xref: /linux/drivers/net/ethernet/intel/ice/ice_flex_pipe.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 #include "ice.h"
8 
9 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
10 	/* SWITCH */
11 	{
12 		ICE_SID_XLT0_SW,
13 		ICE_SID_XLT_KEY_BUILDER_SW,
14 		ICE_SID_XLT1_SW,
15 		ICE_SID_XLT2_SW,
16 		ICE_SID_PROFID_TCAM_SW,
17 		ICE_SID_PROFID_REDIR_SW,
18 		ICE_SID_FLD_VEC_SW,
19 		ICE_SID_CDID_KEY_BUILDER_SW,
20 		ICE_SID_CDID_REDIR_SW
21 	},
22 
23 	/* ACL */
24 	{
25 		ICE_SID_XLT0_ACL,
26 		ICE_SID_XLT_KEY_BUILDER_ACL,
27 		ICE_SID_XLT1_ACL,
28 		ICE_SID_XLT2_ACL,
29 		ICE_SID_PROFID_TCAM_ACL,
30 		ICE_SID_PROFID_REDIR_ACL,
31 		ICE_SID_FLD_VEC_ACL,
32 		ICE_SID_CDID_KEY_BUILDER_ACL,
33 		ICE_SID_CDID_REDIR_ACL
34 	},
35 
36 	/* FD */
37 	{
38 		ICE_SID_XLT0_FD,
39 		ICE_SID_XLT_KEY_BUILDER_FD,
40 		ICE_SID_XLT1_FD,
41 		ICE_SID_XLT2_FD,
42 		ICE_SID_PROFID_TCAM_FD,
43 		ICE_SID_PROFID_REDIR_FD,
44 		ICE_SID_FLD_VEC_FD,
45 		ICE_SID_CDID_KEY_BUILDER_FD,
46 		ICE_SID_CDID_REDIR_FD
47 	},
48 
49 	/* RSS */
50 	{
51 		ICE_SID_XLT0_RSS,
52 		ICE_SID_XLT_KEY_BUILDER_RSS,
53 		ICE_SID_XLT1_RSS,
54 		ICE_SID_XLT2_RSS,
55 		ICE_SID_PROFID_TCAM_RSS,
56 		ICE_SID_PROFID_REDIR_RSS,
57 		ICE_SID_FLD_VEC_RSS,
58 		ICE_SID_CDID_KEY_BUILDER_RSS,
59 		ICE_SID_CDID_REDIR_RSS
60 	},
61 
62 	/* PE */
63 	{
64 		ICE_SID_XLT0_PE,
65 		ICE_SID_XLT_KEY_BUILDER_PE,
66 		ICE_SID_XLT1_PE,
67 		ICE_SID_XLT2_PE,
68 		ICE_SID_PROFID_TCAM_PE,
69 		ICE_SID_PROFID_REDIR_PE,
70 		ICE_SID_FLD_VEC_PE,
71 		ICE_SID_CDID_KEY_BUILDER_PE,
72 		ICE_SID_CDID_REDIR_PE
73 	}
74 };
75 
76 /**
77  * ice_sect_id - returns section ID
78  * @blk: block type
79  * @sect: section type
80  *
81  * This helper function returns the proper section ID given a block type and a
82  * section type.
83  */
84 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
85 {
86 	return ice_sect_lkup[blk][sect];
87 }
88 
89 /**
90  * ice_hw_ptype_ena - check if the PTYPE is enabled or not
91  * @hw: pointer to the HW structure
92  * @ptype: the hardware PTYPE
93  */
94 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
95 {
96 	return ptype < ICE_FLOW_PTYPE_MAX &&
97 	       test_bit(ptype, hw->hw_ptype);
98 }
99 
100 /* Key creation */
101 
102 #define ICE_DC_KEY	0x1	/* don't care */
103 #define ICE_DC_KEYINV	0x1
104 #define ICE_NM_KEY	0x0	/* never match */
105 #define ICE_NM_KEYINV	0x0
106 #define ICE_0_KEY	0x1	/* match 0 */
107 #define ICE_0_KEYINV	0x0
108 #define ICE_1_KEY	0x0	/* match 1 */
109 #define ICE_1_KEYINV	0x1
110 
111 /**
112  * ice_gen_key_word - generate 16-bits of a key/mask word
113  * @val: the value
114  * @valid: valid bits mask (change only the valid bits)
115  * @dont_care: don't care mask
116  * @nvr_mtch: never match mask
117  * @key: pointer to an array of where the resulting key portion
118  * @key_inv: pointer to an array of where the resulting key invert portion
119  *
120  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
121  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
122  * of key and 8 bits of key invert.
123  *
124  *     '0' =    b01, always match a 0 bit
125  *     '1' =    b10, always match a 1 bit
126  *     '?' =    b11, don't care bit (always matches)
127  *     '~' =    b00, never match bit
128  *
129  * Input:
130  *          val:         b0  1  0  1  0  1
131  *          dont_care:   b0  0  1  1  0  0
132  *          never_mtch:  b0  0  0  0  1  1
133  *          ------------------------------
134  * Result:  key:        b01 10 11 11 00 00
135  */
136 static int
137 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
138 		 u8 *key_inv)
139 {
140 	u8 in_key = *key, in_key_inv = *key_inv;
141 	u8 i;
142 
143 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
144 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
145 		return -EIO;
146 
147 	*key = 0;
148 	*key_inv = 0;
149 
150 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
151 	for (i = 0; i < 8; i++) {
152 		*key >>= 1;
153 		*key_inv >>= 1;
154 
155 		if (!(valid & 0x1)) { /* change only valid bits */
156 			*key |= (in_key & 0x1) << 7;
157 			*key_inv |= (in_key_inv & 0x1) << 7;
158 		} else if (dont_care & 0x1) { /* don't care bit */
159 			*key |= ICE_DC_KEY << 7;
160 			*key_inv |= ICE_DC_KEYINV << 7;
161 		} else if (nvr_mtch & 0x1) { /* never match bit */
162 			*key |= ICE_NM_KEY << 7;
163 			*key_inv |= ICE_NM_KEYINV << 7;
164 		} else if (val & 0x01) { /* exact 1 match */
165 			*key |= ICE_1_KEY << 7;
166 			*key_inv |= ICE_1_KEYINV << 7;
167 		} else { /* exact 0 match */
168 			*key |= ICE_0_KEY << 7;
169 			*key_inv |= ICE_0_KEYINV << 7;
170 		}
171 
172 		dont_care >>= 1;
173 		nvr_mtch >>= 1;
174 		valid >>= 1;
175 		val >>= 1;
176 		in_key >>= 1;
177 		in_key_inv >>= 1;
178 	}
179 
180 	return 0;
181 }
182 
183 /**
184  * ice_bits_max_set - determine if the number of bits set is within a maximum
185  * @mask: pointer to the byte array which is the mask
186  * @size: the number of bytes in the mask
187  * @max: the max number of set bits
188  *
189  * This function determines if there are at most 'max' number of bits set in an
190  * array. Returns true if the number for bits set is <= max or will return false
191  * otherwise.
192  */
193 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
194 {
195 	u16 count = 0;
196 	u16 i;
197 
198 	/* check each byte */
199 	for (i = 0; i < size; i++) {
200 		/* if 0, go to next byte */
201 		if (!mask[i])
202 			continue;
203 
204 		/* We know there is at least one set bit in this byte because of
205 		 * the above check; if we already have found 'max' number of
206 		 * bits set, then we can return failure now.
207 		 */
208 		if (count == max)
209 			return false;
210 
211 		/* count the bits in this byte, checking threshold */
212 		count += hweight8(mask[i]);
213 		if (count > max)
214 			return false;
215 	}
216 
217 	return true;
218 }
219 
220 /**
221  * ice_set_key - generate a variable sized key with multiples of 16-bits
222  * @key: pointer to where the key will be stored
223  * @size: the size of the complete key in bytes (must be even)
224  * @val: array of 8-bit values that makes up the value portion of the key
225  * @upd: array of 8-bit masks that determine what key portion to update
226  * @dc: array of 8-bit masks that make up the don't care mask
227  * @nm: array of 8-bit masks that make up the never match mask
228  * @off: the offset of the first byte in the key to update
229  * @len: the number of bytes in the key update
230  *
231  * This function generates a key from a value, a don't care mask and a never
232  * match mask.
233  * upd, dc, and nm are optional parameters, and can be NULL:
234  *	upd == NULL --> upd mask is all 1's (update all bits)
235  *	dc == NULL --> dc mask is all 0's (no don't care bits)
236  *	nm == NULL --> nm mask is all 0's (no never match bits)
237  */
238 static int
239 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
240 	    u16 len)
241 {
242 	u16 half_size;
243 	u16 i;
244 
245 	/* size must be a multiple of 2 bytes. */
246 	if (size % 2)
247 		return -EIO;
248 
249 	half_size = size / 2;
250 	if (off + len > half_size)
251 		return -EIO;
252 
253 	/* Make sure at most one bit is set in the never match mask. Having more
254 	 * than one never match mask bit set will cause HW to consume excessive
255 	 * power otherwise; this is a power management efficiency check.
256 	 */
257 #define ICE_NVR_MTCH_BITS_MAX	1
258 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
259 		return -EIO;
260 
261 	for (i = 0; i < len; i++)
262 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
263 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
264 				     key + off + i, key + half_size + off + i))
265 			return -EIO;
266 
267 	return 0;
268 }
269 
270 /**
271  * ice_acquire_change_lock
272  * @hw: pointer to the HW structure
273  * @access: access type (read or write)
274  *
275  * This function will request ownership of the change lock.
276  */
277 int
278 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
279 {
280 	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
281 			       ICE_CHANGE_LOCK_TIMEOUT);
282 }
283 
284 /**
285  * ice_release_change_lock
286  * @hw: pointer to the HW structure
287  *
288  * This function will release the change lock using the proper Admin Command.
289  */
290 void ice_release_change_lock(struct ice_hw *hw)
291 {
292 	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
293 }
294 
295 /**
296  * ice_get_open_tunnel_port - retrieve an open tunnel port
297  * @hw: pointer to the HW structure
298  * @port: returns open port
299  * @type: type of tunnel, can be TNL_LAST if it doesn't matter
300  */
301 bool
302 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
303 			 enum ice_tunnel_type type)
304 {
305 	bool res = false;
306 	u16 i;
307 
308 	mutex_lock(&hw->tnl_lock);
309 
310 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
311 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
312 		    (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
313 			*port = hw->tnl.tbl[i].port;
314 			res = true;
315 			break;
316 		}
317 
318 	mutex_unlock(&hw->tnl_lock);
319 
320 	return res;
321 }
322 
323 /**
324  * ice_upd_dvm_boost_entry
325  * @hw: pointer to the HW structure
326  * @entry: pointer to double vlan boost entry info
327  */
328 static int
329 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
330 {
331 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
332 	int status = -ENOSPC;
333 	struct ice_buf_build *bld;
334 	u8 val, dc, nm;
335 
336 	bld = ice_pkg_buf_alloc(hw);
337 	if (!bld)
338 		return -ENOMEM;
339 
340 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
341 	if (ice_pkg_buf_reserve_section(bld, 2))
342 		goto ice_upd_dvm_boost_entry_err;
343 
344 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
345 					    struct_size(sect_rx, tcam, 1));
346 	if (!sect_rx)
347 		goto ice_upd_dvm_boost_entry_err;
348 	sect_rx->count = cpu_to_le16(1);
349 
350 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
351 					    struct_size(sect_tx, tcam, 1));
352 	if (!sect_tx)
353 		goto ice_upd_dvm_boost_entry_err;
354 	sect_tx->count = cpu_to_le16(1);
355 
356 	/* copy original boost entry to update package buffer */
357 	memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
358 
359 	/* re-write the don't care and never match bits accordingly */
360 	if (entry->enable) {
361 		/* all bits are don't care */
362 		val = 0x00;
363 		dc = 0xFF;
364 		nm = 0x00;
365 	} else {
366 		/* disable, one never match bit, the rest are don't care */
367 		val = 0x00;
368 		dc = 0xF7;
369 		nm = 0x08;
370 	}
371 
372 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
373 		    &val, NULL, &dc, &nm, 0, sizeof(u8));
374 
375 	/* exact copy of entry to Tx section entry */
376 	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
377 
378 	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
379 
380 ice_upd_dvm_boost_entry_err:
381 	ice_pkg_buf_free(hw, bld);
382 
383 	return status;
384 }
385 
386 /**
387  * ice_set_dvm_boost_entries
388  * @hw: pointer to the HW structure
389  *
390  * Enable double vlan by updating the appropriate boost tcam entries.
391  */
392 int ice_set_dvm_boost_entries(struct ice_hw *hw)
393 {
394 	u16 i;
395 
396 	for (i = 0; i < hw->dvm_upd.count; i++) {
397 		int status;
398 
399 		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
400 		if (status)
401 			return status;
402 	}
403 
404 	return 0;
405 }
406 
407 /**
408  * ice_tunnel_idx_to_entry - convert linear index to the sparse one
409  * @hw: pointer to the HW structure
410  * @type: type of tunnel
411  * @idx: linear index
412  *
413  * Stack assumes we have 2 linear tables with indexes [0, count_valid),
414  * but really the port table may be sprase, and types are mixed, so convert
415  * the stack index into the device index.
416  */
417 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
418 				   u16 idx)
419 {
420 	u16 i;
421 
422 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
423 		if (hw->tnl.tbl[i].valid &&
424 		    hw->tnl.tbl[i].type == type &&
425 		    idx-- == 0)
426 			return i;
427 
428 	WARN_ON_ONCE(1);
429 	return 0;
430 }
431 
432 /**
433  * ice_create_tunnel
434  * @hw: pointer to the HW structure
435  * @index: device table entry
436  * @type: type of tunnel
437  * @port: port of tunnel to create
438  *
439  * Create a tunnel by updating the parse graph in the parser. We do that by
440  * creating a package buffer with the tunnel info and issuing an update package
441  * command.
442  */
443 static int
444 ice_create_tunnel(struct ice_hw *hw, u16 index,
445 		  enum ice_tunnel_type type, u16 port)
446 {
447 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
448 	struct ice_buf_build *bld;
449 	int status = -ENOSPC;
450 
451 	mutex_lock(&hw->tnl_lock);
452 
453 	bld = ice_pkg_buf_alloc(hw);
454 	if (!bld) {
455 		status = -ENOMEM;
456 		goto ice_create_tunnel_end;
457 	}
458 
459 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
460 	if (ice_pkg_buf_reserve_section(bld, 2))
461 		goto ice_create_tunnel_err;
462 
463 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
464 					    struct_size(sect_rx, tcam, 1));
465 	if (!sect_rx)
466 		goto ice_create_tunnel_err;
467 	sect_rx->count = cpu_to_le16(1);
468 
469 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
470 					    struct_size(sect_tx, tcam, 1));
471 	if (!sect_tx)
472 		goto ice_create_tunnel_err;
473 	sect_tx->count = cpu_to_le16(1);
474 
475 	/* copy original boost entry to update package buffer */
476 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
477 	       sizeof(*sect_rx->tcam));
478 
479 	/* over-write the never-match dest port key bits with the encoded port
480 	 * bits
481 	 */
482 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
483 		    (u8 *)&port, NULL, NULL, NULL,
484 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
485 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
486 
487 	/* exact copy of entry to Tx section entry */
488 	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
489 
490 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
491 	if (!status)
492 		hw->tnl.tbl[index].port = port;
493 
494 ice_create_tunnel_err:
495 	ice_pkg_buf_free(hw, bld);
496 
497 ice_create_tunnel_end:
498 	mutex_unlock(&hw->tnl_lock);
499 
500 	return status;
501 }
502 
503 /**
504  * ice_destroy_tunnel
505  * @hw: pointer to the HW structure
506  * @index: device table entry
507  * @type: type of tunnel
508  * @port: port of tunnel to destroy (ignored if the all parameter is true)
509  *
510  * Destroys a tunnel or all tunnels by creating an update package buffer
511  * targeting the specific updates requested and then performing an update
512  * package.
