1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_flex_pipe.h" 6 #include "ice_flow.h" 7 #include "ice.h" 8 9 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 10 /* SWITCH */ 11 { 12 ICE_SID_XLT0_SW, 13 ICE_SID_XLT_KEY_BUILDER_SW, 14 ICE_SID_XLT1_SW, 15 ICE_SID_XLT2_SW, 16 ICE_SID_PROFID_TCAM_SW, 17 ICE_SID_PROFID_REDIR_SW, 18 ICE_SID_FLD_VEC_SW, 19 ICE_SID_CDID_KEY_BUILDER_SW, 20 ICE_SID_CDID_REDIR_SW 21 }, 22 23 /* ACL */ 24 { 25 ICE_SID_XLT0_ACL, 26 ICE_SID_XLT_KEY_BUILDER_ACL, 27 ICE_SID_XLT1_ACL, 28 ICE_SID_XLT2_ACL, 29 ICE_SID_PROFID_TCAM_ACL, 30 ICE_SID_PROFID_REDIR_ACL, 31 ICE_SID_FLD_VEC_ACL, 32 ICE_SID_CDID_KEY_BUILDER_ACL, 33 ICE_SID_CDID_REDIR_ACL 34 }, 35 36 /* FD */ 37 { 38 ICE_SID_XLT0_FD, 39 ICE_SID_XLT_KEY_BUILDER_FD, 40 ICE_SID_XLT1_FD, 41 ICE_SID_XLT2_FD, 42 ICE_SID_PROFID_TCAM_FD, 43 ICE_SID_PROFID_REDIR_FD, 44 ICE_SID_FLD_VEC_FD, 45 ICE_SID_CDID_KEY_BUILDER_FD, 46 ICE_SID_CDID_REDIR_FD 47 }, 48 49 /* RSS */ 50 { 51 ICE_SID_XLT0_RSS, 52 ICE_SID_XLT_KEY_BUILDER_RSS, 53 ICE_SID_XLT1_RSS, 54 ICE_SID_XLT2_RSS, 55 ICE_SID_PROFID_TCAM_RSS, 56 ICE_SID_PROFID_REDIR_RSS, 57 ICE_SID_FLD_VEC_RSS, 58 ICE_SID_CDID_KEY_BUILDER_RSS, 59 ICE_SID_CDID_REDIR_RSS 60 }, 61 62 /* PE */ 63 { 64 ICE_SID_XLT0_PE, 65 ICE_SID_XLT_KEY_BUILDER_PE, 66 ICE_SID_XLT1_PE, 67 ICE_SID_XLT2_PE, 68 ICE_SID_PROFID_TCAM_PE, 69 ICE_SID_PROFID_REDIR_PE, 70 ICE_SID_FLD_VEC_PE, 71 ICE_SID_CDID_KEY_BUILDER_PE, 72 ICE_SID_CDID_REDIR_PE 73 } 74 }; 75 76 /** 77 * ice_sect_id - returns section ID 78 * @blk: block type 79 * @sect: section type 80 * 81 * This helper function returns the proper section ID given a block type and a 82 * section type. 83 */ 84 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 85 { 86 return ice_sect_lkup[blk][sect]; 87 } 88 89 /** 90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not 91 * @hw: pointer to the HW structure 92 * @ptype: the hardware PTYPE 93 */ 94 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype) 95 { 96 return ptype < ICE_FLOW_PTYPE_MAX && 97 test_bit(ptype, hw->hw_ptype); 98 } 99 100 /* Key creation */ 101 102 #define ICE_DC_KEY 0x1 /* don't care */ 103 #define ICE_DC_KEYINV 0x1 104 #define ICE_NM_KEY 0x0 /* never match */ 105 #define ICE_NM_KEYINV 0x0 106 #define ICE_0_KEY 0x1 /* match 0 */ 107 #define ICE_0_KEYINV 0x0 108 #define ICE_1_KEY 0x0 /* match 1 */ 109 #define ICE_1_KEYINV 0x1 110 111 /** 112 * ice_gen_key_word - generate 16-bits of a key/mask word 113 * @val: the value 114 * @valid: valid bits mask (change only the valid bits) 115 * @dont_care: don't care mask 116 * @nvr_mtch: never match mask 117 * @key: pointer to an array of where the resulting key portion 118 * @key_inv: pointer to an array of where the resulting key invert portion 119 * 120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 122 * of key and 8 bits of key invert. 123 * 124 * '0' = b01, always match a 0 bit 125 * '1' = b10, always match a 1 bit 126 * '?' = b11, don't care bit (always matches) 127 * '~' = b00, never match bit 128 * 129 * Input: 130 * val: b0 1 0 1 0 1 131 * dont_care: b0 0 1 1 0 0 132 * never_mtch: b0 0 0 0 1 1 133 * ------------------------------ 134 * Result: key: b01 10 11 11 00 00 135 */ 136 static int 137 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 138 u8 *key_inv) 139 { 140 u8 in_key = *key, in_key_inv = *key_inv; 141 u8 i; 142 143 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 144 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 145 return -EIO; 146 147 *key = 0; 148 *key_inv = 0; 149 150 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 151 for (i = 0; i < 8; i++) { 152 *key >>= 1; 153 *key_inv >>= 1; 154 155 if (!(valid & 0x1)) { /* change only valid bits */ 156 *key |= (in_key & 0x1) << 7; 157 *key_inv |= (in_key_inv & 0x1) << 7; 158 } else if (dont_care & 0x1) { /* don't care bit */ 159 *key |= ICE_DC_KEY << 7; 160 *key_inv |= ICE_DC_KEYINV << 7; 161 } else if (nvr_mtch & 0x1) { /* never match bit */ 162 *key |= ICE_NM_KEY << 7; 163 *key_inv |= ICE_NM_KEYINV << 7; 164 } else if (val & 0x01) { /* exact 1 match */ 165 *key |= ICE_1_KEY << 7; 166 *key_inv |= ICE_1_KEYINV << 7; 167 } else { /* exact 0 match */ 168 *key |= ICE_0_KEY << 7; 169 *key_inv |= ICE_0_KEYINV << 7; 170 } 171 172 dont_care >>= 1; 173 nvr_mtch >>= 1; 174 valid >>= 1; 175 val >>= 1; 176 in_key >>= 1; 177 in_key_inv >>= 1; 178 } 179 180 return 0; 181 } 182 183 /** 184 * ice_bits_max_set - determine if the number of bits set is within a maximum 185 * @mask: pointer to the byte array which is the mask 186 * @size: the number of bytes in the mask 187 * @max: the max number of set bits 188 * 189 * This function determines if there are at most 'max' number of bits set in an 190 * array. Returns true if the number for bits set is <= max or will return false 191 * otherwise. 192 */ 193 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 194 { 195 u16 count = 0; 196 u16 i; 197 198 /* check each byte */ 199 for (i = 0; i < size; i++) { 200 /* if 0, go to next byte */ 201 if (!mask[i]) 202 continue; 203 204 /* We know there is at least one set bit in this byte because of 205 * the above check; if we already have found 'max' number of 206 * bits set, then we can return failure now. 207 */ 208 if (count == max) 209 return false; 210 211 /* count the bits in this byte, checking threshold */ 212 count += hweight8(mask[i]); 213 if (count > max) 214 return false; 215 } 216 217 return true; 218 } 219 220 /** 221 * ice_set_key - generate a variable sized key with multiples of 16-bits 222 * @key: pointer to where the key will be stored 223 * @size: the size of the complete key in bytes (must be even) 224 * @val: array of 8-bit values that makes up the value portion of the key 225 * @upd: array of 8-bit masks that determine what key portion to update 226 * @dc: array of 8-bit masks that make up the don't care mask 227 * @nm: array of 8-bit masks that make up the never match mask 228 * @off: the offset of the first byte in the key to update 229 * @len: the number of bytes in the key update 230 * 231 * This function generates a key from a value, a don't care mask and a never 232 * match mask. 233 * upd, dc, and nm are optional parameters, and can be NULL: 234 * upd == NULL --> upd mask is all 1's (update all bits) 235 * dc == NULL --> dc mask is all 0's (no don't care bits) 236 * nm == NULL --> nm mask is all 0's (no never match bits) 237 */ 238 static int 239 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 240 u16 len) 241 { 242 u16 half_size; 243 u16 i; 244 245 /* size must be a multiple of 2 bytes. */ 246 if (size % 2) 247 return -EIO; 248 249 half_size = size / 2; 250 if (off + len > half_size) 251 return -EIO; 252 253 /* Make sure at most one bit is set in the never match mask. Having more 254 * than one never match mask bit set will cause HW to consume excessive 255 * power otherwise; this is a power management efficiency check. 256 */ 257 #define ICE_NVR_MTCH_BITS_MAX 1 258 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 259 return -EIO; 260 261 for (i = 0; i < len; i++) 262 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 263 dc ? dc[i] : 0, nm ? nm[i] : 0, 264 key + off + i, key + half_size + off + i)) 265 return -EIO; 266 267 return 0; 268 } 269 270 /** 271 * ice_acquire_change_lock 272 * @hw: pointer to the HW structure 273 * @access: access type (read or write) 274 * 275 * This function will request ownership of the change lock. 276 */ 277 int 278 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 279 { 280 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 281 ICE_CHANGE_LOCK_TIMEOUT); 282 } 283 284 /** 285 * ice_release_change_lock 286 * @hw: pointer to the HW structure 287 * 288 * This function will release the change lock using the proper Admin Command. 289 */ 290 void ice_release_change_lock(struct ice_hw *hw) 291 { 292 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 293 } 294 295 /** 296 * ice_get_open_tunnel_port - retrieve an open tunnel port 297 * @hw: pointer to the HW structure 298 * @port: returns open port 299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter 300 */ 301 bool 302 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, 303 enum ice_tunnel_type type) 304 { 305 bool res = false; 306 u16 i; 307 308 mutex_lock(&hw->tnl_lock); 309 310 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 311 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port && 312 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) { 313 *port = hw->tnl.tbl[i].port; 314 res = true; 315 break; 316 } 317 318 mutex_unlock(&hw->tnl_lock); 319 320 return res; 321 } 322 323 /** 324 * ice_upd_dvm_boost_entry 325 * @hw: pointer to the HW structure 326 * @entry: pointer to double vlan boost entry info 327 */ 328 static int 329 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry) 330 { 331 struct ice_boost_tcam_section *sect_rx, *sect_tx; 332 int status = -ENOSPC; 333 struct ice_buf_build *bld; 334 u8 val, dc, nm; 335 336 bld = ice_pkg_buf_alloc(hw); 337 if (!bld) 338 return -ENOMEM; 339 340 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 341 if (ice_pkg_buf_reserve_section(bld, 2)) 342 goto ice_upd_dvm_boost_entry_err; 343 344 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 345 struct_size(sect_rx, tcam, 1)); 346 if (!sect_rx) 347 goto ice_upd_dvm_boost_entry_err; 348 sect_rx->count = cpu_to_le16(1); 349 350 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 351 struct_size(sect_tx, tcam, 1)); 352 if (!sect_tx) 353 goto ice_upd_dvm_boost_entry_err; 354 sect_tx->count = cpu_to_le16(1); 355 356 /* copy original boost entry to update package buffer */ 357 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam)); 358 359 /* re-write the don't care and never match bits accordingly */ 360 if (entry->enable) { 361 /* all bits are don't care */ 362 val = 0x00; 363 dc = 0xFF; 364 nm = 0x00; 365 } else { 366 /* disable, one never match bit, the rest are don't care */ 367 val = 0x00; 368 dc = 0xF7; 369 nm = 0x08; 370 } 371 372 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 373 &val, NULL, &dc, &nm, 0, sizeof(u8)); 374 375 /* exact copy of entry to Tx section entry */ 376 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 377 378 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1); 379 380 ice_upd_dvm_boost_entry_err: 381 ice_pkg_buf_free(hw, bld); 382 383 return status; 384 } 385 386 /** 387 * ice_set_dvm_boost_entries 388 * @hw: pointer to the HW structure 389 * 390 * Enable double vlan by updating the appropriate boost tcam entries. 391 */ 392 int ice_set_dvm_boost_entries(struct ice_hw *hw) 393 { 394 u16 i; 395 396 for (i = 0; i < hw->dvm_upd.count; i++) { 397 int status; 398 399 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]); 400 if (status) 401 return status; 402 } 403 404 return 0; 405 } 406 407 /** 408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one 409 * @hw: pointer to the HW structure 410 * @type: type of tunnel 411 * @idx: linear index 412 * 413 * Stack assumes we have 2 linear tables with indexes [0, count_valid), 414 * but really the port table may be sprase, and types are mixed, so convert 415 * the stack index into the device index. 416 */ 417 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type, 418 u16 idx) 419 { 420 u16 i; 421 422 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 423 if (hw->tnl.tbl[i].valid && 424 hw->tnl.tbl[i].type == type && 425 idx-- == 0) 426 return i; 427 428 WARN_ON_ONCE(1); 429 return 0; 430 } 431 432 /** 433 * ice_create_tunnel 434 * @hw: pointer to the HW structure 435 * @index: device table entry 436 * @type: type of tunnel 437 * @port: port of tunnel to create 438 * 439 * Create a tunnel by updating the parse graph in the parser. We do that by 440 * creating a package buffer with the tunnel info and issuing an update package 441 * command. 442 */ 443 static int 444 ice_create_tunnel(struct ice_hw *hw, u16 index, 445 enum ice_tunnel_type type, u16 port) 446 { 447 struct ice_boost_tcam_section *sect_rx, *sect_tx; 448 struct ice_buf_build *bld; 449 int status = -ENOSPC; 450 451 mutex_lock(&hw->tnl_lock); 452 453 bld = ice_pkg_buf_alloc(hw); 454 if (!bld) { 455 status = -ENOMEM; 456 goto ice_create_tunnel_end; 457 } 458 459 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 460 if (ice_pkg_buf_reserve_section(bld, 2)) 461 goto ice_create_tunnel_err; 462 463 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 464 struct_size(sect_rx, tcam, 1)); 465 if (!sect_rx) 466 goto ice_create_tunnel_err; 467 sect_rx->count = cpu_to_le16(1); 468 469 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 470 struct_size(sect_tx, tcam, 1)); 471 if (!sect_tx) 472 goto ice_create_tunnel_err; 473 sect_tx->count = cpu_to_le16(1); 474 475 /* copy original boost entry to update package buffer */ 476 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 477 sizeof(*sect_rx->tcam)); 478 479 /* over-write the never-match dest port key bits with the encoded port 480 * bits 481 */ 482 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 483 (u8 *)&port, NULL, NULL, NULL, 484 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 485 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 486 487 /* exact copy of entry to Tx section entry */ 488 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam)); 489 490 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 491 if (!status) 492 hw->tnl.tbl[index].port = port; 493 494 ice_create_tunnel_err: 495 ice_pkg_buf_free(hw, bld); 496 497 ice_create_tunnel_end: 498 mutex_unlock(&hw->tnl_lock); 499 500 return status; 501 } 502 503 /** 504 * ice_destroy_tunnel 505 * @hw: pointer to the HW structure 506 * @index: device table entry 507 * @type: type of tunnel 508 * @port: port of tunnel to destroy (ignored if the all parameter is true) 509 * 510 * Destroys a tunnel or all tunnels by creating an update package buffer 511 * targeting the specific updates requested and then performing an update 512 * package. 