xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 11a7a42ea76e61a8d2f7374ecdd95460dec4413f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete_from_hw - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ice_fltr_remove_all(vsi);
295 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
296 	if (!ctxt)
297 		return;
298 
299 	if (vsi->type == ICE_VSI_VF)
300 		ctxt->vf_num = vsi->vf->vf_id;
301 	ctxt->vsi_num = vsi->vsi_num;
302 
303 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
304 
305 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
306 	if (status)
307 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
308 			vsi->vsi_num, status);
309 
310 	kfree(ctxt);
311 }
312 
313 /**
314  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
315  * @vsi: pointer to VSI being cleared
316  */
317 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
318 {
319 	struct ice_pf *pf = vsi->back;
320 	struct device *dev;
321 
322 	dev = ice_pf_to_dev(pf);
323 
324 	bitmap_free(vsi->af_xdp_zc_qps);
325 	vsi->af_xdp_zc_qps = NULL;
326 	/* free the ring and vector containers */
327 	devm_kfree(dev, vsi->q_vectors);
328 	vsi->q_vectors = NULL;
329 	devm_kfree(dev, vsi->tx_rings);
330 	vsi->tx_rings = NULL;
331 	devm_kfree(dev, vsi->rx_rings);
332 	vsi->rx_rings = NULL;
333 	devm_kfree(dev, vsi->txq_map);
334 	vsi->txq_map = NULL;
335 	devm_kfree(dev, vsi->rxq_map);
336 	vsi->rxq_map = NULL;
337 }
338 
339 /**
340  * ice_vsi_free_stats - Free the ring statistics structures
341  * @vsi: VSI pointer
342  */
343 static void ice_vsi_free_stats(struct ice_vsi *vsi)
344 {
345 	struct ice_vsi_stats *vsi_stat;
346 	struct ice_pf *pf = vsi->back;
347 	int i;
348 
349 	if (vsi->type == ICE_VSI_CHNL)
350 		return;
351 	if (!pf->vsi_stats)
352 		return;
353 
354 	vsi_stat = pf->vsi_stats[vsi->idx];
355 	if (!vsi_stat)
356 		return;
357 
358 	ice_for_each_alloc_txq(vsi, i) {
359 		if (vsi_stat->tx_ring_stats[i]) {
360 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
361 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
362 		}
363 	}
364 
365 	ice_for_each_alloc_rxq(vsi, i) {
366 		if (vsi_stat->rx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	kfree(vsi_stat->tx_ring_stats);
373 	kfree(vsi_stat->rx_ring_stats);
374 	kfree(vsi_stat);
375 	pf->vsi_stats[vsi->idx] = NULL;
376 }
377 
378 /**
379  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
380  * @vsi: VSI which is having stats allocated
381  */
382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
383 {
384 	struct ice_ring_stats **tx_ring_stats;
385 	struct ice_ring_stats **rx_ring_stats;
386 	struct ice_vsi_stats *vsi_stats;
387 	struct ice_pf *pf = vsi->back;
388 	u16 i;
389 
390 	vsi_stats = pf->vsi_stats[vsi->idx];
391 	tx_ring_stats = vsi_stats->tx_ring_stats;
392 	rx_ring_stats = vsi_stats->rx_ring_stats;
393 
394 	/* Allocate Tx ring stats */
395 	ice_for_each_alloc_txq(vsi, i) {
396 		struct ice_ring_stats *ring_stats;
397 		struct ice_tx_ring *ring;
398 
399 		ring = vsi->tx_rings[i];
400 		ring_stats = tx_ring_stats[i];
401 
402 		if (!ring_stats) {
403 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
404 			if (!ring_stats)
405 				goto err_out;
406 
407 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
408 		}
409 
410 		ring->ring_stats = ring_stats;
411 	}
412 
413 	/* Allocate Rx ring stats */
414 	ice_for_each_alloc_rxq(vsi, i) {
415 		struct ice_ring_stats *ring_stats;
416 		struct ice_rx_ring *ring;
417 
418 		ring = vsi->rx_rings[i];
419 		ring_stats = rx_ring_stats[i];
420 
421 		if (!ring_stats) {
422 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
423 			if (!ring_stats)
424 				goto err_out;
425 
426 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 		}
428 
429 		ring->ring_stats = ring_stats;
430 	}
431 
432 	return 0;
433 
434 err_out:
435 	ice_vsi_free_stats(vsi);
436 	return -ENOMEM;
437 }
438 
439 /**
440  * ice_vsi_free - clean up and deallocate the provided VSI
441  * @vsi: pointer to VSI being cleared
442  *
443  * This deallocates the VSI's queue resources, removes it from the PF's
444  * VSI array if necessary, and deallocates the VSI
445  */
446 static void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 	struct ice_pf *pf = NULL;
449 	struct device *dev;
450 
451 	if (!vsi || !vsi->back)
452 		return;
453 
454 	pf = vsi->back;
455 	dev = ice_pf_to_dev(pf);
456 
457 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 		return;
460 	}
461 
462 	mutex_lock(&pf->sw_mutex);
463 	/* updates the PF for this cleared VSI */
464 
465 	pf->vsi[vsi->idx] = NULL;
466 	pf->next_vsi = vsi->idx;
467 
468 	ice_vsi_free_stats(vsi);
469 	ice_vsi_free_arrays(vsi);
470 	mutex_unlock(&pf->sw_mutex);
471 	devm_kfree(dev, vsi);
472 }
473 
474 void ice_vsi_delete(struct ice_vsi *vsi)
475 {
476 	ice_vsi_delete_from_hw(vsi);
477 	ice_vsi_free(vsi);
478 }
479 
480 /**
481  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
482  * @irq: interrupt number
483  * @data: pointer to a q_vector
484  */
485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
486 {
487 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
488 
489 	if (!q_vector->tx.tx_ring)
490 		return IRQ_HANDLED;
491 
492 #define FDIR_RX_DESC_CLEAN_BUDGET 64
493 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
494 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 /**
500  * ice_msix_clean_rings - MSIX mode Interrupt Handler
501  * @irq: interrupt number
502  * @data: pointer to a q_vector
503  */
504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507 
508 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 		return IRQ_HANDLED;
510 
511 	q_vector->total_events++;
512 
513 	napi_schedule(&q_vector->napi);
514 
515 	return IRQ_HANDLED;
516 }
517 
518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
519 {
520 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
521 	struct ice_pf *pf = q_vector->vsi->back;
522 	struct ice_vf *vf;
523 	unsigned int bkt;
524 
525 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
526 		return IRQ_HANDLED;
527 
528 	rcu_read_lock();
529 	ice_for_each_vf_rcu(pf, bkt, vf)
530 		napi_schedule(&vf->repr->q_vector->napi);
531 	rcu_read_unlock();
532 
533 	return IRQ_HANDLED;
534 }
535 
536 /**
537  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
538  * @vsi: VSI pointer
539  */
540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
541 {
542 	struct ice_vsi_stats *vsi_stat;
543 	struct ice_pf *pf = vsi->back;
544 
545 	if (vsi->type == ICE_VSI_CHNL)
546 		return 0;
547 	if (!pf->vsi_stats)
548 		return -ENOENT;
549 
550 	if (pf->vsi_stats[vsi->idx])
551 	/* realloc will happen in rebuild path */
552 		return 0;
553 
554 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
555 	if (!vsi_stat)
556 		return -ENOMEM;
557 
558 	vsi_stat->tx_ring_stats =
559 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
560 			GFP_KERNEL);
561 	if (!vsi_stat->tx_ring_stats)
562 		goto err_alloc_tx;
563 
564 	vsi_stat->rx_ring_stats =
565 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
566 			GFP_KERNEL);
567 	if (!vsi_stat->rx_ring_stats)
568 		goto err_alloc_rx;
569 
570 	pf->vsi_stats[vsi->idx] = vsi_stat;
571 
572 	return 0;
573 
574 err_alloc_rx:
575 	kfree(vsi_stat->rx_ring_stats);
576 err_alloc_tx:
577 	kfree(vsi_stat->tx_ring_stats);
578 	kfree(vsi_stat);
579 	pf->vsi_stats[vsi->idx] = NULL;
580 	return -ENOMEM;
581 }
582 
583 /**
584  * ice_vsi_alloc_def - set default values for already allocated VSI
585  * @vsi: ptr to VSI
586  * @ch: ptr to channel
587  */
588 static int
589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
590 {
591 	if (vsi->type != ICE_VSI_CHNL) {
592 		ice_vsi_set_num_qs(vsi);
593 		if (ice_vsi_alloc_arrays(vsi))
594 			return -ENOMEM;
595 	}
596 
597 	switch (vsi->type) {
598 	case ICE_VSI_SWITCHDEV_CTRL:
599 		/* Setup eswitch MSIX irq handler for VSI */
600 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
601 		break;
602 	case ICE_VSI_PF:
603 		/* Setup default MSIX irq handler for VSI */
604 		vsi->irq_handler = ice_msix_clean_rings;
605 		break;
606 	case ICE_VSI_CTRL:
607 		/* Setup ctrl VSI MSIX irq handler */
608 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
609 		break;
610 	case ICE_VSI_CHNL:
611 		if (!ch)
612 			return -EINVAL;
613 
614 		vsi->num_rxq = ch->num_rxq;
615 		vsi->num_txq = ch->num_txq;
616 		vsi->next_base_q = ch->base_q;
617 		break;
618 	case ICE_VSI_VF:
619 	case ICE_VSI_LB:
620 		break;
621 	default:
622 		ice_vsi_free_arrays(vsi);
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
631  * @pf: board private structure
632  *
633  * Reserves a VSI index from the PF and allocates an empty VSI structure
634  * without a type. The VSI structure must later be initialized by calling
635  * ice_vsi_cfg().
636  *
637  * returns a pointer to a VSI on success, NULL on failure.
638  */
639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
640 {
641 	struct device *dev = ice_pf_to_dev(pf);
642 	struct ice_vsi *vsi = NULL;
643 
644 	/* Need to protect the allocation of the VSIs at the PF level */
645 	mutex_lock(&pf->sw_mutex);
646 
647 	/* If we have already allocated our maximum number of VSIs,
648 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
649 	 * is available to be populated
650 	 */
651 	if (pf->next_vsi == ICE_NO_VSI) {
652 		dev_dbg(dev, "out of VSI slots!\n");
653 		goto unlock_pf;
654 	}
655 
656 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
657 	if (!vsi)
658 		goto unlock_pf;
659 
660 	vsi->back = pf;
661 	set_bit(ICE_VSI_DOWN, vsi->state);
662 
663 	/* fill slot and make note of the index */
664 	vsi->idx = pf->next_vsi;
665 	pf->vsi[pf->next_vsi] = vsi;
666 
667 	/* prepare pf->next_vsi for next use */
668 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
669 					 pf->next_vsi);
670 
671 unlock_pf:
672 	mutex_unlock(&pf->sw_mutex);
673 	return vsi;
674 }
675 
676 /**
677  * ice_alloc_fd_res - Allocate FD resource for a VSI
678  * @vsi: pointer to the ice_vsi
679  *
680  * This allocates the FD resources
681  *
682  * Returns 0 on success, -EPERM on no-op or -EIO on failure
683  */
684 static int ice_alloc_fd_res(struct ice_vsi *vsi)
685 {
686 	struct ice_pf *pf = vsi->back;
687 	u32 g_val, b_val;
688 
689 	/* Flow Director filters are only allocated/assigned to the PF VSI or
690 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
691 	 * add/delete filters so resources are not allocated to it
692 	 */
693 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
694 		return -EPERM;
695 
696 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
697 	      vsi->type == ICE_VSI_CHNL))
698 		return -EPERM;
699 
700 	/* FD filters from guaranteed pool per VSI */
701 	g_val = pf->hw.func_caps.fd_fltr_guar;
702 	if (!g_val)
703 		return -EPERM;
704 
705 	/* FD filters from best effort pool */
706 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
707 	if (!b_val)
708 		return -EPERM;
709 
710 	/* PF main VSI gets only 64 FD resources from guaranteed pool
711 	 * when ADQ is configured.
