xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 1e73427f66353b7fe21c138787ff2b711ca1c0dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete_from_hw - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ice_fltr_remove_all(vsi);
295 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
296 	if (!ctxt)
297 		return;
298 
299 	if (vsi->type == ICE_VSI_VF)
300 		ctxt->vf_num = vsi->vf->vf_id;
301 	ctxt->vsi_num = vsi->vsi_num;
302 
303 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
304 
305 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
306 	if (status)
307 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
308 			vsi->vsi_num, status);
309 
310 	kfree(ctxt);
311 }
312 
313 /**
314  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
315  * @vsi: pointer to VSI being cleared
316  */
317 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
318 {
319 	struct ice_pf *pf = vsi->back;
320 	struct device *dev;
321 
322 	dev = ice_pf_to_dev(pf);
323 
324 	bitmap_free(vsi->af_xdp_zc_qps);
325 	vsi->af_xdp_zc_qps = NULL;
326 	/* free the ring and vector containers */
327 	devm_kfree(dev, vsi->q_vectors);
328 	vsi->q_vectors = NULL;
329 	devm_kfree(dev, vsi->tx_rings);
330 	vsi->tx_rings = NULL;
331 	devm_kfree(dev, vsi->rx_rings);
332 	vsi->rx_rings = NULL;
333 	devm_kfree(dev, vsi->txq_map);
334 	vsi->txq_map = NULL;
335 	devm_kfree(dev, vsi->rxq_map);
336 	vsi->rxq_map = NULL;
337 }
338 
339 /**
340  * ice_vsi_free_stats - Free the ring statistics structures
341  * @vsi: VSI pointer
342  */
343 static void ice_vsi_free_stats(struct ice_vsi *vsi)
344 {
345 	struct ice_vsi_stats *vsi_stat;
346 	struct ice_pf *pf = vsi->back;
347 	int i;
348 
349 	if (vsi->type == ICE_VSI_CHNL)
350 		return;
351 	if (!pf->vsi_stats)
352 		return;
353 
354 	vsi_stat = pf->vsi_stats[vsi->idx];
355 	if (!vsi_stat)
356 		return;
357 
358 	ice_for_each_alloc_txq(vsi, i) {
359 		if (vsi_stat->tx_ring_stats[i]) {
360 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
361 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
362 		}
363 	}
364 
365 	ice_for_each_alloc_rxq(vsi, i) {
366 		if (vsi_stat->rx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	kfree(vsi_stat->tx_ring_stats);
373 	kfree(vsi_stat->rx_ring_stats);
374 	kfree(vsi_stat);
375 	pf->vsi_stats[vsi->idx] = NULL;
376 }
377 
378 /**
379  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
380  * @vsi: VSI which is having stats allocated
381  */
382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
383 {
384 	struct ice_ring_stats **tx_ring_stats;
385 	struct ice_ring_stats **rx_ring_stats;
386 	struct ice_vsi_stats *vsi_stats;
387 	struct ice_pf *pf = vsi->back;
388 	u16 i;
389 
390 	vsi_stats = pf->vsi_stats[vsi->idx];
391 	tx_ring_stats = vsi_stats->tx_ring_stats;
392 	rx_ring_stats = vsi_stats->rx_ring_stats;
393 
394 	/* Allocate Tx ring stats */
395 	ice_for_each_alloc_txq(vsi, i) {
396 		struct ice_ring_stats *ring_stats;
397 		struct ice_tx_ring *ring;
398 
399 		ring = vsi->tx_rings[i];
400 		ring_stats = tx_ring_stats[i];
401 
402 		if (!ring_stats) {
403 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
404 			if (!ring_stats)
405 				goto err_out;
406 
407 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
408 		}
409 
410 		ring->ring_stats = ring_stats;
411 	}
412 
413 	/* Allocate Rx ring stats */
414 	ice_for_each_alloc_rxq(vsi, i) {
415 		struct ice_ring_stats *ring_stats;
416 		struct ice_rx_ring *ring;
417 
418 		ring = vsi->rx_rings[i];
419 		ring_stats = rx_ring_stats[i];
420 
421 		if (!ring_stats) {
422 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
423 			if (!ring_stats)
424 				goto err_out;
425 
426 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 		}
428 
429 		ring->ring_stats = ring_stats;
430 	}
431 
432 	return 0;
433 
434 err_out:
435 	ice_vsi_free_stats(vsi);
436 	return -ENOMEM;
437 }
438 
439 /**
440  * ice_vsi_free - clean up and deallocate the provided VSI
441  * @vsi: pointer to VSI being cleared
442  *
443  * This deallocates the VSI's queue resources, removes it from the PF's
444  * VSI array if necessary, and deallocates the VSI
445  */
446 static void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 	struct ice_pf *pf = NULL;
449 	struct device *dev;
450 
451 	if (!vsi || !vsi->back)
452 		return;
453 
454 	pf = vsi->back;
455 	dev = ice_pf_to_dev(pf);
456 
457 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 		return;
460 	}
461 
462 	mutex_lock(&pf->sw_mutex);
463 	/* updates the PF for this cleared VSI */
464 
465 	pf->vsi[vsi->idx] = NULL;
466 	pf->next_vsi = vsi->idx;
467 
468 	ice_vsi_free_stats(vsi);
469 	ice_vsi_free_arrays(vsi);
470 	mutex_unlock(&pf->sw_mutex);
471 	devm_kfree(dev, vsi);
472 }
473 
474 void ice_vsi_delete(struct ice_vsi *vsi)
475 {
476 	ice_vsi_delete_from_hw(vsi);
477 	ice_vsi_free(vsi);
478 }
479 
480 /**
481  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
482  * @irq: interrupt number
483  * @data: pointer to a q_vector
484  */
485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
486 {
487 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
488 
489 	if (!q_vector->tx.tx_ring)
490 		return IRQ_HANDLED;
491 
492 #define FDIR_RX_DESC_CLEAN_BUDGET 64
493 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
494 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 /**
500  * ice_msix_clean_rings - MSIX mode Interrupt Handler
501  * @irq: interrupt number
502  * @data: pointer to a q_vector
503  */
504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507 
508 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 		return IRQ_HANDLED;
510 
511 	q_vector->total_events++;
512 
513 	napi_schedule(&q_vector->napi);
514 
515 	return IRQ_HANDLED;
516 }
517 
518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
519 {
520 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
521 	struct ice_pf *pf = q_vector->vsi->back;
522 	struct ice_vf *vf;
523 	unsigned int bkt;
524 
525 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
526 		return IRQ_HANDLED;
527 
528 	rcu_read_lock();
529 	ice_for_each_vf_rcu(pf, bkt, vf)
530 		napi_schedule(&vf->repr->q_vector->napi);
531 	rcu_read_unlock();
532 
533 	return IRQ_HANDLED;
534 }
535 
536 /**
537  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
538  * @vsi: VSI pointer
539  */
540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
541 {
542 	struct ice_vsi_stats *vsi_stat;
543 	struct ice_pf *pf = vsi->back;
544 
545 	if (vsi->type == ICE_VSI_CHNL)
546 		return 0;
547 	if (!pf->vsi_stats)
548 		return -ENOENT;
549 
550 	if (pf->vsi_stats[vsi->idx])
551 	/* realloc will happen in rebuild path */
552 		return 0;
553 
554 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
555 	if (!vsi_stat)
556 		return -ENOMEM;
557 
558 	vsi_stat->tx_ring_stats =
559 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
560 			GFP_KERNEL);
561 	if (!vsi_stat->tx_ring_stats)
562 		goto err_alloc_tx;
563 
564 	vsi_stat->rx_ring_stats =
565 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
566 			GFP_KERNEL);
567 	if (!vsi_stat->rx_ring_stats)
568 		goto err_alloc_rx;
569 
570 	pf->vsi_stats[vsi->idx] = vsi_stat;
571 
572 	return 0;
573 
574 err_alloc_rx:
575 	kfree(vsi_stat->rx_ring_stats);
576 err_alloc_tx:
577 	kfree(vsi_stat->tx_ring_stats);
578 	kfree(vsi_stat);
579 	pf->vsi_stats[vsi->idx] = NULL;
580 	return -ENOMEM;
581 }
582 
583 /**
584  * ice_vsi_alloc_def - set default values for already allocated VSI
585  * @vsi: ptr to VSI
586  * @ch: ptr to channel
587  */
588 static int
589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
590 {
591 	if (vsi->type != ICE_VSI_CHNL) {
592 		ice_vsi_set_num_qs(vsi);
593 		if (ice_vsi_alloc_arrays(vsi))
594 			return -ENOMEM;
595 	}
596 
597 	switch (vsi->type) {
598 	case ICE_VSI_SWITCHDEV_CTRL:
599 		/* Setup eswitch MSIX irq handler for VSI */
600 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
601 		break;
602 	case ICE_VSI_PF:
603 		/* Setup default MSIX irq handler for VSI */
604 		vsi->irq_handler = ice_msix_clean_rings;
605 		break;
606 	case ICE_VSI_CTRL:
607 		/* Setup ctrl VSI MSIX irq handler */
608 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
609 		break;
610 	case ICE_VSI_CHNL:
611 		if (!ch)
612 			return -EINVAL;
613 
614 		vsi->num_rxq = ch->num_rxq;
615 		vsi->num_txq = ch->num_txq;
616 		vsi->next_base_q = ch->base_q;
617 		break;
618 	case ICE_VSI_VF:
619 	case ICE_VSI_LB:
620 		break;
621 	default:
622 		ice_vsi_free_arrays(vsi);
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
631  * @pf: board private structure
632  *
633  * Reserves a VSI index from the PF and allocates an empty VSI structure
634  * without a type. The VSI structure must later be initialized by calling
635  * ice_vsi_cfg().
636  *
637  * returns a pointer to a VSI on success, NULL on failure.
638  */
639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
640 {
641 	struct device *dev = ice_pf_to_dev(pf);
642 	struct ice_vsi *vsi = NULL;
643 
644 	/* Need to protect the allocation of the VSIs at the PF level */
645 	mutex_lock(&pf->sw_mutex);
646 
647 	/* If we have already allocated our maximum number of VSIs,
648 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
649 	 * is available to be populated
650 	 */
651 	if (pf->next_vsi == ICE_NO_VSI) {
652 		dev_dbg(dev, "out of VSI slots!\n");
653 		goto unlock_pf;
654 	}
655 
656 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
657 	if (!vsi)
658 		goto unlock_pf;
659 
660 	vsi->back = pf;
661 	set_bit(ICE_VSI_DOWN, vsi->state);
662 
663 	/* fill slot and make note of the index */
664 	vsi->idx = pf->next_vsi;
665 	pf->vsi[pf->next_vsi] = vsi;
666 
667 	/* prepare pf->next_vsi for next use */
668 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
669 					 pf->next_vsi);
670 
671 unlock_pf:
672 	mutex_unlock(&pf->sw_mutex);
673 	return vsi;
674 }
675 
676 /**
677  * ice_alloc_fd_res - Allocate FD resource for a VSI
678  * @vsi: pointer to the ice_vsi
679  *
680  * This allocates the FD resources
681  *
682  * Returns 0 on success, -EPERM on no-op or -EIO on failure
683  */
684 static int ice_alloc_fd_res(struct ice_vsi *vsi)
685 {
686 	struct ice_pf *pf = vsi->back;
687 	u32 g_val, b_val;
688 
689 	/* Flow Director filters are only allocated/assigned to the PF VSI or
690 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
691 	 * add/delete filters so resources are not allocated to it
692 	 */
693 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
694 		return -EPERM;
695 
696 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
697 	      vsi->type == ICE_VSI_CHNL))
698 		return -EPERM;
699 
700 	/* FD filters from guaranteed pool per VSI */
701 	g_val = pf->hw.func_caps.fd_fltr_guar;
702 	if (!g_val)
703 		return -EPERM;
704 
705 	/* FD filters from best effort pool */
706 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
707 	if (!b_val)
708 		return -EPERM;
709 
710 	/* PF main VSI gets only 64 FD resources from guaranteed pool
711 	 * when ADQ is configured.
