020 ring->netdev = vsi->netdev; 1021 ring->dev = dev; 1022 ring->count = vsi->num_rx_desc; 1023 vsi->rx_rings[i] = ring; 1024 } 1025 1026 return 0; 1027 1028 err_out: 1029 ice_vsi_clear_rings(vsi); 1030 return -ENOMEM; 1031 } 1032 1033 /** 1034 * ice_vsi_manage_rss_lut - disable/enable RSS 1035 * @vsi: the VSI being changed 1036 * @ena: boolean value indicating if this is an enable or disable request 1037 * 1038 * In the event of disable request for RSS, this function will zero out RSS 1039 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1040 * LUT. 1041 */ 1042 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1043 { 1044 int err = 0; 1045 u8 *lut; 1046 1047 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1048 if (!lut) 1049 return -ENOMEM; 1050 1051 if (ena) { 1052 if (vsi->rss_lut_user) 1053 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1054 else 1055 ice_fill_rss_lut(lut, vsi->rss_table_size, 1056 vsi->rss_size); 1057 } 1058 1059 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1060 kfree(lut); 1061 return err; 1062 } 1063 1064 /** 1065 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1066 * @vsi: VSI to be configured 1067 */ 1068 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1069 { 1070 struct ice_aqc_get_set_rss_keys *key; 1071 struct ice_pf *pf = vsi->back; 1072 enum ice_status status; 1073 struct device *dev; 1074 int err = 0; 1075 u8 *lut; 1076 1077 dev = ice_pf_to_dev(pf); 1078 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq); 1079 1080 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1081 if (!lut) 1082 return -ENOMEM; 1083 1084 if (vsi->rss_lut_user) 1085 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1086 else 1087 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1088 1089 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1090 vsi->rss_table_size); 1091 1092 if (status) { 1093 dev_err(dev, "set_rss_lut failed, error %d\n", status); 1094 err = -EIO; 1095 goto ice_vsi_cfg_rss_exit; 1096 } 1097 1098 key = kzalloc(sizeof(*key), GFP_KERNEL); 1099 if (!key) { 1100 err = -ENOMEM; 1101 goto ice_vsi_cfg_rss_exit; 1102 } 1103 1104 if (vsi->rss_hkey_user) 1105 memcpy(key, 1106 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1107 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1108 else 1109 netdev_rss_key_fill((void *)key, 1110 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1111 1112 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1113 1114 if (status) { 1115 dev_err(dev, "set_rss_key failed, error %d\n", status); 1116 err = -EIO; 1117 } 1118 1119 kfree(key); 1120 ice_vsi_cfg_rss_exit: 1121 kfree(lut); 1122 return err; 1123 } 1124 1125 /** 1126 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1127 * @vsi: VSI to be configured 1128 * 1129 * This function will only be called during the VF VSI setup. Upon successful 1130 * completion of package download, this function will configure default RSS 1131 * input sets for VF VSI. 1132 */ 1133 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1134 { 1135 struct ice_pf *pf = vsi->back; 1136 enum ice_status status; 1137 struct device *dev; 1138 1139 dev = ice_pf_to_dev(pf); 1140 if (ice_is_safe_mode(pf)) { 1141 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1142 vsi->vsi_num); 1143 return; 1144 } 1145 1146 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1147 if (status) 1148 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1149 vsi->vsi_num, status); 1150 } 1151 1152 /** 1153 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1154 * @vsi: VSI to be configured 1155 * 1156 * This function will only be called after successful download package call 1157 * during initialization of PF. Since the downloaded package will erase the 1158 * RSS section, this function will configure RSS input sets for different 1159 * flow types. The last profile added has the highest priority, therefore 2 1160 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1161 * (i.e. IPv4 src/dst TCP src/dst port). 1162 */ 1163 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1164 { 1165 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1166 struct ice_pf *pf = vsi->back; 1167 struct ice_hw *hw = &pf->hw; 1168 enum ice_status status; 1169 struct device *dev; 1170 1171 dev = ice_pf_to_dev(pf); 1172 if (ice_is_safe_mode(pf)) { 1173 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1174 vsi_num); 1175 return; 1176 } 1177 /* configure RSS for IPv4 with input set IP src/dst */ 1178 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1179 ICE_FLOW_SEG_HDR_IPV4); 1180 if (status) 1181 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1182 vsi_num, status); 1183 1184 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1185 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1186 ICE_FLOW_SEG_HDR_IPV6); 1187 if (status) 1188 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1189 vsi_num, status); 1190 1191 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1192 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1193 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1194 if (status) 1195 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1196 vsi_num, status); 1197 1198 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1199 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1200 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1201 if (status) 1202 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1203 vsi_num, status); 1204 1205 /* configure RSS for sctp4 with input set IP src/dst */ 1206 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1207 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1208 if (status) 1209 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1210 vsi_num, status); 1211 1212 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1213 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1214 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1215 if (status) 1216 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1217 vsi_num, status); 1218 1219 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1220 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1221 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1222 if (status) 1223 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1224 vsi_num, status); 1225 1226 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1227 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1228 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1229 if (status) 1230 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1231 vsi_num, status); 1232 } 1233 1234 /** 1235 * ice_add_mac_to_list - Add a MAC address filter entry to the list 1236 * @vsi: the VSI to be forwarded to 1237 * @add_list: pointer to the list which contains MAC filter entries 1238 * @macaddr: the MAC address to be added. 1239 * 1240 * Adds MAC address filter entry to the temp list 1241 * 1242 * Returns 0 on success or ENOMEM on failure. 