513 */ 514 static int 515 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type, 516 u16 port) 517 { 518 struct ice_boost_tcam_section *sect_rx, *sect_tx; 519 struct ice_buf_build *bld; 520 int status = -ENOSPC; 521 522 mutex_lock(&hw->tnl_lock); 523 524 if (WARN_ON(!hw->tnl.tbl[index].valid || 525 hw->tnl.tbl[index].type != type || 526 hw->tnl.tbl[index].port != port)) { 527 status = -EIO; 528 goto ice_destroy_tunnel_end; 529 } 530 531 bld = ice_pkg_buf_alloc(hw); 532 if (!bld) { 533 status = -ENOMEM; 534 goto ice_destroy_tunnel_end; 535 } 536 537 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 538 if (ice_pkg_buf_reserve_section(bld, 2)) 539 goto ice_destroy_tunnel_err; 540 541 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 542 struct_size(sect_rx, tcam, 1)); 543 if (!sect_rx) 544 goto ice_destroy_tunnel_err; 545 sect_rx->count = cpu_to_le16(1); 546 547 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 548 struct_size(sect_tx, tcam, 1)); 549 if (!sect_tx) 550 goto ice_destroy_tunnel_err; 551 sect_tx->count = cpu_to_le16(1); 552 553 /* copy original boost entry to update package buffer, one copy to Rx 554 * section, another copy to the Tx section 555 */ 556 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 557 sizeof(*sect_rx->tcam)); 558 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry, 559 sizeof(*sect_tx->tcam)); 560 561 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 562 if (!status) 563 hw->tnl.tbl[index].port = 0; 564 565 ice_destroy_tunnel_err: 566 ice_pkg_buf_free(hw, bld); 567 568 ice_destroy_tunnel_end: 569 mutex_unlock(&hw->tnl_lock); 570 571 return status; 572 } 573 574 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 575 unsigned int idx, struct udp_tunnel_info *ti) 576 { 577 struct ice_netdev_priv *np = netdev_priv(netdev); 578 struct ice_vsi *vsi = np->vsi; 579 struct ice_pf *pf = vsi->back; 580 enum ice_tunnel_type tnl_type; 581 int status; 582 u16 index; 583 584 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 585 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx); 586 587 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port)); 588 if (status) { 589 netdev_err(netdev, "Error adding UDP tunnel - %d\n", 590 status); 591 return -EIO; 592 } 593 594 udp_tunnel_nic_set_port_priv(netdev, table, idx, index); 595 return 0; 596 } 597 598 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 599 unsigned int idx, struct udp_tunnel_info *ti) 600 { 601 struct ice_netdev_priv *np = netdev_priv(netdev); 602 struct ice_vsi *vsi = np->vsi; 603 struct ice_pf *pf = vsi->back; 604 enum ice_tunnel_type tnl_type; 605 int status; 606 607 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE; 608 609 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type, 610 ntohs(ti->port)); 611 if (status) { 612 netdev_err(netdev, "Error removing UDP tunnel - %d\n", 613 status); 614 return -EIO; 615 } 616 617 return 0; 618 } 619 620 /** 621 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 622 * @hw: pointer to the hardware structure 623 * @blk: hardware block 624 * @prof: profile ID 625 * @fv_idx: field vector word index 626 * @prot: variable to receive the protocol ID 627 * @off: variable to receive the protocol offset 628 */ 629 int 630 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 631 u8 *prot, u16 *off) 632 { 633 struct ice_fv_word *fv_ext; 634 635 if (prof >= hw->blk[blk].es.count) 636 return -EINVAL; 637 638 if (fv_idx >= hw->blk[blk].es.fvw) 639 return -EINVAL; 640 641 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 642 643 *prot = fv_ext[fv_idx].prot_id; 644 *off = fv_ext[fv_idx].off; 645 646 return 0; 647 } 648 649 /* PTG Management */ 650 651 /** 652 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 653 * @hw: pointer to the hardware structure 654 * @blk: HW block 655 * @ptype: the ptype to search for 656 * @ptg: pointer to variable that receives the PTG 657 * 658 * This function will search the PTGs for a particular ptype, returning the 659 * PTG ID that contains it through the PTG parameter, with the value of 660 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 661 */ 662 static int 663 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 664 { 665 if (ptype >= ICE_XLT1_CNT || !ptg) 666 return -EINVAL; 667 668 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 669 return 0; 670 } 671 672 /** 673 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 674 * @hw: pointer to the hardware structure 675 * @blk: HW block 676 * @ptg: the PTG to allocate 677 * 678 * This function allocates a given packet type group ID specified by the PTG 679 * parameter. 680 */ 681 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 682 { 683 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 684 } 685 686 /** 687 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 688 * @hw: pointer to the hardware structure 689 * @blk: HW block 690 * @ptype: the ptype to remove 691 * @ptg: the PTG to remove the ptype from 692 * 693 * This function will remove the ptype from the specific PTG, and move it to 694 * the default PTG (ICE_DEFAULT_PTG). 695 */ 696 static int 697 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 698 { 699 struct ice_ptg_ptype **ch; 700 struct ice_ptg_ptype *p; 701 702 if (ptype > ICE_XLT1_CNT - 1) 703 return -EINVAL; 704 705 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 706 return -ENOENT; 707 708 /* Should not happen if .in_use is set, bad config */ 709 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 710 return -EIO; 711 712 /* find the ptype within this PTG, and bypass the link over it */ 713 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 714 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 715 while (p) { 716 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 717 *ch = p->next_ptype; 718 break; 719 } 720 721 ch = &p->next_ptype; 722 p = p->next_ptype; 723 } 724 725 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 726 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 727 728 return 0; 729 } 730 731 /** 732 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 733 * @hw: pointer to the hardware structure 734 * @blk: HW block 735 * @ptype: the ptype to add or move 736 * @ptg: the PTG to add or move the ptype to 737 * 738 * This function will either add or move a ptype to a particular PTG depending 739 * on if the ptype is already part of another group. Note that using a 740 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 741 * default PTG. 742 */ 743 static int 744 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 745 { 746 u8 original_ptg; 747 int status; 748 749 if (ptype > ICE_XLT1_CNT - 1) 750 return -EINVAL; 751 752 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 753 return -ENOENT; 754 755 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 756 if (status) 757 return status; 758 759 /* Is ptype already in the correct PTG? */ 760 if (original_ptg == ptg) 761 return 0; 762 763 /* Remove from original PTG and move back to the default PTG */ 764 if (original_ptg != ICE_DEFAULT_PTG) 765 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 766 767 /* Moving to default PTG? Then we're done with this request */ 768 if (ptg == ICE_DEFAULT_PTG) 769 return 0; 770 771 /* Add ptype to PTG at beginning of list */ 772 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 773 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 774 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 775 &hw->blk[blk].xlt1.ptypes[ptype]; 776 777 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 778 hw->blk[blk].xlt1.t[ptype] = ptg; 779 780 return 0; 781 } 782 783 /* Block / table size info */ 784 struct ice_blk_size_details { 785 u16 xlt1; /* # XLT1 entries */ 786 u16 xlt2; /* # XLT2 entries */ 787 u16 prof_tcam; /* # profile ID TCAM entries */ 788 u16 prof_id; /* # profile IDs */ 789 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 790 u16 prof_redir; /* # profile redirection entries */ 791 u16 es; /* # extraction sequence entries */ 792 u16 fvw; /* # field vector words */ 793 u8 overwrite; /* overwrite existing entries allowed */ 794 u8 reverse; /* reverse FV order */ 795 }; 796 797 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 798 /** 799 * Table Definitions 800 * XLT1 - Number of entries in XLT1 table 801 * XLT2 - Number of entries in XLT2 table 802 * TCAM - Number of entries Profile ID TCAM table 803 * CDID - Control Domain ID of the hardware block 804 * PRED - Number of entries in the Profile Redirection Table 805 * FV - Number of entries in the Field Vector 806 * FVW - Width (in WORDs) of the Field Vector 807 * OVR - Overwrite existing table entries 808 * REV - Reverse FV 809 */ 810 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 811 /* Overwrite , Reverse FV */ 812 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 813 false, false }, 814 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 815 false, false }, 816 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 817 false, true }, 818 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 819 true, true }, 820 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 821 false, false }, 822 }; 823 824 enum ice_sid_all { 825 ICE_SID_XLT1_OFF = 0, 826 ICE_SID_XLT2_OFF, 827 ICE_SID_PR_OFF, 828 ICE_SID_PR_REDIR_OFF, 829 ICE_SID_ES_OFF, 830 ICE_SID_OFF_COUNT, 831 }; 832 833 /* Characteristic handling */ 834 835 /** 836 * ice_match_prop_lst - determine if properties of two lists match 837 * @list1: first properties list 838 * @list2: second properties list 839 * 840 * Count, cookies and the order must match in order to be considered equivalent. 841 */ 842 static bool 843 ice_match_prop_lst(struct list_head *list1, struct list_head *list2) 844 { 845 struct ice_vsig_prof *tmp1; 846 struct ice_vsig_prof *tmp2; 847 u16 chk_count = 0; 848 u16 count = 0; 849 850 /* compare counts */ 851 list_for_each_entry(tmp1, list1, list) 852 count++; 853 list_for_each_entry(tmp2, list2, list) 854 chk_count++; 855 if (!count || count != chk_count) 856 return false; 857 858 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list); 859 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list); 860 861 /* profile cookies must compare, and in the exact same order to take 862 * into account priority 863 */ 864 while (count--) { 865 if (tmp2->profile_cookie != tmp1->profile_cookie) 866 return false; 867 868 tmp1 = list_next_entry(tmp1, list); 869 tmp2 = list_next_entry(tmp2, list); 870 } 871 872 return true; 873 } 874 875 /* VSIG Management */ 876 877 /** 878 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 879 * @hw: pointer to the hardware structure 880 * @blk: HW block 881 * @vsi: VSI of interest 882 * @vsig: pointer to receive the VSI group 883 * 884 * This function will lookup the VSI entry in the XLT2 list and return 885 * the VSI group its associated with. 886 */ 887 static int 888 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 889 { 890 if (!vsig || vsi >= ICE_MAX_VSI) 891 return -EINVAL; 892 893 /* As long as there's a default or valid VSIG associated with the input 894 * VSI, the functions returns a success. Any handling of VSIG will be 895 * done by the following add, update or remove functions. 896 */ 897 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 898 899 return 0; 900 } 901 902 /** 903 * ice_vsig_alloc_val - allocate a new VSIG by value 904 * @hw: pointer to the hardware structure 905 * @blk: HW block 906 * @vsig: the VSIG to allocate 907 * 908 * This function will allocate a given VSIG specified by the VSIG parameter. 909 */ 910 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 911 { 912 u16 idx = vsig & ICE_VSIG_IDX_M; 913 914 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 915 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 916 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 917 } 918 919 return ICE_VSIG_VALUE(idx, hw->pf_id); 920 } 921 922 /** 923 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 924 * @hw: pointer to the hardware structure 925 * @blk: HW block 926 * 927 * This function will iterate through the VSIG list and mark the first 928 * unused entry for the new VSIG entry as used and return that value. 929 */ 930 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 931 { 932 u16 i; 933 934 for (i = 1; i < ICE_MAX_VSIGS; i++) 935 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 936 return ice_vsig_alloc_val(hw, blk, i); 937 938 return ICE_DEFAULT_VSIG; 939 } 940 941 /** 942 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 943 * @hw: pointer to the hardware structure 944 * @blk: HW block 945 * @chs: characteristic list 946 * @vsig: returns the VSIG with the matching profiles, if found 947 * 948 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 949 * a group have the same characteristic set. To check if there exists a VSIG 950 * which has the same characteristics as the input characteristics; this 951 * function will iterate through the XLT2 list and return the VSIG that has a 952 * matching configuration. In order to make sure that priorities are accounted 953 * for, the list must match exactly, including the order in which the 954 * characteristics are listed. 955 */ 956 static int 957 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 958 struct list_head *chs, u16 *vsig) 959 { 960 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 961 u16 i; 962 963 for (i = 0; i < xlt2->count; i++) 964 if (xlt2->vsig_tbl[i].in_use && 965 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 966 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 967 return 0; 968 } 969 970 return -ENOENT; 971 } 972 973 /** 974 * ice_vsig_free - free VSI group 975 * @hw: pointer to the hardware structure 976 * @blk: HW block 977 * @vsig: VSIG to remove 978 * 979 * The function will remove all VSIs associated with the input VSIG and move 980 * them to the DEFAULT_VSIG and mark the VSIG available. 981 */ 982 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 983 { 984 struct ice_vsig_prof *dtmp, *del; 985 struct ice_vsig_vsi *vsi_cur; 986 u16 idx; 987 988 idx = vsig & ICE_VSIG_IDX_M; 989 if (idx >= ICE_MAX_VSIGS) 990 return -EINVAL; 991 992 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 993 return -ENOENT; 994 995 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 996 997 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 998 /* If the VSIG has at least 1 VSI then iterate through the 999 * list and remove the VSIs before deleting the group. 1000 */ 1001 if (vsi_cur) { 1002 /* remove all vsis associated with this VSIG XLT2 entry */ 1003 do { 1004 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 1005 1006 vsi_cur->vsig = ICE_DEFAULT_VSIG; 1007 vsi_cur->changed = 1; 1008 vsi_cur->next_vsi = NULL; 1009 vsi_cur = tmp; 1010 } while (vsi_cur); 1011 1012 /* NULL terminate head of VSI list */ 1013 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 1014 } 1015 1016 /* free characteristic list */ 1017 list_for_each_entry_safe(del, dtmp, 1018 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 1019 list) { 1020 list_del(&del->list); 1021 devm_kfree(ice_hw_to_dev(hw), del); 1022 } 1023 1024 /* if VSIG characteristic list was cleared for reset 1025 * re-initialize the list head 1026 */ 1027 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 1028 1029 return 0; 1030 } 1031 1032 /** 1033 * ice_vsig_remove_vsi - remove VSI from VSIG 1034 * @hw: pointer to the hardware structure 1035 * @blk: HW block 1036 * @vsi: VSI to remove 1037 * @vsig: VSI group to remove from 1038 * 1039 * The function will remove the input VSI from its VSI group and move it 1040 * to the DEFAULT_VSIG. 1041 */ 1042 static int 1043 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 1044 { 1045 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 1046 u16 idx; 1047 1048 idx = vsig & ICE_VSIG_IDX_M; 1049 1050 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 1051 return -EINVAL; 1052 1053 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 1054 return -ENOENT; 1055 1056 /* entry already in default VSIG, don't have to remove */ 1057 if (idx == ICE_DEFAULT_VSIG) 1058 return 0; 1059 1060 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 1061 if (!