xref: /linux/drivers/net/ethernet/intel/ice/ice_flow.c (revision 69bfec7548f4c1595bac0e3ddfc0458a5af31f4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flow.h"
6 #include <net/gre.h>
7 
8 /* Describe properties of a protocol header field */
9 struct ice_flow_field_info {
10 	enum ice_flow_seg_hdr hdr;
11 	s16 off;	/* Offset from start of a protocol header, in bits */
12 	u16 size;	/* Size of fields in bits */
13 	u16 mask;	/* 16-bit mask for field */
14 };
15 
16 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
17 	.hdr = _hdr, \
18 	.off = (_offset_bytes) * BITS_PER_BYTE, \
19 	.size = (_size_bytes) * BITS_PER_BYTE, \
20 	.mask = 0, \
21 }
22 
23 #define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
24 	.hdr = _hdr, \
25 	.off = (_offset_bytes) * BITS_PER_BYTE, \
26 	.size = (_size_bytes) * BITS_PER_BYTE, \
27 	.mask = _mask, \
28 }
29 
30 /* Table containing properties of supported protocol header fields */
31 static const
32 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
33 	/* Ether */
34 	/* ICE_FLOW_FIELD_IDX_ETH_DA */
35 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
36 	/* ICE_FLOW_FIELD_IDX_ETH_SA */
37 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
38 	/* ICE_FLOW_FIELD_IDX_S_VLAN */
39 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
40 	/* ICE_FLOW_FIELD_IDX_C_VLAN */
41 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
42 	/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
43 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
44 	/* IPv4 / IPv6 */
45 	/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
46 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
47 	/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
48 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
49 	/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
50 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
51 	/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
52 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
53 	/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
54 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
55 	/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
56 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
57 	/* ICE_FLOW_FIELD_IDX_IPV4_SA */
58 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
59 	/* ICE_FLOW_FIELD_IDX_IPV4_DA */
60 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
61 	/* ICE_FLOW_FIELD_IDX_IPV6_SA */
62 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
63 	/* ICE_FLOW_FIELD_IDX_IPV6_DA */
64 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
65 	/* Transport */
66 	/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
67 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
68 	/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
69 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
70 	/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
71 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
72 	/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
73 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
74 	/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
75 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
76 	/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
77 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
78 	/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
79 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
80 	/* ARP */
81 	/* ICE_FLOW_FIELD_IDX_ARP_SIP */
82 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
83 	/* ICE_FLOW_FIELD_IDX_ARP_DIP */
84 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
85 	/* ICE_FLOW_FIELD_IDX_ARP_SHA */
86 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
87 	/* ICE_FLOW_FIELD_IDX_ARP_DHA */
88 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
89 	/* ICE_FLOW_FIELD_IDX_ARP_OP */
90 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
91 	/* ICMP */
92 	/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
93 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
94 	/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
95 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
96 	/* GRE */
97 	/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
98 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
99 			  sizeof_field(struct gre_full_hdr, key)),
100 	/* GTP */
101 	/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
102 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
103 	/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
104 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
105 	/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
106 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
107 	/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
108 	ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
109 			      0x3f00),
110 	/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
111 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
112 	/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
113 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
114 	/* PPPoE */
115 	/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
116 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
117 	/* PFCP */
118 	/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
119 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
120 	/* L2TPv3 */
121 	/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
122 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
123 	/* ESP */
124 	/* ICE_FLOW_FIELD_IDX_ESP_SPI */
125 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
126 	/* AH */
127 	/* ICE_FLOW_FIELD_IDX_AH_SPI */
128 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
129 	/* NAT_T_ESP */
130 	/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
131 	ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
132 };
133 
134 /* Bitmaps indicating relevant packet types for a particular protocol header
135  *
136  * Packet types for packets with an Outer/First/Single MAC header
137  */
138 static const u32 ice_ptypes_mac_ofos[] = {
139 	0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
140 	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
141 	0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
142 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
143 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
144 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
145 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
146 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
147 };
148 
149 /* Packet types for packets with an Innermost/Last MAC VLAN header */
150 static const u32 ice_ptypes_macvlan_il[] = {
151 	0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
152 	0x0000077E, 0x00000000, 0x00000000, 0x00000000,
153 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
154 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
155 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
156 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
157 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
158 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
159 };
160 
161 /* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
162  * include IPv4 other PTYPEs
163  */
164 static const u32 ice_ptypes_ipv4_ofos[] = {
165 	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
166 	0x00000000, 0x00000155, 0x00000000, 0x00000000,
167 	0x00000000, 0x000FC000, 0x00000000, 0x00000000,
168 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
169 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
170 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
171 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
172 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
173 };
174 
175 /* Packet types for packets with an Outer/First/Single IPv4 header, includes
176  * IPv4 other PTYPEs
177  */
178 static const u32 ice_ptypes_ipv4_ofos_all[] = {
179 	0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
180 	0x00000000, 0x00000155, 0x00000000, 0x00000000,
181 	0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
182 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
183 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
184 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
185 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
186 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
187 };
188 
189 /* Packet types for packets with an Innermost/Last IPv4 header */
190 static const u32 ice_ptypes_ipv4_il[] = {
191 	0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
192 	0x0000000E, 0x00000000, 0x00000000, 0x00000000,
193 	0x00000000, 0x00000000, 0x001FF800, 0x00000000,
194 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
195 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
196 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
197 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
198 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
199 };
200 
201 /* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
202  * include IPv6 other PTYPEs
203  */
204 static const u32 ice_ptypes_ipv6_ofos[] = {
205 	0x00000000, 0x00000000, 0x77000000, 0x10002000,
206 	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
207 	0x00000000, 0x03F00000, 0x00000000, 0x00000000,
208 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
209 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
210 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
211 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
212 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
213 };
214 
215 /* Packet types for packets with an Outer/First/Single IPv6 header, includes
216  * IPv6 other PTYPEs
217  */
218 static const u32 ice_ptypes_ipv6_ofos_all[] = {
219 	0x00000000, 0x00000000, 0x77000000, 0x10002000,
220 	0x00000000, 0x000002AA, 0x00000000, 0x00000000,
221 	0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
222 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
223 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
224 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
225 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
226 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
227 };
228 
229 /* Packet types for packets with an Innermost/Last IPv6 header */
230 static const u32 ice_ptypes_ipv6_il[] = {
231 	0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
232 	0x00000770, 0x00000000, 0x00000000, 0x00000000,
233 	0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
234 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
235 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
236 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
237 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
238 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
239 };
240 
241 /* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
242 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
243 	0x10C00000, 0x04000800, 0x00000000, 0x00000000,
244 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
245 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
246 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
247 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
248 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
249 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
250 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
251 };
252 
253 /* Packet types for packets with an Outermost/First ARP header */
254 static const u32 ice_ptypes_arp_of[] = {
255 	0x00000800, 0x00000000, 0x00000000, 0x00000000,
256 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
257 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
258 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
259 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
260 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
261 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
262 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
263 };
264 
265 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
266 static const u32 ice_ptypes_ipv4_il_no_l4[] = {
267 	0x60000000, 0x18043008, 0x80000002, 0x6010c021,
268 	0x00000008, 0x00000000, 0x00000000, 0x00000000,
269 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
270 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
271 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
272 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
273 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
274 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
275 };
276 
277 /* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
278 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
279 	0x00000000, 0x00000000, 0x43000000, 0x10002000,
280 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
281 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
282 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
283 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
284 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
285 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
286 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
287 };
288 
289 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
290 static const u32 ice_ptypes_ipv6_il_no_l4[] = {
291 	0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
292 	0x00000430, 0x00000000, 0x00000000, 0x00000000,
293 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
294 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
295 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
296 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
297 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
298 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
299 };
300 
301 /* UDP Packet types for non-tunneled packets or tunneled
302  * packets with inner UDP.