513  */
514 static int
515 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
516 		   u16 port)
517 {
518 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
519 	struct ice_buf_build *bld;
520 	int status = -ENOSPC;
521 
522 	mutex_lock(&hw->tnl_lock);
523 
524 	if (WARN_ON(!hw->tnl.tbl[index].valid ||
525 		    hw->tnl.tbl[index].type != type ||
526 		    hw->tnl.tbl[index].port != port)) {
527 		status = -EIO;
528 		goto ice_destroy_tunnel_end;
529 	}
530 
531 	bld = ice_pkg_buf_alloc(hw);
532 	if (!bld) {
533 		status = -ENOMEM;
534 		goto ice_destroy_tunnel_end;
535 	}
536 
537 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
538 	if (ice_pkg_buf_reserve_section(bld, 2))
539 		goto ice_destroy_tunnel_err;
540 
541 	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
542 					    struct_size(sect_rx, tcam, 1));
543 	if (!sect_rx)
544 		goto ice_destroy_tunnel_err;
545 	sect_rx->count = cpu_to_le16(1);
546 
547 	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
548 					    struct_size(sect_tx, tcam, 1));
549 	if (!sect_tx)
550 		goto ice_destroy_tunnel_err;
551 	sect_tx->count = cpu_to_le16(1);
552 
553 	/* copy original boost entry to update package buffer, one copy to Rx
554 	 * section, another copy to the Tx section
555 	 */
556 	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
557 	       sizeof(*sect_rx->tcam));
558 	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
559 	       sizeof(*sect_tx->tcam));
560 
561 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
562 	if (!status)
563 		hw->tnl.tbl[index].port = 0;
564 
565 ice_destroy_tunnel_err:
566 	ice_pkg_buf_free(hw, bld);
567 
568 ice_destroy_tunnel_end:
569 	mutex_unlock(&hw->tnl_lock);
570 
571 	return status;
572 }
573 
574 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
575 			    unsigned int idx, struct udp_tunnel_info *ti)
576 {
577 	struct ice_netdev_priv *np = netdev_priv(netdev);
578 	struct ice_vsi *vsi = np->vsi;
579 	struct ice_pf *pf = vsi->back;
580 	enum ice_tunnel_type tnl_type;
581 	int status;
582 	u16 index;
583 
584 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
585 	index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
586 
587 	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
588 	if (status) {
589 		netdev_err(netdev, "Error adding UDP tunnel - %d\n",
590 			   status);
591 		return -EIO;
592 	}
593 
594 	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
595 	return 0;
596 }
597 
598 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
599 			      unsigned int idx, struct udp_tunnel_info *ti)
600 {
601 	struct ice_netdev_priv *np = netdev_priv(netdev);
602 	struct ice_vsi *vsi = np->vsi;
603 	struct ice_pf *pf = vsi->back;
604 	enum ice_tunnel_type tnl_type;
605 	int status;
606 
607 	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
608 
609 	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
610 				    ntohs(ti->port));
611 	if (status) {
612 		netdev_err(netdev, "Error removing UDP tunnel - %d\n",
613 			   status);
614 		return -EIO;
615 	}
616 
617 	return 0;
618 }
619 
620 /**
621  * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
622  * @hw: pointer to the hardware structure
623  * @blk: hardware block
624  * @prof: profile ID
625  * @fv_idx: field vector word index
626  * @prot: variable to receive the protocol ID
627  * @off: variable to receive the protocol offset
628  */
629 int
630 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
631 		  u8 *prot, u16 *off)
632 {
633 	struct ice_fv_word *fv_ext;
634 
635 	if (prof >= hw->blk[blk].es.count)
636 		return -EINVAL;
637 
638 	if (fv_idx >= hw->blk[blk].es.fvw)
639 		return -EINVAL;
640 
641 	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
642 
643 	*prot = fv_ext[fv_idx].prot_id;
644 	*off = fv_ext[fv_idx].off;
645 
646 	return 0;
647 }
648 
649 /* PTG Management */
650 
651 /**
652  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
653  * @hw: pointer to the hardware structure
654  * @blk: HW block
655  * @ptype: the ptype to search for
656  * @ptg: pointer to variable that receives the PTG
657  *
658  * This function will search the PTGs for a particular ptype, returning the
659  * PTG ID that contains it through the PTG parameter, with the value of
660  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
661  */
662 static int
663 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
664 {
665 	if (ptype >= ICE_XLT1_CNT || !ptg)
666 		return -EINVAL;
667 
668 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
669 	return 0;
670 }
671 
672 /**
673  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
674  * @hw: pointer to the hardware structure
675  * @blk: HW block
676  * @ptg: the PTG to allocate
677  *
678  * This function allocates a given packet type group ID specified by the PTG
679  * parameter.
680  */
681 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
682 {
683 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
684 }
685 
686 /**
687  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
688  * @hw: pointer to the hardware structure
689  * @blk: HW block
690  * @ptype: the ptype to remove
691  * @ptg: the PTG to remove the ptype from
692  *
693  * This function will remove the ptype from the specific PTG, and move it to
694  * the default PTG (ICE_DEFAULT_PTG).
695  */
696 static int
697 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
698 {
699 	struct ice_ptg_ptype **ch;
700 	struct ice_ptg_ptype *p;
701 
702 	if (ptype > ICE_XLT1_CNT - 1)
703 		return -EINVAL;
704 
705 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
706 		return -ENOENT;
707 
708 	/* Should not happen if .in_use is set, bad config */
709 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
710 		return -EIO;
711 
712 	/* find the ptype within this PTG, and bypass the link over it */
713 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
714 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
715 	while (p) {
716 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
717 			*ch = p->next_ptype;
718 			break;
719 		}
720 
721 		ch = &p->next_ptype;
722 		p = p->next_ptype;
723 	}
724 
725 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
726 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
727 
728 	return 0;
729 }
730 
731 /**
732  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
733  * @hw: pointer to the hardware structure
734  * @blk: HW block
735  * @ptype: the ptype to add or move
736  * @ptg: the PTG to add or move the ptype to
737  *
738  * This function will either add or move a ptype to a particular PTG depending
739  * on if the ptype is already part of another group. Note that using a
740  * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
741  * default PTG.
742  */
743 static int
744 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
745 {
746 	u8 original_ptg;
747 	int status;
748 
749 	if (ptype > ICE_XLT1_CNT - 1)
750 		return -EINVAL;
751 
752 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
753 		return -ENOENT;
754 
755 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
756 	if (status)
757 		return status;
758 
759 	/* Is ptype already in the correct PTG? */
760 	if (original_ptg == ptg)
761 		return 0;
762 
763 	/* Remove from original PTG and move back to the default PTG */
764 	if (original_ptg != ICE_DEFAULT_PTG)
765 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
766 
767 	/* Moving to default PTG? Then we're done with this request */
768 	if (ptg == ICE_DEFAULT_PTG)
769 		return 0;
770 
771 	/* Add ptype to PTG at beginning of list */
772 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
773 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
774 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
775 		&hw->blk[blk].xlt1.ptypes[ptype];
776 
777 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
778 	hw->blk[blk].xlt1.t[ptype] = ptg;
779 
780 	return 0;
781 }
782 
783 /* Block / table size info */
784 struct ice_blk_size_details {
785 	u16 xlt1;			/* # XLT1 entries */
786 	u16 xlt2;			/* # XLT2 entries */
787 	u16 prof_tcam;			/* # profile ID TCAM entries */
788 	u16 prof_id;			/* # profile IDs */
789 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
790 	u16 prof_redir;			/* # profile redirection entries */
791 	u16 es;				/* # extraction sequence entries */
792 	u16 fvw;			/* # field vector words */
793 	u8 overwrite;			/* overwrite existing entries allowed */
794 	u8 reverse;			/* reverse FV order */
795 };
796 
797 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
798 	/**
799 	 * Table Definitions
800 	 * XLT1 - Number of entries in XLT1 table
801 	 * XLT2 - Number of entries in XLT2 table
802 	 * TCAM - Number of entries Profile ID TCAM table
803 	 * CDID - Control Domain ID of the hardware block
804 	 * PRED - Number of entries in the Profile Redirection Table
805 	 * FV   - Number of entries in the Field Vector
806 	 * FVW  - Width (in WORDs) of the Field Vector
807 	 * OVR  - Overwrite existing table entries
808 	 * REV  - Reverse FV
809 	 */
810 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
811 	/*          Overwrite   , Reverse FV */
812 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
813 		    false, false },
814 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
815 		    false, false },
816 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
817 		    false, true  },
818 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
819 		    true,  true  },
820 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
821 		    false, false },
822 };
823 
824 enum ice_sid_all {
825 	ICE_SID_XLT1_OFF = 0,
826 	ICE_SID_XLT2_OFF,
827 	ICE_SID_PR_OFF,
828 	ICE_SID_PR_REDIR_OFF,
829 	ICE_SID_ES_OFF,
830 	ICE_SID_OFF_COUNT,
831 };
832 
833 /* Characteristic handling */
834 
835 /**
836  * ice_match_prop_lst - determine if properties of two lists match
837  * @list1: first properties list
838  * @list2: second properties list
839  *
840  * Count, cookies and the order must match in order to be considered equivalent.
841  */
842 static bool
843 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
844 {
845 	struct ice_vsig_prof *tmp1;
846 	struct ice_vsig_prof *tmp2;
847 	u16 chk_count = 0;
848 	u16 count = 0;
849 
850 	/* compare counts */
851 	list_for_each_entry(tmp1, list1, list)
852 		count++;
853 	list_for_each_entry(tmp2, list2, list)
854 		chk_count++;
855 	if (!count || count != chk_count)
856 		return false;
857 
858 	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
859 	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
860 
861 	/* profile cookies must compare, and in the exact same order to take
862 	 * into account priority
863 	 */
864 	while (count--) {
865 		if (tmp2->profile_cookie != tmp1->profile_cookie)
866 			return false;
867 
868 		tmp1 = list_next_entry(tmp1, list);
869 		tmp2 = list_next_entry(tmp2, list);
870 	}
871 
872 	return true;
873 }
874 
875 /* VSIG Management */
876 
877 /**
878  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
879  * @hw: pointer to the hardware structure
880  * @blk: HW block
881  * @vsi: VSI of interest
882  * @vsig: pointer to receive the VSI group
883  *
884  * This function will lookup the VSI entry in the XLT2 list and return
885  * the VSI group its associated with.
886  */
887 static int
888 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
889 {
890 	if (!vsig || vsi >= ICE_MAX_VSI)
891 		return -EINVAL;
892 
893 	/* As long as there's a default or valid VSIG associated with the input
894 	 * VSI, the functions returns a success. Any handling of VSIG will be
895 	 * done by the following add, update or remove functions.
896 	 */
897 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
898 
899 	return 0;
900 }
901 
902 /**
903  * ice_vsig_alloc_val - allocate a new VSIG by value
904  * @hw: pointer to the hardware structure
905  * @blk: HW block
906  * @vsig: the VSIG to allocate
907  *
908  * This function will allocate a given VSIG specified by the VSIG parameter.
909  */
910 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
911 {
912 	u16 idx = vsig & ICE_VSIG_IDX_M;
913 
914 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
915 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
916 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
917 	}
918 
919 	return ICE_VSIG_VALUE(idx, hw->pf_id);
920 }
921 
922 /**
923  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
924  * @hw: pointer to the hardware structure
925  * @blk: HW block
926  *
927  * This function will iterate through the VSIG list and mark the first
928  * unused entry for the new VSIG entry as used and return that value.
929  */
930 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
931 {
932 	u16 i;
933 
934 	for (i = 1; i < ICE_MAX_VSIGS; i++)
935 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
936 			return ice_vsig_alloc_val(hw, blk, i);
937 
938 	return ICE_DEFAULT_VSIG;
939 }
940 
941 /**
942  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
943  * @hw: pointer to the hardware structure
944  * @blk: HW block
945  * @chs: characteristic list
946  * @vsig: returns the VSIG with the matching profiles, if found
947  *
948  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
949  * a group have the same characteristic set. To check if there exists a VSIG
950  * which has the same characteristics as the input characteristics; this
951  * function will iterate through the XLT2 list and return the VSIG that has a
952  * matching configuration. In order to make sure that priorities are accounted
953  * for, the list must match exactly, including the order in which the
954  * characteristics are listed.
955  */
956 static int
957 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
958 			struct list_head *chs, u16 *vsig)
959 {
960 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
961 	u16 i;
962 
963 	for (i = 0; i < xlt2->count; i++)
964 		if (xlt2->vsig_tbl[i].in_use &&
965 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
966 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
967 			return 0;
968 		}
969 
970 	return -ENOENT;
971 }
972 
973 /**
974  * ice_vsig_free - free VSI group
975  * @hw: pointer to the hardware structure
976  * @blk: HW block
977  * @vsig: VSIG to remove
978  *
979  * The function will remove all VSIs associated with the input VSIG and move
980  * them to the DEFAULT_VSIG and mark the VSIG available.
981  */
982 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
983 {
984 	struct ice_vsig_prof *dtmp, *del;
985 	struct ice_vsig_vsi *vsi_cur;
986 	u16 idx;
987 
988 	idx = vsig & ICE_VSIG_IDX_M;
989 	if (idx >= ICE_MAX_VSIGS)
990 		return -EINVAL;
991 
992 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
993 		return -ENOENT;
994 
995 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
996 
997 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
998 	/* If the VSIG has at least 1 VSI then iterate through the
999 	 * list and remove the VSIs before deleting the group.
1000 	 */
1001 	if (vsi_cur) {
1002 		/* remove all vsis associated with this VSIG XLT2 entry */
1003 		do {
1004 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1005 
1006 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
1007 			vsi_cur->changed = 1;
1008 			vsi_cur->next_vsi = NULL;
1009 			vsi_cur = tmp;
1010 		} while (vsi_cur);
1011 
1012 		/* NULL terminate head of VSI list */
1013 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1014 	}
1015 
1016 	/* free characteristic list */
1017 	list_for_each_entry_safe(del, dtmp,
1018 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1019 				 list) {
1020 		list_del(&del->list);
1021 		devm_kfree(ice_hw_to_dev(hw), del);
1022 	}
1023 
1024 	/* if VSIG characteristic list was cleared for reset
1025 	 * re-initialize the list head
1026 	 */
1027 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * ice_vsig_remove_vsi - remove VSI from VSIG
1034  * @hw: pointer to the hardware structure
1035  * @blk: HW block
1036  * @vsi: VSI to remove
1037  * @vsig: VSI group to remove from
1038  *
1039  * The function will remove the input VSI from its VSI group and move it
1040  * to the DEFAULT_VSIG.
1041  */
1042 static int
1043 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1044 {
1045 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1046 	u16 idx;
1047 
1048 	idx = vsig & ICE_VSIG_IDX_M;
1049 
1050 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1051 		return -EINVAL;
1052 
1053 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1054 		return -ENOENT;
1055 
1056 	/* entry already in default VSIG, don't have to remove */
1057 	if (idx == ICE_DEFAULT_VSIG)
1058 		return 0;
1059 
1060 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1061 	if (!(*vsi_head))
1062 		return -EIO;
1063 
1064 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1065 	vsi_cur = (*vsi_head);
1066 
1067 	/* iterate the VSI list, skip over the entry to be removed */
1068 	while (vsi_cur) {
1069 		if (vsi_tgt == vsi_cur) {
1070 			(*vsi_head) = vsi_cur->next_vsi;
1071 			break;
1072 		}
1073 		vsi_head = &vsi_cur->next_vsi;
1074 		vsi_cur = vsi_cur->next_vsi;
1075 	}
1076 
1077 	/* verify if VSI was removed from group list */
1078 	if (!vsi_cur)
1079 		return -ENOENT;
1080 
1081 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
1082 	vsi_cur->changed = 1;
1083 	vsi_cur->next_vsi = NULL;
1084 
1085 	return 0;
1086 }
1087 
1088 /**
1089  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1090  * @hw: pointer to the hardware structure
1091  * @blk: HW block
1092  * @vsi: VSI to move
1093  * @vsig: destination VSI group
1094  *
1095  * This function will move or add the input VSI to the target VSIG.
