1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* ethtool support for ice */ 5 6 #include "ice.h" 7 #include "ice_ethtool.h" 8 #include "ice_flow.h" 9 #include "ice_fltr.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include <net/dcbnl.h> 13 14 struct ice_stats { 15 char stat_string[ETH_GSTRING_LEN]; 16 int sizeof_stat; 17 int stat_offset; 18 }; 19 20 #define ICE_STAT(_type, _name, _stat) { \ 21 .stat_string = _name, \ 22 .sizeof_stat = sizeof_field(_type, _stat), \ 23 .stat_offset = offsetof(_type, _stat) \ 24 } 25 26 #define ICE_VSI_STAT(_name, _stat) \ 27 ICE_STAT(struct ice_vsi, _name, _stat) 28 #define ICE_PF_STAT(_name, _stat) \ 29 ICE_STAT(struct ice_pf, _name, _stat) 30 31 static int ice_q_stats_len(struct net_device *netdev) 32 { 33 struct ice_netdev_priv *np = netdev_priv(netdev); 34 35 return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) * 36 (sizeof(struct ice_q_stats) / sizeof(u64))); 37 } 38 39 #define ICE_PF_STATS_LEN ARRAY_SIZE(ice_gstrings_pf_stats) 40 #define ICE_VSI_STATS_LEN ARRAY_SIZE(ice_gstrings_vsi_stats) 41 42 #define ICE_PFC_STATS_LEN ( \ 43 (sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \ 44 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \ 45 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \ 46 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \ 47 / sizeof(u64)) 48 #define ICE_ALL_STATS_LEN(n) (ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \ 49 ICE_VSI_STATS_LEN + ice_q_stats_len(n)) 50 51 static const struct ice_stats ice_gstrings_vsi_stats[] = { 52 ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast), 53 ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast), 54 ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast), 55 ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast), 56 ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast), 57 ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast), 58 ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes), 59 ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes), 60 ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards), 61 ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol), 62 ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed), 63 ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed), 64 ICE_VSI_STAT("tx_errors", eth_stats.tx_errors), 65 ICE_VSI_STAT("tx_linearize", tx_linearize), 66 ICE_VSI_STAT("tx_busy", tx_busy), 67 ICE_VSI_STAT("tx_restart", tx_restart), 68 }; 69 70 enum ice_ethtool_test_id { 71 ICE_ETH_TEST_REG = 0, 72 ICE_ETH_TEST_EEPROM, 73 ICE_ETH_TEST_INTR, 74 ICE_ETH_TEST_LOOP, 75 ICE_ETH_TEST_LINK, 76 }; 77 78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = { 79 "Register test (offline)", 80 "EEPROM test (offline)", 81 "Interrupt test (offline)", 82 "Loopback test (offline)", 83 "Link test (on/offline)", 84 }; 85 86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN) 87 88 /* These PF_STATs might look like duplicates of some NETDEV_STATs, 89 * but they aren't. This device is capable of supporting multiple 90 * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual 91 * netdevs whereas the PF_STATs are for the physical function that's 92 * hosting these netdevs. 93 * 94 * The PF_STATs are appended to the netdev stats only when ethtool -S 95 * is queried on the base PF netdev. 96 */ 97 static const struct ice_stats ice_gstrings_pf_stats[] = { 98 ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes), 99 ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes), 100 ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast), 101 ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast), 102 ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast), 103 ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast), 104 ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast), 105 ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast), 106 ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors), 107 ICE_PF_STAT("tx_timeout.nic", tx_timeout_count), 108 ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64), 109 ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64), 110 ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127), 111 ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127), 112 ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255), 113 ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255), 114 ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511), 115 ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511), 116 ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023), 117 ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023), 118 ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522), 119 ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522), 120 ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big), 121 ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big), 122 ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx), 123 ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx), 124 ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx), 125 ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx), 126 ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down), 127 ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize), 128 ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments), 129 ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize), 130 ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber), 131 ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error), 132 ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error), 133 ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards), 134 ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors), 135 ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes), 136 ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults), 137 ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults), 138 ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match), 139 ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status), 140 ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped), 141 ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts), 142 ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed), 143 ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded), 144 ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates), 145 }; 146 147 static const u32 ice_regs_dump_list[] = { 148 PFGEN_STATE, 149 PRTGEN_STATUS, 150 QRX_CTRL(0), 151 QINT_TQCTL(0), 152 QINT_RQCTL(0), 153 PFINT_OICR_ENA, 154 QRX_ITR(0), 155 #define GLDCB_TLPM_PCI_DM 0x000A0180 156 GLDCB_TLPM_PCI_DM, 157 #define GLDCB_TLPM_TC2PFC 0x000A0194 158 GLDCB_TLPM_TC2PFC, 159 #define TCDCB_TLPM_WAIT_DM(_i) (0x000A0080 + ((_i) * 4)) 160 TCDCB_TLPM_WAIT_DM(0), 161 TCDCB_TLPM_WAIT_DM(1), 162 TCDCB_TLPM_WAIT_DM(2), 163 TCDCB_TLPM_WAIT_DM(3), 164 TCDCB_TLPM_WAIT_DM(4), 165 TCDCB_TLPM_WAIT_DM(5), 166 TCDCB_TLPM_WAIT_DM(6), 167 TCDCB_TLPM_WAIT_DM(7), 168 TCDCB_TLPM_WAIT_DM(8), 169 TCDCB_TLPM_WAIT_DM(9), 170 TCDCB_TLPM_WAIT_DM(10), 171 TCDCB_TLPM_WAIT_DM(11), 172 TCDCB_TLPM_WAIT_DM(12), 173 TCDCB_TLPM_WAIT_DM(13), 174 TCDCB_TLPM_WAIT_DM(14), 175 TCDCB_TLPM_WAIT_DM(15), 176 TCDCB_TLPM_WAIT_DM(16), 177 TCDCB_TLPM_WAIT_DM(17), 178 TCDCB_TLPM_WAIT_DM(18), 179 TCDCB_TLPM_WAIT_DM(19), 180 TCDCB_TLPM_WAIT_DM(20), 181 TCDCB_TLPM_WAIT_DM(21), 182 TCDCB_TLPM_WAIT_DM(22), 183 TCDCB_TLPM_WAIT_DM(23), 184 TCDCB_TLPM_WAIT_DM(24), 185 TCDCB_TLPM_WAIT_DM(25), 186 TCDCB_TLPM_WAIT_DM(26), 187 TCDCB_TLPM_WAIT_DM(27), 188 TCDCB_TLPM_WAIT_DM(28), 189 TCDCB_TLPM_WAIT_DM(29), 190 TCDCB_TLPM_WAIT_DM(30), 191 TCDCB_TLPM_WAIT_DM(31), 192 #define GLPCI_WATMK_CLNT_PIPEMON 0x000BFD90 193 GLPCI_WATMK_CLNT_PIPEMON, 194 #define GLPCI_CUR_CLNT_COMMON 0x000BFD84 195 GLPCI_CUR_CLNT_COMMON, 196 #define GLPCI_CUR_CLNT_PIPEMON 0x000BFD88 197 GLPCI_CUR_CLNT_PIPEMON, 198 #define GLPCI_PCIERR 0x0009DEB0 199 GLPCI_PCIERR, 200 #define GLPSM_DEBUG_CTL_STATUS 0x000B0600 201 GLPSM_DEBUG_CTL_STATUS, 202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0680 203 GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT, 204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0684 205 GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT, 206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW 0x000B0688 207 GLPSM0_DEBUG_DT_OUT_OF_WINDOW, 208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT 0x000B069C 209 GLPSM0_DEBUG_INTF_HW_ERROR_DETECT, 210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT 0x000B06A0 211 GLPSM0_DEBUG_MISC_HW_ERROR_DETECT, 212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0E80 213 GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT, 214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0E84 215 GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT, 216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT 0x000B0E88 217 GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT, 218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT 0x000B0E8C 219 GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT, 220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT 0x000B0E90 221 GLPSM1_DEBUG_MISC_HW_ERROR_DETECT, 222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT 0x000B1680 223 GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT, 224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B1684 225 GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT, 226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT 0x000B1688 227 GLPSM2_DEBUG_MISC_HW_ERROR_DETECT, 228 #define GLTDPU_TCLAN_COMP_BOB(_i) (0x00049ADC + ((_i) * 4)) 229 GLTDPU_TCLAN_COMP_BOB(1), 230 GLTDPU_TCLAN_COMP_BOB(2), 231 GLTDPU_TCLAN_COMP_BOB(3), 232 GLTDPU_TCLAN_COMP_BOB(4), 233 GLTDPU_TCLAN_COMP_BOB(5), 234 GLTDPU_TCLAN_COMP_BOB(6), 235 GLTDPU_TCLAN_COMP_BOB(7), 236 GLTDPU_TCLAN_COMP_BOB(8), 237 #define GLTDPU_TCB_CMD_BOB(_i) (0x0004975C + ((_i) * 4)) 238 GLTDPU_TCB_CMD_BOB(1), 239 GLTDPU_TCB_CMD_BOB(2), 240 GLTDPU_TCB_CMD_BOB(3), 241 GLTDPU_TCB_CMD_BOB(4), 242 GLTDPU_TCB_CMD_BOB(5), 243 GLTDPU_TCB_CMD_BOB(6), 244 GLTDPU_TCB_CMD_BOB(7), 245 GLTDPU_TCB_CMD_BOB(8), 246 #define GLTDPU_PSM_UPDATE_BOB(_i) (0x00049B5C + ((_i) * 4)) 247 GLTDPU_PSM_UPDATE_BOB(1), 248 GLTDPU_PSM_UPDATE_BOB(2), 249 GLTDPU_PSM_UPDATE_BOB(3), 250 GLTDPU_PSM_UPDATE_BOB(4), 251 GLTDPU_PSM_UPDATE_BOB(5), 252 GLTDPU_PSM_UPDATE_BOB(6), 253 GLTDPU_PSM_UPDATE_BOB(7), 254 GLTDPU_PSM_UPDATE_BOB(8), 255 #define GLTCB_CMD_IN_BOB(_i) (0x000AE288 + ((_i) * 4)) 256 GLTCB_CMD_IN_BOB(1), 257 GLTCB_CMD_IN_BOB(2), 258 GLTCB_CMD_IN_BOB(3), 259 GLTCB_CMD_IN_BOB(4), 260 GLTCB_CMD_IN_BOB(5), 261 GLTCB_CMD_IN_BOB(6), 262 GLTCB_CMD_IN_BOB(7), 263 GLTCB_CMD_IN_BOB(8), 264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i) (0x000FC148 + ((_i) * 4)) 265 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1), 266 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2), 267 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3), 268 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4), 269 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5), 270 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6), 271 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7), 272 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8), 273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4)) 274 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1), 275 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2), 276 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3), 277 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4), 278 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5), 279 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6), 280 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7), 281 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8), 282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i) (0x000FC1C8 + ((_i) * 4)) 283 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1), 284 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2), 285 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3), 286 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4), 287 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5), 288 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6), 289 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7), 290 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8), 291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i) (0x000FC188 + ((_i) * 4)) 292 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1), 293 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2), 294 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3), 295 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4), 296 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5), 297 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6), 298 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7), 299 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8), 300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4)) 301 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1), 302 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2), 303 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3), 304 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4), 305 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5), 306 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6), 307 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7), 308 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8), 309 #define PRTDCB_TCUPM_REG_CM(_i) (0x000BC360 + ((_i) * 4)) 310 PRTDCB_TCUPM_REG_CM(0), 311 PRTDCB_TCUPM_REG_CM(1), 312 PRTDCB_TCUPM_REG_CM(2), 313 PRTDCB_TCUPM_REG_CM(3), 314 #define PRTDCB_TCUPM_REG_DM(_i) (0x000BC3A0 + ((_i) * 4)) 315 PRTDCB_TCUPM_REG_DM(0), 316 PRTDCB_TCUPM_REG_DM(1), 317 PRTDCB_TCUPM_REG_DM(2), 318 PRTDCB_TCUPM_REG_DM(3), 319 #define PRTDCB_TLPM_REG_DM(_i) (0x000A0000 + ((_i) * 4)) 320 PRTDCB_TLPM_REG_DM(0), 321 PRTDCB_TLPM_REG_DM(1), 322 PRTDCB_TLPM_REG_DM(2), 323 PRTDCB_TLPM_REG_DM(3), 324 }; 325 326 struct ice_priv_flag { 327 char name[ETH_GSTRING_LEN]; 328 u32 bitno; /* bit position in pf->flags */ 329 }; 330 331 #define ICE_PRIV_FLAG(_name, _bitno) { \ 332 .name = _name, \ 333 .bitno = _bitno, \ 334 } 335 336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = { 337 ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA), 338 ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT), 339 ICE_PRIV_FLAG("vf-true-promisc-support", 340 ICE_FLAG_VF_TRUE_PROMISC_ENA), 341 ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF), 342 ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING), 343 ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX), 344 }; 345 346 #define ICE_PRIV_FLAG_ARRAY_SIZE ARRAY_SIZE(ice_gstrings_priv_flags) 347 348 static const u32 ice_adv_lnk_speed_100[] __initconst = { 349 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 350 }; 351 352 static const u32 ice_adv_lnk_speed_1000[] __initconst = { 353 ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 354 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 355 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 356 }; 357 358 static const u32 ice_adv_lnk_speed_2500[] __initconst = { 359 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 360 ETHTOOL_LINK_MODE_2500baseX_Full_BIT, 361 }; 362 363 static const u32 ice_adv_lnk_speed_5000[] __initconst = { 364 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 365 }; 366 367 static const u32 ice_adv_lnk_speed_10000[] __initconst = { 368 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 369 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 370 ETHTOOL_LINK_MODE_10000baseSR_Full_BIT, 371 ETHTOOL_LINK_MODE_10000baseLR_Full_BIT, 372 }; 373 374 static const u32 ice_adv_lnk_speed_25000[] __initconst = { 375 ETHTOOL_LINK_MODE_25000baseCR_Full_BIT, 376 ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, 377 ETHTOOL_LINK_MODE_25000baseKR_Full_BIT, 378 }; 379 380 static const u32 ice_adv_lnk_speed_40000[] __initconst = { 381 ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT, 382 ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT, 383 ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT, 384 ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT, 385 }; 386 387 static const u32 ice_adv_lnk_speed_50000[] __initconst = { 388 ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT, 389 ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT, 390 ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT, 391 }; 392 393 static const u32 ice_adv_lnk_speed_100000[] __initconst = { 394 ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT, 395 ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, 396 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT, 397 ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT, 398 ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT, 399 ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT, 400 ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT, 401 }; 402 403 static const u32 ice_adv_lnk_speed_200000[] __initconst = { 404 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT, 405 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT, 406 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT, 407 ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT, 408 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT, 409 }; 410 411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = { 412 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100), 413 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000), 414 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500), 415 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000), 416 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000), 417 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000), 418 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000), 419 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000), 420 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000), 421 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000), 422 }; 423 424 void __init ice_adv_lnk_speed_maps_init(void) 425 { 426 ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps, 427 ARRAY_SIZE(ice_adv_lnk_speed_maps)); 428 } 429 430 static void 431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo, 432 struct ice_vsi *vsi) 433 { 434 struct ice_pf *pf = vsi->back; 435 struct ice_hw *hw = &pf->hw; 436 struct ice_orom_info *orom; 437 struct ice_nvm_info *nvm; 438 439 nvm = &hw->flash.nvm; 440 orom = &hw->flash.orom; 441 442 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 443 444 /* Display NVM version (from which the firmware version can be 445 * determined) which contains more pertinent information. 