1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_CTRL: 25 return "ICE_VSI_CTRL"; 26 case ICE_VSI_CHNL: 27 return "ICE_VSI_CHNL"; 28 case ICE_VSI_LB: 29 return "ICE_VSI_LB"; 30 case ICE_VSI_SWITCHDEV_CTRL: 31 return "ICE_VSI_SWITCHDEV_CTRL"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 121 if (!vsi->af_xdp_zc_qps) 122 goto err_zc_qps; 123 124 return 0; 125 126 err_zc_qps: 127 devm_kfree(dev, vsi->q_vectors); 128 err_vectors: 129 devm_kfree(dev, vsi->rxq_map); 130 err_rxq_map: 131 devm_kfree(dev, vsi->txq_map); 132 err_txq_map: 133 devm_kfree(dev, vsi->rx_rings); 134 err_rings: 135 devm_kfree(dev, vsi->tx_rings); 136 return -ENOMEM; 137 } 138 139 /** 140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 141 * @vsi: the VSI being configured 142 */ 143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 144 { 145 switch (vsi->type) { 146 case ICE_VSI_PF: 147 case ICE_VSI_SWITCHDEV_CTRL: 148 case ICE_VSI_CTRL: 149 case ICE_VSI_LB: 150 /* a user could change the values of num_[tr]x_desc using 151 * ethtool -G so we should keep those values instead of 152 * overwriting them with the defaults. 153 */ 154 if (!vsi->num_rx_desc) 155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 156 if (!vsi->num_tx_desc) 157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 158 break; 159 default: 160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 161 vsi->type); 162 break; 163 } 164 } 165 166 /** 167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 168 * @vsi: the VSI being configured 169 * 170 * Return 0 on success and a negative value on error 171 */ 172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 173 { 174 enum ice_vsi_type vsi_type = vsi->type; 175 struct ice_pf *pf = vsi->back; 176 struct ice_vf *vf = vsi->vf; 177 178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 179 return; 180 181 switch (vsi_type) { 182 case ICE_VSI_PF: 183 if (vsi->req_txq) { 184 vsi->alloc_txq = vsi->req_txq; 185 vsi->num_txq = vsi->req_txq; 186 } else { 187 vsi->alloc_txq = min3(pf->num_lan_msix, 188 ice_get_avail_txq_count(pf), 189 (u16)num_online_cpus()); 190 } 191 192 pf->num_lan_tx = vsi->alloc_txq; 193 194 /* only 1 Rx queue unless RSS is enabled */ 195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 196 vsi->alloc_rxq = 1; 197 } else { 198 if (vsi->req_rxq) { 199 vsi->alloc_rxq = vsi->req_rxq; 200 vsi->num_rxq = vsi->req_rxq; 201 } else { 202 vsi->alloc_rxq = min3(pf->num_lan_msix, 203 ice_get_avail_rxq_count(pf), 204 (u16)num_online_cpus()); 205 } 206 } 207 208 pf->num_lan_rx = vsi->alloc_rxq; 209 210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 211 max_t(int, vsi->alloc_rxq, 212 vsi->alloc_txq)); 213 break; 214 case ICE_VSI_SWITCHDEV_CTRL: 215 /* The number of queues for ctrl VSI is equal to number of VFs. 216 * Each ring is associated to the corresponding VF_PR netdev. 217 */ 218 vsi->alloc_txq = ice_get_num_vfs(pf); 219 vsi->alloc_rxq = vsi->alloc_txq; 220 vsi->num_q_vectors = 1; 221 break; 222 case ICE_VSI_VF: 223 if (vf->num_req_qs) 224 vf->num_vf_qs = vf->num_req_qs; 225 vsi->alloc_txq = vf->num_vf_qs; 226 vsi->alloc_rxq = vf->num_vf_qs; 227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 228 * data queue interrupts). Since vsi->num_q_vectors is number 229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 230 * original vector count 231 */ 232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF; 233 break; 234 case ICE_VSI_CTRL: 235 vsi->alloc_txq = 1; 236 vsi->alloc_rxq = 1; 237 vsi->num_q_vectors = 1; 238 break; 239 case ICE_VSI_CHNL: 240 vsi->alloc_txq = 0; 241 vsi->alloc_rxq = 0; 242 break; 243 case ICE_VSI_LB: 244 vsi->alloc_txq = 1; 245 vsi->alloc_rxq = 1; 246 break; 247 default: 248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 249 break; 250 } 251 252 ice_vsi_set_num_desc(vsi); 253 } 254 255 /** 256 * ice_get_free_slot - get the next non-NULL location index in array 257 * @array: array to search 258 * @size: size of the array 259 * @curr: last known occupied index to be used as a search hint 260 * 261 * void * is being used to keep the functionality generic. This lets us use this 262 * function on any array of pointers. 263 */ 264 static int ice_get_free_slot(void *array, int size, int curr) 265 { 266 int **tmp_array = (int **)array; 267 int next; 268 269 if (curr < (size - 1) && !tmp_array[curr + 1]) { 270 next = curr + 1; 271 } else { 272 int i = 0; 273 274 while ((i < size) && (tmp_array[i])) 275 i++; 276 if (i == size) 277 next = ICE_NO_VSI; 278 else 279 next = i; 280 } 281 return next; 282 } 283 284 /** 285 * ice_vsi_delete_from_hw - delete a VSI from the switch 286 * @vsi: pointer to VSI being removed 287 */ 288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 289 { 290 struct ice_pf *pf = vsi->back; 291 struct ice_vsi_ctx *ctxt; 292 int status; 293 294 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 295 if (!ctxt) 296 return; 297 298 if (vsi->type == ICE_VSI_VF) 299 ctxt->vf_num = vsi->vf->vf_id; 300 ctxt->vsi_num = vsi->vsi_num; 301 302 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 303 304 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 305 if (status) 306 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 307 vsi->vsi_num, status); 308 309 kfree(ctxt); 310 } 311 312 /** 313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 314 * @vsi: pointer to VSI being cleared 315 */ 316 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 317 { 318 struct ice_pf *pf = vsi->back; 319 struct device *dev; 320 321 dev = ice_pf_to_dev(pf); 322 323 if (vsi->af_xdp_zc_qps) { 324 bitmap_free(vsi->af_xdp_zc_qps); 325 vsi->af_xdp_zc_qps = NULL; 326 } 327 /* free the ring and vector containers */ 328 if (vsi->q_vectors) { 329 devm_kfree(dev, vsi->q_vectors); 330 vsi->q_vectors = NULL; 331 } 332 if (vsi->tx_rings) { 333 devm_kfree(dev, vsi->tx_rings); 334 vsi->tx_rings = NULL; 335 } 336 if (vsi->rx_rings) { 337 devm_kfree(dev, vsi->rx_rings); 338 vsi->rx_rings = NULL; 339 } 340 if (vsi->txq_map) { 341 devm_kfree(dev, vsi->txq_map); 342 vsi->txq_map = NULL; 343 } 344 if (vsi->rxq_map) { 345 devm_kfree(dev, vsi->rxq_map); 346 vsi->rxq_map = NULL; 347 } 348 } 349 350 /** 351 * ice_vsi_free_stats - Free the ring statistics structures 352 * @vsi: VSI pointer 353 */ 354 static void ice_vsi_free_stats(struct ice_vsi *vsi) 355 { 356 struct ice_vsi_stats *vsi_stat; 357 struct ice_pf *pf = vsi->back; 358 int i; 359 360 if (vsi->type == ICE_VSI_CHNL) 361 return; 362 if (!pf->vsi_stats) 363 return; 364 365 vsi_stat = pf->vsi_stats[vsi->idx]; 366 if (!vsi_stat) 367 return; 368 369 ice_for_each_alloc_txq(vsi, i) { 370 if (vsi_stat->tx_ring_stats[i]) { 371 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 372 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 373 } 374 } 375 376 ice_for_each_alloc_rxq(vsi, i) { 377 if (vsi_stat->rx_ring_stats[i]) { 378 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 379 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 380 } 381 } 382 383 kfree(vsi_stat->tx_ring_stats); 384 kfree(vsi_stat->rx_ring_stats); 385 kfree(vsi_stat); 386 pf->vsi_stats[vsi->idx] = NULL; 387 } 388 389 /** 390 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 391 * @vsi: VSI which is having stats allocated 392 */ 393 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 394 { 395 struct ice_ring_stats **tx_ring_stats; 396 struct ice_ring_stats **rx_ring_stats; 397 struct ice_vsi_stats *vsi_stats; 398 struct ice_pf *pf = vsi->back; 399 u16 i; 400 401 vsi_stats = pf->vsi_stats[vsi->idx]; 402 tx_ring_stats = vsi_stats->tx_ring_stats; 403 rx_ring_stats = vsi_stats->rx_ring_stats; 404 405 /* Allocate Tx ring stats */ 406 ice_for_each_alloc_txq(vsi, i) { 407 struct ice_ring_stats *ring_stats; 408 struct ice_tx_ring *ring; 409 410 ring = vsi->tx_rings[i]; 411 ring_stats = tx_ring_stats[i]; 412 413 if (!ring_stats) { 414 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 415 if (!ring_stats) 416 goto err_out; 417 418 WRITE_ONCE(tx_ring_stats[i], ring_stats); 419 } 420 421 ring->ring_stats = ring_stats; 422 } 423 424 /* Allocate Rx ring stats */ 425 ice_for_each_alloc_rxq(vsi, i) { 426 struct ice_ring_stats *ring_stats; 427 struct ice_rx_ring *ring; 428 429 ring = vsi->rx_rings[i]; 430 ring_stats = rx_ring_stats[i]; 431 432 if (!ring_stats) { 433 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 434 if (!ring_stats) 435 goto err_out; 436 437 WRITE_ONCE(rx_ring_stats[i], ring_stats); 438 } 439 440 ring->ring_stats = ring_stats; 441 } 442 443 return 0; 444 445 err_out: 446 ice_vsi_free_stats(vsi); 447 return -ENOMEM; 448 } 449 450 /** 451 * ice_vsi_free - clean up and deallocate the provided VSI 452 * @vsi: pointer to VSI being cleared 453 * 454 * This deallocates the VSI's queue resources, removes it from the PF's 455 * VSI array if necessary, and deallocates the VSI 456 */ 457 static void ice_vsi_free(struct ice_vsi *vsi) 458 { 459 struct ice_pf *pf = NULL; 460 struct device *dev; 461 462 if (!vsi || !vsi->back) 463 return; 464 465 pf = vsi->back; 466 dev = ice_pf_to_dev(pf); 467 468 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 469 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 470 return; 471 } 472 473 mutex_lock(&pf->sw_mutex); 474 /* updates the PF for this cleared VSI */ 475 476 pf->vsi[vsi->idx] = NULL; 477 pf->next_vsi = vsi->idx; 478 479 ice_vsi_free_stats(vsi); 480 ice_vsi_free_arrays(vsi); 481 mutex_unlock(&pf->sw_mutex); 482 devm_kfree(dev, vsi); 483 } 484 485 void ice_vsi_delete(struct ice_vsi *vsi) 486 { 487 ice_vsi_delete_from_hw(vsi); 488 ice_vsi_free(vsi); 489 } 490 491 /** 492 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 493 * @irq: interrupt number 494 * @data: pointer to a q_vector 495 */ 496 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 497 { 498 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 499 500 if (!q_vector->tx.tx_ring) 501 return IRQ_HANDLED; 502 503 #define FDIR_RX_DESC_CLEAN_BUDGET 64 504 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 505 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 506 507 return IRQ_HANDLED; 508 } 509 510 /** 511 * ice_msix_clean_rings - MSIX mode Interrupt Handler 512 * @irq: interrupt number 513 * @data: pointer to a q_vector 514 */ 515 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 516 { 517 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 518 519 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 520 return IRQ_HANDLED; 521 522 q_vector->total_events++; 523 524 napi_schedule(&q_vector->napi); 525 526 return IRQ_HANDLED; 527 } 528 529 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 530 { 531 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 532 struct ice_pf *pf = q_vector->vsi->back; 533 struct ice_vf *vf; 534 unsigned int bkt; 535 536 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 537 return IRQ_HANDLED; 538 539 rcu_read_lock(); 540 ice_for_each_vf_rcu(pf, bkt, vf) 541 napi_schedule(&vf->repr->q_vector->napi); 542 rcu_read_unlock(); 543 544 return IRQ_HANDLED; 545 } 546 547 /** 548 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 549 * @vsi: VSI pointer 550 */ 551 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 552 { 553 struct ice_vsi_stats *vsi_stat; 554 struct ice_pf *pf = vsi->back; 555 556 if (vsi->type == ICE_VSI_CHNL) 557 return 0; 558 if (!pf->vsi_stats) 559 return -ENOENT; 560 561 if (pf->vsi_stats[vsi->idx]) 562 /* realloc will happen in rebuild path */ 563 return 0; 564 565 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 566 if (!vsi_stat) 567 return -ENOMEM; 568 569 vsi_stat->tx_ring_stats = 570 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 571 GFP_KERNEL); 572 if (!vsi_stat->tx_ring_stats) 573 goto err_alloc_tx; 574 575 vsi_stat->rx_ring_stats = 576 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 577 GFP_KERNEL); 578 if (!vsi_stat->rx_ring_stats) 579 goto err_alloc_rx; 580 581 pf->vsi_stats[vsi->idx] = vsi_stat; 582 583 return 0; 584 585 err_alloc_rx: 586 kfree(vsi_stat->rx_ring_stats); 587 err_alloc_tx: 588 kfree(vsi_stat->tx_ring_stats); 589 kfree(vsi_stat); 590 pf->vsi_stats[vsi->idx] = NULL; 591 return -ENOMEM; 592 } 593 594 /** 595 * ice_vsi_alloc_def - set default values for already allocated VSI 596 * @vsi: ptr to VSI 597 * @ch: ptr to channel 598 */ 599 static int 600 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 601 { 602 if (vsi->type != ICE_VSI_CHNL) { 603 ice_vsi_set_num_qs(vsi); 604 if (ice_vsi_alloc_arrays(vsi)) 605 return -ENOMEM; 606 } 607 608 switch (vsi->type) { 609 case ICE_VSI_SWITCHDEV_CTRL: 610 /* Setup eswitch MSIX irq handler for VSI */ 611 vsi->irq_handler = ice_eswitch_msix_clean_rings; 612 break; 613 case ICE_VSI_PF: 614 /* Setup default MSIX irq handler for VSI */ 615 vsi->irq_handler = ice_msix_clean_rings; 616 break; 617 case ICE_VSI_CTRL: 618 /* Setup ctrl VSI MSIX irq handler */ 619 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 620 break; 621 case ICE_VSI_CHNL: 622 if (!ch) 623 return -EINVAL; 624 625 vsi->num_rxq = ch->num_rxq; 626 vsi->num_txq = ch->num_txq; 627 vsi->next_base_q = ch->base_q; 628 break; 629 case ICE_VSI_VF: 630 case ICE_VSI_LB: 631 break; 632 default: 633 ice_vsi_free_arrays(vsi); 634 return -EINVAL; 635 } 636 637 return 0; 638 } 639 640 /** 641 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 642 * @pf: board private structure 643 * 644 * Reserves a VSI index from the PF and allocates an empty VSI structure 645 * without a type. The VSI structure must later be initialized by calling 646 * ice_vsi_cfg(). 647 * 648 * returns a pointer to a VSI on success, NULL on failure. 649 */ 650 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 651 { 652 struct device *dev = ice_pf_to_dev(pf); 653 struct ice_vsi *vsi = NULL; 654 655 /* Need to protect the allocation of the VSIs at the PF level */ 656 mutex_lock(&pf->sw_mutex); 657 658 /* If we have already allocated our maximum number of VSIs, 659 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 660 * is available to be populated 661 */ 662 if (pf->next_vsi == ICE_NO_VSI) { 663 dev_dbg(dev, "out of VSI slots!\n"); 664 goto unlock_pf; 665 } 666 667 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 668 if (!vsi) 669 goto unlock_pf; 670 671 vsi->back = pf; 672 set_bit(ICE_VSI_DOWN, vsi->state); 673 674 /* fill slot and make note of the index */ 675 vsi->idx = pf->next_vsi; 676 pf->vsi[pf->next_vsi] = vsi; 677 678 /* prepare pf->next_vsi for next use */ 679 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 680 pf->next_vsi); 681 682 unlock_pf: 683 mutex_unlock(&pf->sw_mutex); 684 return vsi; 685 } 686 687 /** 688 * ice_alloc_fd_res - Allocate FD resource for a VSI 689 * @vsi: pointer to the ice_vsi 690 * 691 * This allocates the FD resources 692 * 693 * Returns 0 on success, -EPERM on no-op or -EIO on failure 694 */ 695 static int ice_alloc_fd_res(struct ice_vsi *vsi) 696 { 697 struct ice_pf *pf = vsi->back; 698 u32 g_val, b_val; 699 700 /* Flow Director filters are only allocated/assigned to the PF VSI or 701 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 702 * add/delete filters so resources are not allocated to it 703 */ 704 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 705 return -EPERM; 706 707 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 708 vsi->type == ICE_VSI_CHNL)) 709 return -EPERM; 710 711 /* FD filters from guaranteed pool per VSI */ 712 g_val = pf->hw.func_caps.fd_fltr_guar; 713 if (!g_val) 714 return -EPERM; 715 716 /* FD filters from best effort pool */ 717 b_val = pf->hw.func_caps.fd_fltr_best_effort; 718 if (!b_val) 719 return -EPERM; 720 721 /* PF main VSI gets only 64 FD resources from guaranteed pool 722 * when ADQ is configured. 