1096  * The function will find the original VSIG the VSI belongs to and
1097  * move the entry to the DEFAULT_VSIG, update the original VSIG and
1098  * then move entry to the new VSIG.
1099  */
1100 static int
1101 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1102 {
1103 	struct ice_vsig_vsi *tmp;
1104 	u16 orig_vsig, idx;
1105 	int status;
1106 
1107 	idx = vsig & ICE_VSIG_IDX_M;
1108 
1109 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1110 		return -EINVAL;
1111 
1112 	/* if VSIG not in use and VSIG is not default type this VSIG
1113 	 * doesn't exist.
1114 	 */
1115 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1116 	    vsig != ICE_DEFAULT_VSIG)
1117 		return -ENOENT;
1118 
1119 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1120 	if (status)
1121 		return status;
1122 
1123 	/* no update required if vsigs match */
1124 	if (orig_vsig == vsig)
1125 		return 0;
1126 
1127 	if (orig_vsig != ICE_DEFAULT_VSIG) {
1128 		/* remove entry from orig_vsig and add to default VSIG */
1129 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1130 		if (status)
1131 			return status;
1132 	}
1133 
1134 	if (idx == ICE_DEFAULT_VSIG)
1135 		return 0;
1136 
1137 	/* Create VSI entry and add VSIG and prop_mask values */
1138 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1139 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1140 
1141 	/* Add new entry to the head of the VSIG list */
1142 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1143 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1144 		&hw->blk[blk].xlt2.vsis[vsi];
1145 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1146 	hw->blk[blk].xlt2.t[vsi] = vsig;
1147 
1148 	return 0;
1149 }
1150 
1151 /**
1152  * ice_prof_has_mask_idx - determine if profile index masking is identical
1153  * @hw: pointer to the hardware structure
1154  * @blk: HW block
1155  * @prof: profile to check
1156  * @idx: profile index to check
1157  * @mask: mask to match
1158  */
1159 static bool
1160 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
1161 		      u16 mask)
1162 {
1163 	bool expect_no_mask = false;
1164 	bool found = false;
1165 	bool match = false;
1166 	u16 i;
1167 
1168 	/* If mask is 0x0000 or 0xffff, then there is no masking */
1169 	if (mask == 0 || mask == 0xffff)
1170 		expect_no_mask = true;
1171 
1172 	/* Scan the enabled masks on this profile, for the specified idx */
1173 	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
1174 	     hw->blk[blk].masks.count; i++)
1175 		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
1176 			if (hw->blk[blk].masks.masks[i].in_use &&
1177 			    hw->blk[blk].masks.masks[i].idx == idx) {
1178 				found = true;
1179 				if (hw->blk[blk].masks.masks[i].mask == mask)
1180 					match = true;
1181 				break;
1182 			}
1183 
1184 	if (expect_no_mask) {
1185 		if (found)
1186 			return false;
1187 	} else {
1188 		if (!match)
1189 			return false;
1190 	}
1191 
1192 	return true;
1193 }
1194 
1195 /**
1196  * ice_prof_has_mask - determine if profile masking is identical
1197  * @hw: pointer to the hardware structure
1198  * @blk: HW block
1199  * @prof: profile to check
1200  * @masks: masks to match
1201  */
1202 static bool
1203 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
1204 {
1205 	u16 i;
1206 
1207 	/* es->mask_ena[prof] will have the mask */
1208 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
1209 		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
1210 			return false;
1211 
1212 	return true;
1213 }
1214 
1215 /**
1216  * ice_find_prof_id_with_mask - find profile ID for a given field vector
1217  * @hw: pointer to the hardware structure
1218  * @blk: HW block
1219  * @fv: field vector to search for
1220  * @masks: masks for FV
1221  * @symm: symmetric setting for RSS flows
1222  * @prof_id: receives the profile ID
1223  */
1224 static int
1225 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
1226 			   struct ice_fv_word *fv, u16 *masks, bool symm,
1227 			   u8 *prof_id)
1228 {
1229 	struct ice_es *es = &hw->blk[blk].es;
1230 	u8 i;
1231 
1232 	/* For FD, we don't want to re-use a existed profile with the same
1233 	 * field vector and mask. This will cause rule interference.
1234 	 */
1235 	if (blk == ICE_BLK_FD)
1236 		return -ENOENT;
1237 
1238 	for (i = 0; i < (u8)es->count; i++) {
1239 		u16 off = i * es->fvw;
1240 
1241 		if (blk == ICE_BLK_RSS && es->symm[i] != symm)
1242 			continue;
1243 
1244 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1245 			continue;
1246 
1247 		/* check if masks settings are the same for this profile */
1248 		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
1249 			continue;
1250 
1251 		*prof_id = i;
1252 		return 0;
1253 	}
1254 
1255 	return -ENOENT;
1256 }
1257 
1258 /**
1259  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1260  * @blk: the block type
1261  * @rsrc_type: pointer to variable to receive the resource type
1262  */
1263 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1264 {
1265 	switch (blk) {
1266 	case ICE_BLK_FD:
1267 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
1268 		break;
1269 	case ICE_BLK_RSS:
1270 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1271 		break;
1272 	default:
1273 		return false;
1274 	}
1275 	return true;
1276 }
1277 
1278 /**
1279  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1280  * @blk: the block type
1281  * @rsrc_type: pointer to variable to receive the resource type
1282  */
1283 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1284 {
1285 	switch (blk) {
1286 	case ICE_BLK_FD:
1287 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
1288 		break;
1289 	case ICE_BLK_RSS:
1290 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1291 		break;
1292 	default:
1293 		return false;
1294 	}
1295 	return true;
1296 }
1297 
1298 /**
1299  * ice_alloc_tcam_ent - allocate hardware TCAM entry
1300  * @hw: pointer to the HW struct
1301  * @blk: the block to allocate the TCAM for
1302  * @btm: true to allocate from bottom of table, false to allocate from top
1303  * @tcam_idx: pointer to variable to receive the TCAM entry
1304  *
1305  * This function allocates a new entry in a Profile ID TCAM for a specific
1306  * block.
1307  */
1308 static int
1309 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1310 		   u16 *tcam_idx)
1311 {
1312 	u16 res_type;
1313 
1314 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1315 		return -EINVAL;
1316 
1317 	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1318 }
1319 
1320 /**
1321  * ice_free_tcam_ent - free hardware TCAM entry
1322  * @hw: pointer to the HW struct
1323  * @blk: the block from which to free the TCAM entry
1324  * @tcam_idx: the TCAM entry to free
1325  *
1326  * This function frees an entry in a Profile ID TCAM for a specific block.
1327  */
1328 static int
1329 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1330 {
1331 	u16 res_type;
1332 
1333 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1334 		return -EINVAL;
1335 
1336 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1337 }
1338 
1339 /**
1340  * ice_alloc_prof_id - allocate profile ID
1341  * @hw: pointer to the HW struct
1342  * @blk: the block to allocate the profile ID for
1343  * @prof_id: pointer to variable to receive the profile ID
1344  *
1345  * This function allocates a new profile ID, which also corresponds to a Field
1346  * Vector (Extraction Sequence) entry.
1347  */
1348 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1349 {
1350 	u16 res_type;
1351 	u16 get_prof;
1352 	int status;
1353 
1354 	if (!ice_prof_id_rsrc_type(blk, &res_type))
1355 		return -EINVAL;
1356 
1357 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1358 	if (!status)
1359 		*prof_id = (u8)get_prof;
1360 
1361 	return status;
1362 }
1363 
1364 /**
1365  * ice_free_prof_id - free profile ID
1366  * @hw: pointer to the HW struct
1367  * @blk: the block from which to free the profile ID
1368  * @prof_id: the profile ID to free
1369  *
1370  * This function frees a profile ID, which also corresponds to a Field Vector.
1371  */
1372 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1373 {
1374 	u16 tmp_prof_id = (u16)prof_id;
1375 	u16 res_type;
1376 
1377 	if (!ice_prof_id_rsrc_type(blk, &res_type))
1378 		return -EINVAL;
1379 
1380 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1381 }
1382 
1383 /**
1384  * ice_prof_inc_ref - increment reference count for profile
1385  * @hw: pointer to the HW struct
1386  * @blk: the block from which to free the profile ID
1387  * @prof_id: the profile ID for which to increment the reference count
1388  */
1389 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1390 {
1391 	if (prof_id > hw->blk[blk].es.count)
1392 		return -EINVAL;
1393 
1394 	hw->blk[blk].es.ref_count[prof_id]++;
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * ice_write_prof_mask_reg - write profile mask register
1401  * @hw: pointer to the HW struct
1402  * @blk: hardware block
1403  * @mask_idx: mask index
1404  * @idx: index of the FV which will use the mask
1405  * @mask: the 16-bit mask
1406  */
1407 static void
1408 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
1409 			u16 idx, u16 mask)
1410 {
1411 	u32 offset;
1412 	u32 val;
1413 
1414 	switch (blk) {
1415 	case ICE_BLK_RSS:
1416 		offset = GLQF_HMASK(mask_idx);
1417 		val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx);
1418 		val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask);
1419 		break;
1420 	case ICE_BLK_FD:
1421 		offset = GLQF_FDMASK(mask_idx);
1422 		val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx);
1423 		val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask);
1424 		break;
1425 	default:
1426 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1427 			  blk);
1428 		return;
1429 	}
1430 
1431 	wr32(hw, offset, val);
1432 	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
1433 		  blk, idx, offset, val);
1434 }
1435 
1436 /**
1437  * ice_write_prof_mask_enable_res - write profile mask enable register
1438  * @hw: pointer to the HW struct
1439  * @blk: hardware block
1440  * @prof_id: profile ID
1441  * @enable_mask: enable mask
1442  */
1443 static void
1444 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
1445 			       u16 prof_id, u32 enable_mask)
1446 {
1447 	u32 offset;
1448 
1449 	switch (blk) {
1450 	case ICE_BLK_RSS:
1451 		offset = GLQF_HMASK_SEL(prof_id);
1452 		break;
1453 	case ICE_BLK_FD:
1454 		offset = GLQF_FDMASK_SEL(prof_id);
1455 		break;
1456 	default:
1457 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1458 			  blk);
1459 		return;
1460 	}
1461 
1462 	wr32(hw, offset, enable_mask);
1463 	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
1464 		  blk, prof_id, offset, enable_mask);
1465 }
1466 
1467 /**
1468  * ice_init_prof_masks - initial prof masks
1469  * @hw: pointer to the HW struct
1470  * @blk: hardware block
1471  */
1472 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
1473 {
1474 	u16 per_pf;
1475 	u16 i;
1476 
1477 	mutex_init(&hw->blk[blk].masks.lock);
1478 
1479 	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
1480 
1481 	hw->blk[blk].masks.count = per_pf;
1482 	hw->blk[blk].masks.first = hw->pf_id * per_pf;
1483 
1484 	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
1485 
1486 	for (i = hw->blk[blk].masks.first;
1487 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1488 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1489 }
1490 
1491 /**
1492  * ice_init_all_prof_masks - initialize all prof masks
1493  * @hw: pointer to the HW struct
1494  */
1495 static void ice_init_all_prof_masks(struct ice_hw *hw)
1496 {
1497 	ice_init_prof_masks(hw, ICE_BLK_RSS);
1498 	ice_init_prof_masks(hw, ICE_BLK_FD);
1499 }
1500 
1501 /**
1502  * ice_alloc_prof_mask - allocate profile mask
1503  * @hw: pointer to the HW struct
1504  * @blk: hardware block
1505  * @idx: index of FV which will use the mask
1506  * @mask: the 16-bit mask
1507  * @mask_idx: variable to receive the mask index
1508  */
1509 static int
1510 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
1511 		    u16 *mask_idx)
1512 {
1513 	bool found_unused = false, found_copy = false;
1514 	u16 unused_idx = 0, copy_idx = 0;
1515 	int status = -ENOSPC;
1516 	u16 i;
1517 
1518 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1519 		return -EINVAL;
1520 
1521 	mutex_lock(&hw->blk[blk].masks.lock);
1522 
1523 	for (i = hw->blk[blk].masks.first;
1524 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1525 		if (hw->blk[blk].masks.masks[i].in_use) {
1526 			/* if mask is in use and it exactly duplicates the
1527 			 * desired mask and index, then in can be reused
1528 			 */
1529 			if (hw->blk[blk].masks.masks[i].mask == mask &&
1530 			    hw->blk[blk].masks.masks[i].idx == idx) {
1531 				found_copy = true;
1532 				copy_idx = i;
1533 				break;
1534 			}
1535 		} else {
1536 			/* save off unused index, but keep searching in case
1537 			 * there is an exact match later on
1538 			 */
1539 			if (!found_unused) {
1540 				found_unused = true;
1541 				unused_idx = i;
1542 			}
1543 		}
1544 
1545 	if (found_copy)
1546 		i = copy_idx;
1547 	else if (found_unused)
1548 		i = unused_idx;
1549 	else
1550 		goto err_ice_alloc_prof_mask;
1551 
1552 	/* update mask for a new entry */
1553 	if (found_unused) {
1554 		hw->blk[blk].masks.masks[i].in_use = true;
1555 		hw->blk[blk].masks.masks[i].mask = mask;
1556 		hw->blk[blk].masks.masks[i].idx = idx;
1557 		hw->blk[blk].masks.masks[i].ref = 0;
1558 		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
1559 	}