303  */
304 static const u32 ice_ptypes_udp_il[] = {
305 	0x81000000, 0x20204040, 0x04000010, 0x80810102,
306 	0x00000040, 0x00000000, 0x00000000, 0x00000000,
307 	0x00000000, 0x00410000, 0x90842000, 0x00000007,
308 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
309 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
310 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
311 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
312 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
313 };
314 
315 /* Packet types for packets with an Innermost/Last TCP header */
316 static const u32 ice_ptypes_tcp_il[] = {
317 	0x04000000, 0x80810102, 0x10000040, 0x02040408,
318 	0x00000102, 0x00000000, 0x00000000, 0x00000000,
319 	0x00000000, 0x00820000, 0x21084000, 0x00000000,
320 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
321 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
322 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
323 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
324 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
325 };
326 
327 /* Packet types for packets with an Innermost/Last SCTP header */
328 static const u32 ice_ptypes_sctp_il[] = {
329 	0x08000000, 0x01020204, 0x20000081, 0x04080810,
330 	0x00000204, 0x00000000, 0x00000000, 0x00000000,
331 	0x00000000, 0x01040000, 0x00000000, 0x00000000,
332 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
333 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
334 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
335 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
336 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
337 };
338 
339 /* Packet types for packets with an Outermost/First ICMP header */
340 static const u32 ice_ptypes_icmp_of[] = {
341 	0x10000000, 0x00000000, 0x00000000, 0x00000000,
342 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
343 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
344 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
345 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
346 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
347 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
348 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
349 };
350 
351 /* Packet types for packets with an Innermost/Last ICMP header */
352 static const u32 ice_ptypes_icmp_il[] = {
353 	0x00000000, 0x02040408, 0x40000102, 0x08101020,
354 	0x00000408, 0x00000000, 0x00000000, 0x00000000,
355 	0x00000000, 0x00000000, 0x42108000, 0x00000000,
356 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
357 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
358 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
359 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
360 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
361 };
362 
363 /* Packet types for packets with an Outermost/First GRE header */
364 static const u32 ice_ptypes_gre_of[] = {
365 	0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
366 	0x0000017E, 0x00000000, 0x00000000, 0x00000000,
367 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
368 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
369 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
370 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
371 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
372 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
373 };
374 
375 /* Packet types for packets with an Innermost/Last MAC header */
376 static const u32 ice_ptypes_mac_il[] = {
377 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
378 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
379 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
380 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
381 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
382 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
383 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
384 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
385 };
386 
387 /* Packet types for GTPC */
388 static const u32 ice_ptypes_gtpc[] = {
389 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
390 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
391 	0x00000000, 0x00000000, 0x00000180, 0x00000000,
392 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
393 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
394 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
395 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
396 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
397 };
398 
399 /* Packet types for GTPC with TEID */
400 static const u32 ice_ptypes_gtpc_tid[] = {
401 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
402 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
403 	0x00000000, 0x00000000, 0x00000060, 0x00000000,
404 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
405 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
406 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
407 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
408 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
409 };
410 
411 /* Packet types for GTPU */
412 static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
413 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
414 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
415 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
416 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
417 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
418 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
419 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
420 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
421 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
422 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
423 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
424 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
425 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
426 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
427 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
428 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
429 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
430 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
431 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_PDU_EH },
432 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
433 };
434 
435 static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
436 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
437 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
438 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
439 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
440 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
441 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
442 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
443 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
444 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
445 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
446 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
447 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
448 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
449 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
450 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
451 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
452 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
453 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
454 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_DOWNLINK },
455 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
456 };
457 
458 static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
459 	{ ICE_MAC_IPV4_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
460 	{ ICE_MAC_IPV4_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
461 	{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
462 	{ ICE_MAC_IPV4_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
463 	{ ICE_MAC_IPV4_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
464 	{ ICE_MAC_IPV6_GTPU_IPV4_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
465 	{ ICE_MAC_IPV6_GTPU_IPV4_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
466 	{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
467 	{ ICE_MAC_IPV6_GTPU_IPV4_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
468 	{ ICE_MAC_IPV6_GTPU_IPV4_ICMP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
469 	{ ICE_MAC_IPV4_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
470 	{ ICE_MAC_IPV4_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
471 	{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
472 	{ ICE_MAC_IPV4_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
473 	{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
474 	{ ICE_MAC_IPV6_GTPU_IPV6_FRAG,	  ICE_PTYPE_ATTR_GTP_UPLINK },
475 	{ ICE_MAC_IPV6_GTPU_IPV6_PAY,	  ICE_PTYPE_ATTR_GTP_UPLINK },
476 	{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
477 	{ ICE_MAC_IPV6_GTPU_IPV6_TCP,	  ICE_PTYPE_ATTR_GTP_UPLINK },
478 	{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
479 };
480 
481 static const u32 ice_ptypes_gtpu[] = {
482 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
483 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
484 	0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
485 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
486 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
487 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
488 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
489 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
490 };
491 
492 /* Packet types for PPPoE */
493 static const u32 ice_ptypes_pppoe[] = {
494 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
495 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
496 	0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
497 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
498 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
499 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
500 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
501 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
502 };
503 
504 /* Packet types for packets with PFCP NODE header */
505 static const u32 ice_ptypes_pfcp_node[] = {
506 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
507 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
508 	0x00000000, 0x00000000, 0x80000000, 0x00000002,
509 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
510 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
511 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
512 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
513 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
514 };
515 
516 /* Packet types for packets with PFCP SESSION header */
517 static const u32 ice_ptypes_pfcp_session[] = {
518 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
519 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
520 	0x00000000, 0x00000000, 0x00000000, 0x00000005,
521 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
522 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
523 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
524 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
525 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
526 };
527 
528 /* Packet types for L2TPv3 */
529 static const u32 ice_ptypes_l2tpv3[] = {
530 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
531 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
532 	0x00000000, 0x00000000, 0x00000000, 0x00000300,
533 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
534 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
535 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
536 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
537 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
538 };
539 
540 /* Packet types for ESP */
541 static const u32 ice_ptypes_esp[] = {
542 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
543 	0x00000000, 0x00000003, 0x00000000, 0x00000000,
544 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
545 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
546 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
547 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
548 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
549 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
550 };
551 
552 /* Packet types for AH */
553 static const u32 ice_ptypes_ah[] = {
554 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
555 	0x00000000, 0x0000000C, 0x00000000, 0x00000000,
556 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
557 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
558 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
559 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
560 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
561 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
562 };
563 
564 /* Packet types for packets with NAT_T ESP header */
565 static const u32 ice_ptypes_nat_t_esp[] = {
566 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
567 	0x00000000, 0x00000030, 0x00000000, 0x00000000,
568 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
569 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
570 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
571 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
572 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
573 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
574 };
575 
576 static const u32 ice_ptypes_mac_non_ip_ofos[] = {
577 	0x00000846, 0x00000000, 0x00000000, 0x00000000,
578 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
579 	0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
580 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
581 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
582 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
583 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
584 	0x00000000, 0x00000000, 0x00000000, 0x00000000,
585 };
586 
587 /* Manage parameters and info. used during the creation of a flow profile */
588 struct ice_flow_prof_params {
589 	enum ice_block blk;
590 	u16 entry_length; /* # of bytes formatted entry will require */
591 	u8 es_cnt;
592 	struct ice_flow_prof *prof;
593 
594 	/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
595 	 * This will give us the direction flags.
596 	 */
597 	struct ice_fv_word es[ICE_MAX_FV_WORDS];
598 	/* attributes can be used to add attributes to a particular PTYPE */
599 	const struct ice_ptype_attributes *attr;
600 	u16 attr_cnt;
601 
602 	u16 mask[ICE_MAX_FV_WORDS];
603 	DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
604 };
605 
606 #define ICE_FLOW_RSS_HDRS_INNER_MASK \
607 	(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
608 	ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
609 	ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
610 	ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
611 	ICE_FLOW_SEG_HDR_NAT_T_ESP)
612 
613 #define ICE_FLOW_SEG_HDRS_L3_MASK	\
614 	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
615 #define ICE_FLOW_SEG_HDRS_L4_MASK	\
616 	(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
617 	 ICE_FLOW_SEG_HDR_SCTP)
618 /* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
619 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER	\
620 	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
621 
622 /**
623  * ice_flow_val_hdrs - validates packet segments for valid protocol headers
624  * @segs: array of one or more packet segments that describe the flow
625  * @segs_cnt: number of packet segments provided
626  */
627 static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
628 {
629 	u8 i;
630 
631 	for (i = 0; i < segs_cnt; i++) {
632 		/* Multiple L3 headers */
633 		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
634 		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
635 			return -EINVAL;
636 
637 		/* Multiple L4 headers */
638 		if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
639 		    !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
640 			return -EINVAL;
641 	}
642 
643 	return 0;
644 }
645 
646 /* Sizes of fixed known protocol headers without header options */
647 #define ICE_FLOW_PROT_HDR_SZ_MAC	14
648 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN	(ICE_FLOW_PROT_HDR_SZ_MAC + 2)
649 #define ICE_FLOW_PROT_HDR_SZ_IPV4	20
650 #define ICE_FLOW_PROT_HDR_SZ_IPV6	40
651 #define ICE_FLOW_PROT_HDR_SZ_ARP	28
652 #define ICE_FLOW_PROT_HDR_SZ_ICMP	8
653 #define ICE_FLOW_PROT_HDR_SZ_TCP	20
654 #define ICE_FLOW_PROT_HDR_SZ_UDP	8
655 #define ICE_FLOW_PROT_HDR_SZ_SCTP	12
656 
657 /**
658  * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
659  * @params: information about the flow to be processed
660  * @seg: index of packet segment whose header size is to be determined
661  */
662 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
663 {
664 	u16 sz;
665 
666 	/* L2 headers */
667 	sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
668 		ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
669 
670 	/* L3 headers */
671 	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
672 		sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
673 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
674 		sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
675 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
676 		sz += ICE_FLOW_PROT_HDR_SZ_ARP;
677 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
678 		/* An L3 header is required if L4 is specified */
679 		return 0;
680 
681 	/* L4 headers */
682 	if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
683 		sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
684 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
685 		sz += ICE_FLOW_PROT_HDR_SZ_TCP;
686 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
687 		sz += ICE_FLOW_PROT_HDR_SZ_UDP;
688 	else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
689 		sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
690 
691 	return sz;
692 }
693 
694 /**
695  * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
696  * @params: information about the flow to be processed
697  *
698  * This function identifies the packet types associated with the protocol
699  * headers being present in packet segments of the specified flow profile.