723 */ 724 #define ICE_PF_VSI_GFLTR 64 725 726 /* determine FD filter resources per VSI from shared(best effort) and 727 * dedicated pool 728 */ 729 if (vsi->type == ICE_VSI_PF) { 730 vsi->num_gfltr = g_val; 731 /* if MQPRIO is configured, main VSI doesn't get all FD 732 * resources from guaranteed pool. PF VSI gets 64 FD resources 733 */ 734 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 735 if (g_val < ICE_PF_VSI_GFLTR) 736 return -EPERM; 737 /* allow bare minimum entries for PF VSI */ 738 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 739 } 740 741 /* each VSI gets same "best_effort" quota */ 742 vsi->num_bfltr = b_val; 743 } else if (vsi->type == ICE_VSI_VF) { 744 vsi->num_gfltr = 0; 745 746 /* each VSI gets same "best_effort" quota */ 747 vsi->num_bfltr = b_val; 748 } else { 749 struct ice_vsi *main_vsi; 750 int numtc; 751 752 main_vsi = ice_get_main_vsi(pf); 753 if (!main_vsi) 754 return -EPERM; 755 756 if (!main_vsi->all_numtc) 757 return -EINVAL; 758 759 /* figure out ADQ numtc */ 760 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 761 762 /* only one TC but still asking resources for channels, 763 * invalid config 764 */ 765 if (numtc < ICE_CHNL_START_TC) 766 return -EPERM; 767 768 g_val -= ICE_PF_VSI_GFLTR; 769 /* channel VSIs gets equal share from guaranteed pool */ 770 vsi->num_gfltr = g_val / numtc; 771 772 /* each VSI gets same "best_effort" quota */ 773 vsi->num_bfltr = b_val; 774 } 775 776 return 0; 777 } 778 779 /** 780 * ice_vsi_get_qs - Assign queues from PF to VSI 781 * @vsi: the VSI to assign queues to 782 * 783 * Returns 0 on success and a negative value on error 784 */ 785 static int ice_vsi_get_qs(struct ice_vsi *vsi) 786 { 787 struct ice_pf *pf = vsi->back; 788 struct ice_qs_cfg tx_qs_cfg = { 789 .qs_mutex = &pf->avail_q_mutex, 790 .pf_map = pf->avail_txqs, 791 .pf_map_size = pf->max_pf_txqs, 792 .q_count = vsi->alloc_txq, 793 .scatter_count = ICE_MAX_SCATTER_TXQS, 794 .vsi_map = vsi->txq_map, 795 .vsi_map_offset = 0, 796 .mapping_mode = ICE_VSI_MAP_CONTIG 797 }; 798 struct ice_qs_cfg rx_qs_cfg = { 799 .qs_mutex = &pf->avail_q_mutex, 800 .pf_map = pf->avail_rxqs, 801 .pf_map_size = pf->max_pf_rxqs, 802 .q_count = vsi->alloc_rxq, 803 .scatter_count = ICE_MAX_SCATTER_RXQS, 804 .vsi_map = vsi->rxq_map, 805 .vsi_map_offset = 0, 806 .mapping_mode = ICE_VSI_MAP_CONTIG 807 }; 808 int ret; 809 810 if (vsi->type == ICE_VSI_CHNL) 811 return 0; 812 813 ret = __ice_vsi_get_qs(&tx_qs_cfg); 814 if (ret) 815 return ret; 816 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 817 818 ret = __ice_vsi_get_qs(&rx_qs_cfg); 819 if (ret) 820 return ret; 821 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 822 823 return 0; 824 } 825 826 /** 827 * ice_vsi_put_qs - Release queues from VSI to PF 828 * @vsi: the VSI that is going to release queues 829 */ 830 static void ice_vsi_put_qs(struct ice_vsi *vsi) 831 { 832 struct ice_pf *pf = vsi->back; 833 int i; 834 835 mutex_lock(&pf->avail_q_mutex); 836 837 ice_for_each_alloc_txq(vsi, i) { 838 clear_bit(vsi->txq_map[i], pf->avail_txqs); 839 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 840 } 841 842 ice_for_each_alloc_rxq(vsi, i) { 843 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 844 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 845 } 846 847 mutex_unlock(&pf->avail_q_mutex); 848 } 849 850 /** 851 * ice_is_safe_mode 852 * @pf: pointer to the PF struct 853 * 854 * returns true if driver is in safe mode, false otherwise 855 */ 856 bool ice_is_safe_mode(struct ice_pf *pf) 857 { 858 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 859 } 860 861 /** 862 * ice_is_rdma_ena 863 * @pf: pointer to the PF struct 864 * 865 * returns true if RDMA is currently supported, false otherwise 866 */ 867 bool ice_is_rdma_ena(struct ice_pf *pf) 868 { 869 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 870 } 871 872 /** 873 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 874 * @vsi: the VSI being cleaned up 875 * 876 * This function deletes RSS input set for all flows that were configured 877 * for this VSI 878 */ 879 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 880 { 881 struct ice_pf *pf = vsi->back; 882 int status; 883 884 if (ice_is_safe_mode(pf)) 885 return; 886 887 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 888 if (status) 889 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 890 vsi->vsi_num, status); 891 } 892 893 /** 894 * ice_rss_clean - Delete RSS related VSI structures and configuration 895 * @vsi: the VSI being removed 896 */ 897 static void ice_rss_clean(struct ice_vsi *vsi) 898 { 899 struct ice_pf *pf = vsi->back; 900 struct device *dev; 901 902 dev = ice_pf_to_dev(pf); 903 904 if (vsi->rss_hkey_user) 905 devm_kfree(dev, vsi->rss_hkey_user); 906 if (vsi->rss_lut_user) 907 devm_kfree(dev, vsi->rss_lut_user); 908 909 ice_vsi_clean_rss_flow_fld(vsi); 910 /* remove RSS replay list */ 911 if (!ice_is_safe_mode(pf)) 912 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 913 } 914 915 /** 916 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 917 * @vsi: the VSI being configured 918 */ 919 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 920 { 921 struct ice_hw_common_caps *cap; 922 struct ice_pf *pf = vsi->back; 923 924 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 925 vsi->rss_size = 1; 926 return; 927 } 928 929 cap = &pf->hw.func_caps.common_cap; 930 switch (vsi->type) { 931 case ICE_VSI_CHNL: 932 case ICE_VSI_PF: 933 /* PF VSI will inherit RSS instance of PF */ 934 vsi->rss_table_size = (u16)cap->rss_table_size; 935 if (vsi->type == ICE_VSI_CHNL) 936 vsi->rss_size = min_t(u16, vsi->num_rxq, 937 BIT(cap->rss_table_entry_width)); 938 else 939 vsi->rss_size = min_t(u16, num_online_cpus(), 940 BIT(cap->rss_table_entry_width)); 941 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 942 break; 943 case ICE_VSI_SWITCHDEV_CTRL: 944 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 945 vsi->rss_size = min_t(u16, num_online_cpus(), 946 BIT(cap->rss_table_entry_width)); 947 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 948 break; 949 case ICE_VSI_VF: 950 /* VF VSI will get a small RSS table. 951 * For VSI_LUT, LUT size should be set to 64 bytes. 952 */ 953 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 954 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 955 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 956 break; 957 case ICE_VSI_LB: 958 break; 959 default: 960 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 961 ice_vsi_type_str(vsi->type)); 962 break; 963 } 964 } 965 966 /** 967 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 968 * @hw: HW structure used to determine the VLAN mode of the device 969 * @ctxt: the VSI context being set 970 * 971 * This initializes a default VSI context for all sections except the Queues. 972 */ 973 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 974 { 975 u32 table = 0; 976 977 memset(&ctxt->info, 0, sizeof(ctxt->info)); 978 /* VSI's should be allocated from shared pool */ 979 ctxt->alloc_from_pool = true; 980 /* Src pruning enabled by default */ 981 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 982 /* Traffic from VSI can be sent to LAN */ 983 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 984 /* allow all untagged/tagged packets by default on Tx */ 985 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL & 986 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >> 987 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S); 988 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 989 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 990 * 991 * DVM - leave inner VLAN in packet by default 992 */ 993 if (ice_is_dvm_ena(hw)) { 994 ctxt->info.inner_vlan_flags |= 995 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 996 ctxt->info.outer_vlan_flags = 997 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL << 998 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) & 999 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M; 1000 ctxt->info.outer_vlan_flags |= 1001 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 << 1002 ICE_AQ_VSI_OUTER_TAG_TYPE_S) & 1003 ICE_AQ_VSI_OUTER_TAG_TYPE_M; 1004 ctxt->info.outer_vlan_flags |= 1005 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 1006 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 1007 } 1008 /* Have 1:1 UP mapping for both ingress/egress tables */ 1009 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 1010 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 1011 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 1012 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 1013 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 1014 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 1015 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 1016 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 1017 ctxt->info.ingress_table = cpu_to_le32(table); 1018 ctxt->info.egress_table = cpu_to_le32(table); 1019 /* Have 1:1 UP mapping for outer to inner UP table */ 1020 ctxt->info.outer_up_table = cpu_to_le32(table); 1021 /* No Outer tag support outer_tag_flags remains to zero */ 1022 } 1023 1024 /** 1025 * ice_vsi_setup_q_map - Setup a VSI queue map 1026 * @vsi: the VSI being configured 1027 * @ctxt: VSI context structure 1028 */ 1029 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1030 { 1031 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 1032 u16 num_txq_per_tc, num_rxq_per_tc; 1033 u16 qcount_tx = vsi->alloc_txq; 1034 u16 qcount_rx = vsi->alloc_rxq; 1035 u8 netdev_tc = 0; 1036 int i; 1037 1038 if (!vsi->tc_cfg.numtc) { 1039 /* at least TC0 should be enabled by default */ 1040 vsi->tc_cfg.numtc = 1; 1041 vsi->tc_cfg.ena_tc = 1; 1042 } 1043 1044 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1045 if (!num_rxq_per_tc) 1046 num_rxq_per_tc = 1; 1047 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1048 if (!num_txq_per_tc) 1049 num_txq_per_tc = 1; 1050 1051 /* find the (rounded up) power-of-2 of qcount */ 1052 pow = (u16)order_base_2(num_rxq_per_tc); 1053 1054 /* TC mapping is a function of the number of Rx queues assigned to the 1055 * VSI for each traffic class and the offset of these queues. 1056 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1057 * queues allocated to TC0. No:of queues is a power-of-2. 1058 * 1059 * If TC is not enabled, the queue offset is set to 0, and allocate one 1060 * queue, this way, traffic for the given TC will be sent to the default 1061 * queue. 1062 * 1063 * Setup number and offset of Rx queues for all TCs for the VSI 1064 */ 1065 ice_for_each_traffic_class(i) { 1066 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1067 /* TC is not enabled */ 1068 vsi->tc_cfg.tc_info[i].qoffset = 0; 1069 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1070 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1071 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1072 ctxt->info.tc_mapping[i] = 0; 1073 continue; 1074 } 1075 1076 /* TC is enabled */ 1077 vsi->tc_cfg.tc_info[i].qoffset = offset; 1078 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1079 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1080 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1081 1082 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1083 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1084 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1085 ICE_AQ_VSI_TC_Q_NUM_M); 1086 offset += num_rxq_per_tc; 1087 tx_count += num_txq_per_tc; 1088 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1089 } 1090 1091 /* if offset is non-zero, means it is calculated correctly based on 1092 * enabled TCs for a given VSI otherwise qcount_rx will always 1093 * be correct and non-zero because it is based off - VSI's 1094 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1095 * at least 1) 1096 */ 1097 if (offset) 1098 rx_count = offset; 1099 else 1100 rx_count = num_rxq_per_tc; 1101 1102 if (rx_count > vsi->alloc_rxq) { 1103 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1104 rx_count, vsi->alloc_rxq); 1105 return -EINVAL; 1106 } 1107 1108 if (tx_count > vsi->alloc_txq) { 1109 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1110 tx_count, vsi->alloc_txq); 1111 return -EINVAL; 1112 } 1113 1114 vsi->num_txq = tx_count; 1115 vsi->num_rxq = rx_count; 1116 1117 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1118 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1119 /* since there is a chance that num_rxq could have been changed 1120 * in the above for loop, make num_txq equal to num_rxq. 1121 */ 1122 vsi->num_txq = vsi->num_rxq; 1123 } 1124 1125 /* Rx queue mapping */ 1126 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1127 /* q_mapping buffer holds the info for the first queue allocated for 1128 * this VSI in the PF space and also the number of queues associated 1129 * with this VSI. 1130 */ 1131 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1132 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1139 * @ctxt: the VSI context being set 1140 * @vsi: the VSI being configured 1141 */ 1142 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1143 { 1144 u8 dflt_q_group, dflt_q_prio; 1145 u16 dflt_q, report_q, val; 1146 1147 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1148 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1149 return; 1150 1151 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1152 ctxt->info.valid_sections |= cpu_to_le16(val); 1153 dflt_q = 0; 1154 dflt_q_group = 0; 1155 report_q = 0; 1156 dflt_q_prio = 0; 1157 1158 /* enable flow director filtering/programming */ 1159 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1160 ctxt->info.fd_options = cpu_to_le16(val); 1161 /* max of allocated flow director filters */ 1162 ctxt->info.max_fd_fltr_dedicated = 1163 cpu_to_le16(vsi->num_gfltr); 1164 /* max of shared flow director filters any VSI may program */ 1165 ctxt->info.max_fd_fltr_shared = 1166 cpu_to_le16(vsi->num_bfltr); 1167 /* default queue index within the VSI of the default FD */ 1168 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 1169 ICE_AQ_VSI_FD_DEF_Q_M); 1170 /* target queue or queue group to the FD filter */ 1171 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 1172 ICE_AQ_VSI_FD_DEF_GRP_M); 1173 ctxt->info.fd_def_q = cpu_to_le16(val); 1174 /* queue index on which FD filter completion is reported */ 1175 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 1176 ICE_AQ_VSI_FD_REPORT_Q_M); 1177 /* priority of the default qindex action */ 1178 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 1179 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 1180 ctxt->info.fd_report_opt = cpu_to_le16(val); 1181 } 1182 1183 /** 1184 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1185 * @ctxt: the VSI context being set 1186 * @vsi: the VSI being configured 1187 */ 1188 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1189 { 1190 u8 lut_type, hash_type; 1191 struct device *dev; 1192 struct ice_pf *pf; 1193 1194 pf = vsi->back; 1195 dev = ice_pf_to_dev(pf); 1196 1197 switch (vsi->type) { 1198 case ICE_VSI_CHNL: 1199 case ICE_VSI_PF: 1200 /* PF VSI will inherit RSS instance of PF */ 1201 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1202 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1203 break; 1204 case ICE_VSI_VF: 1205 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1206 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1207 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 1208 break; 1209 default: 1210 dev_dbg(dev, "Unsupported VSI type %s\n", 1211 ice_vsi_type_str(vsi->type)); 1212 return; 1213 } 1214 1215 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 1216 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 1217 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 1218 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 1219 } 1220 1221 static void 1222 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1223 { 1224 struct ice_pf *pf = vsi->back; 1225 u16 qcount, qmap; 1226 u8 offset = 0; 1227 int pow; 1228 1229 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1230 1231 pow = order_base_2(qcount); 1232 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 1233 ICE_AQ_VSI_TC_Q_OFFSET_M) | 1234 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 1235 ICE_AQ_VSI_TC_Q_NUM_M); 1236 1237 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1238 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1239 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1240 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1241 } 1242 1243 /** 1244 * ice_vsi_init - Create and initialize a VSI 1245 * @vsi: the VSI being configured 1246 * @vsi_flags: VSI configuration flags 1247 * 1248 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1249 * reconfigure an existing context. 