712 	 */
713 #define ICE_PF_VSI_GFLTR	64
714 
715 	/* determine FD filter resources per VSI from shared(best effort) and
716 	 * dedicated pool
717 	 */
718 	if (vsi->type == ICE_VSI_PF) {
719 		vsi->num_gfltr = g_val;
720 		/* if MQPRIO is configured, main VSI doesn't get all FD
721 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
722 		 */
723 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
724 			if (g_val < ICE_PF_VSI_GFLTR)
725 				return -EPERM;
726 			/* allow bare minimum entries for PF VSI */
727 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
728 		}
729 
730 		/* each VSI gets same "best_effort" quota */
731 		vsi->num_bfltr = b_val;
732 	} else if (vsi->type == ICE_VSI_VF) {
733 		vsi->num_gfltr = 0;
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else {
738 		struct ice_vsi *main_vsi;
739 		int numtc;
740 
741 		main_vsi = ice_get_main_vsi(pf);
742 		if (!main_vsi)
743 			return -EPERM;
744 
745 		if (!main_vsi->all_numtc)
746 			return -EINVAL;
747 
748 		/* figure out ADQ numtc */
749 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
750 
751 		/* only one TC but still asking resources for channels,
752 		 * invalid config
753 		 */
754 		if (numtc < ICE_CHNL_START_TC)
755 			return -EPERM;
756 
757 		g_val -= ICE_PF_VSI_GFLTR;
758 		/* channel VSIs gets equal share from guaranteed pool */
759 		vsi->num_gfltr = g_val / numtc;
760 
761 		/* each VSI gets same "best_effort" quota */
762 		vsi->num_bfltr = b_val;
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * ice_vsi_get_qs - Assign queues from PF to VSI
770  * @vsi: the VSI to assign queues to
771  *
772  * Returns 0 on success and a negative value on error
773  */
774 static int ice_vsi_get_qs(struct ice_vsi *vsi)
775 {
776 	struct ice_pf *pf = vsi->back;
777 	struct ice_qs_cfg tx_qs_cfg = {
778 		.qs_mutex = &pf->avail_q_mutex,
779 		.pf_map = pf->avail_txqs,
780 		.pf_map_size = pf->max_pf_txqs,
781 		.q_count = vsi->alloc_txq,
782 		.scatter_count = ICE_MAX_SCATTER_TXQS,
783 		.vsi_map = vsi->txq_map,
784 		.vsi_map_offset = 0,
785 		.mapping_mode = ICE_VSI_MAP_CONTIG
786 	};
787 	struct ice_qs_cfg rx_qs_cfg = {
788 		.qs_mutex = &pf->avail_q_mutex,
789 		.pf_map = pf->avail_rxqs,
790 		.pf_map_size = pf->max_pf_rxqs,
791 		.q_count = vsi->alloc_rxq,
792 		.scatter_count = ICE_MAX_SCATTER_RXQS,
793 		.vsi_map = vsi->rxq_map,
794 		.vsi_map_offset = 0,
795 		.mapping_mode = ICE_VSI_MAP_CONTIG
796 	};
797 	int ret;
798 
799 	if (vsi->type == ICE_VSI_CHNL)
800 		return 0;
801 
802 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
803 	if (ret)
804 		return ret;
805 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
806 
807 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
811 
812 	return 0;
813 }
814 
815 /**
816  * ice_vsi_put_qs - Release queues from VSI to PF
817  * @vsi: the VSI that is going to release queues
818  */
819 static void ice_vsi_put_qs(struct ice_vsi *vsi)
820 {
821 	struct ice_pf *pf = vsi->back;
822 	int i;
823 
824 	mutex_lock(&pf->avail_q_mutex);
825 
826 	ice_for_each_alloc_txq(vsi, i) {
827 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
828 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
829 	}
830 
831 	ice_for_each_alloc_rxq(vsi, i) {
832 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
833 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	mutex_unlock(&pf->avail_q_mutex);
837 }
838 
839 /**
840  * ice_is_safe_mode
841  * @pf: pointer to the PF struct
842  *
843  * returns true if driver is in safe mode, false otherwise
844  */
845 bool ice_is_safe_mode(struct ice_pf *pf)
846 {
847 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
848 }
849 
850 /**
851  * ice_is_rdma_ena
852  * @pf: pointer to the PF struct
853  *
854  * returns true if RDMA is currently supported, false otherwise
855  */
856 bool ice_is_rdma_ena(struct ice_pf *pf)
857 {
858 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
859 }
860 
861 /**
862  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
863  * @vsi: the VSI being cleaned up
864  *
865  * This function deletes RSS input set for all flows that were configured
866  * for this VSI
867  */
868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
869 {
870 	struct ice_pf *pf = vsi->back;
871 	int status;
872 
873 	if (ice_is_safe_mode(pf))
874 		return;
875 
876 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
877 	if (status)
878 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
879 			vsi->vsi_num, status);
880 }
881 
882 /**
883  * ice_rss_clean - Delete RSS related VSI structures and configuration
884  * @vsi: the VSI being removed
885  */
886 static void ice_rss_clean(struct ice_vsi *vsi)
887 {
888 	struct ice_pf *pf = vsi->back;
889 	struct device *dev;
890 
891 	dev = ice_pf_to_dev(pf);
892 
893 	devm_kfree(dev, vsi->rss_hkey_user);
894 	devm_kfree(dev, vsi->rss_lut_user);
895 
896 	ice_vsi_clean_rss_flow_fld(vsi);
897 	/* remove RSS replay list */
898 	if (!ice_is_safe_mode(pf))
899 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
900 }
901 
902 /**
903  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
904  * @vsi: the VSI being configured
905  */
906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
907 {
908 	struct ice_hw_common_caps *cap;
909 	struct ice_pf *pf = vsi->back;
910 	u16 max_rss_size;
911 
912 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
913 		vsi->rss_size = 1;
914 		return;
915 	}
916 
917 	cap = &pf->hw.func_caps.common_cap;
918 	max_rss_size = BIT(cap->rss_table_entry_width);
919 	switch (vsi->type) {
920 	case ICE_VSI_CHNL:
921 	case ICE_VSI_PF:
922 		/* PF VSI will inherit RSS instance of PF */
923 		vsi->rss_table_size = (u16)cap->rss_table_size;
924 		if (vsi->type == ICE_VSI_CHNL)
925 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
926 		else
927 			vsi->rss_size = min_t(u16, num_online_cpus(),
928 					      max_rss_size);
929 		vsi->rss_lut_type = ICE_LUT_PF;
930 		break;
931 	case ICE_VSI_SWITCHDEV_CTRL:
932 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
933 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_VSI;
935 		break;
936 	case ICE_VSI_VF:
937 		/* VF VSI will get a small RSS table.
938 		 * For VSI_LUT, LUT size should be set to 64 bytes.
939 		 */
940 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
941 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
942 		vsi->rss_lut_type = ICE_LUT_VSI;
943 		break;
944 	case ICE_VSI_LB:
945 		break;
946 	default:
947 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
948 			ice_vsi_type_str(vsi->type));
949 		break;
950 	}
951 }
952 
953 /**
954  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
955  * @hw: HW structure used to determine the VLAN mode of the device
956  * @ctxt: the VSI context being set
957  *
958  * This initializes a default VSI context for all sections except the Queues.
959  */
960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
961 {
962 	u32 table = 0;
963 
964 	memset(&ctxt->info, 0, sizeof(ctxt->info));
965 	/* VSI's should be allocated from shared pool */
966 	ctxt->alloc_from_pool = true;
967 	/* Src pruning enabled by default */
968 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
969 	/* Traffic from VSI can be sent to LAN */
970 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
971 	/* allow all untagged/tagged packets by default on Tx */
972 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
973 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
974 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
975 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
976 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
977 	 *
978 	 * DVM - leave inner VLAN in packet by default
979 	 */
980 	if (ice_is_dvm_ena(hw)) {
981 		ctxt->info.inner_vlan_flags |=
982 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
983 		ctxt->info.outer_vlan_flags =
984 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
985 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
986 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
987 		ctxt->info.outer_vlan_flags |=
988 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
989 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
990 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
993 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
994 	}
995 	/* Have 1:1 UP mapping for both ingress/egress tables */
996 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
997 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
998 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
999 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1000 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1001 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1002 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1003 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1004 	ctxt->info.ingress_table = cpu_to_le32(table);
1005 	ctxt->info.egress_table = cpu_to_le32(table);
1006 	/* Have 1:1 UP mapping for outer to inner UP table */
1007 	ctxt->info.outer_up_table = cpu_to_le32(table);
1008 	/* No Outer tag support outer_tag_flags remains to zero */
1009 }
1010 
1011 /**
1012  * ice_vsi_setup_q_map - Setup a VSI queue map
1013  * @vsi: the VSI being configured
1014  * @ctxt: VSI context structure
1015  */
1016 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1017 {
1018 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1019 	u16 num_txq_per_tc, num_rxq_per_tc;
1020 	u16 qcount_tx = vsi->alloc_txq;
1021 	u16 qcount_rx = vsi->alloc_rxq;
1022 	u8 netdev_tc = 0;
1023 	int i;
1024 
1025 	if (!vsi->tc_cfg.numtc) {
1026 		/* at least TC0 should be enabled by default */
1027 		vsi->tc_cfg.numtc = 1;
1028 		vsi->tc_cfg.ena_tc = 1;
1029 	}
1030 
1031 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1032 	if (!num_rxq_per_tc)
1033 		num_rxq_per_tc = 1;
1034 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1035 	if (!num_txq_per_tc)
1036 		num_txq_per_tc = 1;
1037 
1038 	/* find the (rounded up) power-of-2 of qcount */
1039 	pow = (u16)order_base_2(num_rxq_per_tc);
1040 
1041 	/* TC mapping is a function of the number of Rx queues assigned to the
1042 	 * VSI for each traffic class and the offset of these queues.
1043 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1044 	 * queues allocated to TC0. No:of queues is a power-of-2.
1045 	 *
1046 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1047 	 * queue, this way, traffic for the given TC will be sent to the default
1048 	 * queue.
1049 	 *
1050 	 * Setup number and offset of Rx queues for all TCs for the VSI
1051 	 */
1052 	ice_for_each_traffic_class(i) {
1053 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1054 			/* TC is not enabled */
1055 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1056 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1057 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1058 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1059 			ctxt->info.tc_mapping[i] = 0;
1060 			continue;
1061 		}
1062 
1063 		/* TC is enabled */
1064 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1065 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1066 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1067 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1068 
1069 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1070 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1071 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1072 			 ICE_AQ_VSI_TC_Q_NUM_M);
1073 		offset += num_rxq_per_tc;
1074 		tx_count += num_txq_per_tc;
1075 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1076 	}
1077 
1078 	/* if offset is non-zero, means it is calculated correctly based on
1079 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1080 	 * be correct and non-zero because it is based off - VSI's
1081 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1082 	 * at least 1)
1083 	 */
1084 	if (offset)
1085 		rx_count = offset;
1086 	else
1087 		rx_count = num_rxq_per_tc;
1088 
1089 	if (rx_count > vsi->alloc_rxq) {
1090 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1091 			rx_count, vsi->alloc_rxq);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (tx_count > vsi->alloc_txq) {
1096 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1097 			tx_count, vsi->alloc_txq);
1098 		return -EINVAL;
1099 	}
1100 
1101 	vsi->num_txq = tx_count;
1102 	vsi->num_rxq = rx_count;
1103 
1104 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1105 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1106 		/* since there is a chance that num_rxq could have been changed
1107 		 * in the above for loop, make num_txq equal to num_rxq.
1108 		 */
1109 		vsi->num_txq = vsi->num_rxq;
1110 	}
1111 
1112 	/* Rx queue mapping */
1113 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1114 	/* q_mapping buffer holds the info for the first queue allocated for
1115 	 * this VSI in the PF space and also the number of queues associated
1116 	 * with this VSI.
1117 	 */
1118 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1119 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1126  * @ctxt: the VSI context being set
1127  * @vsi: the VSI being configured
1128  */
1129 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1130 {
1131 	u8 dflt_q_group, dflt_q_prio;
1132 	u16 dflt_q, report_q, val;
1133 
1134 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1135 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1136 		return;
1137 
1138 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1139 	ctxt->info.valid_sections |= cpu_to_le16(val);
1140 	dflt_q = 0;
1141 	dflt_q_group = 0;
1142 	report_q = 0;
1143 	dflt_q_prio = 0;
1144 
1145 	/* enable flow director filtering/programming */
1146 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1147 	ctxt->info.fd_options = cpu_to_le16(val);
1148 	/* max of allocated flow director filters */
1149 	ctxt->info.max_fd_fltr_dedicated =
1150 			cpu_to_le16(vsi->num_gfltr);
1151 	/* max of shared flow director filters any VSI may program */
1152 	ctxt->info.max_fd_fltr_shared =
1153 			cpu_to_le16(vsi->num_bfltr);
1154 	/* default queue index within the VSI of the default FD */
1155 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1156 	       ICE_AQ_VSI_FD_DEF_Q_M);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1159 		ICE_AQ_VSI_FD_DEF_GRP_M);
1160 	ctxt->info.fd_def_q = cpu_to_le16(val);
1161 	/* queue index on which FD filter completion is reported */
1162 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1163 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1164 	/* priority of the default qindex action */
1165 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1166 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1167 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1168 }
1169 
1170 /**
1171  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1172  * @ctxt: the VSI context being set
1173  * @vsi: the VSI being configured
1174  */
1175 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1176 {
1177 	u8 lut_type, hash_type;
1178 	struct device *dev;
1179 	struct ice_pf *pf;
1180 
1181 	pf = vsi->back;
1182 	dev = ice_pf_to_dev(pf);
1183 
1184 	switch (vsi->type) {
1185 	case ICE_VSI_CHNL:
1186 	case ICE_VSI_PF:
1187 		/* PF VSI will inherit RSS instance of PF */
1188 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1189 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1190 		break;
1191 	case ICE_VSI_VF:
1192 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1193 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1194 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1195 		break;
1196 	default:
1197 		dev_dbg(dev, "Unsupported VSI type %s\n",
1198 			ice_vsi_type_str(vsi->type));
1199 		return;
1200 	}
1201 
1202 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1203 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1204 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1205 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1206 }
1207 
1208 static void
1209 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1210 {
1211 	struct ice_pf *pf = vsi->back;
1212 	u16 qcount, qmap;
1213 	u8 offset = 0;
1214 	int pow;
1215 
1216 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1217 
1218 	pow = order_base_2(qcount);
1219 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1220 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1221 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1222 		   ICE_AQ_VSI_TC_Q_NUM_M);
1223 
1224 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1225 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1226 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1227 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1228 }
1229 
1230 /**
1231  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1232  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1233  *
1234  * returns true if Rx VLAN pruning is enabled and false otherwise.