700  */
701 static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
702 {
703 	struct ice_flow_prof *prof;
704 	u8 i;
705 
706 	memset(params->ptypes, 0xff, sizeof(params->ptypes));
707 
708 	prof = params->prof;
709 
710 	for (i = 0; i < params->prof->segs_cnt; i++) {
711 		const unsigned long *src;
712 		u32 hdrs;
713 
714 		hdrs = prof->segs[i].hdrs;
715 
716 		if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
717 			src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
718 				(const unsigned long *)ice_ptypes_mac_il;
719 			bitmap_and(params->ptypes, params->ptypes, src,
720 				   ICE_FLOW_PTYPE_MAX);
721 		}
722 
723 		if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
724 			src = (const unsigned long *)ice_ptypes_macvlan_il;
725 			bitmap_and(params->ptypes, params->ptypes, src,
726 				   ICE_FLOW_PTYPE_MAX);
727 		}
728 
729 		if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
730 			bitmap_and(params->ptypes, params->ptypes,
731 				   (const unsigned long *)ice_ptypes_arp_of,
732 				   ICE_FLOW_PTYPE_MAX);
733 		}
734 
735 		if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
736 		    (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
737 			src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
738 				(const unsigned long *)ice_ptypes_ipv4_ofos_all;
739 			bitmap_and(params->ptypes, params->ptypes, src,
740 				   ICE_FLOW_PTYPE_MAX);
741 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
742 			   (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
743 			src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
744 				(const unsigned long *)ice_ptypes_ipv6_ofos_all;
745 			bitmap_and(params->ptypes, params->ptypes, src,
746 				   ICE_FLOW_PTYPE_MAX);
747 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
748 			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
749 			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
750 				(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
751 			bitmap_and(params->ptypes, params->ptypes, src,
752 				   ICE_FLOW_PTYPE_MAX);
753 		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
754 			src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
755 				(const unsigned long *)ice_ptypes_ipv4_il;
756 			bitmap_and(params->ptypes, params->ptypes, src,
757 				   ICE_FLOW_PTYPE_MAX);
758 		} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
759 			   !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
760 			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
761 				(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
762 			bitmap_and(params->ptypes, params->ptypes, src,
763 				   ICE_FLOW_PTYPE_MAX);
764 		} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
765 			src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
766 				(const unsigned long *)ice_ptypes_ipv6_il;
767 			bitmap_and(params->ptypes, params->ptypes, src,
768 				   ICE_FLOW_PTYPE_MAX);
769 		}
770 
771 		if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
772 			src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
773 			bitmap_and(params->ptypes, params->ptypes, src,
774 				   ICE_FLOW_PTYPE_MAX);
775 		} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
776 			src = (const unsigned long *)ice_ptypes_pppoe;
777 			bitmap_and(params->ptypes, params->ptypes, src,
778 				   ICE_FLOW_PTYPE_MAX);
779 		} else {
780 			src = (const unsigned long *)ice_ptypes_pppoe;
781 			bitmap_andnot(params->ptypes, params->ptypes, src,
782 				      ICE_FLOW_PTYPE_MAX);
783 		}
784 
785 		if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
786 			src = (const unsigned long *)ice_ptypes_udp_il;
787 			bitmap_and(params->ptypes, params->ptypes, src,
788 				   ICE_FLOW_PTYPE_MAX);
789 		} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
790 			bitmap_and(params->ptypes, params->ptypes,
791 				   (const unsigned long *)ice_ptypes_tcp_il,
792 				   ICE_FLOW_PTYPE_MAX);
793 		} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
794 			src = (const unsigned long *)ice_ptypes_sctp_il;
795 			bitmap_and(params->ptypes, params->ptypes, src,
796 				   ICE_FLOW_PTYPE_MAX);
797 		}
798 
799 		if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
800 			src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
801 				(const unsigned long *)ice_ptypes_icmp_il;
802 			bitmap_and(params->ptypes, params->ptypes, src,
803 				   ICE_FLOW_PTYPE_MAX);
804 		} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
805 			if (!i) {
806 				src = (const unsigned long *)ice_ptypes_gre_of;
807 				bitmap_and(params->ptypes, params->ptypes,
808 					   src, ICE_FLOW_PTYPE_MAX);
809 			}
810 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
811 			src = (const unsigned long *)ice_ptypes_gtpc;
812 			bitmap_and(params->ptypes, params->ptypes, src,
813 				   ICE_FLOW_PTYPE_MAX);
814 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
815 			src = (const unsigned long *)ice_ptypes_gtpc_tid;
816 			bitmap_and(params->ptypes, params->ptypes, src,
817 				   ICE_FLOW_PTYPE_MAX);
818 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
819 			src = (const unsigned long *)ice_ptypes_gtpu;
820 			bitmap_and(params->ptypes, params->ptypes, src,
821 				   ICE_FLOW_PTYPE_MAX);
822 
823 			/* Attributes for GTP packet with downlink */
824 			params->attr = ice_attr_gtpu_down;
825 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
826 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
827 			src = (const unsigned long *)ice_ptypes_gtpu;
828 			bitmap_and(params->ptypes, params->ptypes, src,
829 				   ICE_FLOW_PTYPE_MAX);
830 
831 			/* Attributes for GTP packet with uplink */
832 			params->attr = ice_attr_gtpu_up;
833 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
834 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
835 			src = (const unsigned long *)ice_ptypes_gtpu;
836 			bitmap_and(params->ptypes, params->ptypes, src,
837 				   ICE_FLOW_PTYPE_MAX);
838 
839 			/* Attributes for GTP packet with Extension Header */
840 			params->attr = ice_attr_gtpu_eh;
841 			params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
842 		} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
843 			src = (const unsigned long *)ice_ptypes_gtpu;
844 			bitmap_and(params->ptypes, params->ptypes, src,
845 				   ICE_FLOW_PTYPE_MAX);
846 		} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
847 			src = (const unsigned long *)ice_ptypes_l2tpv3;
848 			bitmap_and(params->ptypes, params->ptypes, src,
849 				   ICE_FLOW_PTYPE_MAX);
850 		} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
851 			src = (const unsigned long *)ice_ptypes_esp;
852 			bitmap_and(params->ptypes, params->ptypes, src,
853 				   ICE_FLOW_PTYPE_MAX);
854 		} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
855 			src = (const unsigned long *)ice_ptypes_ah;
856 			bitmap_and(params->ptypes, params->ptypes, src,
857 				   ICE_FLOW_PTYPE_MAX);
858 		} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
859 			src = (const unsigned long *)ice_ptypes_nat_t_esp;
860 			bitmap_and(params->ptypes, params->ptypes, src,
861 				   ICE_FLOW_PTYPE_MAX);
862 		}
863 
864 		if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
865 			if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
866 				src = (const unsigned long *)ice_ptypes_pfcp_node;
867 			else
868 				src = (const unsigned long *)ice_ptypes_pfcp_session;
869 
870 			bitmap_and(params->ptypes, params->ptypes, src,
871 				   ICE_FLOW_PTYPE_MAX);
872 		} else {
873 			src = (const unsigned long *)ice_ptypes_pfcp_node;
874 			bitmap_andnot(params->ptypes, params->ptypes, src,
875 				      ICE_FLOW_PTYPE_MAX);
876 
877 			src = (const unsigned long *)ice_ptypes_pfcp_session;
878 			bitmap_andnot(params->ptypes, params->ptypes, src,
879 				      ICE_FLOW_PTYPE_MAX);
880 		}
881 	}
882 
883 	return 0;
884 }
885 
886 /**
887  * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
888  * @hw: pointer to the HW struct
889  * @params: information about the flow to be processed
890  * @seg: packet segment index of the field to be extracted
891  * @fld: ID of field to be extracted
892  * @match: bit field of all fields
893  *
894  * This function determines the protocol ID, offset, and size of the given
895  * field. It then allocates one or more extraction sequence entries for the
896  * given field, and fill the entries with protocol ID and offset information.
897  */
898 static int
899 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
900 		    u8 seg, enum ice_flow_field fld, u64 match)
901 {
902 	enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
903 	enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
904 	u8 fv_words = hw->blk[params->blk].es.fvw;
905 	struct ice_flow_fld_info *flds;
906 	u16 cnt, ese_bits, i;
907 	u16 sib_mask = 0;
908 	u16 mask;
909 	u16 off;
910 
911 	flds = params->prof->segs[seg].fields;
912 
913 	switch (fld) {
914 	case ICE_FLOW_FIELD_IDX_ETH_DA:
915 	case ICE_FLOW_FIELD_IDX_ETH_SA:
916 	case ICE_FLOW_FIELD_IDX_S_VLAN:
917 	case ICE_FLOW_FIELD_IDX_C_VLAN:
918 		prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
919 		break;
920 	case ICE_FLOW_FIELD_IDX_ETH_TYPE:
921 		prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
922 		break;
923 	case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
924 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
925 		break;
926 	case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
927 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
928 		break;
929 	case ICE_FLOW_FIELD_IDX_IPV4_TTL:
930 	case ICE_FLOW_FIELD_IDX_IPV4_PROT:
931 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
932 
933 		/* TTL and PROT share the same extraction seq. entry.
934 		 * Each is considered a sibling to the other in terms of sharing
935 		 * the same extraction sequence entry.
936 		 */
937 		if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
938 			sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
939 		else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
940 			sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
941 
942 		/* If the sibling field is also included, that field's
943 		 * mask needs to be included.
944 		 */
945 		if (match & BIT(sib))
946 			sib_mask = ice_flds_info[sib].mask;
947 		break;
948 	case ICE_FLOW_FIELD_IDX_IPV6_TTL:
949 	case ICE_FLOW_FIELD_IDX_IPV6_PROT:
950 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
951 
952 		/* TTL and PROT share the same extraction seq. entry.