1560 
1561 	hw->blk[blk].masks.masks[i].ref++;
1562 	*mask_idx = i;
1563 	status = 0;
1564 
1565 err_ice_alloc_prof_mask:
1566 	mutex_unlock(&hw->blk[blk].masks.lock);
1567 
1568 	return status;
1569 }
1570 
1571 /**
1572  * ice_free_prof_mask - free profile mask
1573  * @hw: pointer to the HW struct
1574  * @blk: hardware block
1575  * @mask_idx: index of mask
1576  */
1577 static int
1578 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
1579 {
1580 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1581 		return -EINVAL;
1582 
1583 	if (!(mask_idx >= hw->blk[blk].masks.first &&
1584 	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
1585 		return -ENOENT;
1586 
1587 	mutex_lock(&hw->blk[blk].masks.lock);
1588 
1589 	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
1590 		goto exit_ice_free_prof_mask;
1591 
1592 	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
1593 		hw->blk[blk].masks.masks[mask_idx].ref--;
1594 		goto exit_ice_free_prof_mask;
1595 	}
1596 
1597 	/* remove mask */
1598 	hw->blk[blk].masks.masks[mask_idx].in_use = false;
1599 	hw->blk[blk].masks.masks[mask_idx].mask = 0;
1600 	hw->blk[blk].masks.masks[mask_idx].idx = 0;
1601 
1602 	/* update mask as unused entry */
1603 	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
1604 		  mask_idx);
1605 	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
1606 
1607 exit_ice_free_prof_mask:
1608 	mutex_unlock(&hw->blk[blk].masks.lock);
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * ice_free_prof_masks - free all profile masks for a profile
1615  * @hw: pointer to the HW struct
1616  * @blk: hardware block
1617  * @prof_id: profile ID
1618  */
1619 static int
1620 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
1621 {
1622 	u32 mask_bm;
1623 	u16 i;
1624 
1625 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1626 		return -EINVAL;
1627 
1628 	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
1629 	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
1630 		if (mask_bm & BIT(i))
1631 			ice_free_prof_mask(hw, blk, i);
1632 
1633 	return 0;
1634 }
1635 
1636 /**
1637  * ice_shutdown_prof_masks - releases lock for masking
1638  * @hw: pointer to the HW struct
1639  * @blk: hardware block
1640  *
1641  * This should be called before unloading the driver
1642  */
1643 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
1644 {
1645 	u16 i;
1646 
1647 	mutex_lock(&hw->blk[blk].masks.lock);
1648 
1649 	for (i = hw->blk[blk].masks.first;
1650 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
1651 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1652 
1653 		hw->blk[blk].masks.masks[i].in_use = false;
1654 		hw->blk[blk].masks.masks[i].idx = 0;
1655 		hw->blk[blk].masks.masks[i].mask = 0;
1656 	}
1657 
1658 	mutex_unlock(&hw->blk[blk].masks.lock);
1659 	mutex_destroy(&hw->blk[blk].masks.lock);
1660 }
1661 
1662 /**
1663  * ice_shutdown_all_prof_masks - releases all locks for masking
1664  * @hw: pointer to the HW struct
1665  *
1666  * This should be called before unloading the driver
1667  */
1668 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
1669 {
1670 	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
1671 	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
1672 }
1673 
1674 /**
1675  * ice_update_prof_masking - set registers according to masking
1676  * @hw: pointer to the HW struct
1677  * @blk: hardware block
1678  * @prof_id: profile ID
1679  * @masks: masks
1680  */
1681 static int
1682 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
1683 			u16 *masks)
1684 {
1685 	bool err = false;
1686 	u32 ena_mask = 0;
1687 	u16 idx;
1688 	u16 i;
1689 
1690 	/* Only support FD and RSS masking, otherwise nothing to be done */
1691 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1692 		return 0;
1693 
1694 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
1695 		if (masks[i] && masks[i] != 0xFFFF) {
1696 			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
1697 				ena_mask |= BIT(idx);
1698 			} else {
1699 				/* not enough bitmaps */
1700 				err = true;
1701 				break;
1702 			}
1703 		}
1704 
1705 	if (err) {
1706 		/* free any bitmaps we have allocated */
1707 		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
1708 			if (ena_mask & BIT(i))
1709 				ice_free_prof_mask(hw, blk, i);
1710 
1711 		return -EIO;
1712 	}
1713 
1714 	/* enable the masks for this profile */
1715 	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
1716 
1717 	/* store enabled masks with profile so that they can be freed later */
1718 	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  * ice_write_es - write an extraction sequence and symmetric setting to hardware
1725  * @hw: pointer to the HW struct
1726  * @blk: the block in which to write the extraction sequence
1727  * @prof_id: the profile ID to write
1728  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1729  * @symm: symmetric setting for RSS profiles
1730  */
1731 static void
1732 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1733 	     struct ice_fv_word *fv, bool symm)
1734 {
1735 	u16 off;
1736 
1737 	off = prof_id * hw->blk[blk].es.fvw;
1738 	if (!fv) {
1739 		memset(&hw->blk[blk].es.t[off], 0,
1740 		       hw->blk[blk].es.fvw * sizeof(*fv));
1741 		hw->blk[blk].es.written[prof_id] = false;
1742 	} else {
1743 		memcpy(&hw->blk[blk].es.t[off], fv,
1744 		       hw->blk[blk].es.fvw * sizeof(*fv));
1745 	}
1746 
1747 	if (blk == ICE_BLK_RSS)
1748 		hw->blk[blk].es.symm[prof_id] = symm;
1749 }
1750 
1751 /**
1752  * ice_prof_dec_ref - decrement reference count for profile
1753  * @hw: pointer to the HW struct
1754  * @blk: the block from which to free the profile ID
1755  * @prof_id: the profile ID for which to decrement the reference count
1756  */
1757 static int
1758 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1759 {
1760 	if (prof_id > hw->blk[blk].es.count)
1761 		return -EINVAL;
1762 
1763 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1764 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
1765 			ice_write_es(hw, blk, prof_id, NULL, false);
1766 			ice_free_prof_masks(hw, blk, prof_id);
1767 			return ice_free_prof_id(hw, blk, prof_id);
1768 		}
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 /* Block / table section IDs */
1775 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1776 	/* SWITCH */
1777 	{	ICE_SID_XLT1_SW,
1778 		ICE_SID_XLT2_SW,
1779 		ICE_SID_PROFID_TCAM_SW,
1780 		ICE_SID_PROFID_REDIR_SW,
1781 		ICE_SID_FLD_VEC_SW
1782 	},
1783 
1784 	/* ACL */
1785 	{	ICE_SID_XLT1_ACL,
1786 		ICE_SID_XLT2_ACL,
1787 		ICE_SID_PROFID_TCAM_ACL,
1788 		ICE_SID_PROFID_REDIR_ACL,
1789 		ICE_SID_FLD_VEC_ACL
1790 	},
1791 
1792 	/* FD */
1793 	{	ICE_SID_XLT1_FD,
1794 		ICE_SID_XLT2_FD,
1795 		ICE_SID_PROFID_TCAM_FD,
1796 		ICE_SID_PROFID_REDIR_FD,
1797 		ICE_SID_FLD_VEC_FD
1798 	},
1799 
1800 	/* RSS */
1801 	{	ICE_SID_XLT1_RSS,
1802 		ICE_SID_XLT2_RSS,
1803 		ICE_SID_PROFID_TCAM_RSS,
1804 		ICE_SID_PROFID_REDIR_RSS,
1805 		ICE_SID_FLD_VEC_RSS
1806 	},
1807 
1808 	/* PE */
1809 	{	ICE_SID_XLT1_PE,
1810 		ICE_SID_XLT2_PE,
1811 		ICE_SID_PROFID_TCAM_PE,
1812 		ICE_SID_PROFID_REDIR_PE,
1813 		ICE_SID_FLD_VEC_PE
1814 	}
1815 };
1816 
1817 /**
1818  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1819  * @hw: pointer to the hardware structure
1820  * @blk: the HW block to initialize
1821  */
1822 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1823 {
1824 	u16 pt;
1825 
1826 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1827 		u8 ptg;
1828 
1829 		ptg = hw->blk[blk].xlt1.t[pt];
1830 		if (ptg != ICE_DEFAULT_PTG) {
1831 			ice_ptg_alloc_val(hw, blk, ptg);
1832 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1833 		}
1834 	}
1835 }
1836 
1837 /**
1838  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1839  * @hw: pointer to the hardware structure
1840  * @blk: the HW block to initialize
1841  */
1842 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1843 {
1844 	u16 vsi;
1845 
1846 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1847 		u16 vsig;
1848 
1849 		vsig = hw->blk[blk].xlt2.t[vsi];
1850 		if (vsig) {
1851 			ice_vsig_alloc_val(hw, blk, vsig);
1852 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1853 			/* no changes at this time, since this has been
1854 			 * initialized from the original package
1855 			 */
1856 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1857 		}
1858 	}
1859 }
1860 
1861 /**
1862  * ice_init_sw_db - init software database from HW tables
1863  * @hw: pointer to the hardware structure
1864  */
1865 static void ice_init_sw_db(struct ice_hw *hw)
1866 {
1867 	u16 i;
1868 
1869 	for (i = 0; i < ICE_BLK_COUNT; i++) {
1870 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1871 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1872 	}
1873 }
1874 
1875 /**
1876  * ice_fill_tbl - Reads content of a single table type into database
1877  * @hw: pointer to the hardware structure
1878  * @block_id: Block ID of the table to copy
1879  * @sid: Section ID of the table to copy
1880  *
1881  * Will attempt to read the entire content of a given table of a single block
1882  * into the driver database. We assume that the buffer will always
1883  * be as large or larger than the data contained in the package. If
1884  * this condition is not met, there is most likely an error in the package
1885  * contents.
1886  */
1887 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1888 {
1889 	u32 dst_len, sect_len, offset = 0;
1890 	struct ice_prof_redir_section *pr;
1891 	struct ice_prof_id_section *pid;
1892 	struct ice_xlt1_section *xlt1;
1893 	struct ice_xlt2_section *xlt2;
1894 	struct ice_sw_fv_section *es;
1895 	struct ice_pkg_enum state;
1896 	u8 *src, *dst;
1897 	void *sect;
1898 
1899 	/* if the HW segment pointer is null then the first iteration of
1900 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
1901 	 * not be filled and return success.
1902 	 */
1903 	if (!hw->seg) {
1904 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1905 		return;
1906 	}
1907 
1908 	memset(&state, 0, sizeof(state));
1909 
1910 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
1911 
1912 	while (sect) {
1913 		switch (sid) {
1914 		case ICE_SID_XLT1_SW:
1915 		case ICE_SID_XLT1_FD:
1916 		case ICE_SID_XLT1_RSS:
1917 		case ICE_SID_XLT1_ACL:
1918 		case ICE_SID_XLT1_PE:
1919 			xlt1 = sect;
1920 			src = xlt1->value;
1921 			sect_len = le16_to_cpu(xlt1->count) *
1922 				sizeof(*hw->blk[block_id].xlt1.t);
1923 			dst = hw->blk[block_id].xlt1.t;
1924 			dst_len = hw->blk[block_id].xlt1.count *
1925 				sizeof(*hw->blk[block_id].xlt1.t);
1926 			break;
1927 		case ICE_SID_XLT2_SW:
1928 		case ICE_SID_XLT2_FD:
1929 		case ICE_SID_XLT2_RSS:
1930 		case ICE_SID_XLT2_ACL:
1931 		case ICE_SID_XLT2_PE:
1932 			xlt2 = sect;
1933 			src = (__force u8 *)xlt2->value;
1934 			sect_len = le16_to_cpu(xlt2->count) *
1935 				sizeof(*hw->blk[block_id].xlt2.t);
1936 			dst = (u8 *)hw->blk[block_id].xlt2.t;
1937 			dst_len = hw->blk[block_id].xlt2.count *
1938 				sizeof(*hw->blk[block_id].xlt2.t);
1939 			break;
1940 		case ICE_SID_PROFID_TCAM_SW:
1941 		case ICE_SID_PROFID_TCAM_FD:
1942 		case ICE_SID_PROFID_TCAM_RSS:
1943 		case ICE_SID_PROFID_TCAM_ACL:
1944 		case ICE_SID_PROFID_TCAM_PE:
1945 			pid = sect;
1946 			src = (u8 *)pid->entry;
1947 			sect_len = le16_to_cpu(pid->count) *
1948 				sizeof(*hw->blk[block_id].prof.t);
1949 			dst = (u8 *)hw->blk[block_id].prof.t;
1950 			dst_len = hw->blk[block_id].prof.count *
1951 				sizeof(*hw->blk[block_id].prof.t);
1952 			break;
1953 		case ICE_SID_PROFID_REDIR_SW:
1954 		case ICE_SID_PROFID_REDIR_FD:
1955 		case ICE_SID_PROFID_REDIR_RSS:
1956 		case ICE_SID_PROFID_REDIR_ACL:
1957 		case ICE_SID_PROFID_REDIR_PE:
1958 			pr = sect;
1959 			src = pr->redir_value;
1960 			sect_len = le16_to_cpu(pr->count) *
1961 				sizeof(*hw->blk[block_id].prof_redir.t);
1962 			dst = hw->blk[block_id].prof_redir.t;
1963 			dst_len = hw->blk[block_id].prof_redir.count *
1964 				sizeof(*hw->blk[block_id].prof_redir.t);
1965 			break;
1966 		case ICE_SID_FLD_VEC_SW:
1967 		case ICE_SID_FLD_VEC_FD:
1968 		case ICE_SID_FLD_VEC_RSS:
1969 		case ICE_SID_FLD_VEC_ACL:
1970 		case ICE_SID_FLD_VEC_PE:
1971 			es = sect;
1972 			src = (u8 *)es->fv;
1973 			sect_len = (u32)(le16_to_cpu(es->count) *
1974 					 hw->blk[block_id].es.fvw) *
1975 				sizeof(*hw->blk[block_id].es.t);
1976 			dst = (u8 *)hw->blk[block_id].es.t;
1977 			dst_len = (u32)(hw->blk[block_id].es.count *
1978 					hw->blk[block_id].es.fvw) *
1979 				sizeof(*hw->blk[block_id].es.t);
1980 			break;
1981 		default:
1982 			return;
1983 		}
1984 
1985 		/* if the section offset exceeds destination length, terminate
1986 		 * table fill.
1987 		 */
1988 		if (offset > dst_len)
1989 			return;
1990 
1991 		/* if the sum of section size and offset exceed destination size
1992 		 * then we are out of bounds of the HW table size for that PF.
1993 		 * Changing section length to fill the remaining table space
1994 		 * of that PF.
1995 		 */
1996 		if ((offset + sect_len) > dst_len)
1997 			sect_len = dst_len - offset;
1998 
1999 		memcpy(dst + offset, src, sect_len);
2000 		offset += sect_len;
2001 		sect = ice_pkg_enum_section(NULL, &state, sid);
2002 	}
2003 }
2004 
2005 /**
2006  * ice_fill_blk_tbls - Read package context for tables
2007  * @hw: pointer to the hardware structure
2008  *
2009  * Reads the current package contents and populates the driver
2010  * database with the data iteratively for all advanced feature
2011  * blocks. Assume that the HW tables have been allocated.