1235  */
1236 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1237 {
1238 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1239 }
1240 
1241 /**
1242  * ice_vsi_init - Create and initialize a VSI
1243  * @vsi: the VSI being configured
1244  * @vsi_flags: VSI configuration flags
1245  *
1246  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1247  * reconfigure an existing context.
1248  *
1249  * This initializes a VSI context depending on the VSI type to be added and
1250  * passes it down to the add_vsi aq command to create a new VSI.
1251  */
1252 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1253 {
1254 	struct ice_pf *pf = vsi->back;
1255 	struct ice_hw *hw = &pf->hw;
1256 	struct ice_vsi_ctx *ctxt;
1257 	struct device *dev;
1258 	int ret = 0;
1259 
1260 	dev = ice_pf_to_dev(pf);
1261 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1262 	if (!ctxt)
1263 		return -ENOMEM;
1264 
1265 	switch (vsi->type) {
1266 	case ICE_VSI_CTRL:
1267 	case ICE_VSI_LB:
1268 	case ICE_VSI_PF:
1269 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1270 		break;
1271 	case ICE_VSI_SWITCHDEV_CTRL:
1272 	case ICE_VSI_CHNL:
1273 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1274 		break;
1275 	case ICE_VSI_VF:
1276 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1277 		/* VF number here is the absolute VF number (0-255) */
1278 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1279 		break;
1280 	default:
1281 		ret = -ENODEV;
1282 		goto out;
1283 	}
1284 
1285 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1286 	 * prune enabled
1287 	 */
1288 	if (vsi->type == ICE_VSI_CHNL) {
1289 		struct ice_vsi *main_vsi;
1290 
1291 		main_vsi = ice_get_main_vsi(pf);
1292 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1293 			ctxt->info.sw_flags2 |=
1294 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1295 		else
1296 			ctxt->info.sw_flags2 &=
1297 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1298 	}
1299 
1300 	ice_set_dflt_vsi_ctx(hw, ctxt);
1301 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1302 		ice_set_fd_vsi_ctx(ctxt, vsi);
1303 	/* if the switch is in VEB mode, allow VSI loopback */
1304 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1305 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1306 
1307 	/* Set LUT type and HASH type if RSS is enabled */
1308 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1309 	    vsi->type != ICE_VSI_CTRL) {
1310 		ice_set_rss_vsi_ctx(ctxt, vsi);
1311 		/* if updating VSI context, make sure to set valid_section:
1312 		 * to indicate which section of VSI context being updated
1313 		 */
1314 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1315 			ctxt->info.valid_sections |=
1316 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1317 	}
1318 
1319 	ctxt->info.sw_id = vsi->port_info->sw_id;
1320 	if (vsi->type == ICE_VSI_CHNL) {
1321 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1322 	} else {
1323 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1324 		if (ret)
1325 			goto out;
1326 
1327 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1328 			/* means VSI being updated */
1329 			/* must to indicate which section of VSI context are
1330 			 * being modified
1331 			 */
1332 			ctxt->info.valid_sections |=
1333 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1334 	}
1335 
1336 	/* Allow control frames out of main VSI */
1337 	if (vsi->type == ICE_VSI_PF) {
1338 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1339 		ctxt->info.valid_sections |=
1340 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1341 	}
1342 
1343 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1344 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1345 		if (ret) {
1346 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1347 			ret = -EIO;
1348 			goto out;
1349 		}
1350 	} else {
1351 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1352 		if (ret) {
1353 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1354 			ret = -EIO;
1355 			goto out;
1356 		}
1357 	}
1358 
1359 	/* keep context for update VSI operations */
1360 	vsi->info = ctxt->info;
1361 
1362 	/* record VSI number returned */
1363 	vsi->vsi_num = ctxt->vsi_num;
1364 
1365 out:
1366 	kfree(ctxt);
1367 	return ret;
1368 }
1369 
1370 /**
1371  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1372  * @vsi: the VSI having rings deallocated
1373  */
1374 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1375 {
1376 	int i;
1377 
1378 	/* Avoid stale references by clearing map from vector to ring */
1379 	if (vsi->q_vectors) {
1380 		ice_for_each_q_vector(vsi, i) {
1381 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1382 
1383 			if (q_vector) {
1384 				q_vector->tx.tx_ring = NULL;
1385 				q_vector->rx.rx_ring = NULL;
1386 			}
1387 		}
1388 	}
1389 
1390 	if (vsi->tx_rings) {
1391 		ice_for_each_alloc_txq(vsi, i) {
1392 			if (vsi->tx_rings[i]) {
1393 				kfree_rcu(vsi->tx_rings[i], rcu);
1394 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1395 			}
1396 		}
1397 	}
1398 	if (vsi->rx_rings) {
1399 		ice_for_each_alloc_rxq(vsi, i) {
1400 			if (vsi->rx_rings[i]) {
1401 				kfree_rcu(vsi->rx_rings[i], rcu);
1402 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1403 			}
1404 		}
1405 	}
1406 }
1407 
1408 /**
1409  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1410  * @vsi: VSI which is having rings allocated
1411  */
1412 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1413 {
1414 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1415 	struct ice_pf *pf = vsi->back;
1416 	struct device *dev;
1417 	u16 i;
1418 
1419 	dev = ice_pf_to_dev(pf);
1420 	/* Allocate Tx rings */
1421 	ice_for_each_alloc_txq(vsi, i) {
1422 		struct ice_tx_ring *ring;
1423 
1424 		/* allocate with kzalloc(), free with kfree_rcu() */
1425 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1426 
1427 		if (!ring)
1428 			goto err_out;
1429 
1430 		ring->q_index = i;
1431 		ring->reg_idx = vsi->txq_map[i];
1432 		ring->vsi = vsi;
1433 		ring->tx_tstamps = &pf->ptp.port.tx;
1434 		ring->dev = dev;
1435 		ring->count = vsi->num_tx_desc;
1436 		ring->txq_teid = ICE_INVAL_TEID;
1437 		if (dvm_ena)
1438 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1439 		else
1440 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1441 		WRITE_ONCE(vsi->tx_rings[i], ring);
1442 	}
1443 
1444 	/* Allocate Rx rings */
1445 	ice_for_each_alloc_rxq(vsi, i) {
1446 		struct ice_rx_ring *ring;
1447 
1448 		/* allocate with kzalloc(), free with kfree_rcu() */
1449 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1450 		if (!ring)
1451 			goto err_out;
1452 
1453 		ring->q_index = i;
1454 		ring->reg_idx = vsi->rxq_map[i];
1455 		ring->vsi = vsi;
1456 		ring->netdev = vsi->netdev;
1457 		ring->dev = dev;
1458 		ring->count = vsi->num_rx_desc;
1459 		ring->cached_phctime = pf->ptp.cached_phc_time;
1460 		WRITE_ONCE(vsi->rx_rings[i], ring);
1461 	}
1462 
1463 	return 0;
1464 
1465 err_out:
1466 	ice_vsi_clear_rings(vsi);
1467 	return -ENOMEM;
1468 }
1469 
1470 /**
1471  * ice_vsi_manage_rss_lut - disable/enable RSS
1472  * @vsi: the VSI being changed
1473  * @ena: boolean value indicating if this is an enable or disable request
1474  *
1475  * In the event of disable request for RSS, this function will zero out RSS
1476  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1477  * LUT.
1478  */
1479 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1480 {
1481 	u8 *lut;
1482 
1483 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1484 	if (!lut)
1485 		return;
1486 
1487 	if (ena) {
1488 		if (vsi->rss_lut_user)
1489 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1490 		else
1491 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1492 					 vsi->rss_size);
1493 	}
1494 
1495 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1496 	kfree(lut);
1497 }
1498 
1499 /**
1500  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1501  * @vsi: VSI to be configured
1502  * @disable: set to true to have FCS / CRC in the frame data
1503  */
1504 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1505 {
1506 	int i;
1507 
1508 	ice_for_each_rxq(vsi, i)
1509 		if (disable)
1510 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1511 		else
1512 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1513 }
1514 
1515 /**
1516  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1517  * @vsi: VSI to be configured
1518  */
1519 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1520 {
1521 	struct ice_pf *pf = vsi->back;
1522 	struct device *dev;
1523 	u8 *lut, *key;
1524 	int err;
1525 
1526 	dev = ice_pf_to_dev(pf);
1527 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1528 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1529 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1530 	} else {
1531 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1532 
1533 		/* If orig_rss_size is valid and it is less than determined
1534 		 * main VSI's rss_size, update main VSI's rss_size to be
1535 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1536 		 * RSS table gets programmed to be correct (whatever it was
1537 		 * to begin with (prior to setup-tc for ADQ config)
1538 		 */
1539 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1540 		    vsi->orig_rss_size <= vsi->num_rxq) {
1541 			vsi->rss_size = vsi->orig_rss_size;
1542 			/* now orig_rss_size is used, reset it to zero */
1543 			vsi->orig_rss_size = 0;
1544 		}
1545 	}
1546 
1547 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1548 	if (!lut)
1549 		return -ENOMEM;
1550 
1551 	if (vsi->rss_lut_user)
1552 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1553 	else
1554 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1555 
1556 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1557 	if (err) {
1558 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1559 		goto ice_vsi_cfg_rss_exit;
1560 	}
1561 
1562 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1563 	if (!key) {
1564 		err = -ENOMEM;
1565 		goto ice_vsi_cfg_rss_exit;
1566 	}
1567 
1568 	if (vsi->rss_hkey_user)
1569 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1570 	else
1571 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1572 
1573 	err = ice_set_rss_key(vsi, key);
1574 	if (err)
1575 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1576 
1577 	kfree(key);
1578 ice_vsi_cfg_rss_exit:
1579 	kfree(lut);
1580 	return err;
1581 }
1582 
1583 /**
1584  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1585  * @vsi: VSI to be configured
1586  *
1587  * This function will only be called during the VF VSI setup. Upon successful
1588  * completion of package download, this function will configure default RSS
1589  * input sets for VF VSI.
1590  */
1591 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1592 {
1593 	struct ice_pf *pf = vsi->back;
1594 	struct device *dev;
1595 	int status;
1596 
1597 	dev = ice_pf_to_dev(pf);
1598 	if (ice_is_safe_mode(pf)) {
1599 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1600 			vsi->vsi_num);
1601 		return;
1602 	}
1603 
1604 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1605 	if (status)
1606 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1607 			vsi->vsi_num, status);
1608 }
1609 
1610 /**
1611  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1612  * @vsi: VSI to be configured
1613  *
1614  * This function will only be called after successful download package call
1615  * during initialization of PF. Since the downloaded package will erase the
1616  * RSS section, this function will configure RSS input sets for different
1617  * flow types. The last profile added has the highest priority, therefore 2
1618  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1619  * (i.e. IPv4 src/dst TCP src/dst port).
1620  */
1621 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1622 {
1623 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1624 	struct ice_pf *pf = vsi->back;
1625 	struct ice_hw *hw = &pf->hw;
1626 	struct device *dev;
1627 	int status;
1628 
1629 	dev = ice_pf_to_dev(pf);
1630 	if (ice_is_safe_mode(pf)) {
1631 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1632 			vsi_num);
1633 		return;
1634 	}
1635 	/* configure RSS for IPv4 with input set IP src/dst */
1636 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1637 				 ICE_FLOW_SEG_HDR_IPV4);
1638 	if (status)
1639 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1640 			vsi_num, status);
1641 
1642 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1643 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1644 				 ICE_FLOW_SEG_HDR_IPV6);
1645 	if (status)
1646 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1647 			vsi_num, status);
1648 
1649 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1650 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1651 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1652 	if (status)
1653 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1654 			vsi_num, status);
1655 
1656 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1657 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1658 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1659 	if (status)
1660 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1661 			vsi_num, status);
1662 
1663 	/* configure RSS for sctp4 with input set IP src/dst */
1664 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1665 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1666 	if (status)
1667 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1668 			vsi_num, status);
1669 
1670 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1671 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1672 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1673 	if (status)
1674 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1675 			vsi_num, status);
1676 
1677 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1678 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1679 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1680 	if (status)
1681 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1682 			vsi_num, status);
1683 
1684 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1685 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1686 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1687 	if (status)
1688 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1689 			vsi_num, status);
1690 
1691 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1692 				 ICE_FLOW_SEG_HDR_ESP);
1693 	if (status)
1694 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1695 			vsi_num, status);
1696 }
1697 
1698 /**
1699  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1700  * @vsi: VSI
1701  */
1702 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1703 {
1704 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1705 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1706 		vsi->rx_buf_len = ICE_RXBUF_1664;
1707 #if (PAGE_SIZE < 8192)
1708 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1709 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1710 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1711 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1712 #endif
1713 	} else {
1714 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1715 		vsi->rx_buf_len = ICE_RXBUF_3072;
1716 	}
1717 }
1718 
1719 /**
1720  * ice_pf_state_is_nominal - checks the PF for nominal state
1721  * @pf: pointer to PF to check
1722  *
1723  * Check the PF's state for a collection of bits that would indicate
1724  * the PF is in a state that would inhibit normal operation for
1725  * driver functionality.