(*vsi_head)) 1062 return -EIO; 1063 1064 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 1065 vsi_cur = (*vsi_head); 1066 1067 /* iterate the VSI list, skip over the entry to be removed */ 1068 while (vsi_cur) { 1069 if (vsi_tgt == vsi_cur) { 1070 (*vsi_head) = vsi_cur->next_vsi; 1071 break; 1072 } 1073 vsi_head = &vsi_cur->next_vsi; 1074 vsi_cur = vsi_cur->next_vsi; 1075 } 1076 1077 /* verify if VSI was removed from group list */ 1078 if (!vsi_cur) 1079 return -ENOENT; 1080 1081 vsi_cur->vsig = ICE_DEFAULT_VSIG; 1082 vsi_cur->changed = 1; 1083 vsi_cur->next_vsi = NULL; 1084 1085 return 0; 1086 } 1087 1088 /** 1089 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 1090 * @hw: pointer to the hardware structure 1091 * @blk: HW block 1092 * @vsi: VSI to move 1093 * @vsig: destination VSI group 1094 * 1095 * This function will move or add the input VSI to the target VSIG. 1096 * The function will find the original VSIG the VSI belongs to and 1097 * move the entry to the DEFAULT_VSIG, update the original VSIG and 1098 * then move entry to the new VSIG. 1099 */ 1100 static int 1101 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 1102 { 1103 struct ice_vsig_vsi *tmp; 1104 u16 orig_vsig, idx; 1105 int status; 1106 1107 idx = vsig & ICE_VSIG_IDX_M; 1108 1109 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 1110 return -EINVAL; 1111 1112 /* if VSIG not in use and VSIG is not default type this VSIG 1113 * doesn't exist. 1114 */ 1115 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 1116 vsig != ICE_DEFAULT_VSIG) 1117 return -ENOENT; 1118 1119 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 1120 if (status) 1121 return status; 1122 1123 /* no update required if vsigs match */ 1124 if (orig_vsig == vsig) 1125 return 0; 1126 1127 if (orig_vsig != ICE_DEFAULT_VSIG) { 1128 /* remove entry from orig_vsig and add to default VSIG */ 1129 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 1130 if (status) 1131 return status; 1132 } 1133 1134 if (idx == ICE_DEFAULT_VSIG) 1135 return 0; 1136 1137 /* Create VSI entry and add VSIG and prop_mask values */ 1138 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 1139 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 1140 1141 /* Add new entry to the head of the VSIG list */ 1142 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 1143 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 1144 &hw->blk[blk].xlt2.vsis[vsi]; 1145 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 1146 hw->blk[blk].xlt2.t[vsi] = vsig; 1147 1148 return 0; 1149 } 1150 1151 /** 1152 * ice_prof_has_mask_idx - determine if profile index masking is identical 1153 * @hw: pointer to the hardware structure 1154 * @blk: HW block 1155 * @prof: profile to check 1156 * @idx: profile index to check 1157 * @mask: mask to match 1158 */ 1159 static bool 1160 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx, 1161 u16 mask) 1162 { 1163 bool expect_no_mask = false; 1164 bool found = false; 1165 bool match = false; 1166 u16 i; 1167 1168 /* If mask is 0x0000 or 0xffff, then there is no masking */ 1169 if (mask == 0 || mask == 0xffff) 1170 expect_no_mask = true; 1171 1172 /* Scan the enabled masks on this profile, for the specified idx */ 1173 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first + 1174 hw->blk[blk].masks.count; i++) 1175 if (hw->blk[blk].es.mask_ena[prof] & BIT(i)) 1176 if (hw->blk[blk].masks.masks[i].in_use && 1177 hw->blk[blk].masks.masks[i].idx == idx) { 1178 found = true; 1179 if (hw->blk[blk].masks.masks[i].mask == mask) 1180 match = true; 1181 break; 1182 } 1183 1184 if (expect_no_mask) { 1185 if (found) 1186 return false; 1187 } else { 1188 if (!match) 1189 return false; 1190 } 1191 1192 return true; 1193 } 1194 1195 /** 1196 * ice_prof_has_mask - determine if profile masking is identical 1197 * @hw: pointer to the hardware structure 1198 * @blk: HW block 1199 * @prof: profile to check 1200 * @masks: masks to match 1201 */ 1202 static bool 1203 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks) 1204 { 1205 u16 i; 1206 1207 /* es->mask_ena[prof] will have the mask */ 1208 for (i = 0; i < hw->blk[blk].es.fvw; i++) 1209 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i])) 1210 return false; 1211 1212 return true; 1213 } 1214 1215 /** 1216 * ice_find_prof_id_with_mask - find profile ID for a given field vector 1217 * @hw: pointer to the hardware structure 1218 * @blk: HW block 1219 * @fv: field vector to search for 1220 * @masks: masks for FV 1221 * @symm: symmetric setting for RSS flows 1222 * @prof_id: receives the profile ID 1223 */ 1224 static int 1225 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk, 1226 struct ice_fv_word *fv, u16 *masks, bool symm, 1227 u8 *prof_id) 1228 { 1229 struct ice_es *es = &hw->blk[blk].es; 1230 u8 i; 1231 1232 /* For FD, we don't want to re-use a existed profile with the same 1233 * field vector and mask. This will cause rule interference. 1234 */ 1235 if (blk == ICE_BLK_FD) 1236 return -ENOENT; 1237 1238 for (i = 0; i < (u8)es->count; i++) { 1239 u16 off = i * es->fvw; 1240 1241 if (blk == ICE_BLK_RSS && es->symm[i] != symm) 1242 continue; 1243 1244 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 1245 continue; 1246 1247 /* check if masks settings are the same for this profile */ 1248 if (masks && !ice_prof_has_mask(hw, blk, i, masks)) 1249 continue; 1250 1251 *prof_id = i; 1252 return 0; 1253 } 1254 1255 return -ENOENT; 1256 } 1257 1258 /** 1259 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 1260 * @blk: the block type 1261 * @rsrc_type: pointer to variable to receive the resource type 1262 */ 1263 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 1264 { 1265 switch (blk) { 1266 case ICE_BLK_FD: 1267 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID; 1268 break; 1269 case ICE_BLK_RSS: 1270 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 1271 break; 1272 default: 1273 return false; 1274 } 1275 return true; 1276 } 1277 1278 /** 1279 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 1280 * @blk: the block type 1281 * @rsrc_type: pointer to variable to receive the resource type 1282 */ 1283 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 1284 { 1285 switch (blk) { 1286 case ICE_BLK_FD: 1287 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM; 1288 break; 1289 case ICE_BLK_RSS: 1290 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 1291 break; 1292 default: 1293 return false; 1294 } 1295 return true; 1296 } 1297 1298 /** 1299 * ice_alloc_tcam_ent - allocate hardware TCAM entry 1300 * @hw: pointer to the HW struct 1301 * @blk: the block to allocate the TCAM for 1302 * @btm: true to allocate from bottom of table, false to allocate from top 1303 * @tcam_idx: pointer to variable to receive the TCAM entry 1304 * 1305 * This function allocates a new entry in a Profile ID TCAM for a specific 1306 * block. 1307 */ 1308 static int 1309 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 1310 u16 *tcam_idx) 1311 { 1312 u16 res_type; 1313 1314 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 1315 return -EINVAL; 1316 1317 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 1318 } 1319 1320 /** 1321 * ice_free_tcam_ent - free hardware TCAM entry 1322 * @hw: pointer to the HW struct 1323 * @blk: the block from which to free the TCAM entry 1324 * @tcam_idx: the TCAM entry to free 1325 * 1326 * This function frees an entry in a Profile ID TCAM for a specific block. 1327 */ 1328 static int 1329 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 1330 { 1331 u16 res_type; 1332 1333 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 1334 return -EINVAL; 1335 1336 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 1337 } 1338 1339 /** 1340 * ice_alloc_prof_id - allocate profile ID 1341 * @hw: pointer to the HW struct 1342 * @blk: the block to allocate the profile ID for 1343 * @prof_id: pointer to variable to receive the profile ID 1344 * 1345 * This function allocates a new profile ID, which also corresponds to a Field 1346 * Vector (Extraction Sequence) entry. 1347 */ 1348 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 1349 { 1350 u16 res_type; 1351 u16 get_prof; 1352 int status; 1353 1354 if (!ice_prof_id_rsrc_type(blk, &res_type)) 1355 return -EINVAL; 1356 1357 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 1358 if (!status) 1359 *prof_id = (u8)get_prof; 1360 1361 return status; 1362 } 1363 1364 /** 1365 * ice_free_prof_id - free profile ID 1366 * @hw: pointer to the HW struct 1367 * @blk: the block from which to free the profile ID 1368 * @prof_id: the profile ID to free 1369 * 1370 * This function frees a profile ID, which also corresponds to a Field Vector. 1371 */ 1372 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 1373 { 1374 u16 tmp_prof_id = (u16)prof_id; 1375 u16 res_type; 1376 1377 if (!ice_prof_id_rsrc_type(blk, &res_type)) 1378 return -EINVAL; 1379 1380 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 1381 } 1382 1383 /** 1384 * ice_prof_inc_ref - increment reference count for profile 1385 * @hw: pointer to the HW struct 1386 * @blk: the block from which to free the profile ID 1387 * @prof_id: the profile ID for which to increment the reference count 1388 */ 1389 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 1390 { 1391 if (prof_id > hw->blk[blk].es.count) 1392 return -EINVAL; 1393 1394 hw->blk[blk].es.ref_count[prof_id]++; 1395 1396 return 0; 1397 } 1398 1399 /** 1400 * ice_write_prof_mask_reg - write profile mask register 1401 * @hw: pointer to the HW struct 1402 * @blk: hardware block 1403 * @mask_idx: mask index 1404 * @idx: index of the FV which will use the mask 1405 * @mask: the 16-bit mask 1406 */ 1407 static void 1408 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx, 1409 u16 idx, u16 mask) 1410 { 1411 u32 offset; 1412 u32 val; 1413 1414 switch (blk) { 1415 case ICE_BLK_RSS: 1416 offset = GLQF_HMASK(mask_idx); 1417 val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx); 1418 val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask); 1419 break; 1420 case ICE_BLK_FD: 1421 offset = GLQF_FDMASK(mask_idx); 1422 val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx); 1423 val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask); 1424 break; 1425 default: 1426 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 1427 blk); 1428 return; 1429 } 1430 1431 wr32(hw, offset, val); 1432 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n", 1433 blk, idx, offset, val); 1434 } 1435 1436 /** 1437 * ice_write_prof_mask_enable_res - write profile mask enable register 1438 * @hw: pointer to the HW struct 1439 * @blk: hardware block 1440 * @prof_id: profile ID 1441 * @enable_mask: enable mask 1442 */ 1443 static void 1444 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk, 1445 u16 prof_id, u32 enable_mask) 1446 { 1447 u32 offset; 1448 1449 switch (blk) { 1450 case ICE_BLK_RSS: 1451 offset = GLQF_HMASK_SEL(prof_id); 1452 break; 1453 case ICE_BLK_FD: 1454 offset = GLQF_FDMASK_SEL(prof_id); 1455 break; 1456 default: 1457 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n", 1458 blk); 1459 return; 1460 } 1461 1462 wr32(hw, offset, enable_mask); 1463 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n", 1464 blk, prof_id, offset, enable_mask); 1465 } 1466 1467 /** 1468 * ice_init_prof_masks - initial prof masks 1469 * @hw: pointer to the HW struct 1470 * @blk: hardware block 1471 */ 1472 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk) 1473 { 1474 u16 per_pf; 1475 u16 i; 1476 1477 mutex_init(&hw->blk[blk].masks.lock); 1478 1479 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs; 1480 1481 hw->blk[blk].masks.count = per_pf; 1482 hw->blk[blk].masks.first = hw->pf_id * per_pf; 1483 1484 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks)); 1485 1486 for (i = hw->blk[blk].masks.first; 1487 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 1488 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 1489 } 1490 1491 /** 1492 * ice_init_all_prof_masks - initialize all prof masks 1493 * @hw: pointer to the HW struct 1494 */ 1495 static void ice_init_all_prof_masks(struct ice_hw *hw) 1496 { 1497 ice_init_prof_masks(hw, ICE_BLK_RSS); 1498 ice_init_prof_masks(hw, ICE_BLK_FD); 1499 } 1500 1501 /** 1502 * ice_alloc_prof_mask - allocate profile mask 1503 * @hw: pointer to the HW struct 1504 * @blk: hardware block 1505 * @idx: index of FV which will use the mask 1506 * @mask: the 16-bit mask 1507 * @mask_idx: variable to receive the mask index 1508 */ 1509 static int 1510 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask, 1511 u16 *mask_idx) 1512 { 1513 bool found_unused = false, found_copy = false; 1514 u16 unused_idx = 0, copy_idx = 0; 1515 int status = -ENOSPC; 1516 u16 i; 1517 1518 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1519 return -EINVAL; 1520 1521 mutex_lock(&hw->blk[blk].masks.lock); 1522 1523 for (i = hw->blk[blk].masks.first; 1524 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) 1525 if (hw->blk[blk].masks.masks[i].in_use) { 1526 /* if mask is in use and it exactly duplicates the 1527 * desired mask and index, then in can be reused 1528 */ 1529 if (hw->blk[blk].masks.masks[i].mask == mask && 1530 hw->blk[blk].masks.masks[i].idx == idx) { 1531 found_copy = true; 1532 copy_idx = i; 1533 break; 1534 } 1535 } else { 1536 /* save off unused index, but keep searching in case 1537 * there is an exact match later on 1538 */ 1539 if (!found_unused) { 1540 found_unused = true; 1541 unused_idx = i; 1542 } 1543 } 1544 1545 if (found_copy) 1546 i = copy_idx; 1547 else if (found_unused) 1548 i = unused_idx; 1549 else 1550 goto err_ice_alloc_prof_mask; 1551 1552 /* update mask for a new entry */ 1553 if (found_unused) { 1554 hw->blk[blk].masks.masks[i].in_use = true; 1555 hw->blk[blk].masks.masks[i].mask = mask; 1556 hw->blk[blk].masks.masks[i].idx = idx; 1557 hw->blk[blk].masks.masks[i].ref = 0; 1558 ice_write_prof_mask_reg(hw, blk, i, idx, mask); 1559 } 1560 1561 hw->blk[blk].masks.masks[i].ref++; 1562 *mask_idx = i; 1563 status = 0; 1564 1565 err_ice_alloc_prof_mask: 1566 mutex_unlock(&hw->blk[blk].masks.lock); 1567 1568 return status; 1569 } 1570 1571 /** 1572 * ice_free_prof_mask - free profile mask 1573 * @hw: pointer to the HW struct 1574 * @blk: hardware block 1575 * @mask_idx: index of mask 1576 */ 1577 static int 1578 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx) 1579 { 1580 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1581 return -EINVAL; 1582 1583 if (!