1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flow.h" 6 #include <net/gre.h> 7 8 /* Describe properties of a protocol header field */ 9 struct ice_flow_field_info { 10 enum ice_flow_seg_hdr hdr; 11 s16 off; /* Offset from start of a protocol header, in bits */ 12 u16 size; /* Size of fields in bits */ 13 u16 mask; /* 16-bit mask for field */ 14 }; 15 16 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \ 17 .hdr = _hdr, \ 18 .off = (_offset_bytes) * BITS_PER_BYTE, \ 19 .size = (_size_bytes) * BITS_PER_BYTE, \ 20 .mask = 0, \ 21 } 22 23 #define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \ 24 .hdr = _hdr, \ 25 .off = (_offset_bytes) * BITS_PER_BYTE, \ 26 .size = (_size_bytes) * BITS_PER_BYTE, \ 27 .mask = _mask, \ 28 } 29 30 /* Table containing properties of supported protocol header fields */ 31 static const 32 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = { 33 /* Ether */ 34 /* ICE_FLOW_FIELD_IDX_ETH_DA */ 35 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN), 36 /* ICE_FLOW_FIELD_IDX_ETH_SA */ 37 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN), 38 /* ICE_FLOW_FIELD_IDX_S_VLAN */ 39 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)), 40 /* ICE_FLOW_FIELD_IDX_C_VLAN */ 41 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)), 42 /* ICE_FLOW_FIELD_IDX_ETH_TYPE */ 43 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)), 44 /* IPv4 / IPv6 */ 45 /* ICE_FLOW_FIELD_IDX_IPV4_DSCP */ 46 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc), 47 /* ICE_FLOW_FIELD_IDX_IPV6_DSCP */ 48 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0), 49 /* ICE_FLOW_FIELD_IDX_IPV4_TTL */ 50 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00), 51 /* ICE_FLOW_FIELD_IDX_IPV4_PROT */ 52 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff), 53 /* ICE_FLOW_FIELD_IDX_IPV6_TTL */ 54 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff), 55 /* ICE_FLOW_FIELD_IDX_IPV6_PROT */ 56 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00), 57 /* ICE_FLOW_FIELD_IDX_IPV4_SA */ 58 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)), 59 /* ICE_FLOW_FIELD_IDX_IPV4_DA */ 60 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)), 61 /* ICE_FLOW_FIELD_IDX_IPV6_SA */ 62 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)), 63 /* ICE_FLOW_FIELD_IDX_IPV6_DA */ 64 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)), 65 /* Transport */ 66 /* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */ 67 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)), 68 /* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */ 69 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)), 70 /* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */ 71 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)), 72 /* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */ 73 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)), 74 /* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */ 75 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)), 76 /* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */ 77 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)), 78 /* ICE_FLOW_FIELD_IDX_TCP_FLAGS */ 79 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1), 80 /* ARP */ 81 /* ICE_FLOW_FIELD_IDX_ARP_SIP */ 82 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)), 83 /* ICE_FLOW_FIELD_IDX_ARP_DIP */ 84 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)), 85 /* ICE_FLOW_FIELD_IDX_ARP_SHA */ 86 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN), 87 /* ICE_FLOW_FIELD_IDX_ARP_DHA */ 88 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN), 89 /* ICE_FLOW_FIELD_IDX_ARP_OP */ 90 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)), 91 /* ICMP */ 92 /* ICE_FLOW_FIELD_IDX_ICMP_TYPE */ 93 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1), 94 /* ICE_FLOW_FIELD_IDX_ICMP_CODE */ 95 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1), 96 /* GRE */ 97 /* ICE_FLOW_FIELD_IDX_GRE_KEYID */ 98 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12, 99 sizeof_field(struct gre_full_hdr, key)), 100 /* GTP */ 101 /* ICE_FLOW_FIELD_IDX_GTPC_TEID */ 102 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)), 103 /* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */ 104 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)), 105 /* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */ 106 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)), 107 /* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */ 108 ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16), 109 0x3f00), 110 /* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */ 111 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)), 112 /* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */ 113 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)), 114 /* PPPoE */ 115 /* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */ 116 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)), 117 /* PFCP */ 118 /* ICE_FLOW_FIELD_IDX_PFCP_SEID */ 119 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)), 120 /* L2TPv3 */ 121 /* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */ 122 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)), 123 /* ESP */ 124 /* ICE_FLOW_FIELD_IDX_ESP_SPI */ 125 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)), 126 /* AH */ 127 /* ICE_FLOW_FIELD_IDX_AH_SPI */ 128 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)), 129 /* NAT_T_ESP */ 130 /* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */ 131 ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)), 132 }; 133 134 /* Bitmaps indicating relevant packet types for a particular protocol header 135 * 136 * Packet types for packets with an Outer/First/Single MAC header 137 */ 138 static const u32 ice_ptypes_mac_ofos[] = { 139 0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB, 140 0x0000077E, 0x00000000, 0x00000000, 0x00000000, 141 0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000, 142 0x00000000, 0x00000000, 0x00000000, 0x00000000, 143 0x00000000, 0x00000000, 0x00000000, 0x00000000, 144 0x00000000, 0x00000000, 0x00000000, 0x00000000, 145 0x00000000, 0x00000000, 0x00000000, 0x00000000, 146 0x00000000, 0x00000000, 0x00000000, 0x00000000, 147 }; 148 149 /* Packet types for packets with an Innermost/Last MAC VLAN header */ 150 static const u32 ice_ptypes_macvlan_il[] = { 151 0x00000000, 0xBC000000, 0x000001DF, 0xF0000000, 152 0x0000077E, 0x00000000, 0x00000000, 0x00000000, 153 0x00000000, 0x00000000, 0x00000000, 0x00000000, 154 0x00000000, 0x00000000, 0x00000000, 0x00000000, 155 0x00000000, 0x00000000, 0x00000000, 0x00000000, 156 0x00000000, 0x00000000, 0x00000000, 0x00000000, 157 0x00000000, 0x00000000, 0x00000000, 0x00000000, 158 0x00000000, 0x00000000, 0x00000000, 0x00000000, 159 }; 160 161 /* Packet types for packets with an Outer/First/Single IPv4 header, does NOT 162 * include IPv4 other PTYPEs 163 */ 164 static const u32 ice_ptypes_ipv4_ofos[] = { 165 0x1DC00000, 0x04000800, 0x00000000, 0x00000000, 166 0x00000000, 0x00000155, 0x00000000, 0x00000000, 167 0x00000000, 0x000FC000, 0x00000000, 0x00000000, 168 0x00000000, 0x00000000, 0x00000000, 0x00000000, 169 0x00000000, 0x00000000, 0x00000000, 0x00000000, 170 0x00000000, 0x00000000, 0x00000000, 0x00000000, 171 0x00000000, 0x00000000, 0x00000000, 0x00000000, 172 0x00000000, 0x00000000, 0x00000000, 0x00000000, 173 }; 174 175 /* Packet types for packets with an Outer/First/Single IPv4 header, includes 176 * IPv4 other PTYPEs 177 */ 178 static const u32 ice_ptypes_ipv4_ofos_all[] = { 179 0x1DC00000, 0x04000800, 0x00000000, 0x00000000, 180 0x00000000, 0x00000155, 0x00000000, 0x00000000, 181 0x00000000, 0x000FC000, 0x83E0F800, 0x00000101, 182 0x00000000, 0x00000000, 0x00000000, 0x00000000, 183 0x00000000, 0x00000000, 0x00000000, 0x00000000, 184 0x00000000, 0x00000000, 0x00000000, 0x00000000, 185 0x00000000, 0x00000000, 0x00000000, 0x00000000, 186 0x00000000, 0x00000000, 0x00000000, 0x00000000, 187 }; 188 189 /* Packet types for packets with an Innermost/Last IPv4 header */ 190 static const u32 ice_ptypes_ipv4_il[] = { 191 0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B, 192 0x0000000E, 0x00000000, 0x00000000, 0x00000000, 193 0x00000000, 0x00000000, 0x001FF800, 0x00000000, 194 0x00000000, 0x00000000, 0x00000000, 0x00000000, 195 0x00000000, 0x00000000, 0x00000000, 0x00000000, 196 0x00000000, 0x00000000, 0x00000000, 0x00000000, 197 0x00000000, 0x00000000, 0x00000000, 0x00000000, 198 0x00000000, 0x00000000, 0x00000000, 0x00000000, 199 }; 200 201 /* Packet types for packets with an Outer/First/Single IPv6 header, does NOT 202 * include IPv6 other PTYPEs 203 */ 204 static const u32 ice_ptypes_ipv6_ofos[] = { 205 0x00000000, 0x00000000, 0x77000000, 0x10002000, 206 0x00000000, 0x000002AA, 0x00000000, 0x00000000, 207 0x00000000, 0x03F00000, 0x00000000, 0x00000000, 208 0x00000000, 0x00000000, 0x00000000, 0x00000000, 209 0x00000000, 0x00000000, 0x00000000, 0x00000000, 210 0x00000000, 0x00000000, 0x00000000, 0x00000000, 211 0x00000000, 0x00000000, 0x00000000, 0x00000000, 212 0x00000000, 0x00000000, 0x00000000, 0x00000000, 213 }; 214 215 /* Packet types for packets with an Outer/First/Single IPv6 header, includes 216 * IPv6 other PTYPEs 217 */ 218 static const u32 ice_ptypes_ipv6_ofos_all[] = { 219 0x00000000, 0x00000000, 0x77000000, 0x10002000, 220 0x00000000, 0x000002AA, 0x00000000, 0x00000000, 221 0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206, 222 0x00000000, 0x00000000, 0x00000000, 0x00000000, 223 0x00000000, 0x00000000, 0x00000000, 0x00000000, 224 0x00000000, 0x00000000, 0x00000000, 0x00000000, 225 0x00000000, 0x00000000, 0x00000000, 0x00000000, 226 0x00000000, 0x00000000, 0x00000000, 0x00000000, 227 }; 228 229 /* Packet types for packets with an Innermost/Last IPv6 header */ 230 static const u32 ice_ptypes_ipv6_il[] = { 231 0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000, 232 0x00000770, 0x00000000, 0x00000000, 0x00000000, 233 0x00000000, 0x00000000, 0x7FE00000, 0x00000000, 234 0x00000000, 0x00000000, 0x00000000, 0x00000000, 235 0x00000000, 0x00000000, 0x00000000, 0x00000000, 236 0x00000000, 0x00000000, 0x00000000, 0x00000000, 237 0x00000000, 0x00000000, 0x00000000, 0x00000000, 238 0x00000000, 0x00000000, 0x00000000, 0x00000000, 239 }; 240 241 /* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */ 242 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = { 243 0x10C00000, 0x04000800, 0x00000000, 0x00000000, 244 0x00000000, 0x00000000, 0x00000000, 0x00000000, 245 0x00000000, 0x00000000, 0x00000000, 0x00000000, 246 0x00000000, 0x00000000, 0x00000000, 0x00000000, 247 0x00000000, 0x00000000, 0x00000000, 0x00000000, 248 0x00000000, 0x00000000, 0x00000000, 0x00000000, 249 0x00000000, 0x00000000, 0x00000000, 0x00000000, 250 0x00000000, 0x00000000, 0x00000000, 0x00000000, 251 }; 252 253 /* Packet types for packets with an Outermost/First ARP header */ 254 static const u32 ice_ptypes_arp_of[] = { 255 0x00000800, 0x00000000, 0x00000000, 0x00000000, 256 0x00000000, 0x00000000, 0x00000000, 0x00000000, 257 0x00000000, 0x00000000, 0x00000000, 0x00000000, 258 0x00000000, 0x00000000, 0x00000000, 0x00000000, 259 0x00000000, 0x00000000, 0x00000000, 0x00000000, 260 0x00000000, 0x00000000, 0x00000000, 0x00000000, 261 0x00000000, 0x00000000, 0x00000000, 0x00000000, 262 0x00000000, 0x00000000, 0x00000000, 0x00000000, 263 }; 264 265 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */ 266 static const u32 ice_ptypes_ipv4_il_no_l4[] = { 267 0x60000000, 0x18043008, 0x80000002, 0x6010c021, 268 0x00000008, 0x00000000, 0x00000000, 0x00000000, 269 0x00000000, 0x00000000, 0x00000000, 0x00000000, 270 0x00000000, 0x00000000, 0x00000000, 0x00000000, 271 0x00000000, 0x00000000, 0x00000000, 0x00000000, 272 0x00000000, 0x00000000, 0x00000000, 0x00000000, 273 0x00000000, 0x00000000, 0x00000000, 0x00000000, 274 0x00000000, 0x00000000, 0x00000000, 0x00000000, 275 }; 276 277 /* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */ 278 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = { 279 0x00000000, 0x00000000, 0x43000000, 0x10002000, 280 0x00000000, 0x00000000, 0x00000000, 0x00000000, 281 0x00000000, 0x00000000, 0x00000000, 0x00000000, 282 