xref: /linux/drivers/net/ethernet/intel/ice/ice_flow.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flow.h"
6 #include <net/gre.h>
7 
8 /* Describe properties of a protocol header field */
9 struct ice_flow_field_info {
10 	enum ice_flow_seg_hdr hdr;
11 	s16 off;	/* Offset from start of a protocol header, in bits */
12 	u16 size;	/* Size of fields in bits */
13 	u16 mask;	/* 16-bit mask for field */
14 };
15 
16 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
17 	.hdr = _hdr, \
18 	.off = (_offset_bytes) * BITS_PER_BYTE, \
19 	.size = (_size_bytes) * BITS_PER_BYTE, \
20 	.mask = 0, \
21 }
22 
23 #define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
24 	.hdr = _hdr, \
25 	.off = (_offset_bytes) * BITS_PER_BYTE, \
26 	.size = (_size_bytes) * BITS_PER_BYTE, \
27 	.mask = _mask, \
28 }
29 
30 /* Table containing properties of supported protocol header fields */
31 static const
32 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
33 	/* Ether */
34 	/* ICE_FLOW_FIELD_IDX_ETH_DA */
35 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
36 	/* ICE_FLOW_FIELD_IDX_ETH_SA */
37 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
38 	/* ICE_FLOW_FIELD_IDX_S_VLAN */
39 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
40 	/* ICE_FLOW_FIELD_IDX_C_VLAN */
41 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
42 	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
43 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
44 	/* IPv4 / IPv6 */
45 	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
46 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
47 	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
48 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
49 	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
50 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
51 	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
52 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
53 	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
54 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
55 	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
56 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
57 	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
58 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
59 	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
60 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
61 	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
62 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
63 	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
64 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
65 	/* Transport */
66 	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
67 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
68 	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
69 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
70 	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
71 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
72 	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
73 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
74 	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
75 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
76 	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
77 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
78 	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
79 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
80 	/* ARP */
81 	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
82 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
83 	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
84 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
85 	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
86 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
87 	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
88 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
89 	/* ICE_FLOW_FIELD_IDX_ARP_OP */
90 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
91 	/* ICMP */
92 	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
93 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
94 	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
95 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
96 	/* GRE */
97 	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
98 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
99 			  sizeof_field(struct gre_full_hdr, key)),
100 	/* GTP */
101 	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
102 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
103 	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
104 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
105 	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
106 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
107 	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
108 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
109 			      0x3f00),
110 	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
111 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
112 	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
113 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
114 	/* PPPoE */
115 	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
116 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
117 	/* PFCP */
118 	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
119 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
120 	/* L2TPv3 */
121 	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
122 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
123 	/* ESP */
124 	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
125 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
126 	/* AH */
127 	/* ICE_FLOW_FIELD_IDX_AH_SPI */
128 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
129 	/* NAT_T_ESP */
130 	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
131 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
132 };
133 
134 /* Bitmaps indicating relevant packet types for a particular protocol header
135  *
136  * Packet types for packets with an Outer/First/Single MAC header
137  */
138 static const u32 ice_ptypes_mac_ofos[] = {
139 	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
140 	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
141 	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
142 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
143 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
144 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
145 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
146 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
147 };
148 
149 /* Packet types for packets with an Innermost/Last MAC VLAN header */
150 static const u32 ice_ptypes_macvlan_il[] = {
151 	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
152 	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
153 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
154 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
155 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
156 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
157 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
158 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
159 };
160 
161 /* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
162  * include IPv4 other PTYPEs
163  */
164 static const u32 ice_ptypes_ipv4_ofos[] = {
165 	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
166 	0x00000000, 0x00000155, 0x00000000, 0x00000000,
167 	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
168 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
169 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
170 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
171 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
172 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
173 };
174 
175 /* Packet types for packets with an Outer/First/Single IPv4 header, includes
176  * IPv4 other PTYPEs
177  */
178 static const u32 ice_ptypes_ipv4_ofos_all[] = {
179 	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
180 	0x00000000, 0x00000155, 0x00000000, 0x00000000,
181 	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
182 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
183 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
184 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
185 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
186 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
187 };
188 
189 /* Packet types for packets with an Innermost/Last IPv4 header */
190 static const u32 ice_ptypes_ipv4_il[] = {
191 	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
192 	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
193 	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
194 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
195 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
196 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
197 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
198 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
199 };
200 
201 /* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
202  * include IPv6 other PTYPEs
203  */
204 static const u32 ice_ptypes_ipv6_ofos[] = {
205 	0x00000000, 0x00000000, 0x77000000, 0x10002000,
206 	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
207 	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
208 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
209 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
210 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
211 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
212 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
213 };
214 
215 /* Packet types for packets with an Outer/First/Single IPv6 header, includes
216  * IPv6 other PTYPEs
217  */
218 static const u32 ice_ptypes_ipv6_ofos_all[] = {
219 	0x00000000, 0x00000000, 0x77000000, 0x10002000,
220 	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
221 	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
222 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
223 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
224 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
225 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
226 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
227 };
228 
229 /* Packet types for packets with an Innermost/Last IPv6 header */
230 static const u32 ice_ptypes_ipv6_il[] = {
231 	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
232 	0x00000770, 0x00000000, 0x00000000, 0x00000000,
233 	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
234 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
235 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
236 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
237 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
238 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
239 };
240 
241 /* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
242 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
243 	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
244 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
245 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
246 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
247 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
248 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
249 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
250 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
251 };
252 
253 /* Packet types for packets with an Outermost/First ARP header */
254 static const u32 ice_ptypes_arp_of[] = {
255 	0x00000800, 0x00000000, 0x00000000, 0x00000000,
256 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
257 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
258 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
259 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
260 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
261 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
262 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
263 };
264 
265 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
266 static const u32 ice_ptypes_ipv4_il_no_l4[] = {
267 	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
268 	0x00000008, 0x00000000, 0x00000000, 0x00000000,
269 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
270 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
271 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
272 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
273 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
274 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
275 };
276 
277 /* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
278 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
279 	0x00000000, 0x00000000, 0x43000000, 0x10002000,
280 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
281 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
282 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
283 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
284 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
285 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
286 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
287 };
288 
289 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
290 static const u32 ice_ptypes_ipv6_il_no_l4[] = {
291 	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
292 	0x00000430, 0x00000000, 0x00000000, 0x00000000,
293 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
294 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
295 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
296 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
297 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
298 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
299 };
300 
301 /* UDP Packet types for non-tunneled packets or tunneled
302  * packets with inner UDP.