1250 * 1251 * This initializes a VSI context depending on the VSI type to be added and 1252 * passes it down to the add_vsi aq command to create a new VSI. 1253 */ 1254 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1255 { 1256 struct ice_pf *pf = vsi->back; 1257 struct ice_hw *hw = &pf->hw; 1258 struct ice_vsi_ctx *ctxt; 1259 struct device *dev; 1260 int ret = 0; 1261 1262 dev = ice_pf_to_dev(pf); 1263 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1264 if (!ctxt) 1265 return -ENOMEM; 1266 1267 switch (vsi->type) { 1268 case ICE_VSI_CTRL: 1269 case ICE_VSI_LB: 1270 case ICE_VSI_PF: 1271 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1272 break; 1273 case ICE_VSI_SWITCHDEV_CTRL: 1274 case ICE_VSI_CHNL: 1275 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1276 break; 1277 case ICE_VSI_VF: 1278 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1279 /* VF number here is the absolute VF number (0-255) */ 1280 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1281 break; 1282 default: 1283 ret = -ENODEV; 1284 goto out; 1285 } 1286 1287 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1288 * prune enabled 1289 */ 1290 if (vsi->type == ICE_VSI_CHNL) { 1291 struct ice_vsi *main_vsi; 1292 1293 main_vsi = ice_get_main_vsi(pf); 1294 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1295 ctxt->info.sw_flags2 |= 1296 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1297 else 1298 ctxt->info.sw_flags2 &= 1299 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1300 } 1301 1302 ice_set_dflt_vsi_ctx(hw, ctxt); 1303 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1304 ice_set_fd_vsi_ctx(ctxt, vsi); 1305 /* if the switch is in VEB mode, allow VSI loopback */ 1306 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1307 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1308 1309 /* Set LUT type and HASH type if RSS is enabled */ 1310 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1311 vsi->type != ICE_VSI_CTRL) { 1312 ice_set_rss_vsi_ctx(ctxt, vsi); 1313 /* if updating VSI context, make sure to set valid_section: 1314 * to indicate which section of VSI context being updated 1315 */ 1316 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1317 ctxt->info.valid_sections |= 1318 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1319 } 1320 1321 ctxt->info.sw_id = vsi->port_info->sw_id; 1322 if (vsi->type == ICE_VSI_CHNL) { 1323 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1324 } else { 1325 ret = ice_vsi_setup_q_map(vsi, ctxt); 1326 if (ret) 1327 goto out; 1328 1329 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1330 /* means VSI being updated */ 1331 /* must to indicate which section of VSI context are 1332 * being modified 1333 */ 1334 ctxt->info.valid_sections |= 1335 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1336 } 1337 1338 /* Allow control frames out of main VSI */ 1339 if (vsi->type == ICE_VSI_PF) { 1340 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1341 ctxt->info.valid_sections |= 1342 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1343 } 1344 1345 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1346 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1347 if (ret) { 1348 dev_err(dev, "Add VSI failed, err %d\n", ret); 1349 ret = -EIO; 1350 goto out; 1351 } 1352 } else { 1353 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1354 if (ret) { 1355 dev_err(dev, "Update VSI failed, err %d\n", ret); 1356 ret = -EIO; 1357 goto out; 1358 } 1359 } 1360 1361 /* keep context for update VSI operations */ 1362 vsi->info = ctxt->info; 1363 1364 /* record VSI number returned */ 1365 vsi->vsi_num = ctxt->vsi_num; 1366 1367 out: 1368 kfree(ctxt); 1369 return ret; 1370 } 1371 1372 /** 1373 * ice_free_res - free a block of resources 1374 * @res: pointer to the resource 1375 * @index: starting index previously returned by ice_get_res 1376 * @id: identifier to track owner 1377 * 1378 * Returns number of resources freed 1379 */ 1380 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1381 { 1382 int count = 0; 1383 int i; 1384 1385 if (!res || index >= res->end) 1386 return -EINVAL; 1387 1388 id |= ICE_RES_VALID_BIT; 1389 for (i = index; i < res->end && res->list[i] == id; i++) { 1390 res->list[i] = 0; 1391 count++; 1392 } 1393 1394 return count; 1395 } 1396 1397 /** 1398 * ice_search_res - Search the tracker for a block of resources 1399 * @res: pointer to the resource 1400 * @needed: size of the block needed 1401 * @id: identifier to track owner 1402 * 1403 * Returns the base item index of the block, or -ENOMEM for error 1404 */ 1405 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1406 { 1407 u16 start = 0, end = 0; 1408 1409 if (needed > res->end) 1410 return -ENOMEM; 1411 1412 id |= ICE_RES_VALID_BIT; 1413 1414 do { 1415 /* skip already allocated entries */ 1416 if (res->list[end++] & ICE_RES_VALID_BIT) { 1417 start = end; 1418 if ((start + needed) > res->end) 1419 break; 1420 } 1421 1422 if (end == (start + needed)) { 1423 int i = start; 1424 1425 /* there was enough, so assign it to the requestor */ 1426 while (i != end) 1427 res->list[i++] = id; 1428 1429 return start; 1430 } 1431 } while (end < res->end); 1432 1433 return -ENOMEM; 1434 } 1435 1436 /** 1437 * ice_get_free_res_count - Get free count from a resource tracker 1438 * @res: Resource tracker instance 1439 */ 1440 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1441 { 1442 u16 i, count = 0; 1443 1444 for (i = 0; i < res->end; i++) 1445 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1446 count++; 1447 1448 return count; 1449 } 1450 1451 /** 1452 * ice_get_res - get a block of resources 1453 * @pf: board private structure 1454 * @res: pointer to the resource 1455 * @needed: size of the block needed 1456 * @id: identifier to track owner 1457 * 1458 * Returns the base item index of the block, or negative for error 1459 */ 1460 int 1461 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1462 { 1463 if (!res || !pf) 1464 return -EINVAL; 1465 1466 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1467 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1468 needed, res->num_entries, id); 1469 return -EINVAL; 1470 } 1471 1472 return ice_search_res(res, needed, id); 1473 } 1474 1475 /** 1476 * ice_get_vf_ctrl_res - Get VF control VSI resource 1477 * @pf: pointer to the PF structure 1478 * @vsi: the VSI to allocate a resource for 1479 * 1480 * Look up whether another VF has already allocated the control VSI resource. 1481 * If so, re-use this resource so that we share it among all VFs. 1482 * 1483 * Otherwise, allocate the resource and return it. 1484 */ 1485 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 1486 { 1487 struct ice_vf *vf; 1488 unsigned int bkt; 1489 int base; 1490 1491 rcu_read_lock(); 1492 ice_for_each_vf_rcu(pf, bkt, vf) { 1493 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1494 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1495 rcu_read_unlock(); 1496 return base; 1497 } 1498 } 1499 rcu_read_unlock(); 1500 1501 return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors, 1502 ICE_RES_VF_CTRL_VEC_ID); 1503 } 1504 1505 /** 1506 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1507 * @vsi: ptr to the VSI 1508 * 1509 * This should only be called after ice_vsi_alloc_def() which allocates the 1510 * corresponding SW VSI structure and initializes num_queue_pairs for the 1511 * newly allocated VSI. 1512 * 1513 * Returns 0 on success or negative on failure 1514 */ 1515 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1516 { 1517 struct ice_pf *pf = vsi->back; 1518 struct device *dev; 1519 u16 num_q_vectors; 1520 int base; 1521 1522 dev = ice_pf_to_dev(pf); 1523 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1524 if (vsi->type == ICE_VSI_VF) 1525 return 0; 1526 if (vsi->type == ICE_VSI_CHNL) 1527 return 0; 1528 1529 if (vsi->base_vector) { 1530 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1531 vsi->vsi_num, vsi->base_vector); 1532 return -EEXIST; 1533 } 1534 1535 num_q_vectors = vsi->num_q_vectors; 1536 /* reserve slots from OS requested IRQs */ 1537 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 1538 base = ice_get_vf_ctrl_res(pf, vsi); 1539 } else { 1540 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1541 vsi->idx); 1542 } 1543 1544 if (base < 0) { 1545 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1546 ice_get_free_res_count(pf->irq_tracker), 1547 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1548 return -ENOENT; 1549 } 1550 vsi->base_vector = (u16)base; 1551 pf->num_avail_sw_msix -= num_q_vectors; 1552 1553 return 0; 1554 } 1555 1556 /** 1557 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1558 * @vsi: the VSI having rings deallocated 1559 */ 1560 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1561 { 1562 int i; 1563 1564 /* Avoid stale references by clearing map from vector to ring */ 1565 if (vsi->q_vectors) { 1566 ice_for_each_q_vector(vsi, i) { 1567 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1568 1569 if (q_vector) { 1570 q_vector->tx.tx_ring = NULL; 1571 q_vector->rx.rx_ring = NULL; 1572 } 1573 } 1574 } 1575 1576 if (vsi->tx_rings) { 1577 ice_for_each_alloc_txq(vsi, i) { 1578 if (vsi->tx_rings[i]) { 1579 kfree_rcu(vsi->tx_rings[i], rcu); 1580 WRITE_ONCE(vsi->tx_rings[i], NULL); 1581 } 1582 } 1583 } 1584 if (vsi->rx_rings) { 1585 ice_for_each_alloc_rxq(vsi, i) { 1586 if (vsi->rx_rings[i]) { 1587 kfree_rcu(vsi->rx_rings[i], rcu); 1588 WRITE_ONCE(vsi->rx_rings[i], NULL); 1589 } 1590 } 1591 } 1592 } 1593 1594 /** 1595 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1596 * @vsi: VSI which is having rings allocated 1597 */ 1598 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1599 { 1600 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1601 struct ice_pf *pf = vsi->back; 1602 struct device *dev; 1603 u16 i; 1604 1605 dev = ice_pf_to_dev(pf); 1606 /* Allocate Tx rings */ 1607 ice_for_each_alloc_txq(vsi, i) { 1608 struct ice_tx_ring *ring; 1609 1610 /* allocate with kzalloc(), free with kfree_rcu() */ 1611 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1612 1613 if (!ring) 1614 goto err_out; 1615 1616 ring->q_index = i; 1617 ring->reg_idx = vsi->txq_map[i]; 1618 ring->vsi = vsi; 1619 ring->tx_tstamps = &pf->ptp.port.tx; 1620 ring->dev = dev; 1621 ring->count = vsi->num_tx_desc; 1622 ring->txq_teid = ICE_INVAL_TEID; 1623 if (dvm_ena) 1624 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1625 else 1626 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1627 WRITE_ONCE(vsi->tx_rings[i], ring); 1628 } 1629 1630 /* Allocate Rx rings */ 1631 ice_for_each_alloc_rxq(vsi, i) { 1632 struct ice_rx_ring *ring; 1633 1634 /* allocate with kzalloc(), free with kfree_rcu() */ 1635 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1636 if (!ring) 1637 goto err_out; 1638 1639 ring->q_index = i; 1640 ring->reg_idx = vsi->rxq_map[i]; 1641 ring->vsi = vsi; 1642 ring->netdev = vsi->netdev; 1643 ring->dev = dev; 1644 ring->count = vsi->num_rx_desc; 1645 ring->cached_phctime = pf->ptp.cached_phc_time; 1646 WRITE_ONCE(vsi->rx_rings[i], ring); 1647 } 1648 1649 return 0; 1650 1651 err_out: 1652 ice_vsi_clear_rings(vsi); 1653 return -ENOMEM; 1654 } 1655 1656 /** 1657 * ice_vsi_manage_rss_lut - disable/enable RSS 1658 * @vsi: the VSI being changed 1659 * @ena: boolean value indicating if this is an enable or disable request 1660 * 1661 * In the event of disable request for RSS, this function will zero out RSS 1662 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1663 * LUT. 1664 */ 1665 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1666 { 1667 u8 *lut; 1668 1669 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1670 if (!lut) 1671 return; 1672 1673 if (ena) { 1674 if (vsi->rss_lut_user) 1675 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1676 else 1677 ice_fill_rss_lut(lut, vsi->rss_table_size, 1678 vsi->rss_size); 1679 } 1680 1681 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1682 kfree(lut); 1683 } 1684 1685 /** 1686 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1687 * @vsi: VSI to be configured 1688 * @disable: set to true to have FCS / CRC in the frame data 1689 */ 1690 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1691 { 1692 int i; 1693 1694 ice_for_each_rxq(vsi, i) 1695 if (disable) 1696 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1697 else 1698 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1699 } 1700 1701 /** 1702 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1703 * @vsi: VSI to be configured 1704 */ 1705 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1706 { 1707 struct ice_pf *pf = vsi->back; 1708 struct device *dev; 1709 u8 *lut, *key; 1710 int err; 1711 1712 dev = ice_pf_to_dev(pf); 1713 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1714 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1715 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1716 } else { 1717 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1718 1719 /* If orig_rss_size is valid and it is less than determined 1720 * main VSI's rss_size, update main VSI's rss_size to be 1721 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1722 * RSS table gets programmed to be correct (whatever it was 1723 * to begin with (prior to setup-tc for ADQ config) 1724 */ 1725 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1726 vsi->orig_rss_size <= vsi->num_rxq) { 1727 vsi->rss_size = vsi->orig_rss_size; 1728 /* now orig_rss_size is used, reset it to zero */ 1729 vsi->orig_rss_size = 0; 1730 } 1731 } 1732 1733 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1734 if (!lut) 1735 return -ENOMEM; 1736 1737 if (vsi->rss_lut_user) 1738 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1739 else 1740 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1741 1742 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1743 if (err) { 1744 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1745 goto ice_vsi_cfg_rss_exit; 1746 } 1747 1748 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1749 if (!key) { 1750 err = -ENOMEM; 1751 goto ice_vsi_cfg_rss_exit; 1752 } 1753 1754 if (vsi->rss_hkey_user) 1755 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1756 else 1757 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1758 1759 err = ice_set_rss_key(vsi, key); 1760 if (err) 1761 dev_err(dev, "set_rss_key failed, error %d\n", err); 1762 1763 kfree(key); 1764 ice_vsi_cfg_rss_exit: 1765 kfree(lut); 1766 return err; 1767 } 1768 1769 /** 1770 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1771 * @vsi: VSI to be configured 1772 * 1773 * This function will only be called during the VF VSI setup. Upon successful 1774 * completion of package download, this function will configure default RSS 1775 * input sets for VF VSI. 1776 */ 1777 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1778 { 1779 struct ice_pf *pf = vsi->back; 1780 struct device *dev; 1781 int status; 1782 1783 dev = ice_pf_to_dev(pf); 1784 if (ice_is_safe_mode(pf)) { 1785 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1786 vsi->vsi_num); 1787 return; 1788 } 1789 1790 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1791 if (status) 1792 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1793 vsi->vsi_num, status); 1794 } 1795 1796 /** 1797 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1798 * @vsi: VSI to be configured 1799 * 1800 * This function will only be called after successful download package call 1801 * during initialization of PF. Since the downloaded package will erase the 1802 * RSS section, this function will configure RSS input sets for different 1803 * flow types. The last profile added has the highest priority, therefore 2 1804 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1805 * (i.e. IPv4 src/dst TCP src/dst port). 