0x00000000, 0x00000000, 0x00000000, 0x00000000, 283 0x00000000, 0x00000000, 0x00000000, 0x00000000, 284 0x00000000, 0x00000000, 0x00000000, 0x00000000, 285 0x00000000, 0x00000000, 0x00000000, 0x00000000, 286 0x00000000, 0x00000000, 0x00000000, 0x00000000, 287 }; 288 289 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */ 290 static const u32 ice_ptypes_ipv6_il_no_l4[] = { 291 0x00000000, 0x02180430, 0x0000010c, 0x086010c0, 292 0x00000430, 0x00000000, 0x00000000, 0x00000000, 293 0x00000000, 0x00000000, 0x00000000, 0x00000000, 294 0x00000000, 0x00000000, 0x00000000, 0x00000000, 295 0x00000000, 0x00000000, 0x00000000, 0x00000000, 296 0x00000000, 0x00000000, 0x00000000, 0x00000000, 297 0x00000000, 0x00000000, 0x00000000, 0x00000000, 298 0x00000000, 0x00000000, 0x00000000, 0x00000000, 299 }; 300 301 /* UDP Packet types for non-tunneled packets or tunneled 302 * packets with inner UDP. 303 */ 304 static const u32 ice_ptypes_udp_il[] = { 305 0x81000000, 0x20204040, 0x04000010, 0x80810102, 306 0x00000040, 0x00000000, 0x00000000, 0x00000000, 307 0x00000000, 0x00410000, 0x90842000, 0x00000007, 308 0x00000000, 0x00000000, 0x00000000, 0x00000000, 309 0x00000000, 0x00000000, 0x00000000, 0x00000000, 310 0x00000000, 0x00000000, 0x00000000, 0x00000000, 311 0x00000000, 0x00000000, 0x00000000, 0x00000000, 312 0x00000000, 0x00000000, 0x00000000, 0x00000000, 313 }; 314 315 /* Packet types for packets with an Innermost/Last TCP header */ 316 static const u32 ice_ptypes_tcp_il[] = { 317 0x04000000, 0x80810102, 0x10000040, 0x02040408, 318 0x00000102, 0x00000000, 0x00000000, 0x00000000, 319 0x00000000, 0x00820000, 0x21084000, 0x00000000, 320 0x00000000, 0x00000000, 0x00000000, 0x00000000, 321 0x00000000, 0x00000000, 0x00000000, 0x00000000, 322 0x00000000, 0x00000000, 0x00000000, 0x00000000, 323 0x00000000, 0x00000000, 0x00000000, 0x00000000, 324 0x00000000, 0x00000000, 0x00000000, 0x00000000, 325 }; 326 327 /* Packet types for packets with an Innermost/Last SCTP header */ 328 static const u32 ice_ptypes_sctp_il[] = { 329 0x08000000, 0x01020204, 0x20000081, 0x04080810, 330 0x00000204, 0x00000000, 0x00000000, 0x00000000, 331 0x00000000, 0x01040000, 0x00000000, 0x00000000, 332 0x00000000, 0x00000000, 0x00000000, 0x00000000, 333 0x00000000, 0x00000000, 0x00000000, 0x00000000, 334 0x00000000, 0x00000000, 0x00000000, 0x00000000, 335 0x00000000, 0x00000000, 0x00000000, 0x00000000, 336 0x00000000, 0x00000000, 0x00000000, 0x00000000, 337 }; 338 339 /* Packet types for packets with an Outermost/First ICMP header */ 340 static const u32 ice_ptypes_icmp_of[] = { 341 0x10000000, 0x00000000, 0x00000000, 0x00000000, 342 0x00000000, 0x00000000, 0x00000000, 0x00000000, 343 0x00000000, 0x00000000, 0x00000000, 0x00000000, 344 0x00000000, 0x00000000, 0x00000000, 0x00000000, 345 0x00000000, 0x00000000, 0x00000000, 0x00000000, 346 0x00000000, 0x00000000, 0x00000000, 0x00000000, 347 0x00000000, 0x00000000, 0x00000000, 0x00000000, 348 0x00000000, 0x00000000, 0x00000000, 0x00000000, 349 }; 350 351 /* Packet types for packets with an Innermost/Last ICMP header */ 352 static const u32 ice_ptypes_icmp_il[] = { 353 0x00000000, 0x02040408, 0x40000102, 0x08101020, 354 0x00000408, 0x00000000, 0x00000000, 0x00000000, 355 0x00000000, 0x00000000, 0x42108000, 0x00000000, 356 0x00000000, 0x00000000, 0x00000000, 0x00000000, 357 0x00000000, 0x00000000, 0x00000000, 0x00000000, 358 0x00000000, 0x00000000, 0x00000000, 0x00000000, 359 0x00000000, 0x00000000, 0x00000000, 0x00000000, 360 0x00000000, 0x00000000, 0x00000000, 0x00000000, 361 }; 362 363 /* Packet types for packets with an Outermost/First GRE header */ 364 static const u32 ice_ptypes_gre_of[] = { 365 0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000, 366 0x0000017E, 0x00000000, 0x00000000, 0x00000000, 367 0x00000000, 0x00000000, 0x00000000, 0x00000000, 368 0x00000000, 0x00000000, 0x00000000, 0x00000000, 369 0x00000000, 0x00000000, 0x00000000, 0x00000000, 370 0x00000000, 0x00000000, 0x00000000, 0x00000000, 371 0x00000000, 0x00000000, 0x00000000, 0x00000000, 372 0x00000000, 0x00000000, 0x00000000, 0x00000000, 373 }; 374 375 /* Packet types for packets with an Innermost/Last MAC header */ 376 static const u32 ice_ptypes_mac_il[] = { 377 0x00000000, 0x00000000, 0x00000000, 0x00000000, 378 0x00000000, 0x00000000, 0x00000000, 0x00000000, 379 0x00000000, 0x00000000, 0x00000000, 0x00000000, 380 0x00000000, 0x00000000, 0x00000000, 0x00000000, 381 0x00000000, 0x00000000, 0x00000000, 0x00000000, 382 0x00000000, 0x00000000, 0x00000000, 0x00000000, 383 0x00000000, 0x00000000, 0x00000000, 0x00000000, 384 0x00000000, 0x00000000, 0x00000000, 0x00000000, 385 }; 386 387 /* Packet types for GTPC */ 388 static const u32 ice_ptypes_gtpc[] = { 389 0x00000000, 0x00000000, 0x00000000, 0x00000000, 390 0x00000000, 0x00000000, 0x00000000, 0x00000000, 391 0x00000000, 0x00000000, 0x00000180, 0x00000000, 392 0x00000000, 0x00000000, 0x00000000, 0x00000000, 393 0x00000000, 0x00000000, 0x00000000, 0x00000000, 394 0x00000000, 0x00000000, 0x00000000, 0x00000000, 395 0x00000000, 0x00000000, 0x00000000, 0x00000000, 396 0x00000000, 0x00000000, 0x00000000, 0x00000000, 397 }; 398 399 /* Packet types for GTPC with TEID */ 400 static const u32 ice_ptypes_gtpc_tid[] = { 401 0x00000000, 0x00000000, 0x00000000, 0x00000000, 402 0x00000000, 0x00000000, 0x00000000, 0x00000000, 403 0x00000000, 0x00000000, 0x00000060, 0x00000000, 404 0x00000000, 0x00000000, 0x00000000, 0x00000000, 405 0x00000000, 0x00000000, 0x00000000, 0x00000000, 406 0x00000000, 0x00000000, 0x00000000, 0x00000000, 407 0x00000000, 0x00000000, 0x00000000, 0x00000000, 408 0x00000000, 0x00000000, 0x00000000, 0x00000000, 409 }; 410 411 /* Packet types for GTPU */ 412 static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = { 413 { ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 414 { ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 415 { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 416 { ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 417 { ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 418 { ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 419 { ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 420 { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 421 { ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 422 { ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 423 { ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 424 { ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 425 { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 426 { ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 427 { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH }, 428 { ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH }, 429 { ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 430 { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH }, 431 { ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH }, 432 { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH }, 433 }; 434 435 static const struct ice_ptype_attributes ice_attr_gtpu_down[] = { 436 { ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 437 { ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 438 { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 439 { ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 440 { ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 441 { ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 442 { ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 443 { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 444 { ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 445 { ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 446 { ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 447 { ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 448 { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 449 { ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 450 { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 451 { ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 452 { ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 453 { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 454 { ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 455 { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK }, 456 }; 457 458 static const struct ice_ptype_attributes ice_attr_gtpu_up[] = { 459 { ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 460 { ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 461 { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 462 { ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 463 { ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK }, 464 { ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 465 { ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 466 { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 467 { ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 468 { ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK }, 469 { ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 470 { ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 471 { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 472 { ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 473 { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK }, 474 { ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK }, 475 { ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 476 { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK }, 477 { ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK }, 478 { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK }, 479 }; 480 481 static const u32 ice_ptypes_gtpu[] = { 482 0x00000000, 0x00000000, 0x00000000, 0x00000000, 483 0x00000000, 0x00000000, 0x00000000, 0x00000000, 484 0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000, 485 0x00000000, 0x00000000, 0x00000000, 0x00000000, 486 0x00000000, 0x00000000, 0x00000000, 0x00000000, 487 0x00000000, 0x00000000, 0x00000000, 0x00000000, 488 0x00000000, 0x00000000, 0x00000000, 0x00000000, 489 0x00000000, 0x00000000, 0x00000000, 0x00000000, 490 }; 491 492 /* Packet types for PPPoE */ 493 static const u32 ice_ptypes_pppoe[] = { 494 0x00000000, 0x00000000, 0x00000000, 0x00000000, 495 0x00000000, 0x00000000, 0x00000000, 0x00000000, 496 0x00000000, 0x03ffe000, 0x00000000, 0x00000000, 497 0x00000000, 0x00000000, 0x00000000, 0x00000000, 498 0x00000000, 0x00000000, 0x00000000, 0x00000000, 499 0x00000000, 0x00000000, 0x00000000, 0x00000000, 500 0x00000000, 0x00000000, 0x00000000, 0x00000000, 501 0x00000000, 0x00000000, 0x00000000, 0x00000000, 502 }; 503 504 /* Packet types for packets with PFCP NODE header */ 505 static const u32 ice_ptypes_pfcp_node[] = { 506 0x00000000, 0x00000000, 0x00000000, 0x00000000, 507 0x00000000, 0x00000000, 0x00000000, 0x00000000, 508 0x00000000, 0x00000000, 0x80000000, 0x00000002, 509 0x00000000, 0x00000000, 0x00000000, 0x00000000, 510 0x00000000, 0x00000000, 0x00000000, 0x00000000, 511 0x00000000, 0x00000000, 0x00000000, 0x00000000, 512 0x00000000, 0x00000000, 0x00000000, 0x00000000, 513 0x00000000, 0x00000000, 0x00000000, 0x00000000, 514 }; 515 516 /* Packet types for packets with PFCP SESSION header */ 517 static const u32 ice_ptypes_pfcp_session[] = { 518 0x00000000, 0x00000000, 0x00000000, 0x00000000, 519 0x00000000, 0x00000000, 0x00000000, 0x00000000, 520 0x00000000, 0x00000000, 0x00000000, 0x00000005, 521 0x00000000, 0x00000000, 0x00000000, 0x00000000, 522 0x00000000, 0x00000000, 0x00000000, 0x00000000, 523 0x00000000, 0x00000000, 0x00000000, 0x00000000, 524 0x00000000, 0x00000000, 0x00000000, 0x00000000, 525 0x00000000, 0x00000000, 0x00000000, 0x00000000, 526 }; 527 528 /* Packet types for L2TPv3 */ 529 static const u32 ice_ptypes_l2tpv3[] = { 530 0x00000000, 0x00000000, 0x00000000, 0x00000000, 531 0x00000000, 0x00000000, 0x00000000, 0x00000000, 532 0x00000000, 0x00000000, 0x00000000, 0x00000300, 533 0x00000000, 0x00000000, 0x00000000, 0x00000000, 534 0x00000000, 0x00000000, 0x00000000, 0x00000000, 535 0x00000000, 0x00000000, 0x00000000, 0x00000000, 536 0x00000000, 0x00000000, 0x00000000, 0x00000000, 537 0x00000000, 0x00000000, 0x00000000, 0x00000000, 538 }; 539 540 /* Packet types for ESP */ 541 static const u32 ice_ptypes_esp[] = { 542 0x00000000, 