1243 */ 1244 int 1245 ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list, 1246 const u8 *macaddr) 1247 { 1248 struct ice_fltr_list_entry *tmp; 1249 struct ice_pf *pf = vsi->back; 1250 1251 tmp = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*tmp), GFP_ATOMIC); 1252 if (!tmp) 1253 return -ENOMEM; 1254 1255 tmp->fltr_info.flag = ICE_FLTR_TX; 1256 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1257 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC; 1258 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1259 tmp->fltr_info.vsi_handle = vsi->idx; 1260 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr); 1261 1262 INIT_LIST_HEAD(&tmp->list_entry); 1263 list_add(&tmp->list_entry, add_list); 1264 1265 return 0; 1266 } 1267 1268 /** 1269 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1270 * @vsi: the VSI to be updated 1271 */ 1272 void ice_update_eth_stats(struct ice_vsi *vsi) 1273 { 1274 struct ice_eth_stats *prev_es, *cur_es; 1275 struct ice_hw *hw = &vsi->back->hw; 1276 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1277 1278 prev_es = &vsi->eth_stats_prev; 1279 cur_es = &vsi->eth_stats; 1280 1281 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1282 &prev_es->rx_bytes, &cur_es->rx_bytes); 1283 1284 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1285 &prev_es->rx_unicast, &cur_es->rx_unicast); 1286 1287 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1288 &prev_es->rx_multicast, &cur_es->rx_multicast); 1289 1290 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1291 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1292 1293 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1294 &prev_es->rx_discards, &cur_es->rx_discards); 1295 1296 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1297 &prev_es->tx_bytes, &cur_es->tx_bytes); 1298 1299 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1300 &prev_es->tx_unicast, &cur_es->tx_unicast); 1301 1302 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1303 &prev_es->tx_multicast, &cur_es->tx_multicast); 1304 1305 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1306 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1307 1308 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1309 &prev_es->tx_errors, &cur_es->tx_errors); 1310 1311 vsi->stat_offsets_loaded = true; 1312 } 1313 1314 /** 1315 * ice_free_fltr_list - free filter lists helper 1316 * @dev: pointer to the device struct 1317 * @h: pointer to the list head to be freed 1318 * 1319 * Helper function to free filter lists previously created using 1320 * ice_add_mac_to_list 1321 */ 1322 void ice_free_fltr_list(struct device *dev, struct list_head *h) 1323 { 1324 struct ice_fltr_list_entry *e, *tmp; 1325 1326 list_for_each_entry_safe(e, tmp, h, list_entry) { 1327 list_del(&e->list_entry); 1328 devm_kfree(dev, e); 1329 } 1330 } 1331 1332 /** 1333 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1334 * @vsi: the VSI being configured 1335 * @vid: VLAN ID to be added 1336 */ 1337 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid) 1338 { 1339 struct ice_fltr_list_entry *tmp; 1340 struct ice_pf *pf = vsi->back; 1341 LIST_HEAD(tmp_add_list); 1342 enum ice_status status; 1343 struct device *dev; 1344 int err = 0; 1345 1346 dev = ice_pf_to_dev(pf); 1347 tmp = devm_kzalloc(dev, sizeof(*tmp), GFP_KERNEL); 1348 if (!tmp) 1349 return -ENOMEM; 1350 1351 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1352 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1353 tmp->fltr_info.flag = ICE_FLTR_TX; 1354 tmp->fltr_info.src_id = ICE_SRC_ID_VSI; 1355 tmp->fltr_info.vsi_handle = vsi->idx; 1356 tmp->fltr_info.l_data.vlan.vlan_id = vid; 1357 1358 INIT_LIST_HEAD(&tmp->list_entry); 1359 list_add(&tmp->list_entry, &tmp_add_list); 1360 1361 status = ice_add_vlan(&pf->hw, &tmp_add_list); 1362 if (!status) { 1363 vsi->num_vlan++; 1364 } else { 1365 err = -ENODEV; 1366 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1367 vsi->vsi_num); 1368 } 1369 1370 ice_free_fltr_list(dev, &tmp_add_list); 1371 return err; 1372 } 1373 1374 /** 1375 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1376 * @vsi: the VSI being configured 1377 * @vid: VLAN ID to be removed 1378 * 1379 * Returns 0 on success and negative on failure 1380 */ 1381 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1382 { 1383 struct ice_fltr_list_entry *list; 1384 struct ice_pf *pf = vsi->back; 1385 LIST_HEAD(tmp_add_list); 1386 enum ice_status status; 1387 struct device *dev; 1388 int err = 0; 1389 1390 dev = ice_pf_to_dev(pf); 1391 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1392 if (!list) 1393 return -ENOMEM; 1394 1395 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN; 1396 list->fltr_info.vsi_handle = vsi->idx; 1397 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1398 list->fltr_info.l_data.vlan.vlan_id = vid; 1399 list->fltr_info.flag = ICE_FLTR_TX; 1400 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1401 1402 INIT_LIST_HEAD(&list->list_entry); 1403 list_add(&list->list_entry, &tmp_add_list); 1404 1405 status = ice_remove_vlan(&pf->hw, &tmp_add_list); 1406 if (!status) { 1407 vsi->num_vlan--; 1408 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1409 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n", 1410 vid, vsi->vsi_num, status); 1411 } else { 1412 dev_err(dev, "Error removing VLAN %d on vsi %i error: %d\n", 1413 vid, vsi->vsi_num, status); 1414 err = -EIO; 1415 } 1416 1417 ice_free_fltr_list(dev, &tmp_add_list); 1418 return err; 1419 } 1420 1421 /** 1422 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1423 * @vsi: VSI 1424 */ 1425 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1426 { 1427 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1428 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1429 vsi->rx_buf_len = ICE_RXBUF_2048; 1430 #if (PAGE_SIZE < 8192) 1431 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1432 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1433 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1434 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1435 #endif 1436 } else { 1437 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1438 #if (PAGE_SIZE < 8192) 1439 vsi->rx_buf_len = ICE_RXBUF_3072; 1440 #else 1441 vsi->rx_buf_len = ICE_RXBUF_2048; 1442 #endif 1443 } 1444 } 1445 1446 /** 1447 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1448 * @vsi: the VSI being configured 1449 * 1450 * Return 0 on success and a negative value on error 1451 * Configure the Rx VSI for operation. 1452 */ 1453 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1454 { 1455 u16 i; 1456 1457 if (vsi->type == ICE_VSI_VF) 1458 goto setup_rings; 1459 1460 ice_vsi_cfg_frame_size(vsi); 1461 setup_rings: 1462 /* set up individual rings */ 1463 for (i = 0; i < vsi->num_rxq; i++) { 1464 int err; 1465 1466 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1467 if (err) { 1468 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1469 i, err); 1470 return err; 1471 } 1472 } 1473 1474 return 0; 1475 } 1476 1477 /** 1478 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1479 * @vsi: the VSI being configured 1480 * @rings: Tx ring array to be configured 1481 * 1482 * Return 0 on success and a negative value on error 1483 * Configure the Tx VSI for operation. 1484 */ 1485 static int 1486 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1487 { 1488 struct ice_aqc_add_tx_qgrp *qg_buf; 1489 u16 q_idx = 0; 1490 int err = 0; 1491 1492 qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); 1493 if (!qg_buf) 1494 return -ENOMEM; 1495 1496 qg_buf->num_txqs = 1; 1497 1498 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1499 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1500 if (err) 1501 goto err_cfg_txqs; 1502 } 1503 1504 err_cfg_txqs: 1505 kfree(qg_buf); 1506 return err; 1507 } 1508 1509 /** 1510 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1511 * @vsi: the VSI being configured 1512 * 1513 * Return 0 on success and a negative value on error 1514 * Configure the Tx VSI for operation. 