712 	 */
713 #define ICE_PF_VSI_GFLTR	64
714 
715 	/* determine FD filter resources per VSI from shared(best effort) and
716 	 * dedicated pool
717 	 */
718 	if (vsi->type == ICE_VSI_PF) {
719 		vsi->num_gfltr = g_val;
720 		/* if MQPRIO is configured, main VSI doesn't get all FD
721 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
722 		 */
723 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
724 			if (g_val < ICE_PF_VSI_GFLTR)
725 				return -EPERM;
726 			/* allow bare minimum entries for PF VSI */
727 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
728 		}
729 
730 		/* each VSI gets same "best_effort" quota */
731 		vsi->num_bfltr = b_val;
732 	} else if (vsi->type == ICE_VSI_VF) {
733 		vsi->num_gfltr = 0;
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else {
738 		struct ice_vsi *main_vsi;
739 		int numtc;
740 
741 		main_vsi = ice_get_main_vsi(pf);
742 		if (!main_vsi)
743 			return -EPERM;
744 
745 		if (!main_vsi->all_numtc)
746 			return -EINVAL;
747 
748 		/* figure out ADQ numtc */
749 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
750 
751 		/* only one TC but still asking resources for channels,
752 		 * invalid config
753 		 */
754 		if (numtc < ICE_CHNL_START_TC)
755 			return -EPERM;
756 
757 		g_val -= ICE_PF_VSI_GFLTR;
758 		/* channel VSIs gets equal share from guaranteed pool */
759 		vsi->num_gfltr = g_val / numtc;
760 
761 		/* each VSI gets same "best_effort" quota */
762 		vsi->num_bfltr = b_val;
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * ice_vsi_get_qs - Assign queues from PF to VSI
770  * @vsi: the VSI to assign queues to
771  *
772  * Returns 0 on success and a negative value on error
773  */
774 static int ice_vsi_get_qs(struct ice_vsi *vsi)
775 {
776 	struct ice_pf *pf = vsi->back;
777 	struct ice_qs_cfg tx_qs_cfg = {
778 		.qs_mutex = &pf->avail_q_mutex,
779 		.pf_map = pf->avail_txqs,
780 		.pf_map_size = pf->max_pf_txqs,
781 		.q_count = vsi->alloc_txq,
782 		.scatter_count = ICE_MAX_SCATTER_TXQS,
783 		.vsi_map = vsi->txq_map,
784 		.vsi_map_offset = 0,
785 		.mapping_mode = ICE_VSI_MAP_CONTIG
786 	};
787 	struct ice_qs_cfg rx_qs_cfg = {
788 		.qs_mutex = &pf->avail_q_mutex,
789 		.pf_map = pf->avail_rxqs,
790 		.pf_map_size = pf->max_pf_rxqs,
791 		.q_count = vsi->alloc_rxq,
792 		.scatter_count = ICE_MAX_SCATTER_RXQS,
793 		.vsi_map = vsi->rxq_map,
794 		.vsi_map_offset = 0,
795 		.mapping_mode = ICE_VSI_MAP_CONTIG
796 	};
797 	int ret;
798 
799 	if (vsi->type == ICE_VSI_CHNL)
800 		return 0;
801 
802 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
803 	if (ret)
804 		return ret;
805 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
806 
807 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
811 
812 	return 0;
813 }
814 
815 /**
816  * ice_vsi_put_qs - Release queues from VSI to PF
817  * @vsi: the VSI that is going to release queues
818  */
819 static void ice_vsi_put_qs(struct ice_vsi *vsi)
820 {
821 	struct ice_pf *pf = vsi->back;
822 	int i;
823 
824 	mutex_lock(&pf->avail_q_mutex);
825 
826 	ice_for_each_alloc_txq(vsi, i) {
827 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
828 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
829 	}
830 
831 	ice_for_each_alloc_rxq(vsi, i) {
832 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
833 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	mutex_unlock(&pf->avail_q_mutex);
837 }
838 
839 /**
840  * ice_is_safe_mode
841  * @pf: pointer to the PF struct
842  *
843  * returns true if driver is in safe mode, false otherwise
844  */
845 bool ice_is_safe_mode(struct ice_pf *pf)
846 {
847 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
848 }
849 
850 /**
851  * ice_is_rdma_ena
852  * @pf: pointer to the PF struct
853  *
854  * returns true if RDMA is currently supported, false otherwise
855  */
856 bool ice_is_rdma_ena(struct ice_pf *pf)
857 {
858 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
859 }
860 
861 /**
862  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
863  * @vsi: the VSI being cleaned up
864  *
865  * This function deletes RSS input set for all flows that were configured
866  * for this VSI
867  */
868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
869 {
870 	struct ice_pf *pf = vsi->back;
871 	int status;
872 
873 	if (ice_is_safe_mode(pf))
874 		return;
875 
876 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
877 	if (status)
878 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
879 			vsi->vsi_num, status);
880 }
881 
882 /**
883  * ice_rss_clean - Delete RSS related VSI structures and configuration
884  * @vsi: the VSI being removed
885  */
886 static void ice_rss_clean(struct ice_vsi *vsi)
887 {
888 	struct ice_pf *pf = vsi->back;
889 	struct device *dev;
890 
891 	dev = ice_pf_to_dev(pf);
892 
893 	devm_kfree(dev, vsi->rss_hkey_user);
894 	devm_kfree(dev, vsi->rss_lut_user);
895 
896 	ice_vsi_clean_rss_flow_fld(vsi);
897 	/* remove RSS replay list */
898 	if (!ice_is_safe_mode(pf))
899 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
900 }
901 
902 /**
903  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
904  * @vsi: the VSI being configured
905  */
906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
907 {
908 	struct ice_hw_common_caps *cap;
909 	struct ice_pf *pf = vsi->back;
910 	u16 max_rss_size;
911 
912 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
913 		vsi->rss_size = 1;
914 		return;
915 	}
916 
917 	cap = &pf->hw.func_caps.common_cap;
918 	max_rss_size = BIT(cap->rss_table_entry_width);
919 	switch (vsi->type) {
920 	case ICE_VSI_CHNL:
921 	case ICE_VSI_PF:
922 		/* PF VSI will inherit RSS instance of PF */
923 		vsi->rss_table_size = (u16)cap->rss_table_size;
924 		if (vsi->type == ICE_VSI_CHNL)
925 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
926 		else
927 			vsi->rss_size = min_t(u16, num_online_cpus(),
928 					      max_rss_size);
929 		vsi->rss_lut_type = ICE_LUT_PF;
930 		break;
931 	case ICE_VSI_SWITCHDEV_CTRL:
932 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
933 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_VSI;
935 		break;
936 	case ICE_VSI_VF:
937 		/* VF VSI will get a small RSS table.
938 		 * For VSI_LUT, LUT size should be set to 64 bytes.
939 		 */
940 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
941 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
942 		vsi->rss_lut_type = ICE_LUT_VSI;
943 		break;
944 	case ICE_VSI_LB:
945 		break;
946 	default:
947 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
948 			ice_vsi_type_str(vsi->type));
949 		break;
950 	}
951 }
952 
953 /**
954  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
955  * @hw: HW structure used to determine the VLAN mode of the device
956  * @ctxt: the VSI context being set
957  *
958  * This initializes a default VSI context for all sections except the Queues.
959  */
960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
961 {
962 	u32 table = 0;
963 
964 	memset(&ctxt->info, 0, sizeof(ctxt->info));
965 	/* VSI's should be allocated from shared pool */
966 	ctxt->alloc_from_pool = true;
967 	/* Src pruning enabled by default */
968 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
969 	/* Traffic from VSI can be sent to LAN */
970 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
971 	/* allow all untagged/tagged packets by default on Tx */
972 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
973 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
974 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
975 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
976 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
977 	 *
978 	 * DVM - leave inner VLAN in packet by default
979 	 */
980 	if (ice_is_dvm_ena(hw)) {
981 		ctxt->info.inner_vlan_flags |=
982 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
983 		ctxt->info.outer_vlan_flags =
984 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
985 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
986 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
987 		ctxt->info.outer_vlan_flags |=
988 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
989 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
990 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
993 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
994 	}
995 	/* Have 1:1 UP mapping for both ingress/egress tables */
996 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
997 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
998 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
999 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1000 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1001 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1002 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1003 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1004 	ctxt->info.ingress_table = cpu_to_le32(table);
1005 	ctxt->info.egress_table = cpu_to_le32(table);
1006 	/* Have 1:1 UP mapping for outer to inner UP table */
1007 	ctxt->info.outer_up_table = cpu_to_le32(table);
1008 	/* No Outer tag support outer_tag_flags remains to zero */
1009 }
1010 
1011 /**
1012  * ice_vsi_setup_q_map - Setup a VSI queue map
1013  * @vsi: the VSI being configured
1014  * @ctxt: VSI context structure
1015  */
1016 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1017 {
1018 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1019 	u16 num_txq_per_tc, num_rxq_per_tc;
1020 	u16 qcount_tx = vsi->alloc_txq;
1021 	u16 qcount_rx = vsi->alloc_rxq;
1022 	u8 netdev_tc = 0;
1023 	int i;
1024 
1025 	if (!vsi->tc_cfg.numtc) {
1026 		/* at least TC0 should be enabled by default */
1027 		vsi->tc_cfg.numtc = 1;
1028 		vsi->tc_cfg.ena_tc = 1;
1029 	}
1030 
1031 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1032 	if (!num_rxq_per_tc)
1033 		num_rxq_per_tc = 1;
1034 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1035 	if (!num_txq_per_tc)
1036 		num_txq_per_tc = 1;
1037 
1038 	/* find the (rounded up) power-of-2 of qcount */
1039 	pow = (u16)order_base_2(num_rxq_per_tc);
1040 
1041 	/* TC mapping is a function of the number of Rx queues assigned to the
1042 	 * VSI for each traffic class and the offset of these queues.
1043 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1044 	 * queues allocated to TC0. No:of queues is a power-of-2.
1045 	 *
1046 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1047 	 * queue, this way, traffic for the given TC will be sent to the default
1048 	 * queue.
1049 	 *
1050 	 * Setup number and offset of Rx queues for all TCs for the VSI
1051 	 */
1052 	ice_for_each_traffic_class(i) {
1053 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1054 			/* TC is not enabled */
1055 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1056 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1057 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1058 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1059 			ctxt->info.tc_mapping[i] = 0;
1060 			continue;
1061 		}
1062 
1063 		/* TC is enabled */
1064 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1065 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1066 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1067 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1068 
1069 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1070 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1071 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1072 			 ICE_AQ_VSI_TC_Q_NUM_M);
1073 		offset += num_rxq_per_tc;
1074 		tx_count += num_txq_per_tc;
1075 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1076 	}
1077 
1078 	/* if offset is non-zero, means it is calculated correctly based on
1079 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1080 	 * be correct and non-zero because it is based off - VSI's
1081 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1082 	 * at least 1)
1083 	 */
1084 	if (offset)
1085 		rx_count = offset;
1086 	else
1087 		rx_count = num_rxq_per_tc;
1088 
1089 	if (rx_count > vsi->alloc_rxq) {
1090 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1091 			rx_count, vsi->alloc_rxq);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (tx_count > vsi->alloc_txq) {
1096 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1097 			tx_count, vsi->alloc_txq);
1098 		return -EINVAL;
1099 	}
1100 
1101 	vsi->num_txq = tx_count;
1102 	vsi->num_rxq = rx_count;
1103 
1104 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1105 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1106 		/* since there is a chance that num_rxq could have been changed
1107 		 * in the above for loop, make num_txq equal to num_rxq.
1108 		 */
1109 		vsi->num_txq = vsi->num_rxq;
1110 	}
1111 
1112 	/* Rx queue mapping */
1113 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1114 	/* q_mapping buffer holds the info for the first queue allocated for
1115 	 * this VSI in the PF space and also the number of queues associated
1116 	 * with this VSI.
1117 	 */
1118 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1119 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1126  * @ctxt: the VSI context being set
1127  * @vsi: the VSI being configured
1128  */
1129 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1130 {
1131 	u8 dflt_q_group, dflt_q_prio;
1132 	u16 dflt_q, report_q, val;
1133 
1134 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1135 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1136 		return;
1137 
1138 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1139 	ctxt->info.valid_sections |= cpu_to_le16(val);
1140 	dflt_q = 0;
1141 	dflt_q_group = 0;
1142 	report_q = 0;
1143 	dflt_q_prio = 0;
1144 
1145 	/* enable flow director filtering/programming */
1146 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1147 	ctxt->info.fd_options = cpu_to_le16(val);
1148 	/* max of allocated flow director filters */
1149 	ctxt->info.max_fd_fltr_dedicated =
1150 			cpu_to_le16(vsi->num_gfltr);
1151 	/* max of shared flow director filters any VSI may program */
1152 	ctxt->info.max_fd_fltr_shared =
1153 			cpu_to_le16(vsi->num_bfltr);
1154 	/* default queue index within the VSI of the default FD */
1155 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1156 	       ICE_AQ_VSI_FD_DEF_Q_M);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1159 		ICE_AQ_VSI_FD_DEF_GRP_M);
1160 	ctxt->info.fd_def_q = cpu_to_le16(val);
1161 	/* queue index on which FD filter completion is reported */
1162 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1163 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1164 	/* priority of the default qindex action */
1165 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1166 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1167 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1168 }
1169 
1170 /**
1171  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1172  * @ctxt: the VSI context being set
1173  * @vsi: the VSI being configured
1174  */
1175 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1176 {
1177 	u8 lut_type, hash_type;
1178 	struct device *dev;
1179 	struct ice_pf *pf;
1180 
1181 	pf = vsi->back;
1182 	dev = ice_pf_to_dev(pf);
1183 
1184 	switch (vsi->type) {
1185 	case ICE_VSI_CHNL:
1186 	case ICE_VSI_PF:
1187 		/* PF VSI will inherit RSS instance of PF */
1188 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1189 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1190 		break;
1191 	case ICE_VSI_VF:
1192 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1193 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1194 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1195 		break;
1196 	default:
1197 		dev_dbg(dev, "Unsupported VSI type %s\n",
1198 			ice_vsi_type_str(vsi->type));
1199 		return;
1200 	}
1201 
1202 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1203 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1204 				(hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1205 }
1206 
1207 static void
1208 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1209 {
1210 	struct ice_pf *pf = vsi->back;
1211 	u16 qcount, qmap;
1212 	u8 offset = 0;
1213 	int pow;
1214 
1215 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1216 
1217 	pow = order_base_2(qcount);
1218 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1219 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1220 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1221 		   ICE_AQ_VSI_TC_Q_NUM_M);
1222 
1223 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1224 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1225 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1226 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1227 }
1228 
1229 /**
1230  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1231  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1232  *
1233  * returns true if Rx VLAN pruning is enabled and false otherwise.