(mask_idx >= hw->blk[blk].masks.first && 1584 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count)) 1585 return -ENOENT; 1586 1587 mutex_lock(&hw->blk[blk].masks.lock); 1588 1589 if (!hw->blk[blk].masks.masks[mask_idx].in_use) 1590 goto exit_ice_free_prof_mask; 1591 1592 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) { 1593 hw->blk[blk].masks.masks[mask_idx].ref--; 1594 goto exit_ice_free_prof_mask; 1595 } 1596 1597 /* remove mask */ 1598 hw->blk[blk].masks.masks[mask_idx].in_use = false; 1599 hw->blk[blk].masks.masks[mask_idx].mask = 0; 1600 hw->blk[blk].masks.masks[mask_idx].idx = 0; 1601 1602 /* update mask as unused entry */ 1603 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk, 1604 mask_idx); 1605 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0); 1606 1607 exit_ice_free_prof_mask: 1608 mutex_unlock(&hw->blk[blk].masks.lock); 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * ice_free_prof_masks - free all profile masks for a profile 1615 * @hw: pointer to the HW struct 1616 * @blk: hardware block 1617 * @prof_id: profile ID 1618 */ 1619 static int 1620 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id) 1621 { 1622 u32 mask_bm; 1623 u16 i; 1624 1625 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1626 return -EINVAL; 1627 1628 mask_bm = hw->blk[blk].es.mask_ena[prof_id]; 1629 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++) 1630 if (mask_bm & BIT(i)) 1631 ice_free_prof_mask(hw, blk, i); 1632 1633 return 0; 1634 } 1635 1636 /** 1637 * ice_shutdown_prof_masks - releases lock for masking 1638 * @hw: pointer to the HW struct 1639 * @blk: hardware block 1640 * 1641 * This should be called before unloading the driver 1642 */ 1643 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk) 1644 { 1645 u16 i; 1646 1647 mutex_lock(&hw->blk[blk].masks.lock); 1648 1649 for (i = hw->blk[blk].masks.first; 1650 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) { 1651 ice_write_prof_mask_reg(hw, blk, i, 0, 0); 1652 1653 hw->blk[blk].masks.masks[i].in_use = false; 1654 hw->blk[blk].masks.masks[i].idx = 0; 1655 hw->blk[blk].masks.masks[i].mask = 0; 1656 } 1657 1658 mutex_unlock(&hw->blk[blk].masks.lock); 1659 mutex_destroy(&hw->blk[blk].masks.lock); 1660 } 1661 1662 /** 1663 * ice_shutdown_all_prof_masks - releases all locks for masking 1664 * @hw: pointer to the HW struct 1665 * 1666 * This should be called before unloading the driver 1667 */ 1668 static void ice_shutdown_all_prof_masks(struct ice_hw *hw) 1669 { 1670 ice_shutdown_prof_masks(hw, ICE_BLK_RSS); 1671 ice_shutdown_prof_masks(hw, ICE_BLK_FD); 1672 } 1673 1674 /** 1675 * ice_update_prof_masking - set registers according to masking 1676 * @hw: pointer to the HW struct 1677 * @blk: hardware block 1678 * @prof_id: profile ID 1679 * @masks: masks 1680 */ 1681 static int 1682 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id, 1683 u16 *masks) 1684 { 1685 bool err = false; 1686 u32 ena_mask = 0; 1687 u16 idx; 1688 u16 i; 1689 1690 /* Only support FD and RSS masking, otherwise nothing to be done */ 1691 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD) 1692 return 0; 1693 1694 for (i = 0; i < hw->blk[blk].es.fvw; i++) 1695 if (masks[i] && masks[i] != 0xFFFF) { 1696 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) { 1697 ena_mask |= BIT(idx); 1698 } else { 1699 /* not enough bitmaps */ 1700 err = true; 1701 break; 1702 } 1703 } 1704 1705 if (err) { 1706 /* free any bitmaps we have allocated */ 1707 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++) 1708 if (ena_mask & BIT(i)) 1709 ice_free_prof_mask(hw, blk, i); 1710 1711 return -EIO; 1712 } 1713 1714 /* enable the masks for this profile */ 1715 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask); 1716 1717 /* store enabled masks with profile so that they can be freed later */ 1718 hw->blk[blk].es.mask_ena[prof_id] = ena_mask; 1719 1720 return 0; 1721 } 1722 1723 /** 1724 * ice_write_es - write an extraction sequence and symmetric setting to hardware 1725 * @hw: pointer to the HW struct 1726 * @blk: the block in which to write the extraction sequence 1727 * @prof_id: the profile ID to write 1728 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 1729 * @symm: symmetric setting for RSS profiles 1730 */ 1731 static void 1732 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 1733 struct ice_fv_word *fv, bool symm) 1734 { 1735 u16 off; 1736 1737 off = prof_id * hw->blk[blk].es.fvw; 1738 if (!fv) { 1739 memset(&hw->blk[blk].es.t[off], 0, 1740 hw->blk[blk].es.fvw * sizeof(*fv)); 1741 hw->blk[blk].es.written[prof_id] = false; 1742 } else { 1743 memcpy(&hw->blk[blk].es.t[off], fv, 1744 hw->blk[blk].es.fvw * sizeof(*fv)); 1745 } 1746 1747 if (blk == ICE_BLK_RSS) 1748 hw->blk[blk].es.symm[prof_id] = symm; 1749 } 1750 1751 /** 1752 * ice_prof_dec_ref - decrement reference count for profile 1753 * @hw: pointer to the HW struct 1754 * @blk: the block from which to free the profile ID 1755 * @prof_id: the profile ID for which to decrement the reference count 1756 */ 1757 static int 1758 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 1759 { 1760 if (prof_id > hw->blk[blk].es.count) 1761 return -EINVAL; 1762 1763 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 1764 if (!--hw->blk[blk].es.ref_count[prof_id]) { 1765 ice_write_es(hw, blk, prof_id, NULL, false); 1766 ice_free_prof_masks(hw, blk, prof_id); 1767 return ice_free_prof_id(hw, blk, prof_id); 1768 } 1769 } 1770 1771 return 0; 1772 } 1773 1774 /* Block / table section IDs */ 1775 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 1776 /* SWITCH */ 1777 { ICE_SID_XLT1_SW, 1778 ICE_SID_XLT2_SW, 1779 ICE_SID_PROFID_TCAM_SW, 1780 ICE_SID_PROFID_REDIR_SW, 1781 ICE_SID_FLD_VEC_SW 1782 }, 1783 1784 /* ACL */ 1785 { ICE_SID_XLT1_ACL, 1786 ICE_SID_XLT2_ACL, 1787 ICE_SID_PROFID_TCAM_ACL, 1788 ICE_SID_PROFID_REDIR_ACL, 1789 ICE_SID_FLD_VEC_ACL 1790 }, 1791 1792 /* FD */ 1793 { ICE_SID_XLT1_FD, 1794 ICE_SID_XLT2_FD, 1795 ICE_SID_PROFID_TCAM_FD, 1796 ICE_SID_PROFID_REDIR_FD, 1797 ICE_SID_FLD_VEC_FD 1798 }, 1799 1800 /* RSS */ 1801 { ICE_SID_XLT1_RSS, 1802 ICE_SID_XLT2_RSS, 1803 ICE_SID_PROFID_TCAM_RSS, 1804 ICE_SID_PROFID_REDIR_RSS, 1805 ICE_SID_FLD_VEC_RSS 1806 }, 1807 1808 /* PE */ 1809 { ICE_SID_XLT1_PE, 1810 ICE_SID_XLT2_PE, 1811 ICE_SID_PROFID_TCAM_PE, 1812 ICE_SID_PROFID_REDIR_PE, 1813 ICE_SID_FLD_VEC_PE 1814 } 1815 }; 1816 1817 /** 1818 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 1819 * @hw: pointer to the hardware structure 1820 * @blk: the HW block to initialize 1821 */ 1822 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 1823 { 1824 u16 pt; 1825 1826 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 1827 u8 ptg; 1828 1829 ptg = hw->blk[blk].xlt1.t[pt]; 1830 if (ptg != ICE_DEFAULT_PTG) { 1831 ice_ptg_alloc_val(hw, blk, ptg); 1832 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 1833 } 1834 } 1835 } 1836 1837 /** 1838 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 1839 * @hw: pointer to the hardware structure 1840 * @blk: the HW block to initialize 1841 */ 1842 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 1843 { 1844 u16 vsi; 1845 1846 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 1847 u16 vsig; 1848 1849 vsig = hw->blk[blk].xlt2.t[vsi]; 1850 if (vsig) { 1851 ice_vsig_alloc_val(hw, blk, vsig); 1852 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 1853 /* no changes at this time, since this has been 1854 * initialized from the original package 1855 */ 1856 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 1857 } 1858 } 1859 } 1860 1861 /** 1862 * ice_init_sw_db - init software database from HW tables 1863 * @hw: pointer to the hardware structure 1864 */ 1865 static void ice_init_sw_db(struct ice_hw *hw) 1866 { 1867 u16 i; 1868 1869 for (i = 0; i < ICE_BLK_COUNT; i++) { 1870 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 1871 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 1872 } 1873 } 1874 1875 /** 1876 * ice_fill_tbl - Reads content of a single table type into database 1877 * @hw: pointer to the hardware structure 1878 * @block_id: Block ID of the table to copy 1879 * @sid: Section ID of the table to copy 1880 * 1881 * Will attempt to read the entire content of a given table of a single block 1882 * into the driver database. We assume that the buffer will always 1883 * be as large or larger than the data contained in the package. If 1884 * this condition is not met, there is most likely an error in the package 1885 * contents. 1886 */ 1887 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 1888 { 1889 u32 dst_len, sect_len, offset = 0; 1890 struct ice_prof_redir_section *pr; 1891 struct ice_prof_id_section *pid; 1892 struct ice_xlt1_section *xlt1; 1893 struct ice_xlt2_section *xlt2; 1894 struct ice_sw_fv_section *es; 1895 struct ice_pkg_enum state; 1896 u8 *src, *dst; 1897 void *sect; 1898 1899 /* if the HW segment pointer is null then the first iteration of 1900 * ice_pkg_enum_section() will fail. In this case the HW tables will 1901 * not be filled and return success. 1902 */ 1903 if (!hw->seg) { 1904 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 1905 return; 1906 } 1907 1908 memset(&state, 0, sizeof(state)); 1909 1910 sect = ice_pkg_enum_section(hw->seg, &state, sid); 1911 1912 while (sect) { 1913 switch (sid) { 1914 case ICE_SID_XLT1_SW: 1915 case ICE_SID_XLT1_FD: 1916 case ICE_SID_XLT1_RSS: 1917 case ICE_SID_XLT1_ACL: 1918 case ICE_SID_XLT1_PE: 1919 xlt1 = sect; 1920 src = xlt1->value; 1921 sect_len = le16_to_cpu(xlt1->count) * 1922 sizeof(*hw->blk[block_id].xlt1.t); 1923 dst = hw->blk[block_id].xlt1.t; 1924 dst_len = hw->blk[block_id].xlt1.count * 1925 sizeof(*hw->blk[block_id].xlt1.t); 1926 break; 1927 case ICE_SID_XLT2_SW: 1928 case ICE_SID_XLT2_FD: 1929 case ICE_SID_XLT2_RSS: 1930 case ICE_SID_XLT2_ACL: 1931 case ICE_SID_XLT2_PE: 1932 xlt2 = sect; 1933 src = (__force u8 *)xlt2->value; 1934 sect_len = le16_to_cpu(xlt2->count) * 1935 sizeof(*hw->blk[block_id].xlt2.t); 1936 dst = (u8 *)hw->blk[block_id].xlt2.t; 1937 dst_len = hw->blk[block_id].xlt2.count * 1938 sizeof(*hw->blk[block_id].xlt2.t); 1939 break; 1940 case ICE_SID_PROFID_TCAM_SW: 1941 case ICE_SID_PROFID_TCAM_FD: 1942 case ICE_SID_PROFID_TCAM_RSS: 1943 case ICE_SID_PROFID_TCAM_ACL: 1944 case ICE_SID_PROFID_TCAM_PE: 1945 pid = sect; 1946 src = (u8 *)pid->entry; 1947 sect_len = le16_to_cpu(pid->count) * 1948 sizeof(*hw->blk[block_id].prof.t); 1949 dst = (u8 *)hw->blk[block_id].prof.t; 1950 dst_len = hw->blk[block_id].prof.count * 1951 sizeof(*hw->blk[block_id].prof.t); 1952 break; 1953 case ICE_SID_PROFID_REDIR_SW: 1954 case ICE_SID_PROFID_REDIR_FD: 1955 case ICE_SID_PROFID_REDIR_RSS: 1956 case ICE_SID_PROFID_REDIR_ACL: 1957 case ICE_SID_PROFID_REDIR_PE: 1958 pr = sect; 1959 src = pr->redir_value; 1960 sect_len = le16_to_cpu(pr->count) * 1961 sizeof(*hw->blk[block_id].prof_redir.t); 1962 dst = hw->blk[block_id].prof_redir.t; 1963 dst_len = hw->blk[block_id].prof_redir.count * 1964 sizeof(*hw->blk[block_id].prof_redir.t); 1965 break; 1966 case ICE_SID_FLD_VEC_SW: 1967 case ICE_SID_FLD_VEC_FD: 1968 case ICE_SID_FLD_VEC_RSS: 1969 case ICE_SID_FLD_VEC_ACL: 1970 case ICE_SID_FLD_VEC_PE: 1971 es = sect; 1972 src = (u8 *)es->fv; 1973 sect_len = (u32)(le16_to_cpu(es->count) * 1974 hw->blk[block_id].es.fvw) * 1975 sizeof(*hw->blk[block_id].es.t); 1976 dst = (u8 *)hw->blk[block_id].es.t; 1977 dst_len = (u32)(hw->blk[block_id].es.count * 1978 hw->blk[block_id].es.fvw) * 1979 sizeof(*hw->blk[block_id].es.t); 1980 break; 1981 default: 1982 return; 1983 } 1984 1985 /* if the section offset exceeds destination length, terminate 1986 * table fill. 1987 */ 1988 if (offset > dst_len) 1989 return; 1990 1991 /* if the sum of section size and offset exceed destination size 1992 * then we are out of bounds of the HW table size for that PF. 1993 * Changing section length to fill the remaining table space 1994 * of that PF. 1995 */ 1996 if ((offset + sect_len) > dst_len) 1997 sect_len = dst_len - offset; 1998 1999 memcpy(dst + offset, src, sect_len); 2000 offset += sect_len; 2001 sect = ice_pkg_enum_section(NULL, &state, sid); 2002 } 2003 } 2004 2005 /** 2006 * ice_fill_blk_tbls - Read package context for tables 2007 * @hw: pointer to the hardware structure 2008 * 2009 * Reads the current package contents and populates the driver 2010 * database with the data iteratively for all advanced feature 2011 * blocks. Assume that the HW tables have been allocated. 2012 */ 2013 void ice_fill_blk_tbls(struct ice_hw *hw) 2014 { 2015 u8 i; 2016 2017 for (i = 0; i < ICE_BLK_COUNT; i++) { 2018 enum ice_block blk_id = (enum ice_block)i; 2019 2020 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 2021 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 2022 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 2023 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 2024 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 2025 } 2026 2027 ice_init_sw_db(hw); 2028 } 2029 2030 /** 2031 * ice_free_prof_map - free profile map 2032 * @hw: pointer to the hardware structure 2033 * @blk_idx: HW block index 2034 */ 2035 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 2036 { 2037 struct ice_es *es = &hw->blk[blk_idx].es; 2038 struct ice_prof_map *del, *tmp; 2039 2040 mutex_lock(&es->prof_map_lock); 2041 list_for_each_entry_safe(del, tmp, &es->prof_map, list) { 2042 list_del(&del->list); 2043 devm_kfree(ice_hw_to_dev(hw), del); 2044 } 2045 INIT_LIST_HEAD(&es->prof_map); 2046 mutex_unlock(&es->prof_map_lock); 2047 } 2048 2049 /** 2050 * ice_free_flow_profs - free flow profile entries 2051 * @hw: pointer to the hardware structure 2052 * @blk_idx: HW block index 2053 */ 2054 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 2055 { 2056 struct ice_flow_prof *p, *tmp; 2057 2058 mutex_lock(&hw->fl_profs_locks[blk_idx]); 2059 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) { 2060 struct ice_flow_entry *e, *t; 2061 2062 list_for_each_entry_safe(e, t, &p->entries, l_entry) 2063 ice_flow_rem_entry(hw, (enum ice_block)blk_idx, 2064 ICE_FLOW_ENTRY_HNDL(e)); 2065 2066 list_del(&p->l_entry); 2067 2068 mutex_destroy(&p->entries_lock); 2069 devm_kfree(ice_hw_to_dev(hw), p); 2070 } 2071 mutex_unlock(&hw->fl_profs_locks[blk_idx]); 2072 2073 /* if driver is in reset and tables are being cleared 2074 * re-initialize the flow profile list heads 2075 */ 2076 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2077 } 2078 2079 /** 2080 * ice_free_vsig_tbl - free complete VSIG table entries 2081 * @hw: pointer to the hardware structure 2082 * @blk: the HW block on which to free the VSIG table entries 2083 */ 2084 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 2085 { 2086 u16 i; 2087 2088 if (!hw->blk[blk].xlt2.vsig_tbl) 2089 return; 2090 2091 for (i = 1; i < ICE_MAX_VSIGS; i++) 2092 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2093 ice_vsig_free(hw, blk, i); 2094 } 2095 2096 /** 2097 * ice_free_hw_tbls - free hardware table memory 2098 * @hw: pointer to the hardware structure 2099 */ 2100 void ice_free_hw_tbls(struct ice_hw *hw) 2101 { 2102 struct ice_rss_cfg *r, *rt; 2103 u8 i; 2104 2105 for (i = 0; i < ICE_BLK_COUNT; i++) { 2106 if (hw->blk[i].is_list_init) { 2107 struct ice_es *es = &hw->blk[i].es; 2108 2109 ice_free_prof_map(hw, i); 2110 mutex_destroy(&es->prof_map_lock); 2111 2112 ice_free_flow_profs(hw, i); 2113 mutex_destroy(&hw->fl_profs_locks[i]); 2114 2115 hw->blk[i].is_list_init = false; 2116 } 2117 ice_free_vsig_tbl(hw, (enum ice_block)i); 2118 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes); 2119 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl); 2120 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t); 2121 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t); 2122 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl); 2123 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis); 2124 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t); 