xref: /linux/drivers/net/ethernet/intel/ice/ice_lib.c (revision 04317b129e4eb5c6f4a58bb899b2019c1545320b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12 
13 /**
14  * ice_vsi_type_str - maps VSI type enum to string equivalents
15  * @vsi_type: VSI type enum
16  */
17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 	switch (vsi_type) {
20 	case ICE_VSI_PF:
21 		return "ICE_VSI_PF";
22 	case ICE_VSI_VF:
23 		return "ICE_VSI_VF";
24 	case ICE_VSI_CTRL:
25 		return "ICE_VSI_CTRL";
26 	case ICE_VSI_CHNL:
27 		return "ICE_VSI_CHNL";
28 	case ICE_VSI_LB:
29 		return "ICE_VSI_LB";
30 	case ICE_VSI_SWITCHDEV_CTRL:
31 		return "ICE_VSI_SWITCHDEV_CTRL";
32 	default:
33 		return "unknown";
34 	}
35 }
36 
37 /**
38  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39  * @vsi: the VSI being configured
40  * @ena: start or stop the Rx rings
41  *
42  * First enable/disable all of the Rx rings, flush any remaining writes, and
43  * then verify that they have all been enabled/disabled successfully. This will
44  * let all of the register writes complete when enabling/disabling the Rx rings
45  * before waiting for the change in hardware to complete.
46  */
47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 	int ret = 0;
50 	u16 i;
51 
52 	ice_for_each_rxq(vsi, i)
53 		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54 
55 	ice_flush(&vsi->back->hw);
56 
57 	ice_for_each_rxq(vsi, i) {
58 		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 		if (ret)
60 			break;
61 	}
62 
63 	return ret;
64 }
65 
66 /**
67  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68  * @vsi: VSI pointer
69  *
70  * On error: returns error code (negative)
71  * On success: returns 0
72  */
73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 	struct ice_pf *pf = vsi->back;
76 	struct device *dev;
77 
78 	dev = ice_pf_to_dev(pf);
79 	if (vsi->type == ICE_VSI_CHNL)
80 		return 0;
81 
82 	/* allocate memory for both Tx and Rx ring pointers */
83 	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 				     sizeof(*vsi->tx_rings), GFP_KERNEL);
85 	if (!vsi->tx_rings)
86 		return -ENOMEM;
87 
88 	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 				     sizeof(*vsi->rx_rings), GFP_KERNEL);
90 	if (!vsi->rx_rings)
91 		goto err_rings;
92 
93 	/* txq_map needs to have enough space to track both Tx (stack) rings
94 	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 	 * so use num_possible_cpus() as we want to always provide XDP ring
96 	 * per CPU, regardless of queue count settings from user that might
97 	 * have come from ethtool's set_channels() callback;
98 	 */
99 	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 				    sizeof(*vsi->txq_map), GFP_KERNEL);
101 
102 	if (!vsi->txq_map)
103 		goto err_txq_map;
104 
105 	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 				    sizeof(*vsi->rxq_map), GFP_KERNEL);
107 	if (!vsi->rxq_map)
108 		goto err_rxq_map;
109 
110 	/* There is no need to allocate q_vectors for a loopback VSI. */
111 	if (vsi->type == ICE_VSI_LB)
112 		return 0;
113 
114 	/* allocate memory for q_vector pointers */
115 	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 				      sizeof(*vsi->q_vectors), GFP_KERNEL);
117 	if (!vsi->q_vectors)
118 		goto err_vectors;
119 
120 	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 	if (!vsi->af_xdp_zc_qps)
122 		goto err_zc_qps;
123 
124 	return 0;
125 
126 err_zc_qps:
127 	devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 	devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 	devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 	devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 	devm_kfree(dev, vsi->tx_rings);
136 	return -ENOMEM;
137 }
138 
139 /**
140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141  * @vsi: the VSI being configured
142  */
143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 	switch (vsi->type) {
146 	case ICE_VSI_PF:
147 	case ICE_VSI_SWITCHDEV_CTRL:
148 	case ICE_VSI_CTRL:
149 	case ICE_VSI_LB:
150 		/* a user could change the values of num_[tr]x_desc using
151 		 * ethtool -G so we should keep those values instead of
152 		 * overwriting them with the defaults.
153 		 */
154 		if (!vsi->num_rx_desc)
155 			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 		if (!vsi->num_tx_desc)
157 			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 		break;
159 	default:
160 		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 			vsi->type);
162 		break;
163 	}
164 }
165 
166 /**
167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168  * @vsi: the VSI being configured
169  *
170  * Return 0 on success and a negative value on error
171  */
172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 	enum ice_vsi_type vsi_type = vsi->type;
175 	struct ice_pf *pf = vsi->back;
176 	struct ice_vf *vf = vsi->vf;
177 
178 	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 		return;
180 
181 	switch (vsi_type) {
182 	case ICE_VSI_PF:
183 		if (vsi->req_txq) {
184 			vsi->alloc_txq = vsi->req_txq;
185 			vsi->num_txq = vsi->req_txq;
186 		} else {
187 			vsi->alloc_txq = min3(pf->num_lan_msix,
188 					      ice_get_avail_txq_count(pf),
189 					      (u16)num_online_cpus());
190 		}
191 
192 		pf->num_lan_tx = vsi->alloc_txq;
193 
194 		/* only 1 Rx queue unless RSS is enabled */
195 		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 			vsi->alloc_rxq = 1;
197 		} else {
198 			if (vsi->req_rxq) {
199 				vsi->alloc_rxq = vsi->req_rxq;
200 				vsi->num_rxq = vsi->req_rxq;
201 			} else {
202 				vsi->alloc_rxq = min3(pf->num_lan_msix,
203 						      ice_get_avail_rxq_count(pf),
204 						      (u16)num_online_cpus());
205 			}
206 		}
207 
208 		pf->num_lan_rx = vsi->alloc_rxq;
209 
210 		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 					   max_t(int, vsi->alloc_rxq,
212 						 vsi->alloc_txq));
213 		break;
214 	case ICE_VSI_SWITCHDEV_CTRL:
215 		/* The number of queues for ctrl VSI is equal to number of VFs.
216 		 * Each ring is associated to the corresponding VF_PR netdev.
217 		 */
218 		vsi->alloc_txq = ice_get_num_vfs(pf);
219 		vsi->alloc_rxq = vsi->alloc_txq;
220 		vsi->num_q_vectors = 1;
221 		break;
222 	case ICE_VSI_VF:
223 		if (vf->num_req_qs)
224 			vf->num_vf_qs = vf->num_req_qs;
225 		vsi->alloc_txq = vf->num_vf_qs;
226 		vsi->alloc_rxq = vf->num_vf_qs;
227 		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 		 * data queue interrupts). Since vsi->num_q_vectors is number
229 		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 		 * original vector count
231 		 */
232 		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 		break;
234 	case ICE_VSI_CTRL:
235 		vsi->alloc_txq = 1;
236 		vsi->alloc_rxq = 1;
237 		vsi->num_q_vectors = 1;
238 		break;
239 	case ICE_VSI_CHNL:
240 		vsi->alloc_txq = 0;
241 		vsi->alloc_rxq = 0;
242 		break;
243 	case ICE_VSI_LB:
244 		vsi->alloc_txq = 1;
245 		vsi->alloc_rxq = 1;
246 		break;
247 	default:
248 		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 		break;
250 	}
251 
252 	ice_vsi_set_num_desc(vsi);
253 }
254 
255 /**
256  * ice_get_free_slot - get the next non-NULL location index in array
257  * @array: array to search
258  * @size: size of the array
259  * @curr: last known occupied index to be used as a search hint
260  *
261  * void * is being used to keep the functionality generic. This lets us use this
262  * function on any array of pointers.
263  */
264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 	int **tmp_array = (int **)array;
267 	int next;
268 
269 	if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 		next = curr + 1;
271 	} else {
272 		int i = 0;
273 
274 		while ((i < size) && (tmp_array[i]))
275 			i++;
276 		if (i == size)
277 			next = ICE_NO_VSI;
278 		else
279 			next = i;
280 	}
281 	return next;
282 }
283 
284 /**
285  * ice_vsi_delete_from_hw - delete a VSI from the switch
286  * @vsi: pointer to VSI being removed
287  */
288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
289 {
290 	struct ice_pf *pf = vsi->back;
291 	struct ice_vsi_ctx *ctxt;
292 	int status;
293 
294 	ice_fltr_remove_all(vsi);
295 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
296 	if (!ctxt)
297 		return;
298 
299 	if (vsi->type == ICE_VSI_VF)
300 		ctxt->vf_num = vsi->vf->vf_id;
301 	ctxt->vsi_num = vsi->vsi_num;
302 
303 	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
304 
305 	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
306 	if (status)
307 		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
308 			vsi->vsi_num, status);
309 
310 	kfree(ctxt);
311 }
312 
313 /**
314  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
315  * @vsi: pointer to VSI being cleared
316  */
317 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
318 {
319 	struct ice_pf *pf = vsi->back;
320 	struct device *dev;
321 
322 	dev = ice_pf_to_dev(pf);
323 
324 	bitmap_free(vsi->af_xdp_zc_qps);
325 	vsi->af_xdp_zc_qps = NULL;
326 	/* free the ring and vector containers */
327 	devm_kfree(dev, vsi->q_vectors);
328 	vsi->q_vectors = NULL;
329 	devm_kfree(dev, vsi->tx_rings);
330 	vsi->tx_rings = NULL;
331 	devm_kfree(dev, vsi->rx_rings);
332 	vsi->rx_rings = NULL;
333 	devm_kfree(dev, vsi->txq_map);
334 	vsi->txq_map = NULL;
335 	devm_kfree(dev, vsi->rxq_map);
336 	vsi->rxq_map = NULL;
337 }
338 
339 /**
340  * ice_vsi_free_stats - Free the ring statistics structures
341  * @vsi: VSI pointer
342  */
343 static void ice_vsi_free_stats(struct ice_vsi *vsi)
344 {
345 	struct ice_vsi_stats *vsi_stat;
346 	struct ice_pf *pf = vsi->back;
347 	int i;
348 
349 	if (vsi->type == ICE_VSI_CHNL)
350 		return;
351 	if (!pf->vsi_stats)
352 		return;
353 
354 	vsi_stat = pf->vsi_stats[vsi->idx];
355 	if (!vsi_stat)
356 		return;
357 
358 	ice_for_each_alloc_txq(vsi, i) {
359 		if (vsi_stat->tx_ring_stats[i]) {
360 			kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
361 			WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
362 		}
363 	}
364 
365 	ice_for_each_alloc_rxq(vsi, i) {
366 		if (vsi_stat->rx_ring_stats[i]) {
367 			kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
368 			WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
369 		}
370 	}
371 
372 	kfree(vsi_stat->tx_ring_stats);
373 	kfree(vsi_stat->rx_ring_stats);
374 	kfree(vsi_stat);
375 	pf->vsi_stats[vsi->idx] = NULL;
376 }
377 
378 /**
379  * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
380  * @vsi: VSI which is having stats allocated
381  */
382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
383 {
384 	struct ice_ring_stats **tx_ring_stats;
385 	struct ice_ring_stats **rx_ring_stats;
386 	struct ice_vsi_stats *vsi_stats;
387 	struct ice_pf *pf = vsi->back;
388 	u16 i;
389 
390 	vsi_stats = pf->vsi_stats[vsi->idx];
391 	tx_ring_stats = vsi_stats->tx_ring_stats;
392 	rx_ring_stats = vsi_stats->rx_ring_stats;
393 
394 	/* Allocate Tx ring stats */
395 	ice_for_each_alloc_txq(vsi, i) {
396 		struct ice_ring_stats *ring_stats;
397 		struct ice_tx_ring *ring;
398 
399 		ring = vsi->tx_rings[i];
400 		ring_stats = tx_ring_stats[i];
401 
402 		if (!ring_stats) {
403 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
404 			if (!ring_stats)
405 				goto err_out;
406 
407 			WRITE_ONCE(tx_ring_stats[i], ring_stats);
408 		}
409 
410 		ring->ring_stats = ring_stats;
411 	}
412 
413 	/* Allocate Rx ring stats */
414 	ice_for_each_alloc_rxq(vsi, i) {
415 		struct ice_ring_stats *ring_stats;
416 		struct ice_rx_ring *ring;
417 
418 		ring = vsi->rx_rings[i];
419 		ring_stats = rx_ring_stats[i];
420 
421 		if (!ring_stats) {
422 			ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
423 			if (!ring_stats)
424 				goto err_out;
425 
426 			WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 		}
428 
429 		ring->ring_stats = ring_stats;
430 	}
431 
432 	return 0;
433 
434 err_out:
435 	ice_vsi_free_stats(vsi);
436 	return -ENOMEM;
437 }
438 
439 /**
440  * ice_vsi_free - clean up and deallocate the provided VSI
441  * @vsi: pointer to VSI being cleared
442  *
443  * This deallocates the VSI's queue resources, removes it from the PF's
444  * VSI array if necessary, and deallocates the VSI
445  */
446 static void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 	struct ice_pf *pf = NULL;
449 	struct device *dev;
450 
451 	if (!vsi || !vsi->back)
452 		return;
453 
454 	pf = vsi->back;
455 	dev = ice_pf_to_dev(pf);
456 
457 	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 		return;
460 	}
461 
462 	mutex_lock(&pf->sw_mutex);
463 	/* updates the PF for this cleared VSI */
464 
465 	pf->vsi[vsi->idx] = NULL;
466 	pf->next_vsi = vsi->idx;
467 
468 	ice_vsi_free_stats(vsi);
469 	ice_vsi_free_arrays(vsi);
470 	mutex_unlock(&pf->sw_mutex);
471 	devm_kfree(dev, vsi);
472 }
473 
474 void ice_vsi_delete(struct ice_vsi *vsi)
475 {
476 	ice_vsi_delete_from_hw(vsi);
477 	ice_vsi_free(vsi);
478 }
479 
480 /**
481  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
482  * @irq: interrupt number
483  * @data: pointer to a q_vector
484  */
485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
486 {
487 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
488 
489 	if (!q_vector->tx.tx_ring)
490 		return IRQ_HANDLED;
491 
492 #define FDIR_RX_DESC_CLEAN_BUDGET 64
493 	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
494 	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 /**
500  * ice_msix_clean_rings - MSIX mode Interrupt Handler
501  * @irq: interrupt number
502  * @data: pointer to a q_vector
503  */
504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507 
508 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 		return IRQ_HANDLED;
510 
511 	q_vector->total_events++;
512 
513 	napi_schedule(&q_vector->napi);
514 
515 	return IRQ_HANDLED;
516 }
517 
518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
519 {
520 	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
521 	struct ice_pf *pf = q_vector->vsi->back;
522 	struct ice_vf *vf;
523 	unsigned int bkt;
524 
525 	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
526 		return IRQ_HANDLED;
527 
528 	rcu_read_lock();
529 	ice_for_each_vf_rcu(pf, bkt, vf)
530 		napi_schedule(&vf->repr->q_vector->napi);
531 	rcu_read_unlock();
532 
533 	return IRQ_HANDLED;
534 }
535 
536 /**
537  * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
538  * @vsi: VSI pointer
539  */
540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
541 {
542 	struct ice_vsi_stats *vsi_stat;
543 	struct ice_pf *pf = vsi->back;
544 
545 	if (vsi->type == ICE_VSI_CHNL)
546 		return 0;
547 	if (!pf->vsi_stats)
548 		return -ENOENT;
549 
550 	if (pf->vsi_stats[vsi->idx])
551 	/* realloc will happen in rebuild path */
552 		return 0;
553 
554 	vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
555 	if (!vsi_stat)
556 		return -ENOMEM;
557 
558 	vsi_stat->tx_ring_stats =
559 		kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
560 			GFP_KERNEL);
561 	if (!vsi_stat->tx_ring_stats)
562 		goto err_alloc_tx;
563 
564 	vsi_stat->rx_ring_stats =
565 		kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
566 			GFP_KERNEL);
567 	if (!vsi_stat->rx_ring_stats)
568 		goto err_alloc_rx;
569 
570 	pf->vsi_stats[vsi->idx] = vsi_stat;
571 
572 	return 0;
573 
574 err_alloc_rx:
575 	kfree(vsi_stat->rx_ring_stats);
576 err_alloc_tx:
577 	kfree(vsi_stat->tx_ring_stats);
578 	kfree(vsi_stat);
579 	pf->vsi_stats[vsi->idx] = NULL;
580 	return -ENOMEM;
581 }
582 
583 /**
584  * ice_vsi_alloc_def - set default values for already allocated VSI
585  * @vsi: ptr to VSI
586  * @ch: ptr to channel
587  */
588 static int
589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
590 {
591 	if (vsi->type != ICE_VSI_CHNL) {
592 		ice_vsi_set_num_qs(vsi);
593 		if (ice_vsi_alloc_arrays(vsi))
594 			return -ENOMEM;
595 	}
596 
597 	switch (vsi->type) {
598 	case ICE_VSI_SWITCHDEV_CTRL:
599 		/* Setup eswitch MSIX irq handler for VSI */
600 		vsi->irq_handler = ice_eswitch_msix_clean_rings;
601 		break;
602 	case ICE_VSI_PF:
603 		/* Setup default MSIX irq handler for VSI */
604 		vsi->irq_handler = ice_msix_clean_rings;
605 		break;
606 	case ICE_VSI_CTRL:
607 		/* Setup ctrl VSI MSIX irq handler */
608 		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
609 		break;
610 	case ICE_VSI_CHNL:
611 		if (!ch)
612 			return -EINVAL;
613 
614 		vsi->num_rxq = ch->num_rxq;
615 		vsi->num_txq = ch->num_txq;
616 		vsi->next_base_q = ch->base_q;
617 		break;
618 	case ICE_VSI_VF:
619 	case ICE_VSI_LB:
620 		break;
621 	default:
622 		ice_vsi_free_arrays(vsi);
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
631  * @pf: board private structure
632  *
633  * Reserves a VSI index from the PF and allocates an empty VSI structure
634  * without a type. The VSI structure must later be initialized by calling
635  * ice_vsi_cfg().