953 		 * Each is considered a sibling to the other in terms of sharing
954 		 * the same extraction sequence entry.
955 		 */
956 		if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
957 			sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
958 		else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
959 			sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
960 
961 		/* If the sibling field is also included, that field's
962 		 * mask needs to be included.
963 		 */
964 		if (match & BIT(sib))
965 			sib_mask = ice_flds_info[sib].mask;
966 		break;
967 	case ICE_FLOW_FIELD_IDX_IPV4_SA:
968 	case ICE_FLOW_FIELD_IDX_IPV4_DA:
969 		prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
970 		break;
971 	case ICE_FLOW_FIELD_IDX_IPV6_SA:
972 	case ICE_FLOW_FIELD_IDX_IPV6_DA:
973 		prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
974 		break;
975 	case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
976 	case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
977 	case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
978 		prot_id = ICE_PROT_TCP_IL;
979 		break;
980 	case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
981 	case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
982 		prot_id = ICE_PROT_UDP_IL_OR_S;
983 		break;
984 	case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
985 	case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
986 		prot_id = ICE_PROT_SCTP_IL;
987 		break;
988 	case ICE_FLOW_FIELD_IDX_GTPC_TEID:
989 	case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
990 	case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
991 	case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
992 	case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
993 	case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
994 		/* GTP is accessed through UDP OF protocol */
995 		prot_id = ICE_PROT_UDP_OF;
996 		break;
997 	case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
998 		prot_id = ICE_PROT_PPPOE;
999 		break;
1000 	case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001 		prot_id = ICE_PROT_UDP_IL_OR_S;
1002 		break;
1003 	case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004 		prot_id = ICE_PROT_L2TPV3;
1005 		break;
1006 	case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007 		prot_id = ICE_PROT_ESP_F;
1008 		break;
1009 	case ICE_FLOW_FIELD_IDX_AH_SPI:
1010 		prot_id = ICE_PROT_ESP_2;
1011 		break;
1012 	case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013 		prot_id = ICE_PROT_UDP_IL_OR_S;
1014 		break;
1015 	case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016 	case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017 	case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018 	case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019 	case ICE_FLOW_FIELD_IDX_ARP_OP:
1020 		prot_id = ICE_PROT_ARP_OF;
1021 		break;
1022 	case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023 	case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024 		/* ICMP type and code share the same extraction seq. entry */
1025 		prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026 				ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027 		sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028 			ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029 			ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030 		break;
1031 	case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032 		prot_id = ICE_PROT_GRE_OF;
1033 		break;
1034 	default:
1035 		return -EOPNOTSUPP;
1036 	}
1037 
1038 	/* Each extraction sequence entry is a word in size, and extracts a
1039 	 * word-aligned offset from a protocol header.
1040 	 */
1041 	ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042 
1043 	flds[fld].xtrct.prot_id = prot_id;
1044 	flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045 		ICE_FLOW_FV_EXTRACT_SZ;
1046 	flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047 	flds[fld].xtrct.idx = params->es_cnt;
1048 	flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049 
1050 	/* Adjust the next field-entry index after accommodating the number of
1051 	 * entries this field consumes
1052 	 */
1053 	cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054 			   ese_bits);
1055 
1056 	/* Fill in the extraction sequence entries needed for this field */
1057 	off = flds[fld].xtrct.off;
1058 	mask = flds[fld].xtrct.mask;
1059 	for (i = 0; i < cnt; i++) {
1060 		/* Only consume an extraction sequence entry if there is no
1061 		 * sibling field associated with this field or the sibling entry
1062 		 * already extracts the word shared with this field.
1063 		 */
1064 		if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065 		    flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066 		    flds[sib].xtrct.off != off) {
1067 			u8 idx;
1068 
1069 			/* Make sure the number of extraction sequence required
1070 			 * does not exceed the block's capability
1071 			 */
1072 			if (params->es_cnt >= fv_words)
1073 				return -ENOSPC;
1074 
1075 			/* some blocks require a reversed field vector layout */
1076 			if (hw->blk[params->blk].es.reverse)
1077 				idx = fv_words - params->es_cnt - 1;
1078 			else
1079 				idx = params->es_cnt;
1080 
1081 			params->es[idx].prot_id = prot_id;
1082 			params->es[idx].off = off;
1083 			params->mask[idx] = mask | sib_mask;
1084 			params->es_cnt++;
1085 		}
1086 
1087 		off += ICE_FLOW_FV_EXTRACT_SZ;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /**
1094  * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095  * @hw: pointer to the HW struct
1096  * @params: information about the flow to be processed
1097  * @seg: index of packet segment whose raw fields are to be extracted
1098  */
1099 static int
1100 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101 		     u8 seg)
1102 {
1103 	u16 fv_words;
1104 	u16 hdrs_sz;
1105 	u8 i;
1106 
1107 	if (!params->prof->segs[seg].raws_cnt)
1108 		return 0;
1109 
1110 	if (params->prof->segs[seg].raws_cnt >
1111 	    ARRAY_SIZE(params->prof->segs[seg].raws))
1112 		return -ENOSPC;
1113 
1114 	/* Offsets within the segment headers are not supported */
1115 	hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116 	if (!hdrs_sz)
1117 		return -EINVAL;
1118 
1119 	fv_words = hw->blk[params->blk].es.fvw;
1120 
1121 	for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122 		struct ice_flow_seg_fld_raw *raw;
1123 		u16 off, cnt, j;
1124 
1125 		raw = &params->prof->segs[seg].raws[i];
1126 
1127 		/* Storing extraction information */
1128 		raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129 		raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130 			ICE_FLOW_FV_EXTRACT_SZ;
1131 		raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132 			BITS_PER_BYTE;
1133 		raw->info.xtrct.idx = params->es_cnt;
1134 
1135 		/* Determine the number of field vector entries this raw field
1136 		 * consumes.
1137 		 */
1138 		cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139 				   (raw->info.src.last * BITS_PER_BYTE),
1140 				   (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141 		off = raw->info.xtrct.off;
1142 		for (j = 0; j < cnt; j++) {
1143 			u16 idx;
1144 
1145 			/* Make sure the number of extraction sequence required
1146 			 * does not exceed the block's capability
1147 			 */
1148 			if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149 			    params->es_cnt >= ICE_MAX_FV_WORDS)
1150 				return -ENOSPC;
1151 
1152 			/* some blocks require a reversed field vector layout */
1153 			if (hw->blk[params->blk].es.reverse)
1154 				idx = fv_words - params->es_cnt - 1;
1155 			else
1156 				idx = params->es_cnt;
1157 
1158 			params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159 			params->es[idx].off = off;
1160 			params->es_cnt++;
1161 			off += ICE_FLOW_FV_EXTRACT_SZ;
1162 		}
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170  * @hw: pointer to the HW struct
1171  * @params: information about the flow to be processed
1172  *
1173  * This function iterates through all matched fields in the given segments, and
1174  * creates an extraction sequence for the fields.
1175  */
1176 static int
1177 ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178 			  struct ice_flow_prof_params *params)
1179 {
1180 	struct ice_flow_prof *prof = params->prof;
1181 	int status = 0;
1182 	u8 i;
1183 
1184 	for (i = 0; i < prof->segs_cnt; i++) {
1185 		u64 match = params->prof->segs[i].match;
1186 		enum ice_flow_field j;
1187 
1188 		for_each_set_bit(j, (unsigned long *)&match,
1189 				 ICE_FLOW_FIELD_IDX_MAX) {
1190 			status = ice_flow_xtract_fld(hw, params, i, j, match);
1191 			if (status)
1192 				return status;
1193 			clear_bit(j, (unsigned long *)&match);
1194 		}
1195 
1196 		/* Process raw matching bytes */
1197 		status = ice_flow_xtract_raws(hw, params, i);
1198 		if (status)
1199 			return status;
1200 	}
1201 
1202 	return status;
1203 }
1204 
1205 /**
1206  * ice_flow_proc_segs - process all packet segments associated with a profile
1207  * @hw: pointer to the HW struct
1208  * @params: information about the flow to be processed
1209  */
1210 static int
1211 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212 {
1213 	int status;
1214 
1215 	status = ice_flow_proc_seg_hdrs(params);
1216 	if (status)
1217 		return status;
1218 
1219 	status = ice_flow_create_xtrct_seq(hw, params);
1220 	if (status)
1221 		return status;
1222 
1223 	switch (params->blk) {
1224 	case ICE_BLK_FD:
1225 	case ICE_BLK_RSS:
1226 		status = 0;
1227 		break;
1228 	default:
1229 		return -EOPNOTSUPP;
1230 	}
1231 
1232 	return status;
1233 }
1234 
1235 #define ICE_FLOW_FIND_PROF_CHK_FLDS	0x00000001
1236 #define ICE_FLOW_FIND_PROF_CHK_VSI	0x00000002
1237 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR	0x00000004
1238 
1239 /**
1240  * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1241  * @hw: pointer to the HW struct
1242  * @blk: classification stage
1243  * @dir: flow direction
1244  * @segs: array of one or more packet segments that describe the flow
1245  * @segs_cnt: number of packet segments provided
1246  * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1247  * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1248  */
1249 static struct ice_flow_prof *
1250 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1251 			 enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1252 			 u8 segs_cnt, u16 vsi_handle, u32 conds)
1253 {
1254 	struct ice_flow_prof *p, *prof = NULL;
1255 
1256 	mutex_lock(&hw->fl_profs_locks[blk]);
1257 	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1258 		if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1259 		    segs_cnt && segs_cnt == p->segs_cnt) {
1260 			u8 i;
1261 
1262 			/* Check for profile-VSI association if specified */
1263 			if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1264 			    ice_is_vsi_valid(hw, vsi_handle) &&
1265 			    !test_bit(vsi_handle, p->vsis))
1266 				continue;
1267 
1268 			/* Protocol headers must be checked. Matched fields are
1269 			 * checked if specified.