0x00000000, 0x00000000, 0x00000000, 543 0x00000000, 0x00000003, 0x00000000, 0x00000000, 544 0x00000000, 0x00000000, 0x00000000, 0x00000000, 545 0x00000000, 0x00000000, 0x00000000, 0x00000000, 546 0x00000000, 0x00000000, 0x00000000, 0x00000000, 547 0x00000000, 0x00000000, 0x00000000, 0x00000000, 548 0x00000000, 0x00000000, 0x00000000, 0x00000000, 549 0x00000000, 0x00000000, 0x00000000, 0x00000000, 550 }; 551 552 /* Packet types for AH */ 553 static const u32 ice_ptypes_ah[] = { 554 0x00000000, 0x00000000, 0x00000000, 0x00000000, 555 0x00000000, 0x0000000C, 0x00000000, 0x00000000, 556 0x00000000, 0x00000000, 0x00000000, 0x00000000, 557 0x00000000, 0x00000000, 0x00000000, 0x00000000, 558 0x00000000, 0x00000000, 0x00000000, 0x00000000, 559 0x00000000, 0x00000000, 0x00000000, 0x00000000, 560 0x00000000, 0x00000000, 0x00000000, 0x00000000, 561 0x00000000, 0x00000000, 0x00000000, 0x00000000, 562 }; 563 564 /* Packet types for packets with NAT_T ESP header */ 565 static const u32 ice_ptypes_nat_t_esp[] = { 566 0x00000000, 0x00000000, 0x00000000, 0x00000000, 567 0x00000000, 0x00000030, 0x00000000, 0x00000000, 568 0x00000000, 0x00000000, 0x00000000, 0x00000000, 569 0x00000000, 0x00000000, 0x00000000, 0x00000000, 570 0x00000000, 0x00000000, 0x00000000, 0x00000000, 571 0x00000000, 0x00000000, 0x00000000, 0x00000000, 572 0x00000000, 0x00000000, 0x00000000, 0x00000000, 573 0x00000000, 0x00000000, 0x00000000, 0x00000000, 574 }; 575 576 static const u32 ice_ptypes_mac_non_ip_ofos[] = { 577 0x00000846, 0x00000000, 0x00000000, 0x00000000, 578 0x00000000, 0x00000000, 0x00000000, 0x00000000, 579 0x00400000, 0x03FFF000, 0x00000000, 0x00000000, 580 0x00000000, 0x00000000, 0x00000000, 0x00000000, 581 0x00000000, 0x00000000, 0x00000000, 0x00000000, 582 0x00000000, 0x00000000, 0x00000000, 0x00000000, 583 0x00000000, 0x00000000, 0x00000000, 0x00000000, 584 0x00000000, 0x00000000, 0x00000000, 0x00000000, 585 }; 586 587 /* Manage parameters and info. used during the creation of a flow profile */ 588 struct ice_flow_prof_params { 589 enum ice_block blk; 590 u16 entry_length; /* # of bytes formatted entry will require */ 591 u8 es_cnt; 592 struct ice_flow_prof *prof; 593 594 /* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0 595 * This will give us the direction flags. 596 */ 597 struct ice_fv_word es[ICE_MAX_FV_WORDS]; 598 /* attributes can be used to add attributes to a particular PTYPE */ 599 const struct ice_ptype_attributes *attr; 600 u16 attr_cnt; 601 602 u16 mask[ICE_MAX_FV_WORDS]; 603 DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX); 604 }; 605 606 #define ICE_FLOW_RSS_HDRS_INNER_MASK \ 607 (ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \ 608 ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \ 609 ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \ 610 ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \ 611 ICE_FLOW_SEG_HDR_NAT_T_ESP) 612 613 #define ICE_FLOW_SEG_HDRS_L3_MASK \ 614 (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP) 615 #define ICE_FLOW_SEG_HDRS_L4_MASK \ 616 (ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \ 617 ICE_FLOW_SEG_HDR_SCTP) 618 /* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */ 619 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER \ 620 (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP) 621 622 /** 623 * ice_flow_val_hdrs - validates packet segments for valid protocol headers 624 * @segs: array of one or more packet segments that describe the flow 625 * @segs_cnt: number of packet segments provided 626 */ 627 static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt) 628 { 629 u8 i; 630 631 for (i = 0; i < segs_cnt; i++) { 632 /* Multiple L3 headers */ 633 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK && 634 !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK)) 635 return -EINVAL; 636 637 /* Multiple L4 headers */ 638 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK && 639 !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)) 640 return -EINVAL; 641 } 642 643 return 0; 644 } 645 646 /* Sizes of fixed known protocol headers without header options */ 647 #define ICE_FLOW_PROT_HDR_SZ_MAC 14 648 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN (ICE_FLOW_PROT_HDR_SZ_MAC + 2) 649 #define ICE_FLOW_PROT_HDR_SZ_IPV4 20 650 #define ICE_FLOW_PROT_HDR_SZ_IPV6 40 651 #define ICE_FLOW_PROT_HDR_SZ_ARP 28 652 #define ICE_FLOW_PROT_HDR_SZ_ICMP 8 653 #define ICE_FLOW_PROT_HDR_SZ_TCP 20 654 #define ICE_FLOW_PROT_HDR_SZ_UDP 8 655 #define ICE_FLOW_PROT_HDR_SZ_SCTP 12 656 657 /** 658 * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers 659 * @params: information about the flow to be processed 660 * @seg: index of packet segment whose header size is to be determined 661 */ 662 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg) 663 { 664 u16 sz; 665 666 /* L2 headers */ 667 sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ? 668 ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC; 669 670 /* L3 headers */ 671 if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) 672 sz += ICE_FLOW_PROT_HDR_SZ_IPV4; 673 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6) 674 sz += ICE_FLOW_PROT_HDR_SZ_IPV6; 675 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP) 676 sz += ICE_FLOW_PROT_HDR_SZ_ARP; 677 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK) 678 /* An L3 header is required if L4 is specified */ 679 return 0; 680 681 /* L4 headers */ 682 if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP) 683 sz += ICE_FLOW_PROT_HDR_SZ_ICMP; 684 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP) 685 sz += ICE_FLOW_PROT_HDR_SZ_TCP; 686 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP) 687 sz += ICE_FLOW_PROT_HDR_SZ_UDP; 688 else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP) 689 sz += ICE_FLOW_PROT_HDR_SZ_SCTP; 690 691 return sz; 692 } 693 694 /** 695 * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments 696 * @params: information about the flow to be processed 697 * 698 * This function identifies the packet types associated with the protocol 699 * headers being present in packet segments of the specified flow profile. 700 */ 701 static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params) 702 { 703 struct ice_flow_prof *prof; 704 u8 i; 705 706 memset(params->ptypes, 0xff, sizeof(params->ptypes)); 707 708 prof = params->prof; 709 710 for (i = 0; i < params->prof->segs_cnt; i++) { 711 const unsigned long *src; 712 u32 hdrs; 713 714 hdrs = prof->segs[i].hdrs; 715 716 if (hdrs & ICE_FLOW_SEG_HDR_ETH) { 717 src = !i ? (const unsigned long *)ice_ptypes_mac_ofos : 718 (const unsigned long *)ice_ptypes_mac_il; 719 bitmap_and(params->ptypes, params->ptypes, src, 720 ICE_FLOW_PTYPE_MAX); 721 } 722 723 if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) { 724 src = (const unsigned long *)ice_ptypes_macvlan_il; 725 bitmap_and(params->ptypes, params->ptypes, src, 726 ICE_FLOW_PTYPE_MAX); 727 } 728 729 if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) { 730 bitmap_and(params->ptypes, params->ptypes, 731 (const unsigned long *)ice_ptypes_arp_of, 732 ICE_FLOW_PTYPE_MAX); 733 } 734 735 if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) && 736 (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) { 737 src = i ? (const unsigned long *)ice_ptypes_ipv4_il : 738 (const unsigned long *)ice_ptypes_ipv4_ofos_all; 739 bitmap_and(params->ptypes, params->ptypes, src, 740 ICE_FLOW_PTYPE_MAX); 741 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) && 742 (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) { 743 src = i ? (const unsigned long *)ice_ptypes_ipv6_il : 744 (const unsigned long *)ice_ptypes_ipv6_ofos_all; 745 bitmap_and(params->ptypes, params->ptypes, src, 746 ICE_FLOW_PTYPE_MAX); 747 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) && 748 !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) { 749 src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 : 750 (const unsigned long *)ice_ptypes_ipv4_il_no_l4; 751 bitmap_and(params->ptypes, params->ptypes, src, 752 ICE_FLOW_PTYPE_MAX); 753 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) { 754 src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos : 755 (const unsigned long *)ice_ptypes_ipv4_il; 756 bitmap_and(params->ptypes, params->ptypes, src, 757 ICE_FLOW_PTYPE_MAX); 758 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) && 759 !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) { 760 src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 : 761 (const unsigned long *)ice_ptypes_ipv6_il_no_l4; 762 bitmap_and(params->ptypes, params->ptypes, src, 763 ICE_FLOW_PTYPE_MAX); 764 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) { 765 src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos : 766 (const unsigned long *)ice_ptypes_ipv6_il; 767 bitmap_and(params->ptypes, params->ptypes, src, 768 ICE_FLOW_PTYPE_MAX); 769 } 770 771 if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) { 772 src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos; 773 bitmap_and(params->ptypes, params->ptypes, src, 774 ICE_FLOW_PTYPE_MAX); 775 } else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) { 776 src = (const unsigned long *)ice_ptypes_pppoe; 777 bitmap_and(params->ptypes, params->ptypes, src, 778 ICE_FLOW_PTYPE_MAX); 779 } else { 780 src = (const unsigned long *)ice_ptypes_pppoe; 781 bitmap_andnot(params->ptypes, params->ptypes, src, 782 ICE_FLOW_PTYPE_MAX); 783 } 784 785 if (hdrs & ICE_FLOW_SEG_HDR_UDP) { 786 src = (const unsigned long *)ice_ptypes_udp_il; 787 bitmap_and(params->ptypes, params->ptypes, src, 788 ICE_FLOW_PTYPE_MAX); 789 } else if (hdrs & ICE_FLOW_SEG_HDR_TCP) { 790 bitmap_and(params->ptypes, params->ptypes, 791 (const unsigned long *)ice_ptypes_tcp_il, 792 ICE_FLOW_PTYPE_MAX); 793 } else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) { 794 src = (const unsigned long *)ice_ptypes_sctp_il; 795 bitmap_and(params->ptypes, params->ptypes, src, 796 ICE_FLOW_PTYPE_MAX); 797 } 798 799 if (hdrs & ICE_FLOW_SEG_HDR_ICMP) { 800 src = !i ? (const unsigned long *)ice_ptypes_icmp_of : 801 (const unsigned long *)ice_ptypes_icmp_il; 802 bitmap_and(params->ptypes, params->ptypes, src, 803 ICE_FLOW_PTYPE_MAX); 804 } else if (hdrs & ICE_FLOW_SEG_HDR_GRE) { 805 if (!i) { 806 src = (const unsigned long *)ice_ptypes_gre_of; 807 bitmap_and(params->ptypes, params->ptypes, 808 src, ICE_FLOW_PTYPE_MAX); 809 } 810 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) { 811 src = (const unsigned long *)ice_ptypes_gtpc; 812 bitmap_and(params->ptypes, params->ptypes, src, 813 ICE_FLOW_PTYPE_MAX); 814 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) { 815 src = (const unsigned long *)ice_ptypes_gtpc_tid; 816 bitmap_and(params->ptypes, params->ptypes, src, 817 ICE_FLOW_PTYPE_MAX); 818 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) { 819 src = (const unsigned long *)ice_ptypes_gtpu; 820 bitmap_and(params->ptypes, params->ptypes, src, 821 ICE_FLOW_PTYPE_MAX); 822 823 /* Attributes for GTP packet with downlink */ 824 params->attr = ice_attr_gtpu_down; 825 params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down); 826 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) { 827 src = (const unsigned long *)ice_ptypes_gtpu; 828 bitmap_and(params->ptypes, params->ptypes, src, 829 ICE_FLOW_PTYPE_MAX); 830 831 /* Attributes for GTP packet with uplink */ 832 params->attr = ice_attr_gtpu_up; 833 params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up); 834 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) { 835 src = (const unsigned long *)ice_ptypes_gtpu; 836 bitmap_and(params->ptypes, params->ptypes, src, 837 ICE_FLOW_PTYPE_MAX); 838 839 /* Attributes for GTP packet with Extension Header */ 840 params->attr = ice_attr_gtpu_eh; 841 params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh); 842 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) { 843 src = (const unsigned long *)ice_ptypes_gtpu; 844 bitmap_and(params->ptypes, params->ptypes, src, 845 ICE_FLOW_PTYPE_MAX); 846 } else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) { 847 src = (const unsigned long *)ice_ptypes_l2tpv3; 848 bitmap_and(params->ptypes, params->ptypes, src, 849 ICE_FLOW_PTYPE_MAX); 850 } else if (hdrs & ICE_FLOW_SEG_HDR_ESP) { 851 src = (const unsigned long *)ice_ptypes_esp; 852 bitmap_and(params->ptypes, params->ptypes, src, 853 ICE_FLOW_PTYPE_MAX); 854 } else if (hdrs & ICE_FLOW_SEG_HDR_AH) { 855 src = (const unsigned long *)ice_ptypes_ah; 856 bitmap_and(params->ptypes, params->ptypes, src, 857 ICE_FLOW_PTYPE_MAX); 858 } else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) { 859 src = (const unsigned long *)ice_ptypes_nat_t_esp; 860 bitmap_and(params->ptypes, params->ptypes, src, 861 ICE_FLOW_PTYPE_MAX); 862 } 863 864 if (hdrs & ICE_FLOW_SEG_HDR_PFCP) { 865 if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE) 866 src = (const unsigned long *)ice_ptypes_pfcp_node; 867 else 868 src = (const unsigned long *)ice_ptypes_pfcp_session; 869 870 bitmap_and(params->ptypes, params->ptypes, src, 871 ICE_FLOW_PTYPE_MAX); 872 } else { 873 src = (const unsigned long *)ice_ptypes_pfcp_node; 874 bitmap_andnot(params->ptypes, params->ptypes, src, 875 ICE_FLOW_PTYPE_MAX); 876 877 src = (const unsigned long *)ice_ptypes_pfcp_session; 878 bitmap_andnot(params->ptypes, params->ptypes, src, 879 ICE_FLOW_PTYPE_MAX); 880 } 881 } 882 883 return 0; 884 } 885 886 /** 887 * ice_flow_xtract_fld - Create an extraction sequence entry for the given field 888 * @hw: pointer to the HW struct 889 * @params: information about the flow to be processed 890 * @seg: packet segment index of the field to be extracted 891 * @fld: ID of field to be extracted 892 * @match: bit field of all fields 893 * 894 * This function determines the protocol ID, offset, and size of the given 895 * field. It then allocates one or more extraction sequence entries for the 896 * given field, and fill the entries with protocol ID and offset information. 