1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 #include "ice.h" 8 9 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 10 /* SWITCH */ 11 { 12 ICE_SID_XLT0_SW, 13 ICE_SID_XLT_KEY_BUILDER_SW, 14 ICE_SID_XLT1_SW, 15 ICE_SID_XLT2_SW, 16 ICE_SID_PROFID_TCAM_SW, 17 ICE_SID_PROFID_REDIR_SW, 18 ICE_SID_FLD_VEC_SW, 19 ICE_SID_CDID_KEY_BUILDER_SW, 20 ICE_SID_CDID_REDIR_SW 21 }, 22 23 /* ACL */ 24 { 25 ICE_SID_XLT0_ACL, 26 ICE_SID_XLT_KEY_BUILDER_ACL, 27 ICE_SID_XLT1_ACL, 28 ICE_SID_XLT2_ACL, 29 ICE_SID_PROFID_TCAM_ACL, 30 ICE_SID_PROFID_REDIR_ACL, 31 ICE_SID_FLD_VEC_ACL, 32 ICE_SID_CDID_KEY_BUILDER_ACL, 33 ICE_SID_CDID_REDIR_ACL 34 }, 35 36 /* FD */ 37 { 38 ICE_SID_XLT0_FD, 39 ICE_SID_XLT_KEY_BUILDER_FD, 40 ICE_SID_XLT1_FD, 41 ICE_SID_XLT2_FD, 42 ICE_SID_PROFID_TCAM_FD, 43 ICE_SID_PROFID_REDIR_FD, 44 ICE_SID_FLD_VEC_FD, 45 ICE_SID_CDID_KEY_BUILDER_FD, 46 ICE_SID_CDID_REDIR_FD 47 }, 48 49 /* RSS */ 50 { 51 ICE_SID_XLT0_RSS, 52 ICE_SID_XLT_KEY_BUILDER_RSS, 53 ICE_SID_XLT1_RSS, 54 ICE_SID_XLT2_RSS, 55 ICE_SID_PROFID_TCAM_RSS, 56 ICE_SID_PROFID_REDIR_RSS, 57 ICE_SID_FLD_VEC_RSS, 58 ICE_SID_CDID_KEY_BUILDER_RSS, 59 ICE_SID_CDID_REDIR_RSS 60 }, 61 62 /* PE */ 63 { 64 ICE_SID_XLT0_PE, 65 ICE_SID_XLT_KEY_BUILDER_PE, 66 ICE_SID_XLT1_PE, 67 ICE_SID_XLT2_PE, 68 ICE_SID_PROFID_TCAM_PE, 69 ICE_SID_PROFID_REDIR_PE, 70 ICE_SID_FLD_VEC_PE, 71 ICE_SID_CDID_KEY_BUILDER_PE, 72 ICE_SID_CDID_REDIR_PE 73 } 74 }; 75 76 /** 77 * ice_sect_id - returns section ID 78 * @blk: block type 79 * @sect: section type 80 * 81 * This helper function returns the proper section ID given a block type and a 82 * section type. 83 */ 84 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 85 { 86 return ice_sect_lkup[blk][sect]; 87 } 88 89 /** 90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not 91 * @hw: pointer to the HW structure 92 * @ptype: the hardware PTYPE 93 */ 94 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) 95 { 96 return ptype < ICE_FLOW_PTYPE_MAX && 97 test_bit(ptype, hw->hw_ptype); 98 } 99 100 /* Key creation */ 101 102 #define ICE_DC_KEY 0x1 /* don't care */ 103 #define ICE_DC_KEYINV 0x1 104 #define ICE_NM_KEY 0x0 /* never match */ 105 #define ICE_NM_KEYINV 0x0 106 #define ICE_0_KEY 0x1 /* match 0 */ 107 #define ICE_0_KEYINV 0x0 108 #define ICE_1_KEY 0x0 /* match 1 */ 109 #define ICE_1_KEYINV 0x1 110 111 /** 112 * ice_gen_key_word - generate 16-bits of a key/mask word 113 * @val: the value 114 * @valid: valid bits mask (change only the valid bits) 115 * @dont_care: don't care mask 116 * @nvr_mtch: never match mask 117 * @key: pointer to an array of where the resulting key portion 118 * @key_inv: pointer to an array of where the resulting key invert portion 119 * 120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 122 * of key and 8 bits of key invert. 123 * 124 * '0' = b01, always match a 0 bit 125 * '1' = b10, always match a 1 bit 126 * '?' = b11, don't care bit (always matches) 127 * '~' = b00, never match bit 128 * 129 * Input: 130 * val: b0 1 0 1 0 1 131 * dont_care: b0 0 1 1 0 0 132 * never_mtch: b0 0 0 0 1 1 133 * ------------------------------ 134 * Result: key: b01 10 11 11 00 00 135 */ 136 static int 137 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 138 u8 *key_inv) 139 { 140 u8 in_key = *key, in_key_inv = *key_inv; 141 u8 i; 142 143 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 144 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 145 return -EIO; 146 147 *key = 0; 148 *key_inv = 0; 149 150 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 151 for (i = 0; i < 8; i++) { 152 *key >>= 1; 153 *key_inv >>= 1; 154 155 if (!(valid & 0x1)) { /* change only valid bits */ 156 *key |= (in_key & 0x1) << 7; 157 *key_inv |= (in_key_inv & 0x1) << 7; 158 } else if (dont_care & 0x1) { /* don't care bit */ 159 *key |= ICE_DC_KEY << 7; 160 *key_inv |= ICE_DC_KEYINV << 7; 161 } else if (nvr_mtch & 0x1) { /* never match bit */ 162 *key |= ICE_NM_KEY << 7; 163 *key_inv |= ICE_NM_KEYINV << 7; 164 } else if (val & 0x01) { /* exact 1 match */ 165 *key |= ICE_1_KEY << 7; 166 *key_inv |= ICE_1_KEYINV << 7; 167 } else { /* exact 0 match */ 168 *key |= ICE_0_KEY << 7; 169 *key_inv |= ICE_0_KEYINV << 7; 170 } 171 172 dont_care >>= 1; 173 nvr_mtch >>= 1; 174 valid >>= 1; 175 val >>= 1; 176 in_key >>= 1; 177 in_key_inv >>= 1; 178 } 179 180 return 0; 181 } 182 183 /** 184 * ice_bits_max_set - determine if the number of bits set is within a maximum 185 * @mask: pointer to the byte array which is the mask 186 * @size: the number of bytes in the mask 187 * @max: the max number of set bits 188 * 189 * This function determines if there are at most 'max' number of bits set in an 190 * array. Returns true if the number for bits set is <= max or will return false 191 * otherwise. 192 */ 193 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 194 { 195 u16 count = 0; 196 u16 i; 197 198 /* check each byte */ 199 for (i = 0; i < size; i++) { 200 /* if 0, go to next byte */ 201 if (!mask[i]) 202 continue; 203 204 /* We know there is at least one set bit in this byte because of 205 * the above check; if we already have found 'max' number of 206 * bits set, then we can return failure now. 207 */ 208 if (count == max) 209 return false; 210 211 /* count the bits in this byte, checking threshold */ 212 count += hweight8(mask[i]); 213 if (count > max) 214 return false; 215 } 216 217 return true; 218 } 219 220 /** 221 * ice_set_key - generate a variable sized key with multiples of 16-bits 222 * @key: pointer to where the key will be stored 223 * @size: the size of the complete key in bytes (must be even) 224 * @val: array of 8-bit values that makes up the value portion of the key 225 * @upd: array of 8-bit masks that determine what key portion to update 226 * @dc: array of 8-bit masks that make up the don't care mask 227 * @nm: array of 8-bit masks that make up the never match mask 228 * @off: the offset of the first byte in the key to update 229 * @len: the number of bytes in the key update 230 * 231 * This function generates a key from a value, a don't care mask and a never 232 * match mask. 233 * upd, dc, and nm are optional parameters, and can be NULL: 234 * upd == NULL --> upd mask is all 1's (update all bits) 235 * dc == NULL --> dc mask is all 0's (no don't care bits) 236 * nm == NULL --> nm mask is all 0's (no never match bits) 237 */ 238 static int 239 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 240 u16 len) 241 { 242 u16 half_size; 243 u16 i; 244 245 /* size must be a multiple of 2 bytes. */ 246 if (size % 2) 247 return -EIO; 248 249 half_size = size / 2; 250 if (off + len > half_size) 251 return -EIO; 252 253 /* Make sure at most one bit is set in the never match mask. Having more 254 * than one never match mask bit set will cause HW to consume excessive 255 * power otherwise; this is a power management efficiency check. 256 */ 257 #define ICE_NVR_MTCH_BITS_MAX 1 258 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 259 return -EIO; 260 261 for (i = 0; i < len; i++) 262 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 263 dc ? dc[i] : 0, nm ? nm[i] : 0, 264 key + off + i, key + half_size + off + i)) 265 return -EIO; 266 267 return 0; 268 } 269 270 /** 271 * ice_acquire_change_lock 272 * @hw: pointer to the HW structure 273 * @access: access type (read or write) 274 * 275 * This function will request ownership of the change lock. 276 */ 277 int 278 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 279 { 280 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 281 ICE_CHANGE_LOCK_TIMEOUT); 282 } 283 284 /** 285 * ice_release_change_lock 286 * @hw: pointer to the HW structure 287 * 288 * This function will release the change lock using the proper Admin Command. 289 */ 290 void ice_release_change_lock(struct ice_hw *hw) 291 { 292 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 293 } 294 295 /** 296 * ice_get_open_tunnel_port - retrieve an open tunnel port 297 * @hw: pointer to the HW structure 298 * @port: returns open port 299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 300 */ 301 bool 302 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 303 enum ice_tunnel_type type) 304 { 305 bool res = false; 306 u16 i; 307 308 mutex_lock(&hw->tnl_lock); 309 310 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 311 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 312 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 313 *port = hw->tnl.tbl[i].port; 314 res = true; 315 break; 316 } 317 318 mutex_unlock(&hw->tnl_lock); 319 320 return res; 321 } 322 323 /** 324 * ice_upd_dvm_boost_entry 325 * @hw: pointer to the HW structure 326 * @entry: pointer to double vlan boost entry info 327 */ 328 static int 329 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry) 330 { 331 struct ice_boost_tcam_section *sect_rx, *sect_tx; 332 int status = -ENOSPC; 333 struct ice_buf_build *bld; 334 u8 val, dc, nm; 335 336 bld = ice_pkg_buf_alloc(hw); 337 if (!bld) 338 return -ENOMEM; 339 340 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 341 if (ice_pkg_buf_reserve_section(bld, 2)) 342 goto ice_upd_dvm_boost_entry_err; 343 344 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 345 struct_size(sect_rx, tcam, 1)); 346 if (!sect_rx) 347 goto ice_upd_dvm_boost_entry_err; 348 sect_rx->count = cpu_to_le16(1); 349 350 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 351 struct_size(sect_tx, tcam, 1)); 352 if (!sect_tx) 353 goto ice_upd_dvm_boost_entry_err; 354 sect_tx->count = cpu_to_le16(1); 355 356 /* copy original boost entry to update package buffer */ 357 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam)); 358 359 /* re-write the don't care and never match bits accordingly */ 360 if (entry->enable) { 361 /* all bits are don't care */ 362 val = 0x00; 363 dc = 0xFF; 364 nm = 0x00; 365 } else { 366 /* disable, one never match bit, the rest are don't care */ 367 val = 0x00; 368 dc = 0xF7; 369 nm = 0x08; 370 } 371 372 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 373 &val, NULL, &dc, &nm, 0, sizeof(u8)); 374 375 /* exact copy of entry to Tx section entry */ 376 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 377 378 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1); 379 380 ice_upd_dvm_boost_entry_err: 381 ice_pkg_buf_free(hw, bld); 382 383 return status; 384 } 385 386 /** 387 * ice_set_dvm_boost_entries 388 * @hw: pointer to the HW structure 389 * 390 * Enable double vlan by updating the appropriate boost tcam entries. 391 */ 392 int ice_set_dvm_boost_entries(struct ice_hw *hw) 393 { 394 u16 i; 395 396 for (i = 0; i < hw->dvm_upd.count; i++) { 397 int status; 398 399 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]); 400 if (status) 401 return status; 402 } 403 404 return 0; 405 } 406 407 /** 408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 409 * @hw: pointer to the HW structure 410 * @type: type of tunnel 411 * @idx: linear index 412 * 413 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 414 * but really the port table may be sprase, and types are mixed, so convert 415 * the stack index into the device index. 416 */ 417 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 418 u16 idx) 419 { 420 u16 i; 421 422 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 423 if (hw->tnl.tbl[i].valid && 424 hw->tnl.tbl[i].type == type && 425 idx-- == 0) 426 return i; 427 428 WARN_ON_ONCE(1); 429 return 0; 430 } 431 432 /** 433 * ice_create_tunnel 434 * @hw: pointer to the HW structure 435 * @index: device table entry 436 * @type: type of tunnel 437 * @port: port of tunnel to create 438 * 439 * Create a tunnel by updating the parse graph in the parser. We do that by 440 * creating a package buffer with the tunnel info and issuing an update package 441 * command. 442 */ 443 static int 444 ice_create_tunnel(struct ice_hw *hw, u16 index, 445 enum ice_tunnel_type type, u16 port) 446 { 447 struct ice_boost_tcam_section *sect_rx, *sect_tx; 448 struct ice_buf_build *bld; 449 int status = -ENOSPC; 450 451 mutex_lock(&hw->tnl_lock); 452 453 bld = ice_pkg_buf_alloc(hw); 454 if (!bld) { 455 status = -ENOMEM; 456 goto ice_create_tunnel_end; 457 } 458 459 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 460 if (ice_pkg_buf_reserve_section(bld, 2)) 461 goto ice_create_tunnel_err; 462 463 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 464 struct_size(sect_rx, tcam, 1)); 465 if (!sect_rx) 466 goto ice_create_tunnel_err; 467 sect_rx->count = cpu_to_le16(1); 468 469 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 470 struct_size(sect_tx, tcam, 1)); 471 if (!sect_tx) 472 goto ice_create_tunnel_err; 473 sect_tx->count = cpu_to_le16(1); 474 475 /* copy original boost entry to update package buffer */ 476 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 477 sizeof(*sect_rx->tcam)); 478 479 /* over-write the never-match dest port key bits with the encoded port 480 * bits 481 */ 482 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 483 (u8 *)&port, NULL, NULL, NULL, 484 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 485 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 486 487 /* exact copy of entry to Tx section entry */ 488 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 489 490 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 491 if (!status) 492 hw->tnl.tbl[index].port = port; 493 494 ice_create_tunnel_err: 495 ice_pkg_buf_free(hw, bld); 496 497 ice_create_tunnel_end: 498 mutex_unlock(&hw->tnl_lock); 499 500 return status; 501 } 502 503 /** 504 * ice_destroy_tunnel 505 * @hw: pointer to the HW structure 506 * @index: device table entry 507 * @type: type of tunnel 508 * @port: port of tunnel to destroy (ignored if the all parameter is true) 509 * 510 * Destroys a tunnel or all tunnels by creating an update package buffer 511 * targeting the specific updates requested and then performing an update 512 * package. 