1806 */ 1807 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1808 { 1809 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1810 struct ice_pf *pf = vsi->back; 1811 struct ice_hw *hw = &pf->hw; 1812 struct device *dev; 1813 int status; 1814 1815 dev = ice_pf_to_dev(pf); 1816 if (ice_is_safe_mode(pf)) { 1817 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1818 vsi_num); 1819 return; 1820 } 1821 /* configure RSS for IPv4 with input set IP src/dst */ 1822 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1823 ICE_FLOW_SEG_HDR_IPV4); 1824 if (status) 1825 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n", 1826 vsi_num, status); 1827 1828 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1829 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1830 ICE_FLOW_SEG_HDR_IPV6); 1831 if (status) 1832 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n", 1833 vsi_num, status); 1834 1835 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1836 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1837 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1838 if (status) 1839 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n", 1840 vsi_num, status); 1841 1842 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1843 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1844 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1845 if (status) 1846 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n", 1847 vsi_num, status); 1848 1849 /* configure RSS for sctp4 with input set IP src/dst */ 1850 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1851 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1852 if (status) 1853 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n", 1854 vsi_num, status); 1855 1856 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1857 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1858 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1859 if (status) 1860 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n", 1861 vsi_num, status); 1862 1863 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1864 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1865 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1866 if (status) 1867 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n", 1868 vsi_num, status); 1869 1870 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1871 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1872 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1873 if (status) 1874 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n", 1875 vsi_num, status); 1876 1877 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI, 1878 ICE_FLOW_SEG_HDR_ESP); 1879 if (status) 1880 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n", 1881 vsi_num, status); 1882 } 1883 1884 /** 1885 * ice_pf_state_is_nominal - checks the PF for nominal state 1886 * @pf: pointer to PF to check 1887 * 1888 * Check the PF's state for a collection of bits that would indicate 1889 * the PF is in a state that would inhibit normal operation for 1890 * driver functionality. 1891 * 1892 * Returns true if PF is in a nominal state, false otherwise 1893 */ 1894 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1895 { 1896 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1897 1898 if (!pf) 1899 return false; 1900 1901 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1902 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1903 return false; 1904 1905 return true; 1906 } 1907 1908 /** 1909 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1910 * @vsi: the VSI to be updated 1911 */ 1912 void ice_update_eth_stats(struct ice_vsi *vsi) 1913 { 1914 struct ice_eth_stats *prev_es, *cur_es; 1915 struct ice_hw *hw = &vsi->back->hw; 1916 struct ice_pf *pf = vsi->back; 1917 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1918 1919 prev_es = &vsi->eth_stats_prev; 1920 cur_es = &vsi->eth_stats; 1921 1922 if (ice_is_reset_in_progress(pf->state)) 1923 vsi->stat_offsets_loaded = false; 1924 1925 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1926 &prev_es->rx_bytes, &cur_es->rx_bytes); 1927 1928 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1929 &prev_es->rx_unicast, &cur_es->rx_unicast); 1930 1931 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1932 &prev_es->rx_multicast, &cur_es->rx_multicast); 1933 1934 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1935 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1936 1937 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1938 &prev_es->rx_discards, &cur_es->rx_discards); 1939 1940 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1941 &prev_es->tx_bytes, &cur_es->tx_bytes); 1942 1943 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1944 &prev_es->tx_unicast, &cur_es->tx_unicast); 1945 1946 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1947 &prev_es->tx_multicast, &cur_es->tx_multicast); 1948 1949 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1950 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1951 1952 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1953 &prev_es->tx_errors, &cur_es->tx_errors); 1954 1955 vsi->stat_offsets_loaded = true; 1956 } 1957 1958 /** 1959 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1960 * @vsi: VSI 1961 */ 1962 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1963 { 1964 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1965 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX; 1966 vsi->rx_buf_len = ICE_RXBUF_1664; 1967 #if (PAGE_SIZE < 8192) 1968 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1969 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1970 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1971 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1972 #endif 1973 } else { 1974 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1975 vsi->rx_buf_len = ICE_RXBUF_3072; 1976 } 1977 } 1978 1979 /** 1980 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1981 * @hw: HW pointer 1982 * @pf_q: index of the Rx queue in the PF's queue space 1983 * @rxdid: flexible descriptor RXDID 1984 * @prio: priority for the RXDID for this queue 1985 * @ena_ts: true to enable timestamp and false to disable timestamp 1986 */ 1987 void 1988 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1989 bool ena_ts) 1990 { 1991 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1992 1993 /* clear any previous values */ 1994 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1995 QRXFLXP_CNTXT_RXDID_PRIO_M | 1996 QRXFLXP_CNTXT_TS_M); 1997 1998 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1999 QRXFLXP_CNTXT_RXDID_IDX_M; 2000 2001 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 2002 QRXFLXP_CNTXT_RXDID_PRIO_M; 2003 2004 if (ena_ts) 2005 /* Enable TimeSync on this queue */ 2006 regval |= QRXFLXP_CNTXT_TS_M; 2007 2008 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 2009 } 2010 2011 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 2012 { 2013 if (q_idx >= vsi->num_rxq) 2014 return -EINVAL; 2015 2016 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 2017 } 2018 2019 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx) 2020 { 2021 struct ice_aqc_add_tx_qgrp *qg_buf; 2022 int err; 2023 2024 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 2025 return -EINVAL; 2026 2027 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 2028 if (!qg_buf) 2029 return -ENOMEM; 2030 2031 qg_buf->num_txqs = 1; 2032 2033 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 2034 kfree(qg_buf); 2035 return err; 2036 } 2037 2038 /** 2039 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 2040 * @vsi: the VSI being configured 2041 * 2042 * Return 0 on success and a negative value on error 2043 * Configure the Rx VSI for operation. 2044 */ 2045 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 2046 { 2047 u16 i; 2048 2049 if (vsi->type == ICE_VSI_VF) 2050 goto setup_rings; 2051 2052 ice_vsi_cfg_frame_size(vsi); 2053 setup_rings: 2054 /* set up individual rings */ 2055 ice_for_each_rxq(vsi, i) { 2056 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 2057 2058 if (err) 2059 return err; 2060 } 2061 2062 return 0; 2063 } 2064 2065 /** 2066 * ice_vsi_cfg_txqs - Configure the VSI for Tx 2067 * @vsi: the VSI being configured 2068 * @rings: Tx ring array to be configured 2069 * @count: number of Tx ring array elements 2070 * 2071 * Return 0 on success and a negative value on error 2072 * Configure the Tx VSI for operation. 2073 */ 2074 static int 2075 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 2076 { 2077 struct ice_aqc_add_tx_qgrp *qg_buf; 2078 u16 q_idx = 0; 2079 int err = 0; 2080 2081 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 2082 if (!qg_buf) 2083 return -ENOMEM; 2084 2085 qg_buf->num_txqs = 1; 2086 2087 for (q_idx = 0; q_idx < count; q_idx++) { 2088 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 2089 if (err) 2090 goto err_cfg_txqs; 2091 } 2092 2093 err_cfg_txqs: 2094 kfree(qg_buf); 2095 return err; 2096 } 2097 2098 /** 2099 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 2100 * @vsi: the VSI being configured 2101 * 2102 * Return 0 on success and a negative value on error 2103 * Configure the Tx VSI for operation. 2104 */ 2105 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 2106 { 2107 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 2108 } 2109 2110 /** 2111 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 2112 * @vsi: the VSI being configured 2113 * 2114 * Return 0 on success and a negative value on error 2115 * Configure the Tx queues dedicated for XDP in given VSI for operation. 2116 */ 2117 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 2118 { 2119 int ret; 2120 int i; 2121 2122 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 2123 if (ret) 2124 return ret; 2125 2126 ice_for_each_rxq(vsi, i) 2127 ice_tx_xsk_pool(vsi, i); 2128 2129 return ret; 2130 } 2131 2132 /** 2133 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 2134 * @intrl: interrupt rate limit in usecs 2135 * @gran: interrupt rate limit granularity in usecs 2136 * 2137 * This function converts a decimal interrupt rate limit in usecs to the format 2138 * expected by firmware. 2139 */ 2140 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 2141 { 2142 u32 val = intrl / gran; 2143 2144 if (val) 2145 return val | GLINT_RATE_INTRL_ENA_M; 2146 return 0; 2147 } 2148 2149 /** 2150 * ice_write_intrl - write throttle rate limit to interrupt specific register 2151 * @q_vector: pointer to interrupt specific structure 2152 * @intrl: throttle rate limit in microseconds to write 2153 */ 2154 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 2155 { 2156 struct ice_hw *hw = &q_vector->vsi->back->hw; 2157 2158 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2159 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 2160 } 2161 2162 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 2163 { 2164 switch (rc->type) { 2165 case ICE_RX_CONTAINER: 2166 if (rc->rx_ring) 2167 return rc->rx_ring->q_vector; 2168 break; 2169 case ICE_TX_CONTAINER: 2170 if (rc->tx_ring) 2171 return rc->tx_ring->q_vector; 2172 break; 2173 default: 2174 break; 2175 } 2176 2177 return NULL; 2178 } 2179 2180 /** 2181 * __ice_write_itr - write throttle rate to register 2182 * @q_vector: pointer to interrupt data structure 2183 * @rc: pointer to ring container 2184 * @itr: throttle rate in microseconds to write 2185 */ 2186 static void __ice_write_itr(struct ice_q_vector *q_vector, 2187 struct ice_ring_container *rc, u16 itr) 2188 { 2189 struct ice_hw *hw = &q_vector->vsi->back->hw; 2190 2191 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 2192 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 2193 } 2194 2195 /** 2196 * ice_write_itr - write throttle rate to queue specific register 2197 * @rc: pointer to ring container 2198 * @itr: throttle rate in microseconds to write 2199 */ 2200 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 2201 { 2202 struct ice_q_vector *q_vector; 2203 2204 q_vector = ice_pull_qvec_from_rc(rc); 2205 if (!q_vector) 2206 return; 2207 2208 __ice_write_itr(q_vector, rc, itr); 2209 } 2210 2211 /** 2212 * ice_set_q_vector_intrl - set up interrupt rate limiting 2213 * @q_vector: the vector to be configured 2214 * 2215 * Interrupt rate limiting is local to the vector, not per-queue so we must 2216 * detect if either ring container has dynamic moderation enabled to decide 2217 * what to set the interrupt rate limit to via INTRL settings. In the case that 2218 * dynamic moderation is disabled on both, write the value with the cached 2219 * setting to make sure INTRL register matches the user visible value. 2220 */ 2221 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 2222 { 2223 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 2224 /* in the case of dynamic enabled, cap each vector to no more 2225 * than (4 us) 250,000 ints/sec, which allows low latency 2226 * but still less than 500,000 interrupts per second, which 2227 * reduces CPU a bit in the case of the lowest latency 2228 * setting. The 4 here is a value in microseconds. 2229 */ 2230 ice_write_intrl(q_vector, 4); 2231 } else { 2232 ice_write_intrl(q_vector, q_vector->intrl); 2233 } 2234 } 2235 2236 /** 2237 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 2238 * @vsi: the VSI being configured 2239 * 2240 * This configures MSIX mode interrupts for the PF VSI, and should not be used 2241 * for the VF VSI. 2242 */ 2243 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 2244 { 2245 struct ice_pf *pf = vsi->back; 2246 struct ice_hw *hw = &pf->hw; 2247 u16 txq = 0, rxq = 0; 2248 int i, q; 2249 2250 ice_for_each_q_vector(vsi, i) { 2251 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2252 u16 reg_idx = q_vector->reg_idx; 2253 2254 ice_cfg_itr(hw, q_vector); 2255 2256 /* Both Transmit Queue Interrupt Cause Control register 2257 * and Receive Queue Interrupt Cause control register 2258 * expects MSIX_INDX field to be the vector index 2259 * within the function space and not the absolute 2260 * vector index across PF or across device. 