897 */ 898 static int 899 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params, 900 u8 seg, enum ice_flow_field fld, u64 match) 901 { 902 enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX; 903 enum ice_prot_id prot_id = ICE_PROT_ID_INVAL; 904 u8 fv_words = hw->blk[params->blk].es.fvw; 905 struct ice_flow_fld_info *flds; 906 u16 cnt, ese_bits, i; 907 u16 sib_mask = 0; 908 u16 mask; 909 u16 off; 910 911 flds = params->prof->segs[seg].fields; 912 913 switch (fld) { 914 case ICE_FLOW_FIELD_IDX_ETH_DA: 915 case ICE_FLOW_FIELD_IDX_ETH_SA: 916 case ICE_FLOW_FIELD_IDX_S_VLAN: 917 case ICE_FLOW_FIELD_IDX_C_VLAN: 918 prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL; 919 break; 920 case ICE_FLOW_FIELD_IDX_ETH_TYPE: 921 prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL; 922 break; 923 case ICE_FLOW_FIELD_IDX_IPV4_DSCP: 924 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 925 break; 926 case ICE_FLOW_FIELD_IDX_IPV6_DSCP: 927 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 928 break; 929 case ICE_FLOW_FIELD_IDX_IPV4_TTL: 930 case ICE_FLOW_FIELD_IDX_IPV4_PROT: 931 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 932 933 /* TTL and PROT share the same extraction seq. entry. 934 * Each is considered a sibling to the other in terms of sharing 935 * the same extraction sequence entry. 936 */ 937 if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL) 938 sib = ICE_FLOW_FIELD_IDX_IPV4_PROT; 939 else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT) 940 sib = ICE_FLOW_FIELD_IDX_IPV4_TTL; 941 942 /* If the sibling field is also included, that field's 943 * mask needs to be included. 944 */ 945 if (match & BIT(sib)) 946 sib_mask = ice_flds_info[sib].mask; 947 break; 948 case ICE_FLOW_FIELD_IDX_IPV6_TTL: 949 case ICE_FLOW_FIELD_IDX_IPV6_PROT: 950 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 951 952 /* TTL and PROT share the same extraction seq. entry. 953 * Each is considered a sibling to the other in terms of sharing 954 * the same extraction sequence entry. 955 */ 956 if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL) 957 sib = ICE_FLOW_FIELD_IDX_IPV6_PROT; 958 else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT) 959 sib = ICE_FLOW_FIELD_IDX_IPV6_TTL; 960 961 /* If the sibling field is also included, that field's 962 * mask needs to be included. 963 */ 964 if (match & BIT(sib)) 965 sib_mask = ice_flds_info[sib].mask; 966 break; 967 case ICE_FLOW_FIELD_IDX_IPV4_SA: 968 case ICE_FLOW_FIELD_IDX_IPV4_DA: 969 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL; 970 break; 971 case ICE_FLOW_FIELD_IDX_IPV6_SA: 972 case ICE_FLOW_FIELD_IDX_IPV6_DA: 973 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL; 974 break; 975 case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT: 976 case ICE_FLOW_FIELD_IDX_TCP_DST_PORT: 977 case ICE_FLOW_FIELD_IDX_TCP_FLAGS: 978 prot_id = ICE_PROT_TCP_IL; 979 break; 980 case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT: 981 case ICE_FLOW_FIELD_IDX_UDP_DST_PORT: 982 prot_id = ICE_PROT_UDP_IL_OR_S; 983 break; 984 case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT: 985 case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT: 986 prot_id = ICE_PROT_SCTP_IL; 987 break; 988 case ICE_FLOW_FIELD_IDX_GTPC_TEID: 989 case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID: 990 case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID: 991 case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID: 992 case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID: 993 case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI: 994 /* GTP is accessed through UDP OF protocol */ 995 prot_id = ICE_PROT_UDP_OF; 996 break; 997 case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID: 998 prot_id = ICE_PROT_PPPOE; 999 break; 1000 case ICE_FLOW_FIELD_IDX_PFCP_SEID: 1001 prot_id = ICE_PROT_UDP_IL_OR_S; 1002 break; 1003 case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID: 1004 prot_id = ICE_PROT_L2TPV3; 1005 break; 1006 case ICE_FLOW_FIELD_IDX_ESP_SPI: 1007 prot_id = ICE_PROT_ESP_F; 1008 break; 1009 case ICE_FLOW_FIELD_IDX_AH_SPI: 1010 prot_id = ICE_PROT_ESP_2; 1011 break; 1012 case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI: 1013 prot_id = ICE_PROT_UDP_IL_OR_S; 1014 break; 1015 case ICE_FLOW_FIELD_IDX_ARP_SIP: 1016 case ICE_FLOW_FIELD_IDX_ARP_DIP: 1017 case ICE_FLOW_FIELD_IDX_ARP_SHA: 1018 case ICE_FLOW_FIELD_IDX_ARP_DHA: 1019 case ICE_FLOW_FIELD_IDX_ARP_OP: 1020 prot_id = ICE_PROT_ARP_OF; 1021 break; 1022 case ICE_FLOW_FIELD_IDX_ICMP_TYPE: 1023 case ICE_FLOW_FIELD_IDX_ICMP_CODE: 1024 /* ICMP type and code share the same extraction seq. entry */ 1025 prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ? 1026 ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL; 1027 sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ? 1028 ICE_FLOW_FIELD_IDX_ICMP_CODE : 1029 ICE_FLOW_FIELD_IDX_ICMP_TYPE; 1030 break; 1031 case ICE_FLOW_FIELD_IDX_GRE_KEYID: 1032 prot_id = ICE_PROT_GRE_OF; 1033 break; 1034 default: 1035 return -EOPNOTSUPP; 1036 } 1037 1038 /* Each extraction sequence entry is a word in size, and extracts a 1039 * word-aligned offset from a protocol header. 1040 */ 1041 ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE; 1042 1043 flds[fld].xtrct.prot_id = prot_id; 1044 flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) * 1045 ICE_FLOW_FV_EXTRACT_SZ; 1046 flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits); 1047 flds[fld].xtrct.idx = params->es_cnt; 1048 flds[fld].xtrct.mask = ice_flds_info[fld].mask; 1049 1050 /* Adjust the next field-entry index after accommodating the number of 1051 * entries this field consumes 1052 */ 1053 cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size, 1054 ese_bits); 1055 1056 /* Fill in the extraction sequence entries needed for this field */ 1057 off = flds[fld].xtrct.off; 1058 mask = flds[fld].xtrct.mask; 1059 for (i = 0; i < cnt; i++) { 1060 /* Only consume an extraction sequence entry if there is no 1061 * sibling field associated with this field or the sibling entry 1062 * already extracts the word shared with this field. 1063 */ 1064 if (sib == ICE_FLOW_FIELD_IDX_MAX || 1065 flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL || 1066 flds[sib].xtrct.off != off) { 1067 u8 idx; 1068 1069 /* Make sure the number of extraction sequence required 1070 * does not exceed the block's capability 1071 */ 1072 if (params->es_cnt >= fv_words) 1073 return -ENOSPC; 1074 1075 /* some blocks require a reversed field vector layout */ 1076 if (hw->blk[params->blk].es.reverse) 1077 idx = fv_words - params->es_cnt - 1; 1078 else 1079 idx = params->es_cnt; 1080 1081 params->es[idx].prot_id = prot_id; 1082 params->es[idx].off = off; 1083 params->mask[idx] = mask | sib_mask; 1084 params->es_cnt++; 1085 } 1086 1087 off += ICE_FLOW_FV_EXTRACT_SZ; 1088 } 1089 1090 return 0; 1091 } 1092 1093 /** 1094 * ice_flow_xtract_raws - Create extract sequence entries for raw bytes 1095 * @hw: pointer to the HW struct 1096 * @params: information about the flow to be processed 1097 * @seg: index of packet segment whose raw fields are to be extracted 1098 */ 1099 static int 1100 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params, 1101 u8 seg) 1102 { 1103 u16 fv_words; 1104 u16 hdrs_sz; 1105 u8 i; 1106 1107 if (!params->prof->segs[seg].raws_cnt) 1108 return 0; 1109 1110 if (params->prof->segs[seg].raws_cnt > 1111 ARRAY_SIZE(params->prof->segs[seg].raws)) 1112 return -ENOSPC; 1113 1114 /* Offsets within the segment headers are not supported */ 1115 hdrs_sz = ice_flow_calc_seg_sz(params, seg); 1116 if (!hdrs_sz) 1117 return -EINVAL; 1118 1119 fv_words = hw->blk[params->blk].es.fvw; 1120 1121 for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) { 1122 struct ice_flow_seg_fld_raw *raw; 1123 u16 off, cnt, j; 1124 1125 raw = ¶ms->prof->segs[seg].raws[i]; 1126 1127 /* Storing extraction information */ 1128 raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S; 1129 raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) * 1130 ICE_FLOW_FV_EXTRACT_SZ; 1131 raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) * 1132 BITS_PER_BYTE; 1133 raw->info.xtrct.idx = params->es_cnt; 1134 1135 /* Determine the number of field vector entries this raw field 1136 * consumes. 1137 */ 1138 cnt = DIV_ROUND_UP(raw->info.xtrct.disp + 1139 (raw->info.src.last * BITS_PER_BYTE), 1140 (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE)); 1141 off = raw->info.xtrct.off; 1142 for (j = 0; j < cnt; j++) { 1143 u16 idx; 1144 1145 /* Make sure the number of extraction sequence required 1146 * does not exceed the block's capability 1147 */ 1148 if (params->es_cnt >= hw->blk[params->blk].es.count || 1149 params->es_cnt >= ICE_MAX_FV_WORDS) 1150 return -ENOSPC; 1151 1152 /* some blocks require a reversed field vector layout */ 1153 if (hw->blk[params->blk].es.reverse) 1154 idx = fv_words - params->es_cnt - 1; 1155 else 1156 idx = params->es_cnt; 1157 1158 params->es[idx].prot_id = raw->info.xtrct.prot_id; 1159 params->es[idx].off = off; 1160 params->es_cnt++; 1161 off += ICE_FLOW_FV_EXTRACT_SZ; 1162 } 1163 } 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments 1170 * @hw: pointer to the HW struct 1171 * @params: information about the flow to be processed 1172 * 1173 * This function iterates through all matched fields in the given segments, and 1174 * creates an extraction sequence for the fields. 