1270 			 */
1271 			for (i = 0; i < segs_cnt; i++)
1272 				if (segs[i].hdrs != p->segs[i].hdrs ||
1273 				    ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1274 				     segs[i].match != p->segs[i].match))
1275 					break;
1276 
1277 			/* A match is found if all segments are matched */
1278 			if (i == segs_cnt) {
1279 				prof = p;
1280 				break;
1281 			}
1282 		}
1283 	mutex_unlock(&hw->fl_profs_locks[blk]);
1284 
1285 	return prof;
1286 }
1287 
1288 /**
1289  * ice_flow_find_prof_id - Look up a profile with given profile ID
1290  * @hw: pointer to the HW struct
1291  * @blk: classification stage
1292  * @prof_id: unique ID to identify this flow profile
1293  */
1294 static struct ice_flow_prof *
1295 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1296 {
1297 	struct ice_flow_prof *p;
1298 
1299 	list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1300 		if (p->id == prof_id)
1301 			return p;
1302 
1303 	return NULL;
1304 }
1305 
1306 /**
1307  * ice_dealloc_flow_entry - Deallocate flow entry memory
1308  * @hw: pointer to the HW struct
1309  * @entry: flow entry to be removed
1310  */
1311 static void
1312 ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
1313 {
1314 	if (!entry)
1315 		return;
1316 
1317 	if (entry->entry)
1318 		devm_kfree(ice_hw_to_dev(hw), entry->entry);
1319 
1320 	devm_kfree(ice_hw_to_dev(hw), entry);
1321 }
1322 
1323 /**
1324  * ice_flow_rem_entry_sync - Remove a flow entry
1325  * @hw: pointer to the HW struct
1326  * @blk: classification stage
1327  * @entry: flow entry to be removed
1328  */
1329 static int
1330 ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1331 			struct ice_flow_entry *entry)
1332 {
1333 	if (!entry)
1334 		return -EINVAL;
1335 
1336 	list_del(&entry->l_entry);
1337 
1338 	ice_dealloc_flow_entry(hw, entry);
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1345  * @hw: pointer to the HW struct
1346  * @blk: classification stage
1347  * @dir: flow direction
1348  * @prof_id: unique ID to identify this flow profile
1349  * @segs: array of one or more packet segments that describe the flow
1350  * @segs_cnt: number of packet segments provided
1351  * @prof: stores the returned flow profile added
1352  *
1353  * Assumption: the caller has acquired the lock to the profile list
1354  */
1355 static int
1356 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1357 		       enum ice_flow_dir dir, u64 prof_id,
1358 		       struct ice_flow_seg_info *segs, u8 segs_cnt,
1359 		       struct ice_flow_prof **prof)
1360 {
1361 	struct ice_flow_prof_params *params;
1362 	int status;
1363 	u8 i;
1364 
1365 	if (!prof)
1366 		return -EINVAL;
1367 
1368 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1369 	if (!params)
1370 		return -ENOMEM;
1371 
1372 	params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1373 				    GFP_KERNEL);
1374 	if (!params->prof) {
1375 		status = -ENOMEM;
1376 		goto free_params;
1377 	}
1378 
1379 	/* initialize extraction sequence to all invalid (0xff) */
1380 	for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1381 		params->es[i].prot_id = ICE_PROT_INVALID;
1382 		params->es[i].off = ICE_FV_OFFSET_INVAL;
1383 	}
1384 
1385 	params->blk = blk;
1386 	params->prof->id = prof_id;
1387 	params->prof->dir = dir;
1388 	params->prof->segs_cnt = segs_cnt;
1389 
1390 	/* Make a copy of the segments that need to be persistent in the flow
1391 	 * profile instance
1392 	 */
1393 	for (i = 0; i < segs_cnt; i++)
1394 		memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1395 
1396 	status = ice_flow_proc_segs(hw, params);
1397 	if (status) {
1398 		ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1399 		goto out;
1400 	}
1401 
1402 	/* Add a HW profile for this flow profile */
1403 	status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1404 			      params->attr, params->attr_cnt, params->es,
1405 			      params->mask);
1406 	if (status) {
1407 		ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1408 		goto out;
1409 	}
1410 
1411 	INIT_LIST_HEAD(&params->prof->entries);
1412 	mutex_init(&params->prof->entries_lock);
1413 	*prof = params->prof;
1414 
1415 out:
1416 	if (status)
1417 		devm_kfree(ice_hw_to_dev(hw), params->prof);
1418 free_params:
1419 	kfree(params);
1420 
1421 	return status;
1422 }
1423 
1424 /**
1425  * ice_flow_rem_prof_sync - remove a flow profile
1426  * @hw: pointer to the hardware structure
1427  * @blk: classification stage
1428  * @prof: pointer to flow profile to remove
1429  *
1430  * Assumption: the caller has acquired the lock to the profile list
1431  */
1432 static int
1433 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1434 		       struct ice_flow_prof *prof)
1435 {
1436 	int status;
1437 
1438 	/* Remove all remaining flow entries before removing the flow profile */
1439 	if (!list_empty(&prof->entries)) {
1440 		struct ice_flow_entry *e, *t;
1441 
1442 		mutex_lock(&prof->entries_lock);
1443 
1444 		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1445 			status = ice_flow_rem_entry_sync(hw, blk, e);
1446 			if (status)
1447 				break;
1448 		}
1449 
1450 		mutex_unlock(&prof->entries_lock);
1451 	}
1452 
1453 	/* Remove all hardware profiles associated with this flow profile */
1454 	status = ice_rem_prof(hw, blk, prof->id);
1455 	if (!status) {
1456 		list_del(&prof->l_entry);
1457 		mutex_destroy(&prof->entries_lock);
1458 		devm_kfree(ice_hw_to_dev(hw), prof);
1459 	}
1460 
1461 	return status;
1462 }
1463 
1464 /**
1465  * ice_flow_assoc_prof - associate a VSI with a flow profile
1466  * @hw: pointer to the hardware structure
1467  * @blk: classification stage
1468  * @prof: pointer to flow profile
1469  * @vsi_handle: software VSI handle
1470  *
1471  * Assumption: the caller has acquired the lock to the profile list
1472  * and the software VSI handle has been validated
1473  */
1474 static int
1475 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1476 		    struct ice_flow_prof *prof, u16 vsi_handle)
1477 {
1478 	int status = 0;
1479 
1480 	if (!test_bit(vsi_handle, prof->vsis)) {
1481 		status = ice_add_prof_id_flow(hw, blk,
1482 					      ice_get_hw_vsi_num(hw,
1483 								 vsi_handle),
1484 					      prof->id);
1485 		if (!status)
1486 			set_bit(vsi_handle, prof->vsis);
1487 		else
1488 			ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1489 				  status);
1490 	}
1491 
1492 	return status;
1493 }
1494 
1495 /**
1496  * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1497  * @hw: pointer to the hardware structure
1498  * @blk: classification stage
1499  * @prof: pointer to flow profile
1500  * @vsi_handle: software VSI handle
1501  *
1502  * Assumption: the caller has acquired the lock to the profile list
1503  * and the software VSI handle has been validated
1504  */
1505 static int
1506 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1507 		       struct ice_flow_prof *prof, u16 vsi_handle)
1508 {
1509 	int status = 0;
1510 
1511 	if (test_bit(vsi_handle, prof->vsis)) {
1512 		status = ice_rem_prof_id_flow(hw, blk,
1513 					      ice_get_hw_vsi_num(hw,
1514 								 vsi_handle),
1515 					      prof->id);
1516 		if (!status)
1517 			clear_bit(vsi_handle, prof->vsis);
1518 		else
1519 			ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1520 				  status);
1521 	}
1522 
1523 	return status;
1524 }
1525 
1526 /**
1527  * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1528  * @hw: pointer to the HW struct
1529  * @blk: classification stage
1530  * @dir: flow direction
1531  * @prof_id: unique ID to identify this flow profile
1532  * @segs: array of one or more packet segments that describe the flow
1533  * @segs_cnt: number of packet segments provided
1534  * @prof: stores the returned flow profile added
1535  */
1536 int
1537 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1538 		  u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1539 		  struct ice_flow_prof **prof)
1540 {
1541 	int status;
1542 
1543 	if (segs_cnt > ICE_FLOW_SEG_MAX)
1544 		return -ENOSPC;
1545 
1546 	if (!segs_cnt)
1547 		return -EINVAL;
1548 
1549 	if (!segs)
1550 		return -EINVAL;
1551 
1552 	status = ice_flow_val_hdrs(segs, segs_cnt);
1553 	if (status)
1554 		return status;
1555 
1556 	mutex_lock(&hw->fl_profs_locks[blk]);
1557 
1558 	status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1559 					prof);
1560 	if (!status)
1561 		list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1562 
1563 	mutex_unlock(&hw->fl_profs_locks[blk]);
1564 
1565 	return status;
1566 }
1567 
1568 /**
1569  * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1570  * @hw: pointer to the HW struct
1571  * @blk: the block for which the flow profile is to be removed
1572  * @prof_id: unique ID of the flow profile to be removed
1573  */
1574 int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1575 {
1576 	struct ice_flow_prof *prof;
1577 	int status;
1578 
1579 	mutex_lock(&hw->fl_profs_locks[blk]);
1580 
1581 	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1582 	if (!prof) {
1583 		status = -ENOENT;
1584 		goto out;
1585 	}
1586 
1587 	/* prof becomes invalid after the call */
1588 	status = ice_flow_rem_prof_sync(hw, blk, prof);
1589 
1590 out:
1591 	mutex_unlock(&hw->fl_profs_locks[blk]);
1592 
1593 	return status;
1594 }
1595 
1596 /**
1597  * ice_flow_add_entry - Add a flow entry
1598  * @hw: pointer to the HW struct
1599  * @blk: classification stage
1600  * @prof_id: ID of the profile to add a new flow entry to
1601  * @entry_id: unique ID to identify this flow entry
1602  * @vsi_handle: software VSI handle for the flow entry
1603  * @prio: priority of the flow entry
1604  * @data: pointer to a data buffer containing flow entry's match values/masks
1605  * @entry_h: pointer to buffer that receives the new flow entry's handle
1606  */
1607 int
1608 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1609 		   u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1610 		   void *data, u64 *entry_h)
1611 {