2261 * For SR-IOV VF VSIs queue vector index always starts 2262 * with 1 since first vector index(0) is used for OICR 2263 * in VF space. Since VMDq and other PF VSIs are within 2264 * the PF function space, use the vector index that is 2265 * tracked for this PF. 2266 */ 2267 for (q = 0; q < q_vector->num_ring_tx; q++) { 2268 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 2269 q_vector->tx.itr_idx); 2270 txq++; 2271 } 2272 2273 for (q = 0; q < q_vector->num_ring_rx; q++) { 2274 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 2275 q_vector->rx.itr_idx); 2276 rxq++; 2277 } 2278 } 2279 } 2280 2281 /** 2282 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2283 * @vsi: the VSI whose rings are to be enabled 2284 * 2285 * Returns 0 on success and a negative value on error 2286 */ 2287 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2288 { 2289 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2290 } 2291 2292 /** 2293 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2294 * @vsi: the VSI whose rings are to be disabled 2295 * 2296 * Returns 0 on success and a negative value on error 2297 */ 2298 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2299 { 2300 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2301 } 2302 2303 /** 2304 * ice_vsi_stop_tx_rings - Disable Tx rings 2305 * @vsi: the VSI being configured 2306 * @rst_src: reset source 2307 * @rel_vmvf_num: Relative ID of VF/VM 2308 * @rings: Tx ring array to be stopped 2309 * @count: number of Tx ring array elements 2310 */ 2311 static int 2312 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2313 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 2314 { 2315 u16 q_idx; 2316 2317 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2318 return -EINVAL; 2319 2320 for (q_idx = 0; q_idx < count; q_idx++) { 2321 struct ice_txq_meta txq_meta = { }; 2322 int status; 2323 2324 if (!rings || !rings[q_idx]) 2325 return -EINVAL; 2326 2327 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2328 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2329 rings[q_idx], &txq_meta); 2330 2331 if (status) 2332 return status; 2333 } 2334 2335 return 0; 2336 } 2337 2338 /** 2339 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2340 * @vsi: the VSI being configured 2341 * @rst_src: reset source 2342 * @rel_vmvf_num: Relative ID of VF/VM 2343 */ 2344 int 2345 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2346 u16 rel_vmvf_num) 2347 { 2348 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2349 } 2350 2351 /** 2352 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2353 * @vsi: the VSI being configured 2354 */ 2355 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2356 { 2357 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2358 } 2359 2360 /** 2361 * ice_vsi_is_rx_queue_active 2362 * @vsi: the VSI being configured 2363 * 2364 * Return true if at least one queue is active. 2365 */ 2366 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2367 { 2368 struct ice_pf *pf = vsi->back; 2369 struct ice_hw *hw = &pf->hw; 2370 int i; 2371 2372 ice_for_each_rxq(vsi, i) { 2373 u32 rx_reg; 2374 int pf_q; 2375 2376 pf_q = vsi->rxq_map[i]; 2377 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2378 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2379 return true; 2380 } 2381 2382 return false; 2383 } 2384 2385 /** 2386 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2387 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2388 * 2389 * returns true if Rx VLAN pruning is enabled and false otherwise. 2390 */ 2391 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2392 { 2393 if (!vsi) 2394 return false; 2395 2396 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2397 } 2398 2399 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2400 { 2401 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2402 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2403 vsi->tc_cfg.numtc = 1; 2404 return; 2405 } 2406 2407 /* set VSI TC information based on DCB config */ 2408 ice_vsi_set_dcb_tc_cfg(vsi); 2409 } 2410 2411 /** 2412 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2413 * @vsi: VSI to set the q_vectors register index on 2414 */ 2415 static int 2416 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2417 { 2418 u16 i; 2419 2420 if (!vsi || !vsi->q_vectors) 2421 return -EINVAL; 2422 2423 ice_for_each_q_vector(vsi, i) { 2424 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2425 2426 if (!q_vector) { 2427 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2428 i, vsi->vsi_num); 2429 goto clear_reg_idx; 2430 } 2431 2432 if (vsi->type == ICE_VSI_VF) { 2433 struct ice_vf *vf = vsi->vf; 2434 2435 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2436 } else { 2437 q_vector->reg_idx = 2438 q_vector->v_idx + vsi->base_vector; 2439 } 2440 } 2441 2442 return 0; 2443 2444 clear_reg_idx: 2445 ice_for_each_q_vector(vsi, i) { 2446 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2447 2448 if (q_vector) 2449 q_vector->reg_idx = 0; 2450 } 2451 2452 return -EINVAL; 2453 } 2454 2455 /** 2456 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2457 * @vsi: the VSI being configured 2458 * @tx: bool to determine Tx or Rx rule 2459 * @create: bool to determine create or remove Rule 2460 */ 2461 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2462 { 2463 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2464 enum ice_sw_fwd_act_type act); 2465 struct ice_pf *pf = vsi->back; 2466 struct device *dev; 2467 int status; 2468 2469 dev = ice_pf_to_dev(pf); 2470 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2471 2472 if (tx) { 2473 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2474 ICE_DROP_PACKET); 2475 } else { 2476 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2477 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2478 create); 2479 } else { 2480 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2481 ICE_FWD_TO_VSI); 2482 } 2483 } 2484 2485 if (status) 2486 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2487 create ? "adding" : "removing", tx ? "TX" : "RX", 2488 vsi->vsi_num, status); 2489 } 2490 2491 /** 2492 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2493 * @vsi: pointer to the VSI 2494 * 2495 * This function will allocate new scheduler aggregator now if needed and will 2496 * move specified VSI into it. 2497 */ 2498 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2499 { 2500 struct device *dev = ice_pf_to_dev(vsi->back); 2501 struct ice_agg_node *agg_node_iter = NULL; 2502 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2503 struct ice_agg_node *agg_node = NULL; 2504 int node_offset, max_agg_nodes = 0; 2505 struct ice_port_info *port_info; 2506 struct ice_pf *pf = vsi->back; 2507 u32 agg_node_id_start = 0; 2508 int status; 2509 2510 /* create (as needed) scheduler aggregator node and move VSI into 2511 * corresponding aggregator node 2512 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2513 * - VF aggregator nodes will contain VF VSI 2514 */ 2515 port_info = pf->hw.port_info; 2516 if (!port_info) 2517 return; 2518 2519 switch (vsi->type) { 2520 case ICE_VSI_CTRL: 2521 case ICE_VSI_CHNL: 2522 case ICE_VSI_LB: 2523 case ICE_VSI_PF: 2524 case ICE_VSI_SWITCHDEV_CTRL: 2525 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2526 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2527 agg_node_iter = &pf->pf_agg_node[0]; 2528 break; 2529 case ICE_VSI_VF: 2530 /* user can create 'n' VFs on a given PF, but since max children 2531 * per aggregator node can be only 64. Following code handles 2532 * aggregator(s) for VF VSIs, either selects a agg_node which 2533 * was already created provided num_vsis < 64, otherwise 2534 * select next available node, which will be created 2535 */ 2536 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2537 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2538 agg_node_iter = &pf->vf_agg_node[0]; 2539 break; 2540 default: 2541 /* other VSI type, handle later if needed */ 2542 dev_dbg(dev, "unexpected VSI type %s\n", 2543 ice_vsi_type_str(vsi->type)); 2544 return; 2545 } 2546 2547 /* find the appropriate aggregator node */ 2548 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2549 /* see if we can find space in previously created 2550 * node if num_vsis < 64, otherwise skip 2551 */ 2552 if (agg_node_iter->num_vsis && 2553 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2554 agg_node_iter++; 2555 continue; 2556 } 2557 2558 if (agg_node_iter->valid && 2559 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2560 agg_id = agg_node_iter->agg_id; 2561 agg_node = agg_node_iter; 2562 break; 2563 } 2564 2565 /* find unclaimed agg_id */ 2566 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2567 agg_id = node_offset + agg_node_id_start; 2568 agg_node = agg_node_iter; 2569 break; 2570 } 2571 /* move to next agg_node */ 2572 agg_node_iter++; 2573 } 2574 2575 if (!agg_node) 2576 return; 2577 2578 /* if selected aggregator node was not created, create it */ 2579 if (!agg_node->valid) { 2580 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2581 (u8)vsi->tc_cfg.ena_tc); 2582 if (status) { 2583 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2584 agg_id); 2585 return; 2586 } 2587 /* aggregator node is created, store the needed info */ 2588 agg_node->valid = true; 2589 agg_node->agg_id = agg_id; 2590 } 2591 2592 /* move VSI to corresponding aggregator node */ 2593 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2594 (u8)vsi->tc_cfg.ena_tc); 2595 if (status) { 2596 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2597 vsi->idx, agg_id); 2598 return; 2599 } 2600 2601 /* keep active children count for aggregator node */ 2602 agg_node->num_vsis++; 2603 2604 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2605 * to aggregator node 2606 */ 2607 vsi->agg_node = agg_node; 2608 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2609 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2610 vsi->agg_node->num_vsis); 2611 } 2612 2613 /** 2614 * ice_free_vf_ctrl_res - Free the VF control VSI resource 2615 * @pf: pointer to PF structure 2616 * @vsi: the VSI to free resources for 2617 * 2618 * Check if the VF control VSI resource is still in use. If no VF is using it 2619 * any more, release the VSI resource. Otherwise, leave it to be cleaned up 2620 * once no other VF uses it. 2621 */ 2622 static void ice_free_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi) 2623 { 2624 struct ice_vf *vf; 2625 unsigned int bkt; 2626 2627 rcu_read_lock(); 2628 ice_for_each_vf_rcu(pf, bkt, vf) { 2629 if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { 2630 rcu_read_unlock(); 2631 return; 2632 } 2633 } 2634 rcu_read_unlock(); 2635 2636 /* No other VFs left that have control VSI. It is now safe to reclaim 2637 * SW interrupts back to the common pool. 2638 */ 2639 ice_free_res(pf->irq_tracker, vsi->base_vector, 2640 ICE_RES_VF_CTRL_VEC_ID); 2641 pf->num_avail_sw_msix += vsi->num_q_vectors; 2642 } 2643 2644 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2645 { 2646 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2647 struct device *dev = ice_pf_to_dev(pf); 2648 int ret, i; 2649 2650 /* configure VSI nodes based on number of queues and TC's */ 2651 ice_for_each_traffic_class(i) { 2652 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2653 continue; 2654 2655 if (vsi->type == ICE_VSI_CHNL) { 2656 if (!vsi->alloc_txq && vsi->num_txq) 2657 max_txqs[i] = vsi->num_txq; 2658 else 2659 max_txqs[i] = pf->num_lan_tx; 2660 } else { 2661 max_txqs[i] = vsi->alloc_txq; 2662 } 2663 } 2664 2665 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2666 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2667 max_txqs); 2668 if (ret) { 2669 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2670 vsi->vsi_num, ret); 2671 return ret; 2672 } 2673 2674 return 0; 2675 } 2676 2677 /** 2678 * ice_vsi_cfg_def - configure default VSI based on the type 2679 * @vsi: pointer to VSI 2680 * @params: the parameters to configure this VSI with 2681 */ 2682 static int 2683 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2684 { 2685 struct device *dev = ice_pf_to_dev(vsi->back); 2686 struct ice_pf *pf = vsi->back; 2687 int ret; 2688 2689 vsi->vsw = pf->first_sw; 2690 2691 ret = ice_vsi_alloc_def(vsi, params->ch); 2692 if (ret) 2693 return ret; 2694 2695 /* allocate memory for Tx/Rx ring stat pointers */ 2696 if (ice_vsi_alloc_stat_arrays(vsi)) 2697 goto unroll_vsi_alloc; 2698 2699 ice_alloc_fd_res(vsi); 2700 2701 if (ice_vsi_get_qs(vsi)) { 2702 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2703 vsi->idx); 2704 goto unroll_vsi_alloc_stat; 2705 } 2706 2707 /* set RSS capabilities */ 2708 ice_vsi_set_rss_params(vsi); 2709 2710 /* set TC configuration */ 2711 ice_vsi_set_tc_cfg(vsi); 2712 2713 /* create the VSI */ 2714 ret = ice_vsi_init(vsi, params->flags); 2715 if (ret) 2716 goto unroll_get_qs; 2717 2718 ice_vsi_init_vlan_ops(vsi); 2719 2720 switch (vsi->type) { 2721 case ICE_VSI_CTRL: 2722 case ICE_VSI_SWITCHDEV_CTRL: 2723 case ICE_VSI_PF: 2724 ret = ice_vsi_alloc_q_vectors(vsi); 2725 if (ret) 2726 goto unroll_vsi_init; 2727 2728 ret = ice_vsi_setup_vector_base(vsi); 2729 if (ret) 2730 goto unroll_alloc_q_vector; 2731 2732 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2733 if (ret) 2734 goto unroll_vector_base; 2735 2736 ret = ice_vsi_alloc_rings(vsi); 2737 if (ret) 2738 goto unroll_vector_base; 2739 2740 ret = ice_vsi_alloc_ring_stats(vsi); 2741 if (ret) 2742 goto unroll_vector_base; 2743 2744 ice_vsi_map_rings_to_vectors(vsi); 2745 if (ice_is_xdp_ena_vsi(vsi)) { 2746 ret = ice_vsi_determine_xdp_res(vsi); 2747 if (ret) 2748 goto unroll_vector_base; 2749 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 2750 if (ret) 2751 goto unroll_vector_base; 2752 } 2753 2754 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2755 if (vsi->type != ICE_VSI_CTRL) 2756 /* Do not exit if configuring RSS had an issue, at 2757 * least receive traffic on first queue. Hence no 2758 * need to capture return value 2759 */ 2760 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2761 ice_vsi_cfg_rss_lut_key(vsi); 2762 ice_vsi_set_rss_flow_fld(vsi); 2763 } 2764 ice_init_arfs(vsi); 2765 break; 2766 case ICE_VSI_CHNL: 2767 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2768 ice_vsi_cfg_rss_lut_key(vsi); 2769 ice_vsi_set_rss_flow_fld(vsi); 2770 } 2771 break; 2772 case ICE_VSI_VF: 2773 /* VF driver will take care of creating netdev for this type and 2774 * map queues to vectors through Virtchnl, PF driver only 2775 * creates a VSI and corresponding structures for bookkeeping 2776 * purpose 2777 */ 2778 ret = ice_vsi_alloc_q_vectors(vsi); 2779 if (ret) 2780 goto unroll_vsi_init; 2781 2782 ret = ice_vsi_alloc_rings(vsi); 2783 if (ret) 2784 goto unroll_alloc_q_vector; 2785 2786 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2787 if (ret) 2788 goto unroll_vector_base; 2789 2790 ret = ice_vsi_alloc_ring_stats(vsi); 2791 if (ret) 2792 goto unroll_vector_base; 2793 /* Do not exit if configuring