1234  */
1235 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1236 {
1237 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1238 }
1239 
1240 /**
1241  * ice_vsi_init - Create and initialize a VSI
1242  * @vsi: the VSI being configured
1243  * @vsi_flags: VSI configuration flags
1244  *
1245  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1246  * reconfigure an existing context.
1247  *
1248  * This initializes a VSI context depending on the VSI type to be added and
1249  * passes it down to the add_vsi aq command to create a new VSI.
1250  */
1251 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1252 {
1253 	struct ice_pf *pf = vsi->back;
1254 	struct ice_hw *hw = &pf->hw;
1255 	struct ice_vsi_ctx *ctxt;
1256 	struct device *dev;
1257 	int ret = 0;
1258 
1259 	dev = ice_pf_to_dev(pf);
1260 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1261 	if (!ctxt)
1262 		return -ENOMEM;
1263 
1264 	switch (vsi->type) {
1265 	case ICE_VSI_CTRL:
1266 	case ICE_VSI_LB:
1267 	case ICE_VSI_PF:
1268 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1269 		break;
1270 	case ICE_VSI_SWITCHDEV_CTRL:
1271 	case ICE_VSI_CHNL:
1272 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1273 		break;
1274 	case ICE_VSI_VF:
1275 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1276 		/* VF number here is the absolute VF number (0-255) */
1277 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1278 		break;
1279 	default:
1280 		ret = -ENODEV;
1281 		goto out;
1282 	}
1283 
1284 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1285 	 * prune enabled
1286 	 */
1287 	if (vsi->type == ICE_VSI_CHNL) {
1288 		struct ice_vsi *main_vsi;
1289 
1290 		main_vsi = ice_get_main_vsi(pf);
1291 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1292 			ctxt->info.sw_flags2 |=
1293 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1294 		else
1295 			ctxt->info.sw_flags2 &=
1296 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1297 	}
1298 
1299 	ice_set_dflt_vsi_ctx(hw, ctxt);
1300 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1301 		ice_set_fd_vsi_ctx(ctxt, vsi);
1302 	/* if the switch is in VEB mode, allow VSI loopback */
1303 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1304 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1305 
1306 	/* Set LUT type and HASH type if RSS is enabled */
1307 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1308 	    vsi->type != ICE_VSI_CTRL) {
1309 		ice_set_rss_vsi_ctx(ctxt, vsi);
1310 		/* if updating VSI context, make sure to set valid_section:
1311 		 * to indicate which section of VSI context being updated
1312 		 */
1313 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1314 			ctxt->info.valid_sections |=
1315 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1316 	}
1317 
1318 	ctxt->info.sw_id = vsi->port_info->sw_id;
1319 	if (vsi->type == ICE_VSI_CHNL) {
1320 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1321 	} else {
1322 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1323 		if (ret)
1324 			goto out;
1325 
1326 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1327 			/* means VSI being updated */
1328 			/* must to indicate which section of VSI context are
1329 			 * being modified
1330 			 */
1331 			ctxt->info.valid_sections |=
1332 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1333 	}
1334 
1335 	/* Allow control frames out of main VSI */
1336 	if (vsi->type == ICE_VSI_PF) {
1337 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1338 		ctxt->info.valid_sections |=
1339 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1340 	}
1341 
1342 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1343 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1344 		if (ret) {
1345 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1346 			ret = -EIO;
1347 			goto out;
1348 		}
1349 	} else {
1350 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1351 		if (ret) {
1352 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1353 			ret = -EIO;
1354 			goto out;
1355 		}
1356 	}
1357 
1358 	/* keep context for update VSI operations */
1359 	vsi->info = ctxt->info;
1360 
1361 	/* record VSI number returned */
1362 	vsi->vsi_num = ctxt->vsi_num;
1363 
1364 out:
1365 	kfree(ctxt);
1366 	return ret;
1367 }
1368 
1369 /**
1370  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1371  * @vsi: the VSI having rings deallocated
1372  */
1373 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1374 {
1375 	int i;
1376 
1377 	/* Avoid stale references by clearing map from vector to ring */
1378 	if (vsi->q_vectors) {
1379 		ice_for_each_q_vector(vsi, i) {
1380 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1381 
1382 			if (q_vector) {
1383 				q_vector->tx.tx_ring = NULL;
1384 				q_vector->rx.rx_ring = NULL;
1385 			}
1386 		}
1387 	}
1388 
1389 	if (vsi->tx_rings) {
1390 		ice_for_each_alloc_txq(vsi, i) {
1391 			if (vsi->tx_rings[i]) {
1392 				kfree_rcu(vsi->tx_rings[i], rcu);
1393 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1394 			}
1395 		}
1396 	}
1397 	if (vsi->rx_rings) {
1398 		ice_for_each_alloc_rxq(vsi, i) {
1399 			if (vsi->rx_rings[i]) {
1400 				kfree_rcu(vsi->rx_rings[i], rcu);
1401 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1402 			}
1403 		}
1404 	}
1405 }
1406 
1407 /**
1408  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1409  * @vsi: VSI which is having rings allocated
1410  */
1411 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1412 {
1413 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1414 	struct ice_pf *pf = vsi->back;
1415 	struct device *dev;
1416 	u16 i;
1417 
1418 	dev = ice_pf_to_dev(pf);
1419 	/* Allocate Tx rings */
1420 	ice_for_each_alloc_txq(vsi, i) {
1421 		struct ice_tx_ring *ring;
1422 
1423 		/* allocate with kzalloc(), free with kfree_rcu() */
1424 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1425 
1426 		if (!ring)
1427 			goto err_out;
1428 
1429 		ring->q_index = i;
1430 		ring->reg_idx = vsi->txq_map[i];
1431 		ring->vsi = vsi;
1432 		ring->tx_tstamps = &pf->ptp.port.tx;
1433 		ring->dev = dev;
1434 		ring->count = vsi->num_tx_desc;
1435 		ring->txq_teid = ICE_INVAL_TEID;
1436 		if (dvm_ena)
1437 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1438 		else
1439 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1440 		WRITE_ONCE(vsi->tx_rings[i], ring);
1441 	}
1442 
1443 	/* Allocate Rx rings */
1444 	ice_for_each_alloc_rxq(vsi, i) {
1445 		struct ice_rx_ring *ring;
1446 
1447 		/* allocate with kzalloc(), free with kfree_rcu() */
1448 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1449 		if (!ring)
1450 			goto err_out;
1451 
1452 		ring->q_index = i;
1453 		ring->reg_idx = vsi->rxq_map[i];
1454 		ring->vsi = vsi;
1455 		ring->netdev = vsi->netdev;
1456 		ring->dev = dev;
1457 		ring->count = vsi->num_rx_desc;
1458 		ring->cached_phctime = pf->ptp.cached_phc_time;
1459 		WRITE_ONCE(vsi->rx_rings[i], ring);
1460 	}
1461 
1462 	return 0;
1463 
1464 err_out:
1465 	ice_vsi_clear_rings(vsi);
1466 	return -ENOMEM;
1467 }
1468 
1469 /**
1470  * ice_vsi_manage_rss_lut - disable/enable RSS
1471  * @vsi: the VSI being changed
1472  * @ena: boolean value indicating if this is an enable or disable request
1473  *
1474  * In the event of disable request for RSS, this function will zero out RSS
1475  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1476  * LUT.
1477  */
1478 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1479 {
1480 	u8 *lut;
1481 
1482 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1483 	if (!lut)
1484 		return;
1485 
1486 	if (ena) {
1487 		if (vsi->rss_lut_user)
1488 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1489 		else
1490 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1491 					 vsi->rss_size);
1492 	}
1493 
1494 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1495 	kfree(lut);
1496 }
1497 
1498 /**
1499  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1500  * @vsi: VSI to be configured
1501  * @disable: set to true to have FCS / CRC in the frame data
1502  */
1503 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1504 {
1505 	int i;
1506 
1507 	ice_for_each_rxq(vsi, i)
1508 		if (disable)
1509 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1510 		else
1511 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1512 }
1513 
1514 /**
1515  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1516  * @vsi: VSI to be configured
1517  */
1518 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1519 {
1520 	struct ice_pf *pf = vsi->back;
1521 	struct device *dev;
1522 	u8 *lut, *key;
1523 	int err;
1524 
1525 	dev = ice_pf_to_dev(pf);
1526 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1527 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1528 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1529 	} else {
1530 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1531 
1532 		/* If orig_rss_size is valid and it is less than determined
1533 		 * main VSI's rss_size, update main VSI's rss_size to be
1534 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1535 		 * RSS table gets programmed to be correct (whatever it was
1536 		 * to begin with (prior to setup-tc for ADQ config)
1537 		 */
1538 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1539 		    vsi->orig_rss_size <= vsi->num_rxq) {
1540 			vsi->rss_size = vsi->orig_rss_size;
1541 			/* now orig_rss_size is used, reset it to zero */
1542 			vsi->orig_rss_size = 0;
1543 		}
1544 	}
1545 
1546 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1547 	if (!lut)
1548 		return -ENOMEM;
1549 
1550 	if (vsi->rss_lut_user)
1551 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1552 	else
1553 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1554 
1555 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1556 	if (err) {
1557 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1558 		goto ice_vsi_cfg_rss_exit;
1559 	}
1560 
1561 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1562 	if (!key) {
1563 		err = -ENOMEM;
1564 		goto ice_vsi_cfg_rss_exit;
1565 	}
1566 
1567 	if (vsi->rss_hkey_user)
1568 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1569 	else
1570 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1571 
1572 	err = ice_set_rss_key(vsi, key);
1573 	if (err)
1574 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1575 
1576 	kfree(key);
1577 ice_vsi_cfg_rss_exit:
1578 	kfree(lut);
1579 	return err;
1580 }
1581 
1582 /**
1583  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1584  * @vsi: VSI to be configured
1585  *
1586  * This function will only be called during the VF VSI setup. Upon successful
1587  * completion of package download, this function will configure default RSS
1588  * input sets for VF VSI.
1589  */
1590 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1591 {
1592 	struct ice_pf *pf = vsi->back;
1593 	struct device *dev;
1594 	int status;
1595 
1596 	dev = ice_pf_to_dev(pf);
1597 	if (ice_is_safe_mode(pf)) {
1598 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1599 			vsi->vsi_num);
1600 		return;
1601 	}
1602 
1603 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1604 	if (status)
1605 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1606 			vsi->vsi_num, status);
1607 }
1608 
1609 /**
1610  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1611  * @vsi: VSI to be configured
1612  *
1613  * This function will only be called after successful download package call
1614  * during initialization of PF. Since the downloaded package will erase the
1615  * RSS section, this function will configure RSS input sets for different
1616  * flow types. The last profile added has the highest priority, therefore 2
1617  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1618  * (i.e. IPv4 src/dst TCP src/dst port).
1619  */
1620 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1621 {
1622 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1623 	struct ice_pf *pf = vsi->back;
1624 	struct ice_hw *hw = &pf->hw;
1625 	struct device *dev;
1626 	int status;
1627 
1628 	dev = ice_pf_to_dev(pf);
1629 	if (ice_is_safe_mode(pf)) {
1630 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1631 			vsi_num);
1632 		return;
1633 	}
1634 	/* configure RSS for IPv4 with input set IP src/dst */
1635 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1636 				 ICE_FLOW_SEG_HDR_IPV4);
1637 	if (status)
1638 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1639 			vsi_num, status);
1640 
1641 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1642 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1643 				 ICE_FLOW_SEG_HDR_IPV6);
1644 	if (status)
1645 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1646 			vsi_num, status);
1647 
1648 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1649 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1650 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1651 	if (status)
1652 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1653 			vsi_num, status);
1654 
1655 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1656 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1657 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1658 	if (status)
1659 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1660 			vsi_num, status);
1661 
1662 	/* configure RSS for sctp4 with input set IP src/dst */
1663 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1664 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1665 	if (status)
1666 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1667 			vsi_num, status);
1668 
1669 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1670 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1671 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1672 	if (status)
1673 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1674 			vsi_num, status);
1675 
1676 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1677 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1678 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1679 	if (status)
1680 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1681 			vsi_num, status);
1682 
1683 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1684 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1685 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1686 	if (status)
1687 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1688 			vsi_num, status);
1689 
1690 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1691 				 ICE_FLOW_SEG_HDR_ESP);
1692 	if (status)
1693 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1694 			vsi_num, status);
1695 }
1696 
1697 /**
1698  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1699  * @vsi: VSI
1700  */
1701 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1702 {
1703 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1704 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1705 		vsi->rx_buf_len = ICE_RXBUF_1664;
1706 #if (PAGE_SIZE < 8192)
1707 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1708 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1709 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1710 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1711 #endif
1712 	} else {
1713 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1714 		vsi->rx_buf_len = ICE_RXBUF_3072;
1715 	}
1716 }
1717 
1718 /**
1719  * ice_pf_state_is_nominal - checks the PF for nominal state
1720  * @pf: pointer to PF to check
1721  *
1722  * Check the PF's state for a collection of bits that would indicate
1723  * the PF is in a state that would inhibit normal operation for
1724  * driver functionality.