1612 	struct ice_flow_entry *e = NULL;
1613 	struct ice_flow_prof *prof;
1614 	int status;
1615 
1616 	/* No flow entry data is expected for RSS */
1617 	if (!entry_h || (!data && blk != ICE_BLK_RSS))
1618 		return -EINVAL;
1619 
1620 	if (!ice_is_vsi_valid(hw, vsi_handle))
1621 		return -EINVAL;
1622 
1623 	mutex_lock(&hw->fl_profs_locks[blk]);
1624 
1625 	prof = ice_flow_find_prof_id(hw, blk, prof_id);
1626 	if (!prof) {
1627 		status = -ENOENT;
1628 	} else {
1629 		/* Allocate memory for the entry being added and associate
1630 		 * the VSI to the found flow profile
1631 		 */
1632 		e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1633 		if (!e)
1634 			status = -ENOMEM;
1635 		else
1636 			status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1637 	}
1638 
1639 	mutex_unlock(&hw->fl_profs_locks[blk]);
1640 	if (status)
1641 		goto out;
1642 
1643 	e->id = entry_id;
1644 	e->vsi_handle = vsi_handle;
1645 	e->prof = prof;
1646 	e->priority = prio;
1647 
1648 	switch (blk) {
1649 	case ICE_BLK_FD:
1650 	case ICE_BLK_RSS:
1651 		break;
1652 	default:
1653 		status = -EOPNOTSUPP;
1654 		goto out;
1655 	}
1656 
1657 	mutex_lock(&prof->entries_lock);
1658 	list_add(&e->l_entry, &prof->entries);
1659 	mutex_unlock(&prof->entries_lock);
1660 
1661 	*entry_h = ICE_FLOW_ENTRY_HNDL(e);
1662 
1663 out:
1664 	if (status && e) {
1665 		if (e->entry)
1666 			devm_kfree(ice_hw_to_dev(hw), e->entry);
1667 		devm_kfree(ice_hw_to_dev(hw), e);
1668 	}
1669 
1670 	return status;
1671 }
1672 
1673 /**
1674  * ice_flow_rem_entry - Remove a flow entry
1675  * @hw: pointer to the HW struct
1676  * @blk: classification stage
1677  * @entry_h: handle to the flow entry to be removed
1678  */
1679 int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1680 {
1681 	struct ice_flow_entry *entry;
1682 	struct ice_flow_prof *prof;
1683 	int status = 0;
1684 
1685 	if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1686 		return -EINVAL;
1687 
1688 	entry = ICE_FLOW_ENTRY_PTR(entry_h);
1689 
1690 	/* Retain the pointer to the flow profile as the entry will be freed */
1691 	prof = entry->prof;
1692 
1693 	if (prof) {
1694 		mutex_lock(&prof->entries_lock);
1695 		status = ice_flow_rem_entry_sync(hw, blk, entry);
1696 		mutex_unlock(&prof->entries_lock);
1697 	}
1698 
1699 	return status;
1700 }
1701 
1702 /**
1703  * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1704  * @seg: packet segment the field being set belongs to
1705  * @fld: field to be set
1706  * @field_type: type of the field
1707  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1708  *           entry's input buffer
1709  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1710  *            input buffer
1711  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1712  *            entry's input buffer
1713  *
1714  * This helper function stores information of a field being matched, including
1715  * the type of the field and the locations of the value to match, the mask, and
1716  * the upper-bound value in the start of the input buffer for a flow entry.
1717  * This function should only be used for fixed-size data structures.
1718  *
1719  * This function also opportunistically determines the protocol headers to be
1720  * present based on the fields being set. Some fields cannot be used alone to
1721  * determine the protocol headers present. Sometimes, fields for particular
1722  * protocol headers are not matched. In those cases, the protocol headers
1723  * must be explicitly set.
1724  */
1725 static void
1726 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1727 		     enum ice_flow_fld_match_type field_type, u16 val_loc,
1728 		     u16 mask_loc, u16 last_loc)
1729 {
1730 	u64 bit = BIT_ULL(fld);
1731 
1732 	seg->match |= bit;
1733 	if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1734 		seg->range |= bit;
1735 
1736 	seg->fields[fld].type = field_type;
1737 	seg->fields[fld].src.val = val_loc;
1738 	seg->fields[fld].src.mask = mask_loc;
1739 	seg->fields[fld].src.last = last_loc;
1740 
1741 	ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1742 }
1743 
1744 /**
1745  * ice_flow_set_fld - specifies locations of field from entry's input buffer
1746  * @seg: packet segment the field being set belongs to
1747  * @fld: field to be set
1748  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1749  *           entry's input buffer
1750  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1751  *            input buffer
1752  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1753  *            entry's input buffer
1754  * @range: indicate if field being matched is to be in a range
1755  *
1756  * This function specifies the locations, in the form of byte offsets from the
1757  * start of the input buffer for a flow entry, from where the value to match,
1758  * the mask value, and upper value can be extracted. These locations are then
1759  * stored in the flow profile. When adding a flow entry associated with the
1760  * flow profile, these locations will be used to quickly extract the values and
1761  * create the content of a match entry. This function should only be used for
1762  * fixed-size data structures.
1763  */
1764 void
1765 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1766 		 u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1767 {
1768 	enum ice_flow_fld_match_type t = range ?
1769 		ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1770 
1771 	ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1772 }
1773 
1774 /**
1775  * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1776  * @seg: packet segment the field being set belongs to
1777  * @off: offset of the raw field from the beginning of the segment in bytes
1778  * @len: length of the raw pattern to be matched
1779  * @val_loc: location of the value to match from entry's input buffer
1780  * @mask_loc: location of mask value from entry's input buffer
1781  *
1782  * This function specifies the offset of the raw field to be match from the
1783  * beginning of the specified packet segment, and the locations, in the form of
1784  * byte offsets from the start of the input buffer for a flow entry, from where
1785  * the value to match and the mask value to be extracted. These locations are
1786  * then stored in the flow profile. When adding flow entries to the associated
1787  * flow profile, these locations can be used to quickly extract the values to
1788  * create the content of a match entry. This function should only be used for
1789  * fixed-size data structures.
1790  */
1791 void
1792 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1793 		     u16 val_loc, u16 mask_loc)
1794 {
1795 	if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1796 		seg->raws[seg->raws_cnt].off = off;
1797 		seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1798 		seg->raws[seg->raws_cnt].info.src.val = val_loc;
1799 		seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1800 		/* The "last" field is used to store the length of the field */
1801 		seg->raws[seg->raws_cnt].info.src.last = len;
1802 	}
1803 
1804 	/* Overflows of "raws" will be handled as an error condition later in
1805 	 * the flow when this information is processed.
1806 	 */
1807 	seg->raws_cnt++;
1808 }
1809 
1810 /**
1811  * ice_flow_rem_vsi_prof - remove VSI from flow profile
1812  * @hw: pointer to the hardware structure
1813  * @vsi_handle: software VSI handle
1814  * @prof_id: unique ID to identify this flow profile
1815  *
1816  * This function removes the flow entries associated to the input
1817  * VSI handle and disassociate the VSI from the flow profile.
1818  */
1819 int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1820 {
1821 	struct ice_flow_prof *prof;
1822 	int status = 0;
1823 
1824 	if (!ice_is_vsi_valid(hw, vsi_handle))
1825 		return -EINVAL;
1826 
1827 	/* find flow profile pointer with input package block and profile ID */
1828 	prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1829 	if (!prof) {
1830 		ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1831 			  prof_id);
1832 		return -ENOENT;
1833 	}
1834 
1835 	/* Remove all remaining flow entries before removing the flow profile */
1836 	if (!list_empty(&prof->entries)) {
1837 		struct ice_flow_entry *e, *t;
1838 
1839 		mutex_lock(&prof->entries_lock);
1840 		list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1841 			if (e->vsi_handle != vsi_handle)
1842 				continue;
1843 
1844 			status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1845 			if (status)
1846 				break;
1847 		}
1848 		mutex_unlock(&prof->entries_lock);
1849 	}
1850 	if (status)
1851 		return status;
1852 
1853 	/* disassociate the flow profile from sw VSI handle */
1854 	status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1855 	if (status)
1856 		ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1857 			  status);
1858 	return status;
1859 }
1860 
1861 #define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1862 	(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1863 
1864 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1865 	(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1866 
1867 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1868 	(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1869 
1870 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1871 	(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1872 	 ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1873 	 ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1874 
1875 /**
1876  * ice_flow_set_rss_seg_info - setup packet segments for RSS
1877  * @segs: pointer to the flow field segment(s)
1878  * @hash_fields: fields to be hashed on for the segment(s)
1879  * @flow_hdr: protocol header fields within a packet segment
1880  *
1881  * Helper function to extract fields from hash bitmap and use flow
1882  * header value to set flow field segment for further use in flow
1883  * profile entry or removal.