RSS had an issue, at least 2794 * receive traffic on first queue. Hence no need to capture 2795 * return value 2796 */ 2797 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2798 ice_vsi_cfg_rss_lut_key(vsi); 2799 ice_vsi_set_vf_rss_flow_fld(vsi); 2800 } 2801 break; 2802 case ICE_VSI_LB: 2803 ret = ice_vsi_alloc_rings(vsi); 2804 if (ret) 2805 goto unroll_vsi_init; 2806 2807 ret = ice_vsi_alloc_ring_stats(vsi); 2808 if (ret) 2809 goto unroll_vector_base; 2810 2811 break; 2812 default: 2813 /* clean up the resources and exit */ 2814 goto unroll_vsi_init; 2815 } 2816 2817 return 0; 2818 2819 unroll_vector_base: 2820 /* reclaim SW interrupts back to the common pool */ 2821 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2822 pf->num_avail_sw_msix += vsi->num_q_vectors; 2823 unroll_alloc_q_vector: 2824 ice_vsi_free_q_vectors(vsi); 2825 unroll_vsi_init: 2826 ice_vsi_delete_from_hw(vsi); 2827 unroll_get_qs: 2828 ice_vsi_put_qs(vsi); 2829 unroll_vsi_alloc_stat: 2830 ice_vsi_free_stats(vsi); 2831 unroll_vsi_alloc: 2832 ice_vsi_free_arrays(vsi); 2833 return ret; 2834 } 2835 2836 /** 2837 * ice_vsi_cfg - configure a previously allocated VSI 2838 * @vsi: pointer to VSI 2839 * @params: parameters used to configure this VSI 2840 */ 2841 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params) 2842 { 2843 struct ice_pf *pf = vsi->back; 2844 int ret; 2845 2846 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf)) 2847 return -EINVAL; 2848 2849 vsi->type = params->type; 2850 vsi->port_info = params->pi; 2851 2852 /* For VSIs which don't have a connected VF, this will be NULL */ 2853 vsi->vf = params->vf; 2854 2855 ret = ice_vsi_cfg_def(vsi, params); 2856 if (ret) 2857 return ret; 2858 2859 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2860 if (ret) 2861 ice_vsi_decfg(vsi); 2862 2863 if (vsi->type == ICE_VSI_CTRL) { 2864 if (vsi->vf) { 2865 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2866 vsi->vf->ctrl_vsi_idx = vsi->idx; 2867 } else { 2868 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2869 pf->ctrl_vsi_idx = vsi->idx; 2870 } 2871 } 2872 2873 return ret; 2874 } 2875 2876 /** 2877 * ice_vsi_decfg - remove all VSI configuration 2878 * @vsi: pointer to VSI 2879 */ 2880 void ice_vsi_decfg(struct ice_vsi *vsi) 2881 { 2882 struct ice_pf *pf = vsi->back; 2883 int err; 2884 2885 /* The Rx rule will only exist to remove if the LLDP FW 2886 * engine is currently stopped 2887 */ 2888 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2889 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2890 ice_cfg_sw_lldp(vsi, false, false); 2891 2892 ice_fltr_remove_all(vsi); 2893 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2894 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2895 if (err) 2896 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2897 vsi->vsi_num, err); 2898 2899 if (ice_is_xdp_ena_vsi(vsi)) 2900 /* return value check can be skipped here, it always returns 2901 * 0 if reset is in progress 2902 */ 2903 ice_destroy_xdp_rings(vsi); 2904 2905 ice_vsi_clear_rings(vsi); 2906 ice_vsi_free_q_vectors(vsi); 2907 ice_vsi_put_qs(vsi); 2908 ice_vsi_free_arrays(vsi); 2909 2910 /* SR-IOV determines needed MSIX resources all at once instead of per 2911 * VSI since when VFs are spawned we know how many VFs there are and how 2912 * many interrupts each VF needs. SR-IOV MSIX resources are also 2913 * cleared in the same manner. 2914 */ 2915 if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 2916 ice_free_vf_ctrl_res(pf, vsi); 2917 } else if (vsi->type != ICE_VSI_VF) { 2918 /* reclaim SW interrupts back to the common pool */ 2919 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2920 pf->num_avail_sw_msix += vsi->num_q_vectors; 2921 vsi->base_vector = 0; 2922 } 2923 2924 if (vsi->type == ICE_VSI_VF && 2925 vsi->agg_node && vsi->agg_node->valid) 2926 vsi->agg_node->num_vsis--; 2927 if (vsi->agg_node) { 2928 vsi->agg_node->valid = false; 2929 vsi->agg_node->agg_id = 0; 2930 } 2931 } 2932 2933 /** 2934 * ice_vsi_setup - Set up a VSI by a given type 2935 * @pf: board private structure 2936 * @params: parameters to use when creating the VSI 2937 * 2938 * This allocates the sw VSI structure and its queue resources. 2939 * 2940 * Returns pointer to the successfully allocated and configured VSI sw struct on 2941 * success, NULL on failure. 2942 */ 2943 struct ice_vsi * 2944 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2945 { 2946 struct device *dev = ice_pf_to_dev(pf); 2947 struct ice_vsi *vsi; 2948 int ret; 2949 2950 /* ice_vsi_setup can only initialize a new VSI, and we must have 2951 * a port_info structure for it. 2952 */ 2953 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2954 WARN_ON(!params->pi)) 2955 return NULL; 2956 2957 vsi = ice_vsi_alloc(pf); 2958 if (!vsi) { 2959 dev_err(dev, "could not allocate VSI\n"); 2960 return NULL; 2961 } 2962 2963 ret = ice_vsi_cfg(vsi, params); 2964 if (ret) 2965 goto err_vsi_cfg; 2966 2967 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2968 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2969 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2970 * The rule is added once for PF VSI in order to create appropriate 2971 * recipe, since VSI/VSI list is ignored with drop action... 2972 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2973 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2974 * settings in the HW. 2975 */ 2976 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2977 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2978 ICE_DROP_PACKET); 2979 ice_cfg_sw_lldp(vsi, true, true); 2980 } 2981 2982 if (!vsi->agg_node) 2983 ice_set_agg_vsi(vsi); 2984 2985 return vsi; 2986 2987 err_vsi_cfg: 2988 if (params->type == ICE_VSI_VF) 2989 ice_enable_lag(pf->lag); 2990 ice_vsi_free(vsi); 2991 2992 return NULL; 2993 } 2994 2995 /** 2996 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2997 * @vsi: the VSI being cleaned up 2998 */ 2999 static void ice_vsi_release_msix(struct ice_vsi *vsi) 3000 { 3001 struct ice_pf *pf = vsi->back; 3002 struct ice_hw *hw = &pf->hw; 3003 u32 txq = 0; 3004 u32 rxq = 0; 3005 int i, q; 3006 3007 ice_for_each_q_vector(vsi, i) { 3008 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3009 3010 ice_write_intrl(q_vector, 0); 3011 for (q = 0; q < q_vector->num_ring_tx; q++) { 3012 ice_write_itr(&q_vector->tx, 0); 3013 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 3014 if (ice_is_xdp_ena_vsi(vsi)) { 3015 u32 xdp_txq = txq + vsi->num_xdp_txq; 3016 3017 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 3018 } 3019 txq++; 3020 } 3021 3022 for (q = 0; q < q_vector->num_ring_rx; q++) { 3023 ice_write_itr(&q_vector->rx, 0); 3024 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 3025 rxq++; 3026 } 3027 } 3028 3029 ice_flush(hw); 3030 } 3031 3032 /** 3033 * ice_vsi_free_irq - Free the IRQ association with the OS 3034 * @vsi: the VSI being configured 3035 */ 3036 void ice_vsi_free_irq(struct ice_vsi *vsi) 3037 { 3038 struct ice_pf *pf = vsi->back; 3039 int base = vsi->base_vector; 3040 int i; 3041 3042 if (!vsi->q_vectors || !vsi->irqs_ready) 3043 return; 3044 3045 ice_vsi_release_msix(vsi); 3046 if (vsi->type == ICE_VSI_VF) 3047 return; 3048 3049 vsi->irqs_ready = false; 3050 ice_free_cpu_rx_rmap(vsi); 3051 3052 ice_for_each_q_vector(vsi, i) { 3053 u16 vector = i + base; 3054 int irq_num; 3055 3056 irq_num = pf->msix_entries[vector].vector; 3057 3058 /* free only the irqs that were actually requested */ 3059 if (!vsi->q_vectors[i] || 3060 !(vsi->q_vectors[i]->num_ring_tx || 3061 vsi->q_vectors[i]->num_ring_rx)) 3062 continue; 3063 3064 /* clear the affinity notifier in the IRQ descriptor */ 3065 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 3066 irq_set_affinity_notifier(irq_num, NULL); 3067 3068 /* clear the affinity_mask in the IRQ descriptor */ 3069 irq_set_affinity_hint(irq_num, NULL); 3070 synchronize_irq(irq_num); 3071 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 3072 } 3073 } 3074 3075 /** 3076 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 3077 * @vsi: the VSI having resources freed 3078 */ 3079 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 3080 { 3081 int i; 3082 3083 if (!vsi->tx_rings) 3084 return; 3085 3086 ice_for_each_txq(vsi, i) 3087 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3088 ice_free_tx_ring(vsi->tx_rings[i]); 3089 } 3090 3091 /** 3092 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 3093 * @vsi: the VSI having resources freed 3094 */ 3095 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 3096 { 3097 int i; 3098 3099 if (!vsi->rx_rings) 3100 return; 3101 3102 ice_for_each_rxq(vsi, i) 3103 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3104 ice_free_rx_ring(vsi->rx_rings[i]); 3105 } 3106 3107 /** 3108 * ice_vsi_close - Shut down a VSI 3109 * @vsi: the VSI being shut down 3110 */ 3111 void ice_vsi_close(struct ice_vsi *vsi) 3112 { 3113 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 3114 ice_down(vsi); 3115 3116 ice_vsi_free_irq(vsi); 3117 ice_vsi_free_tx_rings(vsi); 3118 ice_vsi_free_rx_rings(vsi); 3119 } 3120 3121 /** 3122 * ice_ena_vsi - resume a VSI 3123 * @vsi: the VSI being resume 3124 * @locked: is the rtnl_lock already held 3125 */ 3126 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 3127 { 3128 int err = 0; 3129 3130 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 3131 return 0; 3132 3133 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 3134 3135 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 3136 if (netif_running(vsi->netdev)) { 3137 if (!locked) 3138 rtnl_lock(); 3139 3140 err = ice_open_internal(vsi->netdev); 3141 3142 if (!locked) 3143 rtnl_unlock(); 3144 } 3145 } else if (vsi->type == ICE_VSI_CTRL) { 3146 err = ice_vsi_open_ctrl(vsi); 3147 } 3148 3149 return err; 3150 } 3151 3152 /** 3153 * ice_dis_vsi - pause a VSI 3154 * @vsi: the VSI being paused 3155 * @locked: is the rtnl_lock already held 3156 */ 3157 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 3158 { 3159 if (test_bit(ICE_VSI_DOWN, vsi->state)) 3160 return; 3161 3162 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 3163 3164 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 3165 if (netif_running(vsi->netdev)) { 3166 if (!locked) 3167 rtnl_lock(); 3168 3169 ice_vsi_close(vsi); 3170 3171 if (!locked) 3172 rtnl_unlock(); 3173 } else { 3174 ice_vsi_close(vsi); 3175 } 3176 } else if (vsi->type == ICE_VSI_CTRL || 3177 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 3178 ice_vsi_close(vsi); 3179 } 3180 } 3181 3182 /** 3183 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 3184 * @vsi: the VSI being un-configured 3185 */ 3186 void ice_vsi_dis_irq(struct ice_vsi *vsi) 3187 { 3188 int base = vsi->base_vector; 3189 struct ice_pf *pf = vsi->back; 3190 struct ice_hw *hw = &pf->hw; 3191 u32 val; 3192 int i; 3193 3194 /* disable interrupt causation from each queue */ 3195 if (vsi->tx_rings) { 3196 ice_for_each_txq(vsi, i) { 3197 if (vsi->tx_rings[i]) { 3198 u16 reg; 3199 3200 reg = vsi->tx_rings[i]->reg_idx; 3201 val = rd32(hw, QINT_TQCTL(reg)); 3202 val &= ~QINT_TQCTL_CAUSE_ENA_M; 3203 wr32(hw, QINT_TQCTL(reg), val); 3204 } 3205 } 3206 } 3207 3208 if (vsi->rx_rings) { 3209 ice_for_each_rxq(vsi, i) { 3210 if (vsi->rx_rings[i]) { 3211 u16 reg; 3212 3213 reg = vsi->rx_rings[i]->reg_idx; 3214 val = rd32(hw, QINT_RQCTL(reg)); 3215 val &= ~QINT_RQCTL_CAUSE_ENA_M; 3216 wr32(hw, QINT_RQCTL(reg), val); 3217 } 3218 } 3219 } 3220 3221 /* disable each interrupt */ 3222 ice_for_each_q_vector(vsi, i) { 3223 if (!vsi->q_vectors[i]) 3224 continue; 3225 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 3226 } 3227 3228 ice_flush(hw); 3229 3230 /* don't call synchronize_irq() for VF's from the host */ 3231 if (vsi->type == ICE_VSI_VF) 3232 return; 3233 3234 ice_for_each_q_vector(vsi, i) 3235 synchronize_irq(pf->msix_entries[i + base].vector); 3236 } 3237 3238 /** 3239 * ice_napi_del - Remove NAPI handler for the VSI 3240 * @vsi: VSI for which NAPI handler is to be removed 3241 */ 3242 void ice_napi_del(struct ice_vsi *vsi) 3243 { 3244 int v_idx; 3245 3246 if (!vsi->netdev) 3247 return; 3248 3249 ice_for_each_q_vector(vsi, v_idx) 3250 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 3251 } 3252 3253 /** 3254 * ice_vsi_release - Delete a VSI and free its resources 3255 * @vsi: the VSI being removed 3256 * 3257 * Returns 0 on success or < 0 on error 3258 */ 3259 int ice_vsi_release(struct ice_vsi *vsi) 3260 { 3261 struct ice_pf *pf; 3262 3263 if (!vsi->back) 3264 return -ENODEV; 3265 pf = vsi->back; 3266 3267 /* do not unregister while driver is in the reset recovery pending 3268 * state. Since reset/rebuild happens through PF service task workqueue, 3269 * it's not a good idea to unregister netdev that is associated to the 3270 * PF that is running the work queue items currently. This is done to 3271 * avoid check_flush_dependency() warning on this wq 3272 */ 3273 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 3274 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 3275 unregister_netdev(vsi->netdev); 3276 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3277 } 3278 3279 if (vsi->type == ICE_VSI_PF) 3280 ice_devlink_destroy_pf_port(pf); 3281 3282 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3283 ice_rss_clean(vsi); 3284 3285 ice_vsi_close(vsi); 3286 ice_vsi_decfg(vsi); 3287 3288 if (vsi->netdev) { 3289 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 3290 unregister_netdev(vsi->netdev); 3291 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 3292 } 3293 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 3294 free_netdev(vsi->netdev); 3295 vsi->netdev = NULL; 3296 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3297 } 3298 } 3299 3300 /* retain SW VSI data structure since it is needed to unregister and 3301 * free VSI netdev when PF is not in reset recovery pending state,\ 3302 * for ex: during rmmod. 3303 */ 3304 if (!ice_is_reset_in_progress(pf->state)) 3305 ice_vsi_delete(vsi); 3306 3307 return 0; 3308 } 3309 3310 /** 3311 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 3312 * @vsi: VSI connected with q_vectors 3313 * @coalesce: array of struct with stored coalesce 3314 * 3315 * Returns array size. 3316 */ 3317 static int 3318 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3319 struct ice_coalesce_stored *coalesce) 3320 { 3321 int i; 3322 3323 ice_for_each_q_vector(vsi, i) { 3324 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3325 3326 coalesce[i].itr_tx = q_vector->tx.itr_settings; 3327 coalesce[i].itr_rx = q_vector->rx.itr_settings; 3328 coalesce[i].intrl = q_vector->intrl; 3329 3330 if (i < vsi->num_txq) 3331 coalesce[i].tx_valid = true; 3332 if (i < vsi->num_rxq) 3333 coalesce[i].rx_valid = true; 3334 } 3335 3336 return vsi->num_q_vectors; 3337 } 3338 3339 /** 3340 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3341 * @vsi: VSI connected with q_vectors 3342 * @coalesce: pointer to array of struct with stored coalesce 3343 * @size: size of coalesce array 3344 * 3345 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3346 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3347 * to default value. 