446 */ 447 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 448 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor, 449 nvm->eetrack, orom->major, orom->build, orom->patch); 450 451 strscpy(drvinfo->bus_info, pci_name(pf->pdev), 452 sizeof(drvinfo->bus_info)); 453 } 454 455 static void 456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 457 { 458 struct ice_netdev_priv *np = netdev_priv(netdev); 459 460 __ice_get_drvinfo(netdev, drvinfo, np->vsi); 461 drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE; 462 } 463 464 static int ice_get_regs_len(struct net_device __always_unused *netdev) 465 { 466 return (sizeof(ice_regs_dump_list) + 467 sizeof(struct ice_regdump_to_ethtool)); 468 } 469 470 /** 471 * ice_ethtool_get_maxspeed - Get the max speed for given lport 472 * @hw: pointer to the HW struct 473 * @lport: logical port for which max speed is requested 474 * @max_speed: return max speed for input lport 475 * 476 * Return: 0 on success, negative on failure. 477 */ 478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed) 479 { 480 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {}; 481 bool active_valid = false, pending_valid = true; 482 u8 option_count = ICE_AQC_PORT_OPT_MAX; 483 u8 active_idx = 0, pending_idx = 0; 484 int status; 485 486 status = ice_aq_get_port_options(hw, options, &option_count, lport, 487 true, &active_idx, &active_valid, 488 &pending_idx, &pending_valid); 489 if (status) 490 return -EIO; 491 if (!active_valid) 492 return -EINVAL; 493 494 *max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M; 495 return 0; 496 } 497 498 /** 499 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware 500 * @hw: pointer to the HW struct 501 * 502 * Return: true when serdes is muxed, false when serdes is not muxed. 503 */ 504 static bool ice_is_serdes_muxed(struct ice_hw *hw) 505 { 506 u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG); 507 508 return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value); 509 } 510 511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology, 512 u8 lport, bool is_muxed) 513 { 514 switch (lport) { 515 case 0: 516 port_topology->pcs_quad_select = 0; 517 port_topology->pcs_port = 0; 518 port_topology->primary_serdes_lane = 0; 519 break; 520 case 1: 521 port_topology->pcs_quad_select = 1; 522 port_topology->pcs_port = 0; 523 if (is_muxed) 524 port_topology->primary_serdes_lane = 2; 525 else 526 port_topology->primary_serdes_lane = 4; 527 break; 528 case 2: 529 port_topology->pcs_quad_select = 0; 530 port_topology->pcs_port = 1; 531 port_topology->primary_serdes_lane = 1; 532 break; 533 case 3: 534 port_topology->pcs_quad_select = 1; 535 port_topology->pcs_port = 1; 536 if (is_muxed) 537 port_topology->primary_serdes_lane = 3; 538 else 539 port_topology->primary_serdes_lane = 5; 540 break; 541 case 4: 542 port_topology->pcs_quad_select = 0; 543 port_topology->pcs_port = 2; 544 port_topology->primary_serdes_lane = 2; 545 break; 546 case 5: 547 port_topology->pcs_quad_select = 1; 548 port_topology->pcs_port = 2; 549 port_topology->primary_serdes_lane = 6; 550 break; 551 case 6: 552 port_topology->pcs_quad_select = 0; 553 port_topology->pcs_port = 3; 554 port_topology->primary_serdes_lane = 3; 555 break; 556 case 7: 557 port_topology->pcs_quad_select = 1; 558 port_topology->pcs_port = 3; 559 port_topology->primary_serdes_lane = 7; 560 break; 561 default: 562 return -EINVAL; 563 } 564 565 return 0; 566 } 567 568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology, 569 u8 lport, bool is_muxed) 570 { 571 switch (lport) { 572 case 0: 573 port_topology->pcs_quad_select = 0; 574 port_topology->pcs_port = 0; 575 port_topology->primary_serdes_lane = 0; 576 break; 577 case 1: 578 port_topology->pcs_quad_select = 1; 579 port_topology->pcs_port = 0; 580 if (is_muxed) 581 port_topology->primary_serdes_lane = 2; 582 else 583 port_topology->primary_serdes_lane = 4; 584 break; 585 case 2: 586 port_topology->pcs_quad_select = 0; 587 port_topology->pcs_port = 1; 588 port_topology->primary_serdes_lane = 1; 589 break; 590 case 3: 591 port_topology->pcs_quad_select = 1; 592 port_topology->pcs_port = 1; 593 if (is_muxed) 594 port_topology->primary_serdes_lane = 3; 595 else 596 port_topology->primary_serdes_lane = 5; 597 break; 598 case 4: 599 port_topology->pcs_quad_select = 0; 600 port_topology->pcs_port = 2; 601 port_topology->primary_serdes_lane = 2; 602 break; 603 case 5: 604 port_topology->pcs_quad_select = 1; 605 port_topology->pcs_port = 2; 606 port_topology->primary_serdes_lane = 6; 607 break; 608 case 6: 609 port_topology->pcs_quad_select = 0; 610 port_topology->pcs_port = 3; 611 port_topology->primary_serdes_lane = 3; 612 break; 613 case 7: 614 port_topology->pcs_quad_select = 1; 615 port_topology->pcs_port = 3; 616 port_topology->primary_serdes_lane = 7; 617 break; 618 default: 619 return -EINVAL; 620 } 621 622 return 0; 623 } 624 625 /** 626 * ice_get_port_topology - returns physical topology like pcsquad, pcsport, 627 * serdes number 628 * @hw: pointer to the HW struct 629 * @lport: logical port for which physical info requested 630 * @port_topology: buffer to hold port topology 631 * 632 * Return: 0 on success, negative on failure. 633 */ 634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport, 635 struct ice_port_topology *port_topology) 636 { 637 struct ice_aqc_get_link_topo cmd = {}; 638 u16 node_handle = 0; 639 u8 cage_type = 0; 640 bool is_muxed; 641 int err; 642 u8 ctx; 643 644 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S; 645 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; 646 cmd.addr.topo_params.node_type_ctx = ctx; 647 648 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle); 649 if (err) 650 return -EINVAL; 651 652 is_muxed = ice_is_serdes_muxed(hw); 653 654 if (cage_type == 0x11 || /* SFP+ */ 655 cage_type == 0x12) { /* SFP28 */ 656 port_topology->serdes_lane_count = 1; 657 err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed); 658 if (err) 659 return err; 660 } else if (cage_type == 0x13 || /* QSFP */ 661 cage_type == 0x14) { /* QSFP28 */ 662 u8 max_speed = 0; 663 664 err = ice_ethtool_get_maxspeed(hw, lport, &max_speed); 665 if (err) 666 return err; 667 668 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G) 669 port_topology->serdes_lane_count = 4; 670 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G) 671 port_topology->serdes_lane_count = 2; 672 else 673 port_topology->serdes_lane_count = 1; 674 675 err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed); 676 if (err) 677 return err; 678 } else { 679 return -EINVAL; 680 } 681 682 return 0; 683 } 684 685 /** 686 * ice_get_tx_rx_equa - read serdes tx rx equaliser param 687 * @hw: pointer to the HW struct 688 * @serdes_num: represents the serdes number 689 * @ptr: structure to read all serdes parameter for given serdes 690 * 691 * Return: all serdes equalization parameter supported per serdes number 692 */ 693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num, 694 struct ice_serdes_equalization_to_ethtool *ptr) 695 { 696 int err; 697 698 err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_PRE1, 699 ICE_AQC_OP_CODE_TX_EQU, serdes_num, 700 &ptr->tx_equalization_pre1); 701 if (err) 702 return err; 703 704 err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_PRE3, 705 ICE_AQC_OP_CODE_TX_EQU, serdes_num, 706 &ptr->tx_equalization_pre3); 707 if (err) 708 return err; 709 710 err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_ATTEN, 711 ICE_AQC_OP_CODE_TX_EQU, serdes_num, 712 &ptr->tx_equalization_atten); 713 if (err) 714 return err; 715 716 err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_POST1, 717 ICE_AQC_OP_CODE_TX_EQU, serdes_num, 718 &ptr->tx_equalization_post1); 719 if (err) 720 return err; 721 722 err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_PRE2, 723 ICE_AQC_OP_CODE_TX_EQU, serdes_num, 724 &ptr->tx_equalization_pre2); 725 if (err) 726 return err; 727 728 err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_PRE2, 729 ICE_AQC_OP_CODE_RX_EQU, serdes_num, 730 &ptr->rx_equalization_pre2); 731 if (err) 732 return err; 733 734 err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_PRE1, 735 ICE_AQC_OP_CODE_RX_EQU, serdes_num, 736 &ptr->rx_equalization_pre1); 737 if (err) 738 return err; 739 740 err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_POST1, 741 ICE_AQC_OP_CODE_RX_EQU, serdes_num, 742 &ptr->rx_equalization_post1); 743 if (err) 744 return err; 745 746 err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_BFLF, 747 ICE_AQC_OP_CODE_RX_EQU, serdes_num, 748 &ptr->rx_equalization_bflf); 749 if (err) 750 return err; 751 752 err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_BFHF, 753 ICE_AQC_OP_CODE_RX_EQU, serdes_num, 754 &ptr->rx_equalization_bfhf); 755 if (err) 756 return err; 757 758 err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_DRATE, 759 ICE_AQC_OP_CODE_RX_EQU, serdes_num, 760 &ptr->rx_equalization_drate); 761 if (err) 762 return err; 763 764 return 0; 765 } 766 767 /** 768 * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per 769 * pcsquad, pcsport 770 * @netdev: pointer to net device structure 771 * @p: output buffer to fill requested register dump 772 * 773 * Return: 0 on success, negative on failure. 774 */ 775 static int ice_get_extended_regs(struct net_device *netdev, void *p) 776 { 777 struct ice_netdev_priv *np = netdev_priv(netdev); 778 struct ice_regdump_to_ethtool *ice_prv_regs_buf; 779 struct ice_port_topology port_topology = {}; 780 struct ice_port_info *pi; 781 struct ice_pf *pf; 782 struct ice_hw *hw; 783 unsigned int i; 784 int err; 785 786 pf = np->vsi->back; 787 hw = &pf->hw; 788 pi = np->vsi->port_info; 789 790 /* Serdes parameters are not supported if not the PF VSI */ 791 if (np->vsi->type != ICE_VSI_PF || !pi) 792 return -EINVAL; 793 794 err = ice_get_port_topology(hw, pi->lport, &port_topology); 795 if (err) 796 return -EINVAL; 797 if (port_topology.serdes_lane_count > 4) 798 return -EINVAL; 799 800 ice_prv_regs_buf = p; 801 802 /* Get serdes equalization parameter for available serdes */ 803 for (i = 0; i < port_topology.serdes_lane_count; i++) { 804 u8 serdes_num = 0; 805 806 serdes_num = port_topology.primary_serdes_lane + i; 807 err = ice_get_tx_rx_equa(hw, serdes_num, 808 &ice_prv_regs_buf->equalization[i]); 809 if (err) 810 return -EINVAL; 811 } 812 813 return 0; 814 } 815 816 static void 817 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) 818 { 819 struct ice_netdev_priv *np = netdev_priv(netdev); 820 struct ice_pf *pf = np->vsi->back; 821 struct ice_hw *hw = &pf->hw; 822 u32 *regs_buf = (u32 *)p; 823 unsigned int i; 824 825 regs->version = 2; 826 827 for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i) 828 regs_buf[i] = rd32(hw, ice_regs_dump_list[i]); 829 830 ice_get_extended_regs(netdev, (void *)®s_buf[i]); 831 } 832 833 static u32 ice_get_msglevel(struct net_device *netdev) 834 { 835 struct ice_netdev_priv *np = netdev_priv(netdev); 836 struct ice_pf *pf = np->vsi->back; 837 838 #ifndef CONFIG_DYNAMIC_DEBUG 839 if (pf->hw.debug_mask) 840 netdev_info(netdev, "hw debug_mask: 0x%llX\n", 841 pf->hw.debug_mask); 842 #endif /* !CONFIG_DYNAMIC_DEBUG */ 843 844 return pf->msg_enable; 845 } 846 847 static void ice_set_msglevel(struct net_device *netdev, u32 data) 848 { 849 struct ice_netdev_priv *np = netdev_priv(netdev); 850 struct ice_pf *pf = np->vsi->back; 851 852 #ifndef CONFIG_DYNAMIC_DEBUG 853 if (ICE_DBG_USER & data) 854 pf->hw.debug_mask = data; 855 else 856 pf->msg_enable = data; 857 #else 858 pf->msg_enable = data; 859 #endif /* !CONFIG_DYNAMIC_DEBUG */ 860 } 861 862 static int ice_get_eeprom_len(struct net_device *netdev) 863 { 864 struct ice_netdev_priv *np = netdev_priv(netdev); 865 struct ice_pf *pf = np->vsi->back; 866 867 return (int)pf->hw.flash.flash_size; 868 } 869 870 static int 871 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, 872 u8 *bytes) 873 { 874 struct ice_netdev_priv *np = netdev_priv(netdev); 875 struct ice_vsi *vsi = np->vsi; 876 struct ice_pf *pf = vsi->back; 877 struct ice_hw *hw = &pf->hw; 878 struct device *dev; 879 int ret; 880 u8 *buf; 881 882 dev = ice_pf_to_dev(pf); 883 884 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 885 netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n", 886 eeprom->cmd, eeprom->offset, eeprom->len); 887 888 buf = kzalloc(eeprom->len, GFP_KERNEL); 889 if (!buf) 890 return -ENOMEM; 891 892 ret = ice_acquire_nvm(hw, ICE_RES_READ); 893 if (ret) { 894 dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n", 895 ret, ice_aq_str(hw->adminq.sq_last_status)); 896 goto out; 897 } 898 899 ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf, 900 false); 901 if (ret) { 902 dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n", 903 ret, ice_aq_str(hw->adminq.sq_last_status)); 904 goto release; 905 } 906 907 memcpy(bytes, buf, eeprom->len); 908 release: 909 ice_release_nvm(hw); 910 out: 911 kfree(buf); 912 return ret; 913 } 914 915 /** 916 * ice_active_vfs - check if there are any active VFs 917 * @pf: board private structure 918 * 919 * Returns true if an active VF is found, otherwise returns false 920 */ 921 static bool ice_active_vfs(struct ice_pf *pf) 922 { 923 bool active = false; 924 struct ice_vf *vf; 925 unsigned int bkt; 926 927 rcu_read_lock(); 928 ice_for_each_vf_rcu(pf, bkt, vf) { 929 if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 930 active = true; 931 break; 932 } 933 } 934 rcu_read_unlock(); 935 936 return active; 937 } 938 939 /** 940 * ice_link_test - perform a link test on a given net_device 941 * @netdev: network interface device structure 942 * 943 * This function performs one of the self-tests required by ethtool. 944 * Returns 0 on success, non-zero on failure. 945 */ 946 static u64 ice_link_test(struct net_device *netdev) 947 { 948 struct ice_netdev_priv *np = netdev_priv(netdev); 949 bool link_up = false; 950 int status; 951 952 netdev_info(netdev, "link test\n"); 953 status = ice_get_link_status(np->vsi->port_info, &link_up); 954 if (status) { 955 netdev_err(netdev, "link query error, status = %d\n", 956 status); 957 return 1; 958 } 959 960 if (!link_up) 961 return 2; 962 963 return 0; 964 } 965 966 /** 967 * ice_eeprom_test - perform an EEPROM test on a given net_device 968 * @netdev: network interface device structure 969 * 970 * This function performs one of the self-tests required by ethtool. 971 * Returns 0 on success, non-zero on failure. 972 */ 973 static u64 ice_eeprom_test(struct net_device *netdev) 974 { 975 struct ice_netdev_priv *np = netdev_priv(netdev); 976 struct ice_pf *pf = np->vsi->back; 977 978 netdev_info(netdev, "EEPROM test\n"); 979 return !!