2012  */
2013 void ice_fill_blk_tbls(struct ice_hw *hw)
2014 {
2015 	u8 i;
2016 
2017 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2018 		enum ice_block blk_id = (enum ice_block)i;
2019 
2020 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2021 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2022 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2023 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2024 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2025 	}
2026 
2027 	ice_init_sw_db(hw);
2028 }
2029 
2030 /**
2031  * ice_free_prof_map - free profile map
2032  * @hw: pointer to the hardware structure
2033  * @blk_idx: HW block index
2034  */
2035 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2036 {
2037 	struct ice_es *es = &hw->blk[blk_idx].es;
2038 	struct ice_prof_map *del, *tmp;
2039 
2040 	mutex_lock(&es->prof_map_lock);
2041 	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2042 		list_del(&del->list);
2043 		devm_kfree(ice_hw_to_dev(hw), del);
2044 	}
2045 	INIT_LIST_HEAD(&es->prof_map);
2046 	mutex_unlock(&es->prof_map_lock);
2047 }
2048 
2049 /**
2050  * ice_free_flow_profs - free flow profile entries
2051  * @hw: pointer to the hardware structure
2052  * @blk_idx: HW block index
2053  */
2054 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2055 {
2056 	struct ice_flow_prof *p, *tmp;
2057 
2058 	mutex_lock(&hw->fl_profs_locks[blk_idx]);
2059 	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2060 		struct ice_flow_entry *e, *t;
2061 
2062 		list_for_each_entry_safe(e, t, &p->entries, l_entry)
2063 			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2064 					   ICE_FLOW_ENTRY_HNDL(e));
2065 
2066 		list_del(&p->l_entry);
2067 
2068 		mutex_destroy(&p->entries_lock);
2069 		devm_kfree(ice_hw_to_dev(hw), p);
2070 	}
2071 	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2072 
2073 	/* if driver is in reset and tables are being cleared
2074 	 * re-initialize the flow profile list heads
2075 	 */
2076 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2077 }
2078 
2079 /**
2080  * ice_free_vsig_tbl - free complete VSIG table entries
2081  * @hw: pointer to the hardware structure
2082  * @blk: the HW block on which to free the VSIG table entries
2083  */
2084 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2085 {
2086 	u16 i;
2087 
2088 	if (!hw->blk[blk].xlt2.vsig_tbl)
2089 		return;
2090 
2091 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2092 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2093 			ice_vsig_free(hw, blk, i);
2094 }
2095 
2096 /**
2097  * ice_free_hw_tbls - free hardware table memory
2098  * @hw: pointer to the hardware structure
2099  */
2100 void ice_free_hw_tbls(struct ice_hw *hw)
2101 {
2102 	struct ice_rss_cfg *r, *rt;
2103 	u8 i;
2104 
2105 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2106 		if (hw->blk[i].is_list_init) {
2107 			struct ice_es *es = &hw->blk[i].es;
2108 
2109 			ice_free_prof_map(hw, i);
2110 			mutex_destroy(&es->prof_map_lock);
2111 
2112 			ice_free_flow_profs(hw, i);
2113 			mutex_destroy(&hw->fl_profs_locks[i]);
2114 
2115 			hw->blk[i].is_list_init = false;
2116 		}
2117 		ice_free_vsig_tbl(hw, (enum ice_block)i);
2118 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2119 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2120 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2121 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2122 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2123 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2124 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2125 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2126 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2127 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2128 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm);
2129 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2130 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
2131 		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id);
2132 	}
2133 
2134 	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2135 		list_del(&r->l_entry);
2136 		devm_kfree(ice_hw_to_dev(hw), r);
2137 	}
2138 	mutex_destroy(&hw->rss_locks);
2139 	ice_shutdown_all_prof_masks(hw);
2140 	memset(hw->blk, 0, sizeof(hw->blk));
2141 }
2142 
2143 /**
2144  * ice_init_flow_profs - init flow profile locks and list heads
2145  * @hw: pointer to the hardware structure
2146  * @blk_idx: HW block index
2147  */
2148 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2149 {
2150 	mutex_init(&hw->fl_profs_locks[blk_idx]);
2151 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2152 }
2153 
2154 /**
2155  * ice_clear_hw_tbls - clear HW tables and flow profiles
2156  * @hw: pointer to the hardware structure
2157  */
2158 void ice_clear_hw_tbls(struct ice_hw *hw)
2159 {
2160 	u8 i;
2161 
2162 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2163 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2164 		struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2165 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2166 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2167 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2168 		struct ice_es *es = &hw->blk[i].es;
2169 
2170 		if (hw->blk[i].is_list_init) {
2171 			ice_free_prof_map(hw, i);
2172 			ice_free_flow_profs(hw, i);
2173 		}
2174 
2175 		ice_free_vsig_tbl(hw, (enum ice_block)i);
2176 
2177 		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2178 		memset(xlt1->ptg_tbl, 0,
2179 		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2180 		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2181 
2182 		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2183 		memset(xlt2->vsig_tbl, 0,
2184 		       xlt2->count * sizeof(*xlt2->vsig_tbl));
2185 		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2186 
2187 		memset(prof->t, 0, prof->count * sizeof(*prof->t));
2188 		memset(prof_redir->t, 0,
2189 		       prof_redir->count * sizeof(*prof_redir->t));
2190 
2191 		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
2192 		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2193 		memset(es->symm, 0, es->count * sizeof(*es->symm));
2194 		memset(es->written, 0, es->count * sizeof(*es->written));
2195 		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
2196 
2197 		memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id));
2198 	}
2199 }
2200 
2201 /**
2202  * ice_init_hw_tbls - init hardware table memory
2203  * @hw: pointer to the hardware structure
2204  */
2205 int ice_init_hw_tbls(struct ice_hw *hw)
2206 {
2207 	u8 i;
2208 
2209 	mutex_init(&hw->rss_locks);
2210 	INIT_LIST_HEAD(&hw->rss_list_head);
2211 	ice_init_all_prof_masks(hw);
2212 	for (i = 0; i < ICE_BLK_COUNT; i++) {
2213 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2214 		struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2215 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2216 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2217 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2218 		struct ice_es *es = &hw->blk[i].es;
2219 		u16 j;
2220 
2221 		if (hw->blk[i].is_list_init)
2222 			continue;
2223 
2224 		ice_init_flow_profs(hw, i);
2225 		mutex_init(&es->prof_map_lock);
2226 		INIT_LIST_HEAD(&es->prof_map);
2227 		hw->blk[i].is_list_init = true;
2228 
2229 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
2230 		es->reverse = blk_sizes[i].reverse;
2231 
2232 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2233 		xlt1->count = blk_sizes[i].xlt1;
2234 
2235 		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2236 					    sizeof(*xlt1->ptypes), GFP_KERNEL);
2237 
2238 		if (!xlt1->ptypes)
2239 			goto err;
2240 
2241 		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2242 					     sizeof(*xlt1->ptg_tbl),
2243 					     GFP_KERNEL);
2244 
2245 		if (!xlt1->ptg_tbl)
2246 			goto err;
2247 
2248 		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2249 				       sizeof(*xlt1->t), GFP_KERNEL);
2250 		if (!xlt1->t)
2251 			goto err;
2252 
2253 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2254 		xlt2->count = blk_sizes[i].xlt2;
2255 
2256 		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2257 					  sizeof(*xlt2->vsis), GFP_KERNEL);
2258 
2259 		if (!xlt2->vsis)
2260 			goto err;
2261 
2262 		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2263 					      sizeof(*xlt2->vsig_tbl),
2264 					      GFP_KERNEL);
2265 		if (!xlt2->vsig_tbl)
2266 			goto err;
2267 
2268 		for (j = 0; j < xlt2->count; j++)
2269 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2270 
2271 		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2272 				       sizeof(*xlt2->t), GFP_KERNEL);
2273 		if (!xlt2->t)
2274 			goto err;
2275 
2276 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2277 		prof->count = blk_sizes[i].prof_tcam;
2278 		prof->max_prof_id = blk_sizes[i].prof_id;
2279 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2280 		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2281 				       sizeof(*prof->t), GFP_KERNEL);
2282 
2283 		if (!prof->t)
2284 			goto err;
2285 
2286 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2287 		prof_redir->count = blk_sizes[i].prof_redir;
2288 		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2289 					     prof_redir->count,
2290 					     sizeof(*prof_redir->t),
2291 					     GFP_KERNEL);
2292 
2293 		if (!prof_redir->t)
2294 			goto err;
2295 
2296 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2297 		es->count = blk_sizes[i].es;
2298 		es->fvw = blk_sizes[i].fvw;
2299 		es->t = devm_kcalloc(ice_hw_to_dev(hw),
2300 				     (u32)(es->count * es->fvw),
2301 				     sizeof(*es->t), GFP_KERNEL);
2302 		if (!es->t)
2303 			goto err;
2304 
2305 		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2306 					     sizeof(*es->ref_count),
2307 					     GFP_KERNEL);
2308 		if (!es->ref_count)
2309 			goto err;
2310 
2311 		es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2312 					sizeof(*es->symm), GFP_KERNEL);
2313 		if (!es->symm)
2314 			goto err;
2315 
2316 		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2317 					   sizeof(*es->written), GFP_KERNEL);
2318 		if (!es->written)
2319 			goto err;
2320 
2321 		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2322 					    sizeof(*es->mask_ena), GFP_KERNEL);
2323 		if (!es->mask_ena)
2324 			goto err;
2325 
2326 		prof_id->count = blk_sizes[i].prof_id;
2327 		prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count,
2328 					   sizeof(*prof_id->id), GFP_KERNEL);
2329 		if (!prof_id->id)
2330 			goto err;
2331 	}
2332 	return 0;
2333 
2334 err:
2335 	ice_free_hw_tbls(hw);
2336 	return -ENOMEM;
2337 }
2338 
2339 /**
2340  * ice_prof_gen_key - generate profile ID key
2341  * @hw: pointer to the HW struct
2342  * @blk: the block in which to write profile ID to
2343  * @ptg: packet type group (PTG) portion of key
2344  * @vsig: VSIG portion of key
2345  * @cdid: CDID portion of key
2346  * @flags: flag portion of key
2347  * @vl_msk: valid mask
2348  * @dc_msk: don't care mask
2349  * @nm_msk: never match mask
2350  * @key: output of profile ID key
2351  */
2352 static int
2353 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2354 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2355 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2356 		 u8 key[ICE_TCAM_KEY_SZ])
2357 {
2358 	struct ice_prof_id_key inkey;
2359 
2360 	inkey.xlt1 = ptg;
2361 	inkey.xlt2_cdid = cpu_to_le16(vsig);
2362 	inkey.flags = cpu_to_le16(flags);
2363 
2364 	switch (hw->blk[blk].prof.cdid_bits) {
2365 	case 0:
2366 		break;
2367 	case 2:
2368 #define ICE_CD_2_M 0xC000U
2369 #define ICE_CD_2_S 14
2370 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2371 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2372 		break;
2373 	case 4:
2374 #define ICE_CD_4_M 0xF000U
2375 #define ICE_CD_4_S 12
2376 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2377 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2378 		break;
2379 	case 8:
2380 #define ICE_CD_8_M 0xFF00U
2381 #define ICE_CD_8_S 16
2382 		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2383 		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2384 		break;
2385 	default:
2386 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2387 		break;
2388 	}
2389 
2390 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2391 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2392 }
2393 
2394 /**
2395  * ice_tcam_write_entry - write TCAM entry
2396  * @hw: pointer to the HW struct
2397  * @blk: the block in which to write profile ID to
2398  * @idx: the entry index to write to
2399  * @prof_id: profile ID
2400  * @ptg: packet type group (PTG) portion of key
2401  * @vsig: VSIG portion of key
2402  * @cdid: CDID portion of key
2403  * @flags: flag portion of key
2404  * @vl_msk: valid mask
2405  * @dc_msk: don't care mask
2406  * @nm_msk: never match mask
2407  */
2408 static int
2409 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2410 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2411 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2412 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2413 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2414 {
2415 	struct ice_prof_tcam_entry;
2416 	int status;
2417 
2418 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2419 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2420 	if (!status) {
2421 		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2422 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
2423 	}
2424 
2425 	return status;
2426 }
2427 
2428 /**
2429  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2430  * @hw: pointer to the hardware structure
2431  * @blk: HW block
2432  * @vsig: VSIG to query
2433  * @refs: pointer to variable to receive the reference count
2434  */
2435 static int
2436 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2437 {
2438 	u16 idx = vsig & ICE_VSIG_IDX_M;
2439 	struct ice_vsig_vsi *ptr;
2440 
2441 	*refs = 0;
2442 
2443 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2444 		return -ENOENT;
2445 
2446 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2447 	while (ptr) {
2448 		(*refs)++;
2449 		ptr = ptr->next_vsi;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 /**
2456  * ice_has_prof_vsig - check to see if VSIG has a specific profile
2457  * @hw: pointer to the hardware structure
2458  * @blk: HW block
2459  * @vsig: VSIG to check against
2460  * @hdl: profile handle
2461  */
2462 static bool
2463 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2464 {
2465 	u16 idx = vsig & ICE_VSIG_IDX_M;
2466 	struct ice_vsig_prof *ent;
2467 
2468 	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2469 			    list)
2470 		if (ent->profile_cookie == hdl)
2471 			return true;
2472 
2473 	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2474 		  vsig);
2475 	return false;
2476 }
2477 
2478 /**
2479  * ice_prof_bld_es - build profile ID extraction sequence changes
2480  * @hw: pointer to the HW struct
2481  * @blk: hardware block
2482  * @bld: the update package buffer build to add to
2483  * @chgs: the list of changes to make in hardware
2484  */
2485 static int
2486 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2487 		struct ice_buf_build *bld, struct list_head *chgs)
2488 {
2489 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2490 	struct ice_chs_chg *tmp;
2491 
2492 	list_for_each_entry(tmp, chgs, list_entry)
2493 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2494 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2495 			struct ice_pkg_es *p;
2496 			u32 id;
2497 
2498 			id = ice_sect_id(blk, ICE_VEC_TBL);
2499 			p = ice_pkg_buf_alloc_section(bld, id,
2500 						      struct_size(p, es, 1) +
2501 						      vec_size -
2502 						      sizeof(p->es[0]));
2503 
2504 			if (!p)
2505 				return -ENOSPC;
2506 
2507 			p->count = cpu_to_le16(1);
2508 			p->offset = cpu_to_le16(tmp->prof_id);
2509 
2510 			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2511 		}
2512 
2513 	return 0;
2514 }
2515 
2516 /**
2517  * ice_prof_bld_tcam - build profile ID TCAM changes
2518  * @hw: pointer to the HW struct
2519  * @blk: hardware block
2520  * @bld: the update package buffer build to add to
2521  * @chgs: the list of changes to make in hardware
2522  */
2523 static int
2524 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2525 		  struct ice_buf_build *bld, struct list_head *chgs)
2526 {
2527 	struct ice_chs_chg *tmp;
2528 
2529 	list_for_each_entry(tmp, chgs, list_entry)
2530 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2531 			struct ice_prof_id_section *p;
2532 			u32 id;
2533 
2534 			id = ice_sect_id(blk, ICE_PROF_TCAM);
2535 			p = ice_pkg_buf_alloc_section(bld, id,
2536 						      struct_size(p, entry, 1));
2537 
2538 			if (!p)
2539 				return -ENOSPC;
2540 
2541 			p->count = cpu_to_le16(1);
2542 			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2543 			p->entry[0].prof_id = tmp->prof_id;
2544 
2545 			memcpy(p->entry[0].key,
2546 			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2547 			       sizeof(hw->blk[blk].prof.t->key));
2548 		}
2549 
2550 	return 0;
2551 }
2552 
2553 /**
2554  * ice_prof_bld_xlt1 - build XLT1 changes
2555  * @blk: hardware block
2556  * @bld: the update package buffer build to add to
2557  * @chgs: the list of changes to make in hardware
2558  */
2559 static int
2560 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2561 		  struct list_head *chgs)
2562 {
2563 	struct ice_chs_chg *tmp;
2564 
2565 	list_for_each_entry(tmp, chgs, list_entry)
2566 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2567 			struct ice_xlt1_section *p;
2568 			u32 id;
2569 
2570 			id = ice_sect_id(blk, ICE_XLT1);
2571 			p = ice_pkg_buf_alloc_section(bld, id,
2572 						      struct_size(p, value, 1));
2573 
2574 			if (!p)
2575 				return -ENOSPC;
2576 
2577 			p->count = cpu_to_le16(1);
2578 			p->offset = cpu_to_le16(tmp->ptype);
2579 			p->value[0] = tmp->ptg;
2580 		}
2581 
2582 	return 0;
2583 }
2584 
2585 /**
2586  * ice_prof_bld_xlt2 - build XLT2 changes
2587  * @blk: hardware block
2588  * @bld: the update package buffer build to add to
2589  * @chgs: the list of changes to make in hardware
2590  */
2591 static int
2592 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2593 		  struct list_head *chgs)
2594 {
2595 	struct ice_chs_chg *tmp;
2596 
2597 	list_for_each_entry(tmp, chgs, list_entry) {
2598 		struct ice_xlt2_section *p;
2599 		u32 id;
2600 
2601 		switch (tmp->type) {
2602 		case ICE_VSIG_ADD:
2603 		case ICE_VSI_MOVE:
2604 		case ICE_VSIG_REM:
2605 			id = ice_sect_id(blk, ICE_XLT2);
2606 			p = ice_pkg_buf_alloc_section(bld, id,
2607 						      struct_size(p, value, 1));
2608 
2609 			if (!p)
2610 				return -ENOSPC;
2611 
2612 			p->count = cpu_to_le16(1);
2613 			p->offset = cpu_to_le16(tmp->vsi);
2614 			p->value[0] = cpu_to_le16(tmp->vsig);
2615 			break;
2616 		default:
2617 			break;
2618 		}
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 /**
2625  * ice_upd_prof_hw - update hardware using the change list
2626  * @hw: pointer to the HW struct
2627  * @blk: hardware block
2628  * @chgs: the list of changes to make in hardware
2629  */
2630 static int
2631 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2632 		struct list_head *chgs)
2633 {
2634 	struct ice_buf_build *b;
2635 	struct ice_chs_chg *tmp;
2636 	u16 pkg_sects;
2637 	u16 xlt1 = 0;
2638 	u16 xlt2 = 0;
2639 	u16 tcam = 0;
2640 	u16 es = 0;
2641 	int status;
2642 	u16 sects;
2643 
2644 	/* count number of sections we need */
2645 	list_for_each_entry(tmp, chgs, list_entry) {
2646 		switch (tmp->type) {
2647 		case ICE_PTG_ES_ADD:
2648 			if (tmp->add_ptg)
2649 				xlt1++;
2650 			if (tmp->add_prof)
2651 				es++;
2652 			break;
2653 		case ICE_TCAM_ADD:
2654 			tcam++;
2655 			break;
2656 		case ICE_VSIG_ADD:
2657 		case ICE_VSI_MOVE:
2658 		case ICE_VSIG_REM:
2659 			xlt2++;
2660 			break;
2661 		default:
2662 			break;
2663 		}
2664 	}
2665 	sects = xlt1 + xlt2 + tcam + es;
2666 
2667 	if (!sects)
2668 		return 0;
2669 
2670 	/* Build update package buffer */
2671 	b = ice_pkg_buf_alloc(hw);
2672 	if (!b)
2673 		return -ENOMEM;
2674 
2675 	status = ice_pkg_buf_reserve_section(b, sects);
2676 	if (status)
2677 		goto error_tmp;
2678 
2679 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
2680 	if (es) {
2681 		status = ice_prof_bld_es(hw, blk, b, chgs);
2682 		if (status)
2683 			goto error_tmp;
2684 	}
2685 
2686 	if (tcam) {
2687 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
2688 		if (status)
2689 			goto error_tmp;
2690 	}
2691 
2692 	if (xlt1) {
2693 		status = ice_prof_bld_xlt1(blk, b, chgs);
2694 		if (status)
2695 			goto error_tmp;
2696 	}
2697 
2698 	if (xlt2) {
2699 		status = ice_prof_bld_xlt2(blk, b, chgs);
2700 		if (status)
2701 			goto error_tmp;
2702 	}
2703 
2704 	/* After package buffer build check if the section count in buffer is
2705 	 * non-zero and matches the number of sections detected for package
2706 	 * update.