2125 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t); 2126 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t); 2127 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count); 2128 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm); 2129 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written); 2130 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena); 2131 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id); 2132 } 2133 2134 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) { 2135 list_del(&r->l_entry); 2136 devm_kfree(ice_hw_to_dev(hw), r); 2137 } 2138 mutex_destroy(&hw->rss_locks); 2139 ice_shutdown_all_prof_masks(hw); 2140 memset(hw->blk, 0, sizeof(hw->blk)); 2141 } 2142 2143 /** 2144 * ice_init_flow_profs - init flow profile locks and list heads 2145 * @hw: pointer to the hardware structure 2146 * @blk_idx: HW block index 2147 */ 2148 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 2149 { 2150 mutex_init(&hw->fl_profs_locks[blk_idx]); 2151 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 2152 } 2153 2154 /** 2155 * ice_clear_hw_tbls - clear HW tables and flow profiles 2156 * @hw: pointer to the hardware structure 2157 */ 2158 void ice_clear_hw_tbls(struct ice_hw *hw) 2159 { 2160 u8 i; 2161 2162 for (i = 0; i < ICE_BLK_COUNT; i++) { 2163 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 2164 struct ice_prof_id *prof_id = &hw->blk[i].prof_id; 2165 struct ice_prof_tcam *prof = &hw->blk[i].prof; 2166 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 2167 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 2168 struct ice_es *es = &hw->blk[i].es; 2169 2170 if (hw->blk[i].is_list_init) { 2171 ice_free_prof_map(hw, i); 2172 ice_free_flow_profs(hw, i); 2173 } 2174 2175 ice_free_vsig_tbl(hw, (enum ice_block)i); 2176 2177 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes)); 2178 memset(xlt1->ptg_tbl, 0, 2179 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl)); 2180 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t)); 2181 2182 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis)); 2183 memset(xlt2->vsig_tbl, 0, 2184 xlt2->count * sizeof(*xlt2->vsig_tbl)); 2185 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t)); 2186 2187 memset(prof->t, 0, prof->count * sizeof(*prof->t)); 2188 memset(prof_redir->t, 0, 2189 prof_redir->count * sizeof(*prof_redir->t)); 2190 2191 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw); 2192 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count)); 2193 memset(es->symm, 0, es->count * sizeof(*es->symm)); 2194 memset(es->written, 0, es->count * sizeof(*es->written)); 2195 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena)); 2196 2197 memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id)); 2198 } 2199 } 2200 2201 /** 2202 * ice_init_hw_tbls - init hardware table memory 2203 * @hw: pointer to the hardware structure 2204 */ 2205 int ice_init_hw_tbls(struct ice_hw *hw) 2206 { 2207 u8 i; 2208 2209 mutex_init(&hw->rss_locks); 2210 INIT_LIST_HEAD(&hw->rss_list_head); 2211 ice_init_all_prof_masks(hw); 2212 for (i = 0; i < ICE_BLK_COUNT; i++) { 2213 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 2214 struct ice_prof_id *prof_id = &hw->blk[i].prof_id; 2215 struct ice_prof_tcam *prof = &hw->blk[i].prof; 2216 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 2217 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 2218 struct ice_es *es = &hw->blk[i].es; 2219 u16 j; 2220 2221 if (hw->blk[i].is_list_init) 2222 continue; 2223 2224 ice_init_flow_profs(hw, i); 2225 mutex_init(&es->prof_map_lock); 2226 INIT_LIST_HEAD(&es->prof_map); 2227 hw->blk[i].is_list_init = true; 2228 2229 hw->blk[i].overwrite = blk_sizes[i].overwrite; 2230 es->reverse = blk_sizes[i].reverse; 2231 2232 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 2233 xlt1->count = blk_sizes[i].xlt1; 2234 2235 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 2236 sizeof(*xlt1->ptypes), GFP_KERNEL); 2237 2238 if (!xlt1->ptypes) 2239 goto err; 2240 2241 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS, 2242 sizeof(*xlt1->ptg_tbl), 2243 GFP_KERNEL); 2244 2245 if (!xlt1->ptg_tbl) 2246 goto err; 2247 2248 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count, 2249 sizeof(*xlt1->t), GFP_KERNEL); 2250 if (!xlt1->t) 2251 goto err; 2252 2253 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 2254 xlt2->count = blk_sizes[i].xlt2; 2255 2256 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 2257 sizeof(*xlt2->vsis), GFP_KERNEL); 2258 2259 if (!xlt2->vsis) 2260 goto err; 2261 2262 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 2263 sizeof(*xlt2->vsig_tbl), 2264 GFP_KERNEL); 2265 if (!xlt2->vsig_tbl) 2266 goto err; 2267 2268 for (j = 0; j < xlt2->count; j++) 2269 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 2270 2271 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count, 2272 sizeof(*xlt2->t), GFP_KERNEL); 2273 if (!xlt2->t) 2274 goto err; 2275 2276 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 2277 prof->count = blk_sizes[i].prof_tcam; 2278 prof->max_prof_id = blk_sizes[i].prof_id; 2279 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 2280 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count, 2281 sizeof(*prof->t), GFP_KERNEL); 2282 2283 if (!prof->t) 2284 goto err; 2285 2286 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 2287 prof_redir->count = blk_sizes[i].prof_redir; 2288 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw), 2289 prof_redir->count, 2290 sizeof(*prof_redir->t), 2291 GFP_KERNEL); 2292 2293 if (!prof_redir->t) 2294 goto err; 2295 2296 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 2297 es->count = blk_sizes[i].es; 2298 es->fvw = blk_sizes[i].fvw; 2299 es->t = devm_kcalloc(ice_hw_to_dev(hw), 2300 (u32)(es->count * es->fvw), 2301 sizeof(*es->t), GFP_KERNEL); 2302 if (!es->t) 2303 goto err; 2304 2305 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2306 sizeof(*es->ref_count), 2307 GFP_KERNEL); 2308 if (!es->ref_count) 2309 goto err; 2310 2311 es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2312 sizeof(*es->symm), GFP_KERNEL); 2313 if (!es->symm) 2314 goto err; 2315 2316 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2317 sizeof(*es->written), GFP_KERNEL); 2318 if (!es->written) 2319 goto err; 2320 2321 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count, 2322 sizeof(*es->mask_ena), GFP_KERNEL); 2323 if (!es->mask_ena) 2324 goto err; 2325 2326 prof_id->count = blk_sizes[i].prof_id; 2327 prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count, 2328 sizeof(*prof_id->id), GFP_KERNEL); 2329 if (!prof_id->id) 2330 goto err; 2331 } 2332 return 0; 2333 2334 err: 2335 ice_free_hw_tbls(hw); 2336 return -ENOMEM; 2337 } 2338 2339 /** 2340 * ice_prof_gen_key - generate profile ID key 2341 * @hw: pointer to the HW struct 2342 * @blk: the block in which to write profile ID to 2343 * @ptg: packet type group (PTG) portion of key 2344 * @vsig: VSIG portion of key 2345 * @cdid: CDID portion of key 2346 * @flags: flag portion of key 2347 * @vl_msk: valid mask 2348 * @dc_msk: don't care mask 2349 * @nm_msk: never match mask 2350 * @key: output of profile ID key 2351 */ 2352 static int 2353 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 2354 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 2355 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 2356 u8 key[ICE_TCAM_KEY_SZ]) 2357 { 2358 struct ice_prof_id_key inkey; 2359 2360 inkey.xlt1 = ptg; 2361 inkey.xlt2_cdid = cpu_to_le16(vsig); 2362 inkey.flags = cpu_to_le16(flags); 2363 2364 switch (hw->blk[blk].prof.cdid_bits) { 2365 case 0: 2366 break; 2367 case 2: 2368 #define ICE_CD_2_M 0xC000U 2369 #define ICE_CD_2_S 14 2370 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M); 2371 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S); 2372 break; 2373 case 4: 2374 #define ICE_CD_4_M 0xF000U 2375 #define ICE_CD_4_S 12 2376 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M); 2377 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S); 2378 break; 2379 case 8: 2380 #define ICE_CD_8_M 0xFF00U 2381 #define ICE_CD_8_S 16 2382 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M); 2383 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S); 2384 break; 2385 default: 2386 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 2387 break; 2388 } 2389 2390 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 2391 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 2392 } 2393 2394 /** 2395 * ice_tcam_write_entry - write TCAM entry 2396 * @hw: pointer to the HW struct 2397 * @blk: the block in which to write profile ID to 2398 * @idx: the entry index to write to 2399 * @prof_id: profile ID 2400 * @ptg: packet type group (PTG) portion of key 2401 * @vsig: VSIG portion of key 2402 * @cdid: CDID portion of key 2403 * @flags: flag portion of key 2404 * @vl_msk: valid mask 2405 * @dc_msk: don't care mask 2406 * @nm_msk: never match mask 2407 */ 2408 static int 2409 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 2410 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 2411 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 2412 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 2413 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 2414 { 2415 struct ice_prof_tcam_entry; 2416 int status; 2417 2418 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 2419 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 2420 if (!status) { 2421 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx); 2422 hw->blk[blk].prof.t[idx].prof_id = prof_id; 2423 } 2424 2425 return status; 2426 } 2427 2428 /** 2429 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 2430 * @hw: pointer to the hardware structure 2431 * @blk: HW block 2432 * @vsig: VSIG to query 2433 * @refs: pointer to variable to receive the reference count 2434 */ 2435 static int 2436 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 2437 { 2438 u16 idx = vsig & ICE_VSIG_IDX_M; 2439 struct ice_vsig_vsi *ptr; 2440 2441 *refs = 0; 2442 2443 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 2444 return -ENOENT; 2445 2446 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 2447 while (ptr) { 2448 (*refs)++; 2449 ptr = ptr->next_vsi; 2450 } 2451 2452 return 0; 2453 } 2454 2455 /** 2456 * ice_has_prof_vsig - check to see if VSIG has a specific profile 2457 * @hw: pointer to the hardware structure 2458 * @blk: HW block 2459 * @vsig: VSIG to check against 2460 * @hdl: profile handle 2461 */ 2462 static bool 2463 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 2464 { 2465 u16 idx = vsig & ICE_VSIG_IDX_M; 2466 struct ice_vsig_prof *ent; 2467 2468 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 2469 list) 2470 if (ent->profile_cookie == hdl) 2471 return true; 2472 2473 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 2474 vsig); 2475 return false; 2476 } 2477 2478 /** 2479 * ice_prof_bld_es - build profile ID extraction sequence changes 2480 * @hw: pointer to the HW struct 2481 * @blk: hardware block 2482 * @bld: the update package buffer build to add to 2483 * @chgs: the list of changes to make in hardware 2484 */ 2485 static int 2486 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 2487 struct ice_buf_build *bld, struct list_head *chgs) 2488 { 2489 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 2490 struct ice_chs_chg *tmp; 2491 2492 list_for_each_entry(tmp, chgs, list_entry) 2493 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 2494 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 2495 struct ice_pkg_es *p; 2496 u32 id; 2497 2498 id = ice_sect_id(blk, ICE_VEC_TBL); 2499 p = ice_pkg_buf_alloc_section(bld, id, 2500 struct_size(p, es, 1) + 2501 vec_size - 2502 sizeof(p->es[0])); 2503 2504 if (!p) 2505 return -ENOSPC; 2506 2507 p->count = cpu_to_le16(1); 2508 p->offset = cpu_to_le16(tmp->prof_id); 2509 2510 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size); 2511 } 2512 2513 return 0; 2514 } 2515 2516 /** 2517 * ice_prof_bld_tcam - build profile ID TCAM changes 2518 * @hw: pointer to the HW struct 2519 * @blk: hardware block 2520 * @bld: the update package buffer build to add to 2521 * @chgs: the list of changes to make in hardware 2522 */ 2523 static int 2524 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 2525 struct ice_buf_build *bld, struct list_head *chgs) 2526 { 2527 struct ice_chs_chg *tmp; 2528 2529 list_for_each_entry(tmp, chgs, list_entry) 2530 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 2531 struct ice_prof_id_section *p; 2532 u32 id; 2533 2534 id = ice_sect_id(blk, ICE_PROF_TCAM); 2535 p = ice_pkg_buf_alloc_section(bld, id, 2536 struct_size(p, entry, 1)); 2537 2538 if (!p) 2539 return -ENOSPC; 2540 2541 p->count = cpu_to_le16(1); 2542 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx); 2543 p->entry[0].prof_id = tmp->prof_id; 2544 2545 memcpy(p->entry[0].key, 2546 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 2547 sizeof(hw->blk[blk].prof.t->key)); 2548 } 2549 2550 return 0; 2551 } 2552 2553 /** 2554 * ice_prof_bld_xlt1 - build XLT1 changes 2555 * @blk: hardware block 2556 * @bld: the update package buffer build to add to 2557 * @chgs: the list of changes to make in hardware 2558 */ 2559 static int 2560 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 2561 struct list_head *chgs) 2562 { 2563 struct ice_chs_chg *tmp; 2564 2565 list_for_each_entry(tmp, chgs, list_entry) 2566 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 2567 struct ice_xlt1_section *p; 2568 u32 id; 2569 2570 id = ice_sect_id(blk, ICE_XLT1); 2571 p = ice_pkg_buf_alloc_section(bld, id, 2572 struct_size(p, value, 1)); 2573 2574 if (!p) 2575 return -ENOSPC; 2576 2577 p->count = cpu_to_le16(1); 2578 p->offset = cpu_to_le16(tmp->ptype); 2579 p->value[0] = tmp->ptg; 2580 } 2581 2582 return 0; 2583 } 2584 2585 /** 2586 * ice_prof_bld_xlt2 - build XLT2 changes 2587 * @blk: hardware block 2588 * @bld: the update package buffer build to add to 2589 * @chgs: the list of changes to make in hardware 2590 */ 2591 static int 2592 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 2593 struct list_head *chgs) 2594 { 2595 struct ice_chs_chg *tmp; 2596 2597 list_for_each_entry(tmp, chgs, list_entry) { 2598 struct ice_xlt2_section *p; 2599 u32 id; 2600 2601 switch (tmp->type) { 2602 case ICE_VSIG_ADD: 2603 case ICE_VSI_MOVE: 2604 case ICE_VSIG_REM: 2605 id = ice_sect_id(blk, ICE_XLT2); 2606 p = ice_pkg_buf_alloc_section(bld, id, 2607 struct_size(p, value, 1)); 2608 2609 if (!p) 2610 return -ENOSPC; 2611 2612 p->count = cpu_to_le16(1); 2613 p->offset = cpu_to_le16(tmp->vsi); 2614 p->value[0] = cpu_to_le16(tmp->vsig); 2615 break; 2616 default: 2617 break; 2618 } 2619 } 2620 2621 return 0; 2622 } 2623 2624 /** 2625 * ice_upd_prof_hw - update hardware using the change list 2626 * @hw: pointer to the HW struct 2627 * @blk: hardware block 2628 * @chgs: the list of changes to make in hardware 2629 */ 2630 static int 2631 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 2632 struct list_head *chgs) 2633 { 2634 struct ice_buf_build *b; 2635 struct ice_chs_chg *tmp; 2636 u16 pkg_sects; 2637 u16 xlt1 = 0; 2638 u16 xlt2 = 0; 2639 u16 tcam = 0; 2640 u16 es = 0; 2641 int status; 2642 u16 sects; 2643 2644 /* count number of sections we need */ 2645 list_for_each_entry(tmp, chgs, list_entry) { 2646 switch (tmp->type) { 2647 case ICE_PTG_ES_ADD: 2648 if (tmp->add_ptg) 2649 xlt1++; 2650 if (tmp->add_prof) 2651 es++; 2652 break; 2653 case ICE_TCAM_ADD: 2654 tcam++; 2655 break; 2656 case ICE_VSIG_ADD: 2657 case ICE_VSI_MOVE: 2658 case ICE_VSIG_REM: 2659 xlt2++; 2660 break; 2661 default: 2662 break; 2663 } 2664 } 2665 sects = xlt1 + xlt2 + tcam + es; 2666 2667 if (!sects) 2668 return 0; 2669 2670 /* Build update package buffer */ 2671 b = ice_pkg_buf_alloc(hw); 2672 if (!b) 2673 return -ENOMEM; 2674 2675 status = ice_pkg_buf_reserve_section(b, sects); 2676 if (status) 2677 goto error_tmp; 2678 2679 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 2680 if (es) { 2681 status = ice_prof_bld_es(hw, blk, b, chgs); 2682 if (status) 2683 goto error_tmp; 2684 } 2685 2686 if (tcam) { 2687 status = ice_prof_bld_tcam(hw, blk, b, chgs); 2688 if (status) 2689 goto error_tmp; 2690 } 2691 2692 if (xlt1) { 2693 status = ice_prof_bld_xlt1(blk, b, chgs); 2694 if (status) 2695 goto error_tmp; 2696 } 2697 2698 if (xlt2) { 2699 status = ice_prof_bld_xlt2(blk, b, chgs); 2700 if (status) 2701 goto error_tmp; 2702 } 2703 2704 /* After package buffer build check if the section count in buffer is 2705 * non-zero and matches the number of sections detected for package 2706 * update. 