1725  *
1726  * Returns true if PF is in a nominal state, false otherwise
1727  */
1728 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1729 {
1730 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1731 
1732 	if (!pf)
1733 		return false;
1734 
1735 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1736 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1737 		return false;
1738 
1739 	return true;
1740 }
1741 
1742 /**
1743  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1744  * @vsi: the VSI to be updated
1745  */
1746 void ice_update_eth_stats(struct ice_vsi *vsi)
1747 {
1748 	struct ice_eth_stats *prev_es, *cur_es;
1749 	struct ice_hw *hw = &vsi->back->hw;
1750 	struct ice_pf *pf = vsi->back;
1751 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1752 
1753 	prev_es = &vsi->eth_stats_prev;
1754 	cur_es = &vsi->eth_stats;
1755 
1756 	if (ice_is_reset_in_progress(pf->state))
1757 		vsi->stat_offsets_loaded = false;
1758 
1759 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1760 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1761 
1762 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1763 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1764 
1765 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1766 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1767 
1768 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1769 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1770 
1771 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1772 			  &prev_es->rx_discards, &cur_es->rx_discards);
1773 
1774 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1775 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1776 
1777 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1778 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1779 
1780 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1781 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1782 
1783 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1784 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1785 
1786 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1787 			  &prev_es->tx_errors, &cur_es->tx_errors);
1788 
1789 	vsi->stat_offsets_loaded = true;
1790 }
1791 
1792 /**
1793  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1794  * @hw: HW pointer
1795  * @pf_q: index of the Rx queue in the PF's queue space
1796  * @rxdid: flexible descriptor RXDID
1797  * @prio: priority for the RXDID for this queue
1798  * @ena_ts: true to enable timestamp and false to disable timestamp
1799  */
1800 void
1801 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1802 			bool ena_ts)
1803 {
1804 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1805 
1806 	/* clear any previous values */
1807 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1808 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1809 		    QRXFLXP_CNTXT_TS_M);
1810 
1811 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1812 		QRXFLXP_CNTXT_RXDID_IDX_M;
1813 
1814 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1815 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1816 
1817 	if (ena_ts)
1818 		/* Enable TimeSync on this queue */
1819 		regval |= QRXFLXP_CNTXT_TS_M;
1820 
1821 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1822 }
1823 
1824 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1825 {
1826 	if (q_idx >= vsi->num_rxq)
1827 		return -EINVAL;
1828 
1829 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1830 }
1831 
1832 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1833 {
1834 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
1835 
1836 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1837 		return -EINVAL;
1838 
1839 	qg_buf->num_txqs = 1;
1840 
1841 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1842 }
1843 
1844 /**
1845  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1846  * @vsi: the VSI being configured
1847  *
1848  * Return 0 on success and a negative value on error
1849  * Configure the Rx VSI for operation.
1850  */
1851 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1852 {
1853 	u16 i;
1854 
1855 	if (vsi->type == ICE_VSI_VF)
1856 		goto setup_rings;
1857 
1858 	ice_vsi_cfg_frame_size(vsi);
1859 setup_rings:
1860 	/* set up individual rings */
1861 	ice_for_each_rxq(vsi, i) {
1862 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1863 
1864 		if (err)
1865 			return err;
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1873  * @vsi: the VSI being configured
1874  * @rings: Tx ring array to be configured
1875  * @count: number of Tx ring array elements
1876  *
1877  * Return 0 on success and a negative value on error
1878  * Configure the Tx VSI for operation.
1879  */
1880 static int
1881 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1882 {
1883 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
1884 	int err = 0;
1885 	u16 q_idx;
1886 
1887 	qg_buf->num_txqs = 1;
1888 
1889 	for (q_idx = 0; q_idx < count; q_idx++) {
1890 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1891 		if (err)
1892 			break;
1893 	}
1894 
1895 	return err;
1896 }
1897 
1898 /**
1899  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1900  * @vsi: the VSI being configured
1901  *
1902  * Return 0 on success and a negative value on error
1903  * Configure the Tx VSI for operation.
1904  */
1905 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1906 {
1907 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1908 }
1909 
1910 /**
1911  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1912  * @vsi: the VSI being configured
1913  *
1914  * Return 0 on success and a negative value on error
1915  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1916  */
1917 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1918 {
1919 	int ret;
1920 	int i;
1921 
1922 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1923 	if (ret)
1924 		return ret;
1925 
1926 	ice_for_each_rxq(vsi, i)
1927 		ice_tx_xsk_pool(vsi, i);
1928 
1929 	return 0;
1930 }
1931 
1932 /**
1933  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1934  * @intrl: interrupt rate limit in usecs
1935  * @gran: interrupt rate limit granularity in usecs
1936  *
1937  * This function converts a decimal interrupt rate limit in usecs to the format
1938  * expected by firmware.
1939  */
1940 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1941 {
1942 	u32 val = intrl / gran;
1943 
1944 	if (val)
1945 		return val | GLINT_RATE_INTRL_ENA_M;
1946 	return 0;
1947 }
1948 
1949 /**
1950  * ice_write_intrl - write throttle rate limit to interrupt specific register
1951  * @q_vector: pointer to interrupt specific structure
1952  * @intrl: throttle rate limit in microseconds to write
1953  */
1954 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1955 {
1956 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1957 
1958 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1959 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1960 }
1961 
1962 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1963 {
1964 	switch (rc->type) {
1965 	case ICE_RX_CONTAINER:
1966 		if (rc->rx_ring)
1967 			return rc->rx_ring->q_vector;
1968 		break;
1969 	case ICE_TX_CONTAINER:
1970 		if (rc->tx_ring)
1971 			return rc->tx_ring->q_vector;
1972 		break;
1973 	default:
1974 		break;
1975 	}
1976 
1977 	return NULL;
1978 }
1979 
1980 /**
1981  * __ice_write_itr - write throttle rate to register
1982  * @q_vector: pointer to interrupt data structure
1983  * @rc: pointer to ring container
1984  * @itr: throttle rate in microseconds to write
1985  */
1986 static void __ice_write_itr(struct ice_q_vector *q_vector,
1987 			    struct ice_ring_container *rc, u16 itr)
1988 {
1989 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1990 
1991 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1992 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1993 }
1994 
1995 /**
1996  * ice_write_itr - write throttle rate to queue specific register
1997  * @rc: pointer to ring container
1998  * @itr: throttle rate in microseconds to write
1999  */
2000 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2001 {
2002 	struct ice_q_vector *q_vector;
2003 
2004 	q_vector = ice_pull_qvec_from_rc(rc);
2005 	if (!q_vector)
2006 		return;
2007 
2008 	__ice_write_itr(q_vector, rc, itr);
2009 }
2010 
2011 /**
2012  * ice_set_q_vector_intrl - set up interrupt rate limiting
2013  * @q_vector: the vector to be configured
2014  *
2015  * Interrupt rate limiting is local to the vector, not per-queue so we must
2016  * detect if either ring container has dynamic moderation enabled to decide
2017  * what to set the interrupt rate limit to via INTRL settings. In the case that
2018  * dynamic moderation is disabled on both, write the value with the cached
2019  * setting to make sure INTRL register matches the user visible value.
2020  */
2021 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2022 {
2023 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2024 		/* in the case of dynamic enabled, cap each vector to no more
2025 		 * than (4 us) 250,000 ints/sec, which allows low latency
2026 		 * but still less than 500,000 interrupts per second, which
2027 		 * reduces CPU a bit in the case of the lowest latency
2028 		 * setting. The 4 here is a value in microseconds.
2029 		 */
2030 		ice_write_intrl(q_vector, 4);
2031 	} else {
2032 		ice_write_intrl(q_vector, q_vector->intrl);
2033 	}
2034 }
2035 
2036 /**
2037  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2038  * @vsi: the VSI being configured
2039  *
2040  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2041  * for the VF VSI.
2042  */
2043 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2044 {
2045 	struct ice_pf *pf = vsi->back;
2046 	struct ice_hw *hw = &pf->hw;
2047 	u16 txq = 0, rxq = 0;
2048 	int i, q;
2049 
2050 	ice_for_each_q_vector(vsi, i) {
2051 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2052 		u16 reg_idx = q_vector->reg_idx;
2053 
2054 		ice_cfg_itr(hw, q_vector);
2055 
2056 		/* Both Transmit Queue Interrupt Cause Control register
2057 		 * and Receive Queue Interrupt Cause control register
2058 		 * expects MSIX_INDX field to be the vector index
2059 		 * within the function space and not the absolute
2060 		 * vector index across PF or across device.
2061 		 * For SR-IOV VF VSIs queue vector index always starts
2062 		 * with 1 since first vector index(0) is used for OICR
2063 		 * in VF space. Since VMDq and other PF VSIs are within
2064 		 * the PF function space, use the vector index that is
2065 		 * tracked for this PF.
2066 		 */
2067 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2068 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2069 					      q_vector->tx.itr_idx);
2070 			txq++;
2071 		}
2072 
2073 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2074 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2075 					      q_vector->rx.itr_idx);
2076 			rxq++;
2077 		}
2078 	}
2079 }
2080 
2081 /**
2082  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2083  * @vsi: the VSI whose rings are to be enabled
2084  *
2085  * Returns 0 on success and a negative value on error
2086  */
2087 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2088 {
2089 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2090 }
2091 
2092 /**
2093  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2094  * @vsi: the VSI whose rings are to be disabled
2095  *
2096  * Returns 0 on success and a negative value on error
2097  */
2098 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2099 {
2100 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2101 }
2102 
2103 /**
2104  * ice_vsi_stop_tx_rings - Disable Tx rings
2105  * @vsi: the VSI being configured
2106  * @rst_src: reset source
2107  * @rel_vmvf_num: Relative ID of VF/VM
2108  * @rings: Tx ring array to be stopped
2109  * @count: number of Tx ring array elements
2110  */
2111 static int
2112 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2113 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2114 {
2115 	u16 q_idx;
2116 
2117 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2118 		return -EINVAL;
2119 
2120 	for (q_idx = 0; q_idx < count; q_idx++) {
2121 		struct ice_txq_meta txq_meta = { };
2122 		int status;
2123 
2124 		if (!rings || !rings[q_idx])
2125 			return -EINVAL;
2126 
2127 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2128 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2129 					      rings[q_idx], &txq_meta);
2130 
2131 		if (status)
2132 			return status;
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 /**
2139  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2140  * @vsi: the VSI being configured
2141  * @rst_src: reset source
2142  * @rel_vmvf_num: Relative ID of VF/VM
2143  */
2144 int
2145 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2146 			  u16 rel_vmvf_num)
2147 {
2148 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2149 }
2150 
2151 /**
2152  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2153  * @vsi: the VSI being configured
2154  */
2155 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2156 {
2157 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2158 }
2159 
2160 /**
2161  * ice_vsi_is_rx_queue_active
2162  * @vsi: the VSI being configured
2163  *
2164  * Return true if at least one queue is active.
2165  */
2166 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2167 {
2168 	struct ice_pf *pf = vsi->back;
2169 	struct ice_hw *hw = &pf->hw;
2170 	int i;
2171 
2172 	ice_for_each_rxq(vsi, i) {
2173 		u32 rx_reg;
2174 		int pf_q;
2175 
2176 		pf_q = vsi->rxq_map[i];
2177 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2178 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2179 			return true;
2180 	}
2181 
2182 	return false;
2183 }
2184 
2185 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2186 {
2187 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2188 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2189 		vsi->tc_cfg.numtc = 1;
2190 		return;
2191 	}
2192 
2193 	/* set VSI TC information based on DCB config */
2194 	ice_vsi_set_dcb_tc_cfg(vsi);
2195 }
2196 
2197 /**
2198  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2199  * @vsi: the VSI being configured
2200  * @tx: bool to determine Tx or Rx rule
2201  * @create: bool to determine create or remove Rule
2202  */
2203 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2204 {
2205 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2206 			enum ice_sw_fwd_act_type act);
2207 	struct ice_pf *pf = vsi->back;
2208 	struct device *dev;
2209 	int status;
2210 
2211 	dev = ice_pf_to_dev(pf);
2212 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2213 
2214 	if (tx) {
2215 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2216 				  ICE_DROP_PACKET);
2217 	} else {
2218 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2219 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2220 							  create);
2221 		} else {
2222 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2223 					  ICE_FWD_TO_VSI);
2224 		}
2225 	}
2226 
2227 	if (status)
2228 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2229 			create ? "adding" : "removing", tx ? "TX" : "RX",
2230 			vsi->vsi_num, status);
2231 }
2232 
2233 /**
2234  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2235  * @vsi: pointer to the VSI
2236  *
2237  * This function will allocate new scheduler aggregator now if needed and will
2238  * move specified VSI into it.