636  *
637  * returns a pointer to a VSI on success, NULL on failure.
638  */
639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
640 {
641 	struct device *dev = ice_pf_to_dev(pf);
642 	struct ice_vsi *vsi = NULL;
643 
644 	/* Need to protect the allocation of the VSIs at the PF level */
645 	mutex_lock(&pf->sw_mutex);
646 
647 	/* If we have already allocated our maximum number of VSIs,
648 	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
649 	 * is available to be populated
650 	 */
651 	if (pf->next_vsi == ICE_NO_VSI) {
652 		dev_dbg(dev, "out of VSI slots!\n");
653 		goto unlock_pf;
654 	}
655 
656 	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
657 	if (!vsi)
658 		goto unlock_pf;
659 
660 	vsi->back = pf;
661 	set_bit(ICE_VSI_DOWN, vsi->state);
662 
663 	/* fill slot and make note of the index */
664 	vsi->idx = pf->next_vsi;
665 	pf->vsi[pf->next_vsi] = vsi;
666 
667 	/* prepare pf->next_vsi for next use */
668 	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
669 					 pf->next_vsi);
670 
671 unlock_pf:
672 	mutex_unlock(&pf->sw_mutex);
673 	return vsi;
674 }
675 
676 /**
677  * ice_alloc_fd_res - Allocate FD resource for a VSI
678  * @vsi: pointer to the ice_vsi
679  *
680  * This allocates the FD resources
681  *
682  * Returns 0 on success, -EPERM on no-op or -EIO on failure
683  */
684 static int ice_alloc_fd_res(struct ice_vsi *vsi)
685 {
686 	struct ice_pf *pf = vsi->back;
687 	u32 g_val, b_val;
688 
689 	/* Flow Director filters are only allocated/assigned to the PF VSI or
690 	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
691 	 * add/delete filters so resources are not allocated to it
692 	 */
693 	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
694 		return -EPERM;
695 
696 	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
697 	      vsi->type == ICE_VSI_CHNL))
698 		return -EPERM;
699 
700 	/* FD filters from guaranteed pool per VSI */
701 	g_val = pf->hw.func_caps.fd_fltr_guar;
702 	if (!g_val)
703 		return -EPERM;
704 
705 	/* FD filters from best effort pool */
706 	b_val = pf->hw.func_caps.fd_fltr_best_effort;
707 	if (!b_val)
708 		return -EPERM;
709 
710 	/* PF main VSI gets only 64 FD resources from guaranteed pool
711 	 * when ADQ is configured.
712 	 */
713 #define ICE_PF_VSI_GFLTR	64
714 
715 	/* determine FD filter resources per VSI from shared(best effort) and
716 	 * dedicated pool
717 	 */
718 	if (vsi->type == ICE_VSI_PF) {
719 		vsi->num_gfltr = g_val;
720 		/* if MQPRIO is configured, main VSI doesn't get all FD
721 		 * resources from guaranteed pool. PF VSI gets 64 FD resources
722 		 */
723 		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
724 			if (g_val < ICE_PF_VSI_GFLTR)
725 				return -EPERM;
726 			/* allow bare minimum entries for PF VSI */
727 			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
728 		}
729 
730 		/* each VSI gets same "best_effort" quota */
731 		vsi->num_bfltr = b_val;
732 	} else if (vsi->type == ICE_VSI_VF) {
733 		vsi->num_gfltr = 0;
734 
735 		/* each VSI gets same "best_effort" quota */
736 		vsi->num_bfltr = b_val;
737 	} else {
738 		struct ice_vsi *main_vsi;
739 		int numtc;
740 
741 		main_vsi = ice_get_main_vsi(pf);
742 		if (!main_vsi)
743 			return -EPERM;
744 
745 		if (!main_vsi->all_numtc)
746 			return -EINVAL;
747 
748 		/* figure out ADQ numtc */
749 		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
750 
751 		/* only one TC but still asking resources for channels,
752 		 * invalid config
753 		 */
754 		if (numtc < ICE_CHNL_START_TC)
755 			return -EPERM;
756 
757 		g_val -= ICE_PF_VSI_GFLTR;
758 		/* channel VSIs gets equal share from guaranteed pool */
759 		vsi->num_gfltr = g_val / numtc;
760 
761 		/* each VSI gets same "best_effort" quota */
762 		vsi->num_bfltr = b_val;
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * ice_vsi_get_qs - Assign queues from PF to VSI
770  * @vsi: the VSI to assign queues to
771  *
772  * Returns 0 on success and a negative value on error
773  */
774 static int ice_vsi_get_qs(struct ice_vsi *vsi)
775 {
776 	struct ice_pf *pf = vsi->back;
777 	struct ice_qs_cfg tx_qs_cfg = {
778 		.qs_mutex = &pf->avail_q_mutex,
779 		.pf_map = pf->avail_txqs,
780 		.pf_map_size = pf->max_pf_txqs,
781 		.q_count = vsi->alloc_txq,
782 		.scatter_count = ICE_MAX_SCATTER_TXQS,
783 		.vsi_map = vsi->txq_map,
784 		.vsi_map_offset = 0,
785 		.mapping_mode = ICE_VSI_MAP_CONTIG
786 	};
787 	struct ice_qs_cfg rx_qs_cfg = {
788 		.qs_mutex = &pf->avail_q_mutex,
789 		.pf_map = pf->avail_rxqs,
790 		.pf_map_size = pf->max_pf_rxqs,
791 		.q_count = vsi->alloc_rxq,
792 		.scatter_count = ICE_MAX_SCATTER_RXQS,
793 		.vsi_map = vsi->rxq_map,
794 		.vsi_map_offset = 0,
795 		.mapping_mode = ICE_VSI_MAP_CONTIG
796 	};
797 	int ret;
798 
799 	if (vsi->type == ICE_VSI_CHNL)
800 		return 0;
801 
802 	ret = __ice_vsi_get_qs(&tx_qs_cfg);
803 	if (ret)
804 		return ret;
805 	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
806 
807 	ret = __ice_vsi_get_qs(&rx_qs_cfg);
808 	if (ret)
809 		return ret;
810 	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
811 
812 	return 0;
813 }
814 
815 /**
816  * ice_vsi_put_qs - Release queues from VSI to PF
817  * @vsi: the VSI that is going to release queues
818  */
819 static void ice_vsi_put_qs(struct ice_vsi *vsi)
820 {
821 	struct ice_pf *pf = vsi->back;
822 	int i;
823 
824 	mutex_lock(&pf->avail_q_mutex);
825 
826 	ice_for_each_alloc_txq(vsi, i) {
827 		clear_bit(vsi->txq_map[i], pf->avail_txqs);
828 		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
829 	}
830 
831 	ice_for_each_alloc_rxq(vsi, i) {
832 		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
833 		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
834 	}
835 
836 	mutex_unlock(&pf->avail_q_mutex);
837 }
838 
839 /**
840  * ice_is_safe_mode
841  * @pf: pointer to the PF struct
842  *
843  * returns true if driver is in safe mode, false otherwise
844  */
845 bool ice_is_safe_mode(struct ice_pf *pf)
846 {
847 	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
848 }
849 
850 /**
851  * ice_is_rdma_ena
852  * @pf: pointer to the PF struct
853  *
854  * returns true if RDMA is currently supported, false otherwise
855  */
856 bool ice_is_rdma_ena(struct ice_pf *pf)
857 {
858 	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
859 }
860 
861 /**
862  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
863  * @vsi: the VSI being cleaned up
864  *
865  * This function deletes RSS input set for all flows that were configured
866  * for this VSI
867  */
868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
869 {
870 	struct ice_pf *pf = vsi->back;
871 	int status;
872 
873 	if (ice_is_safe_mode(pf))
874 		return;
875 
876 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
877 	if (status)
878 		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
879 			vsi->vsi_num, status);
880 }
881 
882 /**
883  * ice_rss_clean - Delete RSS related VSI structures and configuration
884  * @vsi: the VSI being removed
885  */
886 static void ice_rss_clean(struct ice_vsi *vsi)
887 {
888 	struct ice_pf *pf = vsi->back;
889 	struct device *dev;
890 
891 	dev = ice_pf_to_dev(pf);
892 
893 	devm_kfree(dev, vsi->rss_hkey_user);
894 	devm_kfree(dev, vsi->rss_lut_user);
895 
896 	ice_vsi_clean_rss_flow_fld(vsi);
897 	/* remove RSS replay list */
898 	if (!ice_is_safe_mode(pf))
899 		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
900 }
901 
902 /**
903  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
904  * @vsi: the VSI being configured
905  */
906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
907 {
908 	struct ice_hw_common_caps *cap;
909 	struct ice_pf *pf = vsi->back;
910 	u16 max_rss_size;
911 
912 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
913 		vsi->rss_size = 1;
914 		return;
915 	}
916 
917 	cap = &pf->hw.func_caps.common_cap;
918 	max_rss_size = BIT(cap->rss_table_entry_width);
919 	switch (vsi->type) {
920 	case ICE_VSI_CHNL:
921 	case ICE_VSI_PF:
922 		/* PF VSI will inherit RSS instance of PF */
923 		vsi->rss_table_size = (u16)cap->rss_table_size;
924 		if (vsi->type == ICE_VSI_CHNL)
925 			vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
926 		else
927 			vsi->rss_size = min_t(u16, num_online_cpus(),
928 					      max_rss_size);
929 		vsi->rss_lut_type = ICE_LUT_PF;
930 		break;
931 	case ICE_VSI_SWITCHDEV_CTRL:
932 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
933 		vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
934 		vsi->rss_lut_type = ICE_LUT_VSI;
935 		break;
936 	case ICE_VSI_VF:
937 		/* VF VSI will get a small RSS table.
938 		 * For VSI_LUT, LUT size should be set to 64 bytes.
939 		 */
940 		vsi->rss_table_size = ICE_LUT_VSI_SIZE;
941 		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
942 		vsi->rss_lut_type = ICE_LUT_VSI;
943 		break;
944 	case ICE_VSI_LB:
945 		break;
946 	default:
947 		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
948 			ice_vsi_type_str(vsi->type));
949 		break;
950 	}
951 }
952 
953 /**
954  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
955  * @hw: HW structure used to determine the VLAN mode of the device
956  * @ctxt: the VSI context being set
957  *
958  * This initializes a default VSI context for all sections except the Queues.
959  */
960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
961 {
962 	u32 table = 0;
963 
964 	memset(&ctxt->info, 0, sizeof(ctxt->info));
965 	/* VSI's should be allocated from shared pool */
966 	ctxt->alloc_from_pool = true;
967 	/* Src pruning enabled by default */
968 	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
969 	/* Traffic from VSI can be sent to LAN */
970 	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
971 	/* allow all untagged/tagged packets by default on Tx */
972 	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
973 				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
974 				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
975 	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
976 	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
977 	 *
978 	 * DVM - leave inner VLAN in packet by default
979 	 */
980 	if (ice_is_dvm_ena(hw)) {
981 		ctxt->info.inner_vlan_flags |=
982 			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
983 		ctxt->info.outer_vlan_flags =
984 			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
985 			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
986 			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
987 		ctxt->info.outer_vlan_flags |=
988 			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
989 			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
990 			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
991 		ctxt->info.outer_vlan_flags |=
992 			FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
993 				   ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
994 	}
995 	/* Have 1:1 UP mapping for both ingress/egress tables */
996 	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
997 	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
998 	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
999 	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1000 	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1001 	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1002 	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1003 	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1004 	ctxt->info.ingress_table = cpu_to_le32(table);
1005 	ctxt->info.egress_table = cpu_to_le32(table);
1006 	/* Have 1:1 UP mapping for outer to inner UP table */
1007 	ctxt->info.outer_up_table = cpu_to_le32(table);
1008 	/* No Outer tag support outer_tag_flags remains to zero */
1009 }
1010 
1011 /**
1012  * ice_vsi_setup_q_map - Setup a VSI queue map
1013  * @vsi: the VSI being configured
1014  * @ctxt: VSI context structure
1015  */
1016 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1017 {
1018 	u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1019 	u16 num_txq_per_tc, num_rxq_per_tc;
1020 	u16 qcount_tx = vsi->alloc_txq;
1021 	u16 qcount_rx = vsi->alloc_rxq;
1022 	u8 netdev_tc = 0;
1023 	int i;
1024 
1025 	if (!vsi->tc_cfg.numtc) {
1026 		/* at least TC0 should be enabled by default */
1027 		vsi->tc_cfg.numtc = 1;
1028 		vsi->tc_cfg.ena_tc = 1;
1029 	}
1030 
1031 	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1032 	if (!num_rxq_per_tc)
1033 		num_rxq_per_tc = 1;
1034 	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1035 	if (!num_txq_per_tc)
1036 		num_txq_per_tc = 1;
1037 
1038 	/* find the (rounded up) power-of-2 of qcount */
1039 	pow = (u16)order_base_2(num_rxq_per_tc);
1040 
1041 	/* TC mapping is a function of the number of Rx queues assigned to the
1042 	 * VSI for each traffic class and the offset of these queues.