1175 */ 1176 static int 1177 ice_flow_create_xtrct_seq(struct ice_hw *hw, 1178 struct ice_flow_prof_params *params) 1179 { 1180 struct ice_flow_prof *prof = params->prof; 1181 int status = 0; 1182 u8 i; 1183 1184 for (i = 0; i < prof->segs_cnt; i++) { 1185 u64 match = params->prof->segs[i].match; 1186 enum ice_flow_field j; 1187 1188 for_each_set_bit(j, (unsigned long *)&match, 1189 ICE_FLOW_FIELD_IDX_MAX) { 1190 status = ice_flow_xtract_fld(hw, params, i, j, match); 1191 if (status) 1192 return status; 1193 clear_bit(j, (unsigned long *)&match); 1194 } 1195 1196 /* Process raw matching bytes */ 1197 status = ice_flow_xtract_raws(hw, params, i); 1198 if (status) 1199 return status; 1200 } 1201 1202 return status; 1203 } 1204 1205 /** 1206 * ice_flow_proc_segs - process all packet segments associated with a profile 1207 * @hw: pointer to the HW struct 1208 * @params: information about the flow to be processed 1209 */ 1210 static int 1211 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params) 1212 { 1213 int status; 1214 1215 status = ice_flow_proc_seg_hdrs(params); 1216 if (status) 1217 return status; 1218 1219 status = ice_flow_create_xtrct_seq(hw, params); 1220 if (status) 1221 return status; 1222 1223 switch (params->blk) { 1224 case ICE_BLK_FD: 1225 case ICE_BLK_RSS: 1226 status = 0; 1227 break; 1228 default: 1229 return -EOPNOTSUPP; 1230 } 1231 1232 return status; 1233 } 1234 1235 #define ICE_FLOW_FIND_PROF_CHK_FLDS 0x00000001 1236 #define ICE_FLOW_FIND_PROF_CHK_VSI 0x00000002 1237 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR 0x00000004 1238 #define ICE_FLOW_FIND_PROF_CHK_SYMM 0x00000008 1239 1240 /** 1241 * ice_flow_find_prof_conds - Find a profile matching headers and conditions 1242 * @hw: pointer to the HW struct 1243 * @blk: classification stage 1244 * @dir: flow direction 1245 * @segs: array of one or more packet segments that describe the flow 1246 * @segs_cnt: number of packet segments provided 1247 * @symm: symmetric setting for RSS profiles 1248 * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI) 1249 * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*) 1250 */ 1251 static struct ice_flow_prof * 1252 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk, 1253 enum ice_flow_dir dir, struct ice_flow_seg_info *segs, 1254 u8 segs_cnt, bool symm, u16 vsi_handle, u32 conds) 1255 { 1256 struct ice_flow_prof *p, *prof = NULL; 1257 1258 mutex_lock(&hw->fl_profs_locks[blk]); 1259 list_for_each_entry(p, &hw->fl_profs[blk], l_entry) 1260 if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) && 1261 segs_cnt && segs_cnt == p->segs_cnt) { 1262 u8 i; 1263 1264 /* Check for profile-VSI association if specified */ 1265 if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) && 1266 ice_is_vsi_valid(hw, vsi_handle) && 1267 !test_bit(vsi_handle, p->vsis)) 1268 continue; 1269 1270 /* Check for symmetric settings */ 1271 if ((conds & ICE_FLOW_FIND_PROF_CHK_SYMM) && 1272 p->symm != symm) 1273 continue; 1274 1275 /* Protocol headers must be checked. Matched fields are 1276 * checked if specified. 1277 */ 1278 for (i = 0; i < segs_cnt; i++) 1279 if (segs[i].hdrs != p->segs[i].hdrs || 1280 ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) && 1281 segs[i].match != p->segs[i].match)) 1282 break; 1283 1284 /* A match is found if all segments are matched */ 1285 if (i == segs_cnt) { 1286 prof = p; 1287 break; 1288 } 1289 } 1290 mutex_unlock(&hw->fl_profs_locks[blk]); 1291 1292 return prof; 1293 } 1294 1295 /** 1296 * ice_flow_find_prof_id - Look up a profile with given profile ID 1297 * @hw: pointer to the HW struct 1298 * @blk: classification stage 1299 * @prof_id: unique ID to identify this flow profile 1300 */ 1301 static struct ice_flow_prof * 1302 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id) 1303 { 1304 struct ice_flow_prof *p; 1305 1306 list_for_each_entry(p, &hw->fl_profs[blk], l_entry) 1307 if (p->id == prof_id) 1308 return p; 1309 1310 return NULL; 1311 } 1312 1313 /** 1314 * ice_flow_rem_entry_sync - Remove a flow entry 1315 * @hw: pointer to the HW struct 1316 * @blk: classification stage 1317 * @entry: flow entry to be removed 1318 */ 1319 static int 1320 ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk, 1321 struct ice_flow_entry *entry) 1322 { 1323 if (!entry) 1324 return -EINVAL; 1325 1326 list_del(&entry->l_entry); 1327 1328 devm_kfree(ice_hw_to_dev(hw), entry); 1329 1330 return 0; 1331 } 1332 1333 /** 1334 * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields 1335 * @hw: pointer to the HW struct 1336 * @blk: classification stage 1337 * @dir: flow direction 1338 * @segs: array of one or more packet segments that describe the flow 1339 * @segs_cnt: number of packet segments provided 1340 * @symm: symmetric setting for RSS profiles 1341 * @prof: stores the returned flow profile added 1342 * 1343 * Assumption: the caller has acquired the lock to the profile list 1344 */ 1345 static int 1346 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk, 1347 enum ice_flow_dir dir, 1348 struct ice_flow_seg_info *segs, u8 segs_cnt, 1349 bool symm, struct ice_flow_prof **prof) 1350 { 1351 struct ice_flow_prof_params *params; 1352 struct ice_prof_id *ids; 1353 int status; 1354 u64 prof_id; 1355 u8 i; 1356 1357 if (!prof) 1358 return -EINVAL; 1359 1360 ids = &hw->blk[blk].prof_id; 1361 prof_id = find_first_zero_bit(ids->id, ids->count); 1362 if (prof_id >= ids->count) 1363 return -ENOSPC; 1364 1365 params = kzalloc(sizeof(*params), GFP_KERNEL); 1366 if (!params) 1367 return -ENOMEM; 1368 1369 params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof), 1370 GFP_KERNEL); 1371 if (!params->prof) { 1372 status = -ENOMEM; 1373 goto free_params; 1374 } 1375 1376 /* initialize extraction sequence to all invalid (0xff) */ 1377 for (i = 0; i < ICE_MAX_FV_WORDS; i++) { 1378 params->es[i].prot_id = ICE_PROT_INVALID; 1379 params->es[i].off = ICE_FV_OFFSET_INVAL; 1380 } 1381 1382 params->blk = blk; 1383 params->prof->id = prof_id; 1384 params->prof->dir = dir; 1385 params->prof->segs_cnt = segs_cnt; 1386 params->prof->symm = symm; 1387 1388 /* Make a copy of the segments that need to be persistent in the flow 1389 * profile instance 1390 */ 1391 for (i = 0; i < segs_cnt; i++) 1392 memcpy(¶ms->prof->segs[i], &segs[i], sizeof(*segs)); 1393 1394 status = ice_flow_proc_segs(hw, params); 1395 if (status) { 1396 ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n"); 1397 goto out; 1398 } 1399 1400 /* Add a HW profile for this flow profile */ 1401 status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes, 1402 params->attr, params->attr_cnt, params->es, 1403 params->mask, symm); 1404 if (status) { 1405 ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n"); 1406 goto out; 1407 } 1408 1409 INIT_LIST_HEAD(¶ms->prof->entries); 1410 mutex_init(¶ms->prof->entries_lock); 1411 set_bit(prof_id, ids->id); 1412 *prof = params->prof; 1413 1414 out: 1415 if (status) 1416 devm_kfree(ice_hw_to_dev(hw), params->prof); 1417 free_params: 1418 kfree(params); 1419 1420 return status; 1421 } 1422 1423 /** 1424 * ice_flow_rem_prof_sync - remove a flow profile 1425 * @hw: pointer to the hardware structure 1426 * @blk: classification stage 1427 * @prof: pointer to flow profile to remove 1428 * 1429 * Assumption: the caller has acquired the lock to the profile list 1430 */ 1431 static int 1432 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk, 1433 struct ice_flow_prof *prof) 1434 { 1435 int status; 1436 1437 /* Remove all remaining flow entries before removing the flow profile */ 1438 if (!list_empty(&prof->entries)) { 1439 struct ice_flow_entry *e, *t; 1440 1441 mutex_lock(&prof->entries_lock); 1442 1443 list_for_each_entry_safe(e, t, &prof->entries, l_entry) { 1444 status = ice_flow_rem_entry_sync(hw, blk, e); 1445 if (status) 1446 break; 1447 } 1448 1449 mutex_unlock(&prof->entries_lock); 1450 } 1451 1452 /* Remove all hardware profiles associated with this flow profile */ 1453 status = ice_rem_prof(hw, blk, prof->id); 1454 if (!status) { 1455 clear_bit(prof->id, hw->blk[blk].prof_id.id); 1456 list_del(&prof->l_entry); 1457 mutex_destroy(&prof->entries_lock); 1458 devm_kfree(ice_hw_to_dev(hw), prof); 1459 } 1460 1461 return status; 1462 } 1463 1464 /** 1465 * ice_flow_assoc_prof - associate a VSI with a flow profile 1466 * @hw: pointer to the hardware structure 1467 * @blk: classification stage 1468 * @prof: pointer to flow profile 1469 * @vsi_handle: software VSI handle 1470 * 1471 * Assumption: the caller has acquired the lock to the profile list 1472 * and the software VSI handle has been validated 1473 */ 1474 static int 1475 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk, 1476 struct ice_flow_prof *prof, u16 vsi_handle) 1477 { 1478 int status = 0; 1479 1480 if (!test_bit(vsi_handle, prof->vsis)) { 1481 status = ice_add_prof_id_flow(hw, blk, 1482 ice_get_hw_vsi_num(hw, 1483 vsi_handle), 1484 prof->id); 1485 if (!status) 1486 set_bit(vsi_handle, prof->vsis); 1487 else 1488 ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n", 1489 status); 1490 } 1491 1492 return status; 1493 } 1494 1495 /** 1496 * ice_flow_disassoc_prof - disassociate a VSI from a flow profile 1497 * @hw: pointer to the hardware structure 1498 * @blk: classification stage 1499 * @prof: pointer to flow profile 1500 * @vsi_handle: software VSI handle 1501 * 1502 * Assumption: the caller has acquired the lock to the profile list 1503 * and the software VSI handle has been validated 1504 */ 1505 static int 1506 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk, 1507 struct ice_flow_prof *prof, u16 vsi_handle) 1508 { 1509 int status = 0; 1510 1511 if (test_bit(vsi_handle, prof->vsis)) { 1512 status = ice_rem_prof_id_flow(hw, blk, 1513 ice_get_hw_vsi_num(hw, 1514 vsi_handle), 1515 prof->id); 1516 if (!status) 1517 clear_bit(vsi_handle, prof->vsis); 1518 else 1519 ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n", 1520 status); 1521 } 1522 1523 return status; 1524 } 1525 1526 /** 1527 * ice_flow_add_prof - Add a flow profile for packet segments and matched fields 1528 * @hw: pointer to the HW struct 1529 * @blk: classification stage 1530 * @dir: flow direction 1531 * @segs: array of one or more packet segments that describe the flow 1532 * @segs_cnt: number of packet segments provided 1533 * @symm: symmetric setting for RSS profiles 1534 * @prof: stores the returned flow profile added 1535 */ 1536 int 1537 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir, 1538 struct ice_flow_seg_info *segs, u8 segs_cnt, 1539 bool symm, struct ice_flow_prof **prof) 1540 { 1541 int status; 1542 1543 if (segs_cnt > ICE_FLOW_SEG_MAX) 1544 return -ENOSPC; 1545 1546 if (!segs_cnt) 1547 return -EINVAL; 1548 1549 if (!segs) 1550 return -EINVAL; 1551 1552 status = ice_flow_val_hdrs(segs, segs_cnt); 1553 if (status) 1554 return status; 1555 1556 mutex_lock(&hw->fl_profs_locks[blk]); 1557 1558 status = ice_flow_add_prof_sync(hw, blk, dir, segs, segs_cnt, 1559 symm, prof); 1560 if (!status) 1561 list_add(&(*prof)->l_entry, &hw->fl_profs[blk]); 1562 1563 mutex_unlock(&hw->fl_profs_locks[blk]); 1564 1565 return status; 1566 } 1567 1568 /** 1569 * ice_flow_rem_prof - Remove a flow profile and all entries associated with it 1570 * @hw: pointer to the HW struct 1571 * @blk: the block for which the flow profile is to be removed 1572 * @prof_id: unique ID of the flow profile to be removed 1573 */ 1574 int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id) 1575 { 1576 struct ice_flow_prof *prof; 1577 int status; 1578 1579 mutex_lock(&hw->fl_profs_locks[blk]); 1580 1581 prof = ice_flow_find_prof_id(hw, blk, prof_id); 1582 if (!prof) { 1583 status = -ENOENT; 1584 goto out; 1585 } 1586 1587 /* prof becomes invalid after the call */ 1588 status = ice_flow_rem_prof_sync(hw, blk, prof); 1589 1590 out: 1591 mutex_unlock(&hw->fl_profs_locks[blk]); 1592 1593 return status; 1594 } 1595 1596 /** 1597 * ice_flow_add_entry - Add a flow entry 1598 * @hw: pointer to the HW struct 1599 * @blk: classification stage 1600 * @prof_id: ID of the profile to add a new flow entry to 1601 * @entry_id: unique ID to identify this flow entry 1602 * @vsi_handle: software VSI handle for the flow entry 1603 * @prio: priority of the flow entry 1604 * @data: pointer to a data buffer containing flow entry's match values/masks 1605 * @entry_h: pointer to buffer that receives the new flow entry's handle 1606 */ 1607 int 1608 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id, 1609 u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio, 1610 void *data, u64 *entry_h) 1611 { 1612 struct ice_flow_entry *e = NULL; 1613 struct ice_flow_prof *prof; 1614 int status; 1615 1616 /* No flow entry data is expected for RSS */ 1617 if (!entry_h || (!data && blk != ICE_BLK_RSS)) 1618 return -EINVAL; 1619 1620 if (!ice_is_vsi_valid(hw, vsi_handle)) 1621 return -EINVAL; 1622 1623 mutex_lock(&hw->fl_profs_locks[blk]); 1624 1625 prof = ice_flow_find_prof_id(hw, blk, prof_id); 1626 if (!prof) { 1627 status = -ENOENT; 1628 } else { 1629 /* Allocate memory for the entry being added and associate 1630 * the VSI to the found flow profile 1631 */ 1632 e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL); 1633 if (!e) 1634 status = -ENOMEM; 1635 else 