2239  */
2240 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2241 {
2242 	struct device *dev = ice_pf_to_dev(vsi->back);
2243 	struct ice_agg_node *agg_node_iter = NULL;
2244 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2245 	struct ice_agg_node *agg_node = NULL;
2246 	int node_offset, max_agg_nodes = 0;
2247 	struct ice_port_info *port_info;
2248 	struct ice_pf *pf = vsi->back;
2249 	u32 agg_node_id_start = 0;
2250 	int status;
2251 
2252 	/* create (as needed) scheduler aggregator node and move VSI into
2253 	 * corresponding aggregator node
2254 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2255 	 * - VF aggregator nodes will contain VF VSI
2256 	 */
2257 	port_info = pf->hw.port_info;
2258 	if (!port_info)
2259 		return;
2260 
2261 	switch (vsi->type) {
2262 	case ICE_VSI_CTRL:
2263 	case ICE_VSI_CHNL:
2264 	case ICE_VSI_LB:
2265 	case ICE_VSI_PF:
2266 	case ICE_VSI_SWITCHDEV_CTRL:
2267 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2268 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2269 		agg_node_iter = &pf->pf_agg_node[0];
2270 		break;
2271 	case ICE_VSI_VF:
2272 		/* user can create 'n' VFs on a given PF, but since max children
2273 		 * per aggregator node can be only 64. Following code handles
2274 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2275 		 * was already created provided num_vsis < 64, otherwise
2276 		 * select next available node, which will be created
2277 		 */
2278 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2279 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2280 		agg_node_iter = &pf->vf_agg_node[0];
2281 		break;
2282 	default:
2283 		/* other VSI type, handle later if needed */
2284 		dev_dbg(dev, "unexpected VSI type %s\n",
2285 			ice_vsi_type_str(vsi->type));
2286 		return;
2287 	}
2288 
2289 	/* find the appropriate aggregator node */
2290 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2291 		/* see if we can find space in previously created
2292 		 * node if num_vsis < 64, otherwise skip
2293 		 */
2294 		if (agg_node_iter->num_vsis &&
2295 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2296 			agg_node_iter++;
2297 			continue;
2298 		}
2299 
2300 		if (agg_node_iter->valid &&
2301 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2302 			agg_id = agg_node_iter->agg_id;
2303 			agg_node = agg_node_iter;
2304 			break;
2305 		}
2306 
2307 		/* find unclaimed agg_id */
2308 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2309 			agg_id = node_offset + agg_node_id_start;
2310 			agg_node = agg_node_iter;
2311 			break;
2312 		}
2313 		/* move to next agg_node */
2314 		agg_node_iter++;
2315 	}
2316 
2317 	if (!agg_node)
2318 		return;
2319 
2320 	/* if selected aggregator node was not created, create it */
2321 	if (!agg_node->valid) {
2322 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2323 				     (u8)vsi->tc_cfg.ena_tc);
2324 		if (status) {
2325 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2326 				agg_id);
2327 			return;
2328 		}
2329 		/* aggregator node is created, store the needed info */
2330 		agg_node->valid = true;
2331 		agg_node->agg_id = agg_id;
2332 	}
2333 
2334 	/* move VSI to corresponding aggregator node */
2335 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2336 				     (u8)vsi->tc_cfg.ena_tc);
2337 	if (status) {
2338 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2339 			vsi->idx, agg_id);
2340 		return;
2341 	}
2342 
2343 	/* keep active children count for aggregator node */
2344 	agg_node->num_vsis++;
2345 
2346 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2347 	 * to aggregator node
2348 	 */
2349 	vsi->agg_node = agg_node;
2350 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2351 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2352 		vsi->agg_node->num_vsis);
2353 }
2354 
2355 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2356 {
2357 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2358 	struct device *dev = ice_pf_to_dev(pf);
2359 	int ret, i;
2360 
2361 	/* configure VSI nodes based on number of queues and TC's */
2362 	ice_for_each_traffic_class(i) {
2363 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2364 			continue;
2365 
2366 		if (vsi->type == ICE_VSI_CHNL) {
2367 			if (!vsi->alloc_txq && vsi->num_txq)
2368 				max_txqs[i] = vsi->num_txq;
2369 			else
2370 				max_txqs[i] = pf->num_lan_tx;
2371 		} else {
2372 			max_txqs[i] = vsi->alloc_txq;
2373 		}
2374 	}
2375 
2376 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2377 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378 			      max_txqs);
2379 	if (ret) {
2380 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2381 			vsi->vsi_num, ret);
2382 		return ret;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 /**
2389  * ice_vsi_cfg_def - configure default VSI based on the type
2390  * @vsi: pointer to VSI
2391  * @params: the parameters to configure this VSI with
2392  */
2393 static int
2394 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2395 {
2396 	struct device *dev = ice_pf_to_dev(vsi->back);
2397 	struct ice_pf *pf = vsi->back;
2398 	int ret;
2399 
2400 	vsi->vsw = pf->first_sw;
2401 
2402 	ret = ice_vsi_alloc_def(vsi, params->ch);
2403 	if (ret)
2404 		return ret;
2405 
2406 	/* allocate memory for Tx/Rx ring stat pointers */
2407 	ret = ice_vsi_alloc_stat_arrays(vsi);
2408 	if (ret)
2409 		goto unroll_vsi_alloc;
2410 
2411 	ice_alloc_fd_res(vsi);
2412 
2413 	ret = ice_vsi_get_qs(vsi);
2414 	if (ret) {
2415 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2416 			vsi->idx);
2417 		goto unroll_vsi_alloc_stat;
2418 	}
2419 
2420 	/* set RSS capabilities */
2421 	ice_vsi_set_rss_params(vsi);
2422 
2423 	/* set TC configuration */
2424 	ice_vsi_set_tc_cfg(vsi);
2425 
2426 	/* create the VSI */
2427 	ret = ice_vsi_init(vsi, params->flags);
2428 	if (ret)
2429 		goto unroll_get_qs;
2430 
2431 	ice_vsi_init_vlan_ops(vsi);
2432 
2433 	switch (vsi->type) {
2434 	case ICE_VSI_CTRL:
2435 	case ICE_VSI_SWITCHDEV_CTRL:
2436 	case ICE_VSI_PF:
2437 		ret = ice_vsi_alloc_q_vectors(vsi);
2438 		if (ret)
2439 			goto unroll_vsi_init;
2440 
2441 		ret = ice_vsi_alloc_rings(vsi);
2442 		if (ret)
2443 			goto unroll_vector_base;
2444 
2445 		ret = ice_vsi_alloc_ring_stats(vsi);
2446 		if (ret)
2447 			goto unroll_vector_base;
2448 
2449 		ice_vsi_map_rings_to_vectors(vsi);
2450 		vsi->stat_offsets_loaded = false;
2451 
2452 		if (ice_is_xdp_ena_vsi(vsi)) {
2453 			ret = ice_vsi_determine_xdp_res(vsi);
2454 			if (ret)
2455 				goto unroll_vector_base;
2456 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2457 			if (ret)
2458 				goto unroll_vector_base;
2459 		}
2460 
2461 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2462 		if (vsi->type != ICE_VSI_CTRL)
2463 			/* Do not exit if configuring RSS had an issue, at
2464 			 * least receive traffic on first queue. Hence no
2465 			 * need to capture return value
2466 			 */
2467 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2468 				ice_vsi_cfg_rss_lut_key(vsi);
2469 				ice_vsi_set_rss_flow_fld(vsi);
2470 			}
2471 		ice_init_arfs(vsi);
2472 		break;
2473 	case ICE_VSI_CHNL:
2474 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2475 			ice_vsi_cfg_rss_lut_key(vsi);
2476 			ice_vsi_set_rss_flow_fld(vsi);
2477 		}
2478 		break;
2479 	case ICE_VSI_VF:
2480 		/* VF driver will take care of creating netdev for this type and
2481 		 * map queues to vectors through Virtchnl, PF driver only
2482 		 * creates a VSI and corresponding structures for bookkeeping
2483 		 * purpose
2484 		 */
2485 		ret = ice_vsi_alloc_q_vectors(vsi);
2486 		if (ret)
2487 			goto unroll_vsi_init;
2488 
2489 		ret = ice_vsi_alloc_rings(vsi);
2490 		if (ret)
2491 			goto unroll_alloc_q_vector;
2492 
2493 		ret = ice_vsi_alloc_ring_stats(vsi);
2494 		if (ret)
2495 			goto unroll_vector_base;
2496 
2497 		vsi->stat_offsets_loaded = false;
2498 
2499 		/* Do not exit if configuring RSS had an issue, at least
2500 		 * receive traffic on first queue. Hence no need to capture
2501 		 * return value
2502 		 */
2503 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2504 			ice_vsi_cfg_rss_lut_key(vsi);
2505 			ice_vsi_set_vf_rss_flow_fld(vsi);
2506 		}
2507 		break;
2508 	case ICE_VSI_LB:
2509 		ret = ice_vsi_alloc_rings(vsi);
2510 		if (ret)
2511 			goto unroll_vsi_init;
2512 
2513 		ret = ice_vsi_alloc_ring_stats(vsi);
2514 		if (ret)
2515 			goto unroll_vector_base;
2516 
2517 		break;
2518 	default:
2519 		/* clean up the resources and exit */
2520 		ret = -EINVAL;
2521 		goto unroll_vsi_init;
2522 	}
2523 
2524 	return 0;
2525 
2526 unroll_vector_base:
2527 	/* reclaim SW interrupts back to the common pool */
2528 unroll_alloc_q_vector:
2529 	ice_vsi_free_q_vectors(vsi);
2530 unroll_vsi_init:
2531 	ice_vsi_delete_from_hw(vsi);
2532 unroll_get_qs:
2533 	ice_vsi_put_qs(vsi);
2534 unroll_vsi_alloc_stat:
2535 	ice_vsi_free_stats(vsi);
2536 unroll_vsi_alloc:
2537 	ice_vsi_free_arrays(vsi);
2538 	return ret;
2539 }
2540 
2541 /**
2542  * ice_vsi_cfg - configure a previously allocated VSI
2543  * @vsi: pointer to VSI
2544  * @params: parameters used to configure this VSI
2545  */
2546 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2547 {
2548 	struct ice_pf *pf = vsi->back;
2549 	int ret;
2550 
2551 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2552 		return -EINVAL;
2553 
2554 	vsi->type = params->type;
2555 	vsi->port_info = params->pi;
2556 
2557 	/* For VSIs which don't have a connected VF, this will be NULL */
2558 	vsi->vf = params->vf;
2559 
2560 	ret = ice_vsi_cfg_def(vsi, params);
2561 	if (ret)
2562 		return ret;
2563 
2564 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2565 	if (ret)
2566 		ice_vsi_decfg(vsi);
2567 
2568 	if (vsi->type == ICE_VSI_CTRL) {
2569 		if (vsi->vf) {
2570 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2571 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2572 		} else {
2573 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2574 			pf->ctrl_vsi_idx = vsi->idx;
2575 		}
2576 	}
2577 
2578 	return ret;
2579 }
2580 
2581 /**
2582  * ice_vsi_decfg - remove all VSI configuration
2583  * @vsi: pointer to VSI
2584  */
2585 void ice_vsi_decfg(struct ice_vsi *vsi)
2586 {
2587 	struct ice_pf *pf = vsi->back;
2588 	int err;
2589 
2590 	/* The Rx rule will only exist to remove if the LLDP FW
2591 	 * engine is currently stopped
2592 	 */
2593 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2594 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2595 		ice_cfg_sw_lldp(vsi, false, false);
2596 
2597 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2598 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2599 	if (err)
2600 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2601 			vsi->vsi_num, err);
2602 
2603 	if (ice_is_xdp_ena_vsi(vsi))
2604 		/* return value check can be skipped here, it always returns
2605 		 * 0 if reset is in progress
2606 		 */
2607 		ice_destroy_xdp_rings(vsi);
2608 
2609 	ice_vsi_clear_rings(vsi);
2610 	ice_vsi_free_q_vectors(vsi);
2611 	ice_vsi_put_qs(vsi);
2612 	ice_vsi_free_arrays(vsi);
2613 
2614 	/* SR-IOV determines needed MSIX resources all at once instead of per
2615 	 * VSI since when VFs are spawned we know how many VFs there are and how
2616 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2617 	 * cleared in the same manner.
2618 	 */
2619 
2620 	if (vsi->type == ICE_VSI_VF &&
2621 	    vsi->agg_node && vsi->agg_node->valid)
2622 		vsi->agg_node->num_vsis--;
2623 	if (vsi->agg_node) {
2624 		vsi->agg_node->valid = false;
2625 		vsi->agg_node->agg_id = 0;
2626 	}
2627 }
2628 
2629 /**
2630  * ice_vsi_setup - Set up a VSI by a given type
2631  * @pf: board private structure
2632  * @params: parameters to use when creating the VSI
2633  *
2634  * This allocates the sw VSI structure and its queue resources.
2635  *
2636  * Returns pointer to the successfully allocated and configured VSI sw struct on
2637  * success, NULL on failure.