(ice_nvm_validate_checksum(&pf->hw)); 980 } 981 982 /** 983 * ice_reg_pattern_test 984 * @hw: pointer to the HW struct 985 * @reg: reg to be tested 986 * @mask: bits to be touched 987 */ 988 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask) 989 { 990 struct ice_pf *pf = (struct ice_pf *)hw->back; 991 struct device *dev = ice_pf_to_dev(pf); 992 static const u32 patterns[] = { 993 0x5A5A5A5A, 0xA5A5A5A5, 994 0x00000000, 0xFFFFFFFF 995 }; 996 u32 val, orig_val; 997 unsigned int i; 998 999 orig_val = rd32(hw, reg); 1000 for (i = 0; i < ARRAY_SIZE(patterns); ++i) { 1001 u32 pattern = patterns[i] & mask; 1002 1003 wr32(hw, reg, pattern); 1004 val = rd32(hw, reg); 1005 if (val == pattern) 1006 continue; 1007 dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n" 1008 , __func__, reg, pattern, val); 1009 return 1; 1010 } 1011 1012 wr32(hw, reg, orig_val); 1013 val = rd32(hw, reg); 1014 if (val != orig_val) { 1015 dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n" 1016 , __func__, reg, orig_val, val); 1017 return 1; 1018 } 1019 1020 return 0; 1021 } 1022 1023 /** 1024 * ice_reg_test - perform a register test on a given net_device 1025 * @netdev: network interface device structure 1026 * 1027 * This function performs one of the self-tests required by ethtool. 1028 * Returns 0 on success, non-zero on failure. 1029 */ 1030 static u64 ice_reg_test(struct net_device *netdev) 1031 { 1032 struct ice_netdev_priv *np = netdev_priv(netdev); 1033 struct ice_hw *hw = np->vsi->port_info->hw; 1034 u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ? 1035 hw->func_caps.common_cap.num_msix_vectors - 1 : 1; 1036 struct ice_diag_reg_test_info { 1037 u32 address; 1038 u32 mask; 1039 u32 elem_num; 1040 u32 elem_size; 1041 } ice_reg_list[] = { 1042 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1043 GLINT_ITR(0, 1) - GLINT_ITR(0, 0)}, 1044 {GLINT_ITR(1, 0), 0x00000fff, int_elements, 1045 GLINT_ITR(1, 1) - GLINT_ITR(1, 0)}, 1046 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1047 GLINT_ITR(2, 1) - GLINT_ITR(2, 0)}, 1048 {GLINT_CTL, 0xffff0001, 1, 0} 1049 }; 1050 unsigned int i; 1051 1052 netdev_dbg(netdev, "Register test\n"); 1053 for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) { 1054 u32 j; 1055 1056 for (j = 0; j < ice_reg_list[i].elem_num; ++j) { 1057 u32 mask = ice_reg_list[i].mask; 1058 u32 reg = ice_reg_list[i].address + 1059 (j * ice_reg_list[i].elem_size); 1060 1061 /* bail on failure (non-zero return) */ 1062 if (ice_reg_pattern_test(hw, reg, mask)) 1063 return 1; 1064 } 1065 } 1066 1067 return 0; 1068 } 1069 1070 /** 1071 * ice_lbtest_prepare_rings - configure Tx/Rx test rings 1072 * @vsi: pointer to the VSI structure 1073 * 1074 * Function configures rings of a VSI for loopback test without 1075 * enabling interrupts or informing the kernel about new queues. 1076 * 1077 * Returns 0 on success, negative on failure. 1078 */ 1079 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi) 1080 { 1081 int status; 1082 1083 status = ice_vsi_setup_tx_rings(vsi); 1084 if (status) 1085 goto err_setup_tx_ring; 1086 1087 status = ice_vsi_setup_rx_rings(vsi); 1088 if (status) 1089 goto err_setup_rx_ring; 1090 1091 status = ice_vsi_cfg_lan(vsi); 1092 if (status) 1093 goto err_setup_rx_ring; 1094 1095 status = ice_vsi_start_all_rx_rings(vsi); 1096 if (status) 1097 goto err_start_rx_ring; 1098 1099 return 0; 1100 1101 err_start_rx_ring: 1102 ice_vsi_free_rx_rings(vsi); 1103 err_setup_rx_ring: 1104 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1105 err_setup_tx_ring: 1106 ice_vsi_free_tx_rings(vsi); 1107 1108 return status; 1109 } 1110 1111 /** 1112 * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test 1113 * @vsi: pointer to the VSI structure 1114 * 1115 * Function stops and frees VSI rings after a loopback test. 1116 * Returns 0 on success, negative on failure. 1117 */ 1118 static int ice_lbtest_disable_rings(struct ice_vsi *vsi) 1119 { 1120 int status; 1121 1122 status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1123 if (status) 1124 netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n", 1125 vsi->vsi_num, status); 1126 1127 status = ice_vsi_stop_all_rx_rings(vsi); 1128 if (status) 1129 netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n", 1130 vsi->vsi_num, status); 1131 1132 ice_vsi_free_tx_rings(vsi); 1133 ice_vsi_free_rx_rings(vsi); 1134 1135 return status; 1136 } 1137 1138 /** 1139 * ice_lbtest_create_frame - create test packet 1140 * @pf: pointer to the PF structure 1141 * @ret_data: allocated frame buffer 1142 * @size: size of the packet data 1143 * 1144 * Function allocates a frame with a test pattern on specific offsets. 1145 * Returns 0 on success, non-zero on failure. 1146 */ 1147 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size) 1148 { 1149 u8 *data; 1150 1151 if (!pf) 1152 return -EINVAL; 1153 1154 data = kzalloc(size, GFP_KERNEL); 1155 if (!data) 1156 return -ENOMEM; 1157 1158 /* Since the ethernet test frame should always be at least 1159 * 64 bytes long, fill some octets in the payload with test data. 1160 */ 1161 memset(data, 0xFF, size); 1162 data[32] = 0xDE; 1163 data[42] = 0xAD; 1164 data[44] = 0xBE; 1165 data[46] = 0xEF; 1166 1167 *ret_data = data; 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * ice_lbtest_check_frame - verify received loopback frame 1174 * @frame: pointer to the raw packet data 1175 * 1176 * Function verifies received test frame with a pattern. 1177 * Returns true if frame matches the pattern, false otherwise. 1178 */ 1179 static bool ice_lbtest_check_frame(u8 *frame) 1180 { 1181 /* Validate bytes of a frame under offsets chosen earlier */ 1182 if (frame[32] == 0xDE && 1183 frame[42] == 0xAD && 1184 frame[44] == 0xBE && 1185 frame[46] == 0xEF && 1186 frame[48] == 0xFF) 1187 return true; 1188 1189 return false; 1190 } 1191 1192 /** 1193 * ice_diag_send - send test frames to the test ring 1194 * @tx_ring: pointer to the transmit ring 1195 * @data: pointer to the raw packet data 1196 * @size: size of the packet to send 1197 * 1198 * Function sends loopback packets on a test Tx ring. 1199 */ 1200 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size) 1201 { 1202 struct ice_tx_desc *tx_desc; 1203 struct ice_tx_buf *tx_buf; 1204 dma_addr_t dma; 1205 u64 td_cmd; 1206 1207 tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use); 1208 tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use]; 1209 1210 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 1211 if (dma_mapping_error(tx_ring->dev, dma)) 1212 return -EINVAL; 1213 1214 tx_desc->buf_addr = cpu_to_le64(dma); 1215 1216 /* These flags are required for a descriptor to be pushed out */ 1217 td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); 1218 tx_desc->cmd_type_offset_bsz = 1219 cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | 1220 (td_cmd << ICE_TXD_QW1_CMD_S) | 1221 ((u64)0 << ICE_TXD_QW1_OFFSET_S) | 1222 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | 1223 ((u64)0 << ICE_TXD_QW1_L2TAG1_S)); 1224 1225 tx_buf->next_to_watch = tx_desc; 1226 1227 /* Force memory write to complete before letting h/w know 1228 * there are new descriptors to fetch. 1229 */ 1230 wmb(); 1231 1232 tx_ring->next_to_use++; 1233 if (tx_ring->next_to_use >= tx_ring->count) 1234 tx_ring->next_to_use = 0; 1235 1236 writel_relaxed(tx_ring->next_to_use, tx_ring->tail); 1237 1238 /* Wait until the packets get transmitted to the receive queue. */ 1239 usleep_range(1000, 2000); 1240 dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE); 1241 1242 return 0; 1243 } 1244 1245 #define ICE_LB_FRAME_SIZE 64 1246 /** 1247 * ice_lbtest_receive_frames - receive and verify test frames 1248 * @rx_ring: pointer to the receive ring 1249 * 1250 * Function receives loopback packets and verify their correctness. 1251 * Returns number of received valid frames. 1252 */ 1253 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring) 1254 { 1255 struct ice_rx_buf *rx_buf; 1256 int valid_frames, i; 1257 u8 *received_buf; 1258 1259 valid_frames = 0; 1260 1261 for (i = 0; i < rx_ring->count; i++) { 1262 union ice_32b_rx_flex_desc *rx_desc; 1263 1264 rx_desc = ICE_RX_DESC(rx_ring, i); 1265 1266 if (!(rx_desc->wb.status_error0 & 1267 (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) | 1268 cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S))))) 1269 continue; 1270 1271 rx_buf = &rx_ring->rx_buf[i]; 1272 received_buf = page_address(rx_buf->page) + rx_buf->page_offset; 1273 1274 if (ice_lbtest_check_frame(received_buf)) 1275 valid_frames++; 1276 } 1277 1278 return valid_frames; 1279 } 1280 1281 /** 1282 * ice_loopback_test - perform a loopback test on a given net_device 1283 * @netdev: network interface device structure 1284 * 1285 * This function performs one of the self-tests required by ethtool. 1286 * Returns 0 on success, non-zero on failure. 1287 */ 1288 static u64 ice_loopback_test(struct net_device *netdev) 1289 { 1290 struct ice_netdev_priv *np = netdev_priv(netdev); 1291 struct ice_vsi *orig_vsi = np->vsi, *test_vsi; 1292 struct ice_pf *pf = orig_vsi->back; 1293 u8 *tx_frame __free(kfree) = NULL; 1294 u8 broadcast[ETH_ALEN], ret = 0; 1295 int num_frames, valid_frames; 1296 struct ice_tx_ring *tx_ring; 1297 struct ice_rx_ring *rx_ring; 1298 int i; 1299 1300 netdev_info(netdev, "loopback test\n"); 1301 1302 test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info); 1303 if (!test_vsi) { 1304 netdev_err(netdev, "Failed to create a VSI for the loopback test\n"); 1305 return 1; 1306 } 1307 1308 test_vsi->netdev = netdev; 1309 tx_ring = test_vsi->tx_rings[0]; 1310 rx_ring = test_vsi->rx_rings[0]; 1311 1312 if (ice_lbtest_prepare_rings(test_vsi)) { 1313 ret = 2; 1314 goto lbtest_vsi_close; 1315 } 1316 1317 if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) { 1318 ret = 3; 1319 goto lbtest_rings_dis; 1320 } 1321 1322 /* Enable MAC loopback in firmware */ 1323 if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) { 1324 ret = 4; 1325 goto lbtest_mac_dis; 1326 } 1327 1328 /* Test VSI needs to receive broadcast packets */ 1329 eth_broadcast_addr(broadcast); 1330 if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) { 1331 ret = 5; 1332 goto lbtest_mac_dis; 1333 } 1334 1335 if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) { 1336 ret = 7; 1337 goto remove_mac_filters; 1338 } 1339 1340 num_frames = min_t(int, tx_ring->count, 32); 1341 for (i = 0; i < num_frames; i++) { 1342 if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) { 1343 ret = 8; 1344 goto remove_mac_filters; 1345 } 1346 } 1347 1348 valid_frames = ice_lbtest_receive_frames(rx_ring); 1349 if (!valid_frames) 1350 ret = 9; 1351 else if (valid_frames != num_frames) 1352 ret = 10; 1353 1354 remove_mac_filters: 1355 if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) 1356 netdev_err(netdev, "Could not remove MAC filter for the test VSI\n"); 1357 lbtest_mac_dis: 1358 /* Disable MAC loopback after the test is completed. */ 1359 if (ice_aq_set_mac_loopback(&pf->hw, false, NULL)) 1360 netdev_err(netdev, "Could not disable MAC loopback\n"); 1361 lbtest_rings_dis: 1362 if (ice_lbtest_disable_rings(test_vsi)) 1363 netdev_err(netdev, "Could not disable test rings\n"); 1364 lbtest_vsi_close: 1365 test_vsi->netdev = NULL; 1366 if (ice_vsi_release(test_vsi)) 1367 netdev_err(netdev, "Failed to remove the test VSI\n"); 1368 1369 return ret; 1370 } 1371 1372 /** 1373 * ice_intr_test - perform an interrupt test on a given net_device 1374 * @netdev: network interface device structure 1375 * 1376 * This function performs one of the self-tests required by ethtool. 1377 * Returns 0 on success, non-zero on failure. 1378 */ 1379 static u64 ice_intr_test(struct net_device *netdev) 1380 { 1381 struct ice_netdev_priv *np = netdev_priv(netdev); 1382 struct ice_pf *pf = np->vsi->back; 1383 u16 swic_old = pf->sw_int_count; 1384 1385 netdev_info(netdev, "interrupt test\n"); 1386 1387 wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index), 1388 GLINT_DYN_CTL_SW_ITR_INDX_M | 1389 GLINT_DYN_CTL_INTENA_MSK_M | 1390 GLINT_DYN_CTL_SWINT_TRIG_M); 1391 1392 usleep_range(1000, 2000); 1393 return (swic_old == pf->sw_int_count); 1394 } 1395 1396 /** 1397 * ice_self_test - handler function for performing a self-test by ethtool 1398 * @netdev: network interface device structure 1399 * @eth_test: ethtool_test structure 1400 * @data: required by ethtool.self_test 1401 * 1402 * This function is called after invoking 'ethtool -t devname' command where 1403 * devname is the name of the network device on which ethtool should operate. 1404 * It performs a set of self-tests to check if a device works properly. 1405 */ 1406 static void 1407 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test, 1408 u64 *data) 1409 { 1410 struct ice_netdev_priv *np = netdev_priv(netdev); 1411 bool if_running = netif_running(netdev); 1412 struct ice_pf *pf = np->vsi->back; 1413 struct device *dev; 1414 1415 dev = ice_pf_to_dev(pf); 1416 1417 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1418 netdev_info(netdev, "offline testing starting\n"); 1419 1420 set_bit(ICE_TESTING, pf->state); 1421 1422 if (ice_active_vfs(pf)) { 1423 dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n"); 1424 data[ICE_ETH_TEST_REG] = 1; 1425 data[ICE_ETH_TEST_EEPROM] = 1; 1426 data[ICE_ETH_TEST_INTR] = 1; 1427 data[ICE_ETH_TEST_LOOP] = 1; 1428 data[ICE_ETH_TEST_LINK] = 1; 1429 eth_test->flags |= ETH_TEST_FL_FAILED; 1430 clear_bit(ICE_TESTING, pf->state); 1431 goto skip_ol_tests; 1432 } 1433 /* If the device is online then take it offline */ 1434 if (if_running) 1435 /* indicate we're in test mode */ 1436 ice_stop(netdev); 1437 1438 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1439 data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev); 1440 data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev); 1441 data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev); 1442 data[ICE_ETH_TEST_REG] = ice_reg_test(netdev); 1443 1444 if (data[ICE_ETH_TEST_LINK] || 1445 data[ICE_ETH_TEST_EEPROM] || 1446 data[ICE_ETH_TEST_LOOP] || 1447 data[ICE_ETH_TEST_INTR] || 1448 data[ICE_ETH_TEST_REG]) 1449 eth_test->flags |= ETH_TEST_FL_FAILED; 1450 1451 clear_bit(ICE_TESTING, pf->state); 1452 1453 if (if_running) { 1454 int status = ice_open(netdev); 1455 1456 if (status) { 1457 dev_err(dev, "Could not open device %s, err %d\n", 1458 pf->int_name, status); 1459 } 1460 } 1461 } else { 1462 /* Online tests */ 1463 netdev_info(netdev, "online testing starting\n"); 1464 1465 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1466 if (data[ICE_ETH_TEST_LINK]) 1467 eth_test->flags |= ETH_TEST_FL_FAILED; 1468 1469 /* Offline only tests, not run in online; pass by default */ 1470 data[ICE_ETH_TEST_REG] = 0; 1471 data[ICE_ETH_TEST_EEPROM] = 0; 1472 data[ICE_ETH_TEST_INTR] = 0; 1473 data[ICE_ETH_TEST_LOOP] = 0; 1474 } 1475 1476 skip_ol_tests: 1477 netdev_info(netdev, "testing finished\n"); 1478 } 1479 1480 static void 1481 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data, 1482 struct ice_vsi *vsi) 1483 { 1484 unsigned int i; 1485 u8 *p = data; 1486 1487 switch (stringset) { 1488 case ETH_SS_STATS: 1489 for (i = 0; i < ICE_VSI_STATS_LEN; i++) 1490 ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string); 1491 1492 if (ice_is_port_repr_netdev(netdev)) 1493 return; 1494 1495 ice_for_each_alloc_txq(vsi, i) { 1496 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1497 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1498 } 1499 1500 ice_for_each_alloc_rxq(vsi, i) { 1501 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1502 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1503 } 1504 1505 if (vsi->type != ICE_VSI_PF) 1506 return; 1507 1508 for (i = 0; i < ICE_PF_STATS_LEN; i++) 1509 ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string); 1510 1511 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1512 ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i); 1513 ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i); 1514 } 1515 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1516 ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i); 1517 ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i); 1518 } 1519 break; 1520 case ETH_SS_TEST: 1521 memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN); 1522 break; 1523 case ETH_SS_PRIV_FLAGS: 1524 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) 1525 ethtool_puts(&p, ice_gstrings_priv_flags[i].name); 1526 break; 1527 default: 1528 break; 1529 } 1530 } 1531 1532 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 1533 { 1534 struct ice_netdev_priv *np = netdev_priv(netdev); 1535 1536 __ice_get_strings(netdev, stringset, data, np->vsi); 1537 } 1538 1539 static int 1540 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) 1541 { 1542 struct ice_netdev_priv *np = netdev_priv(netdev); 1543 bool led_active; 1544 1545 switch (state) { 1546 case ETHTOOL_ID_ACTIVE: 1547 led_active = true; 1548 break; 1549 case ETHTOOL_ID_INACTIVE: 1550 led_active = false; 1551 break; 1552 default: 1553 return -EINVAL; 1554 } 1555 1556 if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL)) 1557 return -EIO; 1558 1559 return 0; 1560 } 1561 1562 /** 1563 * ice_set_fec_cfg - Set link FEC options 1564 * @netdev: network interface device structure 1565 * @req_fec: FEC mode to configure 1566 */ 1567 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec) 1568 { 1569 struct ice_netdev_priv *np = netdev_priv(netdev); 1570 struct ice_aqc_set_phy_cfg_data config = { 0 }; 1571 struct ice_vsi *vsi = np->vsi; 1572 struct ice_port_info *pi; 1573 1574 pi = vsi->port_info; 1575 if (!pi) 1576 return -EOPNOTSUPP; 1577 1578 /* Changing the FEC parameters is not supported if not the PF VSI */ 1579 if (vsi->type != ICE_VSI_PF) { 1580 netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n"); 1581 return -EOPNOTSUPP; 1582 } 1583 1584 /* Proceed only if requesting different FEC mode */ 1585 if (pi->phy.curr_user_fec_req == req_fec) 1586 return 0; 1587 1588 /* Copy the current user PHY configuration. The current user PHY 1589 * configuration is initialized during probe from PHY capabilities 1590 * software mode, and updated on set PHY configuration. 