1726  *
1727  * Returns true if PF is in a nominal state, false otherwise
1728  */
1729 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1730 {
1731 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1732 
1733 	if (!pf)
1734 		return false;
1735 
1736 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1737 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1738 		return false;
1739 
1740 	return true;
1741 }
1742 
1743 /**
1744  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1745  * @vsi: the VSI to be updated
1746  */
1747 void ice_update_eth_stats(struct ice_vsi *vsi)
1748 {
1749 	struct ice_eth_stats *prev_es, *cur_es;
1750 	struct ice_hw *hw = &vsi->back->hw;
1751 	struct ice_pf *pf = vsi->back;
1752 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1753 
1754 	prev_es = &vsi->eth_stats_prev;
1755 	cur_es = &vsi->eth_stats;
1756 
1757 	if (ice_is_reset_in_progress(pf->state))
1758 		vsi->stat_offsets_loaded = false;
1759 
1760 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1761 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1762 
1763 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1764 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1765 
1766 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1767 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1768 
1769 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1770 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1771 
1772 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1773 			  &prev_es->rx_discards, &cur_es->rx_discards);
1774 
1775 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1776 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1777 
1778 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1779 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1780 
1781 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1782 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1783 
1784 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1785 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1786 
1787 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1788 			  &prev_es->tx_errors, &cur_es->tx_errors);
1789 
1790 	vsi->stat_offsets_loaded = true;
1791 }
1792 
1793 /**
1794  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1795  * @hw: HW pointer
1796  * @pf_q: index of the Rx queue in the PF's queue space
1797  * @rxdid: flexible descriptor RXDID
1798  * @prio: priority for the RXDID for this queue
1799  * @ena_ts: true to enable timestamp and false to disable timestamp
1800  */
1801 void
1802 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1803 			bool ena_ts)
1804 {
1805 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1806 
1807 	/* clear any previous values */
1808 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1809 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1810 		    QRXFLXP_CNTXT_TS_M);
1811 
1812 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1813 		QRXFLXP_CNTXT_RXDID_IDX_M;
1814 
1815 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1816 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1817 
1818 	if (ena_ts)
1819 		/* Enable TimeSync on this queue */
1820 		regval |= QRXFLXP_CNTXT_TS_M;
1821 
1822 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1823 }
1824 
1825 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1826 {
1827 	if (q_idx >= vsi->num_rxq)
1828 		return -EINVAL;
1829 
1830 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1831 }
1832 
1833 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1834 {
1835 	struct ice_aqc_add_tx_qgrp *qg_buf;
1836 	int err;
1837 
1838 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1839 		return -EINVAL;
1840 
1841 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1842 	if (!qg_buf)
1843 		return -ENOMEM;
1844 
1845 	qg_buf->num_txqs = 1;
1846 
1847 	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1848 	kfree(qg_buf);
1849 	return err;
1850 }
1851 
1852 /**
1853  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1854  * @vsi: the VSI being configured
1855  *
1856  * Return 0 on success and a negative value on error
1857  * Configure the Rx VSI for operation.
1858  */
1859 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1860 {
1861 	u16 i;
1862 
1863 	if (vsi->type == ICE_VSI_VF)
1864 		goto setup_rings;
1865 
1866 	ice_vsi_cfg_frame_size(vsi);
1867 setup_rings:
1868 	/* set up individual rings */
1869 	ice_for_each_rxq(vsi, i) {
1870 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1871 
1872 		if (err)
1873 			return err;
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 /**
1880  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1881  * @vsi: the VSI being configured
1882  * @rings: Tx ring array to be configured
1883  * @count: number of Tx ring array elements
1884  *
1885  * Return 0 on success and a negative value on error
1886  * Configure the Tx VSI for operation.
1887  */
1888 static int
1889 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1890 {
1891 	struct ice_aqc_add_tx_qgrp *qg_buf;
1892 	u16 q_idx = 0;
1893 	int err = 0;
1894 
1895 	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1896 	if (!qg_buf)
1897 		return -ENOMEM;
1898 
1899 	qg_buf->num_txqs = 1;
1900 
1901 	for (q_idx = 0; q_idx < count; q_idx++) {
1902 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1903 		if (err)
1904 			goto err_cfg_txqs;
1905 	}
1906 
1907 err_cfg_txqs:
1908 	kfree(qg_buf);
1909 	return err;
1910 }
1911 
1912 /**
1913  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1914  * @vsi: the VSI being configured
1915  *
1916  * Return 0 on success and a negative value on error
1917  * Configure the Tx VSI for operation.
1918  */
1919 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1920 {
1921 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1922 }
1923 
1924 /**
1925  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1926  * @vsi: the VSI being configured
1927  *
1928  * Return 0 on success and a negative value on error
1929  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1930  */
1931 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1932 {
1933 	int ret;
1934 	int i;
1935 
1936 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1937 	if (ret)
1938 		return ret;
1939 
1940 	ice_for_each_rxq(vsi, i)
1941 		ice_tx_xsk_pool(vsi, i);
1942 
1943 	return 0;
1944 }
1945 
1946 /**
1947  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1948  * @intrl: interrupt rate limit in usecs
1949  * @gran: interrupt rate limit granularity in usecs
1950  *
1951  * This function converts a decimal interrupt rate limit in usecs to the format
1952  * expected by firmware.
1953  */
1954 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1955 {
1956 	u32 val = intrl / gran;
1957 
1958 	if (val)
1959 		return val | GLINT_RATE_INTRL_ENA_M;
1960 	return 0;
1961 }
1962 
1963 /**
1964  * ice_write_intrl - write throttle rate limit to interrupt specific register
1965  * @q_vector: pointer to interrupt specific structure
1966  * @intrl: throttle rate limit in microseconds to write
1967  */
1968 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1969 {
1970 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1971 
1972 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1973 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1974 }
1975 
1976 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1977 {
1978 	switch (rc->type) {
1979 	case ICE_RX_CONTAINER:
1980 		if (rc->rx_ring)
1981 			return rc->rx_ring->q_vector;
1982 		break;
1983 	case ICE_TX_CONTAINER:
1984 		if (rc->tx_ring)
1985 			return rc->tx_ring->q_vector;
1986 		break;
1987 	default:
1988 		break;
1989 	}
1990 
1991 	return NULL;
1992 }
1993 
1994 /**
1995  * __ice_write_itr - write throttle rate to register
1996  * @q_vector: pointer to interrupt data structure
1997  * @rc: pointer to ring container
1998  * @itr: throttle rate in microseconds to write
1999  */
2000 static void __ice_write_itr(struct ice_q_vector *q_vector,
2001 			    struct ice_ring_container *rc, u16 itr)
2002 {
2003 	struct ice_hw *hw = &q_vector->vsi->back->hw;
2004 
2005 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2006 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2007 }
2008 
2009 /**
2010  * ice_write_itr - write throttle rate to queue specific register
2011  * @rc: pointer to ring container
2012  * @itr: throttle rate in microseconds to write
2013  */
2014 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2015 {
2016 	struct ice_q_vector *q_vector;
2017 
2018 	q_vector = ice_pull_qvec_from_rc(rc);
2019 	if (!q_vector)
2020 		return;
2021 
2022 	__ice_write_itr(q_vector, rc, itr);
2023 }
2024 
2025 /**
2026  * ice_set_q_vector_intrl - set up interrupt rate limiting
2027  * @q_vector: the vector to be configured
2028  *
2029  * Interrupt rate limiting is local to the vector, not per-queue so we must
2030  * detect if either ring container has dynamic moderation enabled to decide
2031  * what to set the interrupt rate limit to via INTRL settings. In the case that
2032  * dynamic moderation is disabled on both, write the value with the cached
2033  * setting to make sure INTRL register matches the user visible value.
2034  */
2035 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2036 {
2037 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2038 		/* in the case of dynamic enabled, cap each vector to no more
2039 		 * than (4 us) 250,000 ints/sec, which allows low latency
2040 		 * but still less than 500,000 interrupts per second, which
2041 		 * reduces CPU a bit in the case of the lowest latency
2042 		 * setting. The 4 here is a value in microseconds.
2043 		 */
2044 		ice_write_intrl(q_vector, 4);
2045 	} else {
2046 		ice_write_intrl(q_vector, q_vector->intrl);
2047 	}
2048 }
2049 
2050 /**
2051  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2052  * @vsi: the VSI being configured
2053  *
2054  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2055  * for the VF VSI.
2056  */
2057 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2058 {
2059 	struct ice_pf *pf = vsi->back;
2060 	struct ice_hw *hw = &pf->hw;
2061 	u16 txq = 0, rxq = 0;
2062 	int i, q;
2063 
2064 	ice_for_each_q_vector(vsi, i) {
2065 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2066 		u16 reg_idx = q_vector->reg_idx;
2067 
2068 		ice_cfg_itr(hw, q_vector);
2069 
2070 		/* Both Transmit Queue Interrupt Cause Control register
2071 		 * and Receive Queue Interrupt Cause control register
2072 		 * expects MSIX_INDX field to be the vector index
2073 		 * within the function space and not the absolute
2074 		 * vector index across PF or across device.
2075 		 * For SR-IOV VF VSIs queue vector index always starts
2076 		 * with 1 since first vector index(0) is used for OICR
2077 		 * in VF space. Since VMDq and other PF VSIs are within
2078 		 * the PF function space, use the vector index that is
2079 		 * tracked for this PF.
2080 		 */
2081 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2082 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2083 					      q_vector->tx.itr_idx);
2084 			txq++;
2085 		}
2086 
2087 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2088 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2089 					      q_vector->rx.itr_idx);
2090 			rxq++;
2091 		}
2092 	}
2093 }
2094 
2095 /**
2096  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2097  * @vsi: the VSI whose rings are to be enabled
2098  *
2099  * Returns 0 on success and a negative value on error
2100  */
2101 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2102 {
2103 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2104 }
2105 
2106 /**
2107  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2108  * @vsi: the VSI whose rings are to be disabled
2109  *
2110  * Returns 0 on success and a negative value on error
2111  */
2112 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2113 {
2114 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2115 }
2116 
2117 /**
2118  * ice_vsi_stop_tx_rings - Disable Tx rings
2119  * @vsi: the VSI being configured
2120  * @rst_src: reset source
2121  * @rel_vmvf_num: Relative ID of VF/VM
2122  * @rings: Tx ring array to be stopped
2123  * @count: number of Tx ring array elements
2124  */
2125 static int
2126 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2127 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2128 {
2129 	u16 q_idx;
2130 
2131 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2132 		return -EINVAL;
2133 
2134 	for (q_idx = 0; q_idx < count; q_idx++) {
2135 		struct ice_txq_meta txq_meta = { };
2136 		int status;
2137 
2138 		if (!rings || !rings[q_idx])
2139 			return -EINVAL;
2140 
2141 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2142 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2143 					      rings[q_idx], &txq_meta);
2144 
2145 		if (status)
2146 			return status;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 /**
2153  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2154  * @vsi: the VSI being configured
2155  * @rst_src: reset source
2156  * @rel_vmvf_num: Relative ID of VF/VM
2157  */
2158 int
2159 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2160 			  u16 rel_vmvf_num)
2161 {
2162 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2163 }
2164 
2165 /**
2166  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2167  * @vsi: the VSI being configured
2168  */
2169 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2170 {
2171 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2172 }
2173 
2174 /**
2175  * ice_vsi_is_rx_queue_active
2176  * @vsi: the VSI being configured
2177  *
2178  * Return true if at least one queue is active.
2179  */
2180 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2181 {
2182 	struct ice_pf *pf = vsi->back;
2183 	struct ice_hw *hw = &pf->hw;
2184 	int i;
2185 
2186 	ice_for_each_rxq(vsi, i) {
2187 		u32 rx_reg;
2188 		int pf_q;
2189 
2190 		pf_q = vsi->rxq_map[i];
2191 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2192 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2193 			return true;
2194 	}
2195 
2196 	return false;
2197 }
2198 
2199 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2200 {
2201 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2202 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2203 		vsi->tc_cfg.numtc = 1;
2204 		return;
2205 	}
2206 
2207 	/* set VSI TC information based on DCB config */
2208 	ice_vsi_set_dcb_tc_cfg(vsi);
2209 }
2210 
2211 /**
2212  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2213  * @vsi: the VSI being configured
2214  * @tx: bool to determine Tx or Rx rule
2215  * @create: bool to determine create or remove Rule
2216  */
2217 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2218 {
2219 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2220 			enum ice_sw_fwd_act_type act);
2221 	struct ice_pf *pf = vsi->back;
2222 	struct device *dev;
2223 	int status;
2224 
2225 	dev = ice_pf_to_dev(pf);
2226 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2227 
2228 	if (tx) {
2229 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2230 				  ICE_DROP_PACKET);
2231 	} else {
2232 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2233 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2234 							  create);
2235 		} else {
2236 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2237 					  ICE_FWD_TO_VSI);
2238 		}
2239 	}
2240 
2241 	if (status)
2242 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2243 			create ? "adding" : "removing", tx ? "TX" : "RX",
2244 			vsi->vsi_num, status);
2245 }
2246 
2247 /**
2248  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2249  * @vsi: pointer to the VSI
2250  *
2251  * This function will allocate new scheduler aggregator now if needed and will
2252  * move specified VSI into it.