1515 */ 1516 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1517 { 1518 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1519 } 1520 1521 /** 1522 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1523 * @vsi: the VSI being configured 1524 * 1525 * Return 0 on success and a negative value on error 1526 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1527 */ 1528 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1529 { 1530 int ret; 1531 int i; 1532 1533 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1534 if (ret) 1535 return ret; 1536 1537 for (i = 0; i < vsi->num_xdp_txq; i++) 1538 vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]); 1539 1540 return ret; 1541 } 1542 1543 /** 1544 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1545 * @intrl: interrupt rate limit in usecs 1546 * @gran: interrupt rate limit granularity in usecs 1547 * 1548 * This function converts a decimal interrupt rate limit in usecs to the format 1549 * expected by firmware. 1550 */ 1551 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1552 { 1553 u32 val = intrl / gran; 1554 1555 if (val) 1556 return val | GLINT_RATE_INTRL_ENA_M; 1557 return 0; 1558 } 1559 1560 /** 1561 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1562 * @vsi: the VSI being configured 1563 * 1564 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1565 * for the VF VSI. 1566 */ 1567 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1568 { 1569 struct ice_pf *pf = vsi->back; 1570 struct ice_hw *hw = &pf->hw; 1571 u32 txq = 0, rxq = 0; 1572 int i, q; 1573 1574 for (i = 0; i < vsi->num_q_vectors; i++) { 1575 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1576 u16 reg_idx = q_vector->reg_idx; 1577 1578 ice_cfg_itr(hw, q_vector); 1579 1580 wr32(hw, GLINT_RATE(reg_idx), 1581 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1582 1583 /* Both Transmit Queue Interrupt Cause Control register 1584 * and Receive Queue Interrupt Cause control register 1585 * expects MSIX_INDX field to be the vector index 1586 * within the function space and not the absolute 1587 * vector index across PF or across device. 1588 * For SR-IOV VF VSIs queue vector index always starts 1589 * with 1 since first vector index(0) is used for OICR 1590 * in VF space. Since VMDq and other PF VSIs are within 1591 * the PF function space, use the vector index that is 1592 * tracked for this PF. 1593 */ 1594 for (q = 0; q < q_vector->num_ring_tx; q++) { 1595 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1596 q_vector->tx.itr_idx); 1597 txq++; 1598 } 1599 1600 for (q = 0; q < q_vector->num_ring_rx; q++) { 1601 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1602 q_vector->rx.itr_idx); 1603 rxq++; 1604 } 1605 } 1606 } 1607 1608 /** 1609 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1610 * @vsi: the VSI being changed 1611 */ 1612 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1613 { 1614 struct ice_hw *hw = &vsi->back->hw; 1615 struct ice_vsi_ctx *ctxt; 1616 enum ice_status status; 1617 int ret = 0; 1618 1619 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1620 if (!ctxt) 1621 return -ENOMEM; 1622 1623 /* Here we are configuring the VSI to let the driver add VLAN tags by 1624 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1625 * insertion happens in the Tx hot path, in ice_tx_map. 1626 */ 1627 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1628 1629 /* Preserve existing VLAN strip setting */ 1630 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1631 ICE_AQ_VSI_VLAN_EMOD_M); 1632 1633 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1634 1635 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1636 if (status) { 1637 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %d aq_err %d\n", 1638 status, hw->adminq.sq_last_status); 1639 ret = -EIO; 1640 goto out; 1641 } 1642 1643 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1644 out: 1645 kfree(ctxt); 1646 return ret; 1647 } 1648 1649 /** 1650 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1651 * @vsi: the VSI being changed 1652 * @ena: boolean value indicating if this is a enable or disable request 1653 */ 1654 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1655 { 1656 struct ice_hw *hw = &vsi->back->hw; 1657 struct ice_vsi_ctx *ctxt; 1658 enum ice_status status; 1659 int ret = 0; 1660 1661 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1662 if (!ctxt) 1663 return -ENOMEM; 1664 1665 /* Here we are configuring what the VSI should do with the VLAN tag in 1666 * the Rx packet. We can either leave the tag in the packet or put it in 1667 * the Rx descriptor. 1668 */ 1669 if (ena) 1670 /* Strip VLAN tag from Rx packet and put it in the desc */ 1671 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1672 else 1673 /* Disable stripping. Leave tag in packet */ 1674 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1675 1676 /* Allow all packets untagged/tagged */ 1677 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1678 1679 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1680 1681 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1682 if (status) { 1683 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n", 1684 ena, status, hw->adminq.sq_last_status); 1685 ret = -EIO; 1686 goto out; 1687 } 1688 1689 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1690 out: 1691 kfree(ctxt); 1692 return ret; 1693 } 1694 1695 /** 1696 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1697 * @vsi: the VSI whose rings are to be enabled 1698 * 1699 * Returns 0 on success and a negative value on error 1700 */ 1701 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1702 { 1703 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1704 } 1705 1706 /** 1707 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1708 * @vsi: the VSI whose rings are to be disabled 1709 * 1710 * Returns 0 on success and a negative value on error 1711 */ 1712 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1713 { 1714 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1715 } 1716 1717 /** 1718 * ice_vsi_stop_tx_rings - Disable Tx rings 1719 * @vsi: the VSI being configured 1720 * @rst_src: reset source 1721 * @rel_vmvf_num: Relative ID of VF/VM 1722 * @rings: Tx ring array to be stopped 1723 */ 1724 static int 1725 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1726 u16 rel_vmvf_num, struct ice_ring **rings) 1727 { 1728 u16 q_idx; 1729 1730 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1731 return -EINVAL; 1732 1733 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1734 struct ice_txq_meta txq_meta = { }; 1735 int status; 1736 1737 if (!rings || !rings[q_idx]) 1738 return -EINVAL; 1739 1740 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1741 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1742 rings[q_idx], &txq_meta); 1743 1744 if (status) 1745 return status; 1746 } 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1753 * @vsi: the VSI being configured 1754 * @rst_src: reset source 1755 * @rel_vmvf_num: Relative ID of VF/VM 1756 */ 1757 int 1758 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1759 u16 rel_vmvf_num) 1760 { 1761 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1762 } 1763 1764 /** 1765 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1766 * @vsi: the VSI being configured 1767 */ 1768 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 1769 { 1770 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 1771 } 1772 1773 /** 1774 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1775 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1776 * 1777 * returns true if Rx VLAN pruning and Tx VLAN anti-spoof is enabled and false 1778 * otherwise. 