1591 */ 1592 memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config)); 1593 1594 ice_cfg_phy_fec(pi, &config, req_fec); 1595 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1596 1597 if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL)) 1598 return -EAGAIN; 1599 1600 /* Save requested FEC config */ 1601 pi->phy.curr_user_fec_req = req_fec; 1602 1603 return 0; 1604 } 1605 1606 /** 1607 * ice_set_fecparam - Set FEC link options 1608 * @netdev: network interface device structure 1609 * @fecparam: Ethtool structure to retrieve FEC parameters 1610 */ 1611 static int 1612 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1613 { 1614 struct ice_netdev_priv *np = netdev_priv(netdev); 1615 struct ice_vsi *vsi = np->vsi; 1616 enum ice_fec_mode fec; 1617 1618 switch (fecparam->fec) { 1619 case ETHTOOL_FEC_AUTO: 1620 fec = ICE_FEC_AUTO; 1621 break; 1622 case ETHTOOL_FEC_RS: 1623 fec = ICE_FEC_RS; 1624 break; 1625 case ETHTOOL_FEC_BASER: 1626 fec = ICE_FEC_BASER; 1627 break; 1628 case ETHTOOL_FEC_OFF: 1629 case ETHTOOL_FEC_NONE: 1630 fec = ICE_FEC_NONE; 1631 break; 1632 default: 1633 dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n", 1634 fecparam->fec); 1635 return -EINVAL; 1636 } 1637 1638 return ice_set_fec_cfg(netdev, fec); 1639 } 1640 1641 /** 1642 * ice_get_fecparam - Get link FEC options 1643 * @netdev: network interface device structure 1644 * @fecparam: Ethtool structure to retrieve FEC parameters 1645 */ 1646 static int 1647 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1648 { 1649 struct ice_netdev_priv *np = netdev_priv(netdev); 1650 struct ice_aqc_get_phy_caps_data *caps; 1651 struct ice_link_status *link_info; 1652 struct ice_vsi *vsi = np->vsi; 1653 struct ice_port_info *pi; 1654 int err; 1655 1656 pi = vsi->port_info; 1657 1658 if (!pi) 1659 return -EOPNOTSUPP; 1660 link_info = &pi->phy.link_info; 1661 1662 /* Set FEC mode based on negotiated link info */ 1663 switch (link_info->fec_info) { 1664 case ICE_AQ_LINK_25G_KR_FEC_EN: 1665 fecparam->active_fec = ETHTOOL_FEC_BASER; 1666 break; 1667 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 1668 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 1669 fecparam->active_fec = ETHTOOL_FEC_RS; 1670 break; 1671 default: 1672 fecparam->active_fec = ETHTOOL_FEC_OFF; 1673 break; 1674 } 1675 1676 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 1677 if (!caps) 1678 return -ENOMEM; 1679 1680 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1681 caps, NULL); 1682 if (err) 1683 goto done; 1684 1685 /* Set supported/configured FEC modes based on PHY capability */ 1686 if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC) 1687 fecparam->fec |= ETHTOOL_FEC_AUTO; 1688 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 1689 caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 1690 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN || 1691 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 1692 fecparam->fec |= ETHTOOL_FEC_BASER; 1693 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 1694 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ || 1695 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 1696 fecparam->fec |= ETHTOOL_FEC_RS; 1697 if (caps->link_fec_options == 0) 1698 fecparam->fec |= ETHTOOL_FEC_OFF; 1699 1700 done: 1701 kfree(caps); 1702 return err; 1703 } 1704 1705 /** 1706 * ice_nway_reset - restart autonegotiation 1707 * @netdev: network interface device structure 1708 */ 1709 static int ice_nway_reset(struct net_device *netdev) 1710 { 1711 struct ice_netdev_priv *np = netdev_priv(netdev); 1712 struct ice_vsi *vsi = np->vsi; 1713 int err; 1714 1715 /* If VSI state is up, then restart autoneg with link up */ 1716 if (!test_bit(ICE_DOWN, vsi->back->state)) 1717 err = ice_set_link(vsi, true); 1718 else 1719 err = ice_set_link(vsi, false); 1720 1721 return err; 1722 } 1723 1724 /** 1725 * ice_get_priv_flags - report device private flags 1726 * @netdev: network interface device structure 1727 * 1728 * The get string set count and the string set should be matched for each 1729 * flag returned. Add new strings for each flag to the ice_gstrings_priv_flags 1730 * array. 1731 * 1732 * Returns a u32 bitmap of flags. 1733 */ 1734 static u32 ice_get_priv_flags(struct net_device *netdev) 1735 { 1736 struct ice_netdev_priv *np = netdev_priv(netdev); 1737 struct ice_vsi *vsi = np->vsi; 1738 struct ice_pf *pf = vsi->back; 1739 u32 i, ret_flags = 0; 1740 1741 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1742 const struct ice_priv_flag *priv_flag; 1743 1744 priv_flag = &ice_gstrings_priv_flags[i]; 1745 1746 if (test_bit(priv_flag->bitno, pf->flags)) 1747 ret_flags |= BIT(i); 1748 } 1749 1750 return ret_flags; 1751 } 1752 1753 /** 1754 * ice_set_priv_flags - set private flags 1755 * @netdev: network interface device structure 1756 * @flags: bit flags to be set 1757 */ 1758 static int ice_set_priv_flags(struct net_device *netdev, u32 flags) 1759 { 1760 struct ice_netdev_priv *np = netdev_priv(netdev); 1761 DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS); 1762 DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS); 1763 struct ice_vsi *vsi = np->vsi; 1764 struct ice_pf *pf = vsi->back; 1765 struct device *dev; 1766 int ret = 0; 1767 u32 i; 1768 1769 if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE)) 1770 return -EINVAL; 1771 1772 dev = ice_pf_to_dev(pf); 1773 set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1774 1775 bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS); 1776 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1777 const struct ice_priv_flag *priv_flag; 1778 1779 priv_flag = &ice_gstrings_priv_flags[i]; 1780 1781 if (flags & BIT(i)) 1782 set_bit(priv_flag->bitno, pf->flags); 1783 else 1784 clear_bit(priv_flag->bitno, pf->flags); 1785 } 1786 1787 bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS); 1788 1789 /* Do not allow change to link-down-on-close when Total Port Shutdown 1790 * is enabled. 1791 */ 1792 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) && 1793 test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 1794 dev_err(dev, "Setting link-down-on-close not supported on this port\n"); 1795 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1796 ret = -EINVAL; 1797 goto ethtool_exit; 1798 } 1799 1800 if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) { 1801 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) { 1802 int status; 1803 1804 /* Disable FW LLDP engine */ 1805 status = ice_cfg_lldp_mib_change(&pf->hw, false); 1806 1807 /* If unregistering for LLDP events fails, this is 1808 * not an error state, as there shouldn't be any 1809 * events to respond to. 1810 */ 1811 if (status) 1812 dev_info(dev, "Failed to unreg for LLDP events\n"); 1813 1814 /* The AQ call to stop the FW LLDP agent will generate 1815 * an error if the agent is already stopped. 1816 */ 1817 status = ice_aq_stop_lldp(&pf->hw, true, true, NULL); 1818 if (status) 1819 dev_warn(dev, "Fail to stop LLDP agent\n"); 1820 /* Use case for having the FW LLDP agent stopped 1821 * will likely not need DCB, so failure to init is 1822 * not a concern of ethtool 1823 */ 1824 status = ice_init_pf_dcb(pf, true); 1825 if (status) 1826 dev_warn(dev, "Fail to init DCB\n"); 1827 1828 pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED; 1829 pf->dcbx_cap |= DCB_CAP_DCBX_HOST; 1830 } else { 1831 bool dcbx_agent_status; 1832 int status; 1833 1834 if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) { 1835 clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags); 1836 dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n"); 1837 ret = -EOPNOTSUPP; 1838 goto ethtool_exit; 1839 } 1840 1841 /* Remove rule to direct LLDP packets to default VSI. 1842 * The FW LLDP engine will now be consuming them. 1843 */ 1844 ice_cfg_sw_lldp(vsi, false, false); 1845 1846 /* AQ command to start FW LLDP agent will return an 1847 * error if the agent is already started 1848 */ 1849 status = ice_aq_start_lldp(&pf->hw, true, NULL); 1850 if (status) 1851 dev_warn(dev, "Fail to start LLDP Agent\n"); 1852 1853 /* AQ command to start FW DCBX agent will fail if 1854 * the agent is already started 1855 */ 1856 status = ice_aq_start_stop_dcbx(&pf->hw, true, 1857 &dcbx_agent_status, 1858 NULL); 1859 if (status) 1860 dev_dbg(dev, "Failed to start FW DCBX\n"); 1861 1862 dev_info(dev, "FW DCBX agent is %s\n", 1863 dcbx_agent_status ? "ACTIVE" : "DISABLED"); 1864 1865 /* Failure to configure MIB change or init DCB is not 1866 * relevant to ethtool. Print notification that 1867 * registration/init failed but do not return error 1868 * state to ethtool 1869 */ 1870 status = ice_init_pf_dcb(pf, true); 1871 if (status) 1872 dev_dbg(dev, "Fail to init DCB\n"); 1873 1874 /* Register for MIB change events */ 1875 status = ice_cfg_lldp_mib_change(&pf->hw, true); 1876 if (status) 1877 dev_dbg(dev, "Fail to enable MIB change events\n"); 1878 1879 pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST; 1880 pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED; 1881 1882 ice_nway_reset(netdev); 1883 } 1884 } 1885 if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) { 1886 /* down and up VSI so that changes of Rx cfg are reflected. */ 1887 ice_down_up(vsi); 1888 } 1889 /* don't allow modification of this flag when a single VF is in 1890 * promiscuous mode because it's not supported 1891 */ 1892 if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) && 1893 ice_is_any_vf_in_unicast_promisc(pf)) { 1894 dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n"); 1895 /* toggle bit back to previous state */ 1896 change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags); 1897 ret = -EAGAIN; 1898 } 1899 1900 if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) && 1901 ice_has_vfs(pf)) { 1902 dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n"); 1903 /* toggle bit back to previous state */ 1904 change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags); 1905 ret = -EOPNOTSUPP; 1906 } 1907 ethtool_exit: 1908 clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1909 return ret; 1910 } 1911 1912 static int ice_get_sset_count(struct net_device *netdev, int sset) 1913 { 1914 switch (sset) { 1915 case ETH_SS_STATS: 1916 /* The number (and order) of strings reported *must* remain 1917 * constant for a given netdevice. This function must not 1918 * report a different number based on run time parameters 1919 * (such as the number of queues in use, or the setting of 1920 * a private ethtool flag). This is due to the nature of the 1921 * ethtool stats API. 1922 * 1923 * Userspace programs such as ethtool must make 3 separate 1924 * ioctl requests, one for size, one for the strings, and 1925 * finally one for the stats. Since these cross into 1926 * userspace, changes to the number or size could result in 1927 * undefined memory access or incorrect string<->value 1928 * correlations for statistics. 1929 * 1930 * Even if it appears to be safe, changes to the size or 1931 * order of strings will suffer from race conditions and are 1932 * not safe. 1933 */ 1934 return ICE_ALL_STATS_LEN(netdev); 1935 case ETH_SS_TEST: 1936 return ICE_TEST_LEN; 1937 case ETH_SS_PRIV_FLAGS: 1938 return ICE_PRIV_FLAG_ARRAY_SIZE; 1939 default: 1940 return -EOPNOTSUPP; 1941 } 1942 } 1943 1944 static void 1945 __ice_get_ethtool_stats(struct net_device *netdev, 1946 struct ethtool_stats __always_unused *stats, u64 *data, 1947 struct ice_vsi *vsi) 1948 { 1949 struct ice_pf *pf = vsi->back; 1950 struct ice_tx_ring *tx_ring; 1951 struct ice_rx_ring *rx_ring; 1952 unsigned int j; 1953 int i = 0; 1954 char *p; 1955 1956 ice_update_pf_stats(pf); 1957 ice_update_vsi_stats(vsi); 1958 1959 for (j = 0; j < ICE_VSI_STATS_LEN; j++) { 1960 p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset; 1961 data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat == 1962 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1963 } 1964 1965 if (ice_is_port_repr_netdev(netdev)) 1966 return; 1967 1968 /* populate per queue stats */ 1969 rcu_read_lock(); 1970 1971 ice_for_each_alloc_txq(vsi, j) { 1972 tx_ring = READ_ONCE(vsi->tx_rings[j]); 1973 if (tx_ring && tx_ring->ring_stats) { 1974 data[i++] = tx_ring->ring_stats->stats.pkts; 1975 data[i++] = tx_ring->ring_stats->stats.bytes; 1976 } else { 1977 data[i++] = 0; 1978 data[i++] = 0; 1979 } 1980 } 1981 1982 ice_for_each_alloc_rxq(vsi, j) { 1983 rx_ring = READ_ONCE(vsi->rx_rings[j]); 1984 if (rx_ring && rx_ring->ring_stats) { 1985 data[i++] = rx_ring->ring_stats->stats.pkts; 1986 data[i++] = rx_ring->ring_stats->stats.bytes; 1987 } else { 1988 data[i++] = 0; 1989 data[i++] = 0; 1990 } 1991 } 1992 1993 rcu_read_unlock(); 1994 1995 if (vsi->type != ICE_VSI_PF) 1996 return; 1997 1998 for (j = 0; j < ICE_PF_STATS_LEN; j++) { 1999 p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset; 2000 data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat == 2001 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2002 } 2003 2004 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 2005 data[i++] = pf->stats.priority_xon_tx[j]; 2006 data[i++] = pf->stats.priority_xoff_tx[j]; 2007 } 2008 2009 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 2010 data[i++] = pf->stats.priority_xon_rx[j]; 2011 data[i++] = pf->stats.priority_xoff_rx[j]; 2012 } 2013 } 2014 2015 static void 2016 ice_get_ethtool_stats(struct net_device *netdev, 2017 struct ethtool_stats __always_unused *stats, u64 *data) 2018 { 2019 struct ice_netdev_priv *np = netdev_priv(netdev); 2020 2021 __ice_get_ethtool_stats(netdev, stats, data, np->vsi); 2022 } 2023 2024 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G (ICE_PHY_TYPE_LOW_100BASE_TX | \ 2025 ICE_PHY_TYPE_LOW_100M_SGMII) 2026 2027 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G (ICE_PHY_TYPE_LOW_MASK_MIN_1G | \ 2028 ICE_PHY_TYPE_LOW_1000BASE_T | \ 2029 ICE_PHY_TYPE_LOW_1000BASE_SX | \ 2030 ICE_PHY_TYPE_LOW_1000BASE_LX | \ 2031 ICE_PHY_TYPE_LOW_1000BASE_KX | \ 2032 ICE_PHY_TYPE_LOW_1G_SGMII | \ 2033 ICE_PHY_TYPE_LOW_2500BASE_T | \ 2034 ICE_PHY_TYPE_LOW_2500BASE_X | \ 2035 ICE_PHY_TYPE_LOW_2500BASE_KX | \ 2036 ICE_PHY_TYPE_LOW_5GBASE_T | \ 2037 ICE_PHY_TYPE_LOW_5GBASE_KR | \ 2038 ICE_PHY_TYPE_LOW_10GBASE_T | \ 2039 ICE_PHY_TYPE_LOW_10G_SFI_DA | \ 2040 ICE_PHY_TYPE_LOW_10GBASE_SR | \ 2041 ICE_PHY_TYPE_LOW_10GBASE_LR | \ 2042 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \ 2043 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \ 2044 ICE_PHY_TYPE_LOW_10G_SFI_C2C) 2045 2046 #define ICE_PHY_TYPE_LOW_MASK_100G (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \ 2047 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \ 2048 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \ 2049 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \ 2050 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \ 2051 ICE_PHY_TYPE_LOW_100G_CAUI4 | \ 2052 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \ 2053 ICE_PHY_TYPE_LOW_100G_AUI4 | \ 2054 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \ 2055 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \ 2056 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \ 2057 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \ 2058 ICE_PHY_TYPE_LOW_100GBASE_DR) 2059 2060 #define ICE_PHY_TYPE_HIGH_MASK_100G (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \ 2061 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\ 2062 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \ 2063 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \ 2064 ICE_PHY_TYPE_HIGH_100G_AUI2) 2065 2066 #define ICE_PHY_TYPE_HIGH_MASK_200G (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \ 2067 ICE_PHY_TYPE_HIGH_200G_SR4 | \ 2068 ICE_PHY_TYPE_HIGH_200G_FR4 | \ 2069 ICE_PHY_TYPE_HIGH_200G_LR4 | \ 2070 ICE_PHY_TYPE_HIGH_200G_DR4 | \ 2071 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \ 2072 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \ 2073 