1636 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 1637 } 1638 1639 mutex_unlock(&hw->fl_profs_locks[blk]); 1640 if (status) 1641 goto out; 1642 1643 e->id = entry_id; 1644 e->vsi_handle = vsi_handle; 1645 e->prof = prof; 1646 e->priority = prio; 1647 1648 switch (blk) { 1649 case ICE_BLK_FD: 1650 case ICE_BLK_RSS: 1651 break; 1652 default: 1653 status = -EOPNOTSUPP; 1654 goto out; 1655 } 1656 1657 mutex_lock(&prof->entries_lock); 1658 list_add(&e->l_entry, &prof->entries); 1659 mutex_unlock(&prof->entries_lock); 1660 1661 *entry_h = ICE_FLOW_ENTRY_HNDL(e); 1662 1663 out: 1664 if (status) 1665 devm_kfree(ice_hw_to_dev(hw), e); 1666 1667 return status; 1668 } 1669 1670 /** 1671 * ice_flow_rem_entry - Remove a flow entry 1672 * @hw: pointer to the HW struct 1673 * @blk: classification stage 1674 * @entry_h: handle to the flow entry to be removed 1675 */ 1676 int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h) 1677 { 1678 struct ice_flow_entry *entry; 1679 struct ice_flow_prof *prof; 1680 int status = 0; 1681 1682 if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL) 1683 return -EINVAL; 1684 1685 entry = ICE_FLOW_ENTRY_PTR(entry_h); 1686 1687 /* Retain the pointer to the flow profile as the entry will be freed */ 1688 prof = entry->prof; 1689 1690 if (prof) { 1691 mutex_lock(&prof->entries_lock); 1692 status = ice_flow_rem_entry_sync(hw, blk, entry); 1693 mutex_unlock(&prof->entries_lock); 1694 } 1695 1696 return status; 1697 } 1698 1699 /** 1700 * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer 1701 * @seg: packet segment the field being set belongs to 1702 * @fld: field to be set 1703 * @field_type: type of the field 1704 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1705 * entry's input buffer 1706 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's 1707 * input buffer 1708 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from 1709 * entry's input buffer 1710 * 1711 * This helper function stores information of a field being matched, including 1712 * the type of the field and the locations of the value to match, the mask, and 1713 * the upper-bound value in the start of the input buffer for a flow entry. 1714 * This function should only be used for fixed-size data structures. 1715 * 1716 * This function also opportunistically determines the protocol headers to be 1717 * present based on the fields being set. Some fields cannot be used alone to 1718 * determine the protocol headers present. Sometimes, fields for particular 1719 * protocol headers are not matched. In those cases, the protocol headers 1720 * must be explicitly set. 1721 */ 1722 static void 1723 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1724 enum ice_flow_fld_match_type field_type, u16 val_loc, 1725 u16 mask_loc, u16 last_loc) 1726 { 1727 u64 bit = BIT_ULL(fld); 1728 1729 seg->match |= bit; 1730 if (field_type == ICE_FLOW_FLD_TYPE_RANGE) 1731 seg->range |= bit; 1732 1733 seg->fields[fld].type = field_type; 1734 seg->fields[fld].src.val = val_loc; 1735 seg->fields[fld].src.mask = mask_loc; 1736 seg->fields[fld].src.last = last_loc; 1737 1738 ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr); 1739 } 1740 1741 /** 1742 * ice_flow_set_fld - specifies locations of field from entry's input buffer 1743 * @seg: packet segment the field being set belongs to 1744 * @fld: field to be set 1745 * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from 1746 * entry's input buffer 1747 * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's 1748 * input buffer 1749 * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from 1750 * entry's input buffer 1751 * @range: indicate if field being matched is to be in a range 1752 * 1753 * This function specifies the locations, in the form of byte offsets from the 1754 * start of the input buffer for a flow entry, from where the value to match, 1755 * the mask value, and upper value can be extracted. These locations are then 1756 * stored in the flow profile. When adding a flow entry associated with the 1757 * flow profile, these locations will be used to quickly extract the values and 1758 * create the content of a match entry. This function should only be used for 1759 * fixed-size data structures. 1760 */ 1761 void 1762 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld, 1763 u16 val_loc, u16 mask_loc, u16 last_loc, bool range) 1764 { 1765 enum ice_flow_fld_match_type t = range ? 1766 ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG; 1767 1768 ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc); 1769 } 1770 1771 /** 1772 * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf 1773 * @seg: packet segment the field being set belongs to 1774 * @off: offset of the raw field from the beginning of the segment in bytes 1775 * @len: length of the raw pattern to be matched 1776 * @val_loc: location of the value to match from entry's input buffer 1777 * @mask_loc: location of mask value from entry's input buffer 1778 * 1779 * This function specifies the offset of the raw field to be match from the 1780 * beginning of the specified packet segment, and the locations, in the form of 1781 * byte offsets from the start of the input buffer for a flow entry, from where 1782 * the value to match and the mask value to be extracted. These locations are 1783 * then stored in the flow profile. When adding flow entries to the associated 1784 * flow profile, these locations can be used to quickly extract the values to 1785 * create the content of a match entry. This function should only be used for 1786 * fixed-size data structures. 1787 */ 1788 void 1789 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len, 1790 u16 val_loc, u16 mask_loc) 1791 { 1792 if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) { 1793 seg->raws[seg->raws_cnt].off = off; 1794 seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE; 1795 seg->raws[seg->raws_cnt].info.src.val = val_loc; 1796 seg->raws[seg->raws_cnt].info.src.mask = mask_loc; 1797 /* The "last" field is used to store the length of the field */ 1798 seg->raws[seg->raws_cnt].info.src.last = len; 1799 } 1800 1801 /* Overflows of "raws" will be handled as an error condition later in 1802 * the flow when this information is processed. 1803 */ 1804 seg->raws_cnt++; 1805 } 1806 1807 /** 1808 * ice_flow_rem_vsi_prof - remove VSI from flow profile 1809 * @hw: pointer to the hardware structure 1810 * @vsi_handle: software VSI handle 1811 * @prof_id: unique ID to identify this flow profile 1812 * 1813 * This function removes the flow entries associated to the input 1814 * VSI handle and disassociate the VSI from the flow profile. 1815 */ 1816 int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id) 1817 { 1818 struct ice_flow_prof *prof; 1819 int status = 0; 1820 1821 if (!ice_is_vsi_valid(hw, vsi_handle)) 1822 return -EINVAL; 1823 1824 /* find flow profile pointer with input package block and profile ID */ 1825 prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id); 1826 if (!prof) { 1827 ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n", 1828 prof_id); 1829 return -ENOENT; 1830 } 1831 1832 /* Remove all remaining flow entries before removing the flow profile */ 1833 if (!list_empty(&prof->entries)) { 1834 struct ice_flow_entry *e, *t; 1835 1836 mutex_lock(&prof->entries_lock); 1837 list_for_each_entry_safe(e, t, &prof->entries, l_entry) { 1838 if (e->vsi_handle != vsi_handle) 1839 continue; 1840 1841 status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e); 1842 if (status) 1843 break; 1844 } 1845 mutex_unlock(&prof->entries_lock); 1846 } 1847 if (status) 1848 return status; 1849 1850 /* disassociate the flow profile from sw VSI handle */ 1851 status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle); 1852 if (status) 1853 ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n", 1854 status); 1855 return status; 1856 } 1857 1858 #define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \ 1859 (ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN) 1860 1861 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \ 1862 (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6) 1863 1864 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \ 1865 (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP) 1866 1867 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \ 1868 (ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \ 1869 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \ 1870 ICE_FLOW_RSS_SEG_HDR_L4_MASKS) 1871 1872 /** 1873 * ice_flow_set_rss_seg_info - setup packet segments for RSS 1874 * @segs: pointer to the flow field segment(s) 1875 * @seg_cnt: segment count 1876 * @cfg: configure parameters 1877 * 1878 * Helper function to extract fields from hash bitmap and use flow 1879 * header value to set flow field segment for further use in flow 1880 * profile entry or removal. 1881 */ 1882 static int 1883 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u8 seg_cnt, 1884 const struct ice_rss_hash_cfg *cfg) 1885 { 1886 struct ice_flow_seg_info *seg; 1887 u64 val; 1888 u16 i; 1889 1890 /* set inner most segment */ 1891 seg = &segs[seg_cnt - 1]; 1892 1893 for_each_set_bit(i, (const unsigned long *)&cfg->hash_flds, 1894 (u16)ICE_FLOW_FIELD_IDX_MAX) 1895 ice_flow_set_fld(seg, (enum ice_flow_field)i, 1896 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL, 1897 ICE_FLOW_FLD_OFF_INVAL, false); 1898 1899 ICE_FLOW_SET_HDRS(seg, cfg->addl_hdrs); 1900 1901 /* set outer most header */ 1902 if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV4) 1903 segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV4 | 1904 ICE_FLOW_SEG_HDR_IPV_OTHER; 1905 else if (cfg->hdr_type == ICE_RSS_INNER_HEADERS_W_OUTER_IPV6) 1906 segs[ICE_RSS_OUTER_HEADERS].hdrs |= ICE_FLOW_SEG_HDR_IPV6 | 1907 ICE_FLOW_SEG_HDR_IPV_OTHER; 1908 1909 if (seg->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS & 1910 ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER) 1911 return -EINVAL; 1912 1913 val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS); 1914 if (val && !is_power_of_2(val)) 1915 return -EIO; 1916 1917 val = (u64)(seg->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS); 1918 if (val && !is_power_of_2(val)) 1919 return -EIO; 1920 1921 return 0; 1922 } 1923 1924 /** 1925 * ice_rem_vsi_rss_list - remove VSI from RSS list 1926 * @hw: pointer to the hardware structure 1927 * @vsi_handle: software VSI handle 1928 * 1929 * Remove the VSI from all RSS configurations in the list. 1930 */ 1931 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle) 1932 { 1933 struct ice_rss_cfg *r, *tmp; 1934 1935 if (list_empty(&hw->rss_list_head)) 1936 return; 1937 1938 mutex_lock(&hw->rss_locks); 1939 list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) 1940 if (test_and_clear_bit(vsi_handle, r->vsis)) 1941 if (bitmap_empty(r->vsis, ICE_MAX_VSI)) { 1942 list_del(&r->l_entry); 1943 devm_kfree(ice_hw_to_dev(hw), r); 1944 } 1945 mutex_unlock(&hw->rss_locks); 1946 } 1947 1948 /** 1949 * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI 1950 * @hw: pointer to the hardware structure 1951 * @vsi_handle: software VSI handle 1952 * 1953 * This function will iterate through all flow profiles and disassociate 1954 * the VSI from that profile. If the flow profile has no VSIs it will 1955 * be removed. 