3348 */ 3349 static void 3350 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3351 struct ice_coalesce_stored *coalesce, int size) 3352 { 3353 struct ice_ring_container *rc; 3354 int i; 3355 3356 if ((size && !coalesce) || !vsi) 3357 return; 3358 3359 /* There are a couple of cases that have to be handled here: 3360 * 1. The case where the number of queue vectors stays the same, but 3361 * the number of Tx or Rx rings changes (the first for loop) 3362 * 2. The case where the number of queue vectors increased (the 3363 * second for loop) 3364 */ 3365 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3366 /* There are 2 cases to handle here and they are the same for 3367 * both Tx and Rx: 3368 * if the entry was valid previously (coalesce[i].[tr]x_valid 3369 * and the loop variable is less than the number of rings 3370 * allocated, then write the previous values 3371 * 3372 * if the entry was not valid previously, but the number of 3373 * rings is less than are allocated (this means the number of 3374 * rings increased from previously), then write out the 3375 * values in the first element 3376 * 3377 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3378 * as there is no harm because the dynamic algorithm 3379 * will just overwrite. 3380 */ 3381 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3382 rc = &vsi->q_vectors[i]->rx; 3383 rc->itr_settings = coalesce[i].itr_rx; 3384 ice_write_itr(rc, rc->itr_setting); 3385 } else if (i < vsi->alloc_rxq) { 3386 rc = &vsi->q_vectors[i]->rx; 3387 rc->itr_settings = coalesce[0].itr_rx; 3388 ice_write_itr(rc, rc->itr_setting); 3389 } 3390 3391 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3392 rc = &vsi->q_vectors[i]->tx; 3393 rc->itr_settings = coalesce[i].itr_tx; 3394 ice_write_itr(rc, rc->itr_setting); 3395 } else if (i < vsi->alloc_txq) { 3396 rc = &vsi->q_vectors[i]->tx; 3397 rc->itr_settings = coalesce[0].itr_tx; 3398 ice_write_itr(rc, rc->itr_setting); 3399 } 3400 3401 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3402 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3403 } 3404 3405 /* the number of queue vectors increased so write whatever is in 3406 * the first element 3407 */ 3408 for (; i < vsi->num_q_vectors; i++) { 3409 /* transmit */ 3410 rc = &vsi->q_vectors[i]->tx; 3411 rc->itr_settings = coalesce[0].itr_tx; 3412 ice_write_itr(rc, rc->itr_setting); 3413 3414 /* receive */ 3415 rc = &vsi->q_vectors[i]->rx; 3416 rc->itr_settings = coalesce[0].itr_rx; 3417 ice_write_itr(rc, rc->itr_setting); 3418 3419 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3420 ice_set_q_vector_intrl(vsi->q_vectors[i]); 3421 } 3422 } 3423 3424 /** 3425 * ice_vsi_realloc_stat_arrays - Frees unused stat structures 3426 * @vsi: VSI pointer 3427 * @prev_txq: Number of Tx rings before ring reallocation 3428 * @prev_rxq: Number of Rx rings before ring reallocation 3429 */ 3430 static void 3431 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq) 3432 { 3433 struct ice_vsi_stats *vsi_stat; 3434 struct ice_pf *pf = vsi->back; 3435 int i; 3436 3437 if (!prev_txq || !prev_rxq) 3438 return; 3439 if (vsi->type == ICE_VSI_CHNL) 3440 return; 3441 3442 vsi_stat = pf->vsi_stats[vsi->idx]; 3443 3444 if (vsi->num_txq < prev_txq) { 3445 for (i = vsi->num_txq; i < prev_txq; i++) { 3446 if (vsi_stat->tx_ring_stats[i]) { 3447 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 3448 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 3449 } 3450 } 3451 } 3452 3453 if (vsi->num_rxq < prev_rxq) { 3454 for (i = vsi->num_rxq; i < prev_rxq; i++) { 3455 if (vsi_stat->rx_ring_stats[i]) { 3456 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 3457 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 3458 } 3459 } 3460 } 3461 } 3462 3463 /** 3464 * ice_vsi_rebuild - Rebuild VSI after reset 3465 * @vsi: VSI to be rebuild 3466 * @vsi_flags: flags used for VSI rebuild flow 3467 * 3468 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3469 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3470 * 3471 * Returns 0 on success and negative value on failure 3472 */ 3473 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3474 { 3475 struct ice_vsi_cfg_params params = {}; 3476 struct ice_coalesce_stored *coalesce; 3477 int ret, prev_txq, prev_rxq; 3478 int prev_num_q_vectors = 0; 3479 struct ice_pf *pf; 3480 3481 if (!vsi) 3482 return -EINVAL; 3483 3484 params = ice_vsi_to_params(vsi); 3485 params.flags = vsi_flags; 3486 3487 pf = vsi->back; 3488 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3489 return -EINVAL; 3490 3491 coalesce = kcalloc(vsi->num_q_vectors, 3492 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3493 if (!coalesce) 3494 return -ENOMEM; 3495 3496 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3497 3498 prev_txq = vsi->num_txq; 3499 prev_rxq = vsi->num_rxq; 3500 3501 ice_vsi_decfg(vsi); 3502 ret = ice_vsi_cfg_def(vsi, ¶ms); 3503 if (ret) 3504 goto err_vsi_cfg; 3505 3506 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3507 if (ret) { 3508 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3509 ret = -EIO; 3510 goto err_vsi_cfg_tc_lan; 3511 } else { 3512 kfree(coalesce); 3513 return ice_schedule_reset(pf, ICE_RESET_PFR); 3514 } 3515 } 3516 3517 ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq); 3518 3519 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3520 kfree(coalesce); 3521 3522 return 0; 3523 3524 err_vsi_cfg_tc_lan: 3525 ice_vsi_decfg(vsi); 3526 err_vsi_cfg: 3527 kfree(coalesce); 3528 return ret; 3529 } 3530 3531 /** 3532 * ice_is_reset_in_progress - check for a reset in progress 3533 * @state: PF state field 3534 */ 3535 bool ice_is_reset_in_progress(unsigned long *state) 3536 { 3537 return test_bit(ICE_RESET_OICR_RECV, state) || 3538 test_bit(ICE_PFR_REQ, state) || 3539 test_bit(ICE_CORER_REQ, state) || 3540 test_bit(ICE_GLOBR_REQ, state); 3541 } 3542 3543 /** 3544 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3545 * @pf: pointer to the PF structure 3546 * @timeout: length of time to wait, in jiffies 3547 * 3548 * Wait (sleep) for a short time until the driver finishes cleaning up from 3549 * a device reset. The caller must be able to sleep. Use this to delay 3550 * operations that could fail while the driver is cleaning up after a device 3551 * reset. 3552 * 3553 * Returns 0 on success, -EBUSY if the reset is not finished within the 3554 * timeout, and -ERESTARTSYS if the thread was interrupted. 3555 */ 3556 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3557 { 3558 long ret; 3559 3560 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3561 !ice_is_reset_in_progress(pf->state), 3562 timeout); 3563 if (ret < 0) 3564 return ret; 3565 else if (!ret) 3566 return -EBUSY; 3567 else 3568 return 0; 3569 } 3570 3571 /** 3572 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3573 * @vsi: VSI being configured 3574 * @ctx: the context buffer returned from AQ VSI update command 3575 */ 3576 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3577 { 3578 vsi->info.mapping_flags = ctx->info.mapping_flags; 3579 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3580 sizeof(vsi->info.q_mapping)); 3581 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3582 sizeof(vsi->info.tc_mapping)); 3583 } 3584 3585 /** 3586 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3587 * @vsi: the VSI being configured 3588 * @ena_tc: TC map to be enabled 3589 */ 3590 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3591 { 3592 struct net_device *netdev = vsi->netdev; 3593 struct ice_pf *pf = vsi->back; 3594 int numtc = vsi->tc_cfg.numtc; 3595 struct ice_dcbx_cfg *dcbcfg; 3596 u8 netdev_tc; 3597 int i; 3598 3599 if (!netdev) 3600 return; 3601 3602 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3603 if (vsi->type == ICE_VSI_CHNL) 3604 return; 3605 3606 if (!ena_tc) { 3607 netdev_reset_tc(netdev); 3608 return; 3609 } 3610 3611 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3612 numtc = vsi->all_numtc; 3613 3614 if (netdev_set_num_tc(netdev, numtc)) 3615 return; 3616 3617 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3618 3619 ice_for_each_traffic_class(i) 3620 if (vsi->tc_cfg.ena_tc & BIT(i)) 3621 netdev_set_tc_queue(netdev, 3622 vsi->tc_cfg.tc_info[i].netdev_tc, 3623 vsi->tc_cfg.tc_info[i].qcount_tx, 3624 vsi->tc_cfg.tc_info[i].qoffset); 3625 /* setup TC queue map for CHNL TCs */ 3626 ice_for_each_chnl_tc(i) { 3627 if (!(vsi->all_enatc & BIT(i))) 3628 break; 3629 if (!vsi->mqprio_qopt.qopt.count[i]) 3630 break; 3631 netdev_set_tc_queue(netdev, i, 3632 vsi->mqprio_qopt.qopt.count[i], 3633 vsi->mqprio_qopt.qopt.offset[i]); 3634 } 3635 3636 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3637 return; 3638 3639 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3640 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3641 3642 /* Get the mapped netdev TC# for the UP */ 3643 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3644 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3645 } 3646 } 3647 3648 /** 3649 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3650 * @vsi: the VSI being configured, 3651 * @ctxt: VSI context structure 3652 * @ena_tc: number of traffic classes to enable 3653 * 3654 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3655 */ 3656 static int 3657 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3658 u8 ena_tc) 3659 { 3660 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3661 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3662 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3663 u16 new_txq, new_rxq; 3664 u8 netdev_tc = 0; 3665 int i; 3666 3667 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3668 3669 pow = order_base_2(tc0_qcount); 3670 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 3671 ICE_AQ_VSI_TC_Q_OFFSET_M) | 3672 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M); 3673 3674 ice_for_each_traffic_class(i) { 3675 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3676 /* TC is not enabled */ 3677 vsi->tc_cfg.tc_info[i].qoffset = 0; 3678 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3679 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3680 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3681 ctxt->info.tc_mapping[i] = 0; 3682 continue; 3683 } 3684 3685 offset = vsi->mqprio_qopt.qopt.offset[i]; 3686 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3687 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3688 vsi->tc_cfg.tc_info[i].qoffset = offset; 3689 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3690 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3691 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3692 } 3693 3694 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3695 ice_for_each_chnl_tc(i) { 3696 if (!(vsi->all_enatc & BIT(i))) 3697 continue; 3698 offset = vsi->mqprio_qopt.qopt.offset[i]; 3699 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3700 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3701 } 3702 } 3703 3704 new_txq = offset + qcount_tx; 3705 if (new_txq > vsi->alloc_txq) { 3706 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3707 new_txq, vsi->alloc_txq); 3708 return -EINVAL; 3709 } 3710 3711 new_rxq = offset + qcount_rx; 3712 if (new_rxq > vsi->alloc_rxq) { 3713 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3714 new_rxq, vsi->alloc_rxq); 3715 return -EINVAL; 3716 } 3717 3718 /* Set actual Tx/Rx queue pairs */ 3719 vsi->num_txq = new_txq; 3720 vsi->num_rxq = new_rxq; 3721 3722 /* Setup queue TC[0].qmap for given VSI context */ 3723 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3724 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3725 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3726 3727 /* Find queue count available for channel VSIs and starting offset 3728 * for channel VSIs 3729 */ 3730 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3731 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3732 vsi->next_base_q = tc0_qcount; 3733 } 3734 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3735 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3736 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3737 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3738 3739 return 0; 3740 } 3741 3742 /** 3743 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3744 * @vsi: VSI to be configured 3745 * @ena_tc: TC bitmap 3746 * 3747 * VSI queues expected to be quiesced before calling this function 3748 */ 3749 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3750 { 3751 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3752 struct ice_pf *pf = vsi->back; 3753 struct ice_tc_cfg old_tc_cfg; 3754 struct ice_vsi_ctx *ctx; 3755 struct device *dev; 3756 int i, ret = 0; 3757 u8 num_tc = 0; 3758 3759 dev = ice_pf_to_dev(pf); 3760 if (vsi->tc_cfg.ena_tc == ena_tc && 3761 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3762 return ret; 3763 3764 ice_for_each_traffic_class(i) { 3765 /* build bitmap of enabled TCs */ 3766 if (ena_tc & BIT(i)) 3767 num_tc++; 3768 /* populate max_txqs per TC */ 3769 max_txqs[i] = vsi->alloc_txq; 3770 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3771 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3772 */ 3773 if (vsi->type == ICE_VSI_CHNL && 3774 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3775 max_txqs[i] = vsi->num_txq; 3776 } 3777 3778 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3779 vsi->tc_cfg.ena_tc = ena_tc; 3780 vsi->tc_cfg.numtc = num_tc; 3781 3782 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3783 if (!ctx) 3784 return -ENOMEM; 3785 3786 ctx->vf_num = 0; 3787 ctx->info = vsi->info; 3788 3789 if (vsi->type == ICE_VSI_PF && 3790 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3791 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3792 else 3793 ret = ice_vsi_setup_q_map(vsi, ctx); 3794 3795 if (ret) { 3796 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3797 goto out; 3798 } 3799 3800 /* must to indicate which section of VSI context are being modified */ 3801 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3802 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3803 if (ret) { 3804 dev_info(dev, "Failed VSI Update\n"); 3805 goto out; 3806 } 3807 3808 if (vsi->type == ICE_VSI_PF && 3809 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3810 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3811 else 3812 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3813 vsi->tc_cfg.ena_tc, max_txqs); 3814 3815 if (ret) { 3816 dev_err(dev, "VSI %d failed TC config, error %d\n", 3817 vsi->vsi_num, ret); 3818 goto out; 3819 } 3820 ice_vsi_update_q_map(vsi, ctx); 3821 vsi->info.valid_sections = 0; 3822 3823 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3824 out: 3825 kfree(ctx); 3826 return ret; 3827 } 3828 3829 /** 3830 * ice_update_ring_stats - Update ring statistics 3831 * @stats: stats to be updated 3832 * @pkts: number of processed packets 3833 * @bytes: number of processed bytes 3834 * 3835 * This function assumes that caller has acquired a u64_stats_sync lock. 3836 */ 3837 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3838 { 3839 stats->bytes += bytes; 3840 stats->pkts += pkts; 3841 } 3842 3843 /** 3844 * ice_update_tx_ring_stats - Update Tx ring specific counters 3845 * @tx_ring: ring to update 3846 * @pkts: number of processed packets 3847 * @bytes: number of processed bytes 3848 */ 3849 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3850 { 3851 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3852 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3853 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3854 } 3855 3856 /** 3857 * ice_update_rx_ring_stats - Update Rx ring specific counters 3858 * @rx_ring: ring to update 3859 * @pkts: number of processed packets 3860 * @bytes: number of processed bytes 3861 */ 3862 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3863 { 3864 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3865 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3866 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3867 } 3868 3869 /** 3870 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3871 * @pi: port info of the switch with default VSI 3872 * 3873 * Return true if the there is a single VSI in default forwarding VSI list 3874 */ 3875 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3876 { 3877 bool exists = false; 3878 3879 ice_check_if_dflt_vsi(pi, 0, &exists); 3880 return exists; 3881 } 3882 3883 /** 3884 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3885 * @vsi: VSI to compare against default forwarding VSI 3886 * 3887 * If this VSI passed in is the default forwarding VSI then return true, else 3888 * return false 3889 */ 3890 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3891 { 3892 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3893 } 3894 3895 /** 3896 * ice_set_dflt_vsi - set the default forwarding VSI 3897 * @vsi: VSI getting set as the default forwarding VSI on the switch 3898 * 3899 * If the VSI passed in is already the default VSI and it's enabled just return 3900 * success. 