2638  */
2639 struct ice_vsi *
2640 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2641 {
2642 	struct device *dev = ice_pf_to_dev(pf);
2643 	struct ice_vsi *vsi;
2644 	int ret;
2645 
2646 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2647 	 * a port_info structure for it.
2648 	 */
2649 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2650 	    WARN_ON(!params->pi))
2651 		return NULL;
2652 
2653 	vsi = ice_vsi_alloc(pf);
2654 	if (!vsi) {
2655 		dev_err(dev, "could not allocate VSI\n");
2656 		return NULL;
2657 	}
2658 
2659 	ret = ice_vsi_cfg(vsi, params);
2660 	if (ret)
2661 		goto err_vsi_cfg;
2662 
2663 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2664 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2665 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2666 	 * The rule is added once for PF VSI in order to create appropriate
2667 	 * recipe, since VSI/VSI list is ignored with drop action...
2668 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2669 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2670 	 * settings in the HW.
2671 	 */
2672 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2673 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2674 				 ICE_DROP_PACKET);
2675 		ice_cfg_sw_lldp(vsi, true, true);
2676 	}
2677 
2678 	if (!vsi->agg_node)
2679 		ice_set_agg_vsi(vsi);
2680 
2681 	return vsi;
2682 
2683 err_vsi_cfg:
2684 	ice_vsi_free(vsi);
2685 
2686 	return NULL;
2687 }
2688 
2689 /**
2690  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2691  * @vsi: the VSI being cleaned up
2692  */
2693 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2694 {
2695 	struct ice_pf *pf = vsi->back;
2696 	struct ice_hw *hw = &pf->hw;
2697 	u32 txq = 0;
2698 	u32 rxq = 0;
2699 	int i, q;
2700 
2701 	ice_for_each_q_vector(vsi, i) {
2702 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2703 
2704 		ice_write_intrl(q_vector, 0);
2705 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2706 			ice_write_itr(&q_vector->tx, 0);
2707 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2708 			if (ice_is_xdp_ena_vsi(vsi)) {
2709 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2710 
2711 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2712 			}
2713 			txq++;
2714 		}
2715 
2716 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2717 			ice_write_itr(&q_vector->rx, 0);
2718 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2719 			rxq++;
2720 		}
2721 	}
2722 
2723 	ice_flush(hw);
2724 }
2725 
2726 /**
2727  * ice_vsi_free_irq - Free the IRQ association with the OS
2728  * @vsi: the VSI being configured
2729  */
2730 void ice_vsi_free_irq(struct ice_vsi *vsi)
2731 {
2732 	struct ice_pf *pf = vsi->back;
2733 	int i;
2734 
2735 	if (!vsi->q_vectors || !vsi->irqs_ready)
2736 		return;
2737 
2738 	ice_vsi_release_msix(vsi);
2739 	if (vsi->type == ICE_VSI_VF)
2740 		return;
2741 
2742 	vsi->irqs_ready = false;
2743 	ice_free_cpu_rx_rmap(vsi);
2744 
2745 	ice_for_each_q_vector(vsi, i) {
2746 		int irq_num;
2747 
2748 		irq_num = vsi->q_vectors[i]->irq.virq;
2749 
2750 		/* free only the irqs that were actually requested */
2751 		if (!vsi->q_vectors[i] ||
2752 		    !(vsi->q_vectors[i]->num_ring_tx ||
2753 		      vsi->q_vectors[i]->num_ring_rx))
2754 			continue;
2755 
2756 		/* clear the affinity notifier in the IRQ descriptor */
2757 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2758 			irq_set_affinity_notifier(irq_num, NULL);
2759 
2760 		/* clear the affinity_mask in the IRQ descriptor */
2761 		irq_set_affinity_hint(irq_num, NULL);
2762 		synchronize_irq(irq_num);
2763 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2764 	}
2765 }
2766 
2767 /**
2768  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2769  * @vsi: the VSI having resources freed
2770  */
2771 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2772 {
2773 	int i;
2774 
2775 	if (!vsi->tx_rings)
2776 		return;
2777 
2778 	ice_for_each_txq(vsi, i)
2779 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2780 			ice_free_tx_ring(vsi->tx_rings[i]);
2781 }
2782 
2783 /**
2784  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2785  * @vsi: the VSI having resources freed
2786  */
2787 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2788 {
2789 	int i;
2790 
2791 	if (!vsi->rx_rings)
2792 		return;
2793 
2794 	ice_for_each_rxq(vsi, i)
2795 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2796 			ice_free_rx_ring(vsi->rx_rings[i]);
2797 }
2798 
2799 /**
2800  * ice_vsi_close - Shut down a VSI
2801  * @vsi: the VSI being shut down
2802  */
2803 void ice_vsi_close(struct ice_vsi *vsi)
2804 {
2805 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2806 		ice_down(vsi);
2807 
2808 	ice_vsi_free_irq(vsi);
2809 	ice_vsi_free_tx_rings(vsi);
2810 	ice_vsi_free_rx_rings(vsi);
2811 }
2812 
2813 /**
2814  * ice_ena_vsi - resume a VSI
2815  * @vsi: the VSI being resume
2816  * @locked: is the rtnl_lock already held
2817  */
2818 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2819 {
2820 	int err = 0;
2821 
2822 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2823 		return 0;
2824 
2825 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2826 
2827 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2828 		if (netif_running(vsi->netdev)) {
2829 			if (!locked)
2830 				rtnl_lock();
2831 
2832 			err = ice_open_internal(vsi->netdev);
2833 
2834 			if (!locked)
2835 				rtnl_unlock();
2836 		}
2837 	} else if (vsi->type == ICE_VSI_CTRL) {
2838 		err = ice_vsi_open_ctrl(vsi);
2839 	}
2840 
2841 	return err;
2842 }
2843 
2844 /**
2845  * ice_dis_vsi - pause a VSI
2846  * @vsi: the VSI being paused
2847  * @locked: is the rtnl_lock already held
2848  */
2849 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2850 {
2851 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2852 		return;
2853 
2854 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2855 
2856 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2857 		if (netif_running(vsi->netdev)) {
2858 			if (!locked)
2859 				rtnl_lock();
2860 
2861 			ice_vsi_close(vsi);
2862 
2863 			if (!locked)
2864 				rtnl_unlock();
2865 		} else {
2866 			ice_vsi_close(vsi);
2867 		}
2868 	} else if (vsi->type == ICE_VSI_CTRL ||
2869 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2870 		ice_vsi_close(vsi);
2871 	}
2872 }
2873 
2874 /**
2875  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2876  * @vsi: the VSI being un-configured
2877  */
2878 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2879 {
2880 	struct ice_pf *pf = vsi->back;
2881 	struct ice_hw *hw = &pf->hw;
2882 	u32 val;
2883 	int i;
2884 
2885 	/* disable interrupt causation from each queue */
2886 	if (vsi->tx_rings) {
2887 		ice_for_each_txq(vsi, i) {
2888 			if (vsi->tx_rings[i]) {
2889 				u16 reg;
2890 
2891 				reg = vsi->tx_rings[i]->reg_idx;
2892 				val = rd32(hw, QINT_TQCTL(reg));
2893 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2894 				wr32(hw, QINT_TQCTL(reg), val);
2895 			}
2896 		}
2897 	}
2898 
2899 	if (vsi->rx_rings) {
2900 		ice_for_each_rxq(vsi, i) {
2901 			if (vsi->rx_rings[i]) {
2902 				u16 reg;
2903 
2904 				reg = vsi->rx_rings[i]->reg_idx;
2905 				val = rd32(hw, QINT_RQCTL(reg));
2906 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2907 				wr32(hw, QINT_RQCTL(reg), val);
2908 			}
2909 		}
2910 	}
2911 
2912 	/* disable each interrupt */
2913 	ice_for_each_q_vector(vsi, i) {
2914 		if (!vsi->q_vectors[i])
2915 			continue;
2916 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2917 	}
2918 
2919 	ice_flush(hw);
2920 
2921 	/* don't call synchronize_irq() for VF's from the host */
2922 	if (vsi->type == ICE_VSI_VF)
2923 		return;
2924 
2925 	ice_for_each_q_vector(vsi, i)
2926 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2927 }
2928 
2929 /**
2930  * ice_vsi_release - Delete a VSI and free its resources
2931  * @vsi: the VSI being removed
2932  *
2933  * Returns 0 on success or < 0 on error
2934  */
2935 int ice_vsi_release(struct ice_vsi *vsi)
2936 {
2937 	struct ice_pf *pf;
2938 
2939 	if (!vsi->back)
2940 		return -ENODEV;
2941 	pf = vsi->back;
2942 
2943 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2944 		ice_rss_clean(vsi);
2945 
2946 	ice_vsi_close(vsi);
2947 	ice_vsi_decfg(vsi);
2948 
2949 	/* retain SW VSI data structure since it is needed to unregister and
2950 	 * free VSI netdev when PF is not in reset recovery pending state,\
2951 	 * for ex: during rmmod.
2952 	 */
2953 	if (!ice_is_reset_in_progress(pf->state))
2954 		ice_vsi_delete(vsi);
2955 
2956 	return 0;
2957 }
2958 
2959 /**
2960  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2961  * @vsi: VSI connected with q_vectors
2962  * @coalesce: array of struct with stored coalesce
2963  *
2964  * Returns array size.
2965  */
2966 static int
2967 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2968 			     struct ice_coalesce_stored *coalesce)
2969 {
2970 	int i;
2971 
2972 	ice_for_each_q_vector(vsi, i) {
2973 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2974 
2975 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2976 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2977 		coalesce[i].intrl = q_vector->intrl;
2978 
2979 		if (i < vsi->num_txq)
2980 			coalesce[i].tx_valid = true;
2981 		if (i < vsi->num_rxq)
2982 			coalesce[i].rx_valid = true;
2983 	}
2984 
2985 	return vsi->num_q_vectors;
2986 }
2987 
2988 /**
2989  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2990  * @vsi: VSI connected with q_vectors
2991  * @coalesce: pointer to array of struct with stored coalesce
2992  * @size: size of coalesce array
2993  *
2994  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2995  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2996  * to default value.
2997  */
2998 static void
2999 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3000 			     struct ice_coalesce_stored *coalesce, int size)
3001 {
3002 	struct ice_ring_container *rc;
3003 	int i;
3004 
3005 	if ((size && !coalesce) || !vsi)
3006 		return;
3007 
3008 	/* There are a couple of cases that have to be handled here:
3009 	 *   1. The case where the number of queue vectors stays the same, but
3010 	 *      the number of Tx or Rx rings changes (the first for loop)
3011 	 *   2. The case where the number of queue vectors increased (the
3012 	 *      second for loop)
3013 	 */
3014 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3015 		/* There are 2 cases to handle here and they are the same for
3016 		 * both Tx and Rx:
3017 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3018 		 *   and the loop variable is less than the number of rings
3019 		 *   allocated, then write the previous values
3020 		 *
3021 		 *   if the entry was not valid previously, but the number of
3022 		 *   rings is less than are allocated (this means the number of
3023 		 *   rings increased from previously), then write out the
3024 		 *   values in the first element
3025 		 *
3026 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3027 		 *   as there is no harm because the dynamic algorithm
3028 		 *   will just overwrite.