303  */
304 static const u32 ice_ptypes_udp_il[] = {
305 	0x81000000, 0x20204040, 0x04000010, 0x80810102,
306 	0x00000040, 0x00000000, 0x00000000, 0x00000000,
307 	0x00000000, 0x00410000, 0x90842000, 0x00000007,
308 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
309 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
310 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
311 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
312 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
313 };
314 
315 /* Packet types for packets with an Innermost/Last TCP header */
316 static const u32 ice_ptypes_tcp_il[] = {
317 	0x04000000, 0x80810102, 0x10000040, 0x02040408,
318 	0x00000102, 0x00000000, 0x00000000, 0x00000000,
319 	0x00000000, 0x00820000, 0x21084000, 0x00000000,
320 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
321 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
322 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
323 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
324 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
325 };
326 
327 /* Packet types for packets with an Innermost/Last SCTP header */
328 static const u32 ice_ptypes_sctp_il[] = {
329 	0x08000000, 0x01020204, 0x20000081, 0x04080810,
330 	0x00000204, 0x00000000, 0x00000000, 0x00000000,
331 	0x00000000, 0x01040000, 0x00000000, 0x00000000,
332 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
333 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
334 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
335 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
336 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
337 };
338 
339 /* Packet types for packets with an Outermost/First ICMP header */
340 static const u32 ice_ptypes_icmp_of[] = {
341 	0x10000000, 0x00000000, 0x00000000, 0x00000000,
342 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
343 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
344 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
345 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
346 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
347 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
348 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
349 };
350 
351 /* Packet types for packets with an Innermost/Last ICMP header */
352 static const u32 ice_ptypes_icmp_il[] = {
353 	0x00000000, 0x02040408, 0x40000102, 0x08101020,
354 	0x00000408, 0x00000000, 0x00000000, 0x00000000,
355 	0x00000000, 0x00000000, 0x42108000, 0x00000000,
356 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
357 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
358 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
359 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
360 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
361 };
362 
363 /* Packet types for packets with an Outermost/First GRE header */
364 static const u32 ice_ptypes_gre_of[] = {
365 	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
366 	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
367 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
368 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
369 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
370 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
371 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
372 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
373 };
374 
375 /* Packet types for packets with an Innermost/Last MAC header */
376 static const u32 ice_ptypes_mac_il[] = {
377 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
378 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
379 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
380 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
381 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
382 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
383 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
384 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
385 };
386 
387 /* Packet types for GTPC */
388 static const u32 ice_ptypes_gtpc[] = {
389 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
390 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
391 	0x00000000, 0x00000000, 0x00000180, 0x00000000,
392 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
393 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
394 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
395 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
396 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
397 };
398 
399 /* Packet types for GTPC with TEID */
400 static const u32 ice_ptypes_gtpc_tid[] = {
401 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
402 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
403 	0x00000000, 0x00000000, 0x00000060, 0x00000000,
404 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
405 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
406 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
407 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
408 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
409 };
410 
411 /* Packet types for GTPU */
412 static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
413 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
414 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
415 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
416 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
417 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
418 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
419 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
420 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
421 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
422 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
423 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
424 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
425 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
426 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
427 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
428 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
429 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
430 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
431 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
432 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
433 };
434 
435 static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
436 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
437 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
438 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
439 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
440 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
441 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
442 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
443 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
444 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
445 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
446 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
447 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
448 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
449 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
450 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
451 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
452 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
453 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
454 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
455 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
456 };
457 
458 static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
459 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
460 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
461 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
462 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
463 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
464 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
465 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
466 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
467 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
468 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
469 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
470 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
471 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
472 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
473 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
474 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
475 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
476 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
477 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
478 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
479 };
480 
481 static const u32 ice_ptypes_gtpu[] = {
482 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
483 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
484 	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
485 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
486 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
487 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
488 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
489 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
490 };
491 
492 /* Packet types for PPPoE */
493 static const u32 ice_ptypes_pppoe[] = {
494 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
495 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
496 	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
497 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
498 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
499 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
500 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
501 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
502 };
503 
504 /* Packet types for packets with PFCP NODE header */
505 static const u32 ice_ptypes_pfcp_node[] = {
506 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
507 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
508 	0x00000000, 0x00000000, 0x80000000, 0x00000002,
509 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
510 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
511 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
512 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
513 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
514 };
515 
516 /* Packet types for packets with PFCP SESSION header */
517 static const u32 ice_ptypes_pfcp_session[] = {
518 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
519 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
520 	0x00000000, 0x00000000, 0x00000000, 0x00000005,
521 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
522 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
523 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
524 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
525 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
526 };
527 
528 /* Packet types for L2TPv3 */
529 static const u32 ice_ptypes_l2tpv3[] = {
530 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
531 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
532 	0x00000000, 0x00000000, 0x00000000, 0x00000300,
533 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
534 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
535 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
536 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
537 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
538 };
539 
540 /* Packet types for ESP */
541 static const u32 ice_ptypes_esp[] = {
542 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
543 	0x00000000, 0x00000003, 0x00000000, 0x00000000,
544 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
545 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
546 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
547 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
548 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
549 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
550 };
551 
552 /* Packet types for AH */
553 static const u32 ice_ptypes_ah[] = {
554 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
555 	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
556 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
557 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
558 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
559 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
560 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
561 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
562 };
563 
564 /* Packet types for packets with NAT_T ESP header */
565 static const u32 ice_ptypes_nat_t_esp[] = {
566 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
567 	0x00000000, 0x00000030, 0x00000000, 0x00000000,
568 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
569 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
570 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
571 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
572 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
573 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
574 };
575 
576 static const u32 ice_ptypes_mac_non_ip_ofos[] = {
577 	0x00000846, 0x00000000, 0x00000000, 0x00000000,
578 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
579 	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
580 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
581 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
582 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
583 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
584 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
585 };
586 
587 /* Manage parameters and info. used during the creation of a flow profile */
588 struct ice_flow_prof_params {
589 	enum ice_block blk;
590 	u16 entry_length; /* # of bytes formatted entry will require */
591 	u8 es_cnt;
592 	struct ice_flow_prof *prof;
593 
594 	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
595 	 * This will give us the direction flags.
596 	 */
597 	struct ice_fv_word es[ICE_MAX_FV_WORDS];
598 	/* attributes can be used to add attributes to a particular PTYPE */
599 	const struct ice_ptype_attributes *attr;
600 	u16 attr_cnt;
601 
602 	u16 mask[ICE_MAX_FV_WORDS];
603 	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
604 };
605 
606 #define ICE_FLOW_RSS_HDRS_INNER_MASK \
607 	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
608 	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
609 	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
610 	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
611 	ICE_FLOW_SEG_HDR_NAT_T_ESP)
612 
613 #define ICE_FLOW_SEG_HDRS_L3_MASK	\
614 	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
615 #define ICE_FLOW_SEG_HDRS_L4_MASK	\
616 	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
617 	 ICE_FLOW_SEG_HDR_SCTP)
618 /* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
619 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
620 	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
621 
622 /**
623  * ice_flow_val_hdrs - validates packet segments for valid protocol headers
624  * @segs: array of one or more packet segments that describe the flow
625  * @segs_cnt: number of packet segments provided
626  */
627 static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
628 {
629 	u8 i;
630 
631 	for (i = 0; i < segs_cnt; i++) {
632 		/* Multiple L3 headers */
633 		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
634 		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
635 			return -EINVAL;
636 
637 		/* Multiple L4 headers */
638 		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
639 		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
640 			return -EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 /* Sizes of fixed known protocol headers without header options */
647 #define ICE_FLOW_PROT_HDR_SZ_MAC	14
648 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
649 #define ICE_FLOW_PROT_HDR_SZ_IPV4	20
650 #define ICE_FLOW_PROT_HDR_SZ_IPV6	40
651 #define ICE_FLOW_PROT_HDR_SZ_ARP	28
652 #define ICE_FLOW_PROT_HDR_SZ_ICMP	8
653 #define ICE_FLOW_PROT_HDR_SZ_TCP	20
654 #define ICE_FLOW_PROT_HDR_SZ_UDP	8
655 #define ICE_FLOW_PROT_HDR_SZ_SCTP	12
656 
657 /**
658  * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
659  * @params: information about the flow to be processed
660  * @seg: index of packet segment whose header size is to be determined
661  */
662 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
663 {
664 	u16 sz;
665 
666 	/* L2 headers */
667 	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
668 		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
669 
670 	/* L3 headers */
671 	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
672 		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
673 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
674 		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
675 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
676 		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
677 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
678 		/* An L3 header is required if L4 is specified */
679 		return 0;
680 
681 	/* L4 headers */
682 	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
683 		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
684 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
685 		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
686 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
687 		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
688 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
689 		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
690 
691 	return sz;
692 }
693 
694 /**
695  * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
696  * @params: information about the flow to be processed
697  *
698  * This function identifies the packet types associated with the protocol
699  * headers being present in packet segments of the specified flow profile.