513 */ 514 static int 515 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 516 u16 port) 517 { 518 struct ice_boost_tcam_section *sect_rx, *sect_tx; 519 struct ice_buf_build *bld; 520 int status = -ENOSPC; 521 522 mutex_lock(&hw->tnl_lock); 523 524 if (WARN_ON(!hw->tnl.tbl[index].valid || 525 hw->tnl.tbl[index].type != type || 526 hw->tnl.tbl[index].port != port)) { 527 status = -EIO; 528 goto ice_destroy_tunnel_end; 529 } 530 531 bld = ice_pkg_buf_alloc(hw); 532 if (!bld) { 533 status = -ENOMEM; 534 goto ice_destroy_tunnel_end; 535 } 536 537 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 538 if (ice_pkg_buf_reserve_section(bld, 2)) 539 goto ice_destroy_tunnel_err; 540 541 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 542 struct_size(sect_rx, tcam, 1)); 543 if (!sect_rx) 544 goto ice_destroy_tunnel_err; 545 sect_rx->count = cpu_to_le16(1); 546 547 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 548 struct_size(sect_tx, tcam, 1)); 549 if (!sect_tx) 550 goto ice_destroy_tunnel_err; 551 sect_tx->count = cpu_to_le16(1); 552 553 /* copy original boost entry to update package buffer, one copy to Rx 554 * section, another copy to the Tx section 555 */ 556 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 557 sizeof(*sect_rx->tcam)); 558 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 559 sizeof(*sect_tx->tcam)); 560 561 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 562 if (!status) 563 hw->tnl.tbl[index].port = 0; 564 565 ice_destroy_tunnel_err: 566 ice_pkg_buf_free(hw, bld); 567 568 ice_destroy_tunnel_end: 569 mutex_unlock(&hw->tnl_lock); 570 571 return status; 572 } 573 574 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 575 unsigned int idx, struct udp_tunnel_info *ti) 576 { 577 struct ice_pf *pf = ice_netdev_to_pf(netdev); 578 enum ice_tunnel_type tnl_type; 579 int status; 580 u16 index; 581 582 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 583 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 584 585 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 586 if (status) { 587 netdev_err(netdev, "Error adding UDP tunnel - %d\n", 588 status); 589 return -EIO; 590 } 591 592 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 593 return 0; 594 } 595 596 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 597 unsigned int idx, struct udp_tunnel_info *ti) 598 { 599 struct ice_pf *pf = ice_netdev_to_pf(netdev); 600 enum ice_tunnel_type tnl_type; 601 int status; 602 603 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 604 605 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 606 ntohs(ti->port)); 607 if (status) { 608 netdev_err(netdev, "Error removing UDP tunnel - %d\n", 609 status); 610 return -EIO; 611 } 612 613 return 0; 614 } 615 616 /** 617 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 618 * @hw: pointer to the hardware structure 619 * @blk: hardware block 620 * @prof: profile ID 621 * @fv_idx: field vector word index 622 * @prot: variable to receive the protocol ID 623 * @off: variable to receive the protocol offset 624 */ 625 int 626 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 627 u8 *prot, u16 *off) 628 { 629 struct ice_fv_word *fv_ext; 630 631 if (prof >= hw->blk[blk].es.count) 632 return -EINVAL; 633 634 if (fv_idx >= hw->blk[blk].es.fvw) 635 return -EINVAL; 636 637 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 638 639 *prot = fv_ext[fv_idx].prot_id; 640 *off = fv_ext[fv_idx].off; 641 642 return 0; 643 } 644 645 /* PTG Management */ 646 647 /** 648 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 649 * @hw: pointer to the hardware structure 650 * @blk: HW block 651 * @ptype: the ptype to search for 652 * @ptg: pointer to variable that receives the PTG 653 * 654 * This function will search the PTGs for a particular ptype, returning the 655 * PTG ID that contains it through the PTG parameter, with the value of 656 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 657 */ 658 static int 659 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 660 { 661 if (ptype >= ICE_XLT1_CNT || !ptg) 662 return -EINVAL; 663 664 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 665 return 0; 666 } 667 668 /** 669 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 670 * @hw: pointer to the hardware structure 671 * @blk: HW block 672 * @ptg: the PTG to allocate 673 * 674 * This function allocates a given packet type group ID specified by the PTG 675 * parameter. 676 */ 677 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 678 { 679 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 680 } 681 682 /** 683 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 684 * @hw: pointer to the hardware structure 685 * @blk: HW block 686 * @ptype: the ptype to remove 687 * @ptg: the PTG to remove the ptype from 688 * 689 * This function will remove the ptype from the specific PTG, and move it to 690 * the default PTG (ICE_DEFAULT_PTG). 691 */ 692 static int 693 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 694 { 695 struct ice_ptg_ptype **ch; 696 struct ice_ptg_ptype *p; 697 698 if (ptype > ICE_XLT1_CNT - 1) 699 return -EINVAL; 700 701 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 702 return -ENOENT; 703 704 /* Should not happen if .in_use is set, bad config */ 705 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 706 return -EIO; 707 708 /* find the ptype within this PTG, and bypass the link over it */ 709 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 710 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 711 while (p) { 712 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 713 *ch = p->next_ptype; 714 break; 715 } 716 717 ch = &p->next_ptype; 718 p = p->next_ptype; 719 } 720 721 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 722 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 723 724 return 0; 725 } 726 727 /** 728 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 729 * @hw: pointer to the hardware structure 730 * @blk: HW block 731 * @ptype: the ptype to add or move 732 * @ptg: the PTG to add or move the ptype to 733 * 734 * This function will either add or move a ptype to a particular PTG depending 735 * on if the ptype is already part of another group. Note that using a 736 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 737 * default PTG. 738 */ 739 static int 740 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 741 { 742 u8 original_ptg; 743 int status; 744 745 if (ptype > ICE_XLT1_CNT - 1) 746 return -EINVAL; 747 748 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 749 return -ENOENT; 750 751 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 752 if (status) 753 return status; 754 755 /* Is ptype already in the correct PTG? */ 756 if (original_ptg == ptg) 757 return 0; 758 759 /* Remove from original PTG and move back to the default PTG */ 760 if (original_ptg != ICE_DEFAULT_PTG) 761 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 762 763 /* Moving to default PTG? Then we're done with this request */ 764 if (ptg == ICE_DEFAULT_PTG) 765 return 0; 766 767 /* Add ptype to PTG at beginning of list */ 768 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 769 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 770 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 771 &hw->blk[blk].xlt1.ptypes[ptype]; 772 773 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 774 hw->blk[blk].xlt1.t[ptype] = ptg; 775 776 return 0; 777 } 778 779 /* Block / table size info */ 780 struct ice_blk_size_details { 781 u16 xlt1; /* # XLT1 entries */ 782 u16 xlt2; /* # XLT2 entries */ 783 u16 prof_tcam; /* # profile ID TCAM entries */ 784 u16 prof_id; /* # profile IDs */ 785 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 786 u16 prof_redir; /* # profile redirection entries */ 787 u16 es; /* # extraction sequence entries */ 788 u16 fvw; /* # field vector words */ 789 u8 overwrite; /* overwrite existing entries allowed */ 790 u8 reverse; /* reverse FV order */ 791 }; 792 793 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 794 /** 795 * Table Definitions 796 * XLT1 - Number of entries in XLT1 table 797 * XLT2 - Number of entries in XLT2 table 798 * TCAM - Number of entries Profile ID TCAM table 799 * CDID - Control Domain ID of the hardware block 800 * PRED - Number of entries in the Profile Redirection Table 801 * FV - Number of entries in the Field Vector 802 * FVW - Width (in WORDs) of the Field Vector 803 * OVR - Overwrite existing table entries 804 * REV - Reverse FV 805 */ 806 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 807 /* Overwrite , Reverse FV */ 808 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 809 false, false }, 810 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 811 false, false }, 812 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 813 false, true }, 814 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 815 true, true }, 816 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 817 false, false }, 818 }; 819 820 enum ice_sid_all { 821 ICE_SID_XLT1_OFF = 0, 822 ICE_SID_XLT2_OFF, 823 ICE_SID_PR_OFF, 824 ICE_SID_PR_REDIR_OFF, 825 ICE_SID_ES_OFF, 826 ICE_SID_OFF_COUNT, 827 }; 828 829 /* Characteristic handling */ 830 831 /** 832 * ice_match_prop_lst - determine if properties of two lists match 833 * @list1: first properties list 834 * @list2: second properties list 835 * 836 * Count, cookies and the order must match in order to be considered equivalent. 837 */ 838 static bool 839 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 840 { 841 struct ice_vsig_prof *tmp1; 842 struct ice_vsig_prof *tmp2; 843 u16 chk_count = 0; 844 u16 count = 0; 845 846 /* compare counts */ 847 list_for_each_entry(tmp1, list1, list) 848 count++; 849 list_for_each_entry(tmp2, list2, list) 850 chk_count++; 851 if (!count || count != chk_count) 852 return false; 853 854 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 855 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 856 857 /* profile cookies must compare, and in the exact same order to take 858 * into account priority 859 */ 860 while (count--) { 861 if (tmp2->profile_cookie != tmp1->profile_cookie) 862 return false; 863 864 tmp1 = list_next_entry(tmp1, list); 865 tmp2 = list_next_entry(tmp2, list); 866 } 867 868 return true; 869 } 870 871 /* VSIG Management */ 872 873 /** 874 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 875 * @hw: pointer to the hardware structure 876 * @blk: HW block 877 * @vsi: VSI of interest 878 * @vsig: pointer to receive the VSI group 879 * 880 * This function will lookup the VSI entry in the XLT2 list and return 881 * the VSI group its associated with. 882 */ 883 static int 884 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 885 { 886 if (!vsig || vsi >= ICE_MAX_VSI) 887 return -EINVAL; 888 889 /* As long as there's a default or valid VSIG associated with the input 890 * VSI, the functions returns a success. Any handling of VSIG will be 891 * done by the following add, update or remove functions. 892 */ 893 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 894 895 return 0; 896 } 897 898 /** 899 * ice_vsig_alloc_val - allocate a new VSIG by value 900 * @hw: pointer to the hardware structure 901 * @blk: HW block 902 * @vsig: the VSIG to allocate 903 * 904 * This function will allocate a given VSIG specified by the VSIG parameter. 905 */ 906 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 907 { 908 u16 idx = vsig & ICE_VSIG_IDX_M; 909 910 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 911 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 912 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 913 } 914 915 return ICE_VSIG_VALUE(idx, hw->pf_id); 916 } 917 918 /** 919 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 920 * @hw: pointer to the hardware structure 921 * @blk: HW block 922 * 923 * This function will iterate through the VSIG list and mark the first 924 * unused entry for the new VSIG entry as used and return that value. 925 */ 926 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 927 { 928 u16 i; 929 930 for (i = 1; i < ICE_MAX_VSIGS; i++) 931 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 932 return ice_vsig_alloc_val(hw, blk, i); 933 934 return ICE_DEFAULT_VSIG; 935 } 936 937 /** 938 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 939 * @hw: pointer to the hardware structure 940 * @blk: HW block 941 * @chs: characteristic list 942 * @vsig: returns the VSIG with the matching profiles, if found 943 * 944 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 945 * a group have the same characteristic set. To check if there exists a VSIG 946 * which has the same characteristics as the input characteristics; this 947 * function will iterate through the XLT2 list and return the VSIG that has a 948 * matching configuration. In order to make sure that priorities are accounted 949 * for, the list must match exactly, including the order in which the 950 * characteristics are listed. 951 */ 952 static int 953 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 954 struct list_head *chs, u16 *vsig) 955 { 956 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 957 u16 i; 958 959 for (i = 0; i < xlt2->count; i++) 960 if (xlt2->vsig_tbl[i].in_use && 961 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 962 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 963 return 0; 964 } 965 966 return -ENOENT; 967 } 968 969 /** 970 * ice_vsig_free - free VSI group 971 * @hw: pointer to the hardware structure 972 * @blk: HW block 973 * @vsig: VSIG to remove 974 * 975 * The function will remove all VSIs associated with the input VSIG and move 976 * them to the DEFAULT_VSIG and mark the VSIG available. 977 */ 978 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 979 { 980 struct ice_vsig_prof *dtmp, *del; 981 struct ice_vsig_vsi *vsi_cur; 982 u16 idx; 983 984 idx = vsig & ICE_VSIG_IDX_M; 985 if (idx >= ICE_MAX_VSIGS) 986 return -EINVAL; 987 988 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 989 return -ENOENT; 990 991 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 992 993 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 994 /* If the VSIG has at least 1 VSI then iterate through the 995 * list and remove the VSIs before deleting the group. 996 */ 997 if (vsi_cur) { 998 /* remove all vsis associated with this VSIG XLT2 entry */ 999 do { 1000 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 1001 1002 vsi_cur->vsig = ICE_DEFAULT_VSIG; 1003 vsi_cur->changed = 1; 1004 vsi_cur->next_vsi = NULL; 1005 vsi_cur = tmp; 1006 } while (vsi_cur); 1007 1008 /* NULL terminate head of VSI list */ 1009 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 1010 } 1011 1012 /* free characteristic list */ 1013 list_for_each_entry_safe(del, dtmp, 1014 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 1015 list) { 1016 list_del(&del->list); 1017 devm_kfree(ice_hw_to_dev(hw), del); 1018 } 1019 1020 /* if VSIG characteristic list was cleared for reset 1021 * re-initialize the list head 1022 */ 1023 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 1024 1025 return 0; 1026 } 1027 1028 /** 1029 * ice_vsig_remove_vsi - remove VSI from VSIG 1030 * @hw: pointer to the hardware structure 1031 * @blk: HW block 1032 * @vsi: VSI to remove 1033 * @vsig: VSI group to remove from 1034 * 1035 * The function will remove the input VSI from its VSI group and move it 1036 * to the DEFAULT_VSIG. 1037 */ 1038 static int 1039 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 1040 { 1041 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 1042 u16 idx; 1043 1044 idx = vsig & ICE_VSIG_IDX_M; 1045 1046 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 1047 return -EINVAL; 1048 1049 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 1050 return -ENOENT; 1051 1052 /* entry already in default VSIG, don't have to remove */ 1053 if (idx == ICE_DEFAULT_VSIG) 1054 return 0; 1055 1056 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 1057 if (!(*vsi_head)) 1058 return -EIO; 1059 1060 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 1061 vsi_cur = (*vsi_head); 1062 1063 /* iterate the VSI list, skip over the entry to be removed */ 1064 while (vsi_cur) { 1065 if (vsi_tgt == vsi_cur) { 1066 (*vsi_head) = vsi_cur->next_vsi; 1067 break; 1068 } 1069 vsi_head = &vsi_cur->next_vsi; 1070 vsi_cur = vsi_cur->next_vsi; 1071 } 1072 1073 /* verify if VSI was removed from group list */ 1074 if (!vsi_cur) 1075 return -ENOENT; 1076 1077 vsi_cur->vsig = ICE_DEFAULT_VSIG; 1078 vsi_cur->changed = 1; 1079 vsi_cur->next_vsi = NULL; 1080 1081 return 0; 1082 } 1083 1084 /** 1085 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 1086 * @hw: pointer to the hardware structure 1087 * @blk: HW block 1088 * @vsi: VSI to move 1089 * @vsig: destination VSI group 1090 * 1091 * This function will move or add the input VSI to the target VSIG. 1092 * The function will find the original VSIG the VSI belongs to and 1093 * move the entry to the DEFAULT_VSIG, update the original VSIG and 1094 * then move entry to the new VSIG. 1095 */ 1096 static int 1097 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 1098 { 1099 struct ice_vsig_vsi *tmp; 1100 u16 orig_vsig, idx; 1101 int status; 1102 1103 idx = vsig & ICE_VSIG_IDX_M; 1104 1105 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 1106 return -EINVAL; 1107 1108 /* if VSIG not in use and VSIG is not default type this VSIG 1109 * doesn't exist. 