ICE_PHY_TYPE_HIGH_200G_AUI4) 2074 2075 /** 2076 * ice_mask_min_supported_speeds 2077 * @hw: pointer to the HW structure 2078 * @phy_types_high: PHY type high 2079 * @phy_types_low: PHY type low to apply minimum supported speeds mask 2080 * 2081 * Apply minimum supported speeds mask to PHY type low. These are the speeds 2082 * for ethtool supported link mode. 2083 */ 2084 static void 2085 ice_mask_min_supported_speeds(struct ice_hw *hw, 2086 u64 phy_types_high, u64 *phy_types_low) 2087 { 2088 /* if QSFP connection with 100G speed, minimum supported speed is 25G */ 2089 if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) || 2090 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) || 2091 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G)) 2092 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G; 2093 else if (!ice_is_100m_speed_supported(hw)) 2094 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G; 2095 } 2096 2097 /** 2098 * ice_linkmode_set_bit - set link mode bit 2099 * @phy_to_ethtool: PHY type to ethtool link mode struct to set 2100 * @ks: ethtool link ksettings struct to fill out 2101 * @req_speeds: speed requested by user 2102 * @advert_phy_type: advertised PHY type 2103 * @phy_type: PHY type 2104 */ 2105 static void 2106 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool, 2107 struct ethtool_link_ksettings *ks, u32 req_speeds, 2108 u64 advert_phy_type, u32 phy_type) 2109 { 2110 linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported); 2111 2112 if (req_speeds & phy_to_ethtool->aq_link_speed || 2113 (!req_speeds && advert_phy_type & BIT(phy_type))) 2114 linkmode_set_bit(phy_to_ethtool->link_mode, 2115 ks->link_modes.advertising); 2116 } 2117 2118 /** 2119 * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes 2120 * @netdev: network interface device structure 2121 * @ks: ethtool link ksettings struct to fill out 2122 */ 2123 static void 2124 ice_phy_type_to_ethtool(struct net_device *netdev, 2125 struct ethtool_link_ksettings *ks) 2126 { 2127 struct ice_netdev_priv *np = netdev_priv(netdev); 2128 struct ice_vsi *vsi = np->vsi; 2129 struct ice_pf *pf = vsi->back; 2130 u64 advert_phy_type_lo = 0; 2131 u64 advert_phy_type_hi = 0; 2132 u64 phy_types_high = 0; 2133 u64 phy_types_low = 0; 2134 u32 req_speeds; 2135 u32 i; 2136 2137 req_speeds = vsi->port_info->phy.link_info.req_speeds; 2138 2139 /* Check if lenient mode is supported and enabled, or in strict mode. 2140 * 2141 * In lenient mode the Supported link modes are the PHY types without 2142 * media. The Advertising link mode is either 1. the user requested 2143 * speed, 2. the override PHY mask, or 3. the PHY types with media. 2144 * 2145 * In strict mode Supported link mode are the PHY type with media, 2146 * and Advertising link modes are the media PHY type or the speed 2147 * requested by user. 2148 */ 2149 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2150 phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo); 2151 phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi); 2152 2153 ice_mask_min_supported_speeds(&pf->hw, phy_types_high, 2154 &phy_types_low); 2155 /* determine advertised modes based on link override only 2156 * if it's supported and if the FW doesn't abstract the 2157 * driver from having to account for link overrides 2158 */ 2159 if (ice_fw_supports_link_override(&pf->hw) && 2160 !ice_fw_supports_report_dflt_cfg(&pf->hw)) { 2161 struct ice_link_default_override_tlv *ldo; 2162 2163 ldo = &pf->link_dflt_override; 2164 /* If override enabled and PHY mask set, then 2165 * Advertising link mode is the intersection of the PHY 2166 * types without media and the override PHY mask. 2167 */ 2168 if (ldo->options & ICE_LINK_OVERRIDE_EN && 2169 (ldo->phy_type_low || ldo->phy_type_high)) { 2170 advert_phy_type_lo = 2171 le64_to_cpu(pf->nvm_phy_type_lo) & 2172 ldo->phy_type_low; 2173 advert_phy_type_hi = 2174 le64_to_cpu(pf->nvm_phy_type_hi) & 2175 ldo->phy_type_high; 2176 } 2177 } 2178 } else { 2179 /* strict mode */ 2180 phy_types_low = vsi->port_info->phy.phy_type_low; 2181 phy_types_high = vsi->port_info->phy.phy_type_high; 2182 } 2183 2184 /* If Advertising link mode PHY type is not using override PHY type, 2185 * then use PHY type with media. 2186 */ 2187 if (!advert_phy_type_lo && !advert_phy_type_hi) { 2188 advert_phy_type_lo = vsi->port_info->phy.phy_type_low; 2189 advert_phy_type_hi = vsi->port_info->phy.phy_type_high; 2190 } 2191 2192 linkmode_zero(ks->link_modes.supported); 2193 linkmode_zero(ks->link_modes.advertising); 2194 2195 for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) { 2196 if (phy_types_low & BIT_ULL(i)) 2197 ice_linkmode_set_bit(&phy_type_low_lkup[i], ks, 2198 req_speeds, advert_phy_type_lo, 2199 i); 2200 } 2201 2202 for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) { 2203 if (phy_types_high & BIT_ULL(i)) 2204 ice_linkmode_set_bit(&phy_type_high_lkup[i], ks, 2205 req_speeds, advert_phy_type_hi, 2206 i); 2207 } 2208 } 2209 2210 #define TEST_SET_BITS_TIMEOUT 50 2211 #define TEST_SET_BITS_SLEEP_MAX 2000 2212 #define TEST_SET_BITS_SLEEP_MIN 1000 2213 2214 /** 2215 * ice_get_settings_link_up - Get Link settings for when link is up 2216 * @ks: ethtool ksettings to fill in 2217 * @netdev: network interface device structure 2218 */ 2219 static void 2220 ice_get_settings_link_up(struct ethtool_link_ksettings *ks, 2221 struct net_device *netdev) 2222 { 2223 struct ice_netdev_priv *np = netdev_priv(netdev); 2224 struct ice_port_info *pi = np->vsi->port_info; 2225 struct ice_link_status *link_info; 2226 struct ice_vsi *vsi = np->vsi; 2227 2228 link_info = &vsi->port_info->phy.link_info; 2229 2230 /* Get supported and advertised settings from PHY ability with media */ 2231 ice_phy_type_to_ethtool(netdev, ks); 2232 2233 switch (link_info->link_speed) { 2234 case ICE_AQ_LINK_SPEED_200GB: 2235 ks->base.speed = SPEED_200000; 2236 break; 2237 case ICE_AQ_LINK_SPEED_100GB: 2238 ks->base.speed = SPEED_100000; 2239 break; 2240 case ICE_AQ_LINK_SPEED_50GB: 2241 ks->base.speed = SPEED_50000; 2242 break; 2243 case ICE_AQ_LINK_SPEED_40GB: 2244 ks->base.speed = SPEED_40000; 2245 break; 2246 case ICE_AQ_LINK_SPEED_25GB: 2247 ks->base.speed = SPEED_25000; 2248 break; 2249 case ICE_AQ_LINK_SPEED_20GB: 2250 ks->base.speed = SPEED_20000; 2251 break; 2252 case ICE_AQ_LINK_SPEED_10GB: 2253 ks->base.speed = SPEED_10000; 2254 break; 2255 case ICE_AQ_LINK_SPEED_5GB: 2256 ks->base.speed = SPEED_5000; 2257 break; 2258 case ICE_AQ_LINK_SPEED_2500MB: 2259 ks->base.speed = SPEED_2500; 2260 break; 2261 case ICE_AQ_LINK_SPEED_1000MB: 2262 ks->base.speed = SPEED_1000; 2263 break; 2264 case ICE_AQ_LINK_SPEED_100MB: 2265 ks->base.speed = SPEED_100; 2266 break; 2267 default: 2268 netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n", 2269 link_info->link_speed); 2270 break; 2271 } 2272 ks->base.duplex = DUPLEX_FULL; 2273 2274 if (link_info->an_info & ICE_AQ_AN_COMPLETED) 2275 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2276 Autoneg); 2277 2278 /* Set flow control negotiated Rx/Tx pause */ 2279 switch (pi->fc.current_mode) { 2280 case ICE_FC_FULL: 2281 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2282 break; 2283 case ICE_FC_TX_PAUSE: 2284 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2285 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2286 Asym_Pause); 2287 break; 2288 case ICE_FC_RX_PAUSE: 2289 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2290 Asym_Pause); 2291 break; 2292 case ICE_FC_PFC: 2293 default: 2294 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause); 2295 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, 2296 Asym_Pause); 2297 break; 2298 } 2299 } 2300 2301 /** 2302 * ice_get_settings_link_down - Get the Link settings when link is down 2303 * @ks: ethtool ksettings to fill in 2304 * @netdev: network interface device structure 2305 * 2306 * Reports link settings that can be determined when link is down 2307 */ 2308 static void 2309 ice_get_settings_link_down(struct ethtool_link_ksettings *ks, 2310 struct net_device *netdev) 2311 { 2312 /* link is down and the driver needs to fall back on 2313 * supported PHY types to figure out what info to display 2314 */ 2315 ice_phy_type_to_ethtool(netdev, ks); 2316 2317 /* With no link, speed and duplex are unknown */ 2318 ks->base.speed = SPEED_UNKNOWN; 2319 ks->base.duplex = DUPLEX_UNKNOWN; 2320 } 2321 2322 /** 2323 * ice_get_link_ksettings - Get Link Speed and Duplex settings 2324 * @netdev: network interface device structure 2325 * @ks: ethtool ksettings 2326 * 2327 * Reports speed/duplex settings based on media_type 2328 */ 2329 static int 2330 ice_get_link_ksettings(struct net_device *netdev, 2331 struct ethtool_link_ksettings *ks) 2332 { 2333 struct ice_netdev_priv *np = netdev_priv(netdev); 2334 struct ice_aqc_get_phy_caps_data *caps; 2335 struct ice_link_status *hw_link_info; 2336 struct ice_vsi *vsi = np->vsi; 2337 int err; 2338 2339 ethtool_link_ksettings_zero_link_mode(ks, supported); 2340 ethtool_link_ksettings_zero_link_mode(ks, advertising); 2341 ethtool_link_ksettings_zero_link_mode(ks, lp_advertising); 2342 hw_link_info = &vsi->port_info->phy.link_info; 2343 2344 /* set speed and duplex */ 2345 if (hw_link_info->link_info & ICE_AQ_LINK_UP) 2346 ice_get_settings_link_up(ks, netdev); 2347 else 2348 ice_get_settings_link_down(ks, netdev); 2349 2350 /* set autoneg settings */ 2351 ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ? 2352 AUTONEG_ENABLE : AUTONEG_DISABLE; 2353 2354 /* set media type settings */ 2355 switch (vsi->port_info->phy.media_type) { 2356 case ICE_MEDIA_FIBER: 2357 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2358 ks->base.port = PORT_FIBRE; 2359 break; 2360 case ICE_MEDIA_BASET: 2361 ethtool_link_ksettings_add_link_mode(ks, supported, TP); 2362 ethtool_link_ksettings_add_link_mode(ks, advertising, TP); 2363 ks->base.port = PORT_TP; 2364 break; 2365 case ICE_MEDIA_BACKPLANE: 2366 ethtool_link_ksettings_add_link_mode(ks, supported, Backplane); 2367 ethtool_link_ksettings_add_link_mode(ks, advertising, 2368 Backplane); 2369 ks->base.port = PORT_NONE; 2370 break; 2371 case ICE_MEDIA_DA: 2372 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2373 ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE); 2374 ks->base.port = PORT_DA; 2375 break; 2376 default: 2377 ks->base.port = PORT_OTHER; 2378 break; 2379 } 2380 2381 /* flow control is symmetric and always supported */ 2382 ethtool_link_ksettings_add_link_mode(ks, supported, Pause); 2383 2384 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2385 if (!caps) 2386 return -ENOMEM; 2387 2388 err = ice_aq_get_phy_caps(vsi->port_info, false, 2389 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 2390 if (err) 2391 goto done; 2392 2393 /* Set the advertised flow control based on the PHY capability */ 2394 if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) && 2395 (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) { 2396 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2397 ethtool_link_ksettings_add_link_mode(ks, advertising, 2398 Asym_Pause); 2399 } else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) { 2400 ethtool_link_ksettings_add_link_mode(ks, advertising, 2401 Asym_Pause); 2402 } else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) { 2403 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2404 ethtool_link_ksettings_add_link_mode(ks, advertising, 2405 Asym_Pause); 2406 } else { 2407 ethtool_link_ksettings_del_link_mode(ks, advertising, Pause); 2408 ethtool_link_ksettings_del_link_mode(ks, advertising, 2409 Asym_Pause); 2410 } 2411 2412 /* Set advertised FEC modes based on PHY capability */ 2413 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE); 2414 2415 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 2416 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 2417 ethtool_link_ksettings_add_link_mode(ks, advertising, 2418 FEC_BASER); 2419 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 2420 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 2421 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS); 2422 2423 err = ice_aq_get_phy_caps(vsi->port_info, false, 2424 ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL); 2425 if (err) 2426 goto done; 2427 2428 /* Set supported FEC modes based on PHY capability */ 2429 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE); 2430 2431 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 2432 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN) 2433 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER); 2434 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 2435 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS); 2436 2437 /* Set supported and advertised autoneg */ 2438 if (ice_is_phy_caps_an_enabled(caps)) { 2439 ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg); 2440 ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg); 2441 } 2442 2443 done: 2444 kfree(caps); 2445 return err; 2446 } 2447 2448 /** 2449 * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed 2450 * @speed: ethtool forced speed 2451 */ 2452 static u16 ice_speed_to_aq_link(int speed) 2453 { 2454 int aq_speed; 2455 2456 switch (speed) { 2457 case SPEED_10: 2458 aq_speed = ICE_AQ_LINK_SPEED_10MB; 2459 break; 2460 case SPEED_100: 2461 aq_speed = ICE_AQ_LINK_SPEED_100MB; 2462 break; 2463 case SPEED_1000: 2464 aq_speed = ICE_AQ_LINK_SPEED_1000MB; 2465 break; 2466 case SPEED_2500: 2467 aq_speed = ICE_AQ_LINK_SPEED_2500MB; 2468 break; 2469 case SPEED_5000: 2470 aq_speed = ICE_AQ_LINK_SPEED_5GB; 2471 break; 2472 case SPEED_10000: 2473 aq_speed = ICE_AQ_LINK_SPEED_10GB; 2474 break; 2475 case SPEED_20000: 2476 aq_speed = ICE_AQ_LINK_SPEED_20GB; 2477 break; 2478 case SPEED_25000: 2479 aq_speed = ICE_AQ_LINK_SPEED_25GB; 2480 break; 2481 case SPEED_40000: 2482 aq_speed = ICE_AQ_LINK_SPEED_40GB; 2483 break; 2484 case SPEED_50000: 2485 aq_speed = ICE_AQ_LINK_SPEED_50GB; 2486 break; 2487 case SPEED_100000: 2488 aq_speed = ICE_AQ_LINK_SPEED_100GB; 2489 break; 2490 default: 2491 aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN; 2492 break; 2493 } 2494 return aq_speed; 2495 } 2496 2497 /** 2498 * ice_ksettings_find_adv_link_speed - Find advertising link speed 2499 * @ks: ethtool ksettings 2500 */ 2501 static u16 2502 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks) 2503 { 2504 const struct ethtool_forced_speed_map *map; 2505 u16 adv_link_speed = 0; 2506 2507 for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) { 2508 map = ice_adv_lnk_speed_maps + i; 2509 if (linkmode_intersects(ks->link_modes.advertising, map->caps)) 2510 adv_link_speed |= ice_speed_to_aq_link(map->speed); 2511 } 2512 2513 return adv_link_speed; 2514 } 2515 2516 /** 2517 * ice_setup_autoneg 2518 * @p: port info 2519 * @ks: ethtool_link_ksettings 2520 * @config: configuration that will be sent down to FW 2521 * @autoneg_enabled: autonegotiation is enabled or not 2522 * @autoneg_changed: will there a change in autonegotiation 2523 * @netdev: network interface device structure 2524 * 2525 * Setup PHY autonegotiation feature 2526 */ 2527 static int 2528 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks, 2529 struct ice_aqc_set_phy_cfg_data *config, 2530 u8 autoneg_enabled, u8 *autoneg_changed, 2531 struct net_device *netdev) 2532 { 2533 int err = 0; 2534 2535 *autoneg_changed = 0; 2536 2537 /* Check autoneg */ 2538 if (autoneg_enabled == AUTONEG_ENABLE) { 2539 /* If autoneg was not already enabled */ 2540 if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) { 2541 /* If autoneg is not supported, return error */ 2542 if (!ethtool_link_ksettings_test_link_mode(ks, 2543 supported, 2544 Autoneg)) { 2545 netdev_info(netdev, "Autoneg not supported on this phy.\n"); 2546 err = -EINVAL; 2547 } else { 2548 /* Autoneg is allowed to change */ 2549 config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2550 *autoneg_changed = 1; 2551 } 2552 } 2553 } else { 2554 /* If autoneg is currently enabled */ 2555 if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) { 2556 /* If autoneg is supported 10GBASE_T is the only PHY 2557 * that can disable it, so otherwise return error 2558 */ 2559 if (ethtool_link_ksettings_test_link_mode(ks, 2560 supported, 2561 Autoneg)) { 2562 netdev_info(netdev, "Autoneg cannot be disabled on this phy\n"); 2563 err = -EINVAL; 2564 } else { 2565 /* Autoneg is allowed to change */ 2566 config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2567 *autoneg_changed = 1; 2568 } 2569 } 2570 } 2571 2572 return err; 2573 } 2574 2575 /** 2576 * ice_set_phy_type_from_speed - set phy_types based on speeds 2577 * and advertised modes 2578 * @ks: ethtool link ksettings struct 2579 * @phy_type_low: pointer to the lower part of phy_type 2580 * @phy_type_high: pointer to the higher part of phy_type 2581 * @adv_link_speed: targeted link speeds bitmap 2582 */ 2583 static void 2584 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks, 2585 u64 *phy_type_low, u64 *phy_type_high, 2586 u16 adv_link_speed) 2587 { 2588 /* Handle 1000M speed in a special way because ice_update_phy_type 2589 * enables all link modes, but having mixed copper and optical 2590 * standards is not supported. 