700  */
701 static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
702 {
703 	struct ice_flow_prof *prof;
704 	u8 i;
705 
706 	memset(params->ptypes, 0xff, sizeof(params->ptypes));
707 
708 	prof = params->prof;
709 
710 	for (i = 0; i < params->prof->segs_cnt; i++) {
711 		const unsigned long *src;
712 		u32 hdrs;
713 
714 		hdrs = prof->segs[i].hdrs;
715 
716 		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
717 			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
718 				(const unsigned long *)ice_ptypes_mac_il;
719 			bitmap_and(params->ptypes, params->ptypes, src,
720 				   ICE_FLOW_PTYPE_MAX);
721 		}
722 
723 		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
724 			src = (const unsigned long *)ice_ptypes_macvlan_il;
725 			bitmap_and(params->ptypes, params->ptypes, src,
726 				   ICE_FLOW_PTYPE_MAX);
727 		}
728 
729 		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
730 			bitmap_and(params->ptypes, params->ptypes,
731 				   (const unsigned long *)ice_ptypes_arp_of,
732 				   ICE_FLOW_PTYPE_MAX);
733 		}
734 
735 		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
736 		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
737 			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
738 				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
739 			bitmap_and(params->ptypes, params->ptypes, src,
740 				   ICE_FLOW_PTYPE_MAX);
741 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
742 			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
743 			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
744 				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
745 			bitmap_and(params->ptypes, params->ptypes, src,
746 				   ICE_FLOW_PTYPE_MAX);
747 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
748 			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
749 			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
750 				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
751 			bitmap_and(params->ptypes, params->ptypes, src,
752 				   ICE_FLOW_PTYPE_MAX);
753 		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
754 			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
755 				(const unsigned long *)ice_ptypes_ipv4_il;
756 			bitmap_and(params->ptypes, params->ptypes, src,
757 				   ICE_FLOW_PTYPE_MAX);
758 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
759 			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
760 			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
761 				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
762 			bitmap_and(params->ptypes, params->ptypes, src,
763 				   ICE_FLOW_PTYPE_MAX);
764 		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
765 			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
766 				(const unsigned long *)ice_ptypes_ipv6_il;
767 			bitmap_and(params->ptypes, params->ptypes, src,
768 				   ICE_FLOW_PTYPE_MAX);
769 		}
770 
771 		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
772 			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
773 			bitmap_and(params->ptypes, params->ptypes, src,
774 				   ICE_FLOW_PTYPE_MAX);
775 		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
776 			src = (const unsigned long *)ice_ptypes_pppoe;
777 			bitmap_and(params->ptypes, params->ptypes, src,
778 				   ICE_FLOW_PTYPE_MAX);
779 		} else {
780 			src = (const unsigned long *)ice_ptypes_pppoe;
781 			bitmap_andnot(params->ptypes, params->ptypes, src,
782 				      ICE_FLOW_PTYPE_MAX);
783 		}
784 
785 		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
786 			src = (const unsigned long *)ice_ptypes_udp_il;
787 			bitmap_and(params->ptypes, params->ptypes, src,
788 				   ICE_FLOW_PTYPE_MAX);
789 		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
790 			bitmap_and(params->ptypes, params->ptypes,
791 				   (const unsigned long *)ice_ptypes_tcp_il,
792 				   ICE_FLOW_PTYPE_MAX);
793 		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
794 			src = (const unsigned long *)ice_ptypes_sctp_il;
795 			bitmap_and(params->ptypes, params->ptypes, src,
796 				   ICE_FLOW_PTYPE_MAX);
797 		}
798 
799 		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
800 			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
801 				(const unsigned long *)ice_ptypes_icmp_il;
802 			bitmap_and(params->ptypes, params->ptypes, src,
803 				   ICE_FLOW_PTYPE_MAX);
804 		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
805 			if (!i) {
806 				src = (const unsigned long *)ice_ptypes_gre_of;
807 				bitmap_and(params->ptypes, params->ptypes,
808 					   src, ICE_FLOW_PTYPE_MAX);
809 			}
810 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
811 			src = (const unsigned long *)ice_ptypes_gtpc;
812 			bitmap_and(params->ptypes, params->ptypes, src,
813 				   ICE_FLOW_PTYPE_MAX);
814 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
815 			src = (const unsigned long *)ice_ptypes_gtpc_tid;
816 			bitmap_and(params->ptypes, params->ptypes, src,
817 				   ICE_FLOW_PTYPE_MAX);
818 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
819 			src = (const unsigned long *)ice_ptypes_gtpu;
820 			bitmap_and(params->ptypes, params->ptypes, src,
821 				   ICE_FLOW_PTYPE_MAX);
822 
823 			/* Attributes for GTP packet with downlink */
824 			params->attr = ice_attr_gtpu_down;
825 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
826 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
827 			src = (const unsigned long *)ice_ptypes_gtpu;
828 			bitmap_and(params->ptypes, params->ptypes, src,
829 				   ICE_FLOW_PTYPE_MAX);
830 
831 			/* Attributes for GTP packet with uplink */
832 			params->attr = ice_attr_gtpu_up;
833 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
834 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
835 			src = (const unsigned long *)ice_ptypes_gtpu;
836 			bitmap_and(params->ptypes, params->ptypes, src,
837 				   ICE_FLOW_PTYPE_MAX);
838 
839 			/* Attributes for GTP packet with Extension Header */
840 			params->attr = ice_attr_gtpu_eh;
841 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
842 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
843 			src = (const unsigned long *)ice_ptypes_gtpu;
844 			bitmap_and(params->ptypes, params->ptypes, src,
845 				   ICE_FLOW_PTYPE_MAX);
846 		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
847 			src = (const unsigned long *)ice_ptypes_l2tpv3;
848 			bitmap_and(params->ptypes, params->ptypes, src,
849 				   ICE_FLOW_PTYPE_MAX);
850 		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
851 			src = (const unsigned long *)ice_ptypes_esp;
852 			bitmap_and(params->ptypes, params->ptypes, src,
853 				   ICE_FLOW_PTYPE_MAX);
854 		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
855 			src = (const unsigned long *)ice_ptypes_ah;
856 			bitmap_and(params->ptypes, params->ptypes, src,
857 				   ICE_FLOW_PTYPE_MAX);
858 		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
859 			src = (const unsigned long *)ice_ptypes_nat_t_esp;
860 			bitmap_and(params->ptypes, params->ptypes, src,
861 				   ICE_FLOW_PTYPE_MAX);
862 		}
863 
864 		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
865 			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
866 				src = (const unsigned long *)ice_ptypes_pfcp_node;
867 			else
868 				src = (const unsigned long *)ice_ptypes_pfcp_session;
869 
870 			bitmap_and(params->ptypes, params->ptypes, src,
871 				   ICE_FLOW_PTYPE_MAX);
872 		} else {
873 			src = (const unsigned long *)ice_ptypes_pfcp_node;
874 			bitmap_andnot(params->ptypes, params->ptypes, src,
875 				      ICE_FLOW_PTYPE_MAX);
876 
877 			src = (const unsigned long *)ice_ptypes_pfcp_session;
878 			bitmap_andnot(params->ptypes, params->ptypes, src,
879 				      ICE_FLOW_PTYPE_MAX);
880 		}
881 	}
882 
883 	return 0;
884 }
885 
886 /**
887  * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
888  * @hw: pointer to the HW struct
889  * @params: information about the flow to be processed
890  * @seg: packet segment index of the field to be extracted
891  * @fld: ID of field to be extracted
892  * @match: bit field of all fields
893  *
894  * This function determines the protocol ID, offset, and size of the given
895  * field. It then allocates one or more extraction sequence entries for the
896  * given field, and fill the entries with protocol ID and offset information.
897  */
898 static int
899 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
900 		    u8 seg, enum ice_flow_field fld, u64 match)
901 {
902 	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
903 	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
904 	u8 fv_words = hw->blk[params->blk].es.fvw;
905 	struct ice_flow_fld_info *flds;
906 	u16 cnt, ese_bits, i;
907 	u16 sib_mask = 0;
908 	u16 mask;
909 	u16 off;
910 
911 	flds = params->prof->segs[seg].fields;
912 
913 	switch (fld) {
914 	case ICE_FLOW_FIELD_IDX_ETH_DA:
915 	case ICE_FLOW_FIELD_IDX_ETH_SA:
916 	case ICE_FLOW_FIELD_IDX_S_VLAN:
917 	case ICE_FLOW_FIELD_IDX_C_VLAN:
918 		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
919 		break;
920 	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
921 		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
922 		break;
923 	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
924 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
925 		break;
926 	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
927 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
928 		break;
929 	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
930 	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
931 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
932 
933 		/* TTL and PROT share the same extraction seq. entry.
934 		 * Each is considered a sibling to the other in terms of sharing
935 		 * the same extraction sequence entry.
936 		 */
937 		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
938 			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
939 		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
940 			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
941 
942 		/* If the sibling field is also included, that field's
943 		 * mask needs to be included.
944 		 */
945 		if (match & BIT(sib))
946 			sib_mask = ice_flds_info[sib].mask;
947 		break;
948 	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
949 	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
950 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
951 
952 		/* TTL and PROT share the same extraction seq. entry.
953 		 * Each is considered a sibling to the other in terms of sharing
954 		 * the same extraction sequence entry.
955 		 */
956 		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
957 			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
958 		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
959 			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
960 
961 		/* If the sibling field is also included, that field's
962 		 * mask needs to be included.