1110 */ 1111 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 1112 vsig != ICE_DEFAULT_VSIG) 1113 return -ENOENT; 1114 1115 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 1116 if (status) 1117 return status; 1118 1119 /* no update required if vsigs match */ 1120 if (orig_vsig == vsig) 1121 return 0; 1122 1123 if (orig_vsig != ICE_DEFAULT_VSIG) { 1124 /* remove entry from orig_vsig and add to default VSIG */ 1125 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 1126 if (status) 1127 return status; 1128 } 1129 1130 if (idx == ICE_DEFAULT_VSIG) 1131 return 0; 1132 1133 /* Create VSI entry and add VSIG and prop_mask values */ 1134 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 1135 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 1136 1137 /* Add new entry to the head of the VSIG list */ 1138 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 1139 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 1140 &hw->blk[blk].xlt2.vsis[vsi]; 1141 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 1142 hw->blk[blk].xlt2.t[vsi] = vsig; 1143 1144 return 0; 1145 } 1146 1147 /** 1148 * ice_prof_has_mask_idx - determine if profile index masking is identical 1149 * @hw: pointer to the hardware structure 1150 * @blk: HW block 1151 * @prof: profile to check 1152 * @idx: profile index to check 1153 * @mask: mask to match 1154 */ 1155 static bool 1156 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 1157 u16 mask) 1158 { 1159 bool expect_no_mask = false; 1160 bool found = false; 1161 bool match = false; 1162 u16 i; 1163 1164 /* If mask is 0x0000 or 0xffff, then there is no masking */ 1165 if (mask == 0 || mask == 0xffff) 1166 expect_no_mask = true; 1167 1168 /* Scan the enabled masks on this profile, for the specified idx */ 1169 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 1170 hw->blk[blk].masks.count; i++) 1171 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 1172 if (hw->blk[blk].masks.masks[i].in_use && 1173 hw->blk[blk].masks.masks[i].idx == idx) { 1174 found = true; 1175 if (hw->blk[blk].masks.masks[i].mask == mask) 1176 match = true; 1177 break; 1178 } 1179 1180 if (expect_no_mask) { 1181 if (found) 1182 return false; 1183 } else { 1184 if (!match) 1185 return false; 1186 } 1187 1188 return true; 1189 } 1190 1191 /** 1192 * ice_prof_has_mask - determine if profile masking is identical 1193 * @hw: pointer to the hardware structure 1194 * @blk: HW block 1195 * @prof: profile to check 1196 * @masks: masks to match 1197 */ 1198 static bool 1199 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 1200 { 1201 u16 i; 1202 1203 /* es->mask_ena[prof] will have the mask */ 1204 for (i = 0; i < hw->blk[blk].es.fvw; i++) 1205 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 1206 return false; 1207 1208 return true; 1209 } 1210 1211 /** 1212 * ice_find_prof_id_with_mask - find profile ID for a given field vector 1213 * @hw: pointer to the hardware structure 1214 * @blk: HW block 1215 * @fv: field vector to search for 1216 * @masks: masks for FV 1217 * @symm: symmetric setting for RSS flows 1218 * @prof_id: receives the profile ID 1219 */ 1220 static int 1221 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 1222 struct ice_fv_word *fv, u16 *masks, bool symm, 1223 u8 *prof_id) 1224 { 1225 struct ice_es *es = &hw->blk[blk].es; 1226 u8 i; 1227 1228 /* For FD, we don't want to re-use a existed profile with the same 1229 * field vector and mask. This will cause rule interference. 1230 */ 1231 if (blk == ICE_BLK_FD) 1232 return -ENOENT; 1233 1234 for (i = 0; i < (u8)es->count; i++) { 1235 u16 off = i * es->fvw; 1236 1237 if (blk == ICE_BLK_RSS && es->symm[i] != symm) 1238 continue; 1239 1240 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 1241 continue; 1242 1243 /* check if masks settings are the same for this profile */ 1244 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 1245 continue; 1246 1247 *prof_id = i; 1248 return 0; 1249 } 1250 1251 return -ENOENT; 1252 } 1253 1254 /** 1255 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 1256 * @blk: the block type 1257 * @rsrc_type: pointer to variable to receive the resource type 1258 */ 1259 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 1260 { 1261 switch (blk) { 1262 case ICE_BLK_FD: 1263 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 1264 break; 1265 case ICE_BLK_RSS: 1266 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 1267 break; 1268 default: 1269 return false; 1270 } 1271 return true; 1272 } 1273 1274 /** 1275 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 1276 * @blk: the block type 1277 * @rsrc_type: pointer to variable to receive the resource type 1278 */ 1279 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 1280 { 1281 switch (blk) { 1282 case ICE_BLK_FD: 1283 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 1284 break; 1285 case ICE_BLK_RSS: 1286 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 1287 break; 1288 default: 1289 return false; 1290 } 1291 return true; 1292 } 1293 1294 /** 1295 * ice_alloc_tcam_ent - allocate hardware TCAM entry 1296 * @hw: pointer to the HW struct 1297 * @blk: the block to allocate the TCAM for 1298 * @btm: true to allocate from bottom of table, false to allocate from top 1299 * @tcam_idx: pointer to variable to receive the TCAM entry 1300 * 1301 * This function allocates a new entry in a Profile ID TCAM for a specific 1302 * block. 1303 */ 1304 static int 1305 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 1306 u16 *tcam_idx) 1307 { 1308 u16 res_type; 1309 1310 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 1311 return -EINVAL; 1312 1313 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 1314 } 1315 1316 /** 1317 * ice_free_tcam_ent - free hardware TCAM entry 1318 * @hw: pointer to the HW struct 1319 * @blk: the block from which to free the TCAM entry 1320 * @tcam_idx: the TCAM entry to free 1321 * 1322 * This function frees an entry in a Profile ID TCAM for a specific block. 1323 */ 1324 static int 1325 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 1326 { 1327 u16 res_type; 1328 1329 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 1330 return -EINVAL; 1331 1332 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 1333 } 1334 1335 /** 1336 * ice_alloc_prof_id - allocate profile ID 1337 * @hw: pointer to the HW struct 1338 * @blk: the block to allocate the profile ID for 1339 * @prof_id: pointer to variable to receive the profile ID 1340 * 1341 * This function allocates a new profile ID, which also corresponds to a Field 1342 * Vector (Extraction Sequence) entry. 1343 */ 1344 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 1345 { 1346 u16 res_type; 1347 u16 get_prof; 1348 int status; 1349 1350 if (!ice_prof_id_rsrc_type(blk, &res_type)) 1351 return -EINVAL; 1352 1353 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 1354 if (!status) 1355 *prof_id = (u8)get_prof; 1356 1357 return status; 1358 } 1359 1360 /** 1361 * ice_free_prof_id - free profile ID 1362 * @hw: pointer to the HW struct 1363 * @blk: the block from which to free the profile ID 1364 * @prof_id: the profile ID to free 1365 * 1366 * This function frees a profile ID, which also corresponds to a Field Vector. 1367 */ 1368 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 1369 { 1370 u16 tmp_prof_id = (u16)prof_id; 1371 u16 res_type; 1372 1373 if (!ice_prof_id_rsrc_type(blk, &res_type)) 1374 return -EINVAL; 1375 1376 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 1377 } 1378 1379 /** 1380 * ice_prof_inc_ref - increment reference count for profile 1381 * @hw: pointer to the HW struct 1382 * @blk: the block from which to free the profile ID 1383 * @prof_id: the profile ID for which to increment the reference count 1384 */ 1385 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 1386 { 1387 if (prof_id > hw->blk[blk].es.count) 1388 return -EINVAL; 1389 1390 hw->blk[blk].es.ref_count[prof_id]++; 1391 1392 return 0; 1393 } 1394 1395 /** 1396 * ice_write_prof_mask_reg - write profile mask register 1397 * @hw: pointer to the HW struct 1398 * @blk: hardware block 1399 * @mask_idx: mask index 1400 * @idx: index of the FV which will use the mask 1401 * @mask: the 16-bit mask 1402 */ 1403 static void 1404 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 1405 u16 idx, u16 mask) 1406 { 1407 u32 offset; 1408 u32 val; 1409 1410 switch (blk) { 1411 case ICE_BLK_RSS: 1412 offset = GLQF_HMASK(mask_idx); 1413 val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx); 1414 val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask); 1415 break; 1416 case ICE_BLK_FD: 1417 offset = GLQF_FDMASK(mask_idx); 1418 val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx); 1419 val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask); 1420 break; 1421 default: 1422 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 1423 blk); 1424 return; 1425 } 1426 1427 wr32(hw, offset, val); 1428 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 1429 blk, idx, offset, val); 1430 } 1431 1432 /** 1433 * ice_write_prof_mask_enable_res - write profile mask enable register 1434 * @hw: pointer to the HW struct 1435 * @blk: hardware block 1436 * @prof_id: profile ID 1437 * @enable_mask: enable mask 1438 */ 1439 static void 1440 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 1441 u16 prof_id, u32 enable_mask) 1442 { 1443 u32 offset; 1444 1445 switch (blk) { 1446 case ICE_BLK_RSS: 1447 offset = GLQF_HMASK_SEL(prof_id); 1448 break; 1449 case ICE_BLK_FD: 1450 offset = GLQF_FDMASK_SEL(prof_id); 1451 break; 1452 default: 1453 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 1454 blk); 1455 return; 1456 } 1457 1458 wr32(hw, offset, enable_mask); 1459 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 1460 blk, prof_id, offset, enable_mask); 1461 } 1462 1463 /** 1464 * ice_init_prof_masks - initial prof masks 1465 * @hw: pointer to the HW struct 1466 * @blk: hardware block 1467 */ 1468 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 1469 { 1470 u16 per_pf; 1471 u16 i; 1472 1473 mutex_init(&hw->blk[blk].masks.lock); 1474 1475 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 1476 1477 hw->blk[blk].masks.count = per_pf; 1478 hw->blk[blk].masks.first = hw->logical_pf_id * per_pf; 1479 1480 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 1481 1482 for (i = hw->blk[blk].masks.first; 1483 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 1484 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 1485 } 1486 1487 /** 1488 * ice_init_all_prof_masks - initialize all prof masks 1489 * @hw: pointer to the HW struct 1490 */ 1491 static void ice_init_all_prof_masks(struct ice_hw *hw) 1492 { 1493 ice_init_prof_masks(hw, ICE_BLK_RSS); 1494 ice_init_prof_masks(hw, ICE_BLK_FD); 1495 } 1496 1497 /** 1498 * ice_alloc_prof_mask - allocate profile mask 1499 * @hw: pointer to the HW struct 1500 * @blk: hardware block 1501 * @idx: index of FV which will use the mask 1502 * @mask: the 16-bit mask 1503 * @mask_idx: variable to receive the mask index 1504 */ 1505 static int 1506 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 1507 u16 *mask_idx) 1508 { 1509 bool found_unused = false, found_copy = false; 1510 u16 unused_idx = 0, copy_idx = 0; 1511 int status = -ENOSPC; 1512 u16 i; 1513 1514 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1515 return -EINVAL; 1516 1517 mutex_lock(&hw->blk[blk].masks.lock); 1518 1519 for (i = hw->blk[blk].masks.first; 1520 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 1521 if (hw->blk[blk].masks.masks[i].in_use) { 1522 /* if mask is in use and it exactly duplicates the 1523 * desired mask and index, then in can be reused 1524 */ 1525 if (hw->blk[blk].masks.masks[i].mask == mask && 1526 hw->blk[blk].masks.masks[i].idx == idx) { 1527 found_copy = true; 1528 copy_idx = i; 1529 break; 1530 } 1531 } else { 1532 /* save off unused index, but keep searching in case 1533 * there is an exact match later on 1534 */ 1535 if (!found_unused) { 1536 found_unused = true; 1537 unused_idx = i; 1538 } 1539 } 1540 1541 if (found_copy) 1542 i = copy_idx; 1543 else if (found_unused) 1544 i = unused_idx; 1545 else 1546 goto err_ice_alloc_prof_mask; 1547 1548 /* update mask for a new entry */ 1549 if (found_unused) { 1550 hw->blk[blk].masks.masks[i].in_use = true; 1551 hw->blk[blk].masks.masks[i].mask = mask; 1552 hw->blk[blk].masks.masks[i].idx = idx; 1553 hw->blk[blk].masks.masks[i].ref = 0; 1554 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 1555 } 1556 1557 hw->blk[blk].masks.masks[i].ref++; 1558 *mask_idx = i; 1559 status = 0; 1560 1561 err_ice_alloc_prof_mask: 1562 mutex_unlock(&hw->blk[blk].masks.lock); 1563 1564 return status; 1565 } 1566 1567 /** 1568 * ice_free_prof_mask - free profile mask 1569 * @hw: pointer to the HW struct 1570 * @blk: hardware block 1571 * @mask_idx: index of mask 1572 */ 1573 static int 1574 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 1575 { 1576 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1577 return -EINVAL; 1578 1579 if (!(mask_idx >= hw->blk[blk].masks.first && 1580 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 1581 return -ENOENT; 1582 1583 mutex_lock(&hw->blk[blk].masks.lock); 1584 1585 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 1586 goto exit_ice_free_prof_mask; 1587 1588 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 1589 hw->blk[blk].masks.masks[mask_idx].ref--; 1590 goto exit_ice_free_prof_mask; 1591 } 1592 1593 /* remove mask */ 1594 hw->blk[blk].masks.masks[mask_idx].in_use = false; 1595 hw->blk[blk].masks.masks[mask_idx].mask = 0; 1596 hw->blk[blk].masks.masks[mask_idx].idx = 0; 1597 1598 /* update mask as unused entry */ 1599 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 1600 mask_idx); 1601 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 1602 1603 exit_ice_free_prof_mask: 1604 mutex_unlock(&hw->blk[blk].masks.lock); 1605 1606 return 0; 1607 } 1608 1609 /** 1610 * ice_free_prof_masks - free all profile masks for a profile 1611 * @hw: pointer to the HW struct 1612 * @blk: hardware block 1613 * @prof_id: profile ID 1614 */ 1615 static int 1616 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 1617 { 1618 u32 mask_bm; 1619 u16 i; 1620 1621 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1622 return -EINVAL; 1623 1624 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 1625 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 1626 if (mask_bm & BIT(i)) 1627 ice_free_prof_mask(hw, blk, i); 1628 1629 return 0; 1630 } 1631 1632 /** 1633 * ice_shutdown_prof_masks - releases lock for masking 1634 * @hw: pointer to the HW struct 1635 * @blk: hardware block 1636 * 1637 * This should be called before unloading the driver 1638 */ 1639 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 1640 { 1641 u16 i; 1642 1643 mutex_lock(&hw->blk[blk].masks.lock); 1644 1645 for (i = hw->blk[blk].masks.first; 1646 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 1647 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 1648 1649 hw->blk[blk].masks.masks[i].in_use = false; 1650 hw->blk[blk].masks.masks[i].idx = 0; 1651 hw->blk[blk].masks.masks[i].mask = 0; 1652 } 1653 1654 mutex_unlock(&hw->blk[blk].masks.lock); 1655 mutex_destroy(&hw->blk[blk].masks.lock); 1656 } 1657 1658 /** 1659 * ice_shutdown_all_prof_masks - releases all locks for masking 1660 * @hw: pointer to the HW struct 1661 * 1662 * This should be called before unloading the driver 1663 */ 1664 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 1665 { 1666 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 1667 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 1668 } 1669 1670 /** 1671 * ice_update_prof_masking - set registers according to