2591 */ 2592 adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB; 2593 2594 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2595 1000baseT_Full)) 2596 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T | 2597 ICE_PHY_TYPE_LOW_1G_SGMII; 2598 2599 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2600 1000baseKX_Full)) 2601 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX; 2602 2603 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2604 1000baseX_Full)) 2605 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX | 2606 ICE_PHY_TYPE_LOW_1000BASE_LX; 2607 2608 ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed); 2609 } 2610 2611 /** 2612 * ice_set_link_ksettings - Set Speed and Duplex 2613 * @netdev: network interface device structure 2614 * @ks: ethtool ksettings 2615 * 2616 * Set speed/duplex per media_types advertised/forced 2617 */ 2618 static int 2619 ice_set_link_ksettings(struct net_device *netdev, 2620 const struct ethtool_link_ksettings *ks) 2621 { 2622 struct ice_netdev_priv *np = netdev_priv(netdev); 2623 u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT; 2624 struct ethtool_link_ksettings copy_ks = *ks; 2625 struct ethtool_link_ksettings safe_ks = {}; 2626 struct ice_aqc_get_phy_caps_data *phy_caps; 2627 struct ice_aqc_set_phy_cfg_data config; 2628 u16 adv_link_speed, curr_link_speed; 2629 struct ice_pf *pf = np->vsi->back; 2630 struct ice_port_info *pi; 2631 u8 autoneg_changed = 0; 2632 u64 phy_type_high = 0; 2633 u64 phy_type_low = 0; 2634 bool linkup; 2635 int err; 2636 2637 pi = np->vsi->port_info; 2638 2639 if (!pi) 2640 return -EIO; 2641 2642 if (pi->phy.media_type != ICE_MEDIA_BASET && 2643 pi->phy.media_type != ICE_MEDIA_FIBER && 2644 pi->phy.media_type != ICE_MEDIA_BACKPLANE && 2645 pi->phy.media_type != ICE_MEDIA_DA && 2646 pi->phy.link_info.link_info & ICE_AQ_LINK_UP) 2647 return -EOPNOTSUPP; 2648 2649 phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL); 2650 if (!phy_caps) 2651 return -ENOMEM; 2652 2653 /* Get the PHY capabilities based on media */ 2654 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2655 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2656 phy_caps, NULL); 2657 else 2658 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2659 phy_caps, NULL); 2660 if (err) 2661 goto done; 2662 2663 /* save autoneg out of ksettings */ 2664 autoneg = copy_ks.base.autoneg; 2665 2666 /* Get link modes supported by hardware.*/ 2667 ice_phy_type_to_ethtool(netdev, &safe_ks); 2668 2669 /* and check against modes requested by user. 2670 * Return an error if unsupported mode was set. 2671 */ 2672 if (!bitmap_subset(copy_ks.link_modes.advertising, 2673 safe_ks.link_modes.supported, 2674 __ETHTOOL_LINK_MODE_MASK_NBITS)) { 2675 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) 2676 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2677 err = -EOPNOTSUPP; 2678 goto done; 2679 } 2680 2681 /* get our own copy of the bits to check against */ 2682 memset(&safe_ks, 0, sizeof(safe_ks)); 2683 safe_ks.base.cmd = copy_ks.base.cmd; 2684 safe_ks.base.link_mode_masks_nwords = 2685 copy_ks.base.link_mode_masks_nwords; 2686 ice_get_link_ksettings(netdev, &safe_ks); 2687 2688 /* set autoneg back to what it currently is */ 2689 copy_ks.base.autoneg = safe_ks.base.autoneg; 2690 /* we don't compare the speed */ 2691 copy_ks.base.speed = safe_ks.base.speed; 2692 2693 /* If copy_ks.base and safe_ks.base are not the same now, then they are 2694 * trying to set something that we do not support. 2695 */ 2696 if (memcmp(©_ks.base, &safe_ks.base, sizeof(copy_ks.base))) { 2697 err = -EOPNOTSUPP; 2698 goto done; 2699 } 2700 2701 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 2702 timeout--; 2703 if (!timeout) { 2704 err = -EBUSY; 2705 goto done; 2706 } 2707 usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX); 2708 } 2709 2710 /* Copy the current user PHY configuration. The current user PHY 2711 * configuration is initialized during probe from PHY capabilities 2712 * software mode, and updated on set PHY configuration. 2713 */ 2714 config = pi->phy.curr_user_phy_cfg; 2715 2716 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2717 2718 /* Check autoneg */ 2719 err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed, 2720 netdev); 2721 2722 if (err) 2723 goto done; 2724 2725 /* Call to get the current link speed */ 2726 pi->phy.get_link_info = true; 2727 err = ice_get_link_status(pi, &linkup); 2728 if (err) 2729 goto done; 2730 2731 curr_link_speed = pi->phy.curr_user_speed_req; 2732 adv_link_speed = ice_ksettings_find_adv_link_speed(ks); 2733 2734 /* If speed didn't get set, set it to what it currently is. 2735 * This is needed because if advertise is 0 (as it is when autoneg 2736 * is disabled) then speed won't get set. 2737 */ 2738 if (!adv_link_speed) 2739 adv_link_speed = curr_link_speed; 2740 2741 /* Convert the advertise link speeds to their corresponded PHY_TYPE */ 2742 ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high, 2743 adv_link_speed); 2744 2745 if (!autoneg_changed && adv_link_speed == curr_link_speed) { 2746 netdev_info(netdev, "Nothing changed, exiting without setting anything.\n"); 2747 goto done; 2748 } 2749 2750 /* save the requested speeds */ 2751 pi->phy.link_info.req_speeds = adv_link_speed; 2752 2753 /* set link and auto negotiation so changes take effect */ 2754 config.caps |= ICE_AQ_PHY_ENA_LINK; 2755 2756 /* check if there is a PHY type for the requested advertised speed */ 2757 if (!(phy_type_low || phy_type_high)) { 2758 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2759 err = -EOPNOTSUPP; 2760 goto done; 2761 } 2762 2763 /* intersect requested advertised speed PHY types with media PHY types 2764 * for set PHY configuration 2765 */ 2766 config.phy_type_high = cpu_to_le64(phy_type_high) & 2767 phy_caps->phy_type_high; 2768 config.phy_type_low = cpu_to_le64(phy_type_low) & 2769 phy_caps->phy_type_low; 2770 2771 if (!(config.phy_type_high || config.phy_type_low)) { 2772 /* If there is no intersection and lenient mode is enabled, then 2773 * intersect the requested advertised speed with NVM media type 2774 * PHY types. 2775 */ 2776 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2777 config.phy_type_high = cpu_to_le64(phy_type_high) & 2778 pf->nvm_phy_type_hi; 2779 config.phy_type_low = cpu_to_le64(phy_type_low) & 2780 pf->nvm_phy_type_lo; 2781 } else { 2782 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2783 err = -EOPNOTSUPP; 2784 goto done; 2785 } 2786 } 2787 2788 /* If link is up put link down */ 2789 if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) { 2790 /* Tell the OS link is going down, the link will go 2791 * back up when fw says it is ready asynchronously 2792 */ 2793 ice_print_link_msg(np->vsi, false); 2794 netif_carrier_off(netdev); 2795 netif_tx_stop_all_queues(netdev); 2796 } 2797 2798 /* make the aq call */ 2799 err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL); 2800 if (err) { 2801 netdev_info(netdev, "Set phy config failed,\n"); 2802 goto done; 2803 } 2804 2805 /* Save speed request */ 2806 pi->phy.curr_user_speed_req = adv_link_speed; 2807 done: 2808 kfree(phy_caps); 2809 clear_bit(ICE_CFG_BUSY, pf->state); 2810 2811 return err; 2812 } 2813 2814 /** 2815 * ice_parse_hdrs - parses headers from RSS hash input 2816 * @nfc: ethtool rxnfc command 2817 * 2818 * This function parses the rxnfc command and returns intended 2819 * header types for RSS configuration 2820 */ 2821 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc) 2822 { 2823 u32 hdrs = ICE_FLOW_SEG_HDR_NONE; 2824 2825 switch (nfc->flow_type) { 2826 case TCP_V4_FLOW: 2827 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4; 2828 break; 2829 case UDP_V4_FLOW: 2830 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4; 2831 break; 2832 case SCTP_V4_FLOW: 2833 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4; 2834 break; 2835 case GTPU_V4_FLOW: 2836 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4; 2837 break; 2838 case GTPC_V4_FLOW: 2839 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4; 2840 break; 2841 case GTPC_TEID_V4_FLOW: 2842 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4; 2843 break; 2844 case GTPU_EH_V4_FLOW: 2845 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4; 2846 break; 2847 case GTPU_UL_V4_FLOW: 2848 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4; 2849 break; 2850 case GTPU_DL_V4_FLOW: 2851 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4; 2852 break; 2853 case TCP_V6_FLOW: 2854 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6; 2855 break; 2856 case UDP_V6_FLOW: 2857 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6; 2858 break; 2859 case SCTP_V6_FLOW: 2860 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6; 2861 break; 2862 case GTPU_V6_FLOW: 2863 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6; 2864 break; 2865 case GTPC_V6_FLOW: 2866 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6; 2867 break; 2868 case GTPC_TEID_V6_FLOW: 2869 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6; 2870 break; 2871 case GTPU_EH_V6_FLOW: 2872 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6; 2873 break; 2874 case GTPU_UL_V6_FLOW: 2875 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6; 2876 break; 2877 case GTPU_DL_V6_FLOW: 2878 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6; 2879 break; 2880 default: 2881 break; 2882 } 2883 return hdrs; 2884 } 2885 2886 /** 2887 * ice_parse_hash_flds - parses hash fields from RSS hash input 2888 * @nfc: ethtool rxnfc command 2889 * @symm: true if Symmetric Topelitz is set 2890 * 2891 * This function parses the rxnfc command and returns intended 2892 * hash fields for RSS configuration 2893 */ 2894 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm) 2895 { 2896 u64 hfld = ICE_HASH_INVALID; 2897 2898 if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) { 2899 switch (nfc->flow_type) { 2900 case TCP_V4_FLOW: 2901 case UDP_V4_FLOW: 2902 case SCTP_V4_FLOW: 2903 case GTPU_V4_FLOW: 2904 case GTPC_V4_FLOW: 2905 case GTPC_TEID_V4_FLOW: 2906 case GTPU_EH_V4_FLOW: 2907 case GTPU_UL_V4_FLOW: 2908 case GTPU_DL_V4_FLOW: 2909 if (nfc->data & RXH_IP_SRC) 2910 hfld |= ICE_FLOW_HASH_FLD_IPV4_SA; 2911 if (nfc->data & RXH_IP_DST) 2912 hfld |= ICE_FLOW_HASH_FLD_IPV4_DA; 2913 break; 2914 case TCP_V6_FLOW: 2915 case UDP_V6_FLOW: 2916 case SCTP_V6_FLOW: 2917 case GTPU_V6_FLOW: 2918 case GTPC_V6_FLOW: 2919 case GTPC_TEID_V6_FLOW: 2920 case GTPU_EH_V6_FLOW: 2921 case GTPU_UL_V6_FLOW: 2922 case GTPU_DL_V6_FLOW: 2923 if (nfc->data & RXH_IP_SRC) 2924 hfld |= ICE_FLOW_HASH_FLD_IPV6_SA; 2925 if (nfc->data & RXH_IP_DST) 2926 hfld |= ICE_FLOW_HASH_FLD_IPV6_DA; 2927 break; 2928 default: 2929 break; 2930 } 2931 } 2932 2933 if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) { 2934 switch (nfc->flow_type) { 2935 case TCP_V4_FLOW: 2936 case TCP_V6_FLOW: 2937 if (nfc->data & RXH_L4_B_0_1) 2938 hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT; 2939 if (nfc->data & RXH_L4_B_2_3) 2940 hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT; 2941 break; 2942 case UDP_V4_FLOW: 2943 case UDP_V6_FLOW: 2944 if (nfc->data & RXH_L4_B_0_1) 2945 hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT; 2946 if (nfc->data & RXH_L4_B_2_3) 2947 hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT; 2948 break; 2949 case SCTP_V4_FLOW: 2950 case SCTP_V6_FLOW: 2951 if (nfc->data & RXH_L4_B_0_1) 2952 hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT; 2953 if (nfc->data & RXH_L4_B_2_3) 2954 hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT; 2955 break; 2956 default: 2957 break; 2958 } 2959 } 2960 2961 if (nfc->data & RXH_GTP_TEID) { 2962 switch (nfc->flow_type) { 2963 case GTPC_TEID_V4_FLOW: 2964 case GTPC_TEID_V6_FLOW: 2965 hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID; 2966 break; 2967 case GTPU_V4_FLOW: 2968 case GTPU_V6_FLOW: 2969 hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID; 2970 break; 2971 case GTPU_EH_V4_FLOW: 2972 case GTPU_EH_V6_FLOW: 2973 hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID; 2974 break; 2975 case GTPU_UL_V4_FLOW: 2976 case GTPU_UL_V6_FLOW: 2977 hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID; 2978 break; 2979 case GTPU_DL_V4_FLOW: 2980 case GTPU_DL_V6_FLOW: 2981 hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID; 2982 break; 2983 default: 2984 break; 2985 } 2986 } 2987 2988 return hfld; 2989 } 2990 2991 /** 2992 * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash 2993 * @vsi: the VSI being configured 2994 * @nfc: ethtool rxnfc command 2995 * 2996 * Returns Success if the flow input set is supported. 2997 */ 2998 static int 2999 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc) 3000 { 3001 struct ice_pf *pf = vsi->back; 3002 struct ice_rss_hash_cfg cfg; 3003 struct device *dev; 3004 u64 hashed_flds; 3005 int status; 3006 bool symm; 3007 u32 hdrs; 3008 3009 dev = ice_pf_to_dev(pf); 3010 if (ice_is_safe_mode(pf)) { 3011 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 3012 vsi->vsi_num); 3013 return -EINVAL; 3014 } 3015 3016 symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 3017 hashed_flds = ice_parse_hash_flds(nfc, symm); 3018 if (hashed_flds == ICE_HASH_INVALID) { 3019 dev_dbg(dev, "Invalid hash fields, vsi num = %d\n", 3020 vsi->vsi_num); 3021 return -EINVAL; 3022 } 3023 3024 hdrs = ice_parse_hdrs(nfc); 3025 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3026 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3027 vsi->vsi_num); 3028 return -EINVAL; 3029 } 3030 3031 cfg.hash_flds = hashed_flds; 3032 cfg.addl_hdrs = hdrs; 3033 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 3034 cfg.symm = symm; 3035 3036 status = ice_add_rss_cfg(&pf->hw, vsi, &cfg); 3037 if (status) { 3038 dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n", 3039 vsi->vsi_num, status); 3040 return status; 3041 } 3042 3043 return 0; 3044 } 3045 3046 /** 3047 * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type 3048 * @vsi: the VSI being configured 3049 * @nfc: ethtool rxnfc command 3050 */ 3051 static void 3052 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc) 3053 { 3054 struct ice_pf *pf = vsi->back; 3055 struct device *dev; 3056 u64 hash_flds; 3057 bool symm; 3058 u32 hdrs; 3059 3060 dev = ice_pf_to_dev(pf); 3061 3062 nfc->data = 0; 3063 if (ice_is_safe_mode(pf)) { 3064 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 3065 vsi->vsi_num); 3066 return; 3067 } 3068 3069 hdrs = ice_parse_hdrs(nfc); 3070 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3071 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3072 vsi->vsi_num); 3073 return; 3074 } 3075 3076 hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm); 3077 if (hash_flds == ICE_HASH_INVALID) { 3078 dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n", 3079 vsi->vsi_num); 3080 return; 3081 } 3082 3083 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA || 3084 hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA) 3085 nfc->data |= (u64)RXH_IP_SRC; 3086 3087 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA || 3088 hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA) 3089 nfc->data |= (u64)RXH_IP_DST; 3090 3091 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT || 3092 hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT || 3093 hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) 3094 nfc->data |= (u64)RXH_L4_B_0_1; 3095 3096 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT || 3097 hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT || 3098 hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT) 3099 nfc->data |= (u64)RXH_L4_B_2_3; 3100 3101 if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID || 3102 hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID || 3103 hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID || 3104 hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID || 3105 hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID) 3106 nfc->data |= (u64)RXH_GTP_TEID; 3107 } 3108 3109 /** 3110 * ice_set_rxnfc - command to set Rx flow rules. 3111 * @netdev: network interface device structure 3112 * @cmd: ethtool rxnfc command 3113 * 3114 * Returns 0 for success and negative values for errors 3115 */ 3116 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3117 { 3118 struct ice_netdev_priv *np = netdev_priv(netdev); 3119 struct ice_vsi *vsi = np->vsi; 3120 3121 switch (cmd->cmd) { 3122 case ETHTOOL_SRXCLSRLINS: 3123 return ice_add_fdir_ethtool(vsi, cmd); 3124 case ETHTOOL_SRXCLSRLDEL: 3125 return ice_del_fdir_ethtool(vsi, cmd); 3126 case ETHTOOL_SRXFH: 3127 return ice_set_rss_hash_opt(vsi, cmd); 3128 default: 3129 break; 3130 } 3131 return -EOPNOTSUPP; 3132 } 3133 3134 /** 3135 * ice_get_rxnfc - command to get Rx flow classification rules 3136 * @netdev: network interface device structure 3137 * @cmd: ethtool rxnfc command 3138 * @rule_locs: buffer to rturn Rx flow classification rules 3139 * 3140 * Returns Success if the command is supported. 