963 		 */
964 		if (match & BIT(sib))
965 			sib_mask = ice_flds_info[sib].mask;
966 		break;
967 	case ICE_FLOW_FIELD_IDX_IPV4_SA:
968 	case ICE_FLOW_FIELD_IDX_IPV4_DA:
969 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
970 		break;
971 	case ICE_FLOW_FIELD_IDX_IPV6_SA:
972 	case ICE_FLOW_FIELD_IDX_IPV6_DA:
973 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
974 		break;
975 	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
976 	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
977 	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
978 		prot_id = ICE_PROT_TCP_IL;
979 		break;
980 	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
981 	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
982 		prot_id = ICE_PROT_UDP_IL_OR_S;
983 		break;
984 	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
985 	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
986 		prot_id = ICE_PROT_SCTP_IL;
987 		break;
988 	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
989 	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
990 	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
991 	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
992 	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
993 	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
994 		/* GTP is accessed through UDP OF protocol */
995 		prot_id = ICE_PROT_UDP_OF;
996 		break;
997 	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
998 		prot_id = ICE_PROT_PPPOE;
999 		break;
1000 	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001 		prot_id = ICE_PROT_UDP_IL_OR_S;
1002 		break;
1003 	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004 		prot_id = ICE_PROT_L2TPV3;
1005 		break;
1006 	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007 		prot_id = ICE_PROT_ESP_F;
1008 		break;
1009 	case ICE_FLOW_FIELD_IDX_AH_SPI:
1010 		prot_id = ICE_PROT_ESP_2;
1011 		break;
1012 	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013 		prot_id = ICE_PROT_UDP_IL_OR_S;
1014 		break;
1015 	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016 	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017 	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018 	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019 	case ICE_FLOW_FIELD_IDX_ARP_OP:
1020 		prot_id = ICE_PROT_ARP_OF;
1021 		break;
1022 	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023 	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024 		/* ICMP type and code share the same extraction seq. entry */
1025 		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026 				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027 		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028 			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029 			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030 		break;
1031 	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032 		prot_id = ICE_PROT_GRE_OF;
1033 		break;
1034 	default:
1035 		return -EOPNOTSUPP;
1036 	}
1037 
1038 	/* Each extraction sequence entry is a word in size, and extracts a
1039 	 * word-aligned offset from a protocol header.
1040 	 */
1041 	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042 
1043 	flds[fld].xtrct.prot_id = prot_id;
1044 	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045 		ICE_FLOW_FV_EXTRACT_SZ;
1046 	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047 	flds[fld].xtrct.idx = params->es_cnt;
1048 	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049 
1050 	/* Adjust the next field-entry index after accommodating the number of
1051 	 * entries this field consumes
1052 	 */
1053 	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054 			   ese_bits);
1055 
1056 	/* Fill in the extraction sequence entries needed for this field */
1057 	off = flds[fld].xtrct.off;
1058 	mask = flds[fld].xtrct.mask;
1059 	for (i = 0; i < cnt; i++) {
1060 		/* Only consume an extraction sequence entry if there is no
1061 		 * sibling field associated with this field or the sibling entry
1062 		 * already extracts the word shared with this field.
1063 		 */
1064 		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065 		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066 		    flds[sib].xtrct.off != off) {
1067 			u8 idx;
1068 
1069 			/* Make sure the number of extraction sequence required
1070 			 * does not exceed the block's capability
1071 			 */
1072 			if (params->es_cnt >= fv_words)
1073 				return -ENOSPC;
1074 
1075 			/* some blocks require a reversed field vector layout */
1076 			if (hw->blk[params->blk].es.reverse)
1077 				idx = fv_words - params->es_cnt - 1;
1078 			else
1079 				idx = params->es_cnt;
1080 
1081 			params->es[idx].prot_id = prot_id;
1082 			params->es[idx].off = off;
1083 			params->mask[idx] = mask | sib_mask;
1084 			params->es_cnt++;
1085 		}
1086 
1087 		off += ICE_FLOW_FV_EXTRACT_SZ;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /**
1094  * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095  * @hw: pointer to the HW struct
1096  * @params: information about the flow to be processed
1097  * @seg: index of packet segment whose raw fields are to be extracted
1098  */
1099 static int
1100 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101 		     u8 seg)
1102 {
1103 	u16 fv_words;
1104 	u16 hdrs_sz;
1105 	u8 i;
1106 
1107 	if (!params->prof->segs[seg].raws_cnt)
1108 		return 0;
1109 
1110 	if (params->prof->segs[seg].raws_cnt >
1111 	    ARRAY_SIZE(params->prof->segs[seg].raws))
1112 		return -ENOSPC;
1113 
1114 	/* Offsets within the segment headers are not supported */
1115 	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116 	if (!hdrs_sz)
1117 		return -EINVAL;
1118 
1119 	fv_words = hw->blk[params->blk].es.fvw;
1120 
1121 	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122 		struct ice_flow_seg_fld_raw *raw;
1123 		u16 off, cnt, j;
1124 
1125 		raw = &params->prof->segs[seg].raws[i];
1126 
1127 		/* Storing extraction information */
1128 		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129 		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130 			ICE_FLOW_FV_EXTRACT_SZ;
1131 		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132 			BITS_PER_BYTE;
1133 		raw->info.xtrct.idx = params->es_cnt;
1134 
1135 		/* Determine the number of field vector entries this raw field
1136 		 * consumes.
1137 		 */
1138 		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139 				   (raw->info.src.last * BITS_PER_BYTE),
1140 				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141 		off = raw->info.xtrct.off;
1142 		for (j = 0; j < cnt; j++) {
1143 			u16 idx;
1144 
1145 			/* Make sure the number of extraction sequence required
1146 			 * does not exceed the block's capability
1147 			 */
1148 			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149 			    params->es_cnt >= ICE_MAX_FV_WORDS)
1150 				return -ENOSPC;
1151 
1152 			/* some blocks require a reversed field vector layout */
1153 			if (hw->blk[params->blk].es.reverse)
1154 				idx = fv_words - params->es_cnt - 1;
1155 			else
1156 				idx = params->es_cnt;
1157 
1158 			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159 			params->es[idx].off = off;
1160 			params->es_cnt++;
1161 			off += ICE_FLOW_FV_EXTRACT_SZ;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170  * @hw: pointer to the HW struct
1171  * @params: information about the flow to be processed
1172  *
1173  * This function iterates through all matched fields in the given segments, and
1174  * creates an extraction sequence for the fields.
1175  */
1176 static int
1177 ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178 			  struct ice_flow_prof_params *params)
1179 {
1180 	struct ice_flow_prof *prof = params->prof;
1181 	int status = 0;
1182 	u8 i;
1183 
1184 	for (i = 0; i < prof->segs_cnt; i++) {
1185 		u64 match = params->prof->segs[i].match;
1186 		enum ice_flow_field j;
1187 
1188 		for_each_set_bit(j, (unsigned long *)&match,
1189 				 ICE_FLOW_FIELD_IDX_MAX) {
1190 			status = ice_flow_xtract_fld(hw, params, i, j, match);
1191 			if (status)
1192 				return status;
1193 			clear_bit(j, (unsigned long *)&match);
1194 		}
1195 
1196 		/* Process raw matching bytes */
1197 		status = ice_flow_xtract_raws(hw, params, i);
1198 		if (status)
1199 			return status;
1200 	}
1201 
1202 	return status;
1203 }
1204 
1205 /**
1206  * ice_flow_proc_segs - process all packet segments associated with a profile
1207  * @hw: pointer to the HW struct
1208  * @params: information about the flow to be processed
1209  */
1210 static int
1211 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212 {
1213 	int status;
1214 
1215 	status = ice_flow_proc_seg_hdrs(params);
1216 	if (status)
1217 		return status;
1218 
1219 	status = ice_flow_create_xtrct_seq(hw, params);
1220 	if (status)
1221 		return status;
1222 
1223 	switch (params->blk) {
1224 	case ICE_BLK_FD:
1225 	case ICE_BLK_RSS:
1226 		status = 0;
1227 		break;
1228 	default:
1229 		return -EOPNOTSUPP;
1230 	}
1231 
1232 	return status;
1233 }
1234 
1235 #define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1236 #define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1237 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1238 
1239 /**
1240  * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1241  * @hw: pointer to the HW struct
1242  * @blk: classification stage
1243  * @dir: flow direction
1244  * @segs: array of one or more packet segments that describe the flow
1245  * @segs_cnt: number of packet segments provided
1246  * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1247  * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1248  */
1249 static struct ice_flow_prof *
1250 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1251 			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1252 			 u8 segs_cnt, u16 vsi_handle, u32 conds)
1253 {
1254 	struct ice_flow_prof *p, *prof = NULL;
1255 
1256 	mutex_lock(&hw->fl_profs_locks[blk]);
1257 	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1258 		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1259 		    segs_cnt && segs_cnt == p->segs_cnt) {
1260 			u8 i;
1261 
1262 			/* Check for profile-VSI association if specified */
1263 			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1264 			    ice_is_vsi_valid(hw, vsi_handle) &&
1265 			    !test_bit(vsi_handle, p->vsis))
1266 				continue;
1267 
1268 			/* Protocol headers must be checked. Matched fields are
1269 			 * checked if specified.