masking 1672 * @hw: pointer to the HW struct 1673 * @blk: hardware block 1674 * @prof_id: profile ID 1675 * @masks: masks 1676 */ 1677 static int 1678 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 1679 u16 *masks) 1680 { 1681 bool err = false; 1682 u32 ena_mask = 0; 1683 u16 idx; 1684 u16 i; 1685 1686 /* Only support FD and RSS masking, otherwise nothing to be done */ 1687 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1688 return 0; 1689 1690 for (i = 0; i < hw->blk[blk].es.fvw; i++) 1691 if (masks[i] && masks[i] != 0xFFFF) { 1692 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 1693 ena_mask |= BIT(idx); 1694 } else { 1695 /* not enough bitmaps */ 1696 err = true; 1697 break; 1698 } 1699 } 1700 1701 if (err) { 1702 /* free any bitmaps we have allocated */ 1703 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 1704 if (ena_mask & BIT(i)) 1705 ice_free_prof_mask(hw, blk, i); 1706 1707 return -EIO; 1708 } 1709 1710 /* enable the masks for this profile */ 1711 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 1712 1713 /* store enabled masks with profile so that they can be freed later */ 1714 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 1715 1716 return 0; 1717 } 1718 1719 /** 1720 * ice_write_es - write an extraction sequence and symmetric setting to hardware 1721 * @hw: pointer to the HW struct 1722 * @blk: the block in which to write the extraction sequence 1723 * @prof_id: the profile ID to write 1724 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 1725 * @symm: symmetric setting for RSS profiles 1726 */ 1727 static void 1728 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 1729 struct ice_fv_word *fv, bool symm) 1730 { 1731 u16 off; 1732 1733 off = prof_id * hw->blk[blk].es.fvw; 1734 if (!fv) { 1735 memset(&hw->blk[blk].es.t[off], 0, 1736 hw->blk[blk].es.fvw * sizeof(*fv)); 1737 hw->blk[blk].es.written[prof_id] = false; 1738 } else { 1739 memcpy(&hw->blk[blk].es.t[off], fv, 1740 hw->blk[blk].es.fvw * sizeof(*fv)); 1741 } 1742 1743 if (blk == ICE_BLK_RSS) 1744 hw->blk[blk].es.symm[prof_id] = symm; 1745 } 1746 1747 /** 1748 * ice_prof_dec_ref - decrement reference count for profile 1749 * @hw: pointer to the HW struct 1750 * @blk: the block from which to free the profile ID 1751 * @prof_id: the profile ID for which to decrement the reference count 1752 */ 1753 static int 1754 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 1755 { 1756 if (prof_id > hw->blk[blk].es.count) 1757 return -EINVAL; 1758 1759 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 1760 if (!--hw->blk[blk].es.ref_count[prof_id]) { 1761 ice_write_es(hw, blk, prof_id, NULL, false); 1762 ice_free_prof_masks(hw, blk, prof_id); 1763 return ice_free_prof_id(hw, blk, prof_id); 1764 } 1765 } 1766 1767 return 0; 1768 } 1769 1770 /* Block / table section IDs */ 1771 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 1772 /* SWITCH */ 1773 { ICE_SID_XLT1_SW, 1774 ICE_SID_XLT2_SW, 1775 ICE_SID_PROFID_TCAM_SW, 1776 ICE_SID_PROFID_REDIR_SW, 1777 ICE_SID_FLD_VEC_SW 1778 }, 1779 1780 /* ACL */ 1781 { ICE_SID_XLT1_ACL, 1782 ICE_SID_XLT2_ACL, 1783 ICE_SID_PROFID_TCAM_ACL, 1784 ICE_SID_PROFID_REDIR_ACL, 1785 ICE_SID_FLD_VEC_ACL 1786 }, 1787 1788 /* FD */ 1789 { ICE_SID_XLT1_FD, 1790 ICE_SID_XLT2_FD, 1791 ICE_SID_PROFID_TCAM_FD, 1792 ICE_SID_PROFID_REDIR_FD, 1793 ICE_SID_FLD_VEC_FD 1794 }, 1795 1796 /* RSS */ 1797 { ICE_SID_XLT1_RSS, 1798 ICE_SID_XLT2_RSS, 1799 ICE_SID_PROFID_TCAM_RSS, 1800 ICE_SID_PROFID_REDIR_RSS, 1801 ICE_SID_FLD_VEC_RSS 1802 }, 1803 1804 /* PE */ 1805 { ICE_SID_XLT1_PE, 1806 ICE_SID_XLT2_PE, 1807 ICE_SID_PROFID_TCAM_PE, 1808 ICE_SID_PROFID_REDIR_PE, 1809 ICE_SID_FLD_VEC_PE 1810 } 1811 }; 1812 1813 /** 1814 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 1815 * @hw: pointer to the hardware structure 1816 * @blk: the HW block to initialize 1817 */ 1818 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 1819 { 1820 u16 pt; 1821 1822 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 1823 u8 ptg; 1824 1825 ptg = hw->blk[blk].xlt1.t[pt]; 1826 if (ptg != ICE_DEFAULT_PTG) { 1827 ice_ptg_alloc_val(hw, blk, ptg); 1828 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 1829 } 1830 } 1831 } 1832 1833 /** 1834 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 1835 * @hw: pointer to the hardware structure 1836 * @blk: the HW block to initialize 1837 */ 1838 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 1839 { 1840 u16 vsi; 1841 1842 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 1843 u16 vsig; 1844 1845 vsig = hw->blk[blk].xlt2.t[vsi]; 1846 if (vsig) { 1847 ice_vsig_alloc_val(hw, blk, vsig); 1848 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 1849 /* no changes at this time, since this has been 1850 * initialized from the original package 1851 */ 1852 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 1853 } 1854 } 1855 } 1856 1857 /** 1858 * ice_init_sw_db - init software database from HW tables 1859 * @hw: pointer to the hardware structure 1860 */ 1861 static void ice_init_sw_db(struct ice_hw *hw) 1862 { 1863 u16 i; 1864 1865 for (i = 0; i < ICE_BLK_COUNT; i++) { 1866 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 1867 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 1868 } 1869 } 1870 1871 /** 1872 * ice_fill_tbl - Reads content of a single table type into database 1873 * @hw: pointer to the hardware structure 1874 * @block_id: Block ID of the table to copy 1875 * @sid: Section ID of the table to copy 1876 * 1877 * Will attempt to read the entire content of a given table of a single block 1878 * into the driver database. We assume that the buffer will always 1879 * be as large or larger than the data contained in the package. If 1880 * this condition is not met, there is most likely an error in the package 1881 * contents. 1882 */ 1883 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 1884 { 1885 u32 dst_len, sect_len, offset = 0; 1886 struct ice_prof_redir_section *pr; 1887 struct ice_prof_id_section *pid; 1888 struct ice_xlt1_section *xlt1; 1889 struct ice_xlt2_section *xlt2; 1890 struct ice_sw_fv_section *es; 1891 struct ice_pkg_enum state; 1892 u8 *src, *dst; 1893 void *sect; 1894 1895 /* if the HW segment pointer is null then the first iteration of 1896 * ice_pkg_enum_section() will fail. In this case the HW tables will 1897 * not be filled and return success. 1898 */ 1899 if (!hw->seg) { 1900 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 1901 return; 1902 } 1903 1904 memset(&state, 0, sizeof(state)); 1905 1906 sect = ice_pkg_enum_section(hw->seg, &state, sid); 1907 1908 while (sect) { 1909 switch (sid) { 1910 case ICE_SID_XLT1_SW: 1911 case ICE_SID_XLT1_FD: 1912 case ICE_SID_XLT1_RSS: 1913 case ICE_SID_XLT1_ACL: 1914 case ICE_SID_XLT1_PE: 1915 xlt1 = sect; 1916 src = xlt1->value; 1917 sect_len = le16_to_cpu(xlt1->count) * 1918 sizeof(*hw->blk[block_id].xlt1.t); 1919 dst = hw->blk[block_id].xlt1.t; 1920 dst_len = hw->blk[block_id].xlt1.count * 1921 sizeof(*hw->blk[block_id].xlt1.t); 1922 break; 1923 case ICE_SID_XLT2_SW: 1924 case ICE_SID_XLT2_FD: 1925 case ICE_SID_XLT2_RSS: 1926 case ICE_SID_XLT2_ACL: 1927 case ICE_SID_XLT2_PE: 1928 xlt2 = sect; 1929 src = (__force u8 *)xlt2->value; 1930 sect_len = le16_to_cpu(xlt2->count) * 1931 sizeof(*hw->blk[block_id].xlt2.t); 1932 dst = (u8 *)hw->blk[block_id].xlt2.t; 1933 dst_len = hw->blk[block_id].xlt2.count * 1934 sizeof(*hw->blk[block_id].xlt2.t); 1935 break; 1936 case ICE_SID_PROFID_TCAM_SW: 1937 case ICE_SID_PROFID_TCAM_FD: 1938 case ICE_SID_PROFID_TCAM_RSS: 1939 case ICE_SID_PROFID_TCAM_ACL: 1940 case ICE_SID_PROFID_TCAM_PE: 1941 pid = sect; 1942 src = (u8 *)pid->entry; 1943 sect_len = le16_to_cpu(pid->count) * 1944 sizeof(*hw->blk[block_id].prof.t); 1945 dst = (u8 *)hw->blk[block_id].prof.t; 1946 dst_len = hw->blk[block_id].prof.count * 1947 sizeof(*hw->blk[block_id].prof.t); 1948 break; 1949 case ICE_SID_PROFID_REDIR_SW: 1950 case ICE_SID_PROFID_REDIR_FD: 1951 case ICE_SID_PROFID_REDIR_RSS: 1952 case ICE_SID_PROFID_REDIR_ACL: 1953 case ICE_SID_PROFID_REDIR_PE: 1954 pr = sect; 1955 src = pr->redir_value; 1956 sect_len = le16_to_cpu(pr->count) * 1957 sizeof(*hw->blk[block_id].prof_redir.t); 1958 dst = hw->blk[block_id].prof_redir.t; 1959 dst_len = hw->blk[block_id].prof_redir.count * 1960 sizeof(*hw->blk[block_id].prof_redir.t); 1961 break; 1962 case ICE_SID_FLD_VEC_SW: 1963 case ICE_SID_FLD_VEC_FD: 1964 case ICE_SID_FLD_VEC_RSS: 1965 case ICE_SID_FLD_VEC_ACL: 1966 case ICE_SID_FLD_VEC_PE: 1967 es = sect; 1968 src = (u8 *)es->fv; 1969 sect_len = (u32)(le16_to_cpu(es->count) * 1970 hw->blk[block_id].es.fvw) * 1971 sizeof(*hw->blk[block_id].es.t); 1972 dst = (u8 *)hw->blk[block_id].es.t; 1973 dst_len = (u32)(hw->blk[block_id].es.count * 1974 hw->blk[block_id].es.fvw) * 1975 sizeof(*hw->blk[block_id].es.t); 1976 break; 1977 default: 1978 return; 1979 } 1980 1981 /* if the section offset exceeds destination length, terminate 1982 * table fill. 1983 */ 1984 if (offset > dst_len) 1985 return; 1986 1987 /* if the sum of section size and offset exceed destination size 1988 * then we are out of bounds of the HW table size for that PF. 1989 * Changing section length to fill the remaining table space 1990 * of that PF. 1991 */ 1992 if ((offset + sect_len) > dst_len) 1993 sect_len = dst_len - offset; 1994 1995 memcpy(dst + offset, src, sect_len); 1996 offset += sect_len; 1997 sect = ice_pkg_enum_section(NULL, &state, sid); 1998 } 1999 } 2000 2001 /** 2002 * ice_fill_blk_tbls - Read package context for tables 2003 * @hw: pointer to the hardware structure 2004 * 2005 * Reads the current package contents and populates the driver 2006 * database with the data iteratively for all advanced feature 2007 * blocks. Assume that the HW tables have been allocated. 2008 */ 2009 void ice_fill_blk_tbls(struct ice_hw *hw) 2010 { 2011 u8 i; 2012 2013 for (i = 0; i < ICE_BLK_COUNT; i++) { 2014 enum ice_block blk_id = (enum ice_block)i; 2015 2016 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 2017 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 2018 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 2019 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 2020 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 2021 } 2022 2023 ice_init_sw_db(hw); 2024 } 2025 2026 /** 2027 * ice_free_prof_map - free profile map 2028 * @hw: pointer to the hardware structure 2029 * @blk_idx: HW block index 2030 */ 2031 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 2032 { 2033 struct ice_es *es = &hw->blk[blk_idx].es; 2034 struct ice_prof_map *del, *tmp; 2035 2036 mutex_lock(&es->prof_map_lock); 2037 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 2038 list_del(&del->list); 2039 devm_kfree(ice_hw_to_dev(hw), del); 2040 } 2041 INIT_LIST_HEAD(&es->prof_map); 2042 mutex_unlock(&es->prof_map_lock); 2043 } 2044 2045 /** 2046 * ice_free_flow_profs - free flow profile entries 2047 * @hw: pointer to the hardware structure 2048 * @blk_idx: HW block index 2049 */ 2050 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 2051 { 2052 struct ice_flow_prof *p, *tmp; 2053 2054 mutex_lock(&hw->fl_profs_locks[blk_idx]); 2055 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 2056 struct ice_flow_entry *e, *t; 2057 2058 list_for_each_entry_safe(e, t, &p->entries, l_entry) 2059 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 2060 ICE_FLOW_ENTRY_HNDL(e)); 2061 2062 list_del(&p->l_entry); 2063 2064 mutex_destroy(&p->entries_lock); 2065 devm_kfree(ice_hw_to_dev(hw), p); 2066 } 2067 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 2068 2069 /* if driver is in reset and tables are being cleared 2070 * re-initialize the flow profile list heads 2071 */ 2072 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2073 } 2074 2075 /** 2076 * ice_free_vsig_tbl - free complete VSIG table entries 2077 * @hw: pointer to the hardware structure 2078 * @blk: the HW block on which to free the VSIG table entries 2079 */ 2080 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 2081 { 2082 u16 i; 2083 2084 if (!hw->blk[blk].xlt2.vsig_tbl) 2085 return; 2086 2087 for (i = 1; i < ICE_MAX_VSIGS; i++) 2088 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2089 ice_vsig_free(hw, blk, i); 2090 } 2091 2092 /** 2093 * ice_free_hw_tbls - free hardware table memory 2094 * @hw: pointer to the hardware structure 2095 */ 2096 void ice_free_hw_tbls(struct ice_hw *hw) 2097 { 2098 struct ice_rss_cfg *r, *rt; 2099 u8 i; 2100 2101 for (i = 0; i < ICE_BLK_COUNT; i++) { 2102 if (hw->blk[i].is_list_init) { 2103 struct ice_es *es = &hw->blk[i].es; 2104 2105 ice_free_prof_map(hw, i); 2106 mutex_destroy(&es->prof_map_lock); 2107 2108 ice_free_flow_profs(hw, i); 2109 mutex_destroy(&hw->fl_profs_locks[i]); 2110 2111 hw->blk[i].is_list_init = false; 2112 } 2113 ice_free_vsig_tbl(hw, (enum ice_block)i); 2114 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 2115 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 2116 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 2117 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 2118 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 2119 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 2120 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 2121 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 2122 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 2123 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 2124 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm); 2125 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 2126 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 2127 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id); 2128 } 2129 2130 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 2131 list_del(&r->l_entry); 2132 devm_kfree(ice_hw_to_dev(hw), r); 2133 } 2134 mutex_destroy(&hw->rss_locks); 2135 ice_shutdown_all_prof_masks(hw); 2136 memset(hw->blk, 0, sizeof(hw->blk)); 2137 } 2138 2139 /** 2140 * ice_init_flow_profs - init flow profile locks and list heads 2141 * @hw: pointer to the hardware structure 2142 * @blk_idx: HW block index 2143 */ 2144 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 2145 { 2146 mutex_init(&hw->fl_profs_locks[blk_idx]); 2147 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2148 } 2149 2150 /** 2151 * ice_clear_hw_tbls - clear HW tables and flow profiles 2152 * @hw: pointer to the hardware structure 2153 */ 2154 void ice_clear_hw_tbls(struct ice_hw *hw) 2155 { 2156 u8 i; 2157 2158 for (i = 0; i < ICE_BLK_COUNT; i++) { 2159 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 2160 struct ice_prof_id *prof_id = &hw->blk[i].prof_id; 2161 struct ice_prof_tcam *prof = &hw->blk[i].prof; 2162 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 2163 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 2164 struct ice_es *es = &hw->blk[i].es; 2165 2166 if (hw->blk[i].is_list_init) { 2167 ice_free_prof_map(hw, i); 2168 ice_free_flow_profs(hw, i); 2169 } 2170 2171 ice_free_vsig_tbl(hw, (enum ice_block)i); 2172 2173 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 2174 memset(xlt1->ptg_tbl, 0, 2175 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 2176 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 2177 2178 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 2179 memset(xlt2->vsig_tbl, 0, 2180 xlt2->count * sizeof(*xlt2->vsig_tbl)); 2181 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 2182 2183 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 2184 memset(prof_redir->t, 0, 2185 prof_redir->count * sizeof(*prof_redir->t)); 2186 2187 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 2188 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 