2707 */ 2708 pkg_sects = ice_pkg_buf_get_active_sections(b); 2709 if (!pkg_sects || pkg_sects != sects) { 2710 status = -EINVAL; 2711 goto error_tmp; 2712 } 2713 2714 /* update package */ 2715 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 2716 if (status == -EIO) 2717 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 2718 2719 error_tmp: 2720 ice_pkg_buf_free(hw, b); 2721 return status; 2722 } 2723 2724 /** 2725 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile 2726 * @hw: pointer to the HW struct 2727 * @prof_id: profile ID 2728 * @mask_sel: mask select 2729 * 2730 * This function enable any of the masks selected by the mask select parameter 2731 * for the profile specified. 2732 */ 2733 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel) 2734 { 2735 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel); 2736 2737 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id, 2738 GLQF_FDMASK_SEL(prof_id), mask_sel); 2739 } 2740 2741 struct ice_fd_src_dst_pair { 2742 u8 prot_id; 2743 u8 count; 2744 u16 off; 2745 }; 2746 2747 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = { 2748 /* These are defined in pairs */ 2749 { ICE_PROT_IPV4_OF_OR_S, 2, 12 }, 2750 { ICE_PROT_IPV4_OF_OR_S, 2, 16 }, 2751 2752 { ICE_PROT_IPV4_IL, 2, 12 }, 2753 { ICE_PROT_IPV4_IL, 2, 16 }, 2754 2755 { ICE_PROT_IPV6_OF_OR_S, 8, 8 }, 2756 { ICE_PROT_IPV6_OF_OR_S, 8, 24 }, 2757 2758 { ICE_PROT_IPV6_IL, 8, 8 }, 2759 { ICE_PROT_IPV6_IL, 8, 24 }, 2760 2761 { ICE_PROT_TCP_IL, 1, 0 }, 2762 { ICE_PROT_TCP_IL, 1, 2 }, 2763 2764 { ICE_PROT_UDP_OF, 1, 0 }, 2765 { ICE_PROT_UDP_OF, 1, 2 }, 2766 2767 { ICE_PROT_UDP_IL_OR_S, 1, 0 }, 2768 { ICE_PROT_UDP_IL_OR_S, 1, 2 }, 2769 2770 { ICE_PROT_SCTP_IL, 1, 0 }, 2771 { ICE_PROT_SCTP_IL, 1, 2 } 2772 }; 2773 2774 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs) 2775 2776 /** 2777 * ice_update_fd_swap - set register appropriately for a FD FV extraction 2778 * @hw: pointer to the HW struct 2779 * @prof_id: profile ID 2780 * @es: extraction sequence (length of array is determined by the block) 2781 */ 2782 static int 2783 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es) 2784 { 2785 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 2786 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 }; 2787 #define ICE_FD_FV_NOT_FOUND (-2) 2788 s8 first_free = ICE_FD_FV_NOT_FOUND; 2789 u8 used[ICE_MAX_FV_WORDS] = { 0 }; 2790 s8 orig_free, si; 2791 u32 mask_sel = 0; 2792 u8 i, j, k; 2793 2794 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT); 2795 2796 /* This code assumes that the Flow Director field vectors are assigned 2797 * from the end of the FV indexes working towards the zero index, that 2798 * only complete fields will be included and will be consecutive, and 2799 * that there are no gaps between valid indexes. 2800 */ 2801 2802 /* Determine swap fields present */ 2803 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) { 2804 /* Find the first free entry, assuming right to left population. 2805 * This is where we can start adding additional pairs if needed. 2806 */ 2807 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id != 2808 ICE_PROT_INVALID) 2809 first_free = i - 1; 2810 2811 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 2812 if (es[i].prot_id == ice_fd_pairs[j].prot_id && 2813 es[i].off == ice_fd_pairs[j].off) { 2814 __set_bit(j, pair_list); 2815 pair_start[j] = i; 2816 } 2817 } 2818 2819 orig_free = first_free; 2820 2821 /* determine missing swap fields that need to be added */ 2822 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) { 2823 u8 bit1 = test_bit(i + 1, pair_list); 2824 u8 bit0 = test_bit(i, pair_list); 2825 2826 if (bit0 ^ bit1) { 2827 u8 index; 2828 2829 /* add the appropriate 'paired' entry */ 2830 if (!bit0) 2831 index = i; 2832 else 2833 index = i + 1; 2834 2835 /* check for room */ 2836 if (first_free + 1 < (s8)ice_fd_pairs[index].count) 2837 return -ENOSPC; 2838 2839 /* place in extraction sequence */ 2840 for (k = 0; k < ice_fd_pairs[index].count; k++) { 2841 es[first_free - k].prot_id = 2842 ice_fd_pairs[index].prot_id; 2843 es[first_free - k].off = 2844 ice_fd_pairs[index].off + (k * 2); 2845 2846 if (k > first_free) 2847 return -EIO; 2848 2849 /* keep track of non-relevant fields */ 2850 mask_sel |= BIT(first_free - k); 2851 } 2852 2853 pair_start[index] = first_free; 2854 first_free -= ice_fd_pairs[index].count; 2855 } 2856 } 2857 2858 /* fill in the swap array */ 2859 si = hw->blk[ICE_BLK_FD].es.fvw - 1; 2860 while (si >= 0) { 2861 u8 indexes_used = 1; 2862 2863 /* assume flat at this index */ 2864 #define ICE_SWAP_VALID 0x80 2865 used[si] = si | ICE_SWAP_VALID; 2866 2867 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) { 2868 si -= indexes_used; 2869 continue; 2870 } 2871 2872 /* check for a swap location */ 2873 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++) 2874 if (es[si].prot_id == ice_fd_pairs[j].prot_id && 2875 es[si].off == ice_fd_pairs[j].off) { 2876 u8 idx; 2877 2878 /* determine the appropriate matching field */ 2879 idx = j + ((j % 2) ? -1 : 1); 2880 2881 indexes_used = ice_fd_pairs[idx].count; 2882 for (k = 0; k < indexes_used; k++) { 2883 used[si - k] = (pair_start[idx] - k) | 2884 ICE_SWAP_VALID; 2885 } 2886 2887 break; 2888 } 2889 2890 si -= indexes_used; 2891 } 2892 2893 /* for each set of 4 swap and 4 inset indexes, write the appropriate 2894 * register 2895 */ 2896 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) { 2897 u32 raw_swap = 0; 2898 u32 raw_in = 0; 2899 2900 for (k = 0; k < 4; k++) { 2901 u8 idx; 2902 2903 idx = (j * 4) + k; 2904 if (used[idx] && !(mask_sel & BIT(idx))) { 2905 raw_swap |= used[idx] << (k * BITS_PER_BYTE); 2906 #define ICE_INSET_DFLT 0x9f 2907 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE); 2908 } 2909 } 2910 2911 /* write the appropriate swap register set */ 2912 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap); 2913 2914 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n", 2915 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap); 2916 2917 /* write the appropriate inset register set */ 2918 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in); 2919 2920 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n", 2921 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in); 2922 } 2923 2924 /* initially clear the mask select for this profile */ 2925 ice_update_fd_mask(hw, prof_id, 0); 2926 2927 return 0; 2928 } 2929 2930 /* The entries here needs to match the order of enum ice_ptype_attrib */ 2931 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = { 2932 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK }, 2933 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK }, 2934 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK }, 2935 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK }, 2936 }; 2937 2938 /** 2939 * ice_get_ptype_attrib_info - get PTYPE attribute information 2940 * @type: attribute type 2941 * @info: pointer to variable to the attribute information 2942 */ 2943 static void 2944 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type, 2945 struct ice_ptype_attrib_info *info) 2946 { 2947 *info = ice_ptype_attributes[type]; 2948 } 2949 2950 /** 2951 * ice_add_prof_attrib - add any PTG with attributes to profile 2952 * @prof: pointer to the profile to which PTG entries will be added 2953 * @ptg: PTG to be added 2954 * @ptype: PTYPE that needs to be looked up 2955 * @attr: array of attributes that will be considered 2956 * @attr_cnt: number of elements in the attribute array 2957 */ 2958 static int 2959 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype, 2960 const struct ice_ptype_attributes *attr, u16 attr_cnt) 2961 { 2962 bool found = false; 2963 u16 i; 2964 2965 for (i = 0; i < attr_cnt; i++) 2966 if (attr[i].ptype == ptype) { 2967 found = true; 2968 2969 prof->ptg[prof->ptg_cnt] = ptg; 2970 ice_get_ptype_attrib_info(attr[i].attrib, 2971 &prof->attr[prof->ptg_cnt]); 2972 2973 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 2974 return -ENOSPC; 2975 } 2976 2977 if (!found) 2978 return -ENOENT; 2979 2980 return 0; 2981 } 2982 2983 /** 2984 * ice_add_prof - add profile 2985 * @hw: pointer to the HW struct 2986 * @blk: hardware block 2987 * @id: profile tracking ID 2988 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 2989 * @attr: array of attributes 2990 * @attr_cnt: number of elements in attr array 2991 * @es: extraction sequence (length of array is determined by the block) 2992 * @masks: mask for extraction sequence 2993 * @symm: symmetric setting for RSS profiles 2994 * 2995 * This function registers a profile, which matches a set of PTYPES with a 2996 * particular extraction sequence. While the hardware profile is allocated 2997 * it will not be written until the first call to ice_add_flow that specifies 2998 * the ID value used here. 2999 */ 3000 int 3001 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 3002 const struct ice_ptype_attributes *attr, u16 attr_cnt, 3003 struct ice_fv_word *es, u16 *masks, bool symm) 3004 { 3005 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 3006 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3007 struct ice_prof_map *prof; 3008 u8 byte = 0; 3009 u8 prof_id; 3010 int status; 3011 3012 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3013 3014 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3015 3016 /* search for existing profile */ 3017 status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id); 3018 if (status) { 3019 /* allocate profile ID */ 3020 status = ice_alloc_prof_id(hw, blk, &prof_id); 3021 if (status) 3022 goto err_ice_add_prof; 3023 if (blk == ICE_BLK_FD) { 3024 /* For Flow Director block, the extraction sequence may 3025 * need to be altered in the case where there are paired 3026 * fields that have no match. This is necessary because 3027 * for Flow Director, src and dest fields need to paired 3028 * for filter programming and these values are swapped 3029 * during Tx. 3030 */ 3031 status = ice_update_fd_swap(hw, prof_id, es); 3032 if (status) 3033 goto err_ice_add_prof; 3034 } 3035 status = ice_update_prof_masking(hw, blk, prof_id, masks); 3036 if (status) 3037 goto err_ice_add_prof; 3038 3039 /* and write new es */ 3040 ice_write_es(hw, blk, prof_id, es, symm); 3041 } 3042 3043 ice_prof_inc_ref(hw, blk, prof_id); 3044 3045 /* add profile info */ 3046 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL); 3047 if (!prof) { 3048 status = -ENOMEM; 3049 goto err_ice_add_prof; 3050 } 3051 3052 prof->profile_cookie = id; 3053 prof->prof_id = prof_id; 3054 prof->ptg_cnt = 0; 3055 prof->context = 0; 3056 3057 /* build list of ptgs */ 3058 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 3059 u8 bit; 3060 3061 if (!ptypes[byte]) { 3062 bytes--; 3063 byte++; 3064 continue; 3065 } 3066 3067 /* Examine 8 bits per byte */ 3068 for_each_set_bit(bit, (unsigned long *)&ptypes[byte], 3069 BITS_PER_BYTE) { 3070 u16 ptype; 3071 u8 ptg; 3072 3073 ptype = byte * BITS_PER_BYTE + bit; 3074 3075 /* The package should place all ptypes in a non-zero 3076 * PTG, so the following call should never fail. 3077 */ 3078 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 3079 continue; 3080 3081 /* If PTG is already added, skip and continue */ 3082 if (test_bit(ptg, ptgs_used)) 3083 continue; 3084 3085 __set_bit(ptg, ptgs_used); 3086 /* Check to see there are any attributes for 3087 * this PTYPE, and add them if found. 3088 */ 3089 status = ice_add_prof_attrib(prof, ptg, ptype, 3090 attr, attr_cnt); 3091 if (status == -ENOSPC) 3092 break; 3093 if (status) { 3094 /* This is simple a PTYPE/PTG with no 3095 * attribute 3096 */ 3097 prof->ptg[prof->ptg_cnt] = ptg; 3098 prof->attr[prof->ptg_cnt].flags = 0; 3099 prof->attr[prof->ptg_cnt].mask = 0; 3100 3101 if (++prof->ptg_cnt >= 3102 ICE_MAX_PTG_PER_PROFILE) 3103 break; 3104 } 3105 } 3106 3107 bytes--; 3108 byte++; 3109 } 3110 3111 list_add(&prof->list, &hw->blk[blk].es.prof_map); 3112 status = 0; 3113 3114 err_ice_add_prof: 3115 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3116 return status; 3117 } 3118 3119 /** 3120 * ice_search_prof_id - Search for a profile tracking ID 3121 * @hw: pointer to the HW struct 3122 * @blk: hardware block 3123 * @id: profile tracking ID 3124 * 3125 * This will search for a profile tracking ID which was previously added. 3126 * The profile map lock should be held before calling this function. 