1270 			 */
1271 			for (i = 0; i < segs_cnt; i++)
1272 				if (segs[i].hdrs != p->segs[i].hdrs ||
1273 				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1274 				     segs[i].match != p->segs[i].match))
1275 					break;
1276 
1277 			/* A match is found if all segments are matched */
1278 			if (i == segs_cnt) {
1279 				prof = p;
1280 				break;
1281 			}
1282 		}
1283 	mutex_unlock(&hw->fl_profs_locks[blk]);
1284 
1285 	return prof;
1286 }
1287 
1288 /**
1289  * ice_flow_find_prof_id - Look up a profile with given profile ID
1290  * @hw: pointer to the HW struct
1291  * @blk: classification stage
1292  * @prof_id: unique ID to identify this flow profile
1293  */
1294 static struct ice_flow_prof *
1295 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1296 {
1297 	struct ice_flow_prof *p;
1298 
1299 	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1300 		if (p->id == prof_id)
1301 			return p;
1302 
1303 	return NULL;
1304 }
1305 
1306 /**
1307  * ice_flow_rem_entry_sync - Remove a flow entry
1308  * @hw: pointer to the HW struct
1309  * @blk: classification stage
1310  * @entry: flow entry to be removed
1311  */
1312 static int
1313 ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1314 			struct ice_flow_entry *entry)
1315 {
1316 	if (!entry)
1317 		return -EINVAL;
1318 
1319 	list_del(&entry->l_entry);
1320 
1321 	devm_kfree(ice_hw_to_dev(hw), entry);
1322 
1323 	return 0;
1324 }
1325 
1326 /**
1327  * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1328  * @hw: pointer to the HW struct
1329  * @blk: classification stage
1330  * @dir: flow direction
1331  * @prof_id: unique ID to identify this flow profile
1332  * @segs: array of one or more packet segments that describe the flow
1333  * @segs_cnt: number of packet segments provided
1334  * @prof: stores the returned flow profile added
1335  *
1336  * Assumption: the caller has acquired the lock to the profile list
1337  */
1338 static int
1339 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1340 		       enum ice_flow_dir dir, u64 prof_id,
1341 		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1342 		       struct ice_flow_prof **prof)
1343 {
1344 	struct ice_flow_prof_params *params;
1345 	int status;
1346 	u8 i;
1347 
1348 	if (!prof)
1349 		return -EINVAL;
1350 
1351 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1352 	if (!params)
1353 		return -ENOMEM;
1354 
1355 	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1356 				    GFP_KERNEL);
1357 	if (!params->prof) {
1358 		status = -ENOMEM;
1359 		goto free_params;
1360 	}
1361 
1362 	/* initialize extraction sequence to all invalid (0xff) */
1363 	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1364 		params->es[i].prot_id = ICE_PROT_INVALID;
1365 		params->es[i].off = ICE_FV_OFFSET_INVAL;
1366 	}
1367 
1368 	params->blk = blk;
1369 	params->prof->id = prof_id;
1370 	params->prof->dir = dir;
1371 	params->prof->segs_cnt = segs_cnt;
1372 
1373 	/* Make a copy of the segments that need to be persistent in the flow
1374 	 * profile instance
1375 	 */
1376 	for (i = 0; i < segs_cnt; i++)
1377 		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1378 
1379 	status = ice_flow_proc_segs(hw, params);
1380 	if (status) {
1381 		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1382 		goto out;
1383 	}
1384 
1385 	/* Add a HW profile for this flow profile */
1386 	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1387 			      params->attr, params->attr_cnt, params->es,
1388 			      params->mask);
1389 	if (status) {
1390 		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1391 		goto out;
1392 	}
1393 
1394 	INIT_LIST_HEAD(&params->prof->entries);
1395 	mutex_init(&params->prof->entries_lock);
1396 	*prof = params->prof;
1397 
1398 out:
1399 	if (status)
1400 		devm_kfree(ice_hw_to_dev(hw), params->prof);
1401 free_params:
1402 	kfree(params);
1403 
1404 	return status;
1405 }
1406 
1407 /**
1408  * ice_flow_rem_prof_sync - remove a flow profile
1409  * @hw: pointer to the hardware structure
1410  * @blk: classification stage
1411  * @prof: pointer to flow profile to remove
1412  *
1413  * Assumption: the caller has acquired the lock to the profile list
1414  */
1415 static int
1416 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1417 		       struct ice_flow_prof *prof)
1418 {
1419 	int status;
1420 
1421 	/* Remove all remaining flow entries before removing the flow profile */
1422 	if (!list_empty(&prof->entries)) {
1423 		struct ice_flow_entry *e, *t;
1424 
1425 		mutex_lock(&prof->entries_lock);
1426 
1427 		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1428 			status = ice_flow_rem_entry_sync(hw, blk, e);
1429 			if (status)
1430 				break;
1431 		}
1432 
1433 		mutex_unlock(&prof->entries_lock);
1434 	}
1435 
1436 	/* Remove all hardware profiles associated with this flow profile */
1437 	status = ice_rem_prof(hw, blk, prof->id);
1438 	if (!status) {
1439 		list_del(&prof->l_entry);
1440 		mutex_destroy(&prof->entries_lock);
1441 		devm_kfree(ice_hw_to_dev(hw), prof);
1442 	}
1443 
1444 	return status;
1445 }
1446 
1447 /**
1448  * ice_flow_assoc_prof - associate a VSI with a flow profile
1449  * @hw: pointer to the hardware structure
1450  * @blk: classification stage
1451  * @prof: pointer to flow profile
1452  * @vsi_handle: software VSI handle
1453  *
1454  * Assumption: the caller has acquired the lock to the profile list
1455  * and the software VSI handle has been validated
1456  */
1457 static int
1458 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1459 		    struct ice_flow_prof *prof, u16 vsi_handle)
1460 {
1461 	int status = 0;
1462 
1463 	if (!test_bit(vsi_handle, prof->vsis)) {
1464 		status = ice_add_prof_id_flow(hw, blk,
1465 					      ice_get_hw_vsi_num(hw,
1466 								 vsi_handle),
1467 					      prof->id);
1468 		if (!status)
1469 			set_bit(vsi_handle, prof->vsis);
1470 		else
1471 			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1472 				  status);
1473 	}
1474 
1475 	return status;
1476 }
1477 
1478 /**
1479  * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1480  * @hw: pointer to the hardware structure
1481  * @blk: classification stage
1482  * @prof: pointer to flow profile
1483  * @vsi_handle: software VSI handle
1484  *
1485  * Assumption: the caller has acquired the lock to the profile list
1486  * and the software VSI handle has been validated
1487  */
1488 static int
1489 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1490 		       struct ice_flow_prof *prof, u16 vsi_handle)
1491 {
1492 	int status = 0;
1493 
1494 	if (test_bit(vsi_handle, prof->vsis)) {
1495 		status = ice_rem_prof_id_flow(hw, blk,
1496 					      ice_get_hw_vsi_num(hw,
1497 								 vsi_handle),
1498 					      prof->id);
1499 		if (!status)
1500 			clear_bit(vsi_handle, prof->vsis);
1501 		else
1502 			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1503 				  status);
1504 	}
1505 
1506 	return status;
1507 }
1508 
1509 /**
1510  * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1511  * @hw: pointer to the HW struct
1512  * @blk: classification stage
1513  * @dir: flow direction
1514  * @prof_id: unique ID to identify this flow profile
1515  * @segs: array of one or more packet segments that describe the flow
1516  * @segs_cnt: number of packet segments provided
1517  * @prof: stores the returned flow profile added
1518  */
1519 int
1520 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1521 		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1522 		  struct ice_flow_prof **prof)
1523 {
1524 	int status;
1525 
1526 	if (segs_cnt > ICE_FLOW_SEG_MAX)
1527 		return -ENOSPC;
1528 
1529 	if (!segs_cnt)
1530 		return -EINVAL;
1531 
1532 	if (!segs)
1533 		return -EINVAL;
1534 
1535 	status = ice_flow_val_hdrs(segs, segs_cnt);
1536 	if (status)
1537 		return status;
1538 
1539 	mutex_lock(&hw->fl_profs_locks[blk]);
1540 
1541 	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1542 					prof);
1543 	if (!status)
1544 		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1545 
1546 	mutex_unlock(&hw->fl_profs_locks[blk]);
1547 
1548 	return status;
1549 }
1550 
1551 /**
1552  * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1553  * @hw: pointer to the HW struct
1554  * @blk: the block for which the flow profile is to be removed
1555  * @prof_id: unique ID of the flow profile to be removed
1556  */
1557 int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1558 {
1559 	struct ice_flow_prof *prof;
1560 	int status;
1561 
1562 	mutex_lock(&hw->fl_profs_locks[blk]);
1563 
1564 	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1565 	if (!prof) {
1566 		status = -ENOENT;
1567 		goto out;
1568 	}
1569 
1570 	/* prof becomes invalid after the call */
1571 	status = ice_flow_rem_prof_sync(hw, blk, prof);
1572 
1573 out:
1574 	mutex_unlock(&hw->fl_profs_locks[blk]);
1575 
1576 	return status;
1577 }
1578 
1579 /**
1580  * ice_flow_add_entry - Add a flow entry
1581  * @hw: pointer to the HW struct
1582  * @blk: classification stage
1583  * @prof_id: ID of the profile to add a new flow entry to
1584  * @entry_id: unique ID to identify this flow entry
1585  * @vsi_handle: software VSI handle for the flow entry
1586  * @prio: priority of the flow entry
1587  * @data: pointer to a data buffer containing flow entry's match values/masks
1588  * @entry_h: pointer to buffer that receives the new flow entry's handle
1589  */
1590 int
1591 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1592 		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1593 		   void *data, u64 *entry_h)
1594 {
1595 	struct ice_flow_entry *e = NULL;
1596 	struct ice_flow_prof *prof;
1597 	int status;
1598 
1599 	/* No flow entry data is expected for RSS */