3141 */ 3142 static int 3143 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3144 u32 __always_unused *rule_locs) 3145 { 3146 struct ice_netdev_priv *np = netdev_priv(netdev); 3147 struct ice_vsi *vsi = np->vsi; 3148 int ret = -EOPNOTSUPP; 3149 struct ice_hw *hw; 3150 3151 hw = &vsi->back->hw; 3152 3153 switch (cmd->cmd) { 3154 case ETHTOOL_GRXRINGS: 3155 cmd->data = vsi->rss_size; 3156 ret = 0; 3157 break; 3158 case ETHTOOL_GRXCLSRLCNT: 3159 cmd->rule_cnt = hw->fdir_active_fltr; 3160 /* report total rule count */ 3161 cmd->data = ice_get_fdir_cnt_all(hw); 3162 ret = 0; 3163 break; 3164 case ETHTOOL_GRXCLSRULE: 3165 ret = ice_get_ethtool_fdir_entry(hw, cmd); 3166 break; 3167 case ETHTOOL_GRXCLSRLALL: 3168 ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs); 3169 break; 3170 case ETHTOOL_GRXFH: 3171 ice_get_rss_hash_opt(vsi, cmd); 3172 ret = 0; 3173 break; 3174 default: 3175 break; 3176 } 3177 3178 return ret; 3179 } 3180 3181 static void 3182 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3183 struct kernel_ethtool_ringparam *kernel_ring, 3184 struct netlink_ext_ack *extack) 3185 { 3186 struct ice_netdev_priv *np = netdev_priv(netdev); 3187 struct ice_vsi *vsi = np->vsi; 3188 3189 ring->rx_max_pending = ICE_MAX_NUM_DESC; 3190 ring->tx_max_pending = ICE_MAX_NUM_DESC; 3191 if (vsi->tx_rings && vsi->rx_rings) { 3192 ring->rx_pending = vsi->rx_rings[0]->count; 3193 ring->tx_pending = vsi->tx_rings[0]->count; 3194 } else { 3195 ring->rx_pending = 0; 3196 ring->tx_pending = 0; 3197 } 3198 3199 /* Rx mini and jumbo rings are not supported */ 3200 ring->rx_mini_max_pending = 0; 3201 ring->rx_jumbo_max_pending = 0; 3202 ring->rx_mini_pending = 0; 3203 ring->rx_jumbo_pending = 0; 3204 } 3205 3206 static int 3207 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3208 struct kernel_ethtool_ringparam *kernel_ring, 3209 struct netlink_ext_ack *extack) 3210 { 3211 struct ice_netdev_priv *np = netdev_priv(netdev); 3212 struct ice_tx_ring *xdp_rings = NULL; 3213 struct ice_tx_ring *tx_rings = NULL; 3214 struct ice_rx_ring *rx_rings = NULL; 3215 struct ice_vsi *vsi = np->vsi; 3216 struct ice_pf *pf = vsi->back; 3217 int i, timeout = 50, err = 0; 3218 u16 new_rx_cnt, new_tx_cnt; 3219 3220 if (ring->tx_pending > ICE_MAX_NUM_DESC || 3221 ring->tx_pending < ICE_MIN_NUM_DESC || 3222 ring->rx_pending > ICE_MAX_NUM_DESC || 3223 ring->rx_pending < ICE_MIN_NUM_DESC) { 3224 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 3225 ring->tx_pending, ring->rx_pending, 3226 ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC, 3227 ICE_REQ_DESC_MULTIPLE); 3228 return -EINVAL; 3229 } 3230 3231 /* Return if there is no rings (device is reloading) */ 3232 if (!vsi->tx_rings || !vsi->rx_rings) 3233 return -EBUSY; 3234 3235 new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE); 3236 if (new_tx_cnt != ring->tx_pending) 3237 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 3238 new_tx_cnt); 3239 new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE); 3240 if (new_rx_cnt != ring->rx_pending) 3241 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 3242 new_rx_cnt); 3243 3244 /* if nothing to do return success */ 3245 if (new_tx_cnt == vsi->tx_rings[0]->count && 3246 new_rx_cnt == vsi->rx_rings[0]->count) { 3247 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 3248 return 0; 3249 } 3250 3251 /* If there is a AF_XDP UMEM attached to any of Rx rings, 3252 * disallow changing the number of descriptors -- regardless 3253 * if the netdev is running or not. 3254 */ 3255 if (ice_xsk_any_rx_ring_ena(vsi)) 3256 return -EBUSY; 3257 3258 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3259 timeout--; 3260 if (!timeout) 3261 return -EBUSY; 3262 usleep_range(1000, 2000); 3263 } 3264 3265 /* set for the next time the netdev is started */ 3266 if (!netif_running(vsi->netdev)) { 3267 ice_for_each_alloc_txq(vsi, i) 3268 vsi->tx_rings[i]->count = new_tx_cnt; 3269 ice_for_each_alloc_rxq(vsi, i) 3270 vsi->rx_rings[i]->count = new_rx_cnt; 3271 if (ice_is_xdp_ena_vsi(vsi)) 3272 ice_for_each_xdp_txq(vsi, i) 3273 vsi->xdp_rings[i]->count = new_tx_cnt; 3274 vsi->num_tx_desc = (u16)new_tx_cnt; 3275 vsi->num_rx_desc = (u16)new_rx_cnt; 3276 netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n"); 3277 goto done; 3278 } 3279 3280 if (new_tx_cnt == vsi->tx_rings[0]->count) 3281 goto process_rx; 3282 3283 /* alloc updated Tx resources */ 3284 netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n", 3285 vsi->tx_rings[0]->count, new_tx_cnt); 3286 3287 tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL); 3288 if (!tx_rings) { 3289 err = -ENOMEM; 3290 goto done; 3291 } 3292 3293 ice_for_each_txq(vsi, i) { 3294 /* clone ring and setup updated count */ 3295 tx_rings[i] = *vsi->tx_rings[i]; 3296 tx_rings[i].count = new_tx_cnt; 3297 tx_rings[i].desc = NULL; 3298 tx_rings[i].tx_buf = NULL; 3299 tx_rings[i].tx_tstamps = &pf->ptp.port.tx; 3300 err = ice_setup_tx_ring(&tx_rings[i]); 3301 if (err) { 3302 while (i--) 3303 ice_clean_tx_ring(&tx_rings[i]); 3304 kfree(tx_rings); 3305 goto done; 3306 } 3307 } 3308 3309 if (!ice_is_xdp_ena_vsi(vsi)) 3310 goto process_rx; 3311 3312 /* alloc updated XDP resources */ 3313 netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n", 3314 vsi->xdp_rings[0]->count, new_tx_cnt); 3315 3316 xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL); 3317 if (!xdp_rings) { 3318 err = -ENOMEM; 3319 goto free_tx; 3320 } 3321 3322 ice_for_each_xdp_txq(vsi, i) { 3323 /* clone ring and setup updated count */ 3324 xdp_rings[i] = *vsi->xdp_rings[i]; 3325 xdp_rings[i].count = new_tx_cnt; 3326 xdp_rings[i].desc = NULL; 3327 xdp_rings[i].tx_buf = NULL; 3328 err = ice_setup_tx_ring(&xdp_rings[i]); 3329 if (err) { 3330 while (i--) 3331 ice_clean_tx_ring(&xdp_rings[i]); 3332 kfree(xdp_rings); 3333 goto free_tx; 3334 } 3335 ice_set_ring_xdp(&xdp_rings[i]); 3336 } 3337 3338 process_rx: 3339 if (new_rx_cnt == vsi->rx_rings[0]->count) 3340 goto process_link; 3341 3342 /* alloc updated Rx resources */ 3343 netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n", 3344 vsi->rx_rings[0]->count, new_rx_cnt); 3345 3346 rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL); 3347 if (!rx_rings) { 3348 err = -ENOMEM; 3349 goto done; 3350 } 3351 3352 ice_for_each_rxq(vsi, i) { 3353 /* clone ring and setup updated count */ 3354 rx_rings[i] = *vsi->rx_rings[i]; 3355 rx_rings[i].count = new_rx_cnt; 3356 rx_rings[i].cached_phctime = pf->ptp.cached_phc_time; 3357 rx_rings[i].desc = NULL; 3358 rx_rings[i].rx_buf = NULL; 3359 /* this is to allow wr32 to have something to write to 3360 * during early allocation of Rx buffers 3361 */ 3362 rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS; 3363 3364 err = ice_setup_rx_ring(&rx_rings[i]); 3365 if (err) 3366 goto rx_unwind; 3367 3368 /* allocate Rx buffers */ 3369 err = ice_alloc_rx_bufs(&rx_rings[i], 3370 ICE_RX_DESC_UNUSED(&rx_rings[i])); 3371 rx_unwind: 3372 if (err) { 3373 while (i) { 3374 i--; 3375 ice_free_rx_ring(&rx_rings[i]); 3376 } 3377 kfree(rx_rings); 3378 err = -ENOMEM; 3379 goto free_tx; 3380 } 3381 } 3382 3383 process_link: 3384 /* Bring interface down, copy in the new ring info, then restore the 3385 * interface. if VSI is up, bring it down and then back up 3386 */ 3387 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3388 ice_down(vsi); 3389 3390 if (tx_rings) { 3391 ice_for_each_txq(vsi, i) { 3392 ice_free_tx_ring(vsi->tx_rings[i]); 3393 *vsi->tx_rings[i] = tx_rings[i]; 3394 } 3395 kfree(tx_rings); 3396 } 3397 3398 if (rx_rings) { 3399 ice_for_each_rxq(vsi, i) { 3400 ice_free_rx_ring(vsi->rx_rings[i]); 3401 /* copy the real tail offset */ 3402 rx_rings[i].tail = vsi->rx_rings[i]->tail; 3403 /* this is to fake out the allocation routine 3404 * into thinking it has to realloc everything 3405 * but the recycling logic will let us re-use 3406 * the buffers allocated above 3407 */ 3408 rx_rings[i].next_to_use = 0; 3409 rx_rings[i].next_to_clean = 0; 3410 rx_rings[i].next_to_alloc = 0; 3411 *vsi->rx_rings[i] = rx_rings[i]; 3412 } 3413 kfree(rx_rings); 3414 } 3415 3416 if (xdp_rings) { 3417 ice_for_each_xdp_txq(vsi, i) { 3418 ice_free_tx_ring(vsi->xdp_rings[i]); 3419 *vsi->xdp_rings[i] = xdp_rings[i]; 3420 } 3421 kfree(xdp_rings); 3422 } 3423 3424 vsi->num_tx_desc = new_tx_cnt; 3425 vsi->num_rx_desc = new_rx_cnt; 3426 ice_up(vsi); 3427 } 3428 goto done; 3429 3430 free_tx: 3431 /* error cleanup if the Rx allocations failed after getting Tx */ 3432 if (tx_rings) { 3433 ice_for_each_txq(vsi, i) 3434 ice_free_tx_ring(&tx_rings[i]); 3435 kfree(tx_rings); 3436 } 3437 3438 done: 3439 clear_bit(ICE_CFG_BUSY, pf->state); 3440 return err; 3441 } 3442 3443 /** 3444 * ice_get_pauseparam - Get Flow Control status 3445 * @netdev: network interface device structure 3446 * @pause: ethernet pause (flow control) parameters 3447 * 3448 * Get requested flow control status from PHY capability. 3449 * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which 3450 * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report 3451 * the negotiated Rx/Tx pause via lp_advertising. 3452 */ 3453 static void 3454 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3455 { 3456 struct ice_netdev_priv *np = netdev_priv(netdev); 3457 struct ice_port_info *pi = np->vsi->port_info; 3458 struct ice_aqc_get_phy_caps_data *pcaps; 3459 struct ice_dcbx_cfg *dcbx_cfg; 3460 int status; 3461 3462 /* Initialize pause params */ 3463 pause->rx_pause = 0; 3464 pause->tx_pause = 0; 3465 3466 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3467 3468 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3469 if (!pcaps) 3470 return; 3471 3472 /* Get current PHY config */ 3473 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3474 NULL); 3475 if (status) 3476 goto out; 3477 3478 pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3479 AUTONEG_DISABLE; 3480 3481 if (dcbx_cfg->pfc.pfcena) 3482 /* PFC enabled so report LFC as off */ 3483 goto out; 3484 3485 if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3486 pause->tx_pause = 1; 3487 if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3488 pause->rx_pause = 1; 3489 3490 out: 3491 kfree(pcaps); 3492 } 3493 3494 /** 3495 * ice_set_pauseparam - Set Flow Control parameter 3496 * @netdev: network interface device structure 3497 * @pause: return Tx/Rx flow control status 3498 */ 3499 static int 3500 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3501 { 3502 struct ice_netdev_priv *np = netdev_priv(netdev); 3503 struct ice_aqc_get_phy_caps_data *pcaps; 3504 struct ice_link_status *hw_link_info; 3505 struct ice_pf *pf = np->vsi->back; 3506 struct ice_dcbx_cfg *dcbx_cfg; 3507 struct ice_vsi *vsi = np->vsi; 3508 struct ice_hw *hw = &pf->hw; 3509 struct ice_port_info *pi; 3510 u8 aq_failures; 3511 bool link_up; 3512 u32 is_an; 3513 int err; 3514 3515 pi = vsi->port_info; 3516 hw_link_info = &pi->phy.link_info; 3517 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3518 link_up = hw_link_info->link_info & ICE_AQ_LINK_UP; 3519 3520 /* Changing the port's flow control is not supported if this isn't the 3521 * PF VSI 3522 */ 3523 if (vsi->type != ICE_VSI_PF) { 3524 netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n"); 3525 return -EOPNOTSUPP; 3526 } 3527 3528 /* Get pause param reports configured and negotiated flow control pause 3529 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is 3530 * defined get pause param pause->autoneg reports SW configured setting, 3531 * so compare pause->autoneg with SW configured to prevent the user from 3532 * using set pause param to chance autoneg. 3533 */ 3534 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3535 if (!pcaps) 3536 return -ENOMEM; 3537 3538 /* Get current PHY config */ 3539 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3540 NULL); 3541 if (err) { 3542 kfree(pcaps); 3543 return err; 3544 } 3545 3546 is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3547 AUTONEG_DISABLE; 3548 3549 kfree(pcaps); 3550 3551 if (pause->autoneg != is_an) { 3552 netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 3553 return -EOPNOTSUPP; 3554 } 3555 3556 /* If we have link and don't have autoneg */ 3557 if (!test_bit(ICE_DOWN, pf->state) && 3558 !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) { 3559 /* Send message that it might not necessarily work*/ 3560 netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n"); 3561 } 3562 3563 if (dcbx_cfg->pfc.pfcena) { 3564 netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n"); 3565 return -EOPNOTSUPP; 3566 } 3567 if (pause->rx_pause && pause->tx_pause) 3568 pi->fc.req_mode = ICE_FC_FULL; 3569 else if (pause->rx_pause && !pause->tx_pause) 3570 pi->fc.req_mode = ICE_FC_RX_PAUSE; 3571 else if (!pause->rx_pause && pause->tx_pause) 3572 pi->fc.req_mode = ICE_FC_TX_PAUSE; 3573 else if (!pause->rx_pause && !pause->tx_pause) 3574 pi->fc.req_mode = ICE_FC_NONE; 3575 else 3576 return -EINVAL; 3577 3578 /* Set the FC mode and only restart AN if link is up */ 3579 err = ice_set_fc(pi, &aq_failures, link_up); 3580 3581 if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) { 3582 netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n", 3583 err, ice_aq_str(hw->adminq.sq_last_status)); 3584 err = -EAGAIN; 3585 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) { 3586 netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n", 3587 err, ice_aq_str(hw->adminq.sq_last_status)); 3588 err = -EAGAIN; 3589 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) { 3590 netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n", 3591 err, ice_aq_str(hw->adminq.sq_last_status)); 3592 err = -EAGAIN; 3593 } 3594 3595 return err; 3596 } 3597 3598 /** 3599 * ice_get_rxfh_key_size - get the RSS hash key size 3600 * @netdev: network interface device structure 3601 * 3602 * Returns the table size. 3603 */ 3604 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev) 3605 { 3606 return ICE_VSIQF_HKEY_ARRAY_SIZE; 3607 } 3608 3609 /** 3610 * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size 3611 * @netdev: network interface device structure 3612 * 3613 * Returns the table size. 3614 */ 3615 static u32 ice_get_rxfh_indir_size(struct net_device *netdev) 3616 { 3617 struct ice_netdev_priv *np = netdev_priv(netdev); 3618 3619 return np->vsi->rss_table_size; 3620 } 3621 3622 /** 3623 * ice_get_rxfh - get the Rx flow hash indirection table 3624 * @netdev: network interface device structure 3625 * @rxfh: pointer to param struct (indir, key, hfunc) 3626 * 3627 * Reads the indirection table directly from the hardware. 3628 */ 3629 static int 3630 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh) 3631 { 3632 struct ice_netdev_priv *np = netdev_priv(netdev); 3633 u32 rss_context = rxfh->rss_context; 3634 struct ice_vsi *vsi = np->vsi; 3635 struct ice_pf *pf = vsi->back; 3636 u16 qcount, offset; 3637 int err, num_tc, i; 3638 u8 *lut; 3639 3640 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3641 netdev_warn(netdev, "RSS is not supported on this VSI!\n"); 3642 return -EOPNOTSUPP; 3643 } 3644 3645 if (rss_context && !ice_is_adq_active(pf)) { 3646 netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n"); 3647 return -EINVAL; 3648 } 3649 3650 qcount = vsi->mqprio_qopt.qopt.count[rss_context]; 3651 offset = vsi->mqprio_qopt.qopt.offset[rss_context]; 3652 3653 if (rss_context && ice_is_adq_active(pf)) { 3654 num_tc = vsi->mqprio_qopt.qopt.num_tc; 3655 if (rss_context >= num_tc) { 3656 netdev_err(netdev, "RSS context:%d > num_tc:%d\n", 3657 rss_context, num_tc); 3658 return -EINVAL; 3659 } 3660 /* Use channel VSI of given TC */ 3661 vsi = vsi->tc_map_vsi[rss_context]; 3662 } 3663 3664 rxfh->hfunc = ETH_RSS_HASH_TOP; 3665 if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 3666 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR; 3667 3668 if (!rxfh->indir) 3669 return 0; 3670 3671 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3672 if (!lut) 3673 return -ENOMEM; 3674 3675 err = ice_get_rss_key(vsi, rxfh->key); 3676 if (err) 3677 goto out; 3678 3679 err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size); 3680 if (err) 3681 goto out; 3682 3683 if (ice_is_adq_active(pf)) { 3684 for (i = 0; i < vsi->rss_table_size; i++) 3685 rxfh->indir[i] = offset + lut[i] % qcount; 3686 goto out; 3687 } 3688 3689 for (i = 0; i < vsi->rss_table_size; i++) 3690 rxfh->indir[i] = lut[i]; 3691 3692 out: 3693 kfree(lut); 3694 return err; 3695 } 3696 3697 /** 3698 * ice_set_rxfh - set the Rx flow hash indirection table 3699 * @netdev: network interface device structure 3700 * @rxfh: pointer to param struct (indir, key, hfunc) 3701 * @extack: extended ACK from the Netlink message 3702 * 3703 * Returns -EINVAL if the table specifies an invalid queue ID, otherwise 3704 * returns 0 after programming the table. 