1779 */ 1780 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1781 { 1782 u8 rx_pruning = ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1783 u8 tx_pruning = ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1784 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S; 1785 1786 if (!vsi) 1787 return false; 1788 1789 return ((vsi->info.sw_flags2 & rx_pruning) && 1790 (vsi->info.sec_flags & tx_pruning)); 1791 } 1792 1793 /** 1794 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 1795 * @vsi: VSI to enable or disable VLAN pruning on 1796 * @ena: set to true to enable VLAN pruning and false to disable it 1797 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 1798 * 1799 * returns 0 if VSI is updated, negative otherwise 1800 */ 1801 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 1802 { 1803 struct ice_vsi_ctx *ctxt; 1804 struct ice_pf *pf; 1805 int status; 1806 1807 if (!vsi) 1808 return -EINVAL; 1809 1810 pf = vsi->back; 1811 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1812 if (!ctxt) 1813 return -ENOMEM; 1814 1815 ctxt->info = vsi->info; 1816 1817 if (ena) 1818 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1819 else 1820 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1821 1822 if (!vlan_promisc) 1823 ctxt->info.valid_sections = 1824 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 1825 1826 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 1827 if (status) { 1828 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n", 1829 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status, 1830 pf->hw.adminq.sq_last_status); 1831 goto err_out; 1832 } 1833 1834 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 1835 1836 kfree(ctxt); 1837 return 0; 1838 1839 err_out: 1840 kfree(ctxt); 1841 return -EIO; 1842 } 1843 1844 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 1845 { 1846 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg; 1847 1848 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 1849 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 1850 } 1851 1852 /** 1853 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 1854 * @vsi: VSI to set the q_vectors register index on 1855 */ 1856 static int 1857 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 1858 { 1859 u16 i; 1860 1861 if (!vsi || !vsi->q_vectors) 1862 return -EINVAL; 1863 1864 ice_for_each_q_vector(vsi, i) { 1865 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1866 1867 if (!q_vector) { 1868 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 1869 i, vsi->vsi_num); 1870 goto clear_reg_idx; 1871 } 1872 1873 if (vsi->type == ICE_VSI_VF) { 1874 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 1875 1876 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 1877 } else { 1878 q_vector->reg_idx = 1879 q_vector->v_idx + vsi->base_vector; 1880 } 1881 } 1882 1883 return 0; 1884 1885 clear_reg_idx: 1886 ice_for_each_q_vector(vsi, i) { 1887 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1888 1889 if (q_vector) 1890 q_vector->reg_idx = 0; 1891 } 1892 1893 return -EINVAL; 1894 } 1895 1896 /** 1897 * ice_vsi_add_rem_eth_mac - Program VSI ethertype based filter with rule 1898 * @vsi: the VSI being configured 1899 * @add_rule: boolean value to add or remove ethertype filter rule 1900 */ 1901 static void 1902 ice_vsi_add_rem_eth_mac(struct ice_vsi *vsi, bool add_rule) 1903 { 1904 struct ice_fltr_list_entry *list; 1905 struct ice_pf *pf = vsi->back; 1906 LIST_HEAD(tmp_add_list); 1907 enum ice_status status; 1908 struct device *dev; 1909 1910 dev = ice_pf_to_dev(pf); 1911 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1912 if (!list) 1913 return; 1914 1915 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1916 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1917 list->fltr_info.flag = ICE_FLTR_TX; 1918 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1919 list->fltr_info.vsi_handle = vsi->idx; 1920 list->fltr_info.l_data.ethertype_mac.ethertype = vsi->ethtype; 1921 1922 INIT_LIST_HEAD(&list->list_entry); 1923 list_add(&list->list_entry, &tmp_add_list); 1924 1925 if (add_rule) 1926 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1927 else 1928 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1929 1930 if (status) 1931 dev_err(dev, "Failure Adding or Removing Ethertype on VSI %i error: %d\n", 1932 vsi->vsi_num, status); 1933 1934 ice_free_fltr_list(dev, &tmp_add_list); 1935 } 1936 1937 /** 1938 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 1939 * @vsi: the VSI being configured 1940 * @tx: bool to determine Tx or Rx rule 1941 * @create: bool to determine create or remove Rule 1942 */ 1943 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 1944 { 1945 struct ice_fltr_list_entry *list; 1946 struct ice_pf *pf = vsi->back; 1947 LIST_HEAD(tmp_add_list); 1948 enum ice_status status; 1949 struct device *dev; 1950 1951 dev = ice_pf_to_dev(pf); 1952 list = devm_kzalloc(dev, sizeof(*list), GFP_KERNEL); 1953 if (!list) 1954 return; 1955 1956 list->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE; 1957 list->fltr_info.vsi_handle = vsi->idx; 1958 list->fltr_info.l_data.ethertype_mac.ethertype = ETH_P_LLDP; 1959 1960 if (tx) { 1961 list->fltr_info.fltr_act = ICE_DROP_PACKET; 1962 list->fltr_info.flag = ICE_FLTR_TX; 1963 list->fltr_info.src_id = ICE_SRC_ID_VSI; 1964 } else { 1965 list->fltr_info.fltr_act = ICE_FWD_TO_VSI; 1966 list->fltr_info.flag = ICE_FLTR_RX; 1967 list->fltr_info.src_id = ICE_SRC_ID_LPORT; 1968 } 1969 1970 INIT_LIST_HEAD(&list->list_entry); 1971 list_add(&list->list_entry, &tmp_add_list); 1972 1973 if (create) 1974 status = ice_add_eth_mac(&pf->hw, &tmp_add_list); 1975 else 1976 status = ice_remove_eth_mac(&pf->hw, &tmp_add_list); 1977 1978 if (status) 1979 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 1980 create ? "adding" : "removing", tx ? "TX" : "RX", 1981 vsi->vsi_num, status); 1982 1983 ice_free_fltr_list(dev, &tmp_add_list); 1984 } 1985 1986 /** 1987 * ice_vsi_setup - Set up a VSI by a given type 1988 * @pf: board private structure 1989 * @pi: pointer to the port_info instance 1990 * @type: VSI type 1991 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 1992 * used only for ICE_VSI_VF VSI type. For other VSI types, should 1993 * fill-in ICE_INVAL_VFID as input. 1994 * 1995 * This allocates the sw VSI structure and its queue resources. 1996 * 1997 * Returns pointer to the successfully allocated and configured VSI sw struct on 1998 * success, NULL on failure. 1999 */ 2000 struct ice_vsi * 2001 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2002 enum ice_vsi_type type, u16 vf_id) 2003 { 2004 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2005 struct device *dev = ice_pf_to_dev(pf); 2006 enum ice_status status; 2007 struct ice_vsi *vsi; 2008 int ret, i; 2009 2010 if (type == ICE_VSI_VF) 2011 vsi = ice_vsi_alloc(pf, type, vf_id); 2012 else 2013 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID); 2014 2015 if (!vsi) { 2016 dev_err(dev, "could not allocate VSI\n"); 2017 return NULL; 2018 } 2019 2020 vsi->port_info = pi; 2021 vsi->vsw = pf->first_sw; 2022 if (vsi->type == ICE_VSI_PF) 2023 vsi->ethtype = ETH_P_PAUSE; 2024 2025 if (vsi->type == ICE_VSI_VF) 2026 vsi->vf_id = vf_id; 2027 2028 if (ice_vsi_get_qs(vsi)) { 2029 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2030 vsi->idx); 2031 goto unroll_get_qs; 2032 } 2033 2034 /* set RSS capabilities */ 2035 ice_vsi_set_rss_params(vsi); 2036 2037 /* set TC configuration */ 2038 ice_vsi_set_tc_cfg(vsi); 2039 2040 /* create the VSI */ 2041 ret = ice_vsi_init(vsi, true); 2042 if (ret) 2043 goto unroll_get_qs; 2044 2045 switch (vsi->type) { 2046 case ICE_VSI_PF: 2047 ret = ice_vsi_alloc_q_vectors(vsi); 2048 if (ret) 2049 goto unroll_vsi_init; 2050 2051 ret = ice_vsi_setup_vector_base(vsi); 2052 if (ret) 2053 goto unroll_alloc_q_vector; 2054 2055 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2056 if (ret) 2057 goto unroll_vector_base; 2058 2059 ret = ice_vsi_alloc_rings(vsi); 2060 if (ret) 2061 goto unroll_vector_base; 2062 2063 /* Always add VLAN ID 0 switch rule by default. This is needed 2064 * in order to allow all untagged and 0 tagged priority traffic 2065 * if Rx VLAN pruning is enabled. Also there are cases where we 2066 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2067 * so this handles those cases (i.e. adding the PF to a bridge 2068 * without the 8021q module loaded). 