2253  */
2254 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2255 {
2256 	struct device *dev = ice_pf_to_dev(vsi->back);
2257 	struct ice_agg_node *agg_node_iter = NULL;
2258 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2259 	struct ice_agg_node *agg_node = NULL;
2260 	int node_offset, max_agg_nodes = 0;
2261 	struct ice_port_info *port_info;
2262 	struct ice_pf *pf = vsi->back;
2263 	u32 agg_node_id_start = 0;
2264 	int status;
2265 
2266 	/* create (as needed) scheduler aggregator node and move VSI into
2267 	 * corresponding aggregator node
2268 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2269 	 * - VF aggregator nodes will contain VF VSI
2270 	 */
2271 	port_info = pf->hw.port_info;
2272 	if (!port_info)
2273 		return;
2274 
2275 	switch (vsi->type) {
2276 	case ICE_VSI_CTRL:
2277 	case ICE_VSI_CHNL:
2278 	case ICE_VSI_LB:
2279 	case ICE_VSI_PF:
2280 	case ICE_VSI_SWITCHDEV_CTRL:
2281 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2282 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2283 		agg_node_iter = &pf->pf_agg_node[0];
2284 		break;
2285 	case ICE_VSI_VF:
2286 		/* user can create 'n' VFs on a given PF, but since max children
2287 		 * per aggregator node can be only 64. Following code handles
2288 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2289 		 * was already created provided num_vsis < 64, otherwise
2290 		 * select next available node, which will be created
2291 		 */
2292 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2293 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2294 		agg_node_iter = &pf->vf_agg_node[0];
2295 		break;
2296 	default:
2297 		/* other VSI type, handle later if needed */
2298 		dev_dbg(dev, "unexpected VSI type %s\n",
2299 			ice_vsi_type_str(vsi->type));
2300 		return;
2301 	}
2302 
2303 	/* find the appropriate aggregator node */
2304 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2305 		/* see if we can find space in previously created
2306 		 * node if num_vsis < 64, otherwise skip
2307 		 */
2308 		if (agg_node_iter->num_vsis &&
2309 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2310 			agg_node_iter++;
2311 			continue;
2312 		}
2313 
2314 		if (agg_node_iter->valid &&
2315 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2316 			agg_id = agg_node_iter->agg_id;
2317 			agg_node = agg_node_iter;
2318 			break;
2319 		}
2320 
2321 		/* find unclaimed agg_id */
2322 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2323 			agg_id = node_offset + agg_node_id_start;
2324 			agg_node = agg_node_iter;
2325 			break;
2326 		}
2327 		/* move to next agg_node */
2328 		agg_node_iter++;
2329 	}
2330 
2331 	if (!agg_node)
2332 		return;
2333 
2334 	/* if selected aggregator node was not created, create it */
2335 	if (!agg_node->valid) {
2336 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2337 				     (u8)vsi->tc_cfg.ena_tc);
2338 		if (status) {
2339 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2340 				agg_id);
2341 			return;
2342 		}
2343 		/* aggregator node is created, store the needed info */
2344 		agg_node->valid = true;
2345 		agg_node->agg_id = agg_id;
2346 	}
2347 
2348 	/* move VSI to corresponding aggregator node */
2349 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2350 				     (u8)vsi->tc_cfg.ena_tc);
2351 	if (status) {
2352 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2353 			vsi->idx, agg_id);
2354 		return;
2355 	}
2356 
2357 	/* keep active children count for aggregator node */
2358 	agg_node->num_vsis++;
2359 
2360 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2361 	 * to aggregator node
2362 	 */
2363 	vsi->agg_node = agg_node;
2364 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2365 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2366 		vsi->agg_node->num_vsis);
2367 }
2368 
2369 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2370 {
2371 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2372 	struct device *dev = ice_pf_to_dev(pf);
2373 	int ret, i;
2374 
2375 	/* configure VSI nodes based on number of queues and TC's */
2376 	ice_for_each_traffic_class(i) {
2377 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2378 			continue;
2379 
2380 		if (vsi->type == ICE_VSI_CHNL) {
2381 			if (!vsi->alloc_txq && vsi->num_txq)
2382 				max_txqs[i] = vsi->num_txq;
2383 			else
2384 				max_txqs[i] = pf->num_lan_tx;
2385 		} else {
2386 			max_txqs[i] = vsi->alloc_txq;
2387 		}
2388 	}
2389 
2390 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2391 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2392 			      max_txqs);
2393 	if (ret) {
2394 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2395 			vsi->vsi_num, ret);
2396 		return ret;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 /**
2403  * ice_vsi_cfg_def - configure default VSI based on the type
2404  * @vsi: pointer to VSI
2405  * @params: the parameters to configure this VSI with
2406  */
2407 static int
2408 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2409 {
2410 	struct device *dev = ice_pf_to_dev(vsi->back);
2411 	struct ice_pf *pf = vsi->back;
2412 	int ret;
2413 
2414 	vsi->vsw = pf->first_sw;
2415 
2416 	ret = ice_vsi_alloc_def(vsi, params->ch);
2417 	if (ret)
2418 		return ret;
2419 
2420 	/* allocate memory for Tx/Rx ring stat pointers */
2421 	ret = ice_vsi_alloc_stat_arrays(vsi);
2422 	if (ret)
2423 		goto unroll_vsi_alloc;
2424 
2425 	ice_alloc_fd_res(vsi);
2426 
2427 	ret = ice_vsi_get_qs(vsi);
2428 	if (ret) {
2429 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2430 			vsi->idx);
2431 		goto unroll_vsi_alloc_stat;
2432 	}
2433 
2434 	/* set RSS capabilities */
2435 	ice_vsi_set_rss_params(vsi);
2436 
2437 	/* set TC configuration */
2438 	ice_vsi_set_tc_cfg(vsi);
2439 
2440 	/* create the VSI */
2441 	ret = ice_vsi_init(vsi, params->flags);
2442 	if (ret)
2443 		goto unroll_get_qs;
2444 
2445 	ice_vsi_init_vlan_ops(vsi);
2446 
2447 	switch (vsi->type) {
2448 	case ICE_VSI_CTRL:
2449 	case ICE_VSI_SWITCHDEV_CTRL:
2450 	case ICE_VSI_PF:
2451 		ret = ice_vsi_alloc_q_vectors(vsi);
2452 		if (ret)
2453 			goto unroll_vsi_init;
2454 
2455 		ret = ice_vsi_alloc_rings(vsi);
2456 		if (ret)
2457 			goto unroll_vector_base;
2458 
2459 		ret = ice_vsi_alloc_ring_stats(vsi);
2460 		if (ret)
2461 			goto unroll_vector_base;
2462 
2463 		ice_vsi_map_rings_to_vectors(vsi);
2464 		vsi->stat_offsets_loaded = false;
2465 
2466 		if (ice_is_xdp_ena_vsi(vsi)) {
2467 			ret = ice_vsi_determine_xdp_res(vsi);
2468 			if (ret)
2469 				goto unroll_vector_base;
2470 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2471 			if (ret)
2472 				goto unroll_vector_base;
2473 		}
2474 
2475 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2476 		if (vsi->type != ICE_VSI_CTRL)
2477 			/* Do not exit if configuring RSS had an issue, at
2478 			 * least receive traffic on first queue. Hence no
2479 			 * need to capture return value
2480 			 */
2481 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2482 				ice_vsi_cfg_rss_lut_key(vsi);
2483 				ice_vsi_set_rss_flow_fld(vsi);
2484 			}
2485 		ice_init_arfs(vsi);
2486 		break;
2487 	case ICE_VSI_CHNL:
2488 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2489 			ice_vsi_cfg_rss_lut_key(vsi);
2490 			ice_vsi_set_rss_flow_fld(vsi);
2491 		}
2492 		break;
2493 	case ICE_VSI_VF:
2494 		/* VF driver will take care of creating netdev for this type and
2495 		 * map queues to vectors through Virtchnl, PF driver only
2496 		 * creates a VSI and corresponding structures for bookkeeping
2497 		 * purpose
2498 		 */
2499 		ret = ice_vsi_alloc_q_vectors(vsi);
2500 		if (ret)
2501 			goto unroll_vsi_init;
2502 
2503 		ret = ice_vsi_alloc_rings(vsi);
2504 		if (ret)
2505 			goto unroll_alloc_q_vector;
2506 
2507 		ret = ice_vsi_alloc_ring_stats(vsi);
2508 		if (ret)
2509 			goto unroll_vector_base;
2510 
2511 		vsi->stat_offsets_loaded = false;
2512 
2513 		/* Do not exit if configuring RSS had an issue, at least
2514 		 * receive traffic on first queue. Hence no need to capture
2515 		 * return value
2516 		 */
2517 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2518 			ice_vsi_cfg_rss_lut_key(vsi);
2519 			ice_vsi_set_vf_rss_flow_fld(vsi);
2520 		}
2521 		break;
2522 	case ICE_VSI_LB:
2523 		ret = ice_vsi_alloc_rings(vsi);
2524 		if (ret)
2525 			goto unroll_vsi_init;
2526 
2527 		ret = ice_vsi_alloc_ring_stats(vsi);
2528 		if (ret)
2529 			goto unroll_vector_base;
2530 
2531 		break;
2532 	default:
2533 		/* clean up the resources and exit */
2534 		ret = -EINVAL;
2535 		goto unroll_vsi_init;
2536 	}
2537 
2538 	return 0;
2539 
2540 unroll_vector_base:
2541 	/* reclaim SW interrupts back to the common pool */
2542 unroll_alloc_q_vector:
2543 	ice_vsi_free_q_vectors(vsi);
2544 unroll_vsi_init:
2545 	ice_vsi_delete_from_hw(vsi);
2546 unroll_get_qs:
2547 	ice_vsi_put_qs(vsi);
2548 unroll_vsi_alloc_stat:
2549 	ice_vsi_free_stats(vsi);
2550 unroll_vsi_alloc:
2551 	ice_vsi_free_arrays(vsi);
2552 	return ret;
2553 }
2554 
2555 /**
2556  * ice_vsi_cfg - configure a previously allocated VSI
2557  * @vsi: pointer to VSI
2558  * @params: parameters used to configure this VSI
2559  */
2560 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2561 {
2562 	struct ice_pf *pf = vsi->back;
2563 	int ret;
2564 
2565 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2566 		return -EINVAL;
2567 
2568 	vsi->type = params->type;
2569 	vsi->port_info = params->pi;
2570 
2571 	/* For VSIs which don't have a connected VF, this will be NULL */
2572 	vsi->vf = params->vf;
2573 
2574 	ret = ice_vsi_cfg_def(vsi, params);
2575 	if (ret)
2576 		return ret;
2577 
2578 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2579 	if (ret)
2580 		ice_vsi_decfg(vsi);
2581 
2582 	if (vsi->type == ICE_VSI_CTRL) {
2583 		if (vsi->vf) {
2584 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2585 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2586 		} else {
2587 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2588 			pf->ctrl_vsi_idx = vsi->idx;
2589 		}
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 /**
2596  * ice_vsi_decfg - remove all VSI configuration
2597  * @vsi: pointer to VSI
2598  */
2599 void ice_vsi_decfg(struct ice_vsi *vsi)
2600 {
2601 	struct ice_pf *pf = vsi->back;
2602 	int err;
2603 
2604 	/* The Rx rule will only exist to remove if the LLDP FW
2605 	 * engine is currently stopped
2606 	 */
2607 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2608 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2609 		ice_cfg_sw_lldp(vsi, false, false);
2610 
2611 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2612 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2613 	if (err)
2614 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2615 			vsi->vsi_num, err);
2616 
2617 	if (ice_is_xdp_ena_vsi(vsi))
2618 		/* return value check can be skipped here, it always returns
2619 		 * 0 if reset is in progress
2620 		 */
2621 		ice_destroy_xdp_rings(vsi);
2622 
2623 	ice_vsi_clear_rings(vsi);
2624 	ice_vsi_free_q_vectors(vsi);
2625 	ice_vsi_put_qs(vsi);
2626 	ice_vsi_free_arrays(vsi);
2627 
2628 	/* SR-IOV determines needed MSIX resources all at once instead of per
2629 	 * VSI since when VFs are spawned we know how many VFs there are and how
2630 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2631 	 * cleared in the same manner.