3029 		 */
3030 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3031 			rc = &vsi->q_vectors[i]->rx;
3032 			rc->itr_settings = coalesce[i].itr_rx;
3033 			ice_write_itr(rc, rc->itr_setting);
3034 		} else if (i < vsi->alloc_rxq) {
3035 			rc = &vsi->q_vectors[i]->rx;
3036 			rc->itr_settings = coalesce[0].itr_rx;
3037 			ice_write_itr(rc, rc->itr_setting);
3038 		}
3039 
3040 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3041 			rc = &vsi->q_vectors[i]->tx;
3042 			rc->itr_settings = coalesce[i].itr_tx;
3043 			ice_write_itr(rc, rc->itr_setting);
3044 		} else if (i < vsi->alloc_txq) {
3045 			rc = &vsi->q_vectors[i]->tx;
3046 			rc->itr_settings = coalesce[0].itr_tx;
3047 			ice_write_itr(rc, rc->itr_setting);
3048 		}
3049 
3050 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3051 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3052 	}
3053 
3054 	/* the number of queue vectors increased so write whatever is in
3055 	 * the first element
3056 	 */
3057 	for (; i < vsi->num_q_vectors; i++) {
3058 		/* transmit */
3059 		rc = &vsi->q_vectors[i]->tx;
3060 		rc->itr_settings = coalesce[0].itr_tx;
3061 		ice_write_itr(rc, rc->itr_setting);
3062 
3063 		/* receive */
3064 		rc = &vsi->q_vectors[i]->rx;
3065 		rc->itr_settings = coalesce[0].itr_rx;
3066 		ice_write_itr(rc, rc->itr_setting);
3067 
3068 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3069 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3070 	}
3071 }
3072 
3073 /**
3074  * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3075  * @vsi: VSI pointer
3076  * @prev_txq: Number of Tx rings before ring reallocation
3077  * @prev_rxq: Number of Rx rings before ring reallocation
3078  */
3079 static void
3080 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3081 {
3082 	struct ice_vsi_stats *vsi_stat;
3083 	struct ice_pf *pf = vsi->back;
3084 	int i;
3085 
3086 	if (!prev_txq || !prev_rxq)
3087 		return;
3088 	if (vsi->type == ICE_VSI_CHNL)
3089 		return;
3090 
3091 	vsi_stat = pf->vsi_stats[vsi->idx];
3092 
3093 	if (vsi->num_txq < prev_txq) {
3094 		for (i = vsi->num_txq; i < prev_txq; i++) {
3095 			if (vsi_stat->tx_ring_stats[i]) {
3096 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3097 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3098 			}
3099 		}
3100 	}
3101 
3102 	if (vsi->num_rxq < prev_rxq) {
3103 		for (i = vsi->num_rxq; i < prev_rxq; i++) {
3104 			if (vsi_stat->rx_ring_stats[i]) {
3105 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3106 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3107 			}
3108 		}
3109 	}
3110 }
3111 
3112 /**
3113  * ice_vsi_rebuild - Rebuild VSI after reset
3114  * @vsi: VSI to be rebuild
3115  * @vsi_flags: flags used for VSI rebuild flow
3116  *
3117  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3118  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3119  *
3120  * Returns 0 on success and negative value on failure
3121  */
3122 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3123 {
3124 	struct ice_vsi_cfg_params params = {};
3125 	struct ice_coalesce_stored *coalesce;
3126 	int ret, prev_txq, prev_rxq;
3127 	int prev_num_q_vectors = 0;
3128 	struct ice_pf *pf;
3129 
3130 	if (!vsi)
3131 		return -EINVAL;
3132 
3133 	params = ice_vsi_to_params(vsi);
3134 	params.flags = vsi_flags;
3135 
3136 	pf = vsi->back;
3137 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3138 		return -EINVAL;
3139 
3140 	coalesce = kcalloc(vsi->num_q_vectors,
3141 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3142 	if (!coalesce)
3143 		return -ENOMEM;
3144 
3145 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3146 
3147 	prev_txq = vsi->num_txq;
3148 	prev_rxq = vsi->num_rxq;
3149 
3150 	ice_vsi_decfg(vsi);
3151 	ret = ice_vsi_cfg_def(vsi, &params);
3152 	if (ret)
3153 		goto err_vsi_cfg;
3154 
3155 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3156 	if (ret) {
3157 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3158 			ret = -EIO;
3159 			goto err_vsi_cfg_tc_lan;
3160 		}
3161 
3162 		kfree(coalesce);
3163 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3164 	}
3165 
3166 	ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq);
3167 
3168 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3169 	kfree(coalesce);
3170 
3171 	return 0;
3172 
3173 err_vsi_cfg_tc_lan:
3174 	ice_vsi_decfg(vsi);
3175 err_vsi_cfg:
3176 	kfree(coalesce);
3177 	return ret;
3178 }
3179 
3180 /**
3181  * ice_is_reset_in_progress - check for a reset in progress
3182  * @state: PF state field
3183  */
3184 bool ice_is_reset_in_progress(unsigned long *state)
3185 {
3186 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3187 	       test_bit(ICE_PFR_REQ, state) ||
3188 	       test_bit(ICE_CORER_REQ, state) ||
3189 	       test_bit(ICE_GLOBR_REQ, state);
3190 }
3191 
3192 /**
3193  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3194  * @pf: pointer to the PF structure
3195  * @timeout: length of time to wait, in jiffies
3196  *
3197  * Wait (sleep) for a short time until the driver finishes cleaning up from
3198  * a device reset. The caller must be able to sleep. Use this to delay
3199  * operations that could fail while the driver is cleaning up after a device
3200  * reset.
3201  *
3202  * Returns 0 on success, -EBUSY if the reset is not finished within the
3203  * timeout, and -ERESTARTSYS if the thread was interrupted.
3204  */
3205 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3206 {
3207 	long ret;
3208 
3209 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3210 					       !ice_is_reset_in_progress(pf->state),
3211 					       timeout);
3212 	if (ret < 0)
3213 		return ret;
3214 	else if (!ret)
3215 		return -EBUSY;
3216 	else
3217 		return 0;
3218 }
3219 
3220 /**
3221  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3222  * @vsi: VSI being configured
3223  * @ctx: the context buffer returned from AQ VSI update command
3224  */
3225 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3226 {
3227 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3228 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3229 	       sizeof(vsi->info.q_mapping));
3230 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3231 	       sizeof(vsi->info.tc_mapping));
3232 }
3233 
3234 /**
3235  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3236  * @vsi: the VSI being configured
3237  * @ena_tc: TC map to be enabled
3238  */
3239 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3240 {
3241 	struct net_device *netdev = vsi->netdev;
3242 	struct ice_pf *pf = vsi->back;
3243 	int numtc = vsi->tc_cfg.numtc;
3244 	struct ice_dcbx_cfg *dcbcfg;
3245 	u8 netdev_tc;
3246 	int i;
3247 
3248 	if (!netdev)
3249 		return;
3250 
3251 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3252 	if (vsi->type == ICE_VSI_CHNL)
3253 		return;
3254 
3255 	if (!ena_tc) {
3256 		netdev_reset_tc(netdev);
3257 		return;
3258 	}
3259 
3260 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3261 		numtc = vsi->all_numtc;
3262 
3263 	if (netdev_set_num_tc(netdev, numtc))
3264 		return;
3265 
3266 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3267 
3268 	ice_for_each_traffic_class(i)
3269 		if (vsi->tc_cfg.ena_tc & BIT(i))
3270 			netdev_set_tc_queue(netdev,
3271 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3272 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3273 					    vsi->tc_cfg.tc_info[i].qoffset);
3274 	/* setup TC queue map for CHNL TCs */
3275 	ice_for_each_chnl_tc(i) {
3276 		if (!(vsi->all_enatc & BIT(i)))
3277 			break;
3278 		if (!vsi->mqprio_qopt.qopt.count[i])
3279 			break;
3280 		netdev_set_tc_queue(netdev, i,
3281 				    vsi->mqprio_qopt.qopt.count[i],
3282 				    vsi->mqprio_qopt.qopt.offset[i]);
3283 	}
3284 
3285 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3286 		return;
3287 
3288 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3289 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3290 
3291 		/* Get the mapped netdev TC# for the UP */
3292 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3293 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3294 	}
3295 }
3296 
3297 /**
3298  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3299  * @vsi: the VSI being configured,
3300  * @ctxt: VSI context structure
3301  * @ena_tc: number of traffic classes to enable
3302  *
3303  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3304  */
3305 static int
3306 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3307 			   u8 ena_tc)
3308 {
3309 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3310 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3311 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3312 	u16 new_txq, new_rxq;
3313 	u8 netdev_tc = 0;
3314 	int i;
3315 
3316 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3317 
3318 	pow = order_base_2(tc0_qcount);
3319 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3320 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3321 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3322 
3323 	ice_for_each_traffic_class(i) {
3324 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3325 			/* TC is not enabled */
3326 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3327 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3328 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3329 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3330 			ctxt->info.tc_mapping[i] = 0;
3331 			continue;
3332 		}
3333 
3334 		offset = vsi->mqprio_qopt.qopt.offset[i];
3335 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3336 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3337 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3338 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3339 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3340 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3341 	}
3342 
3343 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3344 		ice_for_each_chnl_tc(i) {
3345 			if (!(vsi->all_enatc & BIT(i)))
3346 				continue;
3347 			offset = vsi->mqprio_qopt.qopt.offset[i];
3348 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3349 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3350 		}
3351 	}
3352 
3353 	new_txq = offset + qcount_tx;
3354 	if (new_txq > vsi->alloc_txq) {
3355 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3356 			new_txq, vsi->alloc_txq);
3357 		return -EINVAL;
3358 	}
3359 
3360 	new_rxq = offset + qcount_rx;
3361 	if (new_rxq > vsi->alloc_rxq) {
3362 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3363 			new_rxq, vsi->alloc_rxq);
3364 		return -EINVAL;
3365 	}
3366 
3367 	/* Set actual Tx/Rx queue pairs */
3368 	vsi->num_txq = new_txq;
3369 	vsi->num_rxq = new_rxq;
3370 
3371 	/* Setup queue TC[0].qmap for given VSI context */
3372 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3373 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3374 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3375 
3376 	/* Find queue count available for channel VSIs and starting offset
3377 	 * for channel VSIs
3378 	 */
3379 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3380 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3381 		vsi->next_base_q = tc0_qcount;
3382 	}
3383 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3384 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3385 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3386 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3387 
3388 	return 0;
3389 }
3390 
3391 /**
3392  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3393  * @vsi: VSI to be configured
3394  * @ena_tc: TC bitmap
3395  *
3396  * VSI queues expected to be quiesced before calling this function
3397  */
3398 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3399 {
3400 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3401 	struct ice_pf *pf = vsi->back;
3402 	struct ice_tc_cfg old_tc_cfg;
3403 	struct ice_vsi_ctx *ctx;
3404 	struct device *dev;
3405 	int i, ret = 0;
3406 	u8 num_tc = 0;
3407 
3408 	dev = ice_pf_to_dev(pf);
3409 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3410 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3411 		return 0;
3412 
3413 	ice_for_each_traffic_class(i) {
3414 		/* build bitmap of enabled TCs */
3415 		if (ena_tc & BIT(i))
3416 			num_tc++;
3417 		/* populate max_txqs per TC */
3418 		max_txqs[i] = vsi->alloc_txq;
3419 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3420 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3421 		 */
3422 		if (vsi->type == ICE_VSI_CHNL &&
3423 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3424 			max_txqs[i] = vsi->num_txq;
3425 	}
3426 
3427 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3428 	vsi->tc_cfg.ena_tc = ena_tc;
3429 	vsi->tc_cfg.numtc = num_tc;
3430 
3431 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3432 	if (!ctx)
3433 		return -ENOMEM;
3434 
3435 	ctx->vf_num = 0;
3436 	ctx->info = vsi->info;
3437 
3438 	if (vsi->type == ICE_VSI_PF &&
3439 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3440 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3441 	else
3442 		ret = ice_vsi_setup_q_map(vsi, ctx);
3443 
3444 	if (ret) {
3445 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3446 		goto out;
3447 	}
3448 
3449 	/* must to indicate which section of VSI context are being modified */
3450 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3451 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3452 	if (ret) {
3453 		dev_info(dev, "Failed VSI Update\n");
3454 		goto out;
3455 	}
3456 
3457 	if (vsi->type == ICE_VSI_PF &&
3458 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3459 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3460 	else
3461 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3462 				      vsi->tc_cfg.ena_tc, max_txqs);
3463 
3464 	if (ret) {
3465 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3466 			vsi->vsi_num, ret);
3467 		goto out;
3468 	}
3469 	ice_vsi_update_q_map(vsi, ctx);
3470 	vsi->info.valid_sections = 0;
3471 
3472 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3473 out:
3474 	kfree(ctx);
3475 	return ret;
3476 }
3477 
3478 /**
3479  * ice_update_ring_stats - Update ring statistics
3480  * @stats: stats to be updated
3481  * @pkts: number of processed packets
3482  * @bytes: number of processed bytes
3483  *
3484  * This function assumes that caller has acquired a u64_stats_sync lock.
3485  */
3486 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3487 {
3488 	stats->bytes += bytes;
3489 	stats->pkts += pkts;
3490 }
3491 
3492 /**
3493  * ice_update_tx_ring_stats - Update Tx ring specific counters
3494  * @tx_ring: ring to update
3495  * @pkts: number of processed packets
3496  * @bytes: number of processed bytes
3497  */
3498 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3499 {
3500 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3501 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3502 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3503 }
3504 
3505 /**
3506  * ice_update_rx_ring_stats - Update Rx ring specific counters
3507  * @rx_ring: ring to update
3508  * @pkts: number of processed packets
3509  * @bytes: number of processed bytes
3510  */
3511 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3512 {
3513 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3514 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3515 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3516 }
3517 
3518 /**
3519  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3520  * @pi: port info of the switch with default VSI
3521  *
3522  * Return true if the there is a single VSI in default forwarding VSI list
3523  */
3524 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3525 {
3526 	bool exists = false;
3527 
3528 	ice_check_if_dflt_vsi(pi, 0, &exists);
3529 	return exists;
3530 }
3531 
3532 /**
3533  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3534  * @vsi: VSI to compare against default forwarding VSI
3535  *
3536  * If this VSI passed in is the default forwarding VSI then return true, else
3537  * return false
3538  */
3539 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3540 {
3541 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3542 }
3543 
3544 /**
3545  * ice_set_dflt_vsi - set the default forwarding VSI
3546  * @vsi: VSI getting set as the default forwarding VSI on the switch
3547  *
3548  * If the VSI passed in is already the default VSI and it's enabled just return
3549  * success.
3550  *
3551  * Otherwise try to set the VSI passed in as the switch's default VSI and
3552  * return the result.