2189 memset(es->symm, 0, es->count * sizeof(*es->symm)); 2190 memset(es->written, 0, es->count * sizeof(*es->written)); 2191 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 2192 2193 memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id)); 2194 } 2195 } 2196 2197 /** 2198 * ice_init_hw_tbls - init hardware table memory 2199 * @hw: pointer to the hardware structure 2200 */ 2201 int ice_init_hw_tbls(struct ice_hw *hw) 2202 { 2203 u8 i; 2204 2205 mutex_init(&hw->rss_locks); 2206 INIT_LIST_HEAD(&hw->rss_list_head); 2207 ice_init_all_prof_masks(hw); 2208 for (i = 0; i < ICE_BLK_COUNT; i++) { 2209 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 2210 struct ice_prof_id *prof_id = &hw->blk[i].prof_id; 2211 struct ice_prof_tcam *prof = &hw->blk[i].prof; 2212 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 2213 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 2214 struct ice_es *es = &hw->blk[i].es; 2215 u16 j; 2216 2217 if (hw->blk[i].is_list_init) 2218 continue; 2219 2220 ice_init_flow_profs(hw, i); 2221 mutex_init(&es->prof_map_lock); 2222 INIT_LIST_HEAD(&es->prof_map); 2223 hw->blk[i].is_list_init = true; 2224 2225 hw->blk[i].overwrite = blk_sizes[i].overwrite; 2226 es->reverse = blk_sizes[i].reverse; 2227 2228 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 2229 xlt1->count = blk_sizes[i].xlt1; 2230 2231 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 2232 sizeof(*xlt1->ptypes), GFP_KERNEL); 2233 2234 if (!xlt1->ptypes) 2235 goto err; 2236 2237 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 2238 sizeof(*xlt1->ptg_tbl), 2239 GFP_KERNEL); 2240 2241 if (!xlt1->ptg_tbl) 2242 goto err; 2243 2244 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 2245 sizeof(*xlt1->t), GFP_KERNEL); 2246 if (!xlt1->t) 2247 goto err; 2248 2249 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 2250 xlt2->count = blk_sizes[i].xlt2; 2251 2252 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 2253 sizeof(*xlt2->vsis), GFP_KERNEL); 2254 2255 if (!xlt2->vsis) 2256 goto err; 2257 2258 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 2259 sizeof(*xlt2->vsig_tbl), 2260 GFP_KERNEL); 2261 if (!xlt2->vsig_tbl) 2262 goto err; 2263 2264 for (j = 0; j < xlt2->count; j++) 2265 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 2266 2267 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 2268 sizeof(*xlt2->t), GFP_KERNEL); 2269 if (!xlt2->t) 2270 goto err; 2271 2272 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 2273 prof->count = blk_sizes[i].prof_tcam; 2274 prof->max_prof_id = blk_sizes[i].prof_id; 2275 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 2276 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 2277 sizeof(*prof->t), GFP_KERNEL); 2278 2279 if (!prof->t) 2280 goto err; 2281 2282 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 2283 prof_redir->count = blk_sizes[i].prof_redir; 2284 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 2285 prof_redir->count, 2286 sizeof(*prof_redir->t), 2287 GFP_KERNEL); 2288 2289 if (!prof_redir->t) 2290 goto err; 2291 2292 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 2293 es->count = blk_sizes[i].es; 2294 es->fvw = blk_sizes[i].fvw; 2295 es->t = devm_kcalloc(ice_hw_to_dev(hw), 2296 (u32)(es->count * es->fvw), 2297 sizeof(*es->t), GFP_KERNEL); 2298 if (!es->t) 2299 goto err; 2300 2301 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2302 sizeof(*es->ref_count), 2303 GFP_KERNEL); 2304 if (!es->ref_count) 2305 goto err; 2306 2307 es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2308 sizeof(*es->symm), GFP_KERNEL); 2309 if (!es->symm) 2310 goto err; 2311 2312 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2313 sizeof(*es->written), GFP_KERNEL); 2314 if (!es->written) 2315 goto err; 2316 2317 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2318 sizeof(*es->mask_ena), GFP_KERNEL); 2319 if (!es->mask_ena) 2320 goto err; 2321 2322 prof_id->count = blk_sizes[i].prof_id; 2323 prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count, 2324 sizeof(*prof_id->id), GFP_KERNEL); 2325 if (!prof_id->id) 2326 goto err; 2327 } 2328 return 0; 2329 2330 err: 2331 ice_free_hw_tbls(hw); 2332 return -ENOMEM; 2333 } 2334 2335 /** 2336 * ice_prof_gen_key - generate profile ID key 2337 * @hw: pointer to the HW struct 2338 * @blk: the block in which to write profile ID to 2339 * @ptg: packet type group (PTG) portion of key 2340 * @vsig: VSIG portion of key 2341 * @cdid: CDID portion of key 2342 * @flags: flag portion of key 2343 * @vl_msk: valid mask 2344 * @dc_msk: don't care mask 2345 * @nm_msk: never match mask 2346 * @key: output of profile ID key 2347 */ 2348 static int 2349 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 2350 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 2351 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 2352 u8 key[ICE_TCAM_KEY_SZ]) 2353 { 2354 struct ice_prof_id_key inkey; 2355 2356 inkey.xlt1 = ptg; 2357 inkey.xlt2_cdid = cpu_to_le16(vsig); 2358 inkey.flags = cpu_to_le16(flags); 2359 2360 switch (hw->blk[blk].prof.cdid_bits) { 2361 case 0: 2362 break; 2363 case 2: 2364 #define ICE_CD_2_M 0xC000U 2365 #define ICE_CD_2_S 14 2366 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 2367 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 2368 break; 2369 case 4: 2370 #define ICE_CD_4_M 0xF000U 2371 #define ICE_CD_4_S 12 2372 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 2373 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 2374 break; 2375 case 8: 2376 #define ICE_CD_8_M 0xFF00U 2377 #define ICE_CD_8_S 16 2378 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 2379 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 2380 break; 2381 default: 2382 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 2383 break; 2384 } 2385 2386 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 2387 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 2388 } 2389 2390 /** 2391 * ice_tcam_write_entry - write TCAM entry 2392 * @hw: pointer to the HW struct 2393 * @blk: the block in which to write profile ID to 2394 * @idx: the entry index to write to 2395 * @prof_id: profile ID 2396 * @ptg: packet type group (PTG) portion of key 2397 * @vsig: VSIG portion of key 2398 * @cdid: CDID portion of key 2399 * @flags: flag portion of key 2400 * @vl_msk: valid mask 2401 * @dc_msk: don't care mask 2402 * @nm_msk: never match mask 2403 */ 2404 static int 2405 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 2406 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 2407 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 2408 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 2409 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 2410 { 2411 struct ice_prof_tcam_entry; 2412 int status; 2413 2414 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 2415 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 2416 if (!status) { 2417 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 2418 hw->blk[blk].prof.t[idx].prof_id = prof_id; 2419 } 2420 2421 return status; 2422 } 2423 2424 /** 2425 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 2426 * @hw: pointer to the hardware structure 2427 * @blk: HW block 2428 * @vsig: VSIG to query 2429 * @refs: pointer to variable to receive the reference count 2430 */ 2431 static int 2432 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 2433 { 2434 u16 idx = vsig & ICE_VSIG_IDX_M; 2435 struct ice_vsig_vsi *ptr; 2436 2437 *refs = 0; 2438 2439 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2440 return -ENOENT; 2441 2442 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2443 while (ptr) { 2444 (*refs)++; 2445 ptr = ptr->next_vsi; 2446 } 2447 2448 return 0; 2449 } 2450 2451 /** 2452 * ice_has_prof_vsig - check to see if VSIG has a specific profile 2453 * @hw: pointer to the hardware structure 2454 * @blk: HW block 2455 * @vsig: VSIG to check against 2456 * @hdl: profile handle 2457 */ 2458 static bool 2459 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 2460 { 2461 u16 idx = vsig & ICE_VSIG_IDX_M; 2462 struct ice_vsig_prof *ent; 2463 2464 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2465 list) 2466 if (ent->profile_cookie == hdl) 2467 return true; 2468 2469 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 2470 vsig); 2471 return false; 2472 } 2473 2474 /** 2475 * ice_prof_bld_es - build profile ID extraction sequence changes 2476 * @hw: pointer to the HW struct 2477 * @blk: hardware block 2478 * @bld: the update package buffer build to add to 2479 * @chgs: the list of changes to make in hardware 2480 */ 2481 static int 2482 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 2483 struct ice_buf_build *bld, struct list_head *chgs) 2484 { 2485 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 2486 struct ice_chs_chg *tmp; 2487 2488 list_for_each_entry(tmp, chgs, list_entry) 2489 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 2490 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 2491 struct ice_pkg_es *p; 2492 u32 id; 2493 2494 id = ice_sect_id(blk, ICE_VEC_TBL); 2495 p = ice_pkg_buf_alloc_section(bld, id, 2496 struct_size(p, es, 1) + 2497 vec_size - 2498 sizeof(p->es[0])); 2499 2500 if (!p) 2501 return -ENOSPC; 2502 2503 p->count = cpu_to_le16(1); 2504 p->offset = cpu_to_le16(tmp->prof_id); 2505 2506 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 2507 } 2508 2509 return 0; 2510 } 2511 2512 /** 2513 * ice_prof_bld_tcam - build profile ID TCAM changes 2514 * @hw: pointer to the HW struct 2515 * @blk: hardware block 2516 * @bld: the update package buffer build to add to 2517 * @chgs: the list of changes to make in hardware 2518 */ 2519 static int 2520 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 2521 struct ice_buf_build *bld, struct list_head *chgs) 2522 { 2523 struct ice_chs_chg *tmp; 2524 2525 list_for_each_entry(tmp, chgs, list_entry) 2526 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 2527 struct ice_prof_id_section *p; 2528 u32 id; 2529 2530 id = ice_sect_id(blk, ICE_PROF_TCAM); 2531 p = ice_pkg_buf_alloc_section(bld, id, 2532 struct_size(p, entry, 1)); 2533 2534 if (!p) 2535 return -ENOSPC; 2536 2537 p->count = cpu_to_le16(1); 2538 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 2539 p->entry[0].prof_id = tmp->prof_id; 2540 2541 memcpy(p->entry[0].key, 2542 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 2543 sizeof(hw->blk[blk].prof.t->key)); 2544 } 2545 2546 return 0; 2547 } 2548 2549 /** 2550 * ice_prof_bld_xlt1 - build XLT1 changes 2551 * @blk: hardware block 2552 * @bld: the update package buffer build to add to 2553 * @chgs: the list of changes to make in hardware 2554 */ 2555 static int 2556 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 2557 struct list_head *chgs) 2558 { 2559 struct ice_chs_chg *tmp; 2560 2561 list_for_each_entry(tmp, chgs, list_entry) 2562 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 2563 struct ice_xlt1_section *p; 2564 u32 id; 2565 2566 id = ice_sect_id(blk, ICE_XLT1); 2567 p = ice_pkg_buf_alloc_section(bld, id, 2568 struct_size(p, value, 1)); 2569 2570 if (!p) 2571 return -ENOSPC; 2572 2573 p->count = cpu_to_le16(1); 2574 p->offset = cpu_to_le16(tmp->ptype); 2575 p->value[0] = tmp->ptg; 2576 } 2577 2578 return 0; 2579 } 2580 2581 /** 2582 * ice_prof_bld_xlt2 - build XLT2 changes 2583 * @blk: hardware block 2584 * @bld: the update package buffer build to add to 2585 * @chgs: the list of changes to make in hardware 2586 */ 2587 static int 2588 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 2589 struct list_head *chgs) 2590 { 2591 struct ice_chs_chg *tmp; 2592 2593 list_for_each_entry(tmp, chgs, list_entry) { 2594 struct ice_xlt2_section *p; 2595 u32 id; 2596 2597 switch (tmp->type) { 2598 case ICE_VSIG_ADD: 2599 case ICE_VSI_MOVE: 2600 case ICE_VSIG_REM: 2601 id = ice_sect_id(blk, ICE_XLT2); 2602 p = ice_pkg_buf_alloc_section(bld, id, 2603 struct_size(p, value, 1)); 2604 2605 if (!p) 2606 return -ENOSPC; 2607 2608 p->count = cpu_to_le16(1); 2609 p->offset = cpu_to_le16(tmp->vsi); 2610 p->value[0] = cpu_to_le16(tmp->vsig); 2611 break; 2612 default: 2613 break; 2614 } 2615 } 2616 2617 return 0; 2618 } 2619 2620 /** 2621 * ice_upd_prof_hw - update hardware using the change list 2622 * @hw: pointer to the HW struct 2623 * @blk: hardware block 2624 * @chgs: the list of changes to make in hardware 2625 */ 2626 static int 2627 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 2628 struct list_head *chgs) 2629 { 2630 struct ice_buf_build *b; 2631 struct ice_chs_chg *tmp; 2632 u16 pkg_sects; 2633 u16 xlt1 = 0; 2634 u16 xlt2 = 0; 2635 u16 tcam = 0; 2636 u16 es = 0; 2637 int status; 2638 u16 sects; 2639 2640 /* count number of sections we need */ 2641 list_for_each_entry(tmp, chgs, list_entry) { 2642 switch (tmp->type) { 2643 case ICE_PTG_ES_ADD: 2644 if (tmp->add_ptg) 2645 xlt1++; 2646 if (tmp->add_prof) 2647 es++; 2648 break; 2649 case ICE_TCAM_ADD: 2650 tcam++; 2651 break; 2652 case ICE_VSIG_ADD: 2653 case ICE_VSI_MOVE: 2654 case ICE_VSIG_REM: 2655 xlt2++; 2656 break; 2657 default: 2658 break; 2659 } 2660 } 2661 sects = xlt1 + xlt2 + tcam + es; 2662 2663 if (!sects) 2664 return 0; 2665 2666 /* Build update package buffer */ 2667 b = ice_pkg_buf_alloc(hw); 2668 if (!b) 2669 return -ENOMEM; 2670 2671 status = ice_pkg_buf_reserve_section(b, sects); 2672 if (status) 2673 goto error_tmp; 2674 2675 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 2676 if (es) { 2677 status = ice_prof_bld_es(hw, blk, b, chgs); 2678 if (status) 2679 goto error_tmp; 2680 } 2681 2682 if (tcam) { 2683 status = ice_prof_bld_tcam(hw, blk, b, chgs); 2684 if (status) 2685 goto error_tmp; 2686 } 2687 2688 if (xlt1) { 2689 status = ice_prof_bld_xlt1(blk, b, chgs); 2690 if (status) 2691 goto error_tmp; 2692 } 2693 2694 if (xlt2) { 2695 status = ice_prof_bld_xlt2(blk, b, chgs); 2696 if (status) 2697 goto error_tmp; 2698 } 2699 2700 /* After package buffer build check if the section count in buffer is 2701 * non-zero and matches the number of sections detected for package 2702 * update. 2703 */ 2704 pkg_sects = ice_pkg_buf_get_active_sections(b); 2705 if (!pkg_sects || pkg_sects != sects) { 2706 status = -EINVAL; 2707 goto error_tmp; 2708 } 2709 2710 /* update package */ 2711 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 2712 if (status == -EIO) 2713 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 2714 2715 error_tmp: 2716 ice_pkg_buf_free(hw, b); 2717 return status; 2718 } 2719 2720 /** 2721 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 2722 * @hw: pointer to the HW struct 2723 * @prof_id: profile ID 2724 * @mask_sel: mask select 2725 * 2726 * This function enable any of the masks selected by the mask select parameter 2727 * for the profile specified. 