2632 	 */
2633 
2634 	if (vsi->type == ICE_VSI_VF &&
2635 	    vsi->agg_node && vsi->agg_node->valid)
2636 		vsi->agg_node->num_vsis--;
2637 	if (vsi->agg_node) {
2638 		vsi->agg_node->valid = false;
2639 		vsi->agg_node->agg_id = 0;
2640 	}
2641 }
2642 
2643 /**
2644  * ice_vsi_setup - Set up a VSI by a given type
2645  * @pf: board private structure
2646  * @params: parameters to use when creating the VSI
2647  *
2648  * This allocates the sw VSI structure and its queue resources.
2649  *
2650  * Returns pointer to the successfully allocated and configured VSI sw struct on
2651  * success, NULL on failure.
2652  */
2653 struct ice_vsi *
2654 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2655 {
2656 	struct device *dev = ice_pf_to_dev(pf);
2657 	struct ice_vsi *vsi;
2658 	int ret;
2659 
2660 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2661 	 * a port_info structure for it.
2662 	 */
2663 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2664 	    WARN_ON(!params->pi))
2665 		return NULL;
2666 
2667 	vsi = ice_vsi_alloc(pf);
2668 	if (!vsi) {
2669 		dev_err(dev, "could not allocate VSI\n");
2670 		return NULL;
2671 	}
2672 
2673 	ret = ice_vsi_cfg(vsi, params);
2674 	if (ret)
2675 		goto err_vsi_cfg;
2676 
2677 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2678 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2679 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2680 	 * The rule is added once for PF VSI in order to create appropriate
2681 	 * recipe, since VSI/VSI list is ignored with drop action...
2682 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2683 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2684 	 * settings in the HW.
2685 	 */
2686 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2687 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2688 				 ICE_DROP_PACKET);
2689 		ice_cfg_sw_lldp(vsi, true, true);
2690 	}
2691 
2692 	if (!vsi->agg_node)
2693 		ice_set_agg_vsi(vsi);
2694 
2695 	return vsi;
2696 
2697 err_vsi_cfg:
2698 	ice_vsi_free(vsi);
2699 
2700 	return NULL;
2701 }
2702 
2703 /**
2704  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2705  * @vsi: the VSI being cleaned up
2706  */
2707 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2708 {
2709 	struct ice_pf *pf = vsi->back;
2710 	struct ice_hw *hw = &pf->hw;
2711 	u32 txq = 0;
2712 	u32 rxq = 0;
2713 	int i, q;
2714 
2715 	ice_for_each_q_vector(vsi, i) {
2716 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2717 
2718 		ice_write_intrl(q_vector, 0);
2719 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2720 			ice_write_itr(&q_vector->tx, 0);
2721 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2722 			if (ice_is_xdp_ena_vsi(vsi)) {
2723 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2724 
2725 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2726 			}
2727 			txq++;
2728 		}
2729 
2730 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2731 			ice_write_itr(&q_vector->rx, 0);
2732 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2733 			rxq++;
2734 		}
2735 	}
2736 
2737 	ice_flush(hw);
2738 }
2739 
2740 /**
2741  * ice_vsi_free_irq - Free the IRQ association with the OS
2742  * @vsi: the VSI being configured
2743  */
2744 void ice_vsi_free_irq(struct ice_vsi *vsi)
2745 {
2746 	struct ice_pf *pf = vsi->back;
2747 	int i;
2748 
2749 	if (!vsi->q_vectors || !vsi->irqs_ready)
2750 		return;
2751 
2752 	ice_vsi_release_msix(vsi);
2753 	if (vsi->type == ICE_VSI_VF)
2754 		return;
2755 
2756 	vsi->irqs_ready = false;
2757 	ice_free_cpu_rx_rmap(vsi);
2758 
2759 	ice_for_each_q_vector(vsi, i) {
2760 		int irq_num;
2761 
2762 		irq_num = vsi->q_vectors[i]->irq.virq;
2763 
2764 		/* free only the irqs that were actually requested */
2765 		if (!vsi->q_vectors[i] ||
2766 		    !(vsi->q_vectors[i]->num_ring_tx ||
2767 		      vsi->q_vectors[i]->num_ring_rx))
2768 			continue;
2769 
2770 		/* clear the affinity notifier in the IRQ descriptor */
2771 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2772 			irq_set_affinity_notifier(irq_num, NULL);
2773 
2774 		/* clear the affinity_mask in the IRQ descriptor */
2775 		irq_set_affinity_hint(irq_num, NULL);
2776 		synchronize_irq(irq_num);
2777 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2778 	}
2779 }
2780 
2781 /**
2782  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2783  * @vsi: the VSI having resources freed
2784  */
2785 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2786 {
2787 	int i;
2788 
2789 	if (!vsi->tx_rings)
2790 		return;
2791 
2792 	ice_for_each_txq(vsi, i)
2793 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2794 			ice_free_tx_ring(vsi->tx_rings[i]);
2795 }
2796 
2797 /**
2798  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2799  * @vsi: the VSI having resources freed
2800  */
2801 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2802 {
2803 	int i;
2804 
2805 	if (!vsi->rx_rings)
2806 		return;
2807 
2808 	ice_for_each_rxq(vsi, i)
2809 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2810 			ice_free_rx_ring(vsi->rx_rings[i]);
2811 }
2812 
2813 /**
2814  * ice_vsi_close - Shut down a VSI
2815  * @vsi: the VSI being shut down
2816  */
2817 void ice_vsi_close(struct ice_vsi *vsi)
2818 {
2819 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2820 		ice_down(vsi);
2821 
2822 	ice_vsi_free_irq(vsi);
2823 	ice_vsi_free_tx_rings(vsi);
2824 	ice_vsi_free_rx_rings(vsi);
2825 }
2826 
2827 /**
2828  * ice_ena_vsi - resume a VSI
2829  * @vsi: the VSI being resume
2830  * @locked: is the rtnl_lock already held
2831  */
2832 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2833 {
2834 	int err = 0;
2835 
2836 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2837 		return 0;
2838 
2839 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2840 
2841 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2842 		if (netif_running(vsi->netdev)) {
2843 			if (!locked)
2844 				rtnl_lock();
2845 
2846 			err = ice_open_internal(vsi->netdev);
2847 
2848 			if (!locked)
2849 				rtnl_unlock();
2850 		}
2851 	} else if (vsi->type == ICE_VSI_CTRL) {
2852 		err = ice_vsi_open_ctrl(vsi);
2853 	}
2854 
2855 	return err;
2856 }
2857 
2858 /**
2859  * ice_dis_vsi - pause a VSI
2860  * @vsi: the VSI being paused
2861  * @locked: is the rtnl_lock already held
2862  */
2863 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2864 {
2865 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2866 		return;
2867 
2868 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2869 
2870 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2871 		if (netif_running(vsi->netdev)) {
2872 			if (!locked)
2873 				rtnl_lock();
2874 
2875 			ice_vsi_close(vsi);
2876 
2877 			if (!locked)
2878 				rtnl_unlock();
2879 		} else {
2880 			ice_vsi_close(vsi);
2881 		}
2882 	} else if (vsi->type == ICE_VSI_CTRL ||
2883 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2884 		ice_vsi_close(vsi);
2885 	}
2886 }
2887 
2888 /**
2889  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2890  * @vsi: the VSI being un-configured
2891  */
2892 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2893 {
2894 	struct ice_pf *pf = vsi->back;
2895 	struct ice_hw *hw = &pf->hw;
2896 	u32 val;
2897 	int i;
2898 
2899 	/* disable interrupt causation from each queue */
2900 	if (vsi->tx_rings) {
2901 		ice_for_each_txq(vsi, i) {
2902 			if (vsi->tx_rings[i]) {
2903 				u16 reg;
2904 
2905 				reg = vsi->tx_rings[i]->reg_idx;
2906 				val = rd32(hw, QINT_TQCTL(reg));
2907 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2908 				wr32(hw, QINT_TQCTL(reg), val);
2909 			}
2910 		}
2911 	}
2912 
2913 	if (vsi->rx_rings) {
2914 		ice_for_each_rxq(vsi, i) {
2915 			if (vsi->rx_rings[i]) {
2916 				u16 reg;
2917 
2918 				reg = vsi->rx_rings[i]->reg_idx;
2919 				val = rd32(hw, QINT_RQCTL(reg));
2920 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2921 				wr32(hw, QINT_RQCTL(reg), val);
2922 			}
2923 		}
2924 	}
2925 
2926 	/* disable each interrupt */
2927 	ice_for_each_q_vector(vsi, i) {
2928 		if (!vsi->q_vectors[i])
2929 			continue;
2930 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2931 	}
2932 
2933 	ice_flush(hw);
2934 
2935 	/* don't call synchronize_irq() for VF's from the host */
2936 	if (vsi->type == ICE_VSI_VF)
2937 		return;
2938 
2939 	ice_for_each_q_vector(vsi, i)
2940 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2941 }
2942 
2943 /**
2944  * ice_vsi_release - Delete a VSI and free its resources
2945  * @vsi: the VSI being removed
2946  *
2947  * Returns 0 on success or < 0 on error
2948  */
2949 int ice_vsi_release(struct ice_vsi *vsi)
2950 {
2951 	struct ice_pf *pf;
2952 
2953 	if (!vsi->back)
2954 		return -ENODEV;
2955 	pf = vsi->back;
2956 
2957 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2958 		ice_rss_clean(vsi);
2959 
2960 	ice_vsi_close(vsi);
2961 	ice_vsi_decfg(vsi);
2962 
2963 	/* retain SW VSI data structure since it is needed to unregister and
2964 	 * free VSI netdev when PF is not in reset recovery pending state,\
2965 	 * for ex: during rmmod.
2966 	 */
2967 	if (!ice_is_reset_in_progress(pf->state))
2968 		ice_vsi_delete(vsi);
2969 
2970 	return 0;
2971 }
2972 
2973 /**
2974  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2975  * @vsi: VSI connected with q_vectors
2976  * @coalesce: array of struct with stored coalesce
2977  *
2978  * Returns array size.
2979  */
2980 static int
2981 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2982 			     struct ice_coalesce_stored *coalesce)
2983 {
2984 	int i;
2985 
2986 	ice_for_each_q_vector(vsi, i) {
2987 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2988 
2989 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2990 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2991 		coalesce[i].intrl = q_vector->intrl;
2992 
2993 		if (i < vsi->num_txq)
2994 			coalesce[i].tx_valid = true;
2995 		if (i < vsi->num_rxq)
2996 			coalesce[i].rx_valid = true;
2997 	}
2998 
2999 	return vsi->num_q_vectors;
3000 }
3001 
3002 /**
3003  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3004  * @vsi: VSI connected with q_vectors
3005  * @coalesce: pointer to array of struct with stored coalesce
3006  * @size: size of coalesce array
3007  *
3008  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3009  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3010  * to default value.
3011  */
3012 static void
3013 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3014 			     struct ice_coalesce_stored *coalesce, int size)
3015 {
3016 	struct ice_ring_container *rc;
3017 	int i;
3018 
3019 	if ((size && !coalesce) || !vsi)
3020 		return;
3021 
3022 	/* There are a couple of cases that have to be handled here:
3023 	 *   1. The case where the number of queue vectors stays the same, but
3024 	 *      the number of Tx or Rx rings changes (the first for loop)
3025 	 *   2. The case where the number of queue vectors increased (the
3026 	 *      second for loop)
3027 	 */
3028 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3029 		/* There are 2 cases to handle here and they are the same for
3030 		 * both Tx and Rx:
3031 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3032 		 *   and the loop variable is less than the number of rings
3033 		 *   allocated, then write the previous values
3034 		 *
3035 		 *   if the entry was not valid previously, but the number of
3036 		 *   rings is less than are allocated (this means the number of
3037 		 *   rings increased from previously), then write out the
3038 		 *   values in the first element
3039 		 *
3040 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3041 		 *   as there is no harm because the dynamic algorithm
3042 		 *   will just overwrite.