1043 	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1044 	 * queues allocated to TC0. No:of queues is a power-of-2.
1045 	 *
1046 	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1047 	 * queue, this way, traffic for the given TC will be sent to the default
1048 	 * queue.
1049 	 *
1050 	 * Setup number and offset of Rx queues for all TCs for the VSI
1051 	 */
1052 	ice_for_each_traffic_class(i) {
1053 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1054 			/* TC is not enabled */
1055 			vsi->tc_cfg.tc_info[i].qoffset = 0;
1056 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1057 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1058 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1059 			ctxt->info.tc_mapping[i] = 0;
1060 			continue;
1061 		}
1062 
1063 		/* TC is enabled */
1064 		vsi->tc_cfg.tc_info[i].qoffset = offset;
1065 		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1066 		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1067 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1068 
1069 		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1070 			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1071 			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1072 			 ICE_AQ_VSI_TC_Q_NUM_M);
1073 		offset += num_rxq_per_tc;
1074 		tx_count += num_txq_per_tc;
1075 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1076 	}
1077 
1078 	/* if offset is non-zero, means it is calculated correctly based on
1079 	 * enabled TCs for a given VSI otherwise qcount_rx will always
1080 	 * be correct and non-zero because it is based off - VSI's
1081 	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1082 	 * at least 1)
1083 	 */
1084 	if (offset)
1085 		rx_count = offset;
1086 	else
1087 		rx_count = num_rxq_per_tc;
1088 
1089 	if (rx_count > vsi->alloc_rxq) {
1090 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1091 			rx_count, vsi->alloc_rxq);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (tx_count > vsi->alloc_txq) {
1096 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1097 			tx_count, vsi->alloc_txq);
1098 		return -EINVAL;
1099 	}
1100 
1101 	vsi->num_txq = tx_count;
1102 	vsi->num_rxq = rx_count;
1103 
1104 	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1105 		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1106 		/* since there is a chance that num_rxq could have been changed
1107 		 * in the above for loop, make num_txq equal to num_rxq.
1108 		 */
1109 		vsi->num_txq = vsi->num_rxq;
1110 	}
1111 
1112 	/* Rx queue mapping */
1113 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1114 	/* q_mapping buffer holds the info for the first queue allocated for
1115 	 * this VSI in the PF space and also the number of queues associated
1116 	 * with this VSI.
1117 	 */
1118 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1119 	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1126  * @ctxt: the VSI context being set
1127  * @vsi: the VSI being configured
1128  */
1129 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1130 {
1131 	u8 dflt_q_group, dflt_q_prio;
1132 	u16 dflt_q, report_q, val;
1133 
1134 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1135 	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1136 		return;
1137 
1138 	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1139 	ctxt->info.valid_sections |= cpu_to_le16(val);
1140 	dflt_q = 0;
1141 	dflt_q_group = 0;
1142 	report_q = 0;
1143 	dflt_q_prio = 0;
1144 
1145 	/* enable flow director filtering/programming */
1146 	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1147 	ctxt->info.fd_options = cpu_to_le16(val);
1148 	/* max of allocated flow director filters */
1149 	ctxt->info.max_fd_fltr_dedicated =
1150 			cpu_to_le16(vsi->num_gfltr);
1151 	/* max of shared flow director filters any VSI may program */
1152 	ctxt->info.max_fd_fltr_shared =
1153 			cpu_to_le16(vsi->num_bfltr);
1154 	/* default queue index within the VSI of the default FD */
1155 	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1156 	       ICE_AQ_VSI_FD_DEF_Q_M);
1157 	/* target queue or queue group to the FD filter */
1158 	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1159 		ICE_AQ_VSI_FD_DEF_GRP_M);
1160 	ctxt->info.fd_def_q = cpu_to_le16(val);
1161 	/* queue index on which FD filter completion is reported */
1162 	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1163 	       ICE_AQ_VSI_FD_REPORT_Q_M);
1164 	/* priority of the default qindex action */
1165 	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1166 		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1167 	ctxt->info.fd_report_opt = cpu_to_le16(val);
1168 }
1169 
1170 /**
1171  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1172  * @ctxt: the VSI context being set
1173  * @vsi: the VSI being configured
1174  */
1175 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1176 {
1177 	u8 lut_type, hash_type;
1178 	struct device *dev;
1179 	struct ice_pf *pf;
1180 
1181 	pf = vsi->back;
1182 	dev = ice_pf_to_dev(pf);
1183 
1184 	switch (vsi->type) {
1185 	case ICE_VSI_CHNL:
1186 	case ICE_VSI_PF:
1187 		/* PF VSI will inherit RSS instance of PF */
1188 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1189 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1190 		break;
1191 	case ICE_VSI_VF:
1192 		/* VF VSI will gets a small RSS table which is a VSI LUT type */
1193 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1194 		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1195 		break;
1196 	default:
1197 		dev_dbg(dev, "Unsupported VSI type %s\n",
1198 			ice_vsi_type_str(vsi->type));
1199 		return;
1200 	}
1201 
1202 	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1203 				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1204 				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1205 				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1206 }
1207 
1208 static void
1209 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1210 {
1211 	struct ice_pf *pf = vsi->back;
1212 	u16 qcount, qmap;
1213 	u8 offset = 0;
1214 	int pow;
1215 
1216 	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1217 
1218 	pow = order_base_2(qcount);
1219 	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1220 		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1221 		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1222 		   ICE_AQ_VSI_TC_Q_NUM_M);
1223 
1224 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1225 	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1226 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1227 	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1228 }
1229 
1230 /**
1231  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1232  * @vsi: VSI to check whether or not VLAN pruning is enabled.
1233  *
1234  * returns true if Rx VLAN pruning is enabled and false otherwise.
1235  */
1236 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1237 {
1238 	return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1239 }
1240 
1241 /**
1242  * ice_vsi_init - Create and initialize a VSI
1243  * @vsi: the VSI being configured
1244  * @vsi_flags: VSI configuration flags
1245  *
1246  * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1247  * reconfigure an existing context.
1248  *
1249  * This initializes a VSI context depending on the VSI type to be added and
1250  * passes it down to the add_vsi aq command to create a new VSI.
1251  */
1252 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1253 {
1254 	struct ice_pf *pf = vsi->back;
1255 	struct ice_hw *hw = &pf->hw;
1256 	struct ice_vsi_ctx *ctxt;
1257 	struct device *dev;
1258 	int ret = 0;
1259 
1260 	dev = ice_pf_to_dev(pf);
1261 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1262 	if (!ctxt)
1263 		return -ENOMEM;
1264 
1265 	switch (vsi->type) {
1266 	case ICE_VSI_CTRL:
1267 	case ICE_VSI_LB:
1268 	case ICE_VSI_PF:
1269 		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1270 		break;
1271 	case ICE_VSI_SWITCHDEV_CTRL:
1272 	case ICE_VSI_CHNL:
1273 		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1274 		break;
1275 	case ICE_VSI_VF:
1276 		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1277 		/* VF number here is the absolute VF number (0-255) */
1278 		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1279 		break;
1280 	default:
1281 		ret = -ENODEV;
1282 		goto out;
1283 	}
1284 
1285 	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
1286 	 * prune enabled
1287 	 */
1288 	if (vsi->type == ICE_VSI_CHNL) {
1289 		struct ice_vsi *main_vsi;
1290 
1291 		main_vsi = ice_get_main_vsi(pf);
1292 		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1293 			ctxt->info.sw_flags2 |=
1294 				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1295 		else
1296 			ctxt->info.sw_flags2 &=
1297 				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1298 	}
1299 
1300 	ice_set_dflt_vsi_ctx(hw, ctxt);
1301 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1302 		ice_set_fd_vsi_ctx(ctxt, vsi);
1303 	/* if the switch is in VEB mode, allow VSI loopback */
1304 	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1305 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1306 
1307 	/* Set LUT type and HASH type if RSS is enabled */
1308 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1309 	    vsi->type != ICE_VSI_CTRL) {
1310 		ice_set_rss_vsi_ctx(ctxt, vsi);
1311 		/* if updating VSI context, make sure to set valid_section:
1312 		 * to indicate which section of VSI context being updated
1313 		 */
1314 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1315 			ctxt->info.valid_sections |=
1316 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1317 	}
1318 
1319 	ctxt->info.sw_id = vsi->port_info->sw_id;
1320 	if (vsi->type == ICE_VSI_CHNL) {
1321 		ice_chnl_vsi_setup_q_map(vsi, ctxt);
1322 	} else {
1323 		ret = ice_vsi_setup_q_map(vsi, ctxt);
1324 		if (ret)
1325 			goto out;
1326 
1327 		if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1328 			/* means VSI being updated */
1329 			/* must to indicate which section of VSI context are
1330 			 * being modified
1331 			 */
1332 			ctxt->info.valid_sections |=
1333 				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1334 	}
1335 
1336 	/* Allow control frames out of main VSI */
1337 	if (vsi->type == ICE_VSI_PF) {
1338 		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1339 		ctxt->info.valid_sections |=
1340 			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1341 	}
1342 
1343 	if (vsi_flags & ICE_VSI_FLAG_INIT) {
1344 		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1345 		if (ret) {
1346 			dev_err(dev, "Add VSI failed, err %d\n", ret);
1347 			ret = -EIO;
1348 			goto out;
1349 		}
1350 	} else {
1351 		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1352 		if (ret) {
1353 			dev_err(dev, "Update VSI failed, err %d\n", ret);
1354 			ret = -EIO;
1355 			goto out;
1356 		}
1357 	}
1358 
1359 	/* keep context for update VSI operations */
1360 	vsi->info = ctxt->info;
1361 
1362 	/* record VSI number returned */
1363 	vsi->vsi_num = ctxt->vsi_num;
1364 
1365 out:
1366 	kfree(ctxt);
1367 	return ret;
1368 }
1369 
1370 /**
1371  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1372  * @vsi: the VSI having rings deallocated
1373  */
1374 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1375 {
1376 	int i;
1377 
1378 	/* Avoid stale references by clearing map from vector to ring */
1379 	if (vsi->q_vectors) {
1380 		ice_for_each_q_vector(vsi, i) {
1381 			struct ice_q_vector *q_vector = vsi->q_vectors[i];
1382 
1383 			if (q_vector) {
1384 				q_vector->tx.tx_ring = NULL;
1385 				q_vector->rx.rx_ring = NULL;
1386 			}
1387 		}
1388 	}
1389 
1390 	if (vsi->tx_rings) {
1391 		ice_for_each_alloc_txq(vsi, i) {
1392 			if (vsi->tx_rings[i]) {
1393 				kfree_rcu(vsi->tx_rings[i], rcu);
1394 				WRITE_ONCE(vsi->tx_rings[i], NULL);
1395 			}
1396 		}
1397 	}
1398 	if (vsi->rx_rings) {
1399 		ice_for_each_alloc_rxq(vsi, i) {
1400 			if (vsi->rx_rings[i]) {
1401 				kfree_rcu(vsi->rx_rings[i], rcu);
1402 				WRITE_ONCE(vsi->rx_rings[i], NULL);
1403 			}
1404 		}
1405 	}
1406 }
1407 
1408 /**
1409  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1410  * @vsi: VSI which is having rings allocated
1411  */
1412 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1413 {
1414 	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1415 	struct ice_pf *pf = vsi->back;
1416 	struct device *dev;
1417 	u16 i;
1418 
1419 	dev = ice_pf_to_dev(pf);
1420 	/* Allocate Tx rings */
1421 	ice_for_each_alloc_txq(vsi, i) {
1422 		struct ice_tx_ring *ring;
1423 
1424 		/* allocate with kzalloc(), free with kfree_rcu() */
1425 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1426 
1427 		if (!ring)
1428 			goto err_out;
1429 
1430 		ring->q_index = i;
1431 		ring->reg_idx = vsi->txq_map[i];
1432 		ring->vsi = vsi;
1433 		ring->tx_tstamps = &pf->ptp.port.tx;
1434 		ring->dev = dev;
1435 		ring->count = vsi->num_tx_desc;
1436 		ring->txq_teid = ICE_INVAL_TEID;
1437 		if (dvm_ena)
1438 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1439 		else
1440 			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1441 		WRITE_ONCE(vsi->tx_rings[i], ring);
1442 	}
1443 
1444 	/* Allocate Rx rings */
1445 	ice_for_each_alloc_rxq(vsi, i) {
1446 		struct ice_rx_ring *ring;
1447 
1448 		/* allocate with kzalloc(), free with kfree_rcu() */
1449 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1450 		if (!ring)
1451 			goto err_out;
1452 
1453 		ring->q_index = i;
1454 		ring->reg_idx = vsi->rxq_map[i];
1455 		ring->vsi = vsi;
1456 		ring->netdev = vsi->netdev;
1457 		ring->dev = dev;
1458 		ring->count = vsi->num_rx_desc;
1459 		ring->cached_phctime = pf->ptp.cached_phc_time;
1460 		WRITE_ONCE(vsi->rx_rings[i], ring);
1461 	}
1462 
1463 	return 0;
1464 
1465 err_out:
1466 	ice_vsi_clear_rings(vsi);
1467 	return -ENOMEM;
1468 }
1469 
1470 /**
1471  * ice_vsi_manage_rss_lut - disable/enable RSS
1472  * @vsi: the VSI being changed
1473  * @ena: boolean value indicating if this is an enable or disable request
1474  *
1475  * In the event of disable request for RSS, this function will zero out RSS
1476  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1477  * LUT.