1956 */ 1957 int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle) 1958 { 1959 const enum ice_block blk = ICE_BLK_RSS; 1960 struct ice_flow_prof *p, *t; 1961 int status = 0; 1962 1963 if (!ice_is_vsi_valid(hw, vsi_handle)) 1964 return -EINVAL; 1965 1966 if (list_empty(&hw->fl_profs[blk])) 1967 return 0; 1968 1969 mutex_lock(&hw->rss_locks); 1970 list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry) 1971 if (test_bit(vsi_handle, p->vsis)) { 1972 status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle); 1973 if (status) 1974 break; 1975 1976 if (bitmap_empty(p->vsis, ICE_MAX_VSI)) { 1977 status = ice_flow_rem_prof(hw, blk, p->id); 1978 if (status) 1979 break; 1980 } 1981 } 1982 mutex_unlock(&hw->rss_locks); 1983 1984 return status; 1985 } 1986 1987 /** 1988 * ice_get_rss_hdr_type - get a RSS profile's header type 1989 * @prof: RSS flow profile 1990 */ 1991 static enum ice_rss_cfg_hdr_type 1992 ice_get_rss_hdr_type(struct ice_flow_prof *prof) 1993 { 1994 if (prof->segs_cnt == ICE_FLOW_SEG_SINGLE) { 1995 return ICE_RSS_OUTER_HEADERS; 1996 } else if (prof->segs_cnt == ICE_FLOW_SEG_MAX) { 1997 const struct ice_flow_seg_info *s; 1998 1999 s = &prof->segs[ICE_RSS_OUTER_HEADERS]; 2000 if (s->hdrs == ICE_FLOW_SEG_HDR_NONE) 2001 return ICE_RSS_INNER_HEADERS; 2002 if (s->hdrs & ICE_FLOW_SEG_HDR_IPV4) 2003 return ICE_RSS_INNER_HEADERS_W_OUTER_IPV4; 2004 if (s->hdrs & ICE_FLOW_SEG_HDR_IPV6) 2005 return ICE_RSS_INNER_HEADERS_W_OUTER_IPV6; 2006 } 2007 2008 return ICE_RSS_ANY_HEADERS; 2009 } 2010 2011 static bool 2012 ice_rss_match_prof(struct ice_rss_cfg *r, struct ice_flow_prof *prof, 2013 enum ice_rss_cfg_hdr_type hdr_type) 2014 { 2015 return (r->hash.hdr_type == hdr_type && 2016 r->hash.hash_flds == prof->segs[prof->segs_cnt - 1].match && 2017 r->hash.addl_hdrs == prof->segs[prof->segs_cnt - 1].hdrs); 2018 } 2019 2020 /** 2021 * ice_rem_rss_list - remove RSS configuration from list 2022 * @hw: pointer to the hardware structure 2023 * @vsi_handle: software VSI handle 2024 * @prof: pointer to flow profile 2025 * 2026 * Assumption: lock has already been acquired for RSS list 2027 */ 2028 static void 2029 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof) 2030 { 2031 enum ice_rss_cfg_hdr_type hdr_type; 2032 struct ice_rss_cfg *r, *tmp; 2033 2034 /* Search for RSS hash fields associated to the VSI that match the 2035 * hash configurations associated to the flow profile. If found 2036 * remove from the RSS entry list of the VSI context and delete entry. 2037 */ 2038 hdr_type = ice_get_rss_hdr_type(prof); 2039 list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) 2040 if (ice_rss_match_prof(r, prof, hdr_type)) { 2041 clear_bit(vsi_handle, r->vsis); 2042 if (bitmap_empty(r->vsis, ICE_MAX_VSI)) { 2043 list_del(&r->l_entry); 2044 devm_kfree(ice_hw_to_dev(hw), r); 2045 } 2046 return; 2047 } 2048 } 2049 2050 /** 2051 * ice_add_rss_list - add RSS configuration to list 2052 * @hw: pointer to the hardware structure 2053 * @vsi_handle: software VSI handle 2054 * @prof: pointer to flow profile 2055 * 2056 * Assumption: lock has already been acquired for RSS list 2057 */ 2058 static int 2059 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof) 2060 { 2061 enum ice_rss_cfg_hdr_type hdr_type; 2062 struct ice_rss_cfg *r, *rss_cfg; 2063 2064 hdr_type = ice_get_rss_hdr_type(prof); 2065 list_for_each_entry(r, &hw->rss_list_head, l_entry) 2066 if (ice_rss_match_prof(r, prof, hdr_type)) { 2067 set_bit(vsi_handle, r->vsis); 2068 return 0; 2069 } 2070 2071 rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg), 2072 GFP_KERNEL); 2073 if (!rss_cfg) 2074 return -ENOMEM; 2075 2076 rss_cfg->hash.hash_flds = prof->segs[prof->segs_cnt - 1].match; 2077 rss_cfg->hash.addl_hdrs = prof->segs[prof->segs_cnt - 1].hdrs; 2078 rss_cfg->hash.hdr_type = hdr_type; 2079 rss_cfg->hash.symm = prof->symm; 2080 set_bit(vsi_handle, rss_cfg->vsis); 2081 2082 list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head); 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * ice_rss_config_xor_word - set the HSYMM registers for one input set word 2089 * @hw: pointer to the hardware structure 2090 * @prof_id: RSS hardware profile id 2091 * @src: the FV index used by the protocol's source field 2092 * @dst: the FV index used by the protocol's destination field 2093 * 2094 * Write to the HSYMM register with the index of @src FV the value of the @dst 2095 * FV index. This will tell the hardware to XOR HSYMM[src] with INSET[dst] 2096 * while calculating the RSS input set. 2097 */ 2098 static void 2099 ice_rss_config_xor_word(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst) 2100 { 2101 u32 val, reg, bits_shift; 2102 u8 reg_idx; 2103 2104 reg_idx = src / GLQF_HSYMM_REG_SIZE; 2105 bits_shift = ((src % GLQF_HSYMM_REG_SIZE) << 3); 2106 val = dst | GLQF_HSYMM_ENABLE_BIT; 2107 2108 reg = rd32(hw, GLQF_HSYMM(prof_id, reg_idx)); 2109 reg = (reg & ~(0xff << bits_shift)) | (val << bits_shift); 2110 wr32(hw, GLQF_HSYMM(prof_id, reg_idx), reg); 2111 } 2112 2113 /** 2114 * ice_rss_config_xor - set the symmetric registers for a profile's protocol 2115 * @hw: pointer to the hardware structure 2116 * @prof_id: RSS hardware profile id 2117 * @src: the FV index used by the protocol's source field 2118 * @dst: the FV index used by the protocol's destination field 2119 * @len: length of the source/destination fields in words 2120 */ 2121 static void 2122 ice_rss_config_xor(struct ice_hw *hw, u8 prof_id, u8 src, u8 dst, u8 len) 2123 { 2124 int fv_last_word = 2125 ICE_FLOW_SW_FIELD_VECTOR_MAX / ICE_FLOW_FV_EXTRACT_SZ - 1; 2126 int i; 2127 2128 for (i = 0; i < len; i++) { 2129 ice_rss_config_xor_word(hw, prof_id, 2130 /* Yes, field vector in GLQF_HSYMM and 2131 * GLQF_HINSET is inversed! 2132 */ 2133 fv_last_word - (src + i), 2134 fv_last_word - (dst + i)); 2135 ice_rss_config_xor_word(hw, prof_id, 2136 fv_last_word - (dst + i), 2137 fv_last_word - (src + i)); 2138 } 2139 } 2140 2141 /** 2142 * ice_rss_set_symm - set the symmetric settings for an RSS profile 2143 * @hw: pointer to the hardware structure 2144 * @prof: pointer to flow profile 2145 * 2146 * The symmetric hash will result from XORing the protocol's fields with 2147 * indexes in GLQF_HSYMM and GLQF_HINSET. This function configures the profile's 2148 * GLQF_HSYMM registers. 2149 */ 2150 static void ice_rss_set_symm(struct ice_hw *hw, struct ice_flow_prof *prof) 2151 { 2152 struct ice_prof_map *map; 2153 u8 prof_id, m; 2154 2155 mutex_lock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock); 2156 map = ice_search_prof_id(hw, ICE_BLK_RSS, prof->id); 2157 if (map) 2158 prof_id = map->prof_id; 2159 mutex_unlock(&hw->blk[ICE_BLK_RSS].es.prof_map_lock); 2160 2161 if (!map) 2162 return; 2163 2164 /* clear to default */ 2165 for (m = 0; m < GLQF_HSYMM_REG_PER_PROF; m++) 2166 wr32(hw, GLQF_HSYMM(prof_id, m), 0); 2167 2168 if (prof->symm) { 2169 struct ice_flow_seg_xtrct *ipv4_src, *ipv4_dst; 2170 struct ice_flow_seg_xtrct *ipv6_src, *ipv6_dst; 2171 struct ice_flow_seg_xtrct *sctp_src, *sctp_dst; 2172 struct ice_flow_seg_xtrct *tcp_src, *tcp_dst; 2173 struct ice_flow_seg_xtrct *udp_src, *udp_dst; 2174 struct ice_flow_seg_info *seg; 2175 2176 seg = &prof->segs[prof->segs_cnt - 1]; 2177 2178 ipv4_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_SA].xtrct; 2179 ipv4_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV4_DA].xtrct; 2180 2181 ipv6_src = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_SA].xtrct; 2182 ipv6_dst = &seg->fields[ICE_FLOW_FIELD_IDX_IPV6_DA].xtrct; 2183 2184 tcp_src = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_SRC_PORT].xtrct; 2185 tcp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_TCP_DST_PORT].xtrct; 2186 2187 udp_src = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_SRC_PORT].xtrct; 2188 udp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_UDP_DST_PORT].xtrct; 2189 2190 sctp_src = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT].xtrct; 2191 sctp_dst = &seg->fields[ICE_FLOW_FIELD_IDX_SCTP_DST_PORT].xtrct; 2192 2193 /* xor IPv4 */ 2194 if (ipv4_src->prot_id != 0 && ipv4_dst->prot_id != 0) 2195 ice_rss_config_xor(hw, prof_id, 2196 ipv4_src->idx, ipv4_dst->idx, 2); 2197 2198 /* xor IPv6 */ 2199 if (ipv6_src->prot_id != 0 && ipv6_dst->prot_id != 0) 2200 ice_rss_config_xor(hw, prof_id, 2201 ipv6_src->idx, ipv6_dst->idx, 8); 2202 2203 /* xor TCP */ 2204 if (tcp_src->prot_id != 0 && tcp_dst->prot_id != 0) 2205 ice_rss_config_xor(hw, prof_id, 2206 tcp_src->idx, tcp_dst->idx, 1); 2207 2208 /* xor UDP */ 2209 if (udp_src->prot_id != 0 && udp_dst->prot_id != 0) 2210 ice_rss_config_xor(hw, prof_id, 2211 udp_src->idx, udp_dst->idx, 1); 2212 2213 /* xor SCTP */ 2214 if (sctp_src->prot_id != 0 && sctp_dst->prot_id != 0) 2215 ice_rss_config_xor(hw, prof_id, 2216 sctp_src->idx, sctp_dst->idx, 1); 2217 } 2218 } 2219 2220 /** 2221 * ice_add_rss_cfg_sync - add an RSS configuration 2222 * @hw: pointer to the hardware structure 2223 * @vsi_handle: software VSI handle 2224 * @cfg: configure parameters 2225 * 2226 * Assumption: lock has already been acquired for RSS list 2227 */ 2228 static int 2229 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, 2230 const struct ice_rss_hash_cfg *cfg) 2231 { 2232 const enum ice_block blk = ICE_BLK_RSS; 2233 struct ice_flow_prof *prof = NULL; 2234 struct ice_flow_seg_info *segs; 2235 u8 segs_cnt; 2236 int status; 2237 2238 segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ? 2239 ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX; 2240 2241 segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL); 2242 if (!segs) 2243 return -ENOMEM; 2244 2245 /* Construct the packet segment info from the hashed fields */ 2246 status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg); 2247 if (status) 2248 goto exit; 2249 2250 /* Search for a flow profile that has matching headers, hash fields, 2251 * symm and has the input VSI associated to it. If found, no further 2252 * operations required and exit. 2253 */ 2254 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2255 cfg->symm, vsi_handle, 2256 ICE_FLOW_FIND_PROF_CHK_FLDS | 2257 ICE_FLOW_FIND_PROF_CHK_SYMM | 2258 ICE_FLOW_FIND_PROF_CHK_VSI); 2259 if (prof) 2260 goto exit; 2261 2262 /* Check if a flow profile exists with the same protocol headers and 2263 * associated with the input VSI. If so disassociate the VSI from 2264 * this profile. The VSI will be added to a new profile created with 2265 * the protocol header and new hash field configuration. 2266 */ 2267 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2268 cfg->symm, vsi_handle, 2269 ICE_FLOW_FIND_PROF_CHK_VSI); 2270 if (prof) { 2271 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle); 2272 if (!status) 2273 ice_rem_rss_list(hw, vsi_handle, prof); 2274 else 2275 goto exit; 2276 2277 /* Remove profile if it has no VSIs associated */ 2278 if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) { 2279 status = ice_flow_rem_prof(hw, blk, prof->id); 2280 if (status) 2281 goto exit; 2282 } 2283 } 2284 2285 /* Search for a profile that has the same match fields and symmetric 2286 * setting. If this exists then associate the VSI to this profile. 2287 */ 2288 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2289 cfg->symm, vsi_handle, 2290 ICE_FLOW_FIND_PROF_CHK_SYMM | 2291 ICE_FLOW_FIND_PROF_CHK_FLDS); 2292 if (prof) { 2293 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 2294 if (!status) 2295 status = ice_add_rss_list(hw, vsi_handle, prof); 2296 goto exit; 2297 } 2298 2299 /* Create a new flow profile with packet segment information. */ 2300 status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX, 2301 segs, segs_cnt, cfg->symm, &prof); 2302 if (status) 2303 goto exit; 2304 2305 prof->symm = cfg->symm; 2306 ice_rss_set_symm(hw, prof); 2307 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle); 2308 /* If association to a new flow profile failed then this profile can 2309 * be removed. 2310 */ 2311 if (status) { 2312 ice_flow_rem_prof(hw, blk, prof->id); 2313 goto exit; 2314 } 2315 2316 status = ice_add_rss_list(hw, vsi_handle, prof); 2317 2318 exit: 2319 kfree(segs); 2320 return status; 2321 } 2322 2323 /** 2324 * ice_add_rss_cfg - add an RSS configuration with specified hashed fields 2325 * @hw: pointer to the hardware structure 2326 * @vsi: VSI to add the RSS configuration to 2327 * @cfg: configure parameters 2328 * 2329 * This function will generate a flow profile based on fields associated with 2330 * the input fields to hash on, the flow type and use the VSI number to add 2331 * a flow entry to the profile. 2332 */ 2333 int 2334 ice_add_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi, 2335 const struct ice_rss_hash_cfg *cfg) 2336 { 2337 struct ice_rss_hash_cfg local_cfg; 2338 u16 vsi_handle; 2339 int status; 2340 2341 if (!vsi) 2342 return -EINVAL; 2343 2344 vsi_handle = vsi->idx; 2345 if (!ice_is_vsi_valid(hw, vsi_handle) || 2346 !