2069 */ 2070 ret = ice_vsi_add_vlan(vsi, 0); 2071 if (ret) 2072 goto unroll_clear_rings; 2073 2074 ice_vsi_map_rings_to_vectors(vsi); 2075 2076 /* Do not exit if configuring RSS had an issue, at least 2077 * receive traffic on first queue. Hence no need to capture 2078 * return value 2079 */ 2080 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2081 ice_vsi_cfg_rss_lut_key(vsi); 2082 ice_vsi_set_rss_flow_fld(vsi); 2083 } 2084 break; 2085 case ICE_VSI_VF: 2086 /* VF driver will take care of creating netdev for this type and 2087 * map queues to vectors through Virtchnl, PF driver only 2088 * creates a VSI and corresponding structures for bookkeeping 2089 * purpose 2090 */ 2091 ret = ice_vsi_alloc_q_vectors(vsi); 2092 if (ret) 2093 goto unroll_vsi_init; 2094 2095 ret = ice_vsi_alloc_rings(vsi); 2096 if (ret) 2097 goto unroll_alloc_q_vector; 2098 2099 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2100 if (ret) 2101 goto unroll_vector_base; 2102 2103 /* Do not exit if configuring RSS had an issue, at least 2104 * receive traffic on first queue. Hence no need to capture 2105 * return value 2106 */ 2107 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2108 ice_vsi_cfg_rss_lut_key(vsi); 2109 ice_vsi_set_vf_rss_flow_fld(vsi); 2110 } 2111 break; 2112 case ICE_VSI_LB: 2113 ret = ice_vsi_alloc_rings(vsi); 2114 if (ret) 2115 goto unroll_vsi_init; 2116 break; 2117 default: 2118 /* clean up the resources and exit */ 2119 goto unroll_vsi_init; 2120 } 2121 2122 /* configure VSI nodes based on number of queues and TC's */ 2123 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2124 max_txqs[i] = vsi->alloc_txq; 2125 2126 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2127 max_txqs); 2128 if (status) { 2129 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2130 vsi->vsi_num, status); 2131 goto unroll_vector_base; 2132 } 2133 2134 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2135 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2136 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2137 * The rule is added once for PF VSI in order to create appropriate 2138 * recipe, since VSI/VSI list is ignored with drop action... 2139 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2140 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2141 * settings in the HW. 2142 */ 2143 if (!ice_is_safe_mode(pf)) 2144 if (vsi->type == ICE_VSI_PF) { 2145 ice_vsi_add_rem_eth_mac(vsi, true); 2146 2147 /* Tx LLDP packets */ 2148 ice_cfg_sw_lldp(vsi, true, true); 2149 } 2150 2151 return vsi; 2152 2153 unroll_clear_rings: 2154 ice_vsi_clear_rings(vsi); 2155 unroll_vector_base: 2156 /* reclaim SW interrupts back to the common pool */ 2157 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2158 pf->num_avail_sw_msix += vsi->num_q_vectors; 2159 unroll_alloc_q_vector: 2160 ice_vsi_free_q_vectors(vsi); 2161 unroll_vsi_init: 2162 ice_vsi_delete(vsi); 2163 unroll_get_qs: 2164 ice_vsi_put_qs(vsi); 2165 ice_vsi_clear(vsi); 2166 2167 return NULL; 2168 } 2169 2170 /** 2171 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2172 * @vsi: the VSI being cleaned up 2173 */ 2174 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2175 { 2176 struct ice_pf *pf = vsi->back; 2177 struct ice_hw *hw = &pf->hw; 2178 u32 txq = 0; 2179 u32 rxq = 0; 2180 int i, q; 2181 2182 for (i = 0; i < vsi->num_q_vectors; i++) { 2183 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2184 u16 reg_idx = q_vector->reg_idx; 2185 2186 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2187 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2188 for (q = 0; q < q_vector->num_ring_tx; q++) { 2189 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2190 if (ice_is_xdp_ena_vsi(vsi)) { 2191 u32 xdp_txq = txq + vsi->num_xdp_txq; 2192 2193 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2194 } 2195 txq++; 2196 } 2197 2198 for (q = 0; q < q_vector->num_ring_rx; q++) { 2199 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2200 rxq++; 2201 } 2202 } 2203 2204 ice_flush(hw); 2205 } 2206 2207 /** 2208 * ice_vsi_free_irq - Free the IRQ association with the OS 2209 * @vsi: the VSI being configured 2210 */ 2211 void ice_vsi_free_irq(struct ice_vsi *vsi) 2212 { 2213 struct ice_pf *pf = vsi->back; 2214 int base = vsi->base_vector; 2215 int i; 2216 2217 if (!vsi->q_vectors || !vsi->irqs_ready) 2218 return; 2219 2220 ice_vsi_release_msix(vsi); 2221 if (vsi->type == ICE_VSI_VF) 2222 return; 2223 2224 vsi->irqs_ready = false; 2225 ice_for_each_q_vector(vsi, i) { 2226 u16 vector = i + base; 2227 int irq_num; 2228 2229 irq_num = pf->msix_entries[vector].vector; 2230 2231 /* free only the irqs that were actually requested */ 2232 if (!vsi->q_vectors[i] || 2233 !(vsi->q_vectors[i]->num_ring_tx || 2234 vsi->q_vectors[i]->num_ring_rx)) 2235 continue; 2236 2237 /* clear the affinity notifier in the IRQ descriptor */ 2238 irq_set_affinity_notifier(irq_num, NULL); 2239 2240 /* clear the affinity_mask in the IRQ descriptor */ 2241 irq_set_affinity_hint(irq_num, NULL); 2242 synchronize_irq(irq_num); 2243 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2244 } 2245 } 2246 2247 /** 2248 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2249 * @vsi: the VSI having resources freed 2250 */ 2251 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2252 { 2253 int i; 2254 2255 if (!vsi->tx_rings) 2256 return; 2257 2258 ice_for_each_txq(vsi, i) 2259 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2260 ice_free_tx_ring(vsi->tx_rings[i]); 2261 } 2262 2263 /** 2264 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2265 * @vsi: the VSI having resources freed 2266 */ 2267 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2268 { 2269 int i; 2270 2271 if (!vsi->rx_rings) 2272 return; 2273 2274 ice_for_each_rxq(vsi, i) 2275 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2276 ice_free_rx_ring(vsi->rx_rings[i]); 2277 } 2278 2279 /** 2280 * ice_vsi_close - Shut down a VSI 2281 * @vsi: the VSI being shut down 2282 */ 2283 void ice_vsi_close(struct ice_vsi *vsi) 2284 { 2285 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2286 ice_down(vsi); 2287 2288 ice_vsi_free_irq(vsi); 2289 ice_vsi_free_tx_rings(vsi); 2290 ice_vsi_free_rx_rings(vsi); 2291 } 2292 2293 /** 2294 * ice_ena_vsi - resume a VSI 2295 * @vsi: the VSI being resume 2296 * @locked: is the rtnl_lock already held 2297 */ 2298 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2299 { 2300 int err = 0; 2301 2302 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2303 return 0; 2304 2305 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2306 2307 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2308 if (netif_running(vsi->netdev)) { 2309 if (!locked) 2310 rtnl_lock(); 2311 2312 err = ice_open(vsi->netdev); 2313 2314 if (!locked) 2315 rtnl_unlock(); 2316 } 2317 } 2318 2319 return err; 2320 } 2321 2322 /** 2323 * ice_dis_vsi - pause a VSI 2324 * @vsi: the VSI being paused 2325 * @locked: is the rtnl_lock already held 2326 */ 2327 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2328 { 2329 if (test_bit(__ICE_DOWN, vsi->state)) 2330 return; 2331 2332 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2333 2334 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2335 if (netif_running(vsi->netdev)) { 2336 if (!locked) 2337 rtnl_lock(); 2338 2339 ice_stop(vsi->netdev); 2340 2341 if (!locked) 2342 rtnl_unlock(); 2343 } else { 2344 ice_vsi_close(vsi); 2345 } 2346 } 2347 } 2348 2349 /** 2350 * ice_free_res - free a block of resources 2351 * @res: pointer to the resource 2352 * @index: starting index previously returned by ice_get_res 2353 * @id: identifier to track owner 2354 * 2355 * Returns number of resources freed 2356 */ 2357 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 2358 { 2359 int count = 0; 2360 int i; 2361 2362 if (!res || index >= res->end) 2363 return -EINVAL; 2364 2365 id |= ICE_RES_VALID_BIT; 2366 for (i = index; i < res->end && res->list[i] == id; i++) { 2367 res->list[i] = 0; 2368 count++; 2369 } 2370 2371 return count; 2372 } 2373 2374 /** 2375 * ice_search_res - Search the tracker for a block of resources 2376 * @res: pointer to the resource 2377 * @needed: size of the block needed 2378 * @id: identifier to track owner 2379 * 2380 * Returns the base item index of the block, or -ENOMEM for error 2381 */ 2382 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 2383 { 2384 int start = 0, end = 0; 2385 2386 if (needed > res->end) 2387 return -ENOMEM; 2388 2389 id |= ICE_RES_VALID_BIT; 2390 2391 do { 2392 /* skip already allocated entries */ 2393 if (res->list[end++] & ICE_RES_VALID_BIT) { 2394 start = end; 2395 if ((start + needed) > res->end) 2396 break; 2397 } 2398 2399 if (end == (start + needed)) { 2400 int i = start; 2401 2402 /* there was enough, so assign it to the requestor */ 2403 while (i != end) 2404 res->list[i++] = id; 2405 2406 return start; 2407 } 2408 } while (end < res->end); 2409 2410 return -ENOMEM; 2411 } 2412 2413 /** 2414 * ice_get_res - get a block of resources 2415 * @pf: board private structure 2416 * @res: pointer to the resource 2417 * @needed: size of the block needed 2418 * @id: identifier to track owner 2419 * 2420 * Returns the base item index of the block, or negative for error 2421 */ 2422 int 2423 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 2424 { 2425 if (!res || !pf) 2426 return -EINVAL; 2427 2428 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 2429 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 2430 needed, res->num_entries, id); 2431 return -EINVAL; 2432 } 2433 2434 return ice_search_res(res, needed, id); 2435 } 2436 2437 /** 2438 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2439 * @vsi: the VSI being un-configured 2440 */ 2441 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2442 { 2443 int base = vsi->base_vector; 2444 struct ice_pf *pf = vsi->back; 2445 struct ice_hw *hw = &pf->hw; 2446 u32 val; 2447 int i; 2448 2449 /* disable interrupt causation from each queue */ 2450 if (vsi->tx_rings) { 2451 ice_for_each_txq(vsi, i) { 2452 if (vsi->tx_rings[i]) { 2453 u16 reg; 2454 2455 reg = vsi->tx_rings[i]->reg_idx; 2456 val = rd32(hw, QINT_TQCTL(reg)); 2457 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2458 wr32(hw, QINT_TQCTL(reg), val); 2459 } 2460 } 2461 } 2462 2463 if (vsi->rx_rings) { 2464 ice_for_each_rxq(vsi, i) { 2465 if (vsi->rx_rings[i]) { 2466 u16 reg; 2467 2468 reg = vsi->rx_rings[i]->reg_idx; 2469 val = rd32(hw, QINT_RQCTL(reg)); 2470 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2471 wr32(hw, QINT_RQCTL(reg), val); 2472 } 2473 } 2474 } 2475 2476 /* disable each interrupt */ 2477 ice_for_each_q_vector(vsi, i) { 2478 if (!vsi->q_vectors[i]) 2479 continue; 2480 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2481 } 2482 2483 ice_flush(hw); 2484 2485 /* don't call synchronize_irq() for VF's from the host */ 2486 if (vsi->type == ICE_VSI_VF) 2487 return; 2488 2489 ice_for_each_q_vector(vsi, i) 2490 synchronize_irq(pf->msix_entries[i + base].vector); 2491 } 2492 2493 /** 2494 * ice_napi_del - Remove NAPI handler for the VSI 2495 * @vsi: VSI for which NAPI handler is to be removed 2496 */ 2497 void ice_napi_del(struct ice_vsi *vsi) 2498 { 2499 int v_idx; 2500 2501 if (!vsi->netdev) 2502 return; 2503 2504 ice_for_each_q_vector(vsi, v_idx) 2505 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2506 } 2507 2508 /** 2509 * ice_vsi_release - Delete a VSI and free its resources 2510 * @vsi: the VSI being removed 2511 * 2512 * Returns 0 on success or < 0 on error 2513 */ 2514 int ice_vsi_release(struct ice_vsi *vsi) 2515 { 2516 struct ice_pf *pf; 2517 2518 if (!vsi->back) 2519 return -ENODEV; 2520 pf = vsi->back; 2521 2522 /* do not unregister while driver is in the reset recovery pending 2523 * state. Since reset/rebuild happens through PF service task workqueue, 2524 * it's not a good idea to unregister netdev that is associated to the 2525 * PF that is running the work queue items currently. This is done to 2526 * avoid check_flush_dependency() warning on this wq 2527 */ 2528 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) 2529 unregister_netdev(vsi->netdev); 2530 2531 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2532 ice_rss_clean(vsi); 2533 2534 /* Disable VSI and free resources */ 2535 if (vsi->type != ICE_VSI_LB) 2536 ice_vsi_dis_irq(vsi); 2537 ice_vsi_close(vsi); 2538 2539 /* SR-IOV determines needed MSIX resources all at once instead of per 2540 * VSI since when VFs are spawned we know how many VFs there are and how 2541 * many interrupts each VF needs. SR-IOV MSIX resources are also 2542 * cleared in the same manner. 2543 */ 2544 if (vsi->type != ICE_VSI_VF) { 2545 /* reclaim SW interrupts back to the common pool */ 2546 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2547 pf->num_avail_sw_msix += vsi->num_q_vectors; 2548 } 2549 2550 if (!ice_is_safe_mode(pf)) { 2551 if (vsi->type == ICE_VSI_PF) { 2552 ice_vsi_add_rem_eth_mac(vsi, false); 2553 ice_cfg_sw_lldp(vsi, true, false); 2554 /* The Rx rule will only exist to remove if the LLDP FW 2555 * engine is currently stopped 2556 */ 2557 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2558 ice_cfg_sw_lldp(vsi, false, false); 2559 } 2560 } 2561 2562 ice_remove_vsi_fltr(&pf->hw, vsi->idx); 2563 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2564 ice_vsi_delete(vsi); 2565 ice_vsi_free_q_vectors(vsi); 2566 2567 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2568 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2569 free_netdev(vsi->netdev); 2570 vsi->netdev = NULL; 2571 } 2572 2573 ice_vsi_clear_rings(vsi); 2574 2575 ice_vsi_put_qs(vsi); 2576 2577 /* retain SW VSI data structure since it is needed to unregister and 2578 * free VSI netdev when PF is not in reset recovery pending state,\ 2579 * for ex: during rmmod. 