1478  */
1479 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1480 {
1481 	u8 *lut;
1482 
1483 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1484 	if (!lut)
1485 		return;
1486 
1487 	if (ena) {
1488 		if (vsi->rss_lut_user)
1489 			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1490 		else
1491 			ice_fill_rss_lut(lut, vsi->rss_table_size,
1492 					 vsi->rss_size);
1493 	}
1494 
1495 	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1496 	kfree(lut);
1497 }
1498 
1499 /**
1500  * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1501  * @vsi: VSI to be configured
1502  * @disable: set to true to have FCS / CRC in the frame data
1503  */
1504 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1505 {
1506 	int i;
1507 
1508 	ice_for_each_rxq(vsi, i)
1509 		if (disable)
1510 			vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1511 		else
1512 			vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1513 }
1514 
1515 /**
1516  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1517  * @vsi: VSI to be configured
1518  */
1519 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1520 {
1521 	struct ice_pf *pf = vsi->back;
1522 	struct device *dev;
1523 	u8 *lut, *key;
1524 	int err;
1525 
1526 	dev = ice_pf_to_dev(pf);
1527 	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1528 	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1529 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1530 	} else {
1531 		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1532 
1533 		/* If orig_rss_size is valid and it is less than determined
1534 		 * main VSI's rss_size, update main VSI's rss_size to be
1535 		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1536 		 * RSS table gets programmed to be correct (whatever it was
1537 		 * to begin with (prior to setup-tc for ADQ config)
1538 		 */
1539 		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1540 		    vsi->orig_rss_size <= vsi->num_rxq) {
1541 			vsi->rss_size = vsi->orig_rss_size;
1542 			/* now orig_rss_size is used, reset it to zero */
1543 			vsi->orig_rss_size = 0;
1544 		}
1545 	}
1546 
1547 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1548 	if (!lut)
1549 		return -ENOMEM;
1550 
1551 	if (vsi->rss_lut_user)
1552 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1553 	else
1554 		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1555 
1556 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1557 	if (err) {
1558 		dev_err(dev, "set_rss_lut failed, error %d\n", err);
1559 		goto ice_vsi_cfg_rss_exit;
1560 	}
1561 
1562 	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1563 	if (!key) {
1564 		err = -ENOMEM;
1565 		goto ice_vsi_cfg_rss_exit;
1566 	}
1567 
1568 	if (vsi->rss_hkey_user)
1569 		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1570 	else
1571 		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1572 
1573 	err = ice_set_rss_key(vsi, key);
1574 	if (err)
1575 		dev_err(dev, "set_rss_key failed, error %d\n", err);
1576 
1577 	kfree(key);
1578 ice_vsi_cfg_rss_exit:
1579 	kfree(lut);
1580 	return err;
1581 }
1582 
1583 /**
1584  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1585  * @vsi: VSI to be configured
1586  *
1587  * This function will only be called during the VF VSI setup. Upon successful
1588  * completion of package download, this function will configure default RSS
1589  * input sets for VF VSI.
1590  */
1591 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1592 {
1593 	struct ice_pf *pf = vsi->back;
1594 	struct device *dev;
1595 	int status;
1596 
1597 	dev = ice_pf_to_dev(pf);
1598 	if (ice_is_safe_mode(pf)) {
1599 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1600 			vsi->vsi_num);
1601 		return;
1602 	}
1603 
1604 	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1605 	if (status)
1606 		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1607 			vsi->vsi_num, status);
1608 }
1609 
1610 /**
1611  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1612  * @vsi: VSI to be configured
1613  *
1614  * This function will only be called after successful download package call
1615  * during initialization of PF. Since the downloaded package will erase the
1616  * RSS section, this function will configure RSS input sets for different
1617  * flow types. The last profile added has the highest priority, therefore 2
1618  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1619  * (i.e. IPv4 src/dst TCP src/dst port).
1620  */
1621 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1622 {
1623 	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1624 	struct ice_pf *pf = vsi->back;
1625 	struct ice_hw *hw = &pf->hw;
1626 	struct device *dev;
1627 	int status;
1628 
1629 	dev = ice_pf_to_dev(pf);
1630 	if (ice_is_safe_mode(pf)) {
1631 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1632 			vsi_num);
1633 		return;
1634 	}
1635 	/* configure RSS for IPv4 with input set IP src/dst */
1636 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1637 				 ICE_FLOW_SEG_HDR_IPV4);
1638 	if (status)
1639 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1640 			vsi_num, status);
1641 
1642 	/* configure RSS for IPv6 with input set IPv6 src/dst */
1643 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1644 				 ICE_FLOW_SEG_HDR_IPV6);
1645 	if (status)
1646 		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1647 			vsi_num, status);
1648 
1649 	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1650 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1651 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1652 	if (status)
1653 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1654 			vsi_num, status);
1655 
1656 	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1657 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1658 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1659 	if (status)
1660 		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1661 			vsi_num, status);
1662 
1663 	/* configure RSS for sctp4 with input set IP src/dst */
1664 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1665 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1666 	if (status)
1667 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1668 			vsi_num, status);
1669 
1670 	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1671 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1672 				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1673 	if (status)
1674 		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1675 			vsi_num, status);
1676 
1677 	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1678 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1679 				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1680 	if (status)
1681 		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1682 			vsi_num, status);
1683 
1684 	/* configure RSS for sctp6 with input set IPv6 src/dst */
1685 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1686 				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1687 	if (status)
1688 		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1689 			vsi_num, status);
1690 
1691 	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1692 				 ICE_FLOW_SEG_HDR_ESP);
1693 	if (status)
1694 		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1695 			vsi_num, status);
1696 }
1697 
1698 /**
1699  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1700  * @vsi: VSI
1701  */
1702 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1703 {
1704 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1705 		vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1706 		vsi->rx_buf_len = ICE_RXBUF_1664;
1707 #if (PAGE_SIZE < 8192)
1708 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1709 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1710 		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1711 		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1712 #endif
1713 	} else {
1714 		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1715 		vsi->rx_buf_len = ICE_RXBUF_3072;
1716 	}
1717 }
1718 
1719 /**
1720  * ice_pf_state_is_nominal - checks the PF for nominal state
1721  * @pf: pointer to PF to check
1722  *
1723  * Check the PF's state for a collection of bits that would indicate
1724  * the PF is in a state that would inhibit normal operation for
1725  * driver functionality.
1726  *
1727  * Returns true if PF is in a nominal state, false otherwise
1728  */
1729 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1730 {
1731 	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1732 
1733 	if (!pf)
1734 		return false;
1735 
1736 	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1737 	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1738 		return false;
1739 
1740 	return true;
1741 }
1742 
1743 /**
1744  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1745  * @vsi: the VSI to be updated
1746  */
1747 void ice_update_eth_stats(struct ice_vsi *vsi)
1748 {
1749 	struct ice_eth_stats *prev_es, *cur_es;
1750 	struct ice_hw *hw = &vsi->back->hw;
1751 	struct ice_pf *pf = vsi->back;
1752 	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1753 
1754 	prev_es = &vsi->eth_stats_prev;
1755 	cur_es = &vsi->eth_stats;
1756 
1757 	if (ice_is_reset_in_progress(pf->state))
1758 		vsi->stat_offsets_loaded = false;
1759 
1760 	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1761 			  &prev_es->rx_bytes, &cur_es->rx_bytes);
1762 
1763 	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1764 			  &prev_es->rx_unicast, &cur_es->rx_unicast);
1765 
1766 	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1767 			  &prev_es->rx_multicast, &cur_es->rx_multicast);
1768 
1769 	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1770 			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1771 
1772 	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1773 			  &prev_es->rx_discards, &cur_es->rx_discards);
1774 
1775 	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1776 			  &prev_es->tx_bytes, &cur_es->tx_bytes);
1777 
1778 	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1779 			  &prev_es->tx_unicast, &cur_es->tx_unicast);
1780 
1781 	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1782 			  &prev_es->tx_multicast, &cur_es->tx_multicast);
1783 
1784 	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1785 			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1786 
1787 	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1788 			  &prev_es->tx_errors, &cur_es->tx_errors);
1789 
1790 	vsi->stat_offsets_loaded = true;
1791 }
1792 
1793 /**
1794  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1795  * @hw: HW pointer
1796  * @pf_q: index of the Rx queue in the PF's queue space
1797  * @rxdid: flexible descriptor RXDID
1798  * @prio: priority for the RXDID for this queue
1799  * @ena_ts: true to enable timestamp and false to disable timestamp
1800  */
1801 void
1802 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1803 			bool ena_ts)
1804 {
1805 	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1806 
1807 	/* clear any previous values */
1808 	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1809 		    QRXFLXP_CNTXT_RXDID_PRIO_M |
1810 		    QRXFLXP_CNTXT_TS_M);
1811 
1812 	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1813 		QRXFLXP_CNTXT_RXDID_IDX_M;
1814 
1815 	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1816 		QRXFLXP_CNTXT_RXDID_PRIO_M;
1817 
1818 	if (ena_ts)
1819 		/* Enable TimeSync on this queue */
1820 		regval |= QRXFLXP_CNTXT_TS_M;
1821 
1822 	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1823 }
1824 
1825 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1826 {
1827 	if (q_idx >= vsi->num_rxq)
1828 		return -EINVAL;
1829 
1830 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1831 }
1832 
1833 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1834 {
1835 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
1836 
1837 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1838 		return -EINVAL;
1839 
1840 	qg_buf->num_txqs = 1;
1841 
1842 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1843 }
1844 
1845 /**
1846  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1847  * @vsi: the VSI being configured
1848  *
1849  * Return 0 on success and a negative value on error
1850  * Configure the Rx VSI for operation.
1851  */
1852 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1853 {
1854 	u16 i;
1855 
1856 	if (vsi->type == ICE_VSI_VF)
1857 		goto setup_rings;
1858 
1859 	ice_vsi_cfg_frame_size(vsi);
1860 setup_rings:
1861 	/* set up individual rings */
1862 	ice_for_each_rxq(vsi, i) {
1863 		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1864 
1865 		if (err)
1866 			return err;
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 /**
1873  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1874  * @vsi: the VSI being configured
1875  * @rings: Tx ring array to be configured
1876  * @count: number of Tx ring array elements
1877  *
1878  * Return 0 on success and a negative value on error
1879  * Configure the Tx VSI for operation.
1880  */
1881 static int
1882 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1883 {
1884 	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
1885 	int err = 0;
1886 	u16 q_idx;
1887 
1888 	qg_buf->num_txqs = 1;
1889 
1890 	for (q_idx = 0; q_idx < count; q_idx++) {
1891 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1892 		if (err)
1893 			break;
1894 	}
1895 
1896 	return err;
1897 }
1898 
1899 /**
1900  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1901  * @vsi: the VSI being configured
1902  *
1903  * Return 0 on success and a negative value on error
1904  * Configure the Tx VSI for operation.
1905  */
1906 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1907 {
1908 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1909 }
1910 
1911 /**
1912  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1913  * @vsi: the VSI being configured
1914  *
1915  * Return 0 on success and a negative value on error
1916  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1917  */
1918 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1919 {
1920 	int ret;
1921 	int i;
1922 
1923 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1924 	if (ret)
1925 		return ret;
1926 
1927 	ice_for_each_rxq(vsi, i)
1928 		ice_tx_xsk_pool(vsi, i);
1929 
1930 	return 0;
1931 }
1932 
1933 /**
1934  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1935  * @intrl: interrupt rate limit in usecs
1936  * @gran: interrupt rate limit granularity in usecs
1937  *
1938  * This function converts a decimal interrupt rate limit in usecs to the format
1939  * expected by firmware.
1940  */
1941 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1942 {
1943 	u32 val = intrl / gran;
1944 
1945 	if (val)
1946 		return val | GLINT_RATE_INTRL_ENA_M;
1947 	return 0;
1948 }
1949 
1950 /**
1951  * ice_write_intrl - write throttle rate limit to interrupt specific register
1952  * @q_vector: pointer to interrupt specific structure
1953  * @intrl: throttle rate limit in microseconds to write
1954  */
1955 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1956 {
1957 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1958 
1959 	wr32(hw, GLINT_RATE(q_vector->reg_idx),
1960 	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1961 }
1962 
1963 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1964 {
1965 	switch (rc->type) {
1966 	case ICE_RX_CONTAINER:
1967 		if (rc->rx_ring)
1968 			return rc->rx_ring->q_vector;
1969 		break;
1970 	case ICE_TX_CONTAINER:
1971 		if (rc->tx_ring)
1972 			return rc->tx_ring->q_vector;
1973 		break;
1974 	default:
1975 		break;
1976 	}
1977 
1978 	return NULL;
1979 }
1980 
1981 /**
1982  * __ice_write_itr - write throttle rate to register
1983  * @q_vector: pointer to interrupt data structure
1984  * @rc: pointer to ring container
1985  * @itr: throttle rate in microseconds to write
1986  */
1987 static void __ice_write_itr(struct ice_q_vector *q_vector,
1988 			    struct ice_ring_container *rc, u16 itr)
1989 {
1990 	struct ice_hw *hw = &q_vector->vsi->back->hw;
1991 
1992 	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1993 	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1994 }
1995 
1996 /**
1997  * ice_write_itr - write throttle rate to queue specific register
1998  * @rc: pointer to ring container
1999  * @itr: throttle rate in microseconds to write
2000  */
2001 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2002 {
2003 	struct ice_q_vector *q_vector;
2004 
2005 	q_vector = ice_pull_qvec_from_rc(rc);
2006 	if (!q_vector)
2007 		return;
2008 
2009 	__ice_write_itr(q_vector, rc, itr);
2010 }
2011 
2012 /**
2013  * ice_set_q_vector_intrl - set up interrupt rate limiting
2014  * @q_vector: the vector to be configured
2015  *
2016  * Interrupt rate limiting is local to the vector, not per-queue so we must
2017  * detect if either ring container has dynamic moderation enabled to decide
2018  * what to set the interrupt rate limit to via INTRL settings. In the case that
2019  * dynamic moderation is disabled on both, write the value with the cached
2020  * setting to make sure INTRL register matches the user visible value.
2021  */
2022 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2023 {
2024 	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2025 		/* in the case of dynamic enabled, cap each vector to no more
2026 		 * than (4 us) 250,000 ints/sec, which allows low latency
2027 		 * but still less than 500,000 interrupts per second, which
2028 		 * reduces CPU a bit in the case of the lowest latency
2029 		 * setting. The 4 here is a value in microseconds.
2030 		 */
2031 		ice_write_intrl(q_vector, 4);
2032 	} else {
2033 		ice_write_intrl(q_vector, q_vector->intrl);
2034 	}
2035 }
2036 
2037 /**
2038  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2039  * @vsi: the VSI being configured
2040  *
2041  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2042  * for the VF VSI.
2043  */
2044 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2045 {
2046 	struct ice_pf *pf = vsi->back;
2047 	struct ice_hw *hw = &pf->hw;
2048 	u16 txq = 0, rxq = 0;
2049 	int i, q;
2050 
2051 	ice_for_each_q_vector(vsi, i) {
2052 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2053 		u16 reg_idx = q_vector->reg_idx;
2054 
2055 		ice_cfg_itr(hw, q_vector);
2056 
2057 		/* Both Transmit Queue Interrupt Cause Control register
2058 		 * and Receive Queue Interrupt Cause control register
2059 		 * expects MSIX_INDX field to be the vector index
2060 		 * within the function space and not the absolute
2061 		 * vector index across PF or across device.