1884  */
1885 static int
1886 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1887 			  u32 flow_hdr)
1888 {
1889 	u64 val;
1890 	u8 i;
1891 
1892 	for_each_set_bit(i, (unsigned long *)&hash_fields,
1893 			 ICE_FLOW_FIELD_IDX_MAX)
1894 		ice_flow_set_fld(segs, (enum ice_flow_field)i,
1895 				 ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1896 				 ICE_FLOW_FLD_OFF_INVAL, false);
1897 
1898 	ICE_FLOW_SET_HDRS(segs, flow_hdr);
1899 
1900 	if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1901 	    ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1902 		return -EINVAL;
1903 
1904 	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1905 	if (val && !is_power_of_2(val))
1906 		return -EIO;
1907 
1908 	val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1909 	if (val && !is_power_of_2(val))
1910 		return -EIO;
1911 
1912 	return 0;
1913 }
1914 
1915 /**
1916  * ice_rem_vsi_rss_list - remove VSI from RSS list
1917  * @hw: pointer to the hardware structure
1918  * @vsi_handle: software VSI handle
1919  *
1920  * Remove the VSI from all RSS configurations in the list.
1921  */
1922 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1923 {
1924 	struct ice_rss_cfg *r, *tmp;
1925 
1926 	if (list_empty(&hw->rss_list_head))
1927 		return;
1928 
1929 	mutex_lock(&hw->rss_locks);
1930 	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1931 		if (test_and_clear_bit(vsi_handle, r->vsis))
1932 			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1933 				list_del(&r->l_entry);
1934 				devm_kfree(ice_hw_to_dev(hw), r);
1935 			}
1936 	mutex_unlock(&hw->rss_locks);
1937 }
1938 
1939 /**
1940  * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1941  * @hw: pointer to the hardware structure
1942  * @vsi_handle: software VSI handle
1943  *
1944  * This function will iterate through all flow profiles and disassociate
1945  * the VSI from that profile. If the flow profile has no VSIs it will
1946  * be removed.
1947  */
1948 int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1949 {
1950 	const enum ice_block blk = ICE_BLK_RSS;
1951 	struct ice_flow_prof *p, *t;
1952 	int status = 0;
1953 
1954 	if (!ice_is_vsi_valid(hw, vsi_handle))
1955 		return -EINVAL;
1956 
1957 	if (list_empty(&hw->fl_profs[blk]))
1958 		return 0;
1959 
1960 	mutex_lock(&hw->rss_locks);
1961 	list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1962 		if (test_bit(vsi_handle, p->vsis)) {
1963 			status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1964 			if (status)
1965 				break;
1966 
1967 			if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1968 				status = ice_flow_rem_prof(hw, blk, p->id);
1969 				if (status)
1970 					break;
1971 			}
1972 		}
1973 	mutex_unlock(&hw->rss_locks);
1974 
1975 	return status;
1976 }
1977 
1978 /**
1979  * ice_rem_rss_list - remove RSS configuration from list
1980  * @hw: pointer to the hardware structure
1981  * @vsi_handle: software VSI handle
1982  * @prof: pointer to flow profile
1983  *
1984  * Assumption: lock has already been acquired for RSS list
1985  */
1986 static void
1987 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1988 {
1989 	struct ice_rss_cfg *r, *tmp;
1990 
1991 	/* Search for RSS hash fields associated to the VSI that match the
1992 	 * hash configurations associated to the flow profile. If found
1993 	 * remove from the RSS entry list of the VSI context and delete entry.
1994 	 */
1995 	list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1996 		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1997 		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1998 			clear_bit(vsi_handle, r->vsis);
1999 			if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
2000 				list_del(&r->l_entry);
2001 				devm_kfree(ice_hw_to_dev(hw), r);
2002 			}
2003 			return;
2004 		}
2005 }
2006 
2007 /**
2008  * ice_add_rss_list - add RSS configuration to list
2009  * @hw: pointer to the hardware structure
2010  * @vsi_handle: software VSI handle
2011  * @prof: pointer to flow profile
2012  *
2013  * Assumption: lock has already been acquired for RSS list
2014  */
2015 static int
2016 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
2017 {
2018 	struct ice_rss_cfg *r, *rss_cfg;
2019 
2020 	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2021 		if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
2022 		    r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
2023 			set_bit(vsi_handle, r->vsis);
2024 			return 0;
2025 		}
2026 
2027 	rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2028 			       GFP_KERNEL);
2029 	if (!rss_cfg)
2030 		return -ENOMEM;
2031 
2032 	rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
2033 	rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
2034 	set_bit(vsi_handle, rss_cfg->vsis);
2035 
2036 	list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2037 
2038 	return 0;
2039 }
2040 
2041 #define ICE_FLOW_PROF_HASH_S	0
2042 #define ICE_FLOW_PROF_HASH_M	(0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
2043 #define ICE_FLOW_PROF_HDR_S	32
2044 #define ICE_FLOW_PROF_HDR_M	(0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
2045 #define ICE_FLOW_PROF_ENCAP_S	63
2046 #define ICE_FLOW_PROF_ENCAP_M	(BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
2047 
2048 #define ICE_RSS_OUTER_HEADERS	1
2049 #define ICE_RSS_INNER_HEADERS	2
2050 
2051 /* Flow profile ID format:
2052  * [0:31] - Packet match fields
2053  * [32:62] - Protocol header
2054  * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
2055  */
2056 #define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
2057 	((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
2058 	       (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
2059 	       ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
2060 
2061 /**
2062  * ice_add_rss_cfg_sync - add an RSS configuration
2063  * @hw: pointer to the hardware structure
2064  * @vsi_handle: software VSI handle
2065  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2066  * @addl_hdrs: protocol header fields
2067  * @segs_cnt: packet segment count
2068  *
2069  * Assumption: lock has already been acquired for RSS list
2070  */
2071 static int
2072 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2073 		     u32 addl_hdrs, u8 segs_cnt)
2074 {
2075 	const enum ice_block blk = ICE_BLK_RSS;
2076 	struct ice_flow_prof *prof = NULL;
2077 	struct ice_flow_seg_info *segs;
2078 	int status;
2079 
2080 	if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
2081 		return -EINVAL;
2082 
2083 	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2084 	if (!segs)
2085 		return -ENOMEM;
2086 
2087 	/* Construct the packet segment info from the hashed fields */
2088 	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2089 					   addl_hdrs);
2090 	if (status)
2091 		goto exit;
2092 
2093 	/* Search for a flow profile that has matching headers, hash fields
2094 	 * and has the input VSI associated to it. If found, no further
2095 	 * operations required and exit.
2096 	 */
2097 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2098 					vsi_handle,
2099 					ICE_FLOW_FIND_PROF_CHK_FLDS |
2100 					ICE_FLOW_FIND_PROF_CHK_VSI);
2101 	if (prof)
2102 		goto exit;
2103 
2104 	/* Check if a flow profile exists with the same protocol headers and
2105 	 * associated with the input VSI. If so disassociate the VSI from
2106 	 * this profile. The VSI will be added to a new profile created with
2107 	 * the protocol header and new hash field configuration.
2108 	 */
2109 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2110 					vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
2111 	if (prof) {
2112 		status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2113 		if (!status)
2114 			ice_rem_rss_list(hw, vsi_handle, prof);
2115 		else
2116 			goto exit;
2117 
2118 		/* Remove profile if it has no VSIs associated */
2119 		if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2120 			status = ice_flow_rem_prof(hw, blk, prof->id);
2121 			if (status)
2122 				goto exit;
2123 		}
2124 	}
2125 
2126 	/* Search for a profile that has same match fields only. If this
2127 	 * exists then associate the VSI to this profile.
2128 	 */
2129 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2130 					vsi_handle,
2131 					ICE_FLOW_FIND_PROF_CHK_FLDS);
2132 	if (prof) {
2133 		status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2134 		if (!status)
2135 			status = ice_add_rss_list(hw, vsi_handle, prof);
2136 		goto exit;
2137 	}
2138 
2139 	/* Create a new flow profile with generated profile and packet
2140 	 * segment information.
2141 	 */
2142 	status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2143 				   ICE_FLOW_GEN_PROFID(hashed_flds,
2144 						       segs[segs_cnt - 1].hdrs,
2145 						       segs_cnt),
2146 				   segs, segs_cnt, &prof);
2147 	if (status)
2148 		goto exit;
2149 
2150 	status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2151 	/* If association to a new flow profile failed then this profile can
2152 	 * be removed.