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS || 2347 cfg->hash_flds == ICE_HASH_INVALID) 2348 return -EINVAL; 2349 2350 mutex_lock(&hw->rss_locks); 2351 local_cfg = *cfg; 2352 if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) { 2353 status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg); 2354 } else { 2355 local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS; 2356 status = ice_add_rss_cfg_sync(hw, vsi_handle, &local_cfg); 2357 if (!status) { 2358 local_cfg.hdr_type = ICE_RSS_INNER_HEADERS; 2359 status = ice_add_rss_cfg_sync(hw, vsi_handle, 2360 &local_cfg); 2361 } 2362 } 2363 mutex_unlock(&hw->rss_locks); 2364 2365 return status; 2366 } 2367 2368 /** 2369 * ice_rem_rss_cfg_sync - remove an existing RSS configuration 2370 * @hw: pointer to the hardware structure 2371 * @vsi_handle: software VSI handle 2372 * @cfg: configure parameters 2373 * 2374 * Assumption: lock has already been acquired for RSS list 2375 */ 2376 static int 2377 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, 2378 const struct ice_rss_hash_cfg *cfg) 2379 { 2380 const enum ice_block blk = ICE_BLK_RSS; 2381 struct ice_flow_seg_info *segs; 2382 struct ice_flow_prof *prof; 2383 u8 segs_cnt; 2384 int status; 2385 2386 segs_cnt = (cfg->hdr_type == ICE_RSS_OUTER_HEADERS) ? 2387 ICE_FLOW_SEG_SINGLE : ICE_FLOW_SEG_MAX; 2388 segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL); 2389 if (!segs) 2390 return -ENOMEM; 2391 2392 /* Construct the packet segment info from the hashed fields */ 2393 status = ice_flow_set_rss_seg_info(segs, segs_cnt, cfg); 2394 if (status) 2395 goto out; 2396 2397 prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt, 2398 cfg->symm, vsi_handle, 2399 ICE_FLOW_FIND_PROF_CHK_FLDS); 2400 if (!prof) { 2401 status = -ENOENT; 2402 goto out; 2403 } 2404 2405 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle); 2406 if (status) 2407 goto out; 2408 2409 /* Remove RSS configuration from VSI context before deleting 2410 * the flow profile. 2411 */ 2412 ice_rem_rss_list(hw, vsi_handle, prof); 2413 2414 if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) 2415 status = ice_flow_rem_prof(hw, blk, prof->id); 2416 2417 out: 2418 kfree(segs); 2419 return status; 2420 } 2421 2422 /** 2423 * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields 2424 * @hw: pointer to the hardware structure 2425 * @vsi_handle: software VSI handle 2426 * @cfg: configure parameters 2427 * 2428 * This function will lookup the flow profile based on the input 2429 * hash field bitmap, iterate through the profile entry list of 2430 * that profile and find entry associated with input VSI to be 2431 * removed. Calls are made to underlying flow apis which will in 2432 * turn build or update buffers for RSS XLT1 section. 2433 */ 2434 int 2435 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, 2436 const struct ice_rss_hash_cfg *cfg) 2437 { 2438 struct ice_rss_hash_cfg local_cfg; 2439 int status; 2440 2441 if (!ice_is_vsi_valid(hw, vsi_handle) || 2442 !cfg || cfg->hdr_type > ICE_RSS_ANY_HEADERS || 2443 cfg->hash_flds == ICE_HASH_INVALID) 2444 return -EINVAL; 2445 2446 mutex_lock(&hw->rss_locks); 2447 local_cfg = *cfg; 2448 if (cfg->hdr_type < ICE_RSS_ANY_HEADERS) { 2449 status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg); 2450 } else { 2451 local_cfg.hdr_type = ICE_RSS_OUTER_HEADERS; 2452 status = ice_rem_rss_cfg_sync(hw, vsi_handle, &local_cfg); 2453 if (!status) { 2454 local_cfg.hdr_type = ICE_RSS_INNER_HEADERS; 2455 status = ice_rem_rss_cfg_sync(hw, vsi_handle, 2456 &local_cfg); 2457 } 2458 } 2459 mutex_unlock(&hw->rss_locks); 2460 2461 return status; 2462 } 2463 2464 /* Mapping of AVF hash bit fields to an L3-L4 hash combination. 2465 * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash, 2466 * convert its values to their appropriate flow L3, L4 values. 2467 */ 2468 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \ 2469 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \ 2470 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4)) 2471 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \ 2472 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \ 2473 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP)) 2474 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \ 2475 (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \ 2476 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \ 2477 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP)) 2478 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \ 2479 (ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \ 2480 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) 2481 2482 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \ 2483 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \ 2484 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6)) 2485 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \ 2486 (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \ 2487 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \ 2488 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP)) 2489 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \ 2490 (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \ 2491 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP)) 2492 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \ 2493 (ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \ 2494 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) 2495 2496 /** 2497 * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver 2498 * @hw: pointer to the hardware structure 2499 * @vsi: VF's VSI 2500 * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure 2501 * 2502 * This function will take the hash bitmap provided by the AVF driver via a 2503 * message, convert it to ICE-compatible values, and configure RSS flow 2504 * profiles. 2505 */ 2506 int ice_add_avf_rss_cfg(struct ice_hw *hw, struct ice_vsi *vsi, u64 avf_hash) 2507 { 2508 struct ice_rss_hash_cfg hcfg; 2509 u16 vsi_handle; 2510 int status = 0; 2511 u64 hash_flds; 2512 2513 if (!vsi) 2514 return -EINVAL; 2515 2516 vsi_handle = vsi->idx; 2517 if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID || 2518 !ice_is_vsi_valid(hw, vsi_handle)) 2519 return -EINVAL; 2520 2521 /* Make sure no unsupported bits are specified */ 2522 if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS | 2523 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)) 2524 return -EIO; 2525 2526 hash_flds = avf_hash; 2527 2528 /* Always create an L3 RSS configuration for any L4 RSS configuration */ 2529 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) 2530 hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS; 2531 2532 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) 2533 hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS; 2534 2535 /* Create the corresponding RSS configuration for each valid hash bit */ 2536 while (hash_flds) { 2537 u64 rss_hash = ICE_HASH_INVALID; 2538 2539 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) { 2540 if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) { 2541 rss_hash = ICE_FLOW_HASH_IPV4; 2542 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS; 2543 } else if (hash_flds & 2544 ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) { 2545 rss_hash = ICE_FLOW_HASH_IPV4 | 2546 ICE_FLOW_HASH_TCP_PORT; 2547 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS; 2548 } else if (hash_flds & 2549 ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) { 2550 rss_hash = ICE_FLOW_HASH_IPV4 | 2551 ICE_FLOW_HASH_UDP_PORT; 2552 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS; 2553 } else if (hash_flds & 2554 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) { 2555 rss_hash = ICE_FLOW_HASH_IPV4 | 2556 ICE_FLOW_HASH_SCTP_PORT; 2557 hash_flds &= 2558 ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP); 2559 } 2560 } else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) { 2561 if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) { 2562 rss_hash = ICE_FLOW_HASH_IPV6; 2563 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS; 2564 } else if (hash_flds & 2565 ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) { 2566 rss_hash = ICE_FLOW_HASH_IPV6 | 2567 ICE_FLOW_HASH_TCP_PORT; 2568 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS; 2569 } else if (hash_flds & 2570 ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) { 2571 rss_hash = ICE_FLOW_HASH_IPV6 | 2572 ICE_FLOW_HASH_UDP_PORT; 2573 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS; 2574 } else if (hash_flds & 2575 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) { 2576 rss_hash = ICE_FLOW_HASH_IPV6 | 2577 ICE_FLOW_HASH_SCTP_PORT; 2578 hash_flds &= 2579 ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP); 2580 } 2581 } 2582 2583 if (rss_hash == ICE_HASH_INVALID) 2584 return -EIO; 2585 2586 hcfg.addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 2587 hcfg.hash_flds = rss_hash; 2588 hcfg.hdr_type = ICE_RSS_ANY_HEADERS; 2589 hcfg.symm = false; 2590 status = ice_add_rss_cfg(hw, vsi, &hcfg); 2591 if (status) 2592 break; 2593 } 2594 2595 return status; 2596 } 2597 2598 static bool rss_cfg_symm_valid(u64 hfld) 2599 { 2600 return !((!!(hfld & ICE_FLOW_HASH_FLD_IPV4_SA) ^ 2601 !!(hfld & ICE_FLOW_HASH_FLD_IPV4_DA)) || 2602 (!!(hfld & ICE_FLOW_HASH_FLD_IPV6_SA) ^ 2603 !!(hfld & ICE_FLOW_HASH_FLD_IPV6_DA)) || 2604 (!!(hfld & ICE_FLOW_HASH_FLD_TCP_SRC_PORT) ^ 2605 !!(hfld & ICE_FLOW_HASH_FLD_TCP_DST_PORT)) || 2606 (!!(hfld & ICE_FLOW_HASH_FLD_UDP_SRC_PORT) ^ 2607 !!(hfld & ICE_FLOW_HASH_FLD_UDP_DST_PORT)) || 2608 (!!(hfld & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) ^ 2609 !!(hfld & ICE_FLOW_HASH_FLD_SCTP_DST_PORT))); 2610 } 2611 2612 /** 2613 * ice_set_rss_cfg_symm - set symmtery for all VSI's RSS configurations 2614 * @hw: pointer to the hardware structure 2615 * @vsi: VSI to set/unset Symmetric RSS 2616 * @symm: TRUE to set Symmetric RSS hashing 2617 */ 2618 int ice_set_rss_cfg_symm(struct ice_hw *hw, struct ice_vsi *vsi, bool symm) 2619 { 2620 struct ice_rss_hash_cfg local; 2621 struct ice_rss_cfg *r, *tmp; 2622 u16 vsi_handle = vsi->idx; 2623 int status = 0; 2624 2625 if (!ice_is_vsi_valid(hw, vsi_handle)) 2626 return -EINVAL; 2627 2628 mutex_lock(&hw->rss_locks); 2629 list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry) { 2630 if (test_bit(vsi_handle, r->vsis) && r->hash.symm != symm) { 2631 local = r->hash; 2632 local.symm = symm; 2633 if (symm && !rss_cfg_symm_valid(r->hash.hash_flds)) 2634 continue; 2635 2636 status = ice_add_rss_cfg_sync(hw, vsi_handle, &local); 2637 if (status) 2638 break; 2639 } 2640 } 2641 mutex_unlock(&hw->rss_locks); 2642 2643 return status; 2644 } 2645 2646 /** 2647 * ice_replay_rss_cfg - replay RSS configurations associated with VSI 2648 * @hw: pointer to the hardware structure 2649 * @vsi_handle: software VSI handle 2650 */ 2651 int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle) 2652 { 2653 struct ice_rss_cfg *r; 2654 int status = 0; 2655 2656 if (!ice_is_vsi_valid(hw, vsi_handle)) 2657 return -EINVAL; 2658 2659 mutex_lock(&hw->rss_locks); 2660 list_for_each_entry(r, &hw->rss_list_head, l_entry) { 2661 if (test_bit(vsi_handle, r->vsis)) { 2662 status = ice_add_rss_cfg_sync(hw, vsi_handle, &r->hash); 2663 if (status) 2664 break; 2665 } 2666 } 2667 mutex_unlock(&hw->rss_locks); 2668 2669 return status; 2670 } 2671 2672 /** 2673 * ice_get_rss_cfg - returns hashed fields for the given header types 2674 * @hw: pointer to the hardware structure 2675 * @vsi_handle: software VSI handle 2676 * @hdrs: protocol header type 2677 * @symm: whether the RSS is symmetric (bool, output) 2678 * 2679 * This function will return the match fields of the first instance of flow 2680 * profile having the given header types and containing input VSI 2681 */ 2682 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs, bool *symm) 2683 { 2684 u64 rss_hash = ICE_HASH_INVALID; 2685 struct ice_rss_cfg *r; 2686 2687 /* verify if the protocol header is non zero and VSI is valid */ 2688 if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle)) 2689 return ICE_HASH_INVALID; 2690 2691 mutex_lock(&hw->rss_locks); 2692 list_for_each_entry(r, &hw->rss_list_head, l_entry) 2693 if (test_bit(vsi_handle, r->vsis) && 2694 r->hash.addl_hdrs == hdrs) { 2695 rss_hash = r->hash.hash_flds; 2696 *symm = r->hash.symm; 2697 break; 2698 } 2699 mutex_unlock(&hw->rss_locks); 2700 2701 return rss_hash; 2702 } 2703