2062 		 * For SR-IOV VF VSIs queue vector index always starts
2063 		 * with 1 since first vector index(0) is used for OICR
2064 		 * in VF space. Since VMDq and other PF VSIs are within
2065 		 * the PF function space, use the vector index that is
2066 		 * tracked for this PF.
2067 		 */
2068 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2069 			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2070 					      q_vector->tx.itr_idx);
2071 			txq++;
2072 		}
2073 
2074 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2075 			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2076 					      q_vector->rx.itr_idx);
2077 			rxq++;
2078 		}
2079 	}
2080 }
2081 
2082 /**
2083  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2084  * @vsi: the VSI whose rings are to be enabled
2085  *
2086  * Returns 0 on success and a negative value on error
2087  */
2088 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2089 {
2090 	return ice_vsi_ctrl_all_rx_rings(vsi, true);
2091 }
2092 
2093 /**
2094  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2095  * @vsi: the VSI whose rings are to be disabled
2096  *
2097  * Returns 0 on success and a negative value on error
2098  */
2099 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2100 {
2101 	return ice_vsi_ctrl_all_rx_rings(vsi, false);
2102 }
2103 
2104 /**
2105  * ice_vsi_stop_tx_rings - Disable Tx rings
2106  * @vsi: the VSI being configured
2107  * @rst_src: reset source
2108  * @rel_vmvf_num: Relative ID of VF/VM
2109  * @rings: Tx ring array to be stopped
2110  * @count: number of Tx ring array elements
2111  */
2112 static int
2113 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2114 		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2115 {
2116 	u16 q_idx;
2117 
2118 	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2119 		return -EINVAL;
2120 
2121 	for (q_idx = 0; q_idx < count; q_idx++) {
2122 		struct ice_txq_meta txq_meta = { };
2123 		int status;
2124 
2125 		if (!rings || !rings[q_idx])
2126 			return -EINVAL;
2127 
2128 		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2129 		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2130 					      rings[q_idx], &txq_meta);
2131 
2132 		if (status)
2133 			return status;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 /**
2140  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2141  * @vsi: the VSI being configured
2142  * @rst_src: reset source
2143  * @rel_vmvf_num: Relative ID of VF/VM
2144  */
2145 int
2146 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2147 			  u16 rel_vmvf_num)
2148 {
2149 	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2150 }
2151 
2152 /**
2153  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2154  * @vsi: the VSI being configured
2155  */
2156 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2157 {
2158 	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2159 }
2160 
2161 /**
2162  * ice_vsi_is_rx_queue_active
2163  * @vsi: the VSI being configured
2164  *
2165  * Return true if at least one queue is active.
2166  */
2167 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2168 {
2169 	struct ice_pf *pf = vsi->back;
2170 	struct ice_hw *hw = &pf->hw;
2171 	int i;
2172 
2173 	ice_for_each_rxq(vsi, i) {
2174 		u32 rx_reg;
2175 		int pf_q;
2176 
2177 		pf_q = vsi->rxq_map[i];
2178 		rx_reg = rd32(hw, QRX_CTRL(pf_q));
2179 		if (rx_reg & QRX_CTRL_QENA_STAT_M)
2180 			return true;
2181 	}
2182 
2183 	return false;
2184 }
2185 
2186 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2187 {
2188 	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2189 		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2190 		vsi->tc_cfg.numtc = 1;
2191 		return;
2192 	}
2193 
2194 	/* set VSI TC information based on DCB config */
2195 	ice_vsi_set_dcb_tc_cfg(vsi);
2196 }
2197 
2198 /**
2199  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2200  * @vsi: the VSI being configured
2201  * @tx: bool to determine Tx or Rx rule
2202  * @create: bool to determine create or remove Rule
2203  */
2204 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2205 {
2206 	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2207 			enum ice_sw_fwd_act_type act);
2208 	struct ice_pf *pf = vsi->back;
2209 	struct device *dev;
2210 	int status;
2211 
2212 	dev = ice_pf_to_dev(pf);
2213 	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2214 
2215 	if (tx) {
2216 		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2217 				  ICE_DROP_PACKET);
2218 	} else {
2219 		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2220 			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2221 							  create);
2222 		} else {
2223 			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2224 					  ICE_FWD_TO_VSI);
2225 		}
2226 	}
2227 
2228 	if (status)
2229 		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2230 			create ? "adding" : "removing", tx ? "TX" : "RX",
2231 			vsi->vsi_num, status);
2232 }
2233 
2234 /**
2235  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2236  * @vsi: pointer to the VSI
2237  *
2238  * This function will allocate new scheduler aggregator now if needed and will
2239  * move specified VSI into it.
2240  */
2241 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2242 {
2243 	struct device *dev = ice_pf_to_dev(vsi->back);
2244 	struct ice_agg_node *agg_node_iter = NULL;
2245 	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2246 	struct ice_agg_node *agg_node = NULL;
2247 	int node_offset, max_agg_nodes = 0;
2248 	struct ice_port_info *port_info;
2249 	struct ice_pf *pf = vsi->back;
2250 	u32 agg_node_id_start = 0;
2251 	int status;
2252 
2253 	/* create (as needed) scheduler aggregator node and move VSI into
2254 	 * corresponding aggregator node
2255 	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2256 	 * - VF aggregator nodes will contain VF VSI
2257 	 */
2258 	port_info = pf->hw.port_info;
2259 	if (!port_info)
2260 		return;
2261 
2262 	switch (vsi->type) {
2263 	case ICE_VSI_CTRL:
2264 	case ICE_VSI_CHNL:
2265 	case ICE_VSI_LB:
2266 	case ICE_VSI_PF:
2267 	case ICE_VSI_SWITCHDEV_CTRL:
2268 		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2269 		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2270 		agg_node_iter = &pf->pf_agg_node[0];
2271 		break;
2272 	case ICE_VSI_VF:
2273 		/* user can create 'n' VFs on a given PF, but since max children
2274 		 * per aggregator node can be only 64. Following code handles
2275 		 * aggregator(s) for VF VSIs, either selects a agg_node which
2276 		 * was already created provided num_vsis < 64, otherwise
2277 		 * select next available node, which will be created
2278 		 */
2279 		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2280 		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2281 		agg_node_iter = &pf->vf_agg_node[0];
2282 		break;
2283 	default:
2284 		/* other VSI type, handle later if needed */
2285 		dev_dbg(dev, "unexpected VSI type %s\n",
2286 			ice_vsi_type_str(vsi->type));
2287 		return;
2288 	}
2289 
2290 	/* find the appropriate aggregator node */
2291 	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2292 		/* see if we can find space in previously created
2293 		 * node if num_vsis < 64, otherwise skip
2294 		 */
2295 		if (agg_node_iter->num_vsis &&
2296 		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2297 			agg_node_iter++;
2298 			continue;
2299 		}
2300 
2301 		if (agg_node_iter->valid &&
2302 		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2303 			agg_id = agg_node_iter->agg_id;
2304 			agg_node = agg_node_iter;
2305 			break;
2306 		}
2307 
2308 		/* find unclaimed agg_id */
2309 		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2310 			agg_id = node_offset + agg_node_id_start;
2311 			agg_node = agg_node_iter;
2312 			break;
2313 		}
2314 		/* move to next agg_node */
2315 		agg_node_iter++;
2316 	}
2317 
2318 	if (!agg_node)
2319 		return;
2320 
2321 	/* if selected aggregator node was not created, create it */
2322 	if (!agg_node->valid) {
2323 		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2324 				     (u8)vsi->tc_cfg.ena_tc);
2325 		if (status) {
2326 			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2327 				agg_id);
2328 			return;
2329 		}
2330 		/* aggregator node is created, store the needed info */
2331 		agg_node->valid = true;
2332 		agg_node->agg_id = agg_id;
2333 	}
2334 
2335 	/* move VSI to corresponding aggregator node */
2336 	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2337 				     (u8)vsi->tc_cfg.ena_tc);
2338 	if (status) {
2339 		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2340 			vsi->idx, agg_id);
2341 		return;
2342 	}
2343 
2344 	/* keep active children count for aggregator node */
2345 	agg_node->num_vsis++;
2346 
2347 	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2348 	 * to aggregator node
2349 	 */
2350 	vsi->agg_node = agg_node;
2351 	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2352 		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2353 		vsi->agg_node->num_vsis);
2354 }
2355 
2356 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2357 {
2358 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2359 	struct device *dev = ice_pf_to_dev(pf);
2360 	int ret, i;
2361 
2362 	/* configure VSI nodes based on number of queues and TC's */
2363 	ice_for_each_traffic_class(i) {
2364 		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2365 			continue;
2366 
2367 		if (vsi->type == ICE_VSI_CHNL) {
2368 			if (!vsi->alloc_txq && vsi->num_txq)
2369 				max_txqs[i] = vsi->num_txq;
2370 			else
2371 				max_txqs[i] = pf->num_lan_tx;
2372 		} else {
2373 			max_txqs[i] = vsi->alloc_txq;
2374 		}
2375 	}
2376 
2377 	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2378 	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2379 			      max_txqs);
2380 	if (ret) {
2381 		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2382 			vsi->vsi_num, ret);
2383 		return ret;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /**
2390  * ice_vsi_cfg_def - configure default VSI based on the type
2391  * @vsi: pointer to VSI
2392  * @params: the parameters to configure this VSI with
2393  */
2394 static int
2395 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2396 {
2397 	struct device *dev = ice_pf_to_dev(vsi->back);
2398 	struct ice_pf *pf = vsi->back;
2399 	int ret;
2400 
2401 	vsi->vsw = pf->first_sw;
2402 
2403 	ret = ice_vsi_alloc_def(vsi, params->ch);
2404 	if (ret)
2405 		return ret;
2406 
2407 	/* allocate memory for Tx/Rx ring stat pointers */
2408 	ret = ice_vsi_alloc_stat_arrays(vsi);
2409 	if (ret)
2410 		goto unroll_vsi_alloc;
2411 
2412 	ice_alloc_fd_res(vsi);
2413 
2414 	ret = ice_vsi_get_qs(vsi);
2415 	if (ret) {
2416 		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2417 			vsi->idx);
2418 		goto unroll_vsi_alloc_stat;
2419 	}
2420 
2421 	/* set RSS capabilities */
2422 	ice_vsi_set_rss_params(vsi);
2423 
2424 	/* set TC configuration */
2425 	ice_vsi_set_tc_cfg(vsi);
2426 
2427 	/* create the VSI */
2428 	ret = ice_vsi_init(vsi, params->flags);
2429 	if (ret)
2430 		goto unroll_get_qs;
2431 
2432 	ice_vsi_init_vlan_ops(vsi);
2433 
2434 	switch (vsi->type) {
2435 	case ICE_VSI_CTRL:
2436 	case ICE_VSI_SWITCHDEV_CTRL:
2437 	case ICE_VSI_PF:
2438 		ret = ice_vsi_alloc_q_vectors(vsi);
2439 		if (ret)
2440 			goto unroll_vsi_init;
2441 
2442 		ret = ice_vsi_alloc_rings(vsi);
2443 		if (ret)
2444 			goto unroll_vector_base;
2445 
2446 		ret = ice_vsi_alloc_ring_stats(vsi);
2447 		if (ret)
2448 			goto unroll_vector_base;
2449 
2450 		ice_vsi_map_rings_to_vectors(vsi);
2451 		vsi->stat_offsets_loaded = false;
2452 
2453 		if (ice_is_xdp_ena_vsi(vsi)) {
2454 			ret = ice_vsi_determine_xdp_res(vsi);
2455 			if (ret)
2456 				goto unroll_vector_base;
2457 			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2458 			if (ret)
2459 				goto unroll_vector_base;
2460 		}
2461 
2462 		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2463 		if (vsi->type != ICE_VSI_CTRL)
2464 			/* Do not exit if configuring RSS had an issue, at
2465 			 * least receive traffic on first queue. Hence no
2466 			 * need to capture return value
2467 			 */
2468 			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2469 				ice_vsi_cfg_rss_lut_key(vsi);
2470 				ice_vsi_set_rss_flow_fld(vsi);
2471 			}
2472 		ice_init_arfs(vsi);
2473 		break;
2474 	case ICE_VSI_CHNL:
2475 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2476 			ice_vsi_cfg_rss_lut_key(vsi);
2477 			ice_vsi_set_rss_flow_fld(vsi);
2478 		}
2479 		break;
2480 	case ICE_VSI_VF:
2481 		/* VF driver will take care of creating netdev for this type and
2482 		 * map queues to vectors through Virtchnl, PF driver only
2483 		 * creates a VSI and corresponding structures for bookkeeping
2484 		 * purpose
2485 		 */
2486 		ret = ice_vsi_alloc_q_vectors(vsi);
2487 		if (ret)
2488 			goto unroll_vsi_init;
2489 
2490 		ret = ice_vsi_alloc_rings(vsi);
2491 		if (ret)
2492 			goto unroll_alloc_q_vector;
2493 
2494 		ret = ice_vsi_alloc_ring_stats(vsi);
2495 		if (ret)
2496 			goto unroll_vector_base;
2497 
2498 		vsi->stat_offsets_loaded = false;
2499 
2500 		/* Do not exit if configuring RSS had an issue, at least
2501 		 * receive traffic on first queue. Hence no need to capture
2502 		 * return value
2503 		 */
2504 		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2505 			ice_vsi_cfg_rss_lut_key(vsi);
2506 			ice_vsi_set_vf_rss_flow_fld(vsi);
2507 		}
2508 		break;
2509 	case ICE_VSI_LB:
2510 		ret = ice_vsi_alloc_rings(vsi);
2511 		if (ret)
2512 			goto unroll_vsi_init;
2513 
2514 		ret = ice_vsi_alloc_ring_stats(vsi);
2515 		if (ret)
2516 			goto unroll_vector_base;
2517 
2518 		break;
2519 	default:
2520 		/* clean up the resources and exit */
2521 		ret = -EINVAL;
2522 		goto unroll_vsi_init;
2523 	}
2524 
2525 	return 0;
2526 
2527 unroll_vector_base:
2528 	/* reclaim SW interrupts back to the common pool */
2529 unroll_alloc_q_vector:
2530 	ice_vsi_free_q_vectors(vsi);
2531 unroll_vsi_init:
2532 	ice_vsi_delete_from_hw(vsi);
2533 unroll_get_qs:
2534 	ice_vsi_put_qs(vsi);
2535 unroll_vsi_alloc_stat:
2536 	ice_vsi_free_stats(vsi);
2537 unroll_vsi_alloc:
2538 	ice_vsi_free_arrays(vsi);
2539 	return ret;
2540 }
2541 
2542 /**
2543  * ice_vsi_cfg - configure a previously allocated VSI
2544  * @vsi: pointer to VSI
2545  * @params: parameters used to configure this VSI
2546  */
2547 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2548 {
2549 	struct ice_pf *pf = vsi->back;
2550 	int ret;
2551 
2552 	if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2553 		return -EINVAL;
2554 
2555 	vsi->type = params->type;
2556 	vsi->port_info = params->pi;
2557 
2558 	/* For VSIs which don't have a connected VF, this will be NULL */
2559 	vsi->vf = params->vf;
2560 
2561 	ret = ice_vsi_cfg_def(vsi, params);
2562 	if (ret)
2563 		return ret;
2564 
2565 	ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2566 	if (ret)
2567 		ice_vsi_decfg(vsi);
2568 
2569 	if (vsi->type == ICE_VSI_CTRL) {
2570 		if (vsi->vf) {
2571 			WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2572 			vsi->vf->ctrl_vsi_idx = vsi->idx;
2573 		} else {
2574 			WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2575 			pf->ctrl_vsi_idx = vsi->idx;
2576 		}
2577 	}
2578 
2579 	return ret;
2580 }
2581 
2582 /**
2583  * ice_vsi_decfg - remove all VSI configuration
2584  * @vsi: pointer to VSI
2585  */
2586 void ice_vsi_decfg(struct ice_vsi *vsi)
2587 {
2588 	struct ice_pf *pf = vsi->back;
2589 	int err;
2590 
2591 	/* The Rx rule will only exist to remove if the LLDP FW
2592 	 * engine is currently stopped
2593 	 */
2594 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2595 	    !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2596 		ice_cfg_sw_lldp(vsi, false, false);
2597 
2598 	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2599 	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2600 	if (err)
2601 		dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2602 			vsi->vsi_num, err);
2603 
2604 	if (ice_is_xdp_ena_vsi(vsi))
2605 		/* return value check can be skipped here, it always returns
2606 		 * 0 if reset is in progress
2607 		 */
2608 		ice_destroy_xdp_rings(vsi);
2609 
2610 	ice_vsi_clear_rings(vsi);
2611 	ice_vsi_free_q_vectors(vsi);
2612 	ice_vsi_put_qs(vsi);
2613 	ice_vsi_free_arrays(vsi);
2614 
2615 	/* SR-IOV determines needed MSIX resources all at once instead of per
2616 	 * VSI since when VFs are spawned we know how many VFs there are and how
2617 	 * many interrupts each VF needs. SR-IOV MSIX resources are also
2618 	 * cleared in the same manner.