1600 	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1601 		return -EINVAL;
1602 
1603 	if (!ice_is_vsi_valid(hw, vsi_handle))
1604 		return -EINVAL;
1605 
1606 	mutex_lock(&hw->fl_profs_locks[blk]);
1607 
1608 	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1609 	if (!prof) {
1610 		status = -ENOENT;
1611 	} else {
1612 		/* Allocate memory for the entry being added and associate
1613 		 * the VSI to the found flow profile
1614 		 */
1615 		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1616 		if (!e)
1617 			status = -ENOMEM;
1618 		else
1619 			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1620 	}
1621 
1622 	mutex_unlock(&hw->fl_profs_locks[blk]);
1623 	if (status)
1624 		goto out;
1625 
1626 	e->id = entry_id;
1627 	e->vsi_handle = vsi_handle;
1628 	e->prof = prof;
1629 	e->priority = prio;
1630 
1631 	switch (blk) {
1632 	case ICE_BLK_FD:
1633 	case ICE_BLK_RSS:
1634 		break;
1635 	default:
1636 		status = -EOPNOTSUPP;
1637 		goto out;
1638 	}
1639 
1640 	mutex_lock(&prof->entries_lock);
1641 	list_add(&e->l_entry, &prof->entries);
1642 	mutex_unlock(&prof->entries_lock);
1643 
1644 	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1645 
1646 out:
1647 	if (status)
1648 		devm_kfree(ice_hw_to_dev(hw), e);
1649 
1650 	return status;
1651 }
1652 
1653 /**
1654  * ice_flow_rem_entry - Remove a flow entry
1655  * @hw: pointer to the HW struct
1656  * @blk: classification stage
1657  * @entry_h: handle to the flow entry to be removed
1658  */
1659 int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1660 {
1661 	struct ice_flow_entry *entry;
1662 	struct ice_flow_prof *prof;
1663 	int status = 0;
1664 
1665 	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1666 		return -EINVAL;
1667 
1668 	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1669 
1670 	/* Retain the pointer to the flow profile as the entry will be freed */
1671 	prof = entry->prof;
1672 
1673 	if (prof) {
1674 		mutex_lock(&prof->entries_lock);
1675 		status = ice_flow_rem_entry_sync(hw, blk, entry);
1676 		mutex_unlock(&prof->entries_lock);
1677 	}
1678 
1679 	return status;
1680 }
1681 
1682 /**
1683  * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1684  * @seg: packet segment the field being set belongs to
1685  * @fld: field to be set
1686  * @field_type: type of the field
1687  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1688  *           entry's input buffer
1689  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1690  *            input buffer
1691  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1692  *            entry's input buffer
1693  *
1694  * This helper function stores information of a field being matched, including
1695  * the type of the field and the locations of the value to match, the mask, and
1696  * the upper-bound value in the start of the input buffer for a flow entry.
1697  * This function should only be used for fixed-size data structures.
1698  *
1699  * This function also opportunistically determines the protocol headers to be
1700  * present based on the fields being set. Some fields cannot be used alone to
1701  * determine the protocol headers present. Sometimes, fields for particular
1702  * protocol headers are not matched. In those cases, the protocol headers
1703  * must be explicitly set.
1704  */
1705 static void
1706 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1707 		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1708 		     u16 mask_loc, u16 last_loc)
1709 {
1710 	u64 bit = BIT_ULL(fld);
1711 
1712 	seg->match |= bit;
1713 	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1714 		seg->range |= bit;
1715 
1716 	seg->fields[fld].type = field_type;
1717 	seg->fields[fld].src.val = val_loc;
1718 	seg->fields[fld].src.mask = mask_loc;
1719 	seg->fields[fld].src.last = last_loc;
1720 
1721 	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1722 }
1723 
1724 /**
1725  * ice_flow_set_fld - specifies locations of field from entry's input buffer
1726  * @seg: packet segment the field being set belongs to
1727  * @fld: field to be set
1728  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1729  *           entry's input buffer
1730  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1731  *            input buffer
1732  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1733  *            entry's input buffer
1734  * @range: indicate if field being matched is to be in a range
1735  *
1736  * This function specifies the locations, in the form of byte offsets from the
1737  * start of the input buffer for a flow entry, from where the value to match,
1738  * the mask value, and upper value can be extracted. These locations are then
1739  * stored in the flow profile. When adding a flow entry associated with the
1740  * flow profile, these locations will be used to quickly extract the values and
1741  * create the content of a match entry. This function should only be used for
1742  * fixed-size data structures.
1743  */
1744 void
1745 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1746 		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1747 {
1748 	enum ice_flow_fld_match_type t = range ?
1749 		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1750 
1751 	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1752 }
1753 
1754 /**
1755  * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1756  * @seg: packet segment the field being set belongs to
1757  * @off: offset of the raw field from the beginning of the segment in bytes
1758  * @len: length of the raw pattern to be matched
1759  * @val_loc: location of the value to match from entry's input buffer
1760  * @mask_loc: location of mask value from entry's input buffer
1761  *
1762  * This function specifies the offset of the raw field to be match from the
1763  * beginning of the specified packet segment, and the locations, in the form of
1764  * byte offsets from the start of the input buffer for a flow entry, from where
1765  * the value to match and the mask value to be extracted. These locations are
1766  * then stored in the flow profile. When adding flow entries to the associated
1767  * flow profile, these locations can be used to quickly extract the values to
1768  * create the content of a match entry. This function should only be used for
1769  * fixed-size data structures.
1770  */
1771 void
1772 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1773 		     u16 val_loc, u16 mask_loc)
1774 {
1775 	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1776 		seg->raws[seg->raws_cnt].off = off;
1777 		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1778 		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1779 		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1780 		/* The "last" field is used to store the length of the field */
1781 		seg->raws[seg->raws_cnt].info.src.last = len;
1782 	}
1783 
1784 	/* Overflows of "raws" will be handled as an error condition later in
1785 	 * the flow when this information is processed.
1786 	 */
1787 	seg->raws_cnt++;
1788 }
1789 
1790 /**
1791  * ice_flow_rem_vsi_prof - remove VSI from flow profile
1792  * @hw: pointer to the hardware structure
1793  * @vsi_handle: software VSI handle
1794  * @prof_id: unique ID to identify this flow profile
1795  *
1796  * This function removes the flow entries associated to the input
1797  * VSI handle and disassociate the VSI from the flow profile.
1798  */
1799 int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1800 {
1801 	struct ice_flow_prof *prof;
1802 	int status = 0;
1803 
1804 	if (!ice_is_vsi_valid(hw, vsi_handle))
1805 		return -EINVAL;
1806 
1807 	/* find flow profile pointer with input package block and profile ID */
1808 	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1809 	if (!prof) {
1810 		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1811 			  prof_id);
1812 		return -ENOENT;
1813 	}
1814 
1815 	/* Remove all remaining flow entries before removing the flow profile */
1816 	if (!list_empty(&prof->entries)) {
1817 		struct ice_flow_entry *e, *t;
1818 
1819 		mutex_lock(&prof->entries_lock);
1820 		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1821 			if (e->vsi_handle != vsi_handle)
1822 				continue;
1823 
1824 			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1825 			if (status)
1826 				break;
1827 		}
1828 		mutex_unlock(&prof->entries_lock);
1829 	}
1830 	if (status)
1831 		return status;
1832 
1833 	/* disassociate the flow profile from sw VSI handle */
1834 	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1835 	if (status)
1836 		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1837 			  status);
1838 	return status;
1839 }
1840 
1841 #define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1842 	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1843 
1844 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1845 	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1846 
1847 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1848 	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1849 
1850 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1851 	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1852 	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1853 	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1854 
1855 /**
1856  * ice_flow_set_rss_seg_info - setup packet segments for RSS
1857  * @segs: pointer to the flow field segment(s)
1858  * @hash_fields: fields to be hashed on for the segment(s)
1859  * @flow_hdr: protocol header fields within a packet segment
1860  *
1861  * Helper function to extract fields from hash bitmap and use flow
1862  * header value to set flow field segment for further use in flow
1863  * profile entry or removal.