3043 		 */
3044 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3045 			rc = &vsi->q_vectors[i]->rx;
3046 			rc->itr_settings = coalesce[i].itr_rx;
3047 			ice_write_itr(rc, rc->itr_setting);
3048 		} else if (i < vsi->alloc_rxq) {
3049 			rc = &vsi->q_vectors[i]->rx;
3050 			rc->itr_settings = coalesce[0].itr_rx;
3051 			ice_write_itr(rc, rc->itr_setting);
3052 		}
3053 
3054 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3055 			rc = &vsi->q_vectors[i]->tx;
3056 			rc->itr_settings = coalesce[i].itr_tx;
3057 			ice_write_itr(rc, rc->itr_setting);
3058 		} else if (i < vsi->alloc_txq) {
3059 			rc = &vsi->q_vectors[i]->tx;
3060 			rc->itr_settings = coalesce[0].itr_tx;
3061 			ice_write_itr(rc, rc->itr_setting);
3062 		}
3063 
3064 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3065 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3066 	}
3067 
3068 	/* the number of queue vectors increased so write whatever is in
3069 	 * the first element
3070 	 */
3071 	for (; i < vsi->num_q_vectors; i++) {
3072 		/* transmit */
3073 		rc = &vsi->q_vectors[i]->tx;
3074 		rc->itr_settings = coalesce[0].itr_tx;
3075 		ice_write_itr(rc, rc->itr_setting);
3076 
3077 		/* receive */
3078 		rc = &vsi->q_vectors[i]->rx;
3079 		rc->itr_settings = coalesce[0].itr_rx;
3080 		ice_write_itr(rc, rc->itr_setting);
3081 
3082 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3083 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3084 	}
3085 }
3086 
3087 /**
3088  * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3089  * @vsi: VSI pointer
3090  * @prev_txq: Number of Tx rings before ring reallocation
3091  * @prev_rxq: Number of Rx rings before ring reallocation
3092  */
3093 static void
3094 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3095 {
3096 	struct ice_vsi_stats *vsi_stat;
3097 	struct ice_pf *pf = vsi->back;
3098 	int i;
3099 
3100 	if (!prev_txq || !prev_rxq)
3101 		return;
3102 	if (vsi->type == ICE_VSI_CHNL)
3103 		return;
3104 
3105 	vsi_stat = pf->vsi_stats[vsi->idx];
3106 
3107 	if (vsi->num_txq < prev_txq) {
3108 		for (i = vsi->num_txq; i < prev_txq; i++) {
3109 			if (vsi_stat->tx_ring_stats[i]) {
3110 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3111 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3112 			}
3113 		}
3114 	}
3115 
3116 	if (vsi->num_rxq < prev_rxq) {
3117 		for (i = vsi->num_rxq; i < prev_rxq; i++) {
3118 			if (vsi_stat->rx_ring_stats[i]) {
3119 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3120 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3121 			}
3122 		}
3123 	}
3124 }
3125 
3126 /**
3127  * ice_vsi_rebuild - Rebuild VSI after reset
3128  * @vsi: VSI to be rebuild
3129  * @vsi_flags: flags used for VSI rebuild flow
3130  *
3131  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3132  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3133  *
3134  * Returns 0 on success and negative value on failure
3135  */
3136 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3137 {
3138 	struct ice_vsi_cfg_params params = {};
3139 	struct ice_coalesce_stored *coalesce;
3140 	int ret, prev_txq, prev_rxq;
3141 	int prev_num_q_vectors = 0;
3142 	struct ice_pf *pf;
3143 
3144 	if (!vsi)
3145 		return -EINVAL;
3146 
3147 	params = ice_vsi_to_params(vsi);
3148 	params.flags = vsi_flags;
3149 
3150 	pf = vsi->back;
3151 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3152 		return -EINVAL;
3153 
3154 	coalesce = kcalloc(vsi->num_q_vectors,
3155 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3156 	if (!coalesce)
3157 		return -ENOMEM;
3158 
3159 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3160 
3161 	prev_txq = vsi->num_txq;
3162 	prev_rxq = vsi->num_rxq;
3163 
3164 	ice_vsi_decfg(vsi);
3165 	ret = ice_vsi_cfg_def(vsi, &params);
3166 	if (ret)
3167 		goto err_vsi_cfg;
3168 
3169 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3170 	if (ret) {
3171 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3172 			ret = -EIO;
3173 			goto err_vsi_cfg_tc_lan;
3174 		}
3175 
3176 		kfree(coalesce);
3177 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3178 	}
3179 
3180 	ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq);
3181 
3182 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3183 	kfree(coalesce);
3184 
3185 	return 0;
3186 
3187 err_vsi_cfg_tc_lan:
3188 	ice_vsi_decfg(vsi);
3189 err_vsi_cfg:
3190 	kfree(coalesce);
3191 	return ret;
3192 }
3193 
3194 /**
3195  * ice_is_reset_in_progress - check for a reset in progress
3196  * @state: PF state field
3197  */
3198 bool ice_is_reset_in_progress(unsigned long *state)
3199 {
3200 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3201 	       test_bit(ICE_PFR_REQ, state) ||
3202 	       test_bit(ICE_CORER_REQ, state) ||
3203 	       test_bit(ICE_GLOBR_REQ, state);
3204 }
3205 
3206 /**
3207  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3208  * @pf: pointer to the PF structure
3209  * @timeout: length of time to wait, in jiffies
3210  *
3211  * Wait (sleep) for a short time until the driver finishes cleaning up from
3212  * a device reset. The caller must be able to sleep. Use this to delay
3213  * operations that could fail while the driver is cleaning up after a device
3214  * reset.
3215  *
3216  * Returns 0 on success, -EBUSY if the reset is not finished within the
3217  * timeout, and -ERESTARTSYS if the thread was interrupted.
3218  */
3219 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3220 {
3221 	long ret;
3222 
3223 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3224 					       !ice_is_reset_in_progress(pf->state),
3225 					       timeout);
3226 	if (ret < 0)
3227 		return ret;
3228 	else if (!ret)
3229 		return -EBUSY;
3230 	else
3231 		return 0;
3232 }
3233 
3234 /**
3235  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3236  * @vsi: VSI being configured
3237  * @ctx: the context buffer returned from AQ VSI update command
3238  */
3239 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3240 {
3241 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3242 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3243 	       sizeof(vsi->info.q_mapping));
3244 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3245 	       sizeof(vsi->info.tc_mapping));
3246 }
3247 
3248 /**
3249  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3250  * @vsi: the VSI being configured
3251  * @ena_tc: TC map to be enabled
3252  */
3253 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3254 {
3255 	struct net_device *netdev = vsi->netdev;
3256 	struct ice_pf *pf = vsi->back;
3257 	int numtc = vsi->tc_cfg.numtc;
3258 	struct ice_dcbx_cfg *dcbcfg;
3259 	u8 netdev_tc;
3260 	int i;
3261 
3262 	if (!netdev)
3263 		return;
3264 
3265 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3266 	if (vsi->type == ICE_VSI_CHNL)
3267 		return;
3268 
3269 	if (!ena_tc) {
3270 		netdev_reset_tc(netdev);
3271 		return;
3272 	}
3273 
3274 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3275 		numtc = vsi->all_numtc;
3276 
3277 	if (netdev_set_num_tc(netdev, numtc))
3278 		return;
3279 
3280 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3281 
3282 	ice_for_each_traffic_class(i)
3283 		if (vsi->tc_cfg.ena_tc & BIT(i))
3284 			netdev_set_tc_queue(netdev,
3285 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3286 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3287 					    vsi->tc_cfg.tc_info[i].qoffset);
3288 	/* setup TC queue map for CHNL TCs */
3289 	ice_for_each_chnl_tc(i) {
3290 		if (!(vsi->all_enatc & BIT(i)))
3291 			break;
3292 		if (!vsi->mqprio_qopt.qopt.count[i])
3293 			break;
3294 		netdev_set_tc_queue(netdev, i,
3295 				    vsi->mqprio_qopt.qopt.count[i],
3296 				    vsi->mqprio_qopt.qopt.offset[i]);
3297 	}
3298 
3299 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3300 		return;
3301 
3302 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3303 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3304 
3305 		/* Get the mapped netdev TC# for the UP */
3306 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3307 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3308 	}
3309 }
3310 
3311 /**
3312  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3313  * @vsi: the VSI being configured,
3314  * @ctxt: VSI context structure
3315  * @ena_tc: number of traffic classes to enable
3316  *
3317  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3318  */
3319 static int
3320 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3321 			   u8 ena_tc)
3322 {
3323 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3324 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3325 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3326 	u16 new_txq, new_rxq;
3327 	u8 netdev_tc = 0;
3328 	int i;
3329 
3330 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3331 
3332 	pow = order_base_2(tc0_qcount);
3333 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3334 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3335 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3336 
3337 	ice_for_each_traffic_class(i) {
3338 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3339 			/* TC is not enabled */
3340 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3341 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3342 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3343 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3344 			ctxt->info.tc_mapping[i] = 0;
3345 			continue;
3346 		}
3347 
3348 		offset = vsi->mqprio_qopt.qopt.offset[i];
3349 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3350 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3351 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3352 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3353 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3354 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3355 	}
3356 
3357 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3358 		ice_for_each_chnl_tc(i) {
3359 			if (!(vsi->all_enatc & BIT(i)))
3360 				continue;
3361 			offset = vsi->mqprio_qopt.qopt.offset[i];
3362 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3363 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3364 		}
3365 	}
3366 
3367 	new_txq = offset + qcount_tx;
3368 	if (new_txq > vsi->alloc_txq) {
3369 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3370 			new_txq, vsi->alloc_txq);
3371 		return -EINVAL;
3372 	}
3373 
3374 	new_rxq = offset + qcount_rx;
3375 	if (new_rxq > vsi->alloc_rxq) {
3376 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3377 			new_rxq, vsi->alloc_rxq);
3378 		return -EINVAL;
3379 	}
3380 
3381 	/* Set actual Tx/Rx queue pairs */
3382 	vsi->num_txq = new_txq;
3383 	vsi->num_rxq = new_rxq;
3384 
3385 	/* Setup queue TC[0].qmap for given VSI context */
3386 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3387 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3388 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3389 
3390 	/* Find queue count available for channel VSIs and starting offset
3391 	 * for channel VSIs
3392 	 */
3393 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3394 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3395 		vsi->next_base_q = tc0_qcount;
3396 	}
3397 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3398 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3399 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3400 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3401 
3402 	return 0;
3403 }
3404 
3405 /**
3406  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3407  * @vsi: VSI to be configured
3408  * @ena_tc: TC bitmap
3409  *
3410  * VSI queues expected to be quiesced before calling this function
3411  */
3412 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3413 {
3414 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3415 	struct ice_pf *pf = vsi->back;
3416 	struct ice_tc_cfg old_tc_cfg;
3417 	struct ice_vsi_ctx *ctx;
3418 	struct device *dev;
3419 	int i, ret = 0;
3420 	u8 num_tc = 0;
3421 
3422 	dev = ice_pf_to_dev(pf);
3423 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3424 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3425 		return 0;
3426 
3427 	ice_for_each_traffic_class(i) {
3428 		/* build bitmap of enabled TCs */
3429 		if (ena_tc & BIT(i))
3430 			num_tc++;
3431 		/* populate max_txqs per TC */
3432 		max_txqs[i] = vsi->alloc_txq;
3433 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3434 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3435 		 */
3436 		if (vsi->type == ICE_VSI_CHNL &&
3437 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3438 			max_txqs[i] = vsi->num_txq;
3439 	}
3440 
3441 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3442 	vsi->tc_cfg.ena_tc = ena_tc;
3443 	vsi->tc_cfg.numtc = num_tc;
3444 
3445 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3446 	if (!ctx)
3447 		return -ENOMEM;
3448 
3449 	ctx->vf_num = 0;
3450 	ctx->info = vsi->info;
3451 
3452 	if (vsi->type == ICE_VSI_PF &&
3453 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3454 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3455 	else
3456 		ret = ice_vsi_setup_q_map(vsi, ctx);
3457 
3458 	if (ret) {
3459 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3460 		goto out;
3461 	}
3462 
3463 	/* must to indicate which section of VSI context are being modified */
3464 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3465 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3466 	if (ret) {
3467 		dev_info(dev, "Failed VSI Update\n");
3468 		goto out;
3469 	}
3470 
3471 	if (vsi->type == ICE_VSI_PF &&
3472 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3473 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3474 	else
3475 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3476 				      vsi->tc_cfg.ena_tc, max_txqs);
3477 
3478 	if (ret) {
3479 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3480 			vsi->vsi_num, ret);
3481 		goto out;
3482 	}
3483 	ice_vsi_update_q_map(vsi, ctx);
3484 	vsi->info.valid_sections = 0;
3485 
3486 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3487 out:
3488 	kfree(ctx);
3489 	return ret;
3490 }
3491 
3492 /**
3493  * ice_update_ring_stats - Update ring statistics
3494  * @stats: stats to be updated
3495  * @pkts: number of processed packets
3496  * @bytes: number of processed bytes
3497  *
3498  * This function assumes that caller has acquired a u64_stats_sync lock.
3499  */
3500 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3501 {
3502 	stats->bytes += bytes;
3503 	stats->pkts += pkts;
3504 }
3505 
3506 /**
3507  * ice_update_tx_ring_stats - Update Tx ring specific counters
3508  * @tx_ring: ring to update
3509  * @pkts: number of processed packets
3510  * @bytes: number of processed bytes
3511  */
3512 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3513 {
3514 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3515 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3516 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3517 }
3518 
3519 /**
3520  * ice_update_rx_ring_stats - Update Rx ring specific counters
3521  * @rx_ring: ring to update
3522  * @pkts: number of processed packets
3523  * @bytes: number of processed bytes
3524  */
3525 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3526 {
3527 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3528 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3529 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3530 }
3531 
3532 /**
3533  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3534  * @pi: port info of the switch with default VSI
3535  *
3536  * Return true if the there is a single VSI in default forwarding VSI list
3537  */
3538 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3539 {
3540 	bool exists = false;
3541 
3542 	ice_check_if_dflt_vsi(pi, 0, &exists);
3543 	return exists;
3544 }
3545 
3546 /**
3547  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3548  * @vsi: VSI to compare against default forwarding VSI
3549  *
3550  * If this VSI passed in is the default forwarding VSI then return true, else
3551  * return false
3552  */
3553 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3554 {
3555 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3556 }
3557 
3558 /**
3559  * ice_set_dflt_vsi - set the default forwarding VSI
3560  * @vsi: VSI getting set as the default forwarding VSI on the switch
3561  *
3562  * If the VSI passed in is already the default VSI and it's enabled just return
3563  * success.