2153 	 */
2154 	if (status) {
2155 		ice_flow_rem_prof(hw, blk, prof->id);
2156 		goto exit;
2157 	}
2158 
2159 	status = ice_add_rss_list(hw, vsi_handle, prof);
2160 
2161 exit:
2162 	kfree(segs);
2163 	return status;
2164 }
2165 
2166 /**
2167  * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2168  * @hw: pointer to the hardware structure
2169  * @vsi_handle: software VSI handle
2170  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2171  * @addl_hdrs: protocol header fields
2172  *
2173  * This function will generate a flow profile based on fields associated with
2174  * the input fields to hash on, the flow type and use the VSI number to add
2175  * a flow entry to the profile.
2176  */
2177 int
2178 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2179 		u32 addl_hdrs)
2180 {
2181 	int status;
2182 
2183 	if (hashed_flds == ICE_HASH_INVALID ||
2184 	    !ice_is_vsi_valid(hw, vsi_handle))
2185 		return -EINVAL;
2186 
2187 	mutex_lock(&hw->rss_locks);
2188 	status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2189 				      ICE_RSS_OUTER_HEADERS);
2190 	if (!status)
2191 		status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2192 					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2193 	mutex_unlock(&hw->rss_locks);
2194 
2195 	return status;
2196 }
2197 
2198 /**
2199  * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2200  * @hw: pointer to the hardware structure
2201  * @vsi_handle: software VSI handle
2202  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2203  * @addl_hdrs: Protocol header fields within a packet segment
2204  * @segs_cnt: packet segment count
2205  *
2206  * Assumption: lock has already been acquired for RSS list
2207  */
2208 static int
2209 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2210 		     u32 addl_hdrs, u8 segs_cnt)
2211 {
2212 	const enum ice_block blk = ICE_BLK_RSS;
2213 	struct ice_flow_seg_info *segs;
2214 	struct ice_flow_prof *prof;
2215 	int status;
2216 
2217 	segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2218 	if (!segs)
2219 		return -ENOMEM;
2220 
2221 	/* Construct the packet segment info from the hashed fields */
2222 	status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2223 					   addl_hdrs);
2224 	if (status)
2225 		goto out;
2226 
2227 	prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2228 					vsi_handle,
2229 					ICE_FLOW_FIND_PROF_CHK_FLDS);
2230 	if (!prof) {
2231 		status = -ENOENT;
2232 		goto out;
2233 	}
2234 
2235 	status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2236 	if (status)
2237 		goto out;
2238 
2239 	/* Remove RSS configuration from VSI context before deleting
2240 	 * the flow profile.
2241 	 */
2242 	ice_rem_rss_list(hw, vsi_handle, prof);
2243 
2244 	if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2245 		status = ice_flow_rem_prof(hw, blk, prof->id);
2246 
2247 out:
2248 	kfree(segs);
2249 	return status;
2250 }
2251 
2252 /**
2253  * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2254  * @hw: pointer to the hardware structure
2255  * @vsi_handle: software VSI handle
2256  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2257  * @addl_hdrs: Protocol header fields within a packet segment
2258  *
2259  * This function will lookup the flow profile based on the input
2260  * hash field bitmap, iterate through the profile entry list of
2261  * that profile and find entry associated with input VSI to be
2262  * removed. Calls are made to underlying flow s which will APIs
2263  * turn build or update buffers for RSS XLT1 section.
2264  */
2265 int __maybe_unused
2266 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2267 		u32 addl_hdrs)
2268 {
2269 	int status;
2270 
2271 	if (hashed_flds == ICE_HASH_INVALID ||
2272 	    !ice_is_vsi_valid(hw, vsi_handle))
2273 		return -EINVAL;
2274 
2275 	mutex_lock(&hw->rss_locks);
2276 	status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2277 				      ICE_RSS_OUTER_HEADERS);
2278 	if (!status)
2279 		status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2280 					      addl_hdrs, ICE_RSS_INNER_HEADERS);
2281 	mutex_unlock(&hw->rss_locks);
2282 
2283 	return status;
2284 }
2285 
2286 /* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2287  * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2288  * convert its values to their appropriate flow L3, L4 values.
2289  */
2290 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2291 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2292 	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2293 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2294 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2295 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2296 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2297 	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2298 	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2299 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2300 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2301 	(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2302 	 ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2303 
2304 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2305 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2306 	 BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2307 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2308 	(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2309 	 BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2310 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2311 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2312 	(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2313 	 BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2314 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2315 	(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2316 	 ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2317 
2318 /**
2319  * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2320  * @hw: pointer to the hardware structure
2321  * @vsi_handle: software VSI handle
2322  * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2323  *
2324  * This function will take the hash bitmap provided by the AVF driver via a
2325  * message, convert it to ICE-compatible values, and configure RSS flow
2326  * profiles.
2327  */
2328 int ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
2329 {
2330 	int status = 0;
2331 	u64 hash_flds;
2332 
2333 	if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2334 	    !ice_is_vsi_valid(hw, vsi_handle))
2335 		return -EINVAL;
2336 
2337 	/* Make sure no unsupported bits are specified */
2338 	if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2339 			 ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2340 		return -EIO;
2341 
2342 	hash_flds = avf_hash;
2343 
2344 	/* Always create an L3 RSS configuration for any L4 RSS configuration */
2345 	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2346 		hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2347 
2348 	if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2349 		hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2350 
2351 	/* Create the corresponding RSS configuration for each valid hash bit */
2352 	while (hash_flds) {
2353 		u64 rss_hash = ICE_HASH_INVALID;
2354 
2355 		if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2356 			if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2357 				rss_hash = ICE_FLOW_HASH_IPV4;
2358 				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2359 			} else if (hash_flds &
2360 				   ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2361 				rss_hash = ICE_FLOW_HASH_IPV4 |
2362 					ICE_FLOW_HASH_TCP_PORT;
2363 				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2364 			} else if (hash_flds &
2365 				   ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2366 				rss_hash = ICE_FLOW_HASH_IPV4 |
2367 					ICE_FLOW_HASH_UDP_PORT;
2368 				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2369 			} else if (hash_flds &
2370 				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2371 				rss_hash = ICE_FLOW_HASH_IPV4 |
2372 					ICE_FLOW_HASH_SCTP_PORT;
2373 				hash_flds &=
2374 					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2375 			}
2376 		} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2377 			if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2378 				rss_hash = ICE_FLOW_HASH_IPV6;
2379 				hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2380 			} else if (hash_flds &
2381 				   ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2382 				rss_hash = ICE_FLOW_HASH_IPV6 |
2383 					ICE_FLOW_HASH_TCP_PORT;
2384 				hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2385 			} else if (hash_flds &
2386 				   ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2387 				rss_hash = ICE_FLOW_HASH_IPV6 |
2388 					ICE_FLOW_HASH_UDP_PORT;
2389 				hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2390 			} else if (hash_flds &
2391 				   BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2392 				rss_hash = ICE_FLOW_HASH_IPV6 |
2393 					ICE_FLOW_HASH_SCTP_PORT;
2394 				hash_flds &=
2395 					~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2396 			}
2397 		}
2398 
2399 		if (rss_hash == ICE_HASH_INVALID)
2400 			return -EIO;
2401 
2402 		status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2403 					 ICE_FLOW_SEG_HDR_NONE);
2404 		if (status)
2405 			break;
2406 	}
2407 
2408 	return status;
2409 }
2410 
2411 /**
2412  * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2413  * @hw: pointer to the hardware structure
2414  * @vsi_handle: software VSI handle
2415  */
2416 int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2417 {
2418 	struct ice_rss_cfg *r;
2419 	int status = 0;
2420 
2421 	if (!ice_is_vsi_valid(hw, vsi_handle))
2422 		return -EINVAL;
2423 
2424 	mutex_lock(&hw->rss_locks);
2425 	list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2426 		if (test_bit(vsi_handle, r->vsis)) {
2427 			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2428 						      r->hashed_flds,
2429 						      r->packet_hdr,
2430 						      ICE_RSS_OUTER_HEADERS);
2431 			if (status)
2432 				break;
2433 			status = ice_add_rss_cfg_sync(hw, vsi_handle,
2434 						      r->hashed_flds,
2435 						      r->packet_hdr,
2436 						      ICE_RSS_INNER_HEADERS);
2437 			if (status)
2438 				break;
2439 		}
2440 	}
2441 	mutex_unlock(&hw->rss_locks);
2442 
2443 	return status;
2444 }
2445 
2446 /**
2447  * ice_get_rss_cfg - returns hashed fields for the given header types
2448  * @hw: pointer to the hardware structure
2449  * @vsi_handle: software VSI handle
2450  * @hdrs: protocol header type
2451  *
2452  * This function will return the match fields of the first instance of flow
2453  * profile having the given header types and containing input VSI
2454  */
2455 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2456 {
2457 	u64 rss_hash = ICE_HASH_INVALID;
2458 	struct ice_rss_cfg *r;
2459 
2460 	/* verify if the protocol header is non zero and VSI is valid */
2461 	if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2462 		return ICE_HASH_INVALID;
2463 
2464 	mutex_lock(&hw->rss_locks);
2465 	list_for_each_entry(r, &hw->rss_list_head, l_entry)
2466 		if (test_bit(vsi_handle, r->vsis) &&
2467 		    r->packet_hdr == hdrs) {
2468 			rss_hash = r->hashed_flds;
2469 			break;
2470 		}
2471 	mutex_unlock(&hw->rss_locks);
2472 
2473 	return rss_hash;
2474 }
2475