1864  */
1865 static int
1866 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1867 			  u32 flow_hdr)
1868 {
1869 	u64 val;
1870 	u8 i;
1871 
1872 	for_each_set_bit(i, (unsigned long *)&hash_fields,
1873 			 ICE_FLOW_FIELD_IDX_MAX)
1874 		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1875 				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1876 				 ICE_FLOW_FLD_OFF_INVAL, false);
1877 
1878 	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1879 
1880 	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1881 	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1882 		return -EINVAL;
1883 
1884 	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1885 	if (val && !is_power_of_2(val))
1886 		return -EIO;
1887 
1888 	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1889 	if (val && !is_power_of_2(val))
1890 		return -EIO;
1891 
1892 	return 0;
1893 }
1894 
1895 /**
1896  * ice_rem_vsi_rss_list - remove VSI from RSS list
1897  * @hw: pointer to the hardware structure
1898  * @vsi_handle: software VSI handle
1899  *
1900  * Remove the VSI from all RSS configurations in the list.
1901  */
1902 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1903 {
1904 	struct ice_rss_cfg *r, *tmp;
1905 
1906 	if (list_empty(&hw->rss_list_head))
1907 		return;
1908 
1909 	mutex_lock(&hw->rss_locks);
1910 	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1911 		if (test_and_clear_bit(vsi_handle, r->vsis))
1912 			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1913 				list_del(&r->l_entry);
1914 				devm_kfree(ice_hw_to_dev(hw), r);
1915 			}
1916 	mutex_unlock(&hw->rss_locks);
1917 }
1918 
1919 /**
1920  * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1921  * @hw: pointer to the hardware structure
1922  * @vsi_handle: software VSI handle
1923  *
1924  * This function will iterate through all flow profiles and disassociate
1925  * the VSI from that profile. If the flow profile has no VSIs it will
1926  * be removed.
1927  */
1928 int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1929 {
1930 	const enum ice_block blk = ICE_BLK_RSS;
1931 	struct ice_flow_prof *p, *t;
1932 	int status = 0;
1933 
1934 	if (!ice_is_vsi_valid(hw, vsi_handle))
1935 		return -EINVAL;
1936 
1937 	if (list_empty(&hw->fl_profs[blk]))
1938 		return 0;
1939 
1940 	mutex_lock(&hw->rss_locks);
1941 	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1942 		if (test_bit(vsi_handle, p->vsis)) {
1943 			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1944 			if (status)
1945 				break;
1946 
1947 			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1948 				status = ice_flow_rem_prof(hw, blk, p->id);
1949 				if (status)
1950 					break;
1951 			}
1952 		}
1953 	mutex_unlock(&hw->rss_locks);
1954 
1955 	return status;
1956 }
1957 
1958 /**
1959  * ice_rem_rss_list - remove RSS configuration from list
1960  * @hw: pointer to the hardware structure
1961  * @vsi_handle: software VSI handle
1962  * @prof: pointer to flow profile
1963  *
1964  * Assumption: lock has already been acquired for RSS list
1965  */
1966 static void
1967 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1968 {
1969 	struct ice_rss_cfg *r, *tmp;
1970 
1971 	/* Search for RSS hash fields associated to the VSI that match the
1972 	 * hash configurations associated to the flow profile. If found
1973 	 * remove from the RSS entry list of the VSI context and delete entry.
1974 	 */
1975 	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1976 		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1977 		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1978 			clear_bit(vsi_handle, r->vsis);
1979 			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1980 				list_del(&r->l_entry);
1981 				devm_kfree(ice_hw_to_dev(hw), r);
1982 			}
1983 			return;
1984 		}
1985 }
1986 
1987 /**
1988  * ice_add_rss_list - add RSS configuration to list
1989  * @hw: pointer to the hardware structure
1990  * @vsi_handle: software VSI handle
1991  * @prof: pointer to flow profile
1992  *
1993  * Assumption: lock has already been acquired for RSS list
1994  */
1995 static int
1996 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1997 {
1998 	struct ice_rss_cfg *r, *rss_cfg;
1999 
2000 	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2001 		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
2002 		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
2003 			set_bit(vsi_handle, r->vsis);
2004 			return 0;
2005 		}
2006 
2007 	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2008 			       GFP_KERNEL);
2009 	if (!rss_cfg)
2010 		return -ENOMEM;
2011 
2012 	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
2013 	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
2014 	set_bit(vsi_handle, rss_cfg->vsis);
2015 
2016 	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2017 
2018 	return 0;
2019 }
2020 
2021 #define ICE_FLOW_PROF_HASH_S	0
2022 #define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
2023 #define ICE_FLOW_PROF_HDR_S	32
2024 #define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
2025 #define ICE_FLOW_PROF_ENCAP_S	63
2026 #define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
2027 
2028 #define ICE_RSS_OUTER_HEADERS	1
2029 #define ICE_RSS_INNER_HEADERS	2
2030 
2031 /* Flow profile ID format:
2032  * [0:31] - Packet match fields
2033  * [32:62] - Protocol header
2034  * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
2035  */
2036 #define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
2037 	((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
2038 	       (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
2039 	       ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
2040 
2041 /**
2042  * ice_add_rss_cfg_sync - add an RSS configuration
2043  * @hw: pointer to the hardware structure
2044  * @vsi_handle: software VSI handle
2045  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2046  * @addl_hdrs: protocol header fields
2047  * @segs_cnt: packet segment count
2048  *
2049  * Assumption: lock has already been acquired for RSS list
2050  */
2051 static int
2052 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2053 		     u32 addl_hdrs, u8 segs_cnt)
2054 {
2055 	const enum ice_block blk = ICE_BLK_RSS;
2056 	struct ice_flow_prof *prof = NULL;
2057 	struct ice_flow_seg_info *segs;
2058 	int status;
2059 
2060 	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
2061 		return -EINVAL;
2062 
2063 	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2064 	if (!segs)
2065 		return -ENOMEM;
2066 
2067 	/* Construct the packet segment info from the hashed fields */
2068 	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2069 					   addl_hdrs);
2070 	if (status)
2071 		goto exit;
2072 
2073 	/* Search for a flow profile that has matching headers, hash fields
2074 	 * and has the input VSI associated to it. If found, no further
2075 	 * operations required and exit.
2076 	 */
2077 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2078 					vsi_handle,
2079 					ICE_FLOW_FIND_PROF_CHK_FLDS |
2080 					ICE_FLOW_FIND_PROF_CHK_VSI);
2081 	if (prof)
2082 		goto exit;
2083 
2084 	/* Check if a flow profile exists with the same protocol headers and
2085 	 * associated with the input VSI. If so disassociate the VSI from
2086 	 * this profile. The VSI will be added to a new profile created with
2087 	 * the protocol header and new hash field configuration.
2088 	 */
2089 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2090 					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
2091 	if (prof) {
2092 		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2093 		if (!status)
2094 			ice_rem_rss_list(hw, vsi_handle, prof);
2095 		else
2096 			goto exit;
2097 
2098 		/* Remove profile if it has no VSIs associated */
2099 		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2100 			status = ice_flow_rem_prof(hw, blk, prof->id);
2101 			if (status)
2102 				goto exit;
2103 		}
2104 	}
2105 
2106 	/* Search for a profile that has same match fields only. If this
2107 	 * exists then associate the VSI to this profile.
2108 	 */
2109 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2110 					vsi_handle,
2111 					ICE_FLOW_FIND_PROF_CHK_FLDS);
2112 	if (prof) {
2113 		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2114 		if (!status)
2115 			status = ice_add_rss_list(hw, vsi_handle, prof);
2116 		goto exit;
2117 	}
2118 
2119 	/* Create a new flow profile with generated profile and packet
2120 	 * segment information.
2121 	 */
2122 	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2123 				   ICE_FLOW_GEN_PROFID(hashed_flds,
2124 						       segs[segs_cnt - 1].hdrs,
2125 						       segs_cnt),
2126 				   segs, segs_cnt, &prof);
2127 	if (status)
2128 		goto exit;
2129 
2130 	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2131 	/* If association to a new flow profile failed then this profile can
2132 	 * be removed.
2133 	 */
2134 	if (status) {
2135 		ice_flow_rem_prof(hw, blk, prof->id);
2136 		goto exit;
2137 	}
2138 
2139 	status = ice_add_rss_list(hw, vsi_handle, prof);
2140 
2141 exit:
2142 	kfree(segs);
2143 	return status;
2144 }
2145 
2146 /**
2147  * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2148  * @hw: pointer to the hardware structure
2149  * @vsi_handle: software VSI handle
2150  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2151  * @addl_hdrs: protocol header fields
2152  *
2153  * This function will generate a flow profile based on fields associated with
2154  * the input fields to hash on, the flow type and use the VSI number to add
2155  * a flow entry to the profile.