2619 	 */
2620 
2621 	if (vsi->type == ICE_VSI_VF &&
2622 	    vsi->agg_node && vsi->agg_node->valid)
2623 		vsi->agg_node->num_vsis--;
2624 	if (vsi->agg_node) {
2625 		vsi->agg_node->valid = false;
2626 		vsi->agg_node->agg_id = 0;
2627 	}
2628 }
2629 
2630 /**
2631  * ice_vsi_setup - Set up a VSI by a given type
2632  * @pf: board private structure
2633  * @params: parameters to use when creating the VSI
2634  *
2635  * This allocates the sw VSI structure and its queue resources.
2636  *
2637  * Returns pointer to the successfully allocated and configured VSI sw struct on
2638  * success, NULL on failure.
2639  */
2640 struct ice_vsi *
2641 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2642 {
2643 	struct device *dev = ice_pf_to_dev(pf);
2644 	struct ice_vsi *vsi;
2645 	int ret;
2646 
2647 	/* ice_vsi_setup can only initialize a new VSI, and we must have
2648 	 * a port_info structure for it.
2649 	 */
2650 	if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2651 	    WARN_ON(!params->pi))
2652 		return NULL;
2653 
2654 	vsi = ice_vsi_alloc(pf);
2655 	if (!vsi) {
2656 		dev_err(dev, "could not allocate VSI\n");
2657 		return NULL;
2658 	}
2659 
2660 	ret = ice_vsi_cfg(vsi, params);
2661 	if (ret)
2662 		goto err_vsi_cfg;
2663 
2664 	/* Add switch rule to drop all Tx Flow Control Frames, of look up
2665 	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2666 	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2667 	 * The rule is added once for PF VSI in order to create appropriate
2668 	 * recipe, since VSI/VSI list is ignored with drop action...
2669 	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2670 	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2671 	 * settings in the HW.
2672 	 */
2673 	if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2674 		ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2675 				 ICE_DROP_PACKET);
2676 		ice_cfg_sw_lldp(vsi, true, true);
2677 	}
2678 
2679 	if (!vsi->agg_node)
2680 		ice_set_agg_vsi(vsi);
2681 
2682 	return vsi;
2683 
2684 err_vsi_cfg:
2685 	ice_vsi_free(vsi);
2686 
2687 	return NULL;
2688 }
2689 
2690 /**
2691  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2692  * @vsi: the VSI being cleaned up
2693  */
2694 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2695 {
2696 	struct ice_pf *pf = vsi->back;
2697 	struct ice_hw *hw = &pf->hw;
2698 	u32 txq = 0;
2699 	u32 rxq = 0;
2700 	int i, q;
2701 
2702 	ice_for_each_q_vector(vsi, i) {
2703 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2704 
2705 		ice_write_intrl(q_vector, 0);
2706 		for (q = 0; q < q_vector->num_ring_tx; q++) {
2707 			ice_write_itr(&q_vector->tx, 0);
2708 			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2709 			if (ice_is_xdp_ena_vsi(vsi)) {
2710 				u32 xdp_txq = txq + vsi->num_xdp_txq;
2711 
2712 				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2713 			}
2714 			txq++;
2715 		}
2716 
2717 		for (q = 0; q < q_vector->num_ring_rx; q++) {
2718 			ice_write_itr(&q_vector->rx, 0);
2719 			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2720 			rxq++;
2721 		}
2722 	}
2723 
2724 	ice_flush(hw);
2725 }
2726 
2727 /**
2728  * ice_vsi_free_irq - Free the IRQ association with the OS
2729  * @vsi: the VSI being configured
2730  */
2731 void ice_vsi_free_irq(struct ice_vsi *vsi)
2732 {
2733 	struct ice_pf *pf = vsi->back;
2734 	int i;
2735 
2736 	if (!vsi->q_vectors || !vsi->irqs_ready)
2737 		return;
2738 
2739 	ice_vsi_release_msix(vsi);
2740 	if (vsi->type == ICE_VSI_VF)
2741 		return;
2742 
2743 	vsi->irqs_ready = false;
2744 	ice_free_cpu_rx_rmap(vsi);
2745 
2746 	ice_for_each_q_vector(vsi, i) {
2747 		int irq_num;
2748 
2749 		irq_num = vsi->q_vectors[i]->irq.virq;
2750 
2751 		/* free only the irqs that were actually requested */
2752 		if (!vsi->q_vectors[i] ||
2753 		    !(vsi->q_vectors[i]->num_ring_tx ||
2754 		      vsi->q_vectors[i]->num_ring_rx))
2755 			continue;
2756 
2757 		/* clear the affinity notifier in the IRQ descriptor */
2758 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2759 			irq_set_affinity_notifier(irq_num, NULL);
2760 
2761 		/* clear the affinity_mask in the IRQ descriptor */
2762 		irq_set_affinity_hint(irq_num, NULL);
2763 		synchronize_irq(irq_num);
2764 		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2765 	}
2766 }
2767 
2768 /**
2769  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2770  * @vsi: the VSI having resources freed
2771  */
2772 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2773 {
2774 	int i;
2775 
2776 	if (!vsi->tx_rings)
2777 		return;
2778 
2779 	ice_for_each_txq(vsi, i)
2780 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2781 			ice_free_tx_ring(vsi->tx_rings[i]);
2782 }
2783 
2784 /**
2785  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2786  * @vsi: the VSI having resources freed
2787  */
2788 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2789 {
2790 	int i;
2791 
2792 	if (!vsi->rx_rings)
2793 		return;
2794 
2795 	ice_for_each_rxq(vsi, i)
2796 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2797 			ice_free_rx_ring(vsi->rx_rings[i]);
2798 }
2799 
2800 /**
2801  * ice_vsi_close - Shut down a VSI
2802  * @vsi: the VSI being shut down
2803  */
2804 void ice_vsi_close(struct ice_vsi *vsi)
2805 {
2806 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2807 		ice_down(vsi);
2808 
2809 	ice_vsi_free_irq(vsi);
2810 	ice_vsi_free_tx_rings(vsi);
2811 	ice_vsi_free_rx_rings(vsi);
2812 }
2813 
2814 /**
2815  * ice_ena_vsi - resume a VSI
2816  * @vsi: the VSI being resume
2817  * @locked: is the rtnl_lock already held
2818  */
2819 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2820 {
2821 	int err = 0;
2822 
2823 	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2824 		return 0;
2825 
2826 	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2827 
2828 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2829 		if (netif_running(vsi->netdev)) {
2830 			if (!locked)
2831 				rtnl_lock();
2832 
2833 			err = ice_open_internal(vsi->netdev);
2834 
2835 			if (!locked)
2836 				rtnl_unlock();
2837 		}
2838 	} else if (vsi->type == ICE_VSI_CTRL) {
2839 		err = ice_vsi_open_ctrl(vsi);
2840 	}
2841 
2842 	return err;
2843 }
2844 
2845 /**
2846  * ice_dis_vsi - pause a VSI
2847  * @vsi: the VSI being paused
2848  * @locked: is the rtnl_lock already held
2849  */
2850 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2851 {
2852 	if (test_bit(ICE_VSI_DOWN, vsi->state))
2853 		return;
2854 
2855 	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2856 
2857 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2858 		if (netif_running(vsi->netdev)) {
2859 			if (!locked)
2860 				rtnl_lock();
2861 
2862 			ice_vsi_close(vsi);
2863 
2864 			if (!locked)
2865 				rtnl_unlock();
2866 		} else {
2867 			ice_vsi_close(vsi);
2868 		}
2869 	} else if (vsi->type == ICE_VSI_CTRL ||
2870 		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2871 		ice_vsi_close(vsi);
2872 	}
2873 }
2874 
2875 /**
2876  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2877  * @vsi: the VSI being un-configured
2878  */
2879 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2880 {
2881 	struct ice_pf *pf = vsi->back;
2882 	struct ice_hw *hw = &pf->hw;
2883 	u32 val;
2884 	int i;
2885 
2886 	/* disable interrupt causation from each queue */
2887 	if (vsi->tx_rings) {
2888 		ice_for_each_txq(vsi, i) {
2889 			if (vsi->tx_rings[i]) {
2890 				u16 reg;
2891 
2892 				reg = vsi->tx_rings[i]->reg_idx;
2893 				val = rd32(hw, QINT_TQCTL(reg));
2894 				val &= ~QINT_TQCTL_CAUSE_ENA_M;
2895 				wr32(hw, QINT_TQCTL(reg), val);
2896 			}
2897 		}
2898 	}
2899 
2900 	if (vsi->rx_rings) {
2901 		ice_for_each_rxq(vsi, i) {
2902 			if (vsi->rx_rings[i]) {
2903 				u16 reg;
2904 
2905 				reg = vsi->rx_rings[i]->reg_idx;
2906 				val = rd32(hw, QINT_RQCTL(reg));
2907 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
2908 				wr32(hw, QINT_RQCTL(reg), val);
2909 			}
2910 		}
2911 	}
2912 
2913 	/* disable each interrupt */
2914 	ice_for_each_q_vector(vsi, i) {
2915 		if (!vsi->q_vectors[i])
2916 			continue;
2917 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2918 	}
2919 
2920 	ice_flush(hw);
2921 
2922 	/* don't call synchronize_irq() for VF's from the host */
2923 	if (vsi->type == ICE_VSI_VF)
2924 		return;
2925 
2926 	ice_for_each_q_vector(vsi, i)
2927 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
2928 }
2929 
2930 /**
2931  * ice_vsi_release - Delete a VSI and free its resources
2932  * @vsi: the VSI being removed
2933  *
2934  * Returns 0 on success or < 0 on error
2935  */
2936 int ice_vsi_release(struct ice_vsi *vsi)
2937 {
2938 	struct ice_pf *pf;
2939 
2940 	if (!vsi->back)
2941 		return -ENODEV;
2942 	pf = vsi->back;
2943 
2944 	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2945 		ice_rss_clean(vsi);
2946 
2947 	ice_vsi_close(vsi);
2948 	ice_vsi_decfg(vsi);
2949 
2950 	/* retain SW VSI data structure since it is needed to unregister and
2951 	 * free VSI netdev when PF is not in reset recovery pending state,\
2952 	 * for ex: during rmmod.
2953 	 */
2954 	if (!ice_is_reset_in_progress(pf->state))
2955 		ice_vsi_delete(vsi);
2956 
2957 	return 0;
2958 }
2959 
2960 /**
2961  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2962  * @vsi: VSI connected with q_vectors
2963  * @coalesce: array of struct with stored coalesce
2964  *
2965  * Returns array size.
2966  */
2967 static int
2968 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2969 			     struct ice_coalesce_stored *coalesce)
2970 {
2971 	int i;
2972 
2973 	ice_for_each_q_vector(vsi, i) {
2974 		struct ice_q_vector *q_vector = vsi->q_vectors[i];
2975 
2976 		coalesce[i].itr_tx = q_vector->tx.itr_settings;
2977 		coalesce[i].itr_rx = q_vector->rx.itr_settings;
2978 		coalesce[i].intrl = q_vector->intrl;
2979 
2980 		if (i < vsi->num_txq)
2981 			coalesce[i].tx_valid = true;
2982 		if (i < vsi->num_rxq)
2983 			coalesce[i].rx_valid = true;
2984 	}
2985 
2986 	return vsi->num_q_vectors;
2987 }
2988 
2989 /**
2990  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2991  * @vsi: VSI connected with q_vectors
2992  * @coalesce: pointer to array of struct with stored coalesce
2993  * @size: size of coalesce array
2994  *
2995  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2996  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2997  * to default value.
2998  */
2999 static void
3000 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3001 			     struct ice_coalesce_stored *coalesce, int size)
3002 {
3003 	struct ice_ring_container *rc;
3004 	int i;
3005 
3006 	if ((size && !coalesce) || !vsi)
3007 		return;
3008 
3009 	/* There are a couple of cases that have to be handled here:
3010 	 *   1. The case where the number of queue vectors stays the same, but
3011 	 *      the number of Tx or Rx rings changes (the first for loop)
3012 	 *   2. The case where the number of queue vectors increased (the
3013 	 *      second for loop)
3014 	 */
3015 	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3016 		/* There are 2 cases to handle here and they are the same for
3017 		 * both Tx and Rx:
3018 		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
3019 		 *   and the loop variable is less than the number of rings
3020 		 *   allocated, then write the previous values
3021 		 *
3022 		 *   if the entry was not valid previously, but the number of
3023 		 *   rings is less than are allocated (this means the number of
3024 		 *   rings increased from previously), then write out the
3025 		 *   values in the first element
3026 		 *
3027 		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3028 		 *   as there is no harm because the dynamic algorithm
3029 		 *   will just overwrite.