2580 */ 2581 if (!ice_is_reset_in_progress(pf->state)) 2582 ice_vsi_clear(vsi); 2583 2584 return 0; 2585 } 2586 2587 /** 2588 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2589 * @q_vector: pointer to q_vector which is being updated 2590 * @coalesce: pointer to array of struct with stored coalesce 2591 * 2592 * Set coalesce param in q_vector and update these parameters in HW. 2593 */ 2594 static void 2595 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2596 struct ice_coalesce_stored *coalesce) 2597 { 2598 struct ice_ring_container *rx_rc = &q_vector->rx; 2599 struct ice_ring_container *tx_rc = &q_vector->tx; 2600 struct ice_hw *hw = &q_vector->vsi->back->hw; 2601 2602 tx_rc->itr_setting = coalesce->itr_tx; 2603 rx_rc->itr_setting = coalesce->itr_rx; 2604 2605 /* dynamic ITR values will be updated during Tx/Rx */ 2606 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2607 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2608 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2609 ICE_ITR_GRAN_S); 2610 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2611 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2612 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2613 ICE_ITR_GRAN_S); 2614 2615 q_vector->intrl = coalesce->intrl; 2616 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2617 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2618 } 2619 2620 /** 2621 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2622 * @vsi: VSI connected with q_vectors 2623 * @coalesce: array of struct with stored coalesce 2624 * 2625 * Returns array size. 2626 */ 2627 static int 2628 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2629 struct ice_coalesce_stored *coalesce) 2630 { 2631 int i; 2632 2633 ice_for_each_q_vector(vsi, i) { 2634 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2635 2636 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2637 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2638 coalesce[i].intrl = q_vector->intrl; 2639 } 2640 2641 return vsi->num_q_vectors; 2642 } 2643 2644 /** 2645 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2646 * @vsi: VSI connected with q_vectors 2647 * @coalesce: pointer to array of struct with stored coalesce 2648 * @size: size of coalesce array 2649 * 2650 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2651 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2652 * to default value. 2653 */ 2654 static void 2655 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2656 struct ice_coalesce_stored *coalesce, int size) 2657 { 2658 int i; 2659 2660 if ((size && !coalesce) || !vsi) 2661 return; 2662 2663 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2664 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2665 &coalesce[i]); 2666 2667 for (; i < vsi->num_q_vectors; i++) { 2668 struct ice_coalesce_stored coalesce_dflt = { 2669 .itr_tx = ICE_DFLT_TX_ITR, 2670 .itr_rx = ICE_DFLT_RX_ITR, 2671 .intrl = 0 2672 }; 2673 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2674 &coalesce_dflt); 2675 } 2676 } 2677 2678 /** 2679 * ice_vsi_rebuild - Rebuild VSI after reset 2680 * @vsi: VSI to be rebuild 2681 * @init_vsi: is this an initialization or a reconfigure of the VSI 2682 * 2683 * Returns 0 on success and negative value on failure 2684 */ 2685 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2686 { 2687 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2688 struct ice_coalesce_stored *coalesce; 2689 int prev_num_q_vectors = 0; 2690 struct ice_vf *vf = NULL; 2691 enum ice_status status; 2692 struct ice_pf *pf; 2693 int ret, i; 2694 2695 if (!vsi) 2696 return -EINVAL; 2697 2698 pf = vsi->back; 2699 if (vsi->type == ICE_VSI_VF) 2700 vf = &pf->vf[vsi->vf_id]; 2701 2702 coalesce = kcalloc(vsi->num_q_vectors, 2703 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2704 if (coalesce) 2705 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2706 coalesce); 2707 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2708 ice_vsi_free_q_vectors(vsi); 2709 2710 /* SR-IOV determines needed MSIX resources all at once instead of per 2711 * VSI since when VFs are spawned we know how many VFs there are and how 2712 * many interrupts each VF needs. SR-IOV MSIX resources are also 2713 * cleared in the same manner. 2714 */ 2715 if (vsi->type != ICE_VSI_VF) { 2716 /* reclaim SW interrupts back to the common pool */ 2717 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2718 pf->num_avail_sw_msix += vsi->num_q_vectors; 2719 vsi->base_vector = 0; 2720 } 2721 2722 if (ice_is_xdp_ena_vsi(vsi)) 2723 /* return value check can be skipped here, it always returns 2724 * 0 if reset is in progress 2725 */ 2726 ice_destroy_xdp_rings(vsi); 2727 ice_vsi_put_qs(vsi); 2728 ice_vsi_clear_rings(vsi); 2729 ice_vsi_free_arrays(vsi); 2730 if (vsi->type == ICE_VSI_VF) 2731 ice_vsi_set_num_qs(vsi, vf->vf_id); 2732 else 2733 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2734 2735 ret = ice_vsi_alloc_arrays(vsi); 2736 if (ret < 0) 2737 goto err_vsi; 2738 2739 ice_vsi_get_qs(vsi); 2740 ice_vsi_set_tc_cfg(vsi); 2741 2742 /* Initialize VSI struct elements and create VSI in FW */ 2743 ret = ice_vsi_init(vsi, init_vsi); 2744 if (ret < 0) 2745 goto err_vsi; 2746 2747 switch (vsi->type) { 2748 case ICE_VSI_PF: 2749 ret = ice_vsi_alloc_q_vectors(vsi); 2750 if (ret) 2751 goto err_rings; 2752 2753 ret = ice_vsi_setup_vector_base(vsi); 2754 if (ret) 2755 goto err_vectors; 2756 2757 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2758 if (ret) 2759 goto err_vectors; 2760 2761 ret = ice_vsi_alloc_rings(vsi); 2762 if (ret) 2763 goto err_vectors; 2764 2765 ice_vsi_map_rings_to_vectors(vsi); 2766 if (ice_is_xdp_ena_vsi(vsi)) { 2767 vsi->num_xdp_txq = vsi->alloc_txq; 2768 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2769 if (ret) 2770 goto err_vectors; 2771 } 2772 /* Do not exit if configuring RSS had an issue, at least 2773 * receive traffic on first queue. Hence no need to capture 2774 * return value 2775 */ 2776 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2777 ice_vsi_cfg_rss_lut_key(vsi); 2778 break; 2779 case ICE_VSI_VF: 2780 ret = ice_vsi_alloc_q_vectors(vsi); 2781 if (ret) 2782 goto err_rings; 2783 2784 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2785 if (ret) 2786 goto err_vectors; 2787 2788 ret = ice_vsi_alloc_rings(vsi); 2789 if (ret) 2790 goto err_vectors; 2791 2792 break; 2793 default: 2794 break; 2795 } 2796 2797 /* configure VSI nodes based on number of queues and TC's */ 2798 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 2799 max_txqs[i] = vsi->alloc_txq; 2800 2801 if (ice_is_xdp_ena_vsi(vsi)) 2802 max_txqs[i] += vsi->num_xdp_txq; 2803 } 2804 2805 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2806 max_txqs); 2807 if (status) { 2808 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n", 2809 vsi->vsi_num, status); 2810 if (init_vsi) { 2811 ret = -EIO; 2812 goto err_vectors; 2813 } else { 2814 return ice_schedule_reset(pf, ICE_RESET_PFR); 2815 } 2816 } 2817 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 2818 kfree(coalesce); 2819 2820 return 0; 2821 2822 err_vectors: 2823 ice_vsi_free_q_vectors(vsi); 2824 err_rings: 2825 if (vsi->netdev) { 2826 vsi->current_netdev_flags = 0; 2827 unregister_netdev(vsi->netdev); 2828 free_netdev(vsi->netdev); 2829 vsi->netdev = NULL; 2830 } 2831 err_vsi: 2832 ice_vsi_clear(vsi); 2833 set_bit(__ICE_RESET_FAILED, pf->state); 2834 kfree(coalesce); 2835 return ret; 2836 } 2837 2838 /** 2839 * ice_is_reset_in_progress - check for a reset in progress 2840 * @state: PF state field 2841 */ 2842 bool ice_is_reset_in_progress(unsigned long *state) 2843 { 2844 return test_bit(__ICE_RESET_OICR_RECV, state) || 2845 test_bit(__ICE_DCBNL_DEVRESET, state) || 2846 test_bit(__ICE_PFR_REQ, state) || 2847 test_bit(__ICE_CORER_REQ, state) || 2848 test_bit(__ICE_GLOBR_REQ, state); 2849 } 2850 2851 #ifdef CONFIG_DCB 2852 /** 2853 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 2854 * @vsi: VSI being configured 2855 * @ctx: the context buffer returned from AQ VSI update command 2856 */ 2857 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 2858 { 2859 vsi->info.mapping_flags = ctx->info.mapping_flags; 2860 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 