3127 */ 3128 struct ice_prof_map * 3129 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 3130 { 3131 struct ice_prof_map *entry = NULL; 3132 struct ice_prof_map *map; 3133 3134 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list) 3135 if (map->profile_cookie == id) { 3136 entry = map; 3137 break; 3138 } 3139 3140 return entry; 3141 } 3142 3143 /** 3144 * ice_vsig_prof_id_count - count profiles in a VSIG 3145 * @hw: pointer to the HW struct 3146 * @blk: hardware block 3147 * @vsig: VSIG to remove the profile from 3148 */ 3149 static u16 3150 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3151 { 3152 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 3153 struct ice_vsig_prof *p; 3154 3155 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3156 list) 3157 count++; 3158 3159 return count; 3160 } 3161 3162 /** 3163 * ice_rel_tcam_idx - release a TCAM index 3164 * @hw: pointer to the HW struct 3165 * @blk: hardware block 3166 * @idx: the index to release 3167 */ 3168 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 3169 { 3170 /* Masks to invoke a never match entry */ 3171 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3172 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 3173 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 3174 int status; 3175 3176 /* write the TCAM entry */ 3177 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 3178 dc_msk, nm_msk); 3179 if (status) 3180 return status; 3181 3182 /* release the TCAM entry */ 3183 status = ice_free_tcam_ent(hw, blk, idx); 3184 3185 return status; 3186 } 3187 3188 /** 3189 * ice_rem_prof_id - remove one profile from a VSIG 3190 * @hw: pointer to the HW struct 3191 * @blk: hardware block 3192 * @prof: pointer to profile structure to remove 3193 */ 3194 static int 3195 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 3196 struct ice_vsig_prof *prof) 3197 { 3198 int status; 3199 u16 i; 3200 3201 for (i = 0; i < prof->tcam_count; i++) 3202 if (prof->tcam[i].in_use) { 3203 prof->tcam[i].in_use = false; 3204 status = ice_rel_tcam_idx(hw, blk, 3205 prof->tcam[i].tcam_idx); 3206 if (status) 3207 return -EIO; 3208 } 3209 3210 return 0; 3211 } 3212 3213 /** 3214 * ice_rem_vsig - remove VSIG 3215 * @hw: pointer to the HW struct 3216 * @blk: hardware block 3217 * @vsig: the VSIG to remove 3218 * @chg: the change list 3219 */ 3220 static int 3221 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3222 struct list_head *chg) 3223 { 3224 u16 idx = vsig & ICE_VSIG_IDX_M; 3225 struct ice_vsig_vsi *vsi_cur; 3226 struct ice_vsig_prof *d, *t; 3227 3228 /* remove TCAM entries */ 3229 list_for_each_entry_safe(d, t, 3230 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3231 list) { 3232 int status; 3233 3234 status = ice_rem_prof_id(hw, blk, d); 3235 if (status) 3236 return status; 3237 3238 list_del(&d->list); 3239 devm_kfree(ice_hw_to_dev(hw), d); 3240 } 3241 3242 /* Move all VSIS associated with this VSIG to the default VSIG */ 3243 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3244 /* If the VSIG has at least 1 VSI then iterate through the list 3245 * and remove the VSIs before deleting the group. 3246 */ 3247 if (vsi_cur) 3248 do { 3249 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 3250 struct ice_chs_chg *p; 3251 3252 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 3253 GFP_KERNEL); 3254 if (!p) 3255 return -ENOMEM; 3256 3257 p->type = ICE_VSIG_REM; 3258 p->orig_vsig = vsig; 3259 p->vsig = ICE_DEFAULT_VSIG; 3260 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 3261 3262 list_add(&p->list_entry, chg); 3263 3264 vsi_cur = tmp; 3265 } while (vsi_cur); 3266 3267 return ice_vsig_free(hw, blk, vsig); 3268 } 3269 3270 /** 3271 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 3272 * @hw: pointer to the HW struct 3273 * @blk: hardware block 3274 * @vsig: VSIG to remove the profile from 3275 * @hdl: profile handle indicating which profile to remove 3276 * @chg: list to receive a record of changes 3277 */ 3278 static int 3279 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 3280 struct list_head *chg) 3281 { 3282 u16 idx = vsig & ICE_VSIG_IDX_M; 3283 struct ice_vsig_prof *p, *t; 3284 3285 list_for_each_entry_safe(p, t, 3286 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3287 list) 3288 if (p->profile_cookie == hdl) { 3289 int status; 3290 3291 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 3292 /* this is the last profile, remove the VSIG */ 3293 return ice_rem_vsig(hw, blk, vsig, chg); 3294 3295 status = ice_rem_prof_id(hw, blk, p); 3296 if (!status) { 3297 list_del(&p->list); 3298 devm_kfree(ice_hw_to_dev(hw), p); 3299 } 3300 return status; 3301 } 3302 3303 return -ENOENT; 3304 } 3305 3306 /** 3307 * ice_rem_flow_all - remove all flows with a particular profile 3308 * @hw: pointer to the HW struct 3309 * @blk: hardware block 3310 * @id: profile tracking ID 3311 */ 3312 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 3313 { 3314 struct ice_chs_chg *del, *tmp; 3315 struct list_head chg; 3316 int status; 3317 u16 i; 3318 3319 INIT_LIST_HEAD(&chg); 3320 3321 for (i = 1; i < ICE_MAX_VSIGS; i++) 3322 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 3323 if (ice_has_prof_vsig(hw, blk, i, id)) { 3324 status = ice_rem_prof_id_vsig(hw, blk, i, id, 3325 &chg); 3326 if (status) 3327 goto err_ice_rem_flow_all; 3328 } 3329 } 3330 3331 status = ice_upd_prof_hw(hw, blk, &chg); 3332 3333 err_ice_rem_flow_all: 3334 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 3335 list_del(&del->list_entry); 3336 devm_kfree(ice_hw_to_dev(hw), del); 3337 } 3338 3339 return status; 3340 } 3341 3342 /** 3343 * ice_rem_prof - remove profile 3344 * @hw: pointer to the HW struct 3345 * @blk: hardware block 3346 * @id: profile tracking ID 3347 * 3348 * This will remove the profile specified by the ID parameter, which was 3349 * previously created through ice_add_prof. If any existing entries 3350 * are associated with this profile, they will be removed as well. 3351 */ 3352 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 3353 { 3354 struct ice_prof_map *pmap; 3355 int status; 3356 3357 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3358 3359 pmap = ice_search_prof_id(hw, blk, id); 3360 if (!pmap) { 3361 status = -ENOENT; 3362 goto err_ice_rem_prof; 3363 } 3364 3365 /* remove all flows with this profile */ 3366 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 3367 if (status) 3368 goto err_ice_rem_prof; 3369 3370 /* dereference profile, and possibly remove */ 3371 ice_prof_dec_ref(hw, blk, pmap->prof_id); 3372 3373 list_del(&pmap->list); 3374 devm_kfree(ice_hw_to_dev(hw), pmap); 3375 3376 err_ice_rem_prof: 3377 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3378 return status; 3379 } 3380 3381 /** 3382 * ice_get_prof - get profile 3383 * @hw: pointer to the HW struct 3384 * @blk: hardware block 3385 * @hdl: profile handle 3386 * @chg: change list 3387 */ 3388 static int 3389 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 3390 struct list_head *chg) 3391 { 3392 struct ice_prof_map *map; 3393 struct ice_chs_chg *p; 3394 int status = 0; 3395 u16 i; 3396 3397 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3398 /* Get the details on the profile specified by the handle ID */ 3399 map = ice_search_prof_id(hw, blk, hdl); 3400 if (!map) { 3401 status = -ENOENT; 3402 goto err_ice_get_prof; 3403 } 3404 3405 for (i = 0; i < map->ptg_cnt; i++) 3406 if (!hw->blk[blk].es.written[map->prof_id]) { 3407 /* add ES to change list */ 3408 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), 3409 GFP_KERNEL); 3410 if (!p) { 3411 status = -ENOMEM; 3412 goto err_ice_get_prof; 3413 } 3414 3415 p->type = ICE_PTG_ES_ADD; 3416 p->ptype = 0; 3417 p->ptg = map->ptg[i]; 3418 p->add_ptg = 0; 3419 3420 p->add_prof = 1; 3421 p->prof_id = map->prof_id; 3422 3423 hw->blk[blk].es.written[map->prof_id] = true; 3424 3425 list_add(&p->list_entry, chg); 3426 } 3427 3428 err_ice_get_prof: 3429 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3430 /* let caller clean up the change list */ 3431 return status; 3432 } 3433 3434 /** 3435 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 3436 * @hw: pointer to the HW struct 3437 * @blk: hardware block 3438 * @vsig: VSIG from which to copy the list 3439 * @lst: output list 3440 * 3441 * This routine makes a copy of the list of profiles in the specified VSIG. 3442 */ 3443 static int 3444 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3445 struct list_head *lst) 3446 { 3447 struct ice_vsig_prof *ent1, *ent2; 3448 u16 idx = vsig & ICE_VSIG_IDX_M; 3449 3450 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3451 list) { 3452 struct ice_vsig_prof *p; 3453 3454 /* copy to the input list */ 3455 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p), 3456 GFP_KERNEL); 3457 if (!p) 3458 goto err_ice_get_profs_vsig; 3459 3460 list_add_tail(&p->list, lst); 3461 } 3462 3463 return 0; 3464 3465 err_ice_get_profs_vsig: 3466 list_for_each_entry_safe(ent1, ent2, lst, list) { 3467 list_del(&ent1->list); 3468 devm_kfree(ice_hw_to_dev(hw), ent1); 3469 } 3470 3471 return -ENOMEM; 3472 } 3473 3474 /** 3475 * ice_add_prof_to_lst - add profile entry to a list 3476 * @hw: pointer to the HW struct 3477 * @blk: hardware block 3478 * @lst: the list to be added to 3479 * @hdl: profile handle of entry to add 3480 */ 3481 static int 3482 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 3483 struct list_head *lst, u64 hdl) 3484 { 3485 struct ice_prof_map *map; 3486 struct ice_vsig_prof *p; 3487 int status = 0; 3488 u16 i; 3489 3490 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3491 map = ice_search_prof_id(hw, blk, hdl); 3492 if (!map) { 3493 status = -ENOENT; 3494 goto err_ice_add_prof_to_lst; 3495 } 3496 3497 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3498 if (!p) { 3499 status = -ENOMEM; 3500 goto err_ice_add_prof_to_lst; 3501 } 3502 3503 p->profile_cookie = map->profile_cookie; 3504 p->prof_id = map->prof_id; 3505 p->tcam_count = map->ptg_cnt; 3506 3507 for (i = 0; i < map->ptg_cnt; i++) { 3508 p->tcam[i].prof_id = map->prof_id; 3509 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 3510 p->tcam[i].ptg = map->ptg[i]; 3511 } 3512 3513 list_add(&p->list, lst); 3514 3515 err_ice_add_prof_to_lst: 3516 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3517 return status; 3518 } 3519 3520 /** 3521 * ice_move_vsi - move VSI to another VSIG 3522 * @hw: pointer to the HW struct 3523 * @blk: hardware block 3524 * @vsi: the VSI to move 3525 * @vsig: the VSIG to move the VSI to 3526 * @chg: the change list 3527 */ 3528 static int 3529 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 3530 struct list_head *chg) 3531 { 3532 struct ice_chs_chg *p; 3533 u16 orig_vsig; 3534 int status; 3535 3536 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3537 if (!p) 3538 return -ENOMEM; 3539 3540 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3541 if (!status) 3542 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3543 3544 if (status) { 3545 devm_kfree(ice_hw_to_dev(hw), p); 3546 return status; 3547 } 3548 3549 p->type = ICE_VSI_MOVE; 3550 p->vsi = vsi; 3551 p->orig_vsig = orig_vsig; 3552 p->vsig = vsig; 3553 3554 list_add(&p->list_entry, chg); 3555 3556 return 0; 3557 } 3558 3559 /** 3560 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 3561 * @hw: pointer to the HW struct 3562 * @idx: the index of the TCAM entry to remove 3563 * @chg: the list of change structures to search 3564 */ 3565 static void 3566 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg) 3567 { 3568 struct ice_chs_chg *pos, *tmp; 3569 3570 list_for_each_entry_safe(tmp, pos, chg, list_entry) 3571 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 3572 list_del(&tmp->list_entry); 3573 devm_kfree(ice_hw_to_dev(hw), tmp); 3574 } 3575 } 3576 3577 /** 3578 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 3579 * @hw: pointer to the HW struct 3580 * @blk: hardware block 3581 * @enable: true to enable, false to disable 3582 * @vsig: the VSIG of the TCAM entry 3583 * @tcam: pointer the TCAM info structure of the TCAM to disable 3584 * @chg: the change list 3585 * 3586 * This function appends an enable or disable TCAM entry in the change log 3587 */ 3588 static int 3589 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 3590 u16 vsig, struct ice_tcam_inf *tcam, 3591 struct list_head *chg) 3592 { 3593 struct ice_chs_chg *p; 3594 int status; 3595 3596 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3597 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 3598 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 3599 3600 /* if disabling, free the TCAM */ 3601 if (!enable) { 3602 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 3603 3604 /* if we have already created a change for this TCAM entry, then 3605 * we need to remove that entry, in order to prevent writing to 3606 * a TCAM entry we no longer will have ownership of. 3607 */ 3608 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 3609 tcam->tcam_idx = 0; 3610 tcam->in_use = 0; 3611 return status; 3612 } 3613 3614 /* for re-enabling, reallocate a TCAM */ 3615 /* for entries with empty attribute masks, allocate entry from 3616 * the bottom of the TCAM table; otherwise, allocate from the 3617 * top of the table in order to give it higher priority 3618 */ 3619 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0, 3620 &tcam->tcam_idx); 3621 if (status) 3622 return status; 3623 3624 /* add TCAM to change list */ 3625 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3626 if (!p) 3627 return -ENOMEM; 3628 3629 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 3630 tcam->ptg, vsig, 0, tcam->attr.flags, 3631 vl_msk, dc_msk, nm_msk); 3632 if (status) 3633 goto err_ice_prof_tcam_ena_dis; 3634 3635 tcam->in_use = 1; 3636 3637 p->type = ICE_TCAM_ADD; 3638 p->add_tcam_idx = true; 3639 p->prof_id = tcam->prof_id; 3640 p->ptg = tcam->ptg; 3641 p->vsig = 0; 3642 p->tcam_idx = tcam->tcam_idx; 3643 3644 /* log change */ 3645 list_add(&p->list_entry, chg); 3646 3647 return 0; 3648 3649 err_ice_prof_tcam_ena_dis: 3650 devm_kfree(ice_hw_to_dev(hw), p); 3651 return status; 3652 } 3653 3654 /** 3655 * ice_adj_prof_priorities - adjust profile based on priorities 3656 * @hw: pointer to the HW struct 3657 * @blk: hardware block 3658 * @vsig: the VSIG for which to adjust profile priorities 3659 * @chg: the change list 3660 */ 3661 static int 3662 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 3663 struct list_head *chg) 3664 { 3665 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT); 3666 struct ice_vsig_prof *t; 3667 int status; 3668 u16 idx; 3669 3670 bitmap_zero(ptgs_used, ICE_XLT1_CNT); 3671 idx = vsig & ICE_VSIG_IDX_M; 3672 3673 /* Priority is based on the order in which the profiles are added. The 3674 * newest added profile has highest priority and the oldest added 3675 * profile has the lowest priority. Since the profile property list for 3676 * a VSIG is sorted from newest to oldest, this code traverses the list 3677 * in order and enables the first of each PTG that it finds (that is not 3678 * already enabled); it also disables any duplicate PTGs that it finds 3679 * in the older profiles (that are currently enabled). 3680 */ 3681 3682 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3683 list) { 3684 u16 i; 3685 3686 for (i = 0; i < t->tcam_count; i++) { 3687 /* Scan the priorities from newest to oldest. 3688 * Make sure that the newest profiles take priority. 