3030 		 */
3031 		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3032 			rc = &vsi->q_vectors[i]->rx;
3033 			rc->itr_settings = coalesce[i].itr_rx;
3034 			ice_write_itr(rc, rc->itr_setting);
3035 		} else if (i < vsi->alloc_rxq) {
3036 			rc = &vsi->q_vectors[i]->rx;
3037 			rc->itr_settings = coalesce[0].itr_rx;
3038 			ice_write_itr(rc, rc->itr_setting);
3039 		}
3040 
3041 		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3042 			rc = &vsi->q_vectors[i]->tx;
3043 			rc->itr_settings = coalesce[i].itr_tx;
3044 			ice_write_itr(rc, rc->itr_setting);
3045 		} else if (i < vsi->alloc_txq) {
3046 			rc = &vsi->q_vectors[i]->tx;
3047 			rc->itr_settings = coalesce[0].itr_tx;
3048 			ice_write_itr(rc, rc->itr_setting);
3049 		}
3050 
3051 		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3052 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3053 	}
3054 
3055 	/* the number of queue vectors increased so write whatever is in
3056 	 * the first element
3057 	 */
3058 	for (; i < vsi->num_q_vectors; i++) {
3059 		/* transmit */
3060 		rc = &vsi->q_vectors[i]->tx;
3061 		rc->itr_settings = coalesce[0].itr_tx;
3062 		ice_write_itr(rc, rc->itr_setting);
3063 
3064 		/* receive */
3065 		rc = &vsi->q_vectors[i]->rx;
3066 		rc->itr_settings = coalesce[0].itr_rx;
3067 		ice_write_itr(rc, rc->itr_setting);
3068 
3069 		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3070 		ice_set_q_vector_intrl(vsi->q_vectors[i]);
3071 	}
3072 }
3073 
3074 /**
3075  * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3076  * @vsi: VSI pointer
3077  * @prev_txq: Number of Tx rings before ring reallocation
3078  * @prev_rxq: Number of Rx rings before ring reallocation
3079  */
3080 static void
3081 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3082 {
3083 	struct ice_vsi_stats *vsi_stat;
3084 	struct ice_pf *pf = vsi->back;
3085 	int i;
3086 
3087 	if (!prev_txq || !prev_rxq)
3088 		return;
3089 	if (vsi->type == ICE_VSI_CHNL)
3090 		return;
3091 
3092 	vsi_stat = pf->vsi_stats[vsi->idx];
3093 
3094 	if (vsi->num_txq < prev_txq) {
3095 		for (i = vsi->num_txq; i < prev_txq; i++) {
3096 			if (vsi_stat->tx_ring_stats[i]) {
3097 				kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3098 				WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3099 			}
3100 		}
3101 	}
3102 
3103 	if (vsi->num_rxq < prev_rxq) {
3104 		for (i = vsi->num_rxq; i < prev_rxq; i++) {
3105 			if (vsi_stat->rx_ring_stats[i]) {
3106 				kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3107 				WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3108 			}
3109 		}
3110 	}
3111 }
3112 
3113 /**
3114  * ice_vsi_rebuild - Rebuild VSI after reset
3115  * @vsi: VSI to be rebuild
3116  * @vsi_flags: flags used for VSI rebuild flow
3117  *
3118  * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3119  * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3120  *
3121  * Returns 0 on success and negative value on failure
3122  */
3123 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3124 {
3125 	struct ice_vsi_cfg_params params = {};
3126 	struct ice_coalesce_stored *coalesce;
3127 	int ret, prev_txq, prev_rxq;
3128 	int prev_num_q_vectors = 0;
3129 	struct ice_pf *pf;
3130 
3131 	if (!vsi)
3132 		return -EINVAL;
3133 
3134 	params = ice_vsi_to_params(vsi);
3135 	params.flags = vsi_flags;
3136 
3137 	pf = vsi->back;
3138 	if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3139 		return -EINVAL;
3140 
3141 	coalesce = kcalloc(vsi->num_q_vectors,
3142 			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3143 	if (!coalesce)
3144 		return -ENOMEM;
3145 
3146 	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3147 
3148 	prev_txq = vsi->num_txq;
3149 	prev_rxq = vsi->num_rxq;
3150 
3151 	ice_vsi_decfg(vsi);
3152 	ret = ice_vsi_cfg_def(vsi, &params);
3153 	if (ret)
3154 		goto err_vsi_cfg;
3155 
3156 	ret = ice_vsi_cfg_tc_lan(pf, vsi);
3157 	if (ret) {
3158 		if (vsi_flags & ICE_VSI_FLAG_INIT) {
3159 			ret = -EIO;
3160 			goto err_vsi_cfg_tc_lan;
3161 		}
3162 
3163 		kfree(coalesce);
3164 		return ice_schedule_reset(pf, ICE_RESET_PFR);
3165 	}
3166 
3167 	ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq);
3168 
3169 	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3170 	kfree(coalesce);
3171 
3172 	return 0;
3173 
3174 err_vsi_cfg_tc_lan:
3175 	ice_vsi_decfg(vsi);
3176 err_vsi_cfg:
3177 	kfree(coalesce);
3178 	return ret;
3179 }
3180 
3181 /**
3182  * ice_is_reset_in_progress - check for a reset in progress
3183  * @state: PF state field
3184  */
3185 bool ice_is_reset_in_progress(unsigned long *state)
3186 {
3187 	return test_bit(ICE_RESET_OICR_RECV, state) ||
3188 	       test_bit(ICE_PFR_REQ, state) ||
3189 	       test_bit(ICE_CORER_REQ, state) ||
3190 	       test_bit(ICE_GLOBR_REQ, state);
3191 }
3192 
3193 /**
3194  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3195  * @pf: pointer to the PF structure
3196  * @timeout: length of time to wait, in jiffies
3197  *
3198  * Wait (sleep) for a short time until the driver finishes cleaning up from
3199  * a device reset. The caller must be able to sleep. Use this to delay
3200  * operations that could fail while the driver is cleaning up after a device
3201  * reset.
3202  *
3203  * Returns 0 on success, -EBUSY if the reset is not finished within the
3204  * timeout, and -ERESTARTSYS if the thread was interrupted.
3205  */
3206 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3207 {
3208 	long ret;
3209 
3210 	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3211 					       !ice_is_reset_in_progress(pf->state),
3212 					       timeout);
3213 	if (ret < 0)
3214 		return ret;
3215 	else if (!ret)
3216 		return -EBUSY;
3217 	else
3218 		return 0;
3219 }
3220 
3221 /**
3222  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3223  * @vsi: VSI being configured
3224  * @ctx: the context buffer returned from AQ VSI update command
3225  */
3226 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3227 {
3228 	vsi->info.mapping_flags = ctx->info.mapping_flags;
3229 	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3230 	       sizeof(vsi->info.q_mapping));
3231 	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3232 	       sizeof(vsi->info.tc_mapping));
3233 }
3234 
3235 /**
3236  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3237  * @vsi: the VSI being configured
3238  * @ena_tc: TC map to be enabled
3239  */
3240 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3241 {
3242 	struct net_device *netdev = vsi->netdev;
3243 	struct ice_pf *pf = vsi->back;
3244 	int numtc = vsi->tc_cfg.numtc;
3245 	struct ice_dcbx_cfg *dcbcfg;
3246 	u8 netdev_tc;
3247 	int i;
3248 
3249 	if (!netdev)
3250 		return;
3251 
3252 	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3253 	if (vsi->type == ICE_VSI_CHNL)
3254 		return;
3255 
3256 	if (!ena_tc) {
3257 		netdev_reset_tc(netdev);
3258 		return;
3259 	}
3260 
3261 	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3262 		numtc = vsi->all_numtc;
3263 
3264 	if (netdev_set_num_tc(netdev, numtc))
3265 		return;
3266 
3267 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3268 
3269 	ice_for_each_traffic_class(i)
3270 		if (vsi->tc_cfg.ena_tc & BIT(i))
3271 			netdev_set_tc_queue(netdev,
3272 					    vsi->tc_cfg.tc_info[i].netdev_tc,
3273 					    vsi->tc_cfg.tc_info[i].qcount_tx,
3274 					    vsi->tc_cfg.tc_info[i].qoffset);
3275 	/* setup TC queue map for CHNL TCs */
3276 	ice_for_each_chnl_tc(i) {
3277 		if (!(vsi->all_enatc & BIT(i)))
3278 			break;
3279 		if (!vsi->mqprio_qopt.qopt.count[i])
3280 			break;
3281 		netdev_set_tc_queue(netdev, i,
3282 				    vsi->mqprio_qopt.qopt.count[i],
3283 				    vsi->mqprio_qopt.qopt.offset[i]);
3284 	}
3285 
3286 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3287 		return;
3288 
3289 	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3290 		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3291 
3292 		/* Get the mapped netdev TC# for the UP */
3293 		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3294 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
3295 	}
3296 }
3297 
3298 /**
3299  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3300  * @vsi: the VSI being configured,
3301  * @ctxt: VSI context structure
3302  * @ena_tc: number of traffic classes to enable
3303  *
3304  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3305  */
3306 static int
3307 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3308 			   u8 ena_tc)
3309 {
3310 	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3311 	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3312 	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3313 	u16 new_txq, new_rxq;
3314 	u8 netdev_tc = 0;
3315 	int i;
3316 
3317 	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3318 
3319 	pow = order_base_2(tc0_qcount);
3320 	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3321 		ICE_AQ_VSI_TC_Q_OFFSET_M) |
3322 		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3323 
3324 	ice_for_each_traffic_class(i) {
3325 		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3326 			/* TC is not enabled */
3327 			vsi->tc_cfg.tc_info[i].qoffset = 0;
3328 			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3329 			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3330 			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3331 			ctxt->info.tc_mapping[i] = 0;
3332 			continue;
3333 		}
3334 
3335 		offset = vsi->mqprio_qopt.qopt.offset[i];
3336 		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3337 		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3338 		vsi->tc_cfg.tc_info[i].qoffset = offset;
3339 		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3340 		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3341 		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3342 	}
3343 
3344 	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3345 		ice_for_each_chnl_tc(i) {
3346 			if (!(vsi->all_enatc & BIT(i)))
3347 				continue;
3348 			offset = vsi->mqprio_qopt.qopt.offset[i];
3349 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3350 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3351 		}
3352 	}
3353 
3354 	new_txq = offset + qcount_tx;
3355 	if (new_txq > vsi->alloc_txq) {
3356 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3357 			new_txq, vsi->alloc_txq);
3358 		return -EINVAL;
3359 	}
3360 
3361 	new_rxq = offset + qcount_rx;
3362 	if (new_rxq > vsi->alloc_rxq) {
3363 		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3364 			new_rxq, vsi->alloc_rxq);
3365 		return -EINVAL;
3366 	}
3367 
3368 	/* Set actual Tx/Rx queue pairs */
3369 	vsi->num_txq = new_txq;
3370 	vsi->num_rxq = new_rxq;
3371 
3372 	/* Setup queue TC[0].qmap for given VSI context */
3373 	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3374 	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3375 	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3376 
3377 	/* Find queue count available for channel VSIs and starting offset
3378 	 * for channel VSIs
3379 	 */
3380 	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3381 		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3382 		vsi->next_base_q = tc0_qcount;
3383 	}
3384 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3385 	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3386 	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3387 		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3388 
3389 	return 0;
3390 }
3391 
3392 /**
3393  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3394  * @vsi: VSI to be configured
3395  * @ena_tc: TC bitmap
3396  *
3397  * VSI queues expected to be quiesced before calling this function
3398  */
3399 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3400 {
3401 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3402 	struct ice_pf *pf = vsi->back;
3403 	struct ice_tc_cfg old_tc_cfg;
3404 	struct ice_vsi_ctx *ctx;
3405 	struct device *dev;
3406 	int i, ret = 0;
3407 	u8 num_tc = 0;
3408 
3409 	dev = ice_pf_to_dev(pf);
3410 	if (vsi->tc_cfg.ena_tc == ena_tc &&
3411 	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3412 		return 0;
3413 
3414 	ice_for_each_traffic_class(i) {
3415 		/* build bitmap of enabled TCs */
3416 		if (ena_tc & BIT(i))
3417 			num_tc++;
3418 		/* populate max_txqs per TC */
3419 		max_txqs[i] = vsi->alloc_txq;
3420 		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3421 		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3422 		 */
3423 		if (vsi->type == ICE_VSI_CHNL &&
3424 		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3425 			max_txqs[i] = vsi->num_txq;
3426 	}
3427 
3428 	memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3429 	vsi->tc_cfg.ena_tc = ena_tc;
3430 	vsi->tc_cfg.numtc = num_tc;
3431 
3432 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3433 	if (!ctx)
3434 		return -ENOMEM;
3435 
3436 	ctx->vf_num = 0;
3437 	ctx->info = vsi->info;
3438 
3439 	if (vsi->type == ICE_VSI_PF &&
3440 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3441 		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3442 	else
3443 		ret = ice_vsi_setup_q_map(vsi, ctx);
3444 
3445 	if (ret) {
3446 		memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3447 		goto out;
3448 	}
3449 
3450 	/* must to indicate which section of VSI context are being modified */
3451 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3452 	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3453 	if (ret) {
3454 		dev_info(dev, "Failed VSI Update\n");
3455 		goto out;
3456 	}
3457 
3458 	if (vsi->type == ICE_VSI_PF &&
3459 	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3460 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3461 	else
3462 		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3463 				      vsi->tc_cfg.ena_tc, max_txqs);
3464 
3465 	if (ret) {
3466 		dev_err(dev, "VSI %d failed TC config, error %d\n",
3467 			vsi->vsi_num, ret);
3468 		goto out;
3469 	}
3470 	ice_vsi_update_q_map(vsi, ctx);
3471 	vsi->info.valid_sections = 0;
3472 
3473 	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3474 out:
3475 	kfree(ctx);
3476 	return ret;
3477 }
3478 
3479 /**
3480  * ice_update_ring_stats - Update ring statistics
3481  * @stats: stats to be updated
3482  * @pkts: number of processed packets
3483  * @bytes: number of processed bytes
3484  *
3485  * This function assumes that caller has acquired a u64_stats_sync lock.