2728 */ 2729 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 2730 { 2731 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 2732 2733 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 2734 GLQF_FDMASK_SEL(prof_id), mask_sel); 2735 } 2736 2737 struct ice_fd_src_dst_pair { 2738 u8 prot_id; 2739 u8 count; 2740 u16 off; 2741 }; 2742 2743 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 2744 /* These are defined in pairs */ 2745 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 2746 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 2747 2748 { ICE_PROT_IPV4_IL, 2, 12 }, 2749 { ICE_PROT_IPV4_IL, 2, 16 }, 2750 2751 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 2752 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 2753 2754 { ICE_PROT_IPV6_IL, 8, 8 }, 2755 { ICE_PROT_IPV6_IL, 8, 24 }, 2756 2757 { ICE_PROT_TCP_IL, 1, 0 }, 2758 { ICE_PROT_TCP_IL, 1, 2 }, 2759 2760 { ICE_PROT_UDP_OF, 1, 0 }, 2761 { ICE_PROT_UDP_OF, 1, 2 }, 2762 2763 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 2764 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 2765 2766 { ICE_PROT_SCTP_IL, 1, 0 }, 2767 { ICE_PROT_SCTP_IL, 1, 2 } 2768 }; 2769 2770 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 2771 2772 /** 2773 * ice_update_fd_swap - set register appropriately for a FD FV extraction 2774 * @hw: pointer to the HW struct 2775 * @prof_id: profile ID 2776 * @es: extraction sequence (length of array is determined by the block) 2777 */ 2778 static int 2779 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 2780 { 2781 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 2782 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 2783 #define ICE_FD_FV_NOT_FOUND (-2) 2784 s8 first_free = ICE_FD_FV_NOT_FOUND; 2785 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 2786 s8 orig_free, si; 2787 u32 mask_sel = 0; 2788 u8 i, j, k; 2789 2790 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 2791 2792 /* This code assumes that the Flow Director field vectors are assigned 2793 * from the end of the FV indexes working towards the zero index, that 2794 * only complete fields will be included and will be consecutive, and 2795 * that there are no gaps between valid indexes. 2796 */ 2797 2798 /* Determine swap fields present */ 2799 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 2800 /* Find the first free entry, assuming right to left population. 2801 * This is where we can start adding additional pairs if needed. 2802 */ 2803 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 2804 ICE_PROT_INVALID) 2805 first_free = i - 1; 2806 2807 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 2808 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 2809 es[i].off == ice_fd_pairs[j].off) { 2810 __set_bit(j, pair_list); 2811 pair_start[j] = i; 2812 } 2813 } 2814 2815 orig_free = first_free; 2816 2817 /* determine missing swap fields that need to be added */ 2818 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 2819 u8 bit1 = test_bit(i + 1, pair_list); 2820 u8 bit0 = test_bit(i, pair_list); 2821 2822 if (bit0 ^ bit1) { 2823 u8 index; 2824 2825 /* add the appropriate 'paired' entry */ 2826 if (!bit0) 2827 index = i; 2828 else 2829 index = i + 1; 2830 2831 /* check for room */ 2832 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 2833 return -ENOSPC; 2834 2835 /* place in extraction sequence */ 2836 for (k = 0; k < ice_fd_pairs[index].count; k++) { 2837 es[first_free - k].prot_id = 2838 ice_fd_pairs[index].prot_id; 2839 es[first_free - k].off = 2840 ice_fd_pairs[index].off + (k * 2); 2841 2842 if (k > first_free) 2843 return -EIO; 2844 2845 /* keep track of non-relevant fields */ 2846 mask_sel |= BIT(first_free - k); 2847 } 2848 2849 pair_start[index] = first_free; 2850 first_free -= ice_fd_pairs[index].count; 2851 } 2852 } 2853 2854 /* fill in the swap array */ 2855 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 2856 while (si >= 0) { 2857 u8 indexes_used = 1; 2858 2859 /* assume flat at this index */ 2860 #define ICE_SWAP_VALID 0x80 2861 used[si] = si | ICE_SWAP_VALID; 2862 2863 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 2864 si -= indexes_used; 2865 continue; 2866 } 2867 2868 /* check for a swap location */ 2869 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 2870 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 2871 es[si].off == ice_fd_pairs[j].off) { 2872 u8 idx; 2873 2874 /* determine the appropriate matching field */ 2875 idx = j + ((j % 2) ? -1 : 1); 2876 2877 indexes_used = ice_fd_pairs[idx].count; 2878 for (k = 0; k < indexes_used; k++) { 2879 used[si - k] = (pair_start[idx] - k) | 2880 ICE_SWAP_VALID; 2881 } 2882 2883 break; 2884 } 2885 2886 si -= indexes_used; 2887 } 2888 2889 /* for each set of 4 swap and 4 inset indexes, write the appropriate 2890 * register 2891 */ 2892 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 2893 u32 raw_swap = 0; 2894 u32 raw_in = 0; 2895 2896 for (k = 0; k < 4; k++) { 2897 u8 idx; 2898 2899 idx = (j * 4) + k; 2900 if (used[idx] && !(mask_sel & BIT(idx))) { 2901 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 2902 #define ICE_INSET_DFLT 0x9f 2903 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 2904 } 2905 } 2906 2907 /* write the appropriate swap register set */ 2908 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 2909 2910 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 2911 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 2912 2913 /* write the appropriate inset register set */ 2914 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 2915 2916 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 2917 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 2918 } 2919 2920 /* initially clear the mask select for this profile */ 2921 ice_update_fd_mask(hw, prof_id, 0); 2922 2923 return 0; 2924 } 2925 2926 /* The entries here needs to match the order of enum ice_ptype_attrib */ 2927 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 2928 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 2929 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 2930 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 2931 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 2932 }; 2933 2934 /** 2935 * ice_get_ptype_attrib_info - get PTYPE attribute information 2936 * @type: attribute type 2937 * @info: pointer to variable to the attribute information 2938 */ 2939 static void 2940 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 2941 struct ice_ptype_attrib_info *info) 2942 { 2943 *info = ice_ptype_attributes[type]; 2944 } 2945 2946 /** 2947 * ice_add_prof_attrib - add any PTG with attributes to profile 2948 * @prof: pointer to the profile to which PTG entries will be added 2949 * @ptg: PTG to be added 2950 * @ptype: PTYPE that needs to be looked up 2951 * @attr: array of attributes that will be considered 2952 * @attr_cnt: number of elements in the attribute array 2953 */ 2954 static int 2955 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 2956 const struct ice_ptype_attributes *attr, u16 attr_cnt) 2957 { 2958 bool found = false; 2959 u16 i; 2960 2961 for (i = 0; i < attr_cnt; i++) 2962 if (attr[i].ptype == ptype) { 2963 found = true; 2964 2965 prof->ptg[prof->ptg_cnt] = ptg; 2966 ice_get_ptype_attrib_info(attr[i].attrib, 2967 &prof->attr[prof->ptg_cnt]); 2968 2969 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 2970 return -ENOSPC; 2971 } 2972 2973 if (!found) 2974 return -ENOENT; 2975 2976 return 0; 2977 } 2978 2979 /** 2980 * ice_disable_fd_swap - set register appropriately to disable FD SWAP 2981 * @hw: pointer to the HW struct 2982 * @prof_id: profile ID 2983 */ 2984 static void 2985 ice_disable_fd_swap(struct ice_hw *hw, u8 prof_id) 2986 { 2987 u16 swap_val, fvw_num; 2988 unsigned int i; 2989 2990 swap_val = ICE_SWAP_VALID; 2991 fvw_num = hw->blk[ICE_BLK_FD].es.fvw / ICE_FDIR_REG_SET_SIZE; 2992 2993 /* Since the SWAP Flag in the Programming Desc doesn't work, 2994 * here add method to disable the SWAP Option via setting 2995 * certain SWAP and INSET register sets. 2996 */ 2997 for (i = 0; i < fvw_num ; i++) { 2998 u32 raw_swap, raw_in; 2999 unsigned int j; 3000 3001 raw_swap = 0; 3002 raw_in = 0; 3003 3004 for (j = 0; j < ICE_FDIR_REG_SET_SIZE; j++) { 3005 raw_swap |= (swap_val++) << (j * BITS_PER_BYTE); 3006 raw_in |= ICE_INSET_DFLT << (j * BITS_PER_BYTE); 3007 } 3008 3009 /* write the FDIR swap register set */ 3010 wr32(hw, GLQF_FDSWAP(prof_id, i), raw_swap); 3011 3012 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): 0x%x = 0x%08x\n", 3013 prof_id, i, GLQF_FDSWAP(prof_id, i), raw_swap); 3014 3015 /* write the FDIR inset register set */ 3016 wr32(hw, GLQF_FDINSET(prof_id, i), raw_in); 3017 3018 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): 0x%x = 0x%08x\n", 3019 prof_id, i, GLQF_FDINSET(prof_id, i), raw_in); 3020 } 3021 } 3022 3023 /* 3024 * ice_add_prof - add profile 3025 * @hw: pointer to the HW struct 3026 * @blk: hardware block 3027 * @id: profile tracking ID 3028 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 3029 * @attr: array of attributes 3030 * @attr_cnt: number of elements in attr array 3031 * @es: extraction sequence (length of array is determined by the block) 3032 * @masks: mask for extraction sequence 3033 * @symm: symmetric setting for RSS profiles 3034 * @fd_swap: enable/disable FDIR paired src/dst fields swap option 3035 * 3036 * This function registers a profile, which matches a set of PTYPES with a 3037 * particular extraction sequence. While the hardware profile is allocated 3038 * it will not be written until the first call to ice_add_flow that specifies 3039 * the ID value used here. 3040 */ 3041 int 3042 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, 3043 unsigned long *ptypes, const struct ice_ptype_attributes *attr, 3044 u16 attr_cnt, struct ice_fv_word *es, u16 *masks, bool symm, 3045 bool fd_swap) 3046 { 3047 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3048 struct ice_prof_map *prof; 3049 int status; 3050 u8 prof_id; 3051 u16 ptype; 3052 3053 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3054 3055 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3056 3057 /* search for existing profile */ 3058 status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id); 3059 if (status) { 3060 /* allocate profile ID */ 3061 status = ice_alloc_prof_id(hw, blk, &prof_id); 3062 if (status) 3063 goto err_ice_add_prof; 3064 if (blk == ICE_BLK_FD && fd_swap) { 3065 /* For Flow Director block, the extraction sequence may 3066 * need to be altered in the case where there are paired 3067 * fields that have no match. This is necessary because 3068 * for Flow Director, src and dest fields need to paired 3069 * for filter programming and these values are swapped 3070 * during Tx. 3071 */ 3072 status = ice_update_fd_swap(hw, prof_id, es); 3073 if (status) 3074 goto err_ice_add_prof; 3075 } else if (blk == ICE_BLK_FD) { 3076 ice_disable_fd_swap(hw, prof_id); 3077 } 3078 status = ice_update_prof_masking(hw, blk, prof_id, masks); 3079 if (status) 3080 goto err_ice_add_prof; 3081 3082 /* and write new es */ 3083 ice_write_es(hw, blk, prof_id, es, symm); 3084 } 3085 3086 ice_prof_inc_ref(hw, blk, prof_id); 3087 3088 /* add profile info */ 3089 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 3090 if (!prof) { 3091 status = -ENOMEM; 3092 goto err_ice_add_prof; 3093 } 3094 3095 prof->profile_cookie = id; 3096 prof->prof_id = prof_id; 3097 prof->ptg_cnt = 0; 3098 prof->context = 0; 3099 3100 /* build list of ptgs */ 3101 for_each_set_bit(ptype, ptypes, ICE_FLOW_PTYPE_MAX) { 3102 u8 ptg; 3103 3104 /* The package should place all ptypes in a non-zero 3105 * PTG, so the following call should never fail. 3106 */ 3107 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 3108 continue; 3109 3110 /* If PTG is already added, skip and continue */ 3111 if (test_bit(ptg, ptgs_used)) 3112 continue; 3113 3114 set_bit(ptg, ptgs_used); 3115 /* Check to see there are any attributes for this ptype, and 3116 * add them if found. 3117 */ 3118 status = ice_add_prof_attrib(prof, ptg, ptype, attr, attr_cnt); 3119 if (status == -ENOSPC) 3120 break; 3121 if (status) { 3122 /* This is simple a ptype/PTG with no attribute */ 3123 prof->ptg[prof->ptg_cnt] = ptg; 3124 prof->attr[prof->ptg_cnt].flags = 0; 3125 prof->attr[prof->ptg_cnt].mask = 0; 3126 3127 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 3128 break; 3129 } 3130 } 3131 3132 list_add(&prof->list, &hw->blk[blk].es.prof_map); 3133 status = 0; 3134 3135 err_ice_add_prof: 3136 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3137 return status; 3138 } 3139 3140 /** 3141 * ice_search_prof_id - Search for a profile tracking ID 3142 * @hw: pointer to the HW struct 3143 * @blk: hardware block 3144 * @id: profile tracking ID 3145 * 3146 * This will search for a profile tracking ID which was previously added. 3147 * The profile map lock should be held before calling this function. 3148 */ 3149 struct ice_prof_map * 3150 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 3151 { 3152 struct ice_prof_map *entry = NULL; 3153 struct ice_prof_map *map; 3154 3155 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 3156 if (map->profile_cookie == id) { 3157 entry = map; 3158 break; 3159 } 3160 3161 return entry; 3162 } 3163 3164 /** 3165 * ice_vsig_prof_id_count - count profiles in a VSIG 3166 * @hw: pointer to the HW struct 3167 * @blk: hardware block 3168 * @vsig: VSIG to remove the profile from 3169 */ 3170 static u16 3171 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3172 { 3173 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 3174 struct ice_vsig_prof *p; 3175 3176 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3177 list) 3178 count++; 3179 3180 return count; 3181 } 3182 3183 /** 3184 * ice_rel_tcam_idx - release a TCAM index 3185 * @hw: pointer to the HW struct 3186 * @blk: hardware block 3187 * @idx: the index to release 3188 */ 3189 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 3190 { 3191 /* Masks to invoke a never match entry */ 3192 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3193 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 3194 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 3195 int status; 3196 3197 /* write the TCAM entry */ 3198 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 3199 dc_msk, nm_msk); 3200 if (status) 3201 return status; 3202 3203 /* release the TCAM entry */ 3204 status = ice_free_tcam_ent(hw, blk, idx); 3205 3206 return status; 3207 } 3208 3209 /** 3210 * ice_rem_prof_id - remove one profile from a VSIG 3211 * @hw: pointer to the HW struct 3212 * @blk: hardware block 3213 * @prof: pointer to profile structure to remove 3214 */ 3215 static int 3216 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 3217 struct ice_vsig_prof *prof) 3218 { 3219 int status; 3220 u16 i; 3221 3222 for (i = 0; i < prof->tcam_count; i++) 3223 if (prof->tcam[i].in_use) { 3224 prof->tcam[i].in_use = false; 3225 status = ice_rel_tcam_idx(hw, blk, 3226 prof->tcam[i].tcam_idx); 3227 if (status) 3228 return -EIO; 3229 } 3230 3231 return 0; 3232 } 3233 3234 /** 3235 * ice_rem_vsig - remove VSIG 3236 * @hw: pointer to the HW struct 3237 * @blk: hardware block 3238 * @vsig: the VSIG to remove 3239 * @chg: the change list 3240 */ 3241 static int 3242 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3243 struct list_head *chg) 3244 { 3245 u16 idx = vsig & ICE_VSIG_IDX_M; 3246 struct ice_vsig_vsi *vsi_cur; 3247 struct ice_vsig_prof *d, *t; 3248 3249 /* remove TCAM entries */ 3250 list_for_each_entry_safe(d, t, 3251 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3252 list) { 3253 int status; 3254 3255 status = ice_rem_prof_id(hw, blk, d); 3256 if (status) 3257 return status; 3258 3259 list_del(&d->list); 3260 devm_kfree(ice_hw_to_dev(hw), d); 3261 } 3262 3263 /* Move all VSIS associated with this VSIG to the default VSIG */ 3264 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3265 /* If the VSIG has at least 1 VSI then iterate through the list 3266 * and remove the VSIs before deleting the group. 