3689 */ 3690 if (test_bit(t->tcam[i].ptg, ptgs_used) && 3691 t->tcam[i].in_use) { 3692 /* need to mark this PTG as never match, as it 3693 * was already in use and therefore duplicate 3694 * (and lower priority) 3695 */ 3696 status = ice_prof_tcam_ena_dis(hw, blk, false, 3697 vsig, 3698 &t->tcam[i], 3699 chg); 3700 if (status) 3701 return status; 3702 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) && 3703 !t->tcam[i].in_use) { 3704 /* need to enable this PTG, as it in not in use 3705 * and not enabled (highest priority) 3706 */ 3707 status = ice_prof_tcam_ena_dis(hw, blk, true, 3708 vsig, 3709 &t->tcam[i], 3710 chg); 3711 if (status) 3712 return status; 3713 } 3714 3715 /* keep track of used ptgs */ 3716 __set_bit(t->tcam[i].ptg, ptgs_used); 3717 } 3718 } 3719 3720 return 0; 3721 } 3722 3723 /** 3724 * ice_add_prof_id_vsig - add profile to VSIG 3725 * @hw: pointer to the HW struct 3726 * @blk: hardware block 3727 * @vsig: the VSIG to which this profile is to be added 3728 * @hdl: the profile handle indicating the profile to add 3729 * @rev: true to add entries to the end of the list 3730 * @chg: the change list 3731 */ 3732 static int 3733 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 3734 bool rev, struct list_head *chg) 3735 { 3736 /* Masks that ignore flags */ 3737 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3738 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 3739 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 3740 struct ice_prof_map *map; 3741 struct ice_vsig_prof *t; 3742 struct ice_chs_chg *p; 3743 u16 vsig_idx, i; 3744 int status = 0; 3745 3746 /* Error, if this VSIG already has this profile */ 3747 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 3748 return -EEXIST; 3749 3750 /* new VSIG profile structure */ 3751 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL); 3752 if (!t) 3753 return -ENOMEM; 3754 3755 mutex_lock(&hw->blk[blk].es.prof_map_lock); 3756 /* Get the details on the profile specified by the handle ID */ 3757 map = ice_search_prof_id(hw, blk, hdl); 3758 if (!map) { 3759 status = -ENOENT; 3760 goto err_ice_add_prof_id_vsig; 3761 } 3762 3763 t->profile_cookie = map->profile_cookie; 3764 t->prof_id = map->prof_id; 3765 t->tcam_count = map->ptg_cnt; 3766 3767 /* create TCAM entries */ 3768 for (i = 0; i < map->ptg_cnt; i++) { 3769 u16 tcam_idx; 3770 3771 /* add TCAM to change list */ 3772 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3773 if (!p) { 3774 status = -ENOMEM; 3775 goto err_ice_add_prof_id_vsig; 3776 } 3777 3778 /* allocate the TCAM entry index */ 3779 /* for entries with empty attribute masks, allocate entry from 3780 * the bottom of the TCAM table; otherwise, allocate from the 3781 * top of the table in order to give it higher priority 3782 */ 3783 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0, 3784 &tcam_idx); 3785 if (status) { 3786 devm_kfree(ice_hw_to_dev(hw), p); 3787 goto err_ice_add_prof_id_vsig; 3788 } 3789 3790 t->tcam[i].ptg = map->ptg[i]; 3791 t->tcam[i].prof_id = map->prof_id; 3792 t->tcam[i].tcam_idx = tcam_idx; 3793 t->tcam[i].attr = map->attr[i]; 3794 t->tcam[i].in_use = true; 3795 3796 p->type = ICE_TCAM_ADD; 3797 p->add_tcam_idx = true; 3798 p->prof_id = t->tcam[i].prof_id; 3799 p->ptg = t->tcam[i].ptg; 3800 p->vsig = vsig; 3801 p->tcam_idx = t->tcam[i].tcam_idx; 3802 3803 /* write the TCAM entry */ 3804 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 3805 t->tcam[i].prof_id, 3806 t->tcam[i].ptg, vsig, 0, 0, 3807 vl_msk, dc_msk, nm_msk); 3808 if (status) { 3809 devm_kfree(ice_hw_to_dev(hw), p); 3810 goto err_ice_add_prof_id_vsig; 3811 } 3812 3813 /* log change */ 3814 list_add(&p->list_entry, chg); 3815 } 3816 3817 /* add profile to VSIG */ 3818 vsig_idx = vsig & ICE_VSIG_IDX_M; 3819 if (rev) 3820 list_add_tail(&t->list, 3821 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 3822 else 3823 list_add(&t->list, 3824 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 3825 3826 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3827 return status; 3828 3829 err_ice_add_prof_id_vsig: 3830 mutex_unlock(&hw->blk[blk].es.prof_map_lock); 3831 /* let caller clean up the change list */ 3832 devm_kfree(ice_hw_to_dev(hw), t); 3833 return status; 3834 } 3835 3836 /** 3837 * ice_create_prof_id_vsig - add a new VSIG with a single profile 3838 * @hw: pointer to the HW struct 3839 * @blk: hardware block 3840 * @vsi: the initial VSI that will be in VSIG 3841 * @hdl: the profile handle of the profile that will be added to the VSIG 3842 * @chg: the change list 3843 */ 3844 static int 3845 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 3846 struct list_head *chg) 3847 { 3848 struct ice_chs_chg *p; 3849 u16 new_vsig; 3850 int status; 3851 3852 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL); 3853 if (!p) 3854 return -ENOMEM; 3855 3856 new_vsig = ice_vsig_alloc(hw, blk); 3857 if (!new_vsig) { 3858 status = -EIO; 3859 goto err_ice_create_prof_id_vsig; 3860 } 3861 3862 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 3863 if (status) 3864 goto err_ice_create_prof_id_vsig; 3865 3866 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 3867 if (status) 3868 goto err_ice_create_prof_id_vsig; 3869 3870 p->type = ICE_VSIG_ADD; 3871 p->vsi = vsi; 3872 p->orig_vsig = ICE_DEFAULT_VSIG; 3873 p->vsig = new_vsig; 3874 3875 list_add(&p->list_entry, chg); 3876 3877 return 0; 3878 3879 err_ice_create_prof_id_vsig: 3880 /* let caller clean up the change list */ 3881 devm_kfree(ice_hw_to_dev(hw), p); 3882 return status; 3883 } 3884 3885 /** 3886 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 3887 * @hw: pointer to the HW struct 3888 * @blk: hardware block 3889 * @vsi: the initial VSI that will be in VSIG 3890 * @lst: the list of profile that will be added to the VSIG 3891 * @new_vsig: return of new VSIG 3892 * @chg: the change list 3893 */ 3894 static int 3895 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 3896 struct list_head *lst, u16 *new_vsig, 3897 struct list_head *chg) 3898 { 3899 struct ice_vsig_prof *t; 3900 int status; 3901 u16 vsig; 3902 3903 vsig = ice_vsig_alloc(hw, blk); 3904 if (!vsig) 3905 return -EIO; 3906 3907 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 3908 if (status) 3909 return status; 3910 3911 list_for_each_entry(t, lst, list) { 3912 /* Reverse the order here since we are copying the list */ 3913 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 3914 true, chg); 3915 if (status) 3916 return status; 3917 } 3918 3919 *new_vsig = vsig; 3920 3921 return 0; 3922 } 3923 3924 /** 3925 * ice_find_prof_vsig - find a VSIG with a specific profile handle 3926 * @hw: pointer to the HW struct 3927 * @blk: hardware block 3928 * @hdl: the profile handle of the profile to search for 3929 * @vsig: returns the VSIG with the matching profile 3930 */ 3931 static bool 3932 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 3933 { 3934 struct ice_vsig_prof *t; 3935 struct list_head lst; 3936 int status; 3937 3938 INIT_LIST_HEAD(&lst); 3939 3940 t = kzalloc(sizeof(*t), GFP_KERNEL); 3941 if (!t) 3942 return false; 3943 3944 t->profile_cookie = hdl; 3945 list_add(&t->list, &lst); 3946 3947 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 3948 3949 list_del(&t->list); 3950 kfree(t); 3951 3952 return !status; 3953 } 3954 3955 /** 3956 * ice_add_prof_id_flow - add profile flow 3957 * @hw: pointer to the HW struct 3958 * @blk: hardware block 3959 * @vsi: the VSI to enable with the profile specified by ID 3960 * @hdl: profile handle 3961 * 3962 * Calling this function will update the hardware tables to enable the 3963 * profile indicated by the ID parameter for the VSIs specified in the VSI 3964 * array. Once successfully called, the flow will be enabled. 3965 */ 3966 int 3967 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 3968 { 3969 struct ice_vsig_prof *tmp1, *del1; 3970 struct ice_chs_chg *tmp, *del; 3971 struct list_head union_lst; 3972 struct list_head chg; 3973 int status; 3974 u16 vsig; 3975 3976 INIT_LIST_HEAD(&union_lst); 3977 INIT_LIST_HEAD(&chg); 3978 3979 /* Get profile */ 3980 status = ice_get_prof(hw, blk, hdl, &chg); 3981 if (status) 3982 return status; 3983 3984 /* determine if VSI is already part of a VSIG */ 3985 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 3986 if (!status && vsig) { 3987 bool only_vsi; 3988 u16 or_vsig; 3989 u16 ref; 3990 3991 /* found in VSIG */ 3992 or_vsig = vsig; 3993 3994 /* make sure that there is no overlap/conflict between the new 3995 * characteristics and the existing ones; we don't support that 3996 * scenario 3997 */ 3998 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 3999 status = -EEXIST; 4000 goto err_ice_add_prof_id_flow; 4001 } 4002 4003 /* last VSI in the VSIG? */ 4004 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4005 if (status) 4006 goto err_ice_add_prof_id_flow; 4007 only_vsi = (ref == 1); 4008 4009 /* create a union of the current profiles and the one being 4010 * added 4011 */ 4012 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 4013 if (status) 4014 goto err_ice_add_prof_id_flow; 4015 4016 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 4017 if (status) 4018 goto err_ice_add_prof_id_flow; 4019 4020 /* search for an existing VSIG with an exact charc match */ 4021 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 4022 if (!status) { 4023 /* move VSI to the VSIG that matches */ 4024 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4025 if (status) 4026 goto err_ice_add_prof_id_flow; 4027 4028 /* VSI has been moved out of or_vsig. If the or_vsig had 4029 * only that VSI it is now empty and can be removed. 4030 */ 4031 if (only_vsi) { 4032 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 4033 if (status) 4034 goto err_ice_add_prof_id_flow; 4035 } 4036 } else if (only_vsi) { 4037 /* If the original VSIG only contains one VSI, then it 4038 * will be the requesting VSI. In this case the VSI is 4039 * not sharing entries and we can simply add the new 4040 * profile to the VSIG. 4041 */ 4042 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 4043 &chg); 4044 if (status) 4045 goto err_ice_add_prof_id_flow; 4046 4047 /* Adjust priorities */ 4048 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4049 if (status) 4050 goto err_ice_add_prof_id_flow; 4051 } else { 4052 /* No match, so we need a new VSIG */ 4053 status = ice_create_vsig_from_lst(hw, blk, vsi, 4054 &union_lst, &vsig, 4055 &chg); 4056 if (status) 4057 goto err_ice_add_prof_id_flow; 4058 4059 /* Adjust priorities */ 4060 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 4061 if (status) 4062 goto err_ice_add_prof_id_flow; 4063 } 4064 } else { 4065 /* need to find or add a VSIG */ 4066 /* search for an existing VSIG with an exact charc match */ 4067 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 4068 /* found an exact match */ 4069 /* add or move VSI to the VSIG that matches */ 4070 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4071 if (status) 4072 goto err_ice_add_prof_id_flow; 4073 } else { 4074 /* we did not find an exact match */ 4075 /* we need to add a VSIG */ 4076 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 4077 &chg); 4078 if (status) 4079 goto err_ice_add_prof_id_flow; 4080 } 4081 } 4082 4083 /* update hardware */ 4084 if (!status) 4085 status = ice_upd_prof_hw(hw, blk, &chg); 4086 4087 err_ice_add_prof_id_flow: 4088 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4089 list_del(&del->list_entry); 4090 devm_kfree(ice_hw_to_dev(hw), del); 4091 } 4092 4093 list_for_each_entry_safe(del1, tmp1, &union_lst, list) { 4094 list_del(&del1->list); 4095 devm_kfree(ice_hw_to_dev(hw), del1); 4096 } 4097 4098 return status; 4099 } 4100 4101 /** 4102 * ice_rem_prof_from_list - remove a profile from list 4103 * @hw: pointer to the HW struct 4104 * @lst: list to remove the profile from 4105 * @hdl: the profile handle indicating the profile to remove 4106 */ 4107 static int 4108 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl) 4109 { 4110 struct ice_vsig_prof *ent, *tmp; 4111 4112 list_for_each_entry_safe(ent, tmp, lst, list) 4113 if (ent->profile_cookie == hdl) { 4114 list_del(&ent->list); 4115 devm_kfree(ice_hw_to_dev(hw), ent); 4116 return 0; 4117 } 4118 4119 return -ENOENT; 4120 } 4121 4122 /** 4123 * ice_rem_prof_id_flow - remove flow 4124 * @hw: pointer to the HW struct 4125 * @blk: hardware block 4126 * @vsi: the VSI from which to remove the profile specified by ID 4127 * @hdl: profile tracking handle 4128 * 4129 * Calling this function will update the hardware tables to remove the 4130 * profile indicated by the ID parameter for the VSIs specified in the VSI 4131 * array. Once successfully called, the flow will be disabled. 4132 */ 4133 int 4134 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 4135 { 4136 struct ice_vsig_prof *tmp1, *del1; 4137 struct ice_chs_chg *tmp, *del; 4138 struct list_head chg, copy; 4139 int status; 4140 u16 vsig; 4141 4142 INIT_LIST_HEAD(©); 4143 INIT_LIST_HEAD(&chg); 4144 4145 /* determine if VSI is already part of a VSIG */ 4146 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 4147 if (!status && vsig) { 4148 bool last_profile; 4149 bool only_vsi; 4150 u16 ref; 4151 4152 /* found in VSIG */ 4153 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 4154 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 4155 if (status) 4156 goto err_ice_rem_prof_id_flow; 4157 only_vsi = (ref == 1); 4158 4159 if (only_vsi) { 4160 /* If the original VSIG only contains one reference, 4161 * which will be the requesting VSI, then the VSI is not 4162 * sharing entries and we can simply remove the specific 4163 * characteristics from the VSIG. 4164 */ 4165 4166 if (last_profile) { 4167 /* If there are no profiles left for this VSIG, 4168 * then simply remove the VSIG. 4169 */ 4170 status = ice_rem_vsig(hw, blk, vsig, &chg); 4171 if (status) 4172 goto err_ice_rem_prof_id_flow; 4173 } else { 4174 status = ice_rem_prof_id_vsig(hw, blk, vsig, 4175 hdl, &chg); 4176 if (status) 4177 goto err_ice_rem_prof_id_flow; 4178 4179 /* Adjust priorities */ 4180 status = ice_adj_prof_priorities(hw, blk, vsig, 4181 &chg); 4182 if (status) 4183 goto err_ice_rem_prof_id_flow; 4184 } 4185 4186 } else { 4187 /* Make a copy of the VSIG's list of Profiles */ 4188 status = ice_get_profs_vsig(hw, blk, vsig, ©); 4189 if (status) 4190 goto err_ice_rem_prof_id_flow; 4191 4192 /* Remove specified profile entry from the list */ 4193 status = ice_rem_prof_from_list(hw, ©, hdl); 4194 if (status) 4195 goto err_ice_rem_prof_id_flow; 4196 4197 if (list_empty(©)) { 4198 status = ice_move_vsi(hw, blk, vsi, 4199 ICE_DEFAULT_VSIG, &chg); 4200 if (status) 4201 goto err_ice_rem_prof_id_flow; 4202 4203 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 4204 &vsig)) { 4205 /* found an exact match */ 4206 /* add or move VSI to the VSIG that matches */ 4207 /* Search for a VSIG with a matching profile 4208 * list 4209 */ 4210 4211 /* Found match, move VSI to the matching VSIG */ 4212 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 4213 if (status) 4214 goto err_ice_rem_prof_id_flow; 4215 } else { 4216 /* since no existing VSIG supports this 4217 * characteristic pattern, we need to create a 4218 * new VSIG and TCAM entries 4219 */ 4220 status = ice_create_vsig_from_lst(hw, blk, vsi, 4221 ©, &vsig, 4222 &chg); 4223 if (status) 4224 goto err_ice_rem_prof_id_flow; 4225 4226 /* Adjust priorities */ 4227 status = ice_adj_prof_priorities(hw, blk, vsig, 4228 &chg); 4229 if (status) 4230 goto err_ice_rem_prof_id_flow; 4231 } 4232 } 4233 } else { 4234 status = -ENOENT; 4235 } 4236 4237 /* update hardware tables */ 4238 if (!status) 4239 status = ice_upd_prof_hw(hw, blk, &chg); 4240 4241 err_ice_rem_prof_id_flow: 4242 list_for_each_entry_safe(del, tmp, &chg, list_entry) { 4243 list_del(&del->list_entry); 4244 devm_kfree(ice_hw_to_dev(hw), del); 4245 } 4246 4247 list_for_each_entry_safe(del1, tmp1, ©, list) { 4248 list_del(&del1->list); 4249 devm_kfree(ice_hw_to_dev(hw), del1); 4250 } 4251 4252 return status; 4253 } 4254