3486  */
3487 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3488 {
3489 	stats->bytes += bytes;
3490 	stats->pkts += pkts;
3491 }
3492 
3493 /**
3494  * ice_update_tx_ring_stats - Update Tx ring specific counters
3495  * @tx_ring: ring to update
3496  * @pkts: number of processed packets
3497  * @bytes: number of processed bytes
3498  */
3499 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3500 {
3501 	u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3502 	ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3503 	u64_stats_update_end(&tx_ring->ring_stats->syncp);
3504 }
3505 
3506 /**
3507  * ice_update_rx_ring_stats - Update Rx ring specific counters
3508  * @rx_ring: ring to update
3509  * @pkts: number of processed packets
3510  * @bytes: number of processed bytes
3511  */
3512 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3513 {
3514 	u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3515 	ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3516 	u64_stats_update_end(&rx_ring->ring_stats->syncp);
3517 }
3518 
3519 /**
3520  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3521  * @pi: port info of the switch with default VSI
3522  *
3523  * Return true if the there is a single VSI in default forwarding VSI list
3524  */
3525 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3526 {
3527 	bool exists = false;
3528 
3529 	ice_check_if_dflt_vsi(pi, 0, &exists);
3530 	return exists;
3531 }
3532 
3533 /**
3534  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3535  * @vsi: VSI to compare against default forwarding VSI
3536  *
3537  * If this VSI passed in is the default forwarding VSI then return true, else
3538  * return false
3539  */
3540 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3541 {
3542 	return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3543 }
3544 
3545 /**
3546  * ice_set_dflt_vsi - set the default forwarding VSI
3547  * @vsi: VSI getting set as the default forwarding VSI on the switch
3548  *
3549  * If the VSI passed in is already the default VSI and it's enabled just return
3550  * success.
3551  *
3552  * Otherwise try to set the VSI passed in as the switch's default VSI and
3553  * return the result.
3554  */
3555 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3556 {
3557 	struct device *dev;
3558 	int status;
3559 
3560 	if (!vsi)
3561 		return -EINVAL;
3562 
3563 	dev = ice_pf_to_dev(vsi->back);
3564 
3565 	/* the VSI passed in is already the default VSI */
3566 	if (ice_is_vsi_dflt_vsi(vsi)) {
3567 		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3568 			vsi->vsi_num);
3569 		return 0;
3570 	}
3571 
3572 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3573 	if (status) {
3574 		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3575 			vsi->vsi_num, status);
3576 		return status;
3577 	}
3578 
3579 	return 0;
3580 }
3581 
3582 /**
3583  * ice_clear_dflt_vsi - clear the default forwarding VSI
3584  * @vsi: VSI to remove from filter list
3585  *
3586  * If the switch has no default VSI or it's not enabled then return error.
3587  *
3588  * Otherwise try to clear the default VSI and return the result.
3589  */
3590 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3591 {
3592 	struct device *dev;
3593 	int status;
3594 
3595 	if (!vsi)
3596 		return -EINVAL;
3597 
3598 	dev = ice_pf_to_dev(vsi->back);
3599 
3600 	/* there is no default VSI configured */
3601 	if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3602 		return -ENODEV;
3603 
3604 	status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3605 				  ICE_FLTR_RX);
3606 	if (status) {
3607 		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3608 			vsi->vsi_num, status);
3609 		return -EIO;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 /**
3616  * ice_get_link_speed_mbps - get link speed in Mbps
3617  * @vsi: the VSI whose link speed is being queried
3618  *
3619  * Return current VSI link speed and 0 if the speed is unknown.
3620  */
3621 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3622 {
3623 	unsigned int link_speed;
3624 
3625 	link_speed = vsi->port_info->phy.link_info.link_speed;
3626 
3627 	return (int)ice_get_link_speed(fls(link_speed) - 1);
3628 }
3629 
3630 /**
3631  * ice_get_link_speed_kbps - get link speed in Kbps
3632  * @vsi: the VSI whose link speed is being queried
3633  *
3634  * Return current VSI link speed and 0 if the speed is unknown.
3635  */
3636 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3637 {
3638 	int speed_mbps;
3639 
3640 	speed_mbps = ice_get_link_speed_mbps(vsi);
3641 
3642 	return speed_mbps * 1000;
3643 }
3644 
3645 /**
3646  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3647  * @vsi: VSI to be configured
3648  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3649  *
3650  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3651  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3652  * on TC 0.
3653  */
3654 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3655 {
3656 	struct ice_pf *pf = vsi->back;
3657 	struct device *dev;
3658 	int status;
3659 	int speed;
3660 
3661 	dev = ice_pf_to_dev(pf);
3662 	if (!vsi->port_info) {
3663 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3664 			vsi->idx, vsi->type);
3665 		return -EINVAL;
3666 	}
3667 
3668 	speed = ice_get_link_speed_kbps(vsi);
3669 	if (min_tx_rate > (u64)speed) {
3670 		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3671 			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3672 			speed);
3673 		return -EINVAL;
3674 	}
3675 
3676 	/* Configure min BW for VSI limit */
3677 	if (min_tx_rate) {
3678 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3679 						   ICE_MIN_BW, min_tx_rate);
3680 		if (status) {
3681 			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3682 				min_tx_rate, ice_vsi_type_str(vsi->type),
3683 				vsi->idx);
3684 			return status;
3685 		}
3686 
3687 		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3688 			min_tx_rate, ice_vsi_type_str(vsi->type));
3689 	} else {
3690 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3691 							vsi->idx, 0,
3692 							ICE_MIN_BW);
3693 		if (status) {
3694 			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3695 				ice_vsi_type_str(vsi->type), vsi->idx);
3696 			return status;
3697 		}
3698 
3699 		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3700 			ice_vsi_type_str(vsi->type), vsi->idx);
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 /**
3707  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3708  * @vsi: VSI to be configured
3709  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3710  *
3711  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3712  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3713  * on TC 0.
3714  */
3715 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3716 {
3717 	struct ice_pf *pf = vsi->back;
3718 	struct device *dev;
3719 	int status;
3720 	int speed;
3721 
3722 	dev = ice_pf_to_dev(pf);
3723 	if (!vsi->port_info) {
3724 		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3725 			vsi->idx, vsi->type);
3726 		return -EINVAL;
3727 	}
3728 
3729 	speed = ice_get_link_speed_kbps(vsi);
3730 	if (max_tx_rate > (u64)speed) {
3731 		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3732 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3733 			speed);
3734 		return -EINVAL;
3735 	}
3736 
3737 	/* Configure max BW for VSI limit */
3738 	if (max_tx_rate) {
3739 		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3740 						   ICE_MAX_BW, max_tx_rate);
3741 		if (status) {
3742 			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3743 				max_tx_rate, ice_vsi_type_str(vsi->type),
3744 				vsi->idx);
3745 			return status;
3746 		}
3747 
3748 		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3749 			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3750 	} else {
3751 		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3752 							vsi->idx, 0,
3753 							ICE_MAX_BW);
3754 		if (status) {
3755 			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3756 				ice_vsi_type_str(vsi->type), vsi->idx);
3757 			return status;
3758 		}
3759 
3760 		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3761 			ice_vsi_type_str(vsi->type), vsi->idx);
3762 	}
3763 
3764 	return 0;
3765 }
3766 
3767 /**
3768  * ice_set_link - turn on/off physical link
3769  * @vsi: VSI to modify physical link on
3770  * @ena: turn on/off physical link
3771  */
3772 int ice_set_link(struct ice_vsi *vsi, bool ena)
3773 {
3774 	struct device *dev = ice_pf_to_dev(vsi->back);
3775 	struct ice_port_info *pi = vsi->port_info;
3776 	struct ice_hw *hw = pi->hw;
3777 	int status;
3778 
3779 	if (vsi->type != ICE_VSI_PF)
3780 		return -EINVAL;
3781 
3782 	status = ice_aq_set_link_restart_an(pi, ena, NULL);
3783 
3784 	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3785 	 * this is not a fatal error, so print a warning message and return
3786 	 * a success code. Return an error if FW returns an error code other
3787 	 * than ICE_AQ_RC_EMODE
3788 	 */
3789 	if (status == -EIO) {
3790 		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3791 			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3792 				(ena ? "ON" : "OFF"), status,
3793 				ice_aq_str(hw->adminq.sq_last_status));
3794 	} else if (status) {
3795 		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3796 			(ena ? "ON" : "OFF"), status,
3797 			ice_aq_str(hw->adminq.sq_last_status));
3798 		return status;
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 /**
3805  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3806  * @vsi: VSI used to add VLAN filters
3807  *
3808  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3809  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3810  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3811  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3812  *
3813  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3814  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3815  * traffic in SVM, since the VLAN TPID isn't part of filtering.
3816  *
3817  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3818  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3819  * part of filtering.
3820  */
3821 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3822 {
3823 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3824 	struct ice_vlan vlan;
3825 	int err;
3826 
3827 	vlan = ICE_VLAN(0, 0, 0);
3828 	err = vlan_ops->add_vlan(vsi, &vlan);
3829 	if (err && err != -EEXIST)
3830 		return err;
3831 
3832 	/* in SVM both VLAN 0 filters are identical */
3833 	if (!ice_is_dvm_ena(&vsi->back->hw))
3834 		return 0;
3835 
3836 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3837 	err = vlan_ops->add_vlan(vsi, &vlan);
3838 	if (err && err != -EEXIST)
3839 		return err;
3840 
3841 	return 0;
3842 }
3843 
3844 /**
3845  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3846  * @vsi: VSI used to add VLAN filters
3847  *
3848  * Delete the VLAN 0 filters in the same manner that they were added in
3849  * ice_vsi_add_vlan_zero.
3850  */
3851 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3852 {
3853 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3854 	struct ice_vlan vlan;
3855 	int err;
3856 
3857 	vlan = ICE_VLAN(0, 0, 0);
3858 	err = vlan_ops->del_vlan(vsi, &vlan);
3859 	if (err && err != -EEXIST)
3860 		return err;
3861 
3862 	/* in SVM both VLAN 0 filters are identical */
3863 	if (!ice_is_dvm_ena(&vsi->back->hw))
3864 		return 0;
3865 
3866 	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3867 	err = vlan_ops->del_vlan(vsi, &vlan);
3868 	if (err && err != -EEXIST)
3869 		return err;
3870 
3871 	/* when deleting the last VLAN filter, make sure to disable the VLAN
3872 	 * promisc mode so the filter isn't left by accident
3873 	 */
3874 	return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3875 				    ICE_MCAST_VLAN_PROMISC_BITS, 0);
3876 }
3877 
3878 /**
3879  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3880  * @vsi: VSI used to get the VLAN mode
3881  *
3882  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3883  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3884  */
3885 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3886 {
3887 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
3888 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
3889 	/* no VLAN 0 filter is created when a port VLAN is active */
3890 	if (vsi->type == ICE_VSI_VF) {
3891 		if (WARN_ON(!vsi->vf))
3892 			return 0;
3893 
3894 		if (ice_vf_is_port_vlan_ena(vsi->vf))
3895 			return 0;
3896 	}
3897 
3898 	if (ice_is_dvm_ena(&vsi->back->hw))
3899 		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3900 	else
3901 		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3902 }
3903 
3904 /**
3905  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3906  * @vsi: VSI used to determine if any non-zero VLANs have been added
3907  */
3908 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3909 {
3910 	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3911 }
3912 
3913 /**
3914  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3915  * @vsi: VSI used to get the number of non-zero VLANs added
3916  */
3917 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3918 {
3919 	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3920 }
3921 
3922 /**
3923  * ice_is_feature_supported
3924  * @pf: pointer to the struct ice_pf instance
3925  * @f: feature enum to be checked
3926  *
3927  * returns true if feature is supported, false otherwise
3928  */
3929 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3930 {
3931 	if (f < 0 || f >= ICE_F_MAX)
3932 		return false;
3933 
3934 	return test_bit(f, pf->features);
3935 }
3936 
3937 /**
3938  * ice_set_feature_support
3939  * @pf: pointer to the struct ice_pf instance
3940  * @f: feature enum to set
3941  */
3942 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3943 {
3944 	if (f < 0 || f >= ICE_F_MAX)
3945 		return;
3946 
3947 	set_bit(f, pf->features);
3948 }
3949 
3950 /**
3951  * ice_clear_feature_support
3952  * @pf: pointer to the struct ice_pf instance
3953  * @f: feature enum to clear
3954  */
3955 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3956 {
3957 	if (f < 0 || f >= ICE_F_MAX)
3958 		return;
3959 
3960 	clear_bit(f, pf->features);
3961 }
3962 
3963 /**
3964  * ice_init_feature_support
3965  * @pf: pointer to the struct ice_pf instance
3966  *
3967  * called during init to setup supported feature
3968  */
3969 void ice_init_feature_support(struct ice_pf *pf)
3970 {
3971 	switch (pf->hw.device_id) {
3972 	case ICE_DEV_ID_E810C_BACKPLANE:
3973 	case ICE_DEV_ID_E810C_QSFP:
3974 	case ICE_DEV_ID_E810C_SFP:
3975 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
3976 	case ICE_DEV_ID_E810_XXV_QSFP:
3977 	case ICE_DEV_ID_E810_XXV_SFP:
3978 		ice_set_feature_support(pf, ICE_F_DSCP);
3979 		if (ice_is_phy_rclk_in_netlist(&pf->hw))
3980 			ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3981 		/* If we don't own the timer - don't enable other caps */
3982 		if (!ice_pf_src_tmr_owned(pf))
3983 			break;
3984 		if (ice_is_cgu_in_netlist(&pf->hw))
3985 			ice_set_feature_support(pf, ICE_F_CGU);
3986 		if (ice_is_clock_mux_in_netlist(&pf->hw))
3987 			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3988 		if (ice_gnss_is_gps_present(&pf->hw))
3989 			ice_set_feature_support(pf, ICE_F_GNSS);
3990 		break;
3991 	default:
3992 		break;
3993 	}
3994 }
3995 
3996 /**
3997  * ice_vsi_update_security - update security block in VSI
3998  * @vsi: pointer to VSI structure
3999  * @fill: function pointer to fill ctx
4000  */
4001 int
4002 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4003 {
4004 	struct ice_vsi_ctx ctx = { 0 };
4005 
4006 	ctx.info = vsi->info;
4007 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4008 	fill(&ctx);
4009 
4010 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4011 		return -ENODEV;
4012 
4013 	vsi->info = ctx.info;
4014 	return 0;
4015 }
4016 
4017 /**
4018  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4019  * @ctx: pointer to VSI ctx structure
4020  */
4021 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4022 {
4023 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4024 			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4025 				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4026 }
4027 
4028 /**
4029  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4030  * @ctx: pointer to VSI ctx structure
4031  */
4032 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4033 {
4034 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4035 			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4036 				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4037 }
4038 
4039 /**
4040  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4041  * @ctx: pointer to VSI ctx structure
4042  */
4043 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4044 {
4045 	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4046 }
4047 
4048 /**
4049  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4050  * @ctx: pointer to VSI ctx structure
4051  */
4052 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4053 {
4054 	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4055 }
4056 
4057 /**
4058  * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4059  * @vsi: pointer to VSI structure
4060  * @set: set or unset the bit
4061  */
4062 int
4063 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4064 {
4065 	struct ice_vsi_ctx ctx = {
4066 		.info	= vsi->info,
4067 	};
4068 
4069 	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4070 	if (set)
4071 		ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4072 	else
4073 		ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4074 
4075 	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4076 		return -ENODEV;
4077 
4078 	vsi->info = ctx.info;
4079 	return 0;
4080 }
4081