3901 * 3902 * Otherwise try to set the VSI passed in as the switch's default VSI and 3903 * return the result. 3904 */ 3905 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3906 { 3907 struct device *dev; 3908 int status; 3909 3910 if (!vsi) 3911 return -EINVAL; 3912 3913 dev = ice_pf_to_dev(vsi->back); 3914 3915 /* the VSI passed in is already the default VSI */ 3916 if (ice_is_vsi_dflt_vsi(vsi)) { 3917 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3918 vsi->vsi_num); 3919 return 0; 3920 } 3921 3922 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3923 if (status) { 3924 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3925 vsi->vsi_num, status); 3926 return status; 3927 } 3928 3929 return 0; 3930 } 3931 3932 /** 3933 * ice_clear_dflt_vsi - clear the default forwarding VSI 3934 * @vsi: VSI to remove from filter list 3935 * 3936 * If the switch has no default VSI or it's not enabled then return error. 3937 * 3938 * Otherwise try to clear the default VSI and return the result. 3939 */ 3940 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3941 { 3942 struct device *dev; 3943 int status; 3944 3945 if (!vsi) 3946 return -EINVAL; 3947 3948 dev = ice_pf_to_dev(vsi->back); 3949 3950 /* there is no default VSI configured */ 3951 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3952 return -ENODEV; 3953 3954 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3955 ICE_FLTR_RX); 3956 if (status) { 3957 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3958 vsi->vsi_num, status); 3959 return -EIO; 3960 } 3961 3962 return 0; 3963 } 3964 3965 /** 3966 * ice_get_link_speed_mbps - get link speed in Mbps 3967 * @vsi: the VSI whose link speed is being queried 3968 * 3969 * Return current VSI link speed and 0 if the speed is unknown. 3970 */ 3971 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3972 { 3973 unsigned int link_speed; 3974 3975 link_speed = vsi->port_info->phy.link_info.link_speed; 3976 3977 return (int)ice_get_link_speed(fls(link_speed) - 1); 3978 } 3979 3980 /** 3981 * ice_get_link_speed_kbps - get link speed in Kbps 3982 * @vsi: the VSI whose link speed is being queried 3983 * 3984 * Return current VSI link speed and 0 if the speed is unknown. 3985 */ 3986 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3987 { 3988 int speed_mbps; 3989 3990 speed_mbps = ice_get_link_speed_mbps(vsi); 3991 3992 return speed_mbps * 1000; 3993 } 3994 3995 /** 3996 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3997 * @vsi: VSI to be configured 3998 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3999 * 4000 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 4001 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 4002 * on TC 0. 4003 */ 4004 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 4005 { 4006 struct ice_pf *pf = vsi->back; 4007 struct device *dev; 4008 int status; 4009 int speed; 4010 4011 dev = ice_pf_to_dev(pf); 4012 if (!vsi->port_info) { 4013 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4014 vsi->idx, vsi->type); 4015 return -EINVAL; 4016 } 4017 4018 speed = ice_get_link_speed_kbps(vsi); 4019 if (min_tx_rate > (u64)speed) { 4020 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4021 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4022 speed); 4023 return -EINVAL; 4024 } 4025 4026 /* Configure min BW for VSI limit */ 4027 if (min_tx_rate) { 4028 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4029 ICE_MIN_BW, min_tx_rate); 4030 if (status) { 4031 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 4032 min_tx_rate, ice_vsi_type_str(vsi->type), 4033 vsi->idx); 4034 return status; 4035 } 4036 4037 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 4038 min_tx_rate, ice_vsi_type_str(vsi->type)); 4039 } else { 4040 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4041 vsi->idx, 0, 4042 ICE_MIN_BW); 4043 if (status) { 4044 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 4045 ice_vsi_type_str(vsi->type), vsi->idx); 4046 return status; 4047 } 4048 4049 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 4050 ice_vsi_type_str(vsi->type), vsi->idx); 4051 } 4052 4053 return 0; 4054 } 4055 4056 /** 4057 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 4058 * @vsi: VSI to be configured 4059 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 4060 * 4061 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 4062 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 4063 * on TC 0. 4064 */ 4065 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 4066 { 4067 struct ice_pf *pf = vsi->back; 4068 struct device *dev; 4069 int status; 4070 int speed; 4071 4072 dev = ice_pf_to_dev(pf); 4073 if (!vsi->port_info) { 4074 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 4075 vsi->idx, vsi->type); 4076 return -EINVAL; 4077 } 4078 4079 speed = ice_get_link_speed_kbps(vsi); 4080 if (max_tx_rate > (u64)speed) { 4081 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 4082 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 4083 speed); 4084 return -EINVAL; 4085 } 4086 4087 /* Configure max BW for VSI limit */ 4088 if (max_tx_rate) { 4089 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 4090 ICE_MAX_BW, max_tx_rate); 4091 if (status) { 4092 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 4093 max_tx_rate, ice_vsi_type_str(vsi->type), 4094 vsi->idx); 4095 return status; 4096 } 4097 4098 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 4099 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 4100 } else { 4101 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 4102 vsi->idx, 0, 4103 ICE_MAX_BW); 4104 if (status) { 4105 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 4106 ice_vsi_type_str(vsi->type), vsi->idx); 4107 return status; 4108 } 4109 4110 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 4111 ice_vsi_type_str(vsi->type), vsi->idx); 4112 } 4113 4114 return 0; 4115 } 4116 4117 /** 4118 * ice_set_link - turn on/off physical link 4119 * @vsi: VSI to modify physical link on 4120 * @ena: turn on/off physical link 4121 */ 4122 int ice_set_link(struct ice_vsi *vsi, bool ena) 4123 { 4124 struct device *dev = ice_pf_to_dev(vsi->back); 4125 struct ice_port_info *pi = vsi->port_info; 4126 struct ice_hw *hw = pi->hw; 4127 int status; 4128 4129 if (vsi->type != ICE_VSI_PF) 4130 return -EINVAL; 4131 4132 status = ice_aq_set_link_restart_an(pi, ena, NULL); 4133 4134 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 4135 * this is not a fatal error, so print a warning message and return 4136 * a success code. Return an error if FW returns an error code other 4137 * than ICE_AQ_RC_EMODE 4138 */ 4139 if (status == -EIO) { 4140 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 4141 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 4142 (ena ? "ON" : "OFF"), status, 4143 ice_aq_str(hw->adminq.sq_last_status)); 4144 } else if (status) { 4145 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 4146 (ena ? "ON" : "OFF"), status, 4147 ice_aq_str(hw->adminq.sq_last_status)); 4148 return status; 4149 } 4150 4151 return 0; 4152 } 4153 4154 /** 4155 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 4156 * @vsi: VSI used to add VLAN filters 4157 * 4158 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 4159 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 4160 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 4161 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 4162 * 4163 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 4164 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 4165 * traffic in SVM, since the VLAN TPID isn't part of filtering. 4166 * 4167 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 4168 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 4169 * part of filtering. 4170 */ 4171 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 4172 { 4173 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4174 struct ice_vlan vlan; 4175 int err; 4176 4177 vlan = ICE_VLAN(0, 0, 0); 4178 err = vlan_ops->add_vlan(vsi, &vlan); 4179 if (err && err != -EEXIST) 4180 return err; 4181 4182 /* in SVM both VLAN 0 filters are identical */ 4183 if (!ice_is_dvm_ena(&vsi->back->hw)) 4184 return 0; 4185 4186 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4187 err = vlan_ops->add_vlan(vsi, &vlan); 4188 if (err && err != -EEXIST) 4189 return err; 4190 4191 return 0; 4192 } 4193 4194 /** 4195 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 4196 * @vsi: VSI used to add VLAN filters 4197 * 4198 * Delete the VLAN 0 filters in the same manner that they were added in 4199 * ice_vsi_add_vlan_zero. 4200 */ 4201 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 4202 { 4203 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 4204 struct ice_vlan vlan; 4205 int err; 4206 4207 vlan = ICE_VLAN(0, 0, 0); 4208 err = vlan_ops->del_vlan(vsi, &vlan); 4209 if (err && err != -EEXIST) 4210 return err; 4211 4212 /* in SVM both VLAN 0 filters are identical */ 4213 if (!ice_is_dvm_ena(&vsi->back->hw)) 4214 return 0; 4215 4216 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 4217 err = vlan_ops->del_vlan(vsi, &vlan); 4218 if (err && err != -EEXIST) 4219 return err; 4220 4221 /* when deleting the last VLAN filter, make sure to disable the VLAN 4222 * promisc mode so the filter isn't left by accident 4223 */ 4224 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 4225 ICE_MCAST_VLAN_PROMISC_BITS, 0); 4226 } 4227 4228 /** 4229 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 4230 * @vsi: VSI used to get the VLAN mode 4231 * 4232 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 4233 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 4234 */ 4235 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 4236 { 4237 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 4238 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 4239 /* no VLAN 0 filter is created when a port VLAN is active */ 4240 if (vsi->type == ICE_VSI_VF) { 4241 if (WARN_ON(!vsi->vf)) 4242 return 0; 4243 4244 if (ice_vf_is_port_vlan_ena(vsi->vf)) 4245 return 0; 4246 } 4247 4248 if (ice_is_dvm_ena(&vsi->back->hw)) 4249 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 4250 else 4251 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 4252 } 4253 4254 /** 4255 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 4256 * @vsi: VSI used to determine if any non-zero VLANs have been added 4257 */ 4258 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 4259 { 4260 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 4261 } 4262 4263 /** 4264 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 4265 * @vsi: VSI used to get the number of non-zero VLANs added 4266 */ 4267 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 4268 { 4269 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 4270 } 4271 4272 /** 4273 * ice_is_feature_supported 4274 * @pf: pointer to the struct ice_pf instance 4275 * @f: feature enum to be checked 4276 * 4277 * returns true if feature is supported, false otherwise 4278 */ 4279 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 4280 { 4281 if (f < 0 || f >= ICE_F_MAX) 4282 return false; 4283 4284 return test_bit(f, pf->features); 4285 } 4286 4287 /** 4288 * ice_set_feature_support 4289 * @pf: pointer to the struct ice_pf instance 4290 * @f: feature enum to set 4291 */ 4292 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 4293 { 4294 if (f < 0 || f >= ICE_F_MAX) 4295 return; 4296 4297 set_bit(f, pf->features); 4298 } 4299 4300 /** 4301 * ice_clear_feature_support 4302 * @pf: pointer to the struct ice_pf instance 4303 * @f: feature enum to clear 4304 */ 4305 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 4306 { 4307 if (f < 0 || f >= ICE_F_MAX) 4308 return; 4309 4310 clear_bit(f, pf->features); 4311 } 4312 4313 /** 4314 * ice_init_feature_support 4315 * @pf: pointer to the struct ice_pf instance 4316 * 4317 * called during init to setup supported feature 4318 */ 4319 void ice_init_feature_support(struct ice_pf *pf) 4320 { 4321 switch (pf->hw.device_id) { 4322 case ICE_DEV_ID_E810C_BACKPLANE: 4323 case ICE_DEV_ID_E810C_QSFP: 4324 case ICE_DEV_ID_E810C_SFP: 4325 ice_set_feature_support(pf, ICE_F_DSCP); 4326 ice_set_feature_support(pf, ICE_F_PTP_EXTTS); 4327 if (ice_is_e810t(&pf->hw)) { 4328 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 4329 if (ice_gnss_is_gps_present(&pf->hw)) 4330 ice_set_feature_support(pf, ICE_F_GNSS); 4331 } 4332 break; 4333 default: 4334 break; 4335 } 4336 } 4337 4338 /** 4339 * ice_vsi_update_security - update security block in VSI 4340 * @vsi: pointer to VSI structure 4341 * @fill: function pointer to fill ctx 4342 */ 4343 int 4344 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 4345 { 4346 struct ice_vsi_ctx ctx = { 0 }; 4347 4348 ctx.info = vsi->info; 4349 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 4350 fill(&ctx); 4351 4352 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 4353 return -ENODEV; 4354 4355 vsi->info = ctx.info; 4356 return 0; 4357 } 4358 4359 /** 4360 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 4361 * @ctx: pointer to VSI ctx structure 4362 */ 4363 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 4364 { 4365 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 4366 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4367 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4368 } 4369 4370 /** 4371 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 4372 * @ctx: pointer to VSI ctx structure 4373 */ 4374 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 4375 { 4376 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 4377 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4378 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4379 } 4380 4381 /** 4382 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 4383 * @ctx: pointer to VSI ctx structure 4384 */ 4385 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 4386 { 4387 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4388 } 4389 4390 /** 4391 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 4392 * @ctx: pointer to VSI ctx structure 4393 */ 4394 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 4395 { 4396 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 4397 } 4398