3267 */ 3268 if (vsi_cur) 3269 do { 3270 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 3271 struct ice_chs_chg *p; 3272 3273 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 3274 GFP_KERNEL); 3275 if (!p) 3276 return -ENOMEM; 3277 3278 p->type = ICE_VSIG_REM; 3279 p->orig_vsig = vsig; 3280 p->vsig = ICE_DEFAULT_VSIG; 3281 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 3282 3283 list_add(&p->list_entry, chg); 3284 3285 vsi_cur = tmp; 3286 } while (vsi_cur); 3287 3288 return ice_vsig_free(hw, blk, vsig); 3289 } 3290 3291 /** 3292 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 3293 * @hw: pointer to the HW struct 3294 * @blk: hardware block 3295 * @vsig: VSIG to remove the profile from 3296 * @hdl: profile handle indicating which profile to remove 3297 * @chg: list to receive a record of changes 3298 */ 3299 static int 3300 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 3301 struct list_head *chg) 3302 { 3303 u16 idx = vsig & ICE_VSIG_IDX_M; 3304 struct ice_vsig_prof *p, *t; 3305 3306 list_for_each_entry_safe(p, t, 3307 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3308 list) 3309 if (p->profile_cookie == hdl) { 3310 int status; 3311 3312 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 3313 /* this is the last profile, remove the VSIG */ 3314 return ice_rem_vsig(hw, blk, vsig, chg); 3315 3316 status = ice_rem_prof_id(hw, blk, p); 3317 if (!status) { 3318 list_del(&p->list); 3319 devm_kfree(ice_hw_to_dev(hw), p); 3320 } 3321 return status; 3322 } 3323 3324 return -ENOENT; 3325 } 3326 3327 /** 3328 * ice_rem_flow_all - remove all flows with a particular profile 3329 * @hw: pointer to the HW struct 3330 * @blk: hardware block 3331 * @id: profile tracking ID 3332 */ 3333 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 3334 { 3335 struct ice_chs_chg *del, *tmp; 3336 struct list_head chg; 3337 int status; 3338 u16 i; 3339 3340 INIT_LIST_HEAD(&chg); 3341 3342 for (i = 1; i < ICE_MAX_VSIGS; i++) 3343 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 3344 if (ice_has_prof_vsig(hw, blk, i, id)) { 3345 status = ice_rem_prof_id_vsig(hw, blk, i, id, 3346 &chg); 3347 if (status) 3348 goto err_ice_rem_flow_all; 3349 } 3350 } 3351 3352 status = ice_upd_prof_hw(hw, blk, &chg); 3353 3354 err_ice_rem_flow_all: 3355 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 3356 list_del(&del->list_entry); 3357 devm_kfree(ice_hw_to_dev(hw), del); 3358 } 3359 3360 return status; 3361 } 3362 3363 /** 3364 * ice_rem_prof - remove profile 3365 * @hw: pointer to the HW struct 3366 * @blk: hardware block 3367 * @id: profile tracking ID 3368 * 3369 * This will remove the profile specified by the ID parameter, which was 3370 * previously created through ice_add_prof. If any existing entries 3371 * are associated with this profile, they will be removed as well. 3372 */ 3373 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 3374 { 3375 struct ice_prof_map *pmap; 3376 int status; 3377 3378 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3379 3380 pmap = ice_search_prof_id(hw, blk, id); 3381 if (!pmap) { 3382 status = -ENOENT; 3383 goto err_ice_rem_prof; 3384 } 3385 3386 /* remove all flows with this profile */ 3387 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 3388 if (status) 3389 goto err_ice_rem_prof; 3390 3391 /* dereference profile, and possibly remove */ 3392 ice_prof_dec_ref(hw, blk, pmap->prof_id); 3393 3394 list_del(&pmap->list); 3395 devm_kfree(ice_hw_to_dev(hw), pmap); 3396 3397 err_ice_rem_prof: 3398 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3399 return status; 3400 } 3401 3402 /** 3403 * ice_get_prof - get profile 3404 * @hw: pointer to the HW struct 3405 * @blk: hardware block 3406 * @hdl: profile handle 3407 * @chg: change list 3408 */ 3409 static int 3410 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 3411 struct list_head *chg) 3412 { 3413 struct ice_prof_map *map; 3414 struct ice_chs_chg *p; 3415 int status = 0; 3416 u16 i; 3417 3418 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3419 /* Get the details on the profile specified by the handle ID */ 3420 map = ice_search_prof_id(hw, blk, hdl); 3421 if (!map) { 3422 status = -ENOENT; 3423 goto err_ice_get_prof; 3424 } 3425 3426 for (i = 0; i < map->ptg_cnt; i++) 3427 if (!hw->blk[blk].es.written[map->prof_id]) { 3428 /* add ES to change list */ 3429 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 3430 GFP_KERNEL); 3431 if (!p) { 3432 status = -ENOMEM; 3433 goto err_ice_get_prof; 3434 } 3435 3436 p->type = ICE_PTG_ES_ADD; 3437 p->ptype = 0; 3438 p->ptg = map->ptg[i]; 3439 p->add_ptg = 0; 3440 3441 p->add_prof = 1; 3442 p->prof_id = map->prof_id; 3443 3444 hw->blk[blk].es.written[map->prof_id] = true; 3445 3446 list_add(&p->list_entry, chg); 3447 } 3448 3449 err_ice_get_prof: 3450 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3451 /* let caller clean up the change list */ 3452 return status; 3453 } 3454 3455 /** 3456 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 3457 * @hw: pointer to the HW struct 3458 * @blk: hardware block 3459 * @vsig: VSIG from which to copy the list 3460 * @lst: output list 3461 * 3462 * This routine makes a copy of the list of profiles in the specified VSIG. 3463 */ 3464 static int 3465 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3466 struct list_head *lst) 3467 { 3468 struct ice_vsig_prof *ent1, *ent2; 3469 u16 idx = vsig & ICE_VSIG_IDX_M; 3470 3471 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3472 list) { 3473 struct ice_vsig_prof *p; 3474 3475 /* copy to the input list */ 3476 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 3477 GFP_KERNEL); 3478 if (!p) 3479 goto err_ice_get_profs_vsig; 3480 3481 list_add_tail(&p->list, lst); 3482 } 3483 3484 return 0; 3485 3486 err_ice_get_profs_vsig: 3487 list_for_each_entry_safe(ent1, ent2, lst, list) { 3488 list_del(&ent1->list); 3489 devm_kfree(ice_hw_to_dev(hw), ent1); 3490 } 3491 3492 return -ENOMEM; 3493 } 3494 3495 /** 3496 * ice_add_prof_to_lst - add profile entry to a list 3497 * @hw: pointer to the HW struct 3498 * @blk: hardware block 3499 * @lst: the list to be added to 3500 * @hdl: profile handle of entry to add 3501 */ 3502 static int 3503 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 3504 struct list_head *lst, u64 hdl) 3505 { 3506 struct ice_prof_map *map; 3507 struct ice_vsig_prof *p; 3508 int status = 0; 3509 u16 i; 3510 3511 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3512 map = ice_search_prof_id(hw, blk, hdl); 3513 if (!map) { 3514 status = -ENOENT; 3515 goto err_ice_add_prof_to_lst; 3516 } 3517 3518 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3519 if (!p) { 3520 status = -ENOMEM; 3521 goto err_ice_add_prof_to_lst; 3522 } 3523 3524 p->profile_cookie = map->profile_cookie; 3525 p->prof_id = map->prof_id; 3526 p->tcam_count = map->ptg_cnt; 3527 3528 for (i = 0; i < map->ptg_cnt; i++) { 3529 p->tcam[i].prof_id = map->prof_id; 3530 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 3531 p->tcam[i].ptg = map->ptg[i]; 3532 } 3533 3534 list_add(&p->list, lst); 3535 3536 err_ice_add_prof_to_lst: 3537 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3538 return status; 3539 } 3540 3541 /** 3542 * ice_move_vsi - move VSI to another VSIG 3543 * @hw: pointer to the HW struct 3544 * @blk: hardware block 3545 * @vsi: the VSI to move 3546 * @vsig: the VSIG to move the VSI to 3547 * @chg: the change list 3548 */ 3549 static int 3550 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 3551 struct list_head *chg) 3552 { 3553 struct ice_chs_chg *p; 3554 u16 orig_vsig; 3555 int status; 3556 3557 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3558 if (!p) 3559 return -ENOMEM; 3560 3561 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3562 if (!status) 3563 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3564 3565 if (status) { 3566 devm_kfree(ice_hw_to_dev(hw), p); 3567 return status; 3568 } 3569 3570 p->type = ICE_VSI_MOVE; 3571 p->vsi = vsi; 3572 p->orig_vsig = orig_vsig; 3573 p->vsig = vsig; 3574 3575 list_add(&p->list_entry, chg); 3576 3577 return 0; 3578 } 3579 3580 /** 3581 * ice_set_tcam_flags - set TCAM flag don't care mask 3582 * @mask: mask for flags 3583 * @dc_mask: pointer to the don't care mask 3584 */ 3585 static void ice_set_tcam_flags(u16 mask, u8 dc_mask[ICE_TCAM_KEY_VAL_SZ]) 3586 { 3587 u16 inverted_mask = ~mask; 3588 3589 /* flags are lowest u16 */ 3590 put_unaligned_le16(inverted_mask, dc_mask); 3591 } 3592 3593 /** 3594 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 3595 * @hw: pointer to the HW struct 3596 * @idx: the index of the TCAM entry to remove 3597 * @chg: the list of change structures to search 3598 */ 3599 static void 3600 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 3601 { 3602 struct ice_chs_chg *pos, *tmp; 3603 3604 list_for_each_entry_safe(tmp, pos, chg, list_entry) 3605 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 3606 list_del(&tmp->list_entry); 3607 devm_kfree(ice_hw_to_dev(hw), tmp); 3608 } 3609 } 3610 3611 /** 3612 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 3613 * @hw: pointer to the HW struct 3614 * @blk: hardware block 3615 * @enable: true to enable, false to disable 3616 * @vsig: the VSIG of the TCAM entry 3617 * @tcam: pointer the TCAM info structure of the TCAM to disable 3618 * @chg: the change list 3619 * 3620 * This function appends an enable or disable TCAM entry in the change log 3621 */ 3622 static int 3623 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 3624 u16 vsig, struct ice_tcam_inf *tcam, 3625 struct list_head *chg) 3626 { 3627 struct ice_chs_chg *p; 3628 int status; 3629 3630 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3631 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 3632 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 3633 3634 /* if disabling, free the TCAM */ 3635 if (!enable) { 3636 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 3637 3638 /* if we have already created a change for this TCAM entry, then 3639 * we need to remove that entry, in order to prevent writing to 3640 * a TCAM entry we no longer will have ownership of. 3641 */ 3642 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 3643 tcam->tcam_idx = 0; 3644 tcam->in_use = 0; 3645 return status; 3646 } 3647 3648 /* for re-enabling, reallocate a TCAM */ 3649 /* for entries with empty attribute masks, allocate entry from 3650 * the bottom of the TCAM table; otherwise, allocate from the 3651 * top of the table in order to give it higher priority 3652 */ 3653 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 3654 &tcam->tcam_idx); 3655 if (status) 3656 return status; 3657 3658 /* add TCAM to change list */ 3659 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3660 if (!p) 3661 return -ENOMEM; 3662 3663 /* set don't care masks for TCAM flags */ 3664 ice_set_tcam_flags(tcam->attr.mask, dc_msk); 3665 3666 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 3667 tcam->ptg, vsig, 0, tcam->attr.flags, 3668 vl_msk, dc_msk, nm_msk); 3669 if (status) 3670 goto err_ice_prof_tcam_ena_dis; 3671 3672 tcam->in_use = 1; 3673 3674 p->type = ICE_TCAM_ADD; 3675 p->add_tcam_idx = true; 3676 p->prof_id = tcam->prof_id; 3677 p->ptg = tcam->ptg; 3678 p->vsig = 0; 3679 p->tcam_idx = tcam->tcam_idx; 3680 3681 /* log change */ 3682 list_add(&p->list_entry, chg); 3683 3684 return 0; 3685 3686 err_ice_prof_tcam_ena_dis: 3687 devm_kfree(ice_hw_to_dev(hw), p); 3688 return status; 3689 } 3690 3691 /** 3692 * ice_ptg_attr_in_use - determine if PTG and attribute pair is in use 3693 * @ptg_attr: pointer to the PTG and attribute pair to check 3694 * @ptgs_used: bitmap that denotes which PTGs are in use 3695 * @attr_used: array of PTG and attributes pairs already used 3696 * @attr_cnt: count of entries in the attr_used array 3697 * 3698 * Return: true if the PTG and attribute pair is in use, false otherwise. 3699 */ 3700 static bool 3701 ice_ptg_attr_in_use(struct ice_tcam_inf *ptg_attr, unsigned long *ptgs_used, 3702 struct ice_tcam_inf *attr_used[], u16 attr_cnt) 3703 { 3704 u16 i; 3705 3706 if (!test_bit(ptg_attr->ptg, ptgs_used)) 3707 return false; 3708 3709 /* the PTG is used, so now look for correct attributes */ 3710 for (i = 0; i < attr_cnt; i++) 3711 if (attr_used[i]->ptg == ptg_attr->ptg && 3712 attr_used[i]->attr.flags == ptg_attr->attr.flags && 3713 attr_used[i]->attr.mask == ptg_attr->attr.mask) 3714 return true; 3715 3716 return false; 3717 } 3718 3719 /** 3720 * ice_adj_prof_priorities - adjust profile based on priorities 3721 * @hw: pointer to the HW struct 3722 * @blk: hardware block 3723 * @vsig: the VSIG for which to adjust profile priorities 3724 * @chg: the change list 3725 */ 3726 static int 3727 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3728 struct list_head *chg) 3729 { 3730 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3731 struct ice_tcam_inf **attr_used; 3732 struct ice_vsig_prof *t; 3733 u16 attr_used_cnt = 0; 3734 int status = 0; 3735 u16 idx; 3736 3737 attr_used = kcalloc(ICE_MAX_PTG_ATTRS, sizeof(*attr_used), GFP_KERNEL); 3738 if (!attr_used) 3739 return -ENOMEM; 3740 3741 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3742 idx = vsig & ICE_VSIG_IDX_M; 3743 3744 /* Priority is based on the order in which the profiles are added. The 3745 * newest added profile has highest priority and the oldest added 3746 * profile has the lowest priority. Since the profile property list for 3747 * a VSIG is sorted from newest to oldest, this code traverses the list 3748 * in order and enables the first of each PTG that it finds (that is not 3749 * already enabled); it also disables any duplicate PTGs that it finds 3750 * in the older profiles (that are currently enabled). 3751 */ 3752 3753 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3754 list) { 3755 u16 i; 3756 3757 for (i = 0; i < t->tcam_count; i++) { 3758 bool used; 3759 3760 /* Scan the priorities from newest to oldest. 3761 * Make sure that the newest profiles take priority. 