2861 sizeof(vsi->info.q_mapping)); 2862 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 2863 sizeof(vsi->info.tc_mapping)); 2864 } 2865 2866 /** 2867 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 2868 * @vsi: VSI to be configured 2869 * @ena_tc: TC bitmap 2870 * 2871 * VSI queues expected to be quiesced before calling this function 2872 */ 2873 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 2874 { 2875 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2876 struct ice_pf *pf = vsi->back; 2877 struct ice_vsi_ctx *ctx; 2878 enum ice_status status; 2879 struct device *dev; 2880 int i, ret = 0; 2881 u8 num_tc = 0; 2882 2883 dev = ice_pf_to_dev(pf); 2884 2885 ice_for_each_traffic_class(i) { 2886 /* build bitmap of enabled TCs */ 2887 if (ena_tc & BIT(i)) 2888 num_tc++; 2889 /* populate max_txqs per TC */ 2890 max_txqs[i] = vsi->alloc_txq; 2891 } 2892 2893 vsi->tc_cfg.ena_tc = ena_tc; 2894 vsi->tc_cfg.numtc = num_tc; 2895 2896 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2897 if (!ctx) 2898 return -ENOMEM; 2899 2900 ctx->vf_num = 0; 2901 ctx->info = vsi->info; 2902 2903 ice_vsi_setup_q_map(vsi, ctx); 2904 2905 /* must to indicate which section of VSI context are being modified */ 2906 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 2907 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 2908 if (status) { 2909 dev_info(dev, "Failed VSI Update\n"); 2910 ret = -EIO; 2911 goto out; 2912 } 2913 2914 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2915 max_txqs); 2916 2917 if (status) { 2918 dev_err(dev, "VSI %d failed TC config, error %d\n", 2919 vsi->vsi_num, status); 2920 ret = -EIO; 2921 goto out; 2922 } 2923 ice_vsi_update_q_map(vsi, ctx); 2924 vsi->info.valid_sections = 0; 2925 2926 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 2927 out: 2928 kfree(ctx); 2929 return ret; 2930 } 2931 #endif /* CONFIG_DCB */ 2932 2933 /** 2934 * ice_update_ring_stats - Update ring statistics 2935 * @ring: ring to update 2936 * @cont: used to increment per-vector counters 2937 * @pkts: number of processed packets 2938 * @bytes: number of processed bytes 2939 * 2940 * This function assumes that caller has acquired a u64_stats_sync lock. 2941 */ 2942 static void 2943 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 2944 u64 pkts, u64 bytes) 2945 { 2946 ring->stats.bytes += bytes; 2947 ring->stats.pkts += pkts; 2948 cont->total_bytes += bytes; 2949 cont->total_pkts += pkts; 2950 } 2951 2952 /** 2953 * ice_update_tx_ring_stats - Update Tx ring specific counters 2954 * @tx_ring: ring to update 2955 * @pkts: number of processed packets 2956 * @bytes: number of processed bytes 2957 */ 2958 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 2959 { 2960 u64_stats_update_begin(&tx_ring->syncp); 2961 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 2962 u64_stats_update_end(&tx_ring->syncp); 2963 } 2964 2965 /** 2966 * ice_update_rx_ring_stats - Update Rx ring specific counters 2967 * @rx_ring: ring to update 2968 * @pkts: number of processed packets 2969 * @bytes: number of processed bytes 2970 */ 2971 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 2972 { 2973 u64_stats_update_begin(&rx_ring->syncp); 2974 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 2975 u64_stats_update_end(&rx_ring->syncp); 2976 } 2977 2978 /** 2979 * ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI 2980 * @vsi: the VSI being configured MAC filter 2981 * @macaddr: the MAC address to be added. 2982 * @set: Add or delete a MAC filter 2983 * 2984 * Adds or removes MAC address filter entry for VF VSI 2985 */ 2986 enum ice_status 2987 ice_vsi_cfg_mac_fltr(struct ice_vsi *vsi, const u8 *macaddr, bool set) 2988 { 2989 LIST_HEAD(tmp_add_list); 2990 enum ice_status status; 2991 2992 /* Update MAC filter list to be added or removed for a VSI */ 2993 if (ice_add_mac_to_list(vsi, &tmp_add_list, macaddr)) { 2994 status = ICE_ERR_NO_MEMORY; 2995 goto cfg_mac_fltr_exit; 2996 } 2997 2998 if (set) 2999 status = ice_add_mac(&vsi->back->hw, &tmp_add_list); 3000 else 3001 status = ice_remove_mac(&vsi->back->hw, &tmp_add_list); 3002 3003 cfg_mac_fltr_exit: 3004 ice_free_fltr_list(ice_pf_to_dev(vsi->back), &tmp_add_list); 3005 return status; 3006 } 3007 3008 /** 3009 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3010 * @sw: switch to check if its default forwarding VSI is free 3011 * 3012 * Return true if the default forwarding VSI is already being used, else returns 3013 * false signalling that it's available to use. 3014 */ 3015 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3016 { 3017 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3018 } 3019 3020 /** 3021 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3022 * @sw: switch for the default forwarding VSI to compare against 3023 * @vsi: VSI to compare against default forwarding VSI 3024 * 3025 * If this VSI passed in is the default forwarding VSI then return true, else 3026 * return false 3027 */ 3028 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3029 { 3030 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3031 } 3032 3033 /** 3034 * ice_set_dflt_vsi - set the default forwarding VSI 3035 * @sw: switch used to assign the default forwarding VSI 3036 * @vsi: VSI getting set as the default forwarding VSI on the switch 3037 * 3038 * If the VSI passed in is already the default VSI and it's enabled just return 3039 * success. 3040 * 3041 * If there is already a default VSI on the switch and it's enabled then return 3042 * -EEXIST since there can only be one default VSI per switch. 3043 * 3044 * Otherwise try to set the VSI passed in as the switch's default VSI and 3045 * return the result. 3046 */ 3047 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3048 { 3049 enum ice_status status; 3050 struct device *dev; 3051 3052 if (!sw || !vsi) 3053 return -EINVAL; 3054 3055 dev = ice_pf_to_dev(vsi->back); 3056 3057 /* the VSI passed in is already the default VSI */ 3058 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3059 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3060 vsi->vsi_num); 3061 return 0; 3062 } 3063 3064 /* another VSI is already the default VSI for this switch */ 3065 if (ice_is_dflt_vsi_in_use(sw)) { 3066 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3067 sw->dflt_vsi->vsi_num); 3068 return -EEXIST; 3069 } 3070 3071 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3072 if (status) { 3073 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3074 vsi->vsi_num, status); 3075 return -EIO; 3076 } 3077 3078 sw->dflt_vsi = vsi; 3079 sw->dflt_vsi_ena = true; 3080 3081 return 0; 3082 } 3083 3084 /** 3085 * ice_clear_dflt_vsi - clear the default forwarding VSI 3086 * @sw: switch used to clear the default VSI 3087 * 3088 * If the switch has no default VSI or it's not enabled then return error. 3089 * 3090 * Otherwise try to clear the default VSI and return the result. 3091 */ 3092 int ice_clear_dflt_vsi(struct ice_sw *sw) 3093 { 3094 struct ice_vsi *dflt_vsi; 3095 enum ice_status status; 3096 struct device *dev; 3097 3098 if (!sw) 3099 return -EINVAL; 3100 3101 dev = ice_pf_to_dev(sw->pf); 3102 3103 dflt_vsi = sw->dflt_vsi; 3104 3105 /* there is no default VSI configured */ 3106 if (!ice_is_dflt_vsi_in_use(sw)) 3107 return -ENODEV; 3108 3109 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3110 ICE_FLTR_RX); 3111 if (status) { 3112 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3113 dflt_vsi->vsi_num, status); 3114 return -EIO; 3115 } 3116 3117 sw->dflt_vsi = NULL; 3118 sw->dflt_vsi_ena = false; 3119 3120 return 0; 3121 } 3122