2156  */
2157 int
2158 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2159 		u32 addl_hdrs)
2160 {
2161 	int status;
2162 
2163 	if (hashed_flds == ICE_HASH_INVALID ||
2164 	    !ice_is_vsi_valid(hw, vsi_handle))
2165 		return -EINVAL;
2166 
2167 	mutex_lock(&hw->rss_locks);
2168 	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2169 				      ICE_RSS_OUTER_HEADERS);
2170 	if (!status)
2171 		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2172 					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2173 	mutex_unlock(&hw->rss_locks);
2174 
2175 	return status;
2176 }
2177 
2178 /**
2179  * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2180  * @hw: pointer to the hardware structure
2181  * @vsi_handle: software VSI handle
2182  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2183  * @addl_hdrs: Protocol header fields within a packet segment
2184  * @segs_cnt: packet segment count
2185  *
2186  * Assumption: lock has already been acquired for RSS list
2187  */
2188 static int
2189 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2190 		     u32 addl_hdrs, u8 segs_cnt)
2191 {
2192 	const enum ice_block blk = ICE_BLK_RSS;
2193 	struct ice_flow_seg_info *segs;
2194 	struct ice_flow_prof *prof;
2195 	int status;
2196 
2197 	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2198 	if (!segs)
2199 		return -ENOMEM;
2200 
2201 	/* Construct the packet segment info from the hashed fields */
2202 	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2203 					   addl_hdrs);
2204 	if (status)
2205 		goto out;
2206 
2207 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2208 					vsi_handle,
2209 					ICE_FLOW_FIND_PROF_CHK_FLDS);
2210 	if (!prof) {
2211 		status = -ENOENT;
2212 		goto out;
2213 	}
2214 
2215 	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2216 	if (status)
2217 		goto out;
2218 
2219 	/* Remove RSS configuration from VSI context before deleting
2220 	 * the flow profile.
2221 	 */
2222 	ice_rem_rss_list(hw, vsi_handle, prof);
2223 
2224 	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2225 		status = ice_flow_rem_prof(hw, blk, prof->id);
2226 
2227 out:
2228 	kfree(segs);
2229 	return status;
2230 }
2231 
2232 /**
2233  * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2234  * @hw: pointer to the hardware structure
2235  * @vsi_handle: software VSI handle
2236  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2237  * @addl_hdrs: Protocol header fields within a packet segment
2238  *
2239  * This function will lookup the flow profile based on the input
2240  * hash field bitmap, iterate through the profile entry list of
2241  * that profile and find entry associated with input VSI to be
2242  * removed. Calls are made to underlying flow s which will APIs
2243  * turn build or update buffers for RSS XLT1 section.
2244  */
2245 int __maybe_unused
2246 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2247 		u32 addl_hdrs)
2248 {
2249 	int status;
2250 
2251 	if (hashed_flds == ICE_HASH_INVALID ||
2252 	    !ice_is_vsi_valid(hw, vsi_handle))
2253 		return -EINVAL;
2254 
2255 	mutex_lock(&hw->rss_locks);
2256 	status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2257 				      ICE_RSS_OUTER_HEADERS);
2258 	if (!status)
2259 		status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2260 					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2261 	mutex_unlock(&hw->rss_locks);
2262 
2263 	return status;
2264 }
2265 
2266 /* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2267  * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2268  * convert its values to their appropriate flow L3, L4 values.
2269  */
2270 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2271 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2272 	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2273 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2274 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2275 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2276 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2277 	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2278 	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2279 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2280 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2281 	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2282 	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2283 
2284 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2285 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2286 	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2287 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2288 	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2289 	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2290 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2291 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2292 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2293 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2294 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2295 	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2296 	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2297 
2298 /**
2299  * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2300  * @hw: pointer to the hardware structure
2301  * @vsi_handle: software VSI handle
2302  * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2303  *
2304  * This function will take the hash bitmap provided by the AVF driver via a
2305  * message, convert it to ICE-compatible values, and configure RSS flow
2306  * profiles.
2307  */
2308 int ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
2309 {
2310 	int status = 0;
2311 	u64 hash_flds;
2312 
2313 	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2314 	    !ice_is_vsi_valid(hw, vsi_handle))
2315 		return -EINVAL;
2316 
2317 	/* Make sure no unsupported bits are specified */
2318 	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2319 			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2320 		return -EIO;
2321 
2322 	hash_flds = avf_hash;
2323 
2324 	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2325 	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2326 		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2327 
2328 	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2329 		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2330 
2331 	/* Create the corresponding RSS configuration for each valid hash bit */
2332 	while (hash_flds) {
2333 		u64 rss_hash = ICE_HASH_INVALID;
2334 
2335 		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2336 			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2337 				rss_hash = ICE_FLOW_HASH_IPV4;
2338 				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2339 			} else if (hash_flds &
2340 				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2341 				rss_hash = ICE_FLOW_HASH_IPV4 |
2342 					ICE_FLOW_HASH_TCP_PORT;
2343 				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2344 			} else if (hash_flds &
2345 				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2346 				rss_hash = ICE_FLOW_HASH_IPV4 |
2347 					ICE_FLOW_HASH_UDP_PORT;
2348 				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2349 			} else if (hash_flds &
2350 				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2351 				rss_hash = ICE_FLOW_HASH_IPV4 |
2352 					ICE_FLOW_HASH_SCTP_PORT;
2353 				hash_flds &=
2354 					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2355 			}
2356 		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2357 			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2358 				rss_hash = ICE_FLOW_HASH_IPV6;
2359 				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2360 			} else if (hash_flds &
2361 				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2362 				rss_hash = ICE_FLOW_HASH_IPV6 |
2363 					ICE_FLOW_HASH_TCP_PORT;
2364 				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2365 			} else if (hash_flds &
2366 				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2367 				rss_hash = ICE_FLOW_HASH_IPV6 |
2368 					ICE_FLOW_HASH_UDP_PORT;
2369 				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2370 			} else if (hash_flds &
2371 				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2372 				rss_hash = ICE_FLOW_HASH_IPV6 |
2373 					ICE_FLOW_HASH_SCTP_PORT;
2374 				hash_flds &=
2375 					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2376 			}
2377 		}
2378 
2379 		if (rss_hash == ICE_HASH_INVALID)
2380 			return -EIO;
2381 
2382 		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2383 					 ICE_FLOW_SEG_HDR_NONE);
2384 		if (status)
2385 			break;
2386 	}
2387 
2388 	return status;
2389 }
2390 
2391 /**
2392  * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2393  * @hw: pointer to the hardware structure
2394  * @vsi_handle: software VSI handle
2395  */
2396 int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2397 {
2398 	struct ice_rss_cfg *r;
2399 	int status = 0;
2400 
2401 	if (!ice_is_vsi_valid(hw, vsi_handle))
2402 		return -EINVAL;
2403 
2404 	mutex_lock(&hw->rss_locks);
2405 	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2406 		if (test_bit(vsi_handle, r->vsis)) {
2407 			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2408 						      r->hashed_flds,
2409 						      r->packet_hdr,
2410 						      ICE_RSS_OUTER_HEADERS);
2411 			if (status)
2412 				break;
2413 			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2414 						      r->hashed_flds,
2415 						      r->packet_hdr,
2416 						      ICE_RSS_INNER_HEADERS);
2417 			if (status)
2418 				break;
2419 		}
2420 	}
2421 	mutex_unlock(&hw->rss_locks);
2422 
2423 	return status;
2424 }
2425 
2426 /**
2427  * ice_get_rss_cfg - returns hashed fields for the given header types
2428  * @hw: pointer to the hardware structure
2429  * @vsi_handle: software VSI handle
2430  * @hdrs: protocol header type
2431  *
2432  * This function will return the match fields of the first instance of flow
2433  * profile having the given header types and containing input VSI
2434  */
2435 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2436 {
2437 	u64 rss_hash = ICE_HASH_INVALID;
2438 	struct ice_rss_cfg *r;
2439 
2440 	/* verify if the protocol header is non zero and VSI is valid */
2441 	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2442 		return ICE_HASH_INVALID;
2443 
2444 	mutex_lock(&hw->rss_locks);
2445 	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2446 		if (test_bit(vsi_handle, r->vsis) &&
2447 		    r->packet_hdr == hdrs) {
2448 			rss_hash = r->hashed_flds;
2449 			break;
2450 		}
2451 	mutex_unlock(&hw->rss_locks);
2452 
2453 	return rss_hash;
2454 }
2455