3762 */ 3763 used = ice_ptg_attr_in_use(&t->tcam[i], ptgs_used, 3764 attr_used, attr_used_cnt); 3765 3766 if (used && t->tcam[i].in_use) { 3767 /* need to mark this PTG as never match, as it 3768 * was already in use and therefore duplicate 3769 * (and lower priority) 3770 */ 3771 status = ice_prof_tcam_ena_dis(hw, blk, false, 3772 vsig, 3773 &t->tcam[i], 3774 chg); 3775 if (status) 3776 goto free_attr_used; 3777 } else if (!used && !t->tcam[i].in_use) { 3778 /* need to enable this PTG, as it in not in use 3779 * and not enabled (highest priority) 3780 */ 3781 status = ice_prof_tcam_ena_dis(hw, blk, true, 3782 vsig, 3783 &t->tcam[i], 3784 chg); 3785 if (status) 3786 goto free_attr_used; 3787 } 3788 3789 /* keep track of used ptgs */ 3790 set_bit(t->tcam[i].ptg, ptgs_used); 3791 if (attr_used_cnt < ICE_MAX_PTG_ATTRS) 3792 attr_used[attr_used_cnt++] = &t->tcam[i]; 3793 else 3794 ice_debug(hw, ICE_DBG_INIT, "Warn: ICE_MAX_PTG_ATTRS exceeded\n"); 3795 } 3796 } 3797 3798 free_attr_used: 3799 kfree(attr_used); 3800 return status; 3801 } 3802 3803 /** 3804 * ice_add_prof_id_vsig - add profile to VSIG 3805 * @hw: pointer to the HW struct 3806 * @blk: hardware block 3807 * @vsig: the VSIG to which this profile is to be added 3808 * @hdl: the profile handle indicating the profile to add 3809 * @rev: true to add entries to the end of the list 3810 * @chg: the change list 3811 */ 3812 static int 3813 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 3814 bool rev, struct list_head *chg) 3815 { 3816 /* Masks that ignore flags */ 3817 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3818 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 3819 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 3820 struct ice_prof_map *map; 3821 struct ice_vsig_prof *t; 3822 struct ice_chs_chg *p; 3823 u16 vsig_idx, i; 3824 int status = 0; 3825 3826 /* Error, if this VSIG already has this profile */ 3827 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 3828 return -EEXIST; 3829 3830 /* new VSIG profile structure */ 3831 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 3832 if (!t) 3833 return -ENOMEM; 3834 3835 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3836 /* Get the details on the profile specified by the handle ID */ 3837 map = ice_search_prof_id(hw, blk, hdl); 3838 if (!map) { 3839 status = -ENOENT; 3840 goto err_ice_add_prof_id_vsig; 3841 } 3842 3843 t->profile_cookie = map->profile_cookie; 3844 t->prof_id = map->prof_id; 3845 t->tcam_count = map->ptg_cnt; 3846 3847 /* create TCAM entries */ 3848 for (i = 0; i < map->ptg_cnt; i++) { 3849 u16 tcam_idx; 3850 3851 /* add TCAM to change list */ 3852 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3853 if (!p) { 3854 status = -ENOMEM; 3855 goto err_ice_add_prof_id_vsig; 3856 } 3857 3858 /* allocate the TCAM entry index */ 3859 /* for entries with empty attribute masks, allocate entry from 3860 * the bottom of the TCAM table; otherwise, allocate from the 3861 * top of the table in order to give it higher priority 3862 */ 3863 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 3864 &tcam_idx); 3865 if (status) { 3866 devm_kfree(ice_hw_to_dev(hw), p); 3867 goto err_ice_add_prof_id_vsig; 3868 } 3869 3870 t->tcam[i].ptg = map->ptg[i]; 3871 t->tcam[i].prof_id = map->prof_id; 3872 t->tcam[i].tcam_idx = tcam_idx; 3873 t->tcam[i].attr = map->attr[i]; 3874 t->tcam[i].in_use = true; 3875 3876 p->type = ICE_TCAM_ADD; 3877 p->add_tcam_idx = true; 3878 p->prof_id = t->tcam[i].prof_id; 3879 p->ptg = t->tcam[i].ptg; 3880 p->vsig = vsig; 3881 p->tcam_idx = t->tcam[i].tcam_idx; 3882 3883 /* set don't care masks for TCAM flags */ 3884 ice_set_tcam_flags(t->tcam[i].attr.mask, dc_msk); 3885 3886 /* write the TCAM entry */ 3887 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 3888 t->tcam[i].prof_id, 3889 t->tcam[i].ptg, vsig, 0, 3890 t->tcam[i].attr.flags, vl_msk, 3891 dc_msk, nm_msk); 3892 if (status) { 3893 devm_kfree(ice_hw_to_dev(hw), p); 3894 goto err_ice_add_prof_id_vsig; 3895 } 3896 3897 /* log change */ 3898 list_add(&p->list_entry, chg); 3899 } 3900 3901 /* add profile to VSIG */ 3902 vsig_idx = vsig & ICE_VSIG_IDX_M; 3903 if (rev) 3904 list_add_tail(&t->list, 3905 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 3906 else 3907 list_add(&t->list, 3908 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 3909 3910 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3911 return status; 3912 3913 err_ice_add_prof_id_vsig: 3914 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3915 /* let caller clean up the change list */ 3916 devm_kfree(ice_hw_to_dev(hw), t); 3917 return status; 3918 } 3919 3920 /** 3921 * ice_create_prof_id_vsig - add a new VSIG with a single profile 3922 * @hw: pointer to the HW struct 3923 * @blk: hardware block 3924 * @vsi: the initial VSI that will be in VSIG 3925 * @hdl: the profile handle of the profile that will be added to the VSIG 3926 * @chg: the change list 3927 */ 3928 static int 3929 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 3930 struct list_head *chg) 3931 { 3932 struct ice_chs_chg *p; 3933 u16 new_vsig; 3934 int status; 3935 3936 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3937 if (!p) 3938 return -ENOMEM; 3939 3940 new_vsig = ice_vsig_alloc(hw, blk); 3941 if (!new_vsig) { 3942 status = -EIO; 3943 goto err_ice_create_prof_id_vsig; 3944 } 3945 3946 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 3947 if (status) 3948 goto err_ice_create_prof_id_vsig; 3949 3950 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 3951 if (status) 3952 goto err_ice_create_prof_id_vsig; 3953 3954 p->type = ICE_VSIG_ADD; 3955 p->vsi = vsi; 3956 p->orig_vsig = ICE_DEFAULT_VSIG; 3957 p->vsig = new_vsig; 3958 3959 list_add(&p->list_entry, chg); 3960 3961 return 0; 3962 3963 err_ice_create_prof_id_vsig: 3964 /* let caller clean up the change list */ 3965 devm_kfree(ice_hw_to_dev(hw), p); 3966 return status; 3967 } 3968 3969 /** 3970 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 3971 * @hw: pointer to the HW struct 3972 * @blk: hardware block 3973 * @vsi: the initial VSI that will be in VSIG 3974 * @lst: the list of profile that will be added to the VSIG 3975 * @new_vsig: return of new VSIG 3976 * @chg: the change list 3977 */ 3978 static int 3979 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 3980 struct list_head *lst, u16 *new_vsig, 3981 struct list_head *chg) 3982 { 3983 struct ice_vsig_prof *t; 3984 int status; 3985 u16 vsig; 3986 3987 vsig = ice_vsig_alloc(hw, blk); 3988 if (!vsig) 3989 return -EIO; 3990 3991 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 3992 if (status) 3993 return status; 3994 3995 list_for_each_entry(t, lst, list) { 3996 /* Reverse the order here since we are copying the list */ 3997 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 3998 true, chg); 3999 if (status) 4000 return status; 4001 } 4002 4003 *new_vsig = vsig; 4004 4005 return 0; 4006 } 4007 4008 /** 4009 * ice_find_prof_vsig - find a VSIG with a specific profile handle 4010 * @hw: pointer to the HW struct 4011 * @blk: hardware block 4012 * @hdl: the profile handle of the profile to search for 4013 * @vsig: returns the VSIG with the matching profile 4014 */ 4015 static bool 4016 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 4017 { 4018 struct ice_vsig_prof *t; 4019 struct list_head lst; 4020 int status; 4021 4022 INIT_LIST_HEAD(&lst); 4023 4024 t = kzalloc(sizeof(*t), GFP_KERNEL); 4025 if (!t) 4026 return false; 4027 4028 t->profile_cookie = hdl; 4029 list_add(&t->list, &lst); 4030 4031 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 4032 4033 list_del(&t->list); 4034 kfree(t); 4035 4036 return !status; 4037 } 4038 4039 /** 4040 * ice_add_prof_id_flow - add profile flow 4041 * @hw: pointer to the HW struct 4042 * @blk: hardware block 4043 * @vsi: the VSI to enable with the profile specified by ID 4044 * @hdl: profile handle 4045 * 4046 * Calling this function will update the hardware tables to enable the 4047 * profile indicated by the ID parameter for the VSIs specified in the VSI 4048 * array. Once successfully called, the flow will be enabled. 4049 */ 4050 int 4051 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4052 { 4053 struct ice_vsig_prof *tmp1, *del1; 4054 struct ice_chs_chg *tmp, *del; 4055 struct list_head union_lst; 4056 struct list_head chg; 4057 int status; 4058 u16 vsig; 4059 4060 INIT_LIST_HEAD(&union_lst); 4061 INIT_LIST_HEAD(&chg); 4062 4063 /* Get profile */ 4064 status = ice_get_prof(hw, blk, hdl, &chg); 4065 if (status) 4066 return status; 4067 4068 /* determine if VSI is already part of a VSIG */ 4069 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4070 if (!status && vsig) { 4071 bool only_vsi; 4072 u16 or_vsig; 4073 u16 ref; 4074 4075 /* found in VSIG */ 4076 or_vsig = vsig; 4077 4078 /* make sure that there is no overlap/conflict between the new 4079 * characteristics and the existing ones; we don't support that 4080 * scenario 4081 */ 4082 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 4083 status = -EEXIST; 4084 goto err_ice_add_prof_id_flow; 4085 } 4086 4087 /* last VSI in the VSIG? */ 4088 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4089 if (status) 4090 goto err_ice_add_prof_id_flow; 4091 only_vsi = (ref == 1); 4092 4093 /* create a union of the current profiles and the one being 4094 * added 4095 */ 4096 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 4097 if (status) 4098 goto err_ice_add_prof_id_flow; 4099 4100 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 4101 if (status) 4102 goto err_ice_add_prof_id_flow; 4103 4104 /* search for an existing VSIG with an exact charc match */ 4105 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 4106 if (!status) { 4107 /* move VSI to the VSIG that matches */ 4108 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4109 if (status) 4110 goto err_ice_add_prof_id_flow; 4111 4112 /* VSI has been moved out of or_vsig. If the or_vsig had 4113 * only that VSI it is now empty and can be removed. 4114 */ 4115 if (only_vsi) { 4116 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 4117 if (status) 4118 goto err_ice_add_prof_id_flow; 4119 } 4120 } else if (only_vsi) { 4121 /* If the original VSIG only contains one VSI, then it 4122 * will be the requesting VSI. In this case the VSI is 4123 * not sharing entries and we can simply add the new 4124 * profile to the VSIG. 4125 */ 4126 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 4127 &chg); 4128 if (status) 4129 goto err_ice_add_prof_id_flow; 4130 4131 /* Adjust priorities */ 4132 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4133 if (status) 4134 goto err_ice_add_prof_id_flow; 4135 } else { 4136 /* No match, so we need a new VSIG */ 4137 status = ice_create_vsig_from_lst(hw, blk, vsi, 4138 &union_lst, &vsig, 4139 &chg); 4140 if (status) 4141 goto err_ice_add_prof_id_flow; 4142 4143 /* Adjust priorities */ 4144 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4145 if (status) 4146 goto err_ice_add_prof_id_flow; 4147 } 4148 } else { 4149 /* need to find or add a VSIG */ 4150 /* search for an existing VSIG with an exact charc match */ 4151 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 4152 /* found an exact match */ 4153 /* add or move VSI to the VSIG that matches */ 4154 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4155 if (status) 4156 goto err_ice_add_prof_id_flow; 4157 } else { 4158 /* we did not find an exact match */ 4159 /* we need to add a VSIG */ 4160 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 4161 &chg); 4162 if (status) 4163 goto err_ice_add_prof_id_flow; 4164 } 4165 } 4166 4167 /* update hardware */ 4168 if (!status) 4169 status = ice_upd_prof_hw(hw, blk, &chg); 4170 4171 err_ice_add_prof_id_flow: 4172 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4173 list_del(&del->list_entry); 4174 devm_kfree(ice_hw_to_dev(hw), del); 4175 } 4176 4177 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 4178 list_del(&del1->list); 4179 devm_kfree(ice_hw_to_dev(hw), del1); 4180 } 4181 4182 return status; 4183 } 4184 4185 /** 4186 * ice_flow_assoc_fdir_prof - add an FDIR profile for main/ctrl VSI 4187 * @hw: pointer to the HW struct 4188 * @blk: HW block 4189 * @dest_vsi: dest VSI 4190 * @fdir_vsi: fdir programming VSI 4191 * @hdl: profile handle 4192 * 4193 * Update the hardware tables to enable the FDIR profile indicated by @hdl for 4194 * the VSI specified by @dest_vsi. On success, the flow will be enabled. 4195 * 4196 * Return: 0 on success or negative errno on failure. 4197 */ 4198 int 4199 ice_flow_assoc_fdir_prof(struct ice_hw *hw, enum ice_block blk, 4200 u16 dest_vsi, u16 fdir_vsi, u64 hdl) 4201 { 4202 u16 vsi_num; 4203 int status; 4204 4205 vsi_num = ice_get_hw_vsi_num(hw, dest_vsi); 4206 status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl); 4207 if (status) { 4208 ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for main VSI flow entry: %d\n", 4209 status); 4210 return status; 4211 } 4212 4213 if (blk != ICE_BLK_FD) 4214 return 0; 4215 4216 vsi_num = ice_get_hw_vsi_num(hw, fdir_vsi); 4217 status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl); 4218 if (status) { 4219 ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for ctrl VSI flow entry: %d\n", 4220 status); 4221 goto err; 4222 } 4223 4224 return 0; 4225 4226 err: 4227 vsi_num = ice_get_hw_vsi_num(hw, dest_vsi); 4228 ice_rem_prof_id_flow(hw, blk, vsi_num, hdl); 4229 4230 return status; 4231 } 4232 4233 /** 4234 * ice_rem_prof_from_list - remove a profile from list 4235 * @hw: pointer to the HW struct 4236 * @lst: list to remove the profile from 4237 * @hdl: the profile handle indicating the profile to remove 4238 */ 4239 static int 4240 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 4241 { 4242 struct ice_vsig_prof *ent, *tmp; 4243 4244 list_for_each_entry_safe(ent, tmp, lst, list) 4245 if (ent->profile_cookie == hdl) { 4246 list_del(&ent->list); 4247 devm_kfree(ice_hw_to_dev(hw), ent); 4248 return 0; 4249 } 4250 4251 return -ENOENT; 4252 } 4253 4254 /** 4255 * ice_rem_prof_id_flow - remove flow 4256 * @hw: pointer to the HW struct 4257 * @blk: hardware block 4258 * @vsi: the VSI from which to remove the profile specified by ID 4259 * @hdl: profile tracking handle 4260 * 4261 * Calling this function will update the hardware tables to remove the 4262 * profile indicated by the ID parameter for the VSIs specified in the VSI 4263 * array. Once successfully called, the flow will be disabled. 4264 */ 4265 int 4266 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4267 { 4268 struct ice_vsig_prof *tmp1, *del1; 4269 struct ice_chs_chg *tmp, *del; 4270 struct list_head chg, copy; 4271 int status; 4272 u16 vsig; 4273 4274 INIT_LIST_HEAD(©); 4275 INIT_LIST_HEAD(&chg); 4276 4277 /* determine if VSI is already part of a VSIG */ 4278 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4279 if (!status && vsig) { 4280 bool last_profile; 4281 bool only_vsi; 4282 u16 ref; 4283 4284 /* found in VSIG */ 4285 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 4286 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4287 if (status) 4288 goto err_ice_rem_prof_id_flow; 4289 only_vsi = (ref == 1); 4290 4291 if (only_vsi) { 4292 /* If the original VSIG only contains one reference, 4293 * which will be the requesting VSI, then the VSI is not 4294 * sharing entries and we can simply remove the specific 4295 * characteristics from the VSIG. 4296 */ 4297 4298 if (last_profile) { 4299 /* If there are no profiles left for this VSIG, 4300 * then simply remove the VSIG. 4301 */ 4302 status = ice_rem_vsig(hw, blk, vsig, &chg); 4303 if (status) 4304 goto err_ice_rem_prof_id_flow; 4305 } else { 4306 status = ice_rem_prof_id_vsig(hw, blk, vsig, 4307 hdl, &chg); 4308 if (status) 4309 goto err_ice_rem_prof_id_flow; 4310 4311 /* Adjust priorities */ 4312 status = ice_adj_prof_priorities(hw, blk, vsig, 4313 &chg); 4314 if (status) 4315 goto err_ice_rem_prof_id_flow; 4316 } 4317 4318 } else { 4319 /* Make a copy of the VSIG's list of Profiles */ 4320 status = ice_get_profs_vsig(hw, blk, vsig, ©); 4321 if (status) 4322 goto err_ice_rem_prof_id_flow; 4323 4324 /* Remove specified profile entry from the list */ 4325 status = ice_rem_prof_from_list(hw, ©, hdl); 4326 if (status) 4327 goto err_ice_rem_prof_id_flow; 4328 4329 if (list_empty(©)) { 4330 status = ice_move_vsi(hw, blk, vsi, 4331 ICE_DEFAULT_VSIG, &chg); 4332 if (status) 4333 goto err_ice_rem_prof_id_flow; 4334 4335 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 4336 &vsig)) { 4337 /* found an exact match */ 4338 /* add or move VSI to the VSIG that matches */ 4339 /* Search for a VSIG with a matching profile 4340 * list 4341 */ 4342 4343 /* Found match, move VSI to the matching VSIG */ 4344 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4345 if (status) 4346 goto err_ice_rem_prof_id_flow; 4347 } else { 4348 /* since no existing VSIG supports this 4349 * characteristic pattern, we need to create a 4350 * new VSIG and TCAM entries 4351 */ 4352 status = ice_create_vsig_from_lst(hw, blk, vsi, 4353 ©, &vsig, 4354 &chg); 4355 if (status) 4356 goto err_ice_rem_prof_id_flow; 4357 4358 /* Adjust priorities */ 4359 status = ice_adj_prof_priorities(hw, blk, vsig, 4360 &chg); 4361 if (status) 4362 goto err_ice_rem_prof_id_flow; 4363 } 4364 } 4365 } else { 4366 status = -ENOENT; 4367 } 4368 4369 /* update hardware tables */ 4370 if (!status) 4371 status = ice_upd_prof_hw(hw, blk, &chg); 4372 4373 err_ice_rem_prof_id_flow: 4374 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4375 list_del(&del->list_entry); 4376 devm_kfree(ice_hw_to_dev(hw), del); 4377 } 4378 4379 list_for_each_entry_safe(del1, tmp1, ©, list) { 4380 list_del(&del1->list); 4381 devm_kfree(ice_hw_to_dev(hw), del1); 4382 } 4383 4384 return status; 4385 } 4386