2707 	 */
2708 	pkg_sects = ice_pkg_buf_get_active_sections(b);
2709 	if (!pkg_sects || pkg_sects != sects) {
2710 		status = -EINVAL;
2711 		goto error_tmp;
2712 	}
2713 
2714 	/* update package */
2715 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2716 	if (status == -EIO)
2717 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2718 
2719 error_tmp:
2720 	ice_pkg_buf_free(hw, b);
2721 	return status;
2722 }
2723 
2724 /**
2725  * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
2726  * @hw: pointer to the HW struct
2727  * @prof_id: profile ID
2728  * @mask_sel: mask select
2729  *
2730  * This function enable any of the masks selected by the mask select parameter
2731  * for the profile specified.
2732  */
2733 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
2734 {
2735 	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
2736 
2737 	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
2738 		  GLQF_FDMASK_SEL(prof_id), mask_sel);
2739 }
2740 
2741 struct ice_fd_src_dst_pair {
2742 	u8 prot_id;
2743 	u8 count;
2744 	u16 off;
2745 };
2746 
2747 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
2748 	/* These are defined in pairs */
2749 	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
2750 	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
2751 
2752 	{ ICE_PROT_IPV4_IL, 2, 12 },
2753 	{ ICE_PROT_IPV4_IL, 2, 16 },
2754 
2755 	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
2756 	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
2757 
2758 	{ ICE_PROT_IPV6_IL, 8, 8 },
2759 	{ ICE_PROT_IPV6_IL, 8, 24 },
2760 
2761 	{ ICE_PROT_TCP_IL, 1, 0 },
2762 	{ ICE_PROT_TCP_IL, 1, 2 },
2763 
2764 	{ ICE_PROT_UDP_OF, 1, 0 },
2765 	{ ICE_PROT_UDP_OF, 1, 2 },
2766 
2767 	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
2768 	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
2769 
2770 	{ ICE_PROT_SCTP_IL, 1, 0 },
2771 	{ ICE_PROT_SCTP_IL, 1, 2 }
2772 };
2773 
2774 #define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
2775 
2776 /**
2777  * ice_update_fd_swap - set register appropriately for a FD FV extraction
2778  * @hw: pointer to the HW struct
2779  * @prof_id: profile ID
2780  * @es: extraction sequence (length of array is determined by the block)
2781  */
2782 static int
2783 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
2784 {
2785 	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2786 	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
2787 #define ICE_FD_FV_NOT_FOUND (-2)
2788 	s8 first_free = ICE_FD_FV_NOT_FOUND;
2789 	u8 used[ICE_MAX_FV_WORDS] = { 0 };
2790 	s8 orig_free, si;
2791 	u32 mask_sel = 0;
2792 	u8 i, j, k;
2793 
2794 	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2795 
2796 	/* This code assumes that the Flow Director field vectors are assigned
2797 	 * from the end of the FV indexes working towards the zero index, that
2798 	 * only complete fields will be included and will be consecutive, and
2799 	 * that there are no gaps between valid indexes.
2800 	 */
2801 
2802 	/* Determine swap fields present */
2803 	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
2804 		/* Find the first free entry, assuming right to left population.
2805 		 * This is where we can start adding additional pairs if needed.
2806 		 */
2807 		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
2808 		    ICE_PROT_INVALID)
2809 			first_free = i - 1;
2810 
2811 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2812 			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
2813 			    es[i].off == ice_fd_pairs[j].off) {
2814 				__set_bit(j, pair_list);
2815 				pair_start[j] = i;
2816 			}
2817 	}
2818 
2819 	orig_free = first_free;
2820 
2821 	/* determine missing swap fields that need to be added */
2822 	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
2823 		u8 bit1 = test_bit(i + 1, pair_list);
2824 		u8 bit0 = test_bit(i, pair_list);
2825 
2826 		if (bit0 ^ bit1) {
2827 			u8 index;
2828 
2829 			/* add the appropriate 'paired' entry */
2830 			if (!bit0)
2831 				index = i;
2832 			else
2833 				index = i + 1;
2834 
2835 			/* check for room */
2836 			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
2837 				return -ENOSPC;
2838 
2839 			/* place in extraction sequence */
2840 			for (k = 0; k < ice_fd_pairs[index].count; k++) {
2841 				es[first_free - k].prot_id =
2842 					ice_fd_pairs[index].prot_id;
2843 				es[first_free - k].off =
2844 					ice_fd_pairs[index].off + (k * 2);
2845 
2846 				if (k > first_free)
2847 					return -EIO;
2848 
2849 				/* keep track of non-relevant fields */
2850 				mask_sel |= BIT(first_free - k);
2851 			}
2852 
2853 			pair_start[index] = first_free;
2854 			first_free -= ice_fd_pairs[index].count;
2855 		}
2856 	}
2857 
2858 	/* fill in the swap array */
2859 	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
2860 	while (si >= 0) {
2861 		u8 indexes_used = 1;
2862 
2863 		/* assume flat at this index */
2864 #define ICE_SWAP_VALID	0x80
2865 		used[si] = si | ICE_SWAP_VALID;
2866 
2867 		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
2868 			si -= indexes_used;
2869 			continue;
2870 		}
2871 
2872 		/* check for a swap location */
2873 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2874 			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
2875 			    es[si].off == ice_fd_pairs[j].off) {
2876 				u8 idx;
2877 
2878 				/* determine the appropriate matching field */
2879 				idx = j + ((j % 2) ? -1 : 1);
2880 
2881 				indexes_used = ice_fd_pairs[idx].count;
2882 				for (k = 0; k < indexes_used; k++) {
2883 					used[si - k] = (pair_start[idx] - k) |
2884 						ICE_SWAP_VALID;
2885 				}
2886 
2887 				break;
2888 			}
2889 
2890 		si -= indexes_used;
2891 	}
2892 
2893 	/* for each set of 4 swap and 4 inset indexes, write the appropriate
2894 	 * register
2895 	 */
2896 	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
2897 		u32 raw_swap = 0;
2898 		u32 raw_in = 0;
2899 
2900 		for (k = 0; k < 4; k++) {
2901 			u8 idx;
2902 
2903 			idx = (j * 4) + k;
2904 			if (used[idx] && !(mask_sel & BIT(idx))) {
2905 				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
2906 #define ICE_INSET_DFLT 0x9f
2907 				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
2908 			}
2909 		}
2910 
2911 		/* write the appropriate swap register set */
2912 		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
2913 
2914 		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
2915 			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
2916 
2917 		/* write the appropriate inset register set */
2918 		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
2919 
2920 		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
2921 			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
2922 	}
2923 
2924 	/* initially clear the mask select for this profile */
2925 	ice_update_fd_mask(hw, prof_id, 0);
2926 
2927 	return 0;
2928 }
2929 
2930 /* The entries here needs to match the order of enum ice_ptype_attrib */
2931 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
2932 	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
2933 	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
2934 	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
2935 	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
2936 };
2937 
2938 /**
2939  * ice_get_ptype_attrib_info - get PTYPE attribute information
2940  * @type: attribute type
2941  * @info: pointer to variable to the attribute information
2942  */
2943 static void
2944 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
2945 			  struct ice_ptype_attrib_info *info)
2946 {
2947 	*info = ice_ptype_attributes[type];
2948 }
2949 
2950 /**
2951  * ice_add_prof_attrib - add any PTG with attributes to profile
2952  * @prof: pointer to the profile to which PTG entries will be added
2953  * @ptg: PTG to be added
2954  * @ptype: PTYPE that needs to be looked up
2955  * @attr: array of attributes that will be considered
2956  * @attr_cnt: number of elements in the attribute array
2957  */
2958 static int
2959 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
2960 		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
2961 {
2962 	bool found = false;
2963 	u16 i;
2964 
2965 	for (i = 0; i < attr_cnt; i++)
2966 		if (attr[i].ptype == ptype) {
2967 			found = true;
2968 
2969 			prof->ptg[prof->ptg_cnt] = ptg;
2970 			ice_get_ptype_attrib_info(attr[i].attrib,
2971 						  &prof->attr[prof->ptg_cnt]);
2972 
2973 			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2974 				return -ENOSPC;
2975 		}
2976 
2977 	if (!found)
2978 		return -ENOENT;
2979 
2980 	return 0;
2981 }
2982 
2983 /**
2984  * ice_add_prof - add profile
2985  * @hw: pointer to the HW struct
2986  * @blk: hardware block
2987  * @id: profile tracking ID
2988  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
2989  * @attr: array of attributes
2990  * @attr_cnt: number of elements in attr array
2991  * @es: extraction sequence (length of array is determined by the block)
2992  * @masks: mask for extraction sequence
2993  * @symm: symmetric setting for RSS profiles
2994  *
2995  * This function registers a profile, which matches a set of PTYPES with a
2996  * particular extraction sequence. While the hardware profile is allocated
2997  * it will not be written until the first call to ice_add_flow that specifies
2998  * the ID value used here.
2999  */
3000 int
3001 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3002 	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
3003 	     struct ice_fv_word *es, u16 *masks, bool symm)
3004 {
3005 	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3006 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3007 	struct ice_prof_map *prof;
3008 	u8 byte = 0;
3009 	u8 prof_id;
3010 	int status;
3011 
3012 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3013 
3014 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3015 
3016 	/* search for existing profile */
3017 	status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id);
3018 	if (status) {
3019 		/* allocate profile ID */
3020 		status = ice_alloc_prof_id(hw, blk, &prof_id);
3021 		if (status)
3022 			goto err_ice_add_prof;
3023 		if (blk == ICE_BLK_FD) {
3024 			/* For Flow Director block, the extraction sequence may
3025 			 * need to be altered in the case where there are paired
3026 			 * fields that have no match. This is necessary because
3027 			 * for Flow Director, src and dest fields need to paired
3028 			 * for filter programming and these values are swapped
3029 			 * during Tx.
3030 			 */
3031 			status = ice_update_fd_swap(hw, prof_id, es);
3032 			if (status)
3033 				goto err_ice_add_prof;
3034 		}
3035 		status = ice_update_prof_masking(hw, blk, prof_id, masks);
3036 		if (status)
3037 			goto err_ice_add_prof;
3038 
3039 		/* and write new es */
3040 		ice_write_es(hw, blk, prof_id, es, symm);
3041 	}
3042 
3043 	ice_prof_inc_ref(hw, blk, prof_id);
3044 
3045 	/* add profile info */
3046 	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3047 	if (!prof) {
3048 		status = -ENOMEM;
3049 		goto err_ice_add_prof;
3050 	}
3051 
3052 	prof->profile_cookie = id;
3053 	prof->prof_id = prof_id;
3054 	prof->ptg_cnt = 0;
3055 	prof->context = 0;
3056 
3057 	/* build list of ptgs */
3058 	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3059 		u8 bit;
3060 
3061 		if (!ptypes[byte]) {
3062 			bytes--;
3063 			byte++;
3064 			continue;
3065 		}
3066 
3067 		/* Examine 8 bits per byte */
3068 		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3069 				 BITS_PER_BYTE) {
3070 			u16 ptype;
3071 			u8 ptg;
3072 
3073 			ptype = byte * BITS_PER_BYTE + bit;
3074 
3075 			/* The package should place all ptypes in a non-zero
3076 			 * PTG, so the following call should never fail.
3077 			 */
3078 			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3079 				continue;
3080 
3081 			/* If PTG is already added, skip and continue */
3082 			if (test_bit(ptg, ptgs_used))
3083 				continue;
3084 
3085 			__set_bit(ptg, ptgs_used);
3086 			/* Check to see there are any attributes for
3087 			 * this PTYPE, and add them if found.
3088 			 */
3089 			status = ice_add_prof_attrib(prof, ptg, ptype,
3090 						     attr, attr_cnt);
3091 			if (status == -ENOSPC)
3092 				break;
3093 			if (status) {
3094 				/* This is simple a PTYPE/PTG with no
3095 				 * attribute
3096 				 */
3097 				prof->ptg[prof->ptg_cnt] = ptg;
3098 				prof->attr[prof->ptg_cnt].flags = 0;
3099 				prof->attr[prof->ptg_cnt].mask = 0;
3100 
3101 				if (++prof->ptg_cnt >=
3102 				    ICE_MAX_PTG_PER_PROFILE)
3103 					break;
3104 			}
3105 		}
3106 
3107 		bytes--;
3108 		byte++;
3109 	}
3110 
3111 	list_add(&prof->list, &hw->blk[blk].es.prof_map);
3112 	status = 0;
3113 
3114 err_ice_add_prof:
3115 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3116 	return status;
3117 }
3118 
3119 /**
3120  * ice_search_prof_id - Search for a profile tracking ID
3121  * @hw: pointer to the HW struct
3122  * @blk: hardware block
3123  * @id: profile tracking ID
3124  *
3125  * This will search for a profile tracking ID which was previously added.
3126  * The profile map lock should be held before calling this function.
3127  */
3128 struct ice_prof_map *
3129 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3130 {
3131 	struct ice_prof_map *entry = NULL;
3132 	struct ice_prof_map *map;
3133 
3134 	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3135 		if (map->profile_cookie == id) {
3136 			entry = map;
3137 			break;
3138 		}
3139 
3140 	return entry;
3141 }
3142 
3143 /**
3144  * ice_vsig_prof_id_count - count profiles in a VSIG
3145  * @hw: pointer to the HW struct
3146  * @blk: hardware block
3147  * @vsig: VSIG to remove the profile from
3148  */
3149 static u16
3150 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3151 {
3152 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3153 	struct ice_vsig_prof *p;
3154 
3155 	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3156 			    list)
3157 		count++;
3158 
3159 	return count;
3160 }
3161 
3162 /**
3163  * ice_rel_tcam_idx - release a TCAM index
3164  * @hw: pointer to the HW struct
3165  * @blk: hardware block
3166  * @idx: the index to release
3167  */
3168 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3169 {
3170 	/* Masks to invoke a never match entry */
3171 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3172 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3173 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3174 	int status;
3175 
3176 	/* write the TCAM entry */
3177 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3178 				      dc_msk, nm_msk);
3179 	if (status)
3180 		return status;
3181 
3182 	/* release the TCAM entry */
3183 	status = ice_free_tcam_ent(hw, blk, idx);
3184 
3185 	return status;
3186 }
3187 
3188 /**
3189  * ice_rem_prof_id - remove one profile from a VSIG
3190  * @hw: pointer to the HW struct
3191  * @blk: hardware block
3192  * @prof: pointer to profile structure to remove
3193  */
3194 static int
3195 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3196 		struct ice_vsig_prof *prof)
3197 {
3198 	int status;
3199 	u16 i;
3200 
3201 	for (i = 0; i < prof->tcam_count; i++)
3202 		if (prof->tcam[i].in_use) {
3203 			prof->tcam[i].in_use = false;
3204 			status = ice_rel_tcam_idx(hw, blk,
3205 						  prof->tcam[i].tcam_idx);
3206 			if (status)
3207 				return -EIO;
3208 		}
3209 
3210 	return 0;
3211 }
3212 
3213 /**
3214  * ice_rem_vsig - remove VSIG
3215  * @hw: pointer to the HW struct
3216  * @blk: hardware block
3217  * @vsig: the VSIG to remove
3218  * @chg: the change list
3219  */
3220 static int
3221 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3222 	     struct list_head *chg)
3223 {
3224 	u16 idx = vsig & ICE_VSIG_IDX_M;
3225 	struct ice_vsig_vsi *vsi_cur;
3226 	struct ice_vsig_prof *d, *t;
3227 
3228 	/* remove TCAM entries */
3229 	list_for_each_entry_safe(d, t,
3230 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3231 				 list) {
3232 		int status;
3233 
3234 		status = ice_rem_prof_id(hw, blk, d);
3235 		if (status)
3236 			return status;
3237 
3238 		list_del(&d->list);
3239 		devm_kfree(ice_hw_to_dev(hw), d);
3240 	}
3241 
3242 	/* Move all VSIS associated with this VSIG to the default VSIG */
3243 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3244 	/* If the VSIG has at least 1 VSI then iterate through the list
3245 	 * and remove the VSIs before deleting the group.