3553  */
3554 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3555 {
3556 	struct device *dev;
3557 	int status;
3558 
3559 	if (!vsi)
3560 		return -EINVAL;
3561 
3562 	dev = ice_pf_to_dev(vsi->back);
3563 
3564 	if (ice_lag_is_switchdev_running(vsi->back)) {
3565 		dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3566 			vsi->vsi_num);
3567 		return 0;
3568 	}
3569 
3570 	/* the VSI passed in is already the default VSI */
3571 	if (ice_is_vsi_dflt_vsi(vsi)) {
3572 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3573 			vsi->vsi_num);
3574 		return 0;
3575 	}
3576 
3577 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3578 	if (status) {
3579 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3580 			vsi->vsi_num, status);
3581 		return status;
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 /**
3588  * ice_clear_dflt_vsi - clear the default forwarding VSI
3589  * @vsi: VSI to remove from filter list
3590  *
3591  * If the switch has no default VSI or it's not enabled then return error.
3592  *
3593  * Otherwise try to clear the default VSI and return the result.
3594  */
3595 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3596 {
3597 	struct device *dev;
3598 	int status;
3599 
3600 	if (!vsi)
3601 		return -EINVAL;
3602 
3603 	dev = ice_pf_to_dev(vsi->back);
3604 
3605 	/* there is no default VSI configured */
3606 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3607 		return -ENODEV;
3608 
3609 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3610 				  ICE_FLTR_RX);
3611 	if (status) {
3612 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3613 			vsi->vsi_num, status);
3614 		return -EIO;
3615 	}
3616 
3617 	return 0;
3618 }
3619 
3620 /**
3621  * ice_get_link_speed_mbps - get link speed in Mbps
3622  * @vsi: the VSI whose link speed is being queried
3623  *
3624  * Return current VSI link speed and 0 if the speed is unknown.
3625  */
3626 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3627 {
3628 	unsigned int link_speed;
3629 
3630 	link_speed = vsi->port_info->phy.link_info.link_speed;
3631 
3632 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3633 }
3634 
3635 /**
3636  * ice_get_link_speed_kbps - get link speed in Kbps
3637  * @vsi: the VSI whose link speed is being queried
3638  *
3639  * Return current VSI link speed and 0 if the speed is unknown.
3640  */
3641 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3642 {
3643 	int speed_mbps;
3644 
3645 	speed_mbps = ice_get_link_speed_mbps(vsi);
3646 
3647 	return speed_mbps * 1000;
3648 }
3649 
3650 /**
3651  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3652  * @vsi: VSI to be configured
3653  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3654  *
3655  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3656  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3657  * on TC 0.
3658  */
3659 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3660 {
3661 	struct ice_pf *pf = vsi->back;
3662 	struct device *dev;
3663 	int status;
3664 	int speed;
3665 
3666 	dev = ice_pf_to_dev(pf);
3667 	if (!vsi->port_info) {
3668 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3669 			vsi->idx, vsi->type);
3670 		return -EINVAL;
3671 	}
3672 
3673 	speed = ice_get_link_speed_kbps(vsi);
3674 	if (min_tx_rate > (u64)speed) {
3675 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3676 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3677 			speed);
3678 		return -EINVAL;
3679 	}
3680 
3681 	/* Configure min BW for VSI limit */
3682 	if (min_tx_rate) {
3683 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3684 						   ICE_MIN_BW, min_tx_rate);
3685 		if (status) {
3686 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3687 				min_tx_rate, ice_vsi_type_str(vsi->type),
3688 				vsi->idx);
3689 			return status;
3690 		}
3691 
3692 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3693 			min_tx_rate, ice_vsi_type_str(vsi->type));
3694 	} else {
3695 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3696 							vsi->idx, 0,
3697 							ICE_MIN_BW);
3698 		if (status) {
3699 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3700 				ice_vsi_type_str(vsi->type), vsi->idx);
3701 			return status;
3702 		}
3703 
3704 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3705 			ice_vsi_type_str(vsi->type), vsi->idx);
3706 	}
3707 
3708 	return 0;
3709 }
3710 
3711 /**
3712  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3713  * @vsi: VSI to be configured
3714  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3715  *
3716  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3717  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3718  * on TC 0.
3719  */
3720 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3721 {
3722 	struct ice_pf *pf = vsi->back;
3723 	struct device *dev;
3724 	int status;
3725 	int speed;
3726 
3727 	dev = ice_pf_to_dev(pf);
3728 	if (!vsi->port_info) {
3729 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3730 			vsi->idx, vsi->type);
3731 		return -EINVAL;
3732 	}
3733 
3734 	speed = ice_get_link_speed_kbps(vsi);
3735 	if (max_tx_rate > (u64)speed) {
3736 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3737 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3738 			speed);
3739 		return -EINVAL;
3740 	}
3741 
3742 	/* Configure max BW for VSI limit */
3743 	if (max_tx_rate) {
3744 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3745 						   ICE_MAX_BW, max_tx_rate);
3746 		if (status) {
3747 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3748 				max_tx_rate, ice_vsi_type_str(vsi->type),
3749 				vsi->idx);
3750 			return status;
3751 		}
3752 
3753 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3754 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3755 	} else {
3756 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3757 							vsi->idx, 0,
3758 							ICE_MAX_BW);
3759 		if (status) {
3760 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3761 				ice_vsi_type_str(vsi->type), vsi->idx);
3762 			return status;
3763 		}
3764 
3765 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3766 			ice_vsi_type_str(vsi->type), vsi->idx);
3767 	}
3768 
3769 	return 0;
3770 }
3771 
3772 /**
3773  * ice_set_link - turn on/off physical link
3774  * @vsi: VSI to modify physical link on
3775  * @ena: turn on/off physical link
3776  */
3777 int ice_set_link(struct ice_vsi *vsi, bool ena)
3778 {
3779 	struct device *dev = ice_pf_to_dev(vsi->back);
3780 	struct ice_port_info *pi = vsi->port_info;
3781 	struct ice_hw *hw = pi->hw;
3782 	int status;
3783 
3784 	if (vsi->type != ICE_VSI_PF)
3785 		return -EINVAL;
3786 
3787 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3788 
3789 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3790 	 * this is not a fatal error, so print a warning message and return
3791 	 * a success code. Return an error if FW returns an error code other
3792 	 * than ICE_AQ_RC_EMODE
3793 	 */
3794 	if (status == -EIO) {
3795 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3796 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3797 				(ena ? "ON" : "OFF"), status,
3798 				ice_aq_str(hw->adminq.sq_last_status));
3799 	} else if (status) {
3800 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3801 			(ena ? "ON" : "OFF"), status,
3802 			ice_aq_str(hw->adminq.sq_last_status));
3803 		return status;
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 /**
3810  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3811  * @vsi: VSI used to add VLAN filters
3812  *
3813  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3814  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3815  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3816  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3817  *
3818  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3819  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3820  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3821  *
3822  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3823  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3824  * part of filtering.
3825  */
3826 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3827 {
3828 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3829 	struct ice_vlan vlan;
3830 	int err;
3831 
3832 	vlan = ICE_VLAN(0, 0, 0);
3833 	err = vlan_ops->add_vlan(vsi, &vlan);
3834 	if (err && err != -EEXIST)
3835 		return err;
3836 
3837 	/* in SVM both VLAN 0 filters are identical */
3838 	if (!ice_is_dvm_ena(&vsi->back->hw))
3839 		return 0;
3840 
3841 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3842 	err = vlan_ops->add_vlan(vsi, &vlan);
3843 	if (err && err != -EEXIST)
3844 		return err;
3845 
3846 	return 0;
3847 }
3848 
3849 /**
3850  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3851  * @vsi: VSI used to add VLAN filters
3852  *
3853  * Delete the VLAN 0 filters in the same manner that they were added in
3854  * ice_vsi_add_vlan_zero.
3855  */
3856 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3857 {
3858 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3859 	struct ice_vlan vlan;
3860 	int err;
3861 
3862 	vlan = ICE_VLAN(0, 0, 0);
3863 	err = vlan_ops->del_vlan(vsi, &vlan);
3864 	if (err && err != -EEXIST)
3865 		return err;
3866 
3867 	/* in SVM both VLAN 0 filters are identical */
3868 	if (!ice_is_dvm_ena(&vsi->back->hw))
3869 		return 0;
3870 
3871 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3872 	err = vlan_ops->del_vlan(vsi, &vlan);
3873 	if (err && err != -EEXIST)
3874 		return err;
3875 
3876 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3877 	 * promisc mode so the filter isn't left by accident
3878 	 */
3879 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3880 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3881 }
3882 
3883 /**
3884  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3885  * @vsi: VSI used to get the VLAN mode
3886  *
3887  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3888  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3889  */
3890 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3891 {
3892 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3893 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3894 	/* no VLAN 0 filter is created when a port VLAN is active */
3895 	if (vsi->type == ICE_VSI_VF) {
3896 		if (WARN_ON(!vsi->vf))
3897 			return 0;
3898 
3899 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3900 			return 0;
3901 	}
3902 
3903 	if (ice_is_dvm_ena(&vsi->back->hw))
3904 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3905 	else
3906 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3907 }
3908 
3909 /**
3910  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3911  * @vsi: VSI used to determine if any non-zero VLANs have been added
3912  */
3913 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3914 {
3915 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3916 }
3917 
3918 /**
3919  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3920  * @vsi: VSI used to get the number of non-zero VLANs added
3921  */
3922 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3923 {
3924 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3925 }
3926 
3927 /**
3928  * ice_is_feature_supported
3929  * @pf: pointer to the struct ice_pf instance
3930  * @f: feature enum to be checked
3931  *
3932  * returns true if feature is supported, false otherwise
3933  */
3934 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3935 {
3936 	if (f < 0 || f >= ICE_F_MAX)
3937 		return false;
3938 
3939 	return test_bit(f, pf->features);
3940 }
3941 
3942 /**
3943  * ice_set_feature_support
3944  * @pf: pointer to the struct ice_pf instance
3945  * @f: feature enum to set
3946  */
3947 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3948 {
3949 	if (f < 0 || f >= ICE_F_MAX)
3950 		return;
3951 
3952 	set_bit(f, pf->features);
3953 }
3954 
3955 /**
3956  * ice_clear_feature_support
3957  * @pf: pointer to the struct ice_pf instance
3958  * @f: feature enum to clear
3959  */
3960 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3961 {
3962 	if (f < 0 || f >= ICE_F_MAX)
3963 		return;
3964 
3965 	clear_bit(f, pf->features);
3966 }
3967 
3968 /**
3969  * ice_init_feature_support
3970  * @pf: pointer to the struct ice_pf instance
3971  *
3972  * called during init to setup supported feature
3973  */
3974 void ice_init_feature_support(struct ice_pf *pf)
3975 {
3976 	switch (pf->hw.device_id) {
3977 	case ICE_DEV_ID_E810C_BACKPLANE:
3978 	case ICE_DEV_ID_E810C_QSFP:
3979 	case ICE_DEV_ID_E810C_SFP:
3980 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3981 	case ICE_DEV_ID_E810_XXV_QSFP:
3982 	case ICE_DEV_ID_E810_XXV_SFP:
3983 		ice_set_feature_support(pf, ICE_F_DSCP);
3984 		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3985 			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3986 		/* If we don't own the timer - don't enable other caps */
3987 		if (!ice_pf_src_tmr_owned(pf))
3988 			break;
3989 		if (ice_is_cgu_in_netlist(&pf->hw))
3990 			ice_set_feature_support(pf, ICE_F_CGU);
3991 		if (ice_is_clock_mux_in_netlist(&pf->hw))
3992 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3993 		if (ice_gnss_is_gps_present(&pf->hw))
3994 			ice_set_feature_support(pf, ICE_F_GNSS);
3995 		break;
3996 	default:
3997 		break;
3998 	}
3999 }
4000 
4001 /**
4002  * ice_vsi_update_security - update security block in VSI
4003  * @vsi: pointer to VSI structure
4004  * @fill: function pointer to fill ctx
4005  */
4006 int
4007 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4008 {
4009 	struct ice_vsi_ctx ctx = { 0 };
4010 
4011 	ctx.info = vsi->info;
4012 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4013 	fill(&ctx);
4014 
4015 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4016 		return -ENODEV;
4017 
4018 	vsi->info = ctx.info;
4019 	return 0;
4020 }
4021 
4022 /**
4023  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4024  * @ctx: pointer to VSI ctx structure
4025  */
4026 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4027 {
4028 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4029 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4030 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4031 }
4032 
4033 /**
4034  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4035  * @ctx: pointer to VSI ctx structure
4036  */
4037 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4038 {
4039 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4040 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4041 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4042 }
4043 
4044 /**
4045  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4046  * @ctx: pointer to VSI ctx structure
4047  */
4048 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4049 {
4050 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4051 }
4052 
4053 /**
4054  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4055  * @ctx: pointer to VSI ctx structure
4056  */
4057 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4058 {
4059 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4060 }
4061 
4062 /**
4063  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4064  * @vsi: pointer to VSI structure
4065  * @set: set or unset the bit
4066  */
4067 int
4068 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4069 {
4070 	struct ice_vsi_ctx ctx = {
4071 		.info	= vsi->info,
4072 	};
4073 
4074 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4075 	if (set)
4076 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4077 	else
4078 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4079 
4080 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4081 		return -ENODEV;
4082 
4083 	vsi->info = ctx.info;
4084 	return 0;
4085 }
4086