3564  *
3565  * Otherwise try to set the VSI passed in as the switch's default VSI and
3566  * return the result.
3567  */
3568 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3569 {
3570 	struct device *dev;
3571 	int status;
3572 
3573 	if (!vsi)
3574 		return -EINVAL;
3575 
3576 	dev = ice_pf_to_dev(vsi->back);
3577 
3578 	/* the VSI passed in is already the default VSI */
3579 	if (ice_is_vsi_dflt_vsi(vsi)) {
3580 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3581 			vsi->vsi_num);
3582 		return 0;
3583 	}
3584 
3585 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3586 	if (status) {
3587 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3588 			vsi->vsi_num, status);
3589 		return status;
3590 	}
3591 
3592 	return 0;
3593 }
3594 
3595 /**
3596  * ice_clear_dflt_vsi - clear the default forwarding VSI
3597  * @vsi: VSI to remove from filter list
3598  *
3599  * If the switch has no default VSI or it's not enabled then return error.
3600  *
3601  * Otherwise try to clear the default VSI and return the result.
3602  */
3603 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3604 {
3605 	struct device *dev;
3606 	int status;
3607 
3608 	if (!vsi)
3609 		return -EINVAL;
3610 
3611 	dev = ice_pf_to_dev(vsi->back);
3612 
3613 	/* there is no default VSI configured */
3614 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3615 		return -ENODEV;
3616 
3617 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3618 				  ICE_FLTR_RX);
3619 	if (status) {
3620 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3621 			vsi->vsi_num, status);
3622 		return -EIO;
3623 	}
3624 
3625 	return 0;
3626 }
3627 
3628 /**
3629  * ice_get_link_speed_mbps - get link speed in Mbps
3630  * @vsi: the VSI whose link speed is being queried
3631  *
3632  * Return current VSI link speed and 0 if the speed is unknown.
3633  */
3634 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3635 {
3636 	unsigned int link_speed;
3637 
3638 	link_speed = vsi->port_info->phy.link_info.link_speed;
3639 
3640 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3641 }
3642 
3643 /**
3644  * ice_get_link_speed_kbps - get link speed in Kbps
3645  * @vsi: the VSI whose link speed is being queried
3646  *
3647  * Return current VSI link speed and 0 if the speed is unknown.
3648  */
3649 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3650 {
3651 	int speed_mbps;
3652 
3653 	speed_mbps = ice_get_link_speed_mbps(vsi);
3654 
3655 	return speed_mbps * 1000;
3656 }
3657 
3658 /**
3659  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3660  * @vsi: VSI to be configured
3661  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3662  *
3663  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3664  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3665  * on TC 0.
3666  */
3667 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3668 {
3669 	struct ice_pf *pf = vsi->back;
3670 	struct device *dev;
3671 	int status;
3672 	int speed;
3673 
3674 	dev = ice_pf_to_dev(pf);
3675 	if (!vsi->port_info) {
3676 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3677 			vsi->idx, vsi->type);
3678 		return -EINVAL;
3679 	}
3680 
3681 	speed = ice_get_link_speed_kbps(vsi);
3682 	if (min_tx_rate > (u64)speed) {
3683 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3684 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3685 			speed);
3686 		return -EINVAL;
3687 	}
3688 
3689 	/* Configure min BW for VSI limit */
3690 	if (min_tx_rate) {
3691 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3692 						   ICE_MIN_BW, min_tx_rate);
3693 		if (status) {
3694 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3695 				min_tx_rate, ice_vsi_type_str(vsi->type),
3696 				vsi->idx);
3697 			return status;
3698 		}
3699 
3700 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3701 			min_tx_rate, ice_vsi_type_str(vsi->type));
3702 	} else {
3703 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3704 							vsi->idx, 0,
3705 							ICE_MIN_BW);
3706 		if (status) {
3707 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3708 				ice_vsi_type_str(vsi->type), vsi->idx);
3709 			return status;
3710 		}
3711 
3712 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3713 			ice_vsi_type_str(vsi->type), vsi->idx);
3714 	}
3715 
3716 	return 0;
3717 }
3718 
3719 /**
3720  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3721  * @vsi: VSI to be configured
3722  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3723  *
3724  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3725  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3726  * on TC 0.
3727  */
3728 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3729 {
3730 	struct ice_pf *pf = vsi->back;
3731 	struct device *dev;
3732 	int status;
3733 	int speed;
3734 
3735 	dev = ice_pf_to_dev(pf);
3736 	if (!vsi->port_info) {
3737 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3738 			vsi->idx, vsi->type);
3739 		return -EINVAL;
3740 	}
3741 
3742 	speed = ice_get_link_speed_kbps(vsi);
3743 	if (max_tx_rate > (u64)speed) {
3744 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3745 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3746 			speed);
3747 		return -EINVAL;
3748 	}
3749 
3750 	/* Configure max BW for VSI limit */
3751 	if (max_tx_rate) {
3752 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3753 						   ICE_MAX_BW, max_tx_rate);
3754 		if (status) {
3755 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3756 				max_tx_rate, ice_vsi_type_str(vsi->type),
3757 				vsi->idx);
3758 			return status;
3759 		}
3760 
3761 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3762 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3763 	} else {
3764 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3765 							vsi->idx, 0,
3766 							ICE_MAX_BW);
3767 		if (status) {
3768 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3769 				ice_vsi_type_str(vsi->type), vsi->idx);
3770 			return status;
3771 		}
3772 
3773 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3774 			ice_vsi_type_str(vsi->type), vsi->idx);
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 /**
3781  * ice_set_link - turn on/off physical link
3782  * @vsi: VSI to modify physical link on
3783  * @ena: turn on/off physical link
3784  */
3785 int ice_set_link(struct ice_vsi *vsi, bool ena)
3786 {
3787 	struct device *dev = ice_pf_to_dev(vsi->back);
3788 	struct ice_port_info *pi = vsi->port_info;
3789 	struct ice_hw *hw = pi->hw;
3790 	int status;
3791 
3792 	if (vsi->type != ICE_VSI_PF)
3793 		return -EINVAL;
3794 
3795 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3796 
3797 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3798 	 * this is not a fatal error, so print a warning message and return
3799 	 * a success code. Return an error if FW returns an error code other
3800 	 * than ICE_AQ_RC_EMODE
3801 	 */
3802 	if (status == -EIO) {
3803 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3804 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3805 				(ena ? "ON" : "OFF"), status,
3806 				ice_aq_str(hw->adminq.sq_last_status));
3807 	} else if (status) {
3808 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3809 			(ena ? "ON" : "OFF"), status,
3810 			ice_aq_str(hw->adminq.sq_last_status));
3811 		return status;
3812 	}
3813 
3814 	return 0;
3815 }
3816 
3817 /**
3818  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3819  * @vsi: VSI used to add VLAN filters
3820  *
3821  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3822  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3823  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3824  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3825  *
3826  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3827  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3828  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3829  *
3830  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3831  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3832  * part of filtering.
3833  */
3834 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3835 {
3836 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3837 	struct ice_vlan vlan;
3838 	int err;
3839 
3840 	vlan = ICE_VLAN(0, 0, 0);
3841 	err = vlan_ops->add_vlan(vsi, &vlan);
3842 	if (err && err != -EEXIST)
3843 		return err;
3844 
3845 	/* in SVM both VLAN 0 filters are identical */
3846 	if (!ice_is_dvm_ena(&vsi->back->hw))
3847 		return 0;
3848 
3849 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3850 	err = vlan_ops->add_vlan(vsi, &vlan);
3851 	if (err && err != -EEXIST)
3852 		return err;
3853 
3854 	return 0;
3855 }
3856 
3857 /**
3858  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3859  * @vsi: VSI used to add VLAN filters
3860  *
3861  * Delete the VLAN 0 filters in the same manner that they were added in
3862  * ice_vsi_add_vlan_zero.
3863  */
3864 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3865 {
3866 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3867 	struct ice_vlan vlan;
3868 	int err;
3869 
3870 	vlan = ICE_VLAN(0, 0, 0);
3871 	err = vlan_ops->del_vlan(vsi, &vlan);
3872 	if (err && err != -EEXIST)
3873 		return err;
3874 
3875 	/* in SVM both VLAN 0 filters are identical */
3876 	if (!ice_is_dvm_ena(&vsi->back->hw))
3877 		return 0;
3878 
3879 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3880 	err = vlan_ops->del_vlan(vsi, &vlan);
3881 	if (err && err != -EEXIST)
3882 		return err;
3883 
3884 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3885 	 * promisc mode so the filter isn't left by accident
3886 	 */
3887 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3888 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3889 }
3890 
3891 /**
3892  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3893  * @vsi: VSI used to get the VLAN mode
3894  *
3895  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3896  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3897  */
3898 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3899 {
3900 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3901 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3902 	/* no VLAN 0 filter is created when a port VLAN is active */
3903 	if (vsi->type == ICE_VSI_VF) {
3904 		if (WARN_ON(!vsi->vf))
3905 			return 0;
3906 
3907 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3908 			return 0;
3909 	}
3910 
3911 	if (ice_is_dvm_ena(&vsi->back->hw))
3912 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3913 	else
3914 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3915 }
3916 
3917 /**
3918  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3919  * @vsi: VSI used to determine if any non-zero VLANs have been added
3920  */
3921 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3922 {
3923 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3924 }
3925 
3926 /**
3927  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3928  * @vsi: VSI used to get the number of non-zero VLANs added
3929  */
3930 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3931 {
3932 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3933 }
3934 
3935 /**
3936  * ice_is_feature_supported
3937  * @pf: pointer to the struct ice_pf instance
3938  * @f: feature enum to be checked
3939  *
3940  * returns true if feature is supported, false otherwise
3941  */
3942 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3943 {
3944 	if (f < 0 || f >= ICE_F_MAX)
3945 		return false;
3946 
3947 	return test_bit(f, pf->features);
3948 }
3949 
3950 /**
3951  * ice_set_feature_support
3952  * @pf: pointer to the struct ice_pf instance
3953  * @f: feature enum to set
3954  */
3955 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3956 {
3957 	if (f < 0 || f >= ICE_F_MAX)
3958 		return;
3959 
3960 	set_bit(f, pf->features);
3961 }
3962 
3963 /**
3964  * ice_clear_feature_support
3965  * @pf: pointer to the struct ice_pf instance
3966  * @f: feature enum to clear
3967  */
3968 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3969 {
3970 	if (f < 0 || f >= ICE_F_MAX)
3971 		return;
3972 
3973 	clear_bit(f, pf->features);
3974 }
3975 
3976 /**
3977  * ice_init_feature_support
3978  * @pf: pointer to the struct ice_pf instance
3979  *
3980  * called during init to setup supported feature
3981  */
3982 void ice_init_feature_support(struct ice_pf *pf)
3983 {
3984 	switch (pf->hw.device_id) {
3985 	case ICE_DEV_ID_E810C_BACKPLANE:
3986 	case ICE_DEV_ID_E810C_QSFP:
3987 	case ICE_DEV_ID_E810C_SFP:
3988 		ice_set_feature_support(pf, ICE_F_DSCP);
3989 		ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
3990 		if (ice_is_e810t(&pf->hw)) {
3991 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3992 			if (ice_gnss_is_gps_present(&pf->hw))
3993 				ice_set_feature_support(pf, ICE_F_GNSS);
3994 		}
3995 		break;
3996 	default:
3997 		break;
3998 	}
3999 }
4000 
4001 /**
4002  * ice_vsi_update_security - update security block in VSI
4003  * @vsi: pointer to VSI structure
4004  * @fill: function pointer to fill ctx
4005  */
4006 int
4007 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4008 {
4009 	struct ice_vsi_ctx ctx = { 0 };
4010 
4011 	ctx.info = vsi->info;
4012 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4013 	fill(&ctx);
4014 
4015 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4016 		return -ENODEV;
4017 
4018 	vsi->info = ctx.info;
4019 	return 0;
4020 }
4021 
4022 /**
4023  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4024  * @ctx: pointer to VSI ctx structure
4025  */
4026 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4027 {
4028 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4029 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4030 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4031 }
4032 
4033 /**
4034  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4035  * @ctx: pointer to VSI ctx structure
4036  */
4037 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4038 {
4039 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4040 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4041 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4042 }
4043 
4044 /**
4045  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4046  * @ctx: pointer to VSI ctx structure
4047  */
4048 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4049 {
4050 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4051 }
4052 
4053 /**
4054  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4055  * @ctx: pointer to VSI ctx structure
4056  */
4057 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4058 {
4059 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4060 }
4061 
4062 /**
4063  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4064  * @vsi: pointer to VSI structure
4065  * @set: set or unset the bit
4066  */
4067 int
4068 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4069 {
4070 	struct ice_vsi_ctx ctx = {
4071 		.info	= vsi->info,
4072 	};
4073 
4074 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4075 	if (set)
4076 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4077 	else
4078 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4079 
4080 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4081 		return -ENODEV;
4082 
4083 	vsi->info = ctx.info;
4084 	return 0;
4085 }
4086