3246 	 */
3247 	if (vsi_cur)
3248 		do {
3249 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3250 			struct ice_chs_chg *p;
3251 
3252 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3253 					 GFP_KERNEL);
3254 			if (!p)
3255 				return -ENOMEM;
3256 
3257 			p->type = ICE_VSIG_REM;
3258 			p->orig_vsig = vsig;
3259 			p->vsig = ICE_DEFAULT_VSIG;
3260 			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3261 
3262 			list_add(&p->list_entry, chg);
3263 
3264 			vsi_cur = tmp;
3265 		} while (vsi_cur);
3266 
3267 	return ice_vsig_free(hw, blk, vsig);
3268 }
3269 
3270 /**
3271  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3272  * @hw: pointer to the HW struct
3273  * @blk: hardware block
3274  * @vsig: VSIG to remove the profile from
3275  * @hdl: profile handle indicating which profile to remove
3276  * @chg: list to receive a record of changes
3277  */
3278 static int
3279 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3280 		     struct list_head *chg)
3281 {
3282 	u16 idx = vsig & ICE_VSIG_IDX_M;
3283 	struct ice_vsig_prof *p, *t;
3284 
3285 	list_for_each_entry_safe(p, t,
3286 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3287 				 list)
3288 		if (p->profile_cookie == hdl) {
3289 			int status;
3290 
3291 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3292 				/* this is the last profile, remove the VSIG */
3293 				return ice_rem_vsig(hw, blk, vsig, chg);
3294 
3295 			status = ice_rem_prof_id(hw, blk, p);
3296 			if (!status) {
3297 				list_del(&p->list);
3298 				devm_kfree(ice_hw_to_dev(hw), p);
3299 			}
3300 			return status;
3301 		}
3302 
3303 	return -ENOENT;
3304 }
3305 
3306 /**
3307  * ice_rem_flow_all - remove all flows with a particular profile
3308  * @hw: pointer to the HW struct
3309  * @blk: hardware block
3310  * @id: profile tracking ID
3311  */
3312 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3313 {
3314 	struct ice_chs_chg *del, *tmp;
3315 	struct list_head chg;
3316 	int status;
3317 	u16 i;
3318 
3319 	INIT_LIST_HEAD(&chg);
3320 
3321 	for (i = 1; i < ICE_MAX_VSIGS; i++)
3322 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3323 			if (ice_has_prof_vsig(hw, blk, i, id)) {
3324 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
3325 							      &chg);
3326 				if (status)
3327 					goto err_ice_rem_flow_all;
3328 			}
3329 		}
3330 
3331 	status = ice_upd_prof_hw(hw, blk, &chg);
3332 
3333 err_ice_rem_flow_all:
3334 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3335 		list_del(&del->list_entry);
3336 		devm_kfree(ice_hw_to_dev(hw), del);
3337 	}
3338 
3339 	return status;
3340 }
3341 
3342 /**
3343  * ice_rem_prof - remove profile
3344  * @hw: pointer to the HW struct
3345  * @blk: hardware block
3346  * @id: profile tracking ID
3347  *
3348  * This will remove the profile specified by the ID parameter, which was
3349  * previously created through ice_add_prof. If any existing entries
3350  * are associated with this profile, they will be removed as well.
3351  */
3352 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3353 {
3354 	struct ice_prof_map *pmap;
3355 	int status;
3356 
3357 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3358 
3359 	pmap = ice_search_prof_id(hw, blk, id);
3360 	if (!pmap) {
3361 		status = -ENOENT;
3362 		goto err_ice_rem_prof;
3363 	}
3364 
3365 	/* remove all flows with this profile */
3366 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3367 	if (status)
3368 		goto err_ice_rem_prof;
3369 
3370 	/* dereference profile, and possibly remove */
3371 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
3372 
3373 	list_del(&pmap->list);
3374 	devm_kfree(ice_hw_to_dev(hw), pmap);
3375 
3376 err_ice_rem_prof:
3377 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3378 	return status;
3379 }
3380 
3381 /**
3382  * ice_get_prof - get profile
3383  * @hw: pointer to the HW struct
3384  * @blk: hardware block
3385  * @hdl: profile handle
3386  * @chg: change list
3387  */
3388 static int
3389 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3390 	     struct list_head *chg)
3391 {
3392 	struct ice_prof_map *map;
3393 	struct ice_chs_chg *p;
3394 	int status = 0;
3395 	u16 i;
3396 
3397 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3398 	/* Get the details on the profile specified by the handle ID */
3399 	map = ice_search_prof_id(hw, blk, hdl);
3400 	if (!map) {
3401 		status = -ENOENT;
3402 		goto err_ice_get_prof;
3403 	}
3404 
3405 	for (i = 0; i < map->ptg_cnt; i++)
3406 		if (!hw->blk[blk].es.written[map->prof_id]) {
3407 			/* add ES to change list */
3408 			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3409 					 GFP_KERNEL);
3410 			if (!p) {
3411 				status = -ENOMEM;
3412 				goto err_ice_get_prof;
3413 			}
3414 
3415 			p->type = ICE_PTG_ES_ADD;
3416 			p->ptype = 0;
3417 			p->ptg = map->ptg[i];
3418 			p->add_ptg = 0;
3419 
3420 			p->add_prof = 1;
3421 			p->prof_id = map->prof_id;
3422 
3423 			hw->blk[blk].es.written[map->prof_id] = true;
3424 
3425 			list_add(&p->list_entry, chg);
3426 		}
3427 
3428 err_ice_get_prof:
3429 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3430 	/* let caller clean up the change list */
3431 	return status;
3432 }
3433 
3434 /**
3435  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3436  * @hw: pointer to the HW struct
3437  * @blk: hardware block
3438  * @vsig: VSIG from which to copy the list
3439  * @lst: output list
3440  *
3441  * This routine makes a copy of the list of profiles in the specified VSIG.
3442  */
3443 static int
3444 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3445 		   struct list_head *lst)
3446 {
3447 	struct ice_vsig_prof *ent1, *ent2;
3448 	u16 idx = vsig & ICE_VSIG_IDX_M;
3449 
3450 	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3451 			    list) {
3452 		struct ice_vsig_prof *p;
3453 
3454 		/* copy to the input list */
3455 		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3456 				 GFP_KERNEL);
3457 		if (!p)
3458 			goto err_ice_get_profs_vsig;
3459 
3460 		list_add_tail(&p->list, lst);
3461 	}
3462 
3463 	return 0;
3464 
3465 err_ice_get_profs_vsig:
3466 	list_for_each_entry_safe(ent1, ent2, lst, list) {
3467 		list_del(&ent1->list);
3468 		devm_kfree(ice_hw_to_dev(hw), ent1);
3469 	}
3470 
3471 	return -ENOMEM;
3472 }
3473 
3474 /**
3475  * ice_add_prof_to_lst - add profile entry to a list
3476  * @hw: pointer to the HW struct
3477  * @blk: hardware block
3478  * @lst: the list to be added to
3479  * @hdl: profile handle of entry to add
3480  */
3481 static int
3482 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3483 		    struct list_head *lst, u64 hdl)
3484 {
3485 	struct ice_prof_map *map;
3486 	struct ice_vsig_prof *p;
3487 	int status = 0;
3488 	u16 i;
3489 
3490 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3491 	map = ice_search_prof_id(hw, blk, hdl);
3492 	if (!map) {
3493 		status = -ENOENT;
3494 		goto err_ice_add_prof_to_lst;
3495 	}
3496 
3497 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3498 	if (!p) {
3499 		status = -ENOMEM;
3500 		goto err_ice_add_prof_to_lst;
3501 	}
3502 
3503 	p->profile_cookie = map->profile_cookie;
3504 	p->prof_id = map->prof_id;
3505 	p->tcam_count = map->ptg_cnt;
3506 
3507 	for (i = 0; i < map->ptg_cnt; i++) {
3508 		p->tcam[i].prof_id = map->prof_id;
3509 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3510 		p->tcam[i].ptg = map->ptg[i];
3511 	}
3512 
3513 	list_add(&p->list, lst);
3514 
3515 err_ice_add_prof_to_lst:
3516 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3517 	return status;
3518 }
3519 
3520 /**
3521  * ice_move_vsi - move VSI to another VSIG
3522  * @hw: pointer to the HW struct
3523  * @blk: hardware block
3524  * @vsi: the VSI to move
3525  * @vsig: the VSIG to move the VSI to
3526  * @chg: the change list
3527  */
3528 static int
3529 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3530 	     struct list_head *chg)
3531 {
3532 	struct ice_chs_chg *p;
3533 	u16 orig_vsig;
3534 	int status;
3535 
3536 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3537 	if (!p)
3538 		return -ENOMEM;
3539 
3540 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3541 	if (!status)
3542 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3543 
3544 	if (status) {
3545 		devm_kfree(ice_hw_to_dev(hw), p);
3546 		return status;
3547 	}
3548 
3549 	p->type = ICE_VSI_MOVE;
3550 	p->vsi = vsi;
3551 	p->orig_vsig = orig_vsig;
3552 	p->vsig = vsig;
3553 
3554 	list_add(&p->list_entry, chg);
3555 
3556 	return 0;
3557 }
3558 
3559 /**
3560  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3561  * @hw: pointer to the HW struct
3562  * @idx: the index of the TCAM entry to remove
3563  * @chg: the list of change structures to search
3564  */
3565 static void
3566 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3567 {
3568 	struct ice_chs_chg *pos, *tmp;
3569 
3570 	list_for_each_entry_safe(tmp, pos, chg, list_entry)
3571 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3572 			list_del(&tmp->list_entry);
3573 			devm_kfree(ice_hw_to_dev(hw), tmp);
3574 		}
3575 }
3576 
3577 /**
3578  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3579  * @hw: pointer to the HW struct
3580  * @blk: hardware block
3581  * @enable: true to enable, false to disable
3582  * @vsig: the VSIG of the TCAM entry
3583  * @tcam: pointer the TCAM info structure of the TCAM to disable
3584  * @chg: the change list
3585  *
3586  * This function appends an enable or disable TCAM entry in the change log
3587  */
3588 static int
3589 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3590 		      u16 vsig, struct ice_tcam_inf *tcam,
3591 		      struct list_head *chg)
3592 {
3593 	struct ice_chs_chg *p;
3594 	int status;
3595 
3596 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3597 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3598 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3599 
3600 	/* if disabling, free the TCAM */
3601 	if (!enable) {
3602 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3603 
3604 		/* if we have already created a change for this TCAM entry, then
3605 		 * we need to remove that entry, in order to prevent writing to
3606 		 * a TCAM entry we no longer will have ownership of.
3607 		 */
3608 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3609 		tcam->tcam_idx = 0;
3610 		tcam->in_use = 0;
3611 		return status;
3612 	}
3613 
3614 	/* for re-enabling, reallocate a TCAM */
3615 	/* for entries with empty attribute masks, allocate entry from
3616 	 * the bottom of the TCAM table; otherwise, allocate from the
3617 	 * top of the table in order to give it higher priority
3618 	 */
3619 	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
3620 				    &tcam->tcam_idx);
3621 	if (status)
3622 		return status;
3623 
3624 	/* add TCAM to change list */
3625 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3626 	if (!p)
3627 		return -ENOMEM;
3628 
3629 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3630 				      tcam->ptg, vsig, 0, tcam->attr.flags,
3631 				      vl_msk, dc_msk, nm_msk);
3632 	if (status)
3633 		goto err_ice_prof_tcam_ena_dis;
3634 
3635 	tcam->in_use = 1;
3636 
3637 	p->type = ICE_TCAM_ADD;
3638 	p->add_tcam_idx = true;
3639 	p->prof_id = tcam->prof_id;
3640 	p->ptg = tcam->ptg;
3641 	p->vsig = 0;
3642 	p->tcam_idx = tcam->tcam_idx;
3643 
3644 	/* log change */
3645 	list_add(&p->list_entry, chg);
3646 
3647 	return 0;
3648 
3649 err_ice_prof_tcam_ena_dis:
3650 	devm_kfree(ice_hw_to_dev(hw), p);
3651 	return status;
3652 }
3653 
3654 /**
3655  * ice_adj_prof_priorities - adjust profile based on priorities
3656  * @hw: pointer to the HW struct
3657  * @blk: hardware block
3658  * @vsig: the VSIG for which to adjust profile priorities
3659  * @chg: the change list
3660  */
3661 static int
3662 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3663 			struct list_head *chg)
3664 {
3665 	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3666 	struct ice_vsig_prof *t;
3667 	int status;
3668 	u16 idx;
3669 
3670 	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3671 	idx = vsig & ICE_VSIG_IDX_M;
3672 
3673 	/* Priority is based on the order in which the profiles are added. The
3674 	 * newest added profile has highest priority and the oldest added
3675 	 * profile has the lowest priority. Since the profile property list for
3676 	 * a VSIG is sorted from newest to oldest, this code traverses the list
3677 	 * in order and enables the first of each PTG that it finds (that is not
3678 	 * already enabled); it also disables any duplicate PTGs that it finds
3679 	 * in the older profiles (that are currently enabled).
3680 	 */
3681 
3682 	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3683 			    list) {
3684 		u16 i;
3685 
3686 		for (i = 0; i < t->tcam_count; i++) {
3687 			/* Scan the priorities from newest to oldest.
3688 			 * Make sure that the newest profiles take priority.
3689 			 */
3690 			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
3691 			    t->tcam[i].in_use) {
3692 				/* need to mark this PTG as never match, as it
3693 				 * was already in use and therefore duplicate
3694 				 * (and lower priority)
3695 				 */
3696 				status = ice_prof_tcam_ena_dis(hw, blk, false,
3697 							       vsig,
3698 							       &t->tcam[i],
3699 							       chg);
3700 				if (status)
3701 					return status;
3702 			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
3703 				   !t->tcam[i].in_use) {
3704 				/* need to enable this PTG, as it in not in use
3705 				 * and not enabled (highest priority)
3706 				 */
3707 				status = ice_prof_tcam_ena_dis(hw, blk, true,
3708 							       vsig,
3709 							       &t->tcam[i],
3710 							       chg);
3711 				if (status)
3712 					return status;
3713 			}
3714 
3715 			/* keep track of used ptgs */
3716 			__set_bit(t->tcam[i].ptg, ptgs_used);
3717 		}
3718 	}
3719 
3720 	return 0;
3721 }
3722 
3723 /**
3724  * ice_add_prof_id_vsig - add profile to VSIG
3725  * @hw: pointer to the HW struct
3726  * @blk: hardware block
3727  * @vsig: the VSIG to which this profile is to be added
3728  * @hdl: the profile handle indicating the profile to add
3729  * @rev: true to add entries to the end of the list
3730  * @chg: the change list
3731  */
3732 static int
3733 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3734 		     bool rev, struct list_head *chg)
3735 {
3736 	/* Masks that ignore flags */
3737 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3738 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3739 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3740 	struct ice_prof_map *map;
3741 	struct ice_vsig_prof *t;
3742 	struct ice_chs_chg *p;
3743 	u16 vsig_idx, i;
3744 	int status = 0;
3745 
3746 	/* Error, if this VSIG already has this profile */
3747 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3748 		return -EEXIST;
3749 
3750 	/* new VSIG profile structure */
3751 	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3752 	if (!t)
3753 		return -ENOMEM;
3754 
3755 	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3756 	/* Get the details on the profile specified by the handle ID */
3757 	map = ice_search_prof_id(hw, blk, hdl);
3758 	if (!map) {
3759 		status = -ENOENT;
3760 		goto err_ice_add_prof_id_vsig;
3761 	}
3762 
3763 	t->profile_cookie = map->profile_cookie;
3764 	t->prof_id = map->prof_id;
3765 	t->tcam_count = map->ptg_cnt;
3766 
3767 	/* create TCAM entries */
3768 	for (i = 0; i < map->ptg_cnt; i++) {
3769 		u16 tcam_idx;
3770 
3771 		/* add TCAM to change list */
3772 		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3773 		if (!p) {
3774 			status = -ENOMEM;
3775 			goto err_ice_add_prof_id_vsig;
3776 		}
3777 
3778 		/* allocate the TCAM entry index */
3779 		/* for entries with empty attribute masks, allocate entry from
3780 		 * the bottom of the TCAM table; otherwise, allocate from the
3781 		 * top of the table in order to give it higher priority
3782 		 */
3783 		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
3784 					    &tcam_idx);
3785 		if (status) {
3786 			devm_kfree(ice_hw_to_dev(hw), p);
3787 			goto err_ice_add_prof_id_vsig;
3788 		}
3789 
3790 		t->tcam[i].ptg = map->ptg[i];
3791 		t->tcam[i].prof_id = map->prof_id;
3792 		t->tcam[i].tcam_idx = tcam_idx;
3793 		t->tcam[i].attr = map->attr[i];
3794 		t->tcam[i].in_use = true;
3795 
3796 		p->type = ICE_TCAM_ADD;
3797 		p->add_tcam_idx = true;
3798 		p->prof_id = t->tcam[i].prof_id;
3799 		p->ptg = t->tcam[i].ptg;
3800 		p->vsig = vsig;
3801 		p->tcam_idx = t->tcam[i].tcam_idx;
3802 
3803 		/* write the TCAM entry */
3804 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3805 					      t->tcam[i].prof_id,
3806 					      t->tcam[i].ptg, vsig, 0, 0,
3807 					      vl_msk, dc_msk, nm_msk);
3808 		if (status) {
3809 			devm_kfree(ice_hw_to_dev(hw), p);
3810 			goto err_ice_add_prof_id_vsig;
3811 		}
3812 
3813 		/* log change */
3814 		list_add(&p->list_entry, chg);
3815 	}
3816 
3817 	/* add profile to VSIG */
3818 	vsig_idx = vsig & ICE_VSIG_IDX_M;
3819 	if (rev)
3820 		list_add_tail(&t->list,
3821 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3822 	else
3823 		list_add(&t->list,
3824 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3825 
3826 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3827 	return status;
3828 
3829 err_ice_add_prof_id_vsig:
3830 	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3831 	/* let caller clean up the change list */
3832 	devm_kfree(ice_hw_to_dev(hw), t);
3833 	return status;
3834 }
3835 
3836 /**
3837  * ice_create_prof_id_vsig - add a new VSIG with a single profile
3838  * @hw: pointer to the HW struct
3839  * @blk: hardware block
3840  * @vsi: the initial VSI that will be in VSIG
3841  * @hdl: the profile handle of the profile that will be added to the VSIG
3842  * @chg: the change list
3843  */
3844 static int
3845 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3846 			struct list_head *chg)
3847 {
3848 	struct ice_chs_chg *p;
3849 	u16 new_vsig;
3850 	int status;
3851 
3852 	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3853 	if (!p)
3854 		return -ENOMEM;
3855 
3856 	new_vsig = ice_vsig_alloc(hw, blk);
3857 	if (!new_vsig) {
3858 		status = -EIO;
3859 		goto err_ice_create_prof_id_vsig;
3860 	}
3861 
3862 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3863 	if (status)
3864 		goto err_ice_create_prof_id_vsig;
3865 
3866 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3867 	if (status)
3868 		goto err_ice_create_prof_id_vsig;
3869 
3870 	p->type = ICE_VSIG_ADD;
3871 	p->vsi = vsi;
3872 	p->orig_vsig = ICE_DEFAULT_VSIG;
3873 	p->vsig = new_vsig;
3874 
3875 	list_add(&p->list_entry, chg);
3876 
3877 	return 0;
3878 
3879 err_ice_create_prof_id_vsig:
3880 	/* let caller clean up the change list */
3881 	devm_kfree(ice_hw_to_dev(hw), p);
3882 	return status;
3883 }
3884 
3885 /**
3886  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3887  * @hw: pointer to the HW struct
3888  * @blk: hardware block
3889  * @vsi: the initial VSI that will be in VSIG
3890  * @lst: the list of profile that will be added to the VSIG
3891  * @new_vsig: return of new VSIG
3892  * @chg: the change list
3893  */
3894 static int
3895 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3896 			 struct list_head *lst, u16 *new_vsig,
3897 			 struct list_head *chg)
3898 {
3899 	struct ice_vsig_prof *t;
3900 	int status;
3901 	u16 vsig;
3902 
3903 	vsig = ice_vsig_alloc(hw, blk);
3904 	if (!vsig)
3905 		return -EIO;
3906 
3907 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3908 	if (status)
3909 		return status;
3910 
3911 	list_for_each_entry(t, lst, list) {
3912 		/* Reverse the order here since we are copying the list */
3913 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3914 					      true, chg);
3915 		if (status)
3916 			return status;
3917 	}
3918 
3919 	*new_vsig = vsig;
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  * ice_find_prof_vsig - find a VSIG with a specific profile handle
3926  * @hw: pointer to the HW struct
3927  * @blk: hardware block
3928  * @hdl: the profile handle of the profile to search for
3929  * @vsig: returns the VSIG with the matching profile
3930  */
3931 static bool
3932 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3933 {
3934 	struct ice_vsig_prof *t;
3935 	struct list_head lst;
3936 	int status;
3937 
3938 	INIT_LIST_HEAD(&lst);
3939 
3940 	t = kzalloc(sizeof(*t), GFP_KERNEL);
3941 	if (!t)
3942 		return false;
3943 
3944 	t->profile_cookie = hdl;
3945 	list_add(&t->list, &lst);
3946 
3947 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3948 
3949 	list_del(&t->list);
3950 	kfree(t);
3951 
3952 	return !status;
3953 }
3954 
3955 /**
3956  * ice_add_prof_id_flow - add profile flow
3957  * @hw: pointer to the HW struct
3958  * @blk: hardware block
3959  * @vsi: the VSI to enable with the profile specified by ID
3960  * @hdl: profile handle
3961  *
3962  * Calling this function will update the hardware tables to enable the
3963  * profile indicated by the ID parameter for the VSIs specified in the VSI
3964  * array. Once successfully called, the flow will be enabled.
3965  */
3966 int
3967 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3968 {
3969 	struct ice_vsig_prof *tmp1, *del1;
3970 	struct ice_chs_chg *tmp, *del;
3971 	struct list_head union_lst;
3972 	struct list_head chg;
3973 	int status;
3974 	u16 vsig;
3975 
3976 	INIT_LIST_HEAD(&union_lst);
3977 	INIT_LIST_HEAD(&chg);
3978 
3979 	/* Get profile */
3980 	status = ice_get_prof(hw, blk, hdl, &chg);
3981 	if (status)
3982 		return status;
3983 
3984 	/* determine if VSI is already part of a VSIG */
3985 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
3986 	if (!status && vsig) {
3987 		bool only_vsi;
3988 		u16 or_vsig;
3989 		u16 ref;
3990 
3991 		/* found in VSIG */
3992 		or_vsig = vsig;
3993 
3994 		/* make sure that there is no overlap/conflict between the new
3995 		 * characteristics and the existing ones; we don't support that
3996 		 * scenario
3997 		 */
3998 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
3999 			status = -EEXIST;
4000 			goto err_ice_add_prof_id_flow;
4001 		}
4002 
4003 		/* last VSI in the VSIG? */
4004 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4005 		if (status)
4006 			goto err_ice_add_prof_id_flow;
4007 		only_vsi = (ref == 1);
4008 
4009 		/* create a union of the current profiles and the one being
4010 		 * added
4011 		 */
4012 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4013 		if (status)
4014 			goto err_ice_add_prof_id_flow;
4015 
4016 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4017 		if (status)
4018 			goto err_ice_add_prof_id_flow;
4019 
4020 		/* search for an existing VSIG with an exact charc match */
4021 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4022 		if (!status) {
4023 			/* move VSI to the VSIG that matches */
4024 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4025 			if (status)
4026 				goto err_ice_add_prof_id_flow;
4027 
4028 			/* VSI has been moved out of or_vsig. If the or_vsig had
4029 			 * only that VSI it is now empty and can be removed.
4030 			 */
4031 			if (only_vsi) {
4032 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4033 				if (status)
4034 					goto err_ice_add_prof_id_flow;
4035 			}
4036 		} else if (only_vsi) {
4037 			/* If the original VSIG only contains one VSI, then it
4038 			 * will be the requesting VSI. In this case the VSI is
4039 			 * not sharing entries and we can simply add the new
4040 			 * profile to the VSIG.
4041 			 */
4042 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4043 						      &chg);
4044 			if (status)
4045 				goto err_ice_add_prof_id_flow;
4046 
4047 			/* Adjust priorities */
4048 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4049 			if (status)
4050 				goto err_ice_add_prof_id_flow;
4051 		} else {
4052 			/* No match, so we need a new VSIG */
4053 			status = ice_create_vsig_from_lst(hw, blk, vsi,
4054 							  &union_lst, &vsig,
4055 							  &chg);
4056 			if (status)
4057 				goto err_ice_add_prof_id_flow;
4058 
4059 			/* Adjust priorities */
4060 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4061 			if (status)
4062 				goto err_ice_add_prof_id_flow;
4063 		}
4064 	} else {
4065 		/* need to find or add a VSIG */
4066 		/* search for an existing VSIG with an exact charc match */
4067 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4068 			/* found an exact match */
4069 			/* add or move VSI to the VSIG that matches */
4070 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4071 			if (status)
4072 				goto err_ice_add_prof_id_flow;
4073 		} else {
4074 			/* we did not find an exact match */
4075 			/* we need to add a VSIG */
4076 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4077 							 &chg);
4078 			if (status)
4079 				goto err_ice_add_prof_id_flow;
4080 		}
4081 	}
4082 
4083 	/* update hardware */
4084 	if (!status)
4085 		status = ice_upd_prof_hw(hw, blk, &chg);
4086 
4087 err_ice_add_prof_id_flow:
4088 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4089 		list_del(&del->list_entry);
4090 		devm_kfree(ice_hw_to_dev(hw), del);
4091 	}
4092 
4093 	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4094 		list_del(&del1->list);
4095 		devm_kfree(ice_hw_to_dev(hw), del1);
4096 	}
4097 
4098 	return status;
4099 }
4100 
4101 /**
4102  * ice_rem_prof_from_list - remove a profile from list
4103  * @hw: pointer to the HW struct
4104  * @lst: list to remove the profile from
4105  * @hdl: the profile handle indicating the profile to remove
4106  */
4107 static int
4108 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4109 {
4110 	struct ice_vsig_prof *ent, *tmp;
4111 
4112 	list_for_each_entry_safe(ent, tmp, lst, list)
4113 		if (ent->profile_cookie == hdl) {
4114 			list_del(&ent->list);
4115 			devm_kfree(ice_hw_to_dev(hw), ent);
4116 			return 0;
4117 		}
4118 
4119 	return -ENOENT;
4120 }
4121 
4122 /**
4123  * ice_rem_prof_id_flow - remove flow
4124  * @hw: pointer to the HW struct
4125  * @blk: hardware block
4126  * @vsi: the VSI from which to remove the profile specified by ID
4127  * @hdl: profile tracking handle
4128  *
4129  * Calling this function will update the hardware tables to remove the
4130  * profile indicated by the ID parameter for the VSIs specified in the VSI
4131  * array. Once successfully called, the flow will be disabled.
4132  */
4133 int
4134 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4135 {
4136 	struct ice_vsig_prof *tmp1, *del1;
4137 	struct ice_chs_chg *tmp, *del;
4138 	struct list_head chg, copy;
4139 	int status;
4140 	u16 vsig;
4141 
4142 	INIT_LIST_HEAD(&copy);
4143 	INIT_LIST_HEAD(&chg);
4144 
4145 	/* determine if VSI is already part of a VSIG */
4146 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4147 	if (!status && vsig) {
4148 		bool last_profile;
4149 		bool only_vsi;
4150 		u16 ref;
4151 
4152 		/* found in VSIG */
4153 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4154 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4155 		if (status)
4156 			goto err_ice_rem_prof_id_flow;
4157 		only_vsi = (ref == 1);
4158 
4159 		if (only_vsi) {
4160 			/* If the original VSIG only contains one reference,
4161 			 * which will be the requesting VSI, then the VSI is not
4162 			 * sharing entries and we can simply remove the specific
4163 			 * characteristics from the VSIG.
4164 			 */
4165 
4166 			if (last_profile) {
4167 				/* If there are no profiles left for this VSIG,
4168 				 * then simply remove the VSIG.
4169 				 */
4170 				status = ice_rem_vsig(hw, blk, vsig, &chg);
4171 				if (status)
4172 					goto err_ice_rem_prof_id_flow;
4173 			} else {
4174 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
4175 							      hdl, &chg);
4176 				if (status)
4177 					goto err_ice_rem_prof_id_flow;
4178 
4179 				/* Adjust priorities */
4180 				status = ice_adj_prof_priorities(hw, blk, vsig,
4181 								 &chg);
4182 				if (status)
4183 					goto err_ice_rem_prof_id_flow;
4184 			}
4185 
4186 		} else {
4187 			/* Make a copy of the VSIG's list of Profiles */
4188 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4189 			if (status)
4190 				goto err_ice_rem_prof_id_flow;
4191 
4192 			/* Remove specified profile entry from the list */
4193 			status = ice_rem_prof_from_list(hw, &copy, hdl);
4194 			if (status)
4195 				goto err_ice_rem_prof_id_flow;
4196 
4197 			if (list_empty(&copy)) {
4198 				status = ice_move_vsi(hw, blk, vsi,
4199 						      ICE_DEFAULT_VSIG, &chg);
4200 				if (status)
4201 					goto err_ice_rem_prof_id_flow;
4202 
4203 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4204 							    &vsig)) {
4205 				/* found an exact match */
4206 				/* add or move VSI to the VSIG that matches */
4207 				/* Search for a VSIG with a matching profile
4208 				 * list
4209 				 */
4210 
4211 				/* Found match, move VSI to the matching VSIG */
4212 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4213 				if (status)
4214 					goto err_ice_rem_prof_id_flow;
4215 			} else {
4216 				/* since no existing VSIG supports this
4217 				 * characteristic pattern, we need to create a
4218 				 * new VSIG and TCAM entries
4219 				 */
4220 				status = ice_create_vsig_from_lst(hw, blk, vsi,
4221 								  &copy, &vsig,
4222 								  &chg);
4223 				if (status)
4224 					goto err_ice_rem_prof_id_flow;
4225 
4226 				/* Adjust priorities */
4227 				status = ice_adj_prof_priorities(hw, blk, vsig,
4228 								 &chg);
4229 				if (status)
4230 					goto err_ice_rem_prof_id_flow;
4231 			}
4232 		}
4233 	} else {
4234 		status = -ENOENT;
4235 	}
4236 
4237 	/* update hardware tables */
4238 	if (!status)
4239 		status = ice_upd_prof_hw(hw, blk, &chg);
4240 
4241 err_ice_rem_prof_id_flow:
4242 	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4243 		list_del(&del->list_entry);
4244 		devm_kfree(ice_hw_to_dev(hw), del);
4245 	}
4246 
4247 	list_for_each_entry_safe(del1, tmp1, &copy, list) {
4248 		list_del(&del1->list);
4249 		devm_kfree(ice_hw_to_dev(hw), del1);
4250 	}
4251 
4252 	return status;
4253 }
4254