3705 */ 3706 static int 3707 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh, 3708 struct netlink_ext_ack *extack) 3709 { 3710 struct ice_netdev_priv *np = netdev_priv(netdev); 3711 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 3712 struct ice_vsi *vsi = np->vsi; 3713 struct ice_pf *pf = vsi->back; 3714 struct device *dev; 3715 int err; 3716 3717 dev = ice_pf_to_dev(pf); 3718 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 3719 rxfh->hfunc != ETH_RSS_HASH_TOP) 3720 return -EOPNOTSUPP; 3721 3722 if (rxfh->rss_context) 3723 return -EOPNOTSUPP; 3724 3725 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3726 /* RSS not supported return error here */ 3727 netdev_warn(netdev, "RSS is not configured on this VSI!\n"); 3728 return -EIO; 3729 } 3730 3731 if (ice_is_adq_active(pf)) { 3732 netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n"); 3733 return -EOPNOTSUPP; 3734 } 3735 3736 /* Update the VSI's hash function */ 3737 if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR) 3738 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 3739 3740 err = ice_set_rss_hfunc(vsi, hfunc); 3741 if (err) 3742 return err; 3743 3744 if (rxfh->key) { 3745 if (!vsi->rss_hkey_user) { 3746 vsi->rss_hkey_user = 3747 devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE, 3748 GFP_KERNEL); 3749 if (!vsi->rss_hkey_user) 3750 return -ENOMEM; 3751 } 3752 memcpy(vsi->rss_hkey_user, rxfh->key, 3753 ICE_VSIQF_HKEY_ARRAY_SIZE); 3754 3755 err = ice_set_rss_key(vsi, vsi->rss_hkey_user); 3756 if (err) 3757 return err; 3758 } 3759 3760 if (!vsi->rss_lut_user) { 3761 vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size, 3762 GFP_KERNEL); 3763 if (!vsi->rss_lut_user) 3764 return -ENOMEM; 3765 } 3766 3767 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 3768 if (rxfh->indir) { 3769 int i; 3770 3771 for (i = 0; i < vsi->rss_table_size; i++) 3772 vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]); 3773 } else { 3774 ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size, 3775 vsi->rss_size); 3776 } 3777 3778 err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size); 3779 if (err) 3780 return err; 3781 3782 return 0; 3783 } 3784 3785 static int 3786 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) 3787 { 3788 struct ice_pf *pf = ice_netdev_to_pf(dev); 3789 3790 /* only report timestamping if PTP is enabled */ 3791 if (pf->ptp.state != ICE_PTP_READY) 3792 return ethtool_op_get_ts_info(dev, info); 3793 3794 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 3795 SOF_TIMESTAMPING_RX_SOFTWARE | 3796 SOF_TIMESTAMPING_SOFTWARE | 3797 SOF_TIMESTAMPING_TX_HARDWARE | 3798 SOF_TIMESTAMPING_RX_HARDWARE | 3799 SOF_TIMESTAMPING_RAW_HARDWARE; 3800 3801 info->phc_index = ice_ptp_clock_index(pf); 3802 3803 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 3804 3805 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL); 3806 3807 return 0; 3808 } 3809 3810 /** 3811 * ice_get_max_txq - return the maximum number of Tx queues for in a PF 3812 * @pf: PF structure 3813 */ 3814 static int ice_get_max_txq(struct ice_pf *pf) 3815 { 3816 return min3(pf->num_lan_msix, (u16)num_online_cpus(), 3817 (u16)pf->hw.func_caps.common_cap.num_txq); 3818 } 3819 3820 /** 3821 * ice_get_max_rxq - return the maximum number of Rx queues for in a PF 3822 * @pf: PF structure 3823 */ 3824 static int ice_get_max_rxq(struct ice_pf *pf) 3825 { 3826 return min3(pf->num_lan_msix, (u16)num_online_cpus(), 3827 (u16)pf->hw.func_caps.common_cap.num_rxq); 3828 } 3829 3830 /** 3831 * ice_get_combined_cnt - return the current number of combined channels 3832 * @vsi: PF VSI pointer 3833 * 3834 * Go through all queue vectors and count ones that have both Rx and Tx ring 3835 * attached 3836 */ 3837 static u32 ice_get_combined_cnt(struct ice_vsi *vsi) 3838 { 3839 u32 combined = 0; 3840 int q_idx; 3841 3842 ice_for_each_q_vector(vsi, q_idx) { 3843 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3844 3845 if (q_vector->rx.rx_ring && q_vector->tx.tx_ring) 3846 combined++; 3847 } 3848 3849 return combined; 3850 } 3851 3852 /** 3853 * ice_get_channels - get the current and max supported channels 3854 * @dev: network interface device structure 3855 * @ch: ethtool channel data structure 3856 */ 3857 static void 3858 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch) 3859 { 3860 struct ice_netdev_priv *np = netdev_priv(dev); 3861 struct ice_vsi *vsi = np->vsi; 3862 struct ice_pf *pf = vsi->back; 3863 3864 /* report maximum channels */ 3865 ch->max_rx = ice_get_max_rxq(pf); 3866 ch->max_tx = ice_get_max_txq(pf); 3867 ch->max_combined = min_t(int, ch->max_rx, ch->max_tx); 3868 3869 /* report current channels */ 3870 ch->combined_count = ice_get_combined_cnt(vsi); 3871 ch->rx_count = vsi->num_rxq - ch->combined_count; 3872 ch->tx_count = vsi->num_txq - ch->combined_count; 3873 3874 /* report other queues */ 3875 ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 3876 ch->max_other = ch->other_count; 3877 } 3878 3879 /** 3880 * ice_get_valid_rss_size - return valid number of RSS queues 3881 * @hw: pointer to the HW structure 3882 * @new_size: requested RSS queues 3883 */ 3884 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size) 3885 { 3886 struct ice_hw_common_caps *caps = &hw->func_caps.common_cap; 3887 3888 return min_t(int, new_size, BIT(caps->rss_table_entry_width)); 3889 } 3890 3891 /** 3892 * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size 3893 * @vsi: VSI to reconfigure RSS LUT on 3894 * @req_rss_size: requested range of queue numbers for hashing 3895 * 3896 * Set the VSI's RSS parameters, configure the RSS LUT based on these. 3897 */ 3898 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size) 3899 { 3900 struct ice_pf *pf = vsi->back; 3901 struct device *dev; 3902 struct ice_hw *hw; 3903 int err; 3904 u8 *lut; 3905 3906 dev = ice_pf_to_dev(pf); 3907 hw = &pf->hw; 3908 3909 if (!req_rss_size) 3910 return -EINVAL; 3911 3912 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3913 if (!lut) 3914 return -ENOMEM; 3915 3916 /* set RSS LUT parameters */ 3917 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3918 vsi->rss_size = 1; 3919 else 3920 vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size); 3921 3922 /* create/set RSS LUT */ 3923 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 3924 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 3925 if (err) 3926 dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err, 3927 ice_aq_str(hw->adminq.sq_last_status)); 3928 3929 kfree(lut); 3930 return err; 3931 } 3932 3933 /** 3934 * ice_set_channels - set the number channels 3935 * @dev: network interface device structure 3936 * @ch: ethtool channel data structure 3937 */ 3938 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch) 3939 { 3940 struct ice_netdev_priv *np = netdev_priv(dev); 3941 struct ice_vsi *vsi = np->vsi; 3942 struct ice_pf *pf = vsi->back; 3943 int new_rx = 0, new_tx = 0; 3944 bool locked = false; 3945 int ret = 0; 3946 3947 /* do not support changing channels in Safe Mode */ 3948 if (ice_is_safe_mode(pf)) { 3949 netdev_err(dev, "Changing channel in Safe Mode is not supported\n"); 3950 return -EOPNOTSUPP; 3951 } 3952 /* do not support changing other_count */ 3953 if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U)) 3954 return -EINVAL; 3955 3956 if (ice_is_adq_active(pf)) { 3957 netdev_err(dev, "Cannot set channels with ADQ configured.\n"); 3958 return -EOPNOTSUPP; 3959 } 3960 3961 if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) { 3962 netdev_err(dev, "Cannot set channels when Flow Director filters are active\n"); 3963 return -EOPNOTSUPP; 3964 } 3965 3966 if (ch->rx_count && ch->tx_count) { 3967 netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n"); 3968 return -EINVAL; 3969 } 3970 3971 new_rx = ch->combined_count + ch->rx_count; 3972 new_tx = ch->combined_count + ch->tx_count; 3973 3974 if (new_rx < vsi->tc_cfg.numtc) { 3975 netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n", 3976 vsi->tc_cfg.numtc); 3977 return -EINVAL; 3978 } 3979 if (new_tx < vsi->tc_cfg.numtc) { 3980 netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n", 3981 vsi->tc_cfg.numtc); 3982 return -EINVAL; 3983 } 3984 if (new_rx > ice_get_max_rxq(pf)) { 3985 netdev_err(dev, "Maximum allowed Rx channels is %d\n", 3986 ice_get_max_rxq(pf)); 3987 return -EINVAL; 3988 } 3989 if (new_tx > ice_get_max_txq(pf)) { 3990 netdev_err(dev, "Maximum allowed Tx channels is %d\n", 3991 ice_get_max_txq(pf)); 3992 return -EINVAL; 3993 } 3994 3995 if (pf->adev) { 3996 mutex_lock(&pf->adev_mutex); 3997 device_lock(&pf->adev->dev); 3998 locked = true; 3999 if (pf->adev->dev.driver) { 4000 netdev_err(dev, "Cannot change channels when RDMA is active\n"); 4001 ret = -EBUSY; 4002 goto adev_unlock; 4003 } 4004 } 4005 4006 ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked); 4007 4008 if (!netif_is_rxfh_configured(dev)) { 4009 ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx); 4010 goto adev_unlock; 4011 } 4012 4013 /* Update rss_size due to change in Rx queues */ 4014 vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx); 4015 4016 adev_unlock: 4017 if (locked) { 4018 device_unlock(&pf->adev->dev); 4019 mutex_unlock(&pf->adev_mutex); 4020 } 4021 return ret; 4022 } 4023 4024 /** 4025 * ice_get_wol - get current Wake on LAN configuration 4026 * @netdev: network interface device structure 4027 * @wol: Ethtool structure to retrieve WoL settings 4028 */ 4029 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 4030 { 4031 struct ice_netdev_priv *np = netdev_priv(netdev); 4032 struct ice_pf *pf = np->vsi->back; 4033 4034 if (np->vsi->type != ICE_VSI_PF) 4035 netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n"); 4036 4037 /* Get WoL settings based on the HW capability */ 4038 if (ice_is_wol_supported(&pf->hw)) { 4039 wol->supported = WAKE_MAGIC; 4040 wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0; 4041 } else { 4042 wol->supported = 0; 4043 wol->wolopts = 0; 4044 } 4045 } 4046 4047 /** 4048 * ice_set_wol - set Wake on LAN on supported device 4049 * @netdev: network interface device structure 4050 * @wol: Ethtool structure to set WoL 4051 */ 4052 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 4053 { 4054 struct ice_netdev_priv *np = netdev_priv(netdev); 4055 struct ice_vsi *vsi = np->vsi; 4056 struct ice_pf *pf = vsi->back; 4057 4058 if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw)) 4059 return -EOPNOTSUPP; 4060 4061 /* only magic packet is supported */ 4062 if (wol->wolopts && wol->wolopts != WAKE_MAGIC) 4063 return -EOPNOTSUPP; 4064 4065 /* Set WoL only if there is a new value */ 4066 if (pf->wol_ena != !!wol->wolopts) { 4067 pf->wol_ena = !!wol->wolopts; 4068 device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena); 4069 netdev_dbg(netdev, "WoL magic packet %sabled\n", 4070 pf->wol_ena ? "en" : "dis"); 4071 } 4072 4073 return 0; 4074 } 4075 4076 /** 4077 * ice_get_rc_coalesce - get ITR values for specific ring container 4078 * @ec: ethtool structure to fill with driver's coalesce settings 4079 * @rc: ring container that the ITR values will come from 4080 * 4081 * Query the device for ice_ring_container specific ITR values. This is 4082 * done per ice_ring_container because each q_vector can have 1 or more rings 4083 * and all of said ring(s) will have the same ITR values. 4084 * 4085 * Returns 0 on success, negative otherwise. 4086 */ 4087 static int 4088 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc) 4089 { 4090 if (!rc->rx_ring) 4091 return -EINVAL; 4092 4093 switch (rc->type) { 4094 case ICE_RX_CONTAINER: 4095 ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc); 4096 ec->rx_coalesce_usecs = rc->itr_setting; 4097 ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl; 4098 break; 4099 case ICE_TX_CONTAINER: 4100 ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc); 4101 ec->tx_coalesce_usecs = rc->itr_setting; 4102 break; 4103 default: 4104 dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type); 4105 return -EINVAL; 4106 } 4107 4108 return 0; 4109 } 4110 4111 /** 4112 * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings 4113 * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings 4114 * @ec: coalesce settings to program the device with 4115 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4116 * 4117 * Return 0 on success, and negative under the following conditions: 4118 * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed. 4119 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4120 */ 4121 static int 4122 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4123 { 4124 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4125 if (ice_get_rc_coalesce(ec, 4126 &vsi->rx_rings[q_num]->q_vector->rx)) 4127 return -EINVAL; 4128 if (ice_get_rc_coalesce(ec, 4129 &vsi->tx_rings[q_num]->q_vector->tx)) 4130 return -EINVAL; 4131 } else if (q_num < vsi->num_rxq) { 4132 if (ice_get_rc_coalesce(ec, 4133 &vsi->rx_rings[q_num]->q_vector->rx)) 4134 return -EINVAL; 4135 } else if (q_num < vsi->num_txq) { 4136 if (ice_get_rc_coalesce(ec, 4137 &vsi->tx_rings[q_num]->q_vector->tx)) 4138 return -EINVAL; 4139 } else { 4140 return -EINVAL; 4141 } 4142 4143 return 0; 4144 } 4145 4146 /** 4147 * __ice_get_coalesce - get ITR/INTRL values for the device 4148 * @netdev: pointer to the netdev associated with this query 4149 * @ec: ethtool structure to fill with driver's coalesce settings 4150 * @q_num: queue number to get the coalesce settings for 4151 * 4152 * If the caller passes in a negative q_num then we return coalesce settings 4153 * based on queue number 0, else use the actual q_num passed in. 4154 */ 4155 static int 4156 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4157 int q_num) 4158 { 4159 struct ice_netdev_priv *np = netdev_priv(netdev); 4160 struct ice_vsi *vsi = np->vsi; 4161 4162 if (q_num < 0) 4163 q_num = 0; 4164 4165 if (ice_get_q_coalesce(vsi, ec, q_num)) 4166 return -EINVAL; 4167 4168 return 0; 4169 } 4170 4171 static int ice_get_coalesce(struct net_device *netdev, 4172 struct ethtool_coalesce *ec, 4173 struct kernel_ethtool_coalesce *kernel_coal, 4174 struct netlink_ext_ack *extack) 4175 { 4176 return __ice_get_coalesce(netdev, ec, -1); 4177 } 4178 4179 static int 4180 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num, 4181 struct ethtool_coalesce *ec) 4182 { 4183 return __ice_get_coalesce(netdev, ec, q_num); 4184 } 4185 4186 /** 4187 * ice_set_rc_coalesce - set ITR values for specific ring container 4188 * @ec: ethtool structure from user to update ITR settings 4189 * @rc: ring container that the ITR values will come from 4190 * @vsi: VSI associated to the ring container 4191 * 4192 * Set specific ITR values. This is done per ice_ring_container because each 4193 * q_vector can have 1 or more rings and all of said ring(s) will have the same 4194 * ITR values. 4195 * 4196 * Returns 0 on success, negative otherwise. 4197 */ 4198 static int 4199 ice_set_rc_coalesce(struct ethtool_coalesce *ec, 4200 struct ice_ring_container *rc, struct ice_vsi *vsi) 4201 { 4202 const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx"; 4203 u32 use_adaptive_coalesce, coalesce_usecs; 4204 struct ice_pf *pf = vsi->back; 4205 u16 itr_setting; 4206 4207 if (!rc->rx_ring) 4208 return -EINVAL; 4209 4210 switch (rc->type) { 4211 case ICE_RX_CONTAINER: 4212 { 4213 struct ice_q_vector *q_vector = rc->rx_ring->q_vector; 4214 4215 if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL || 4216 (ec->rx_coalesce_usecs_high && 4217 ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) { 4218 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n", 4219 c_type_str, pf->hw.intrl_gran, 4220 ICE_MAX_INTRL); 4221 return -EINVAL; 4222 } 4223 if (ec->rx_coalesce_usecs_high != q_vector->intrl && 4224 (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) { 4225 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n", 4226 c_type_str); 4227 return -EINVAL; 4228 } 4229 if (ec->rx_coalesce_usecs_high != q_vector->intrl) 4230 q_vector->intrl = ec->rx_coalesce_usecs_high; 4231 4232 use_adaptive_coalesce = ec->use_adaptive_rx_coalesce; 4233 coalesce_usecs = ec->rx_coalesce_usecs; 4234 4235 break; 4236 } 4237 case ICE_TX_CONTAINER: 4238 use_adaptive_coalesce = ec->use_adaptive_tx_coalesce; 4239 coalesce_usecs = ec->tx_coalesce_usecs; 4240 4241 break; 4242 default: 4243 dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n", 4244 rc->type); 4245 return -EINVAL; 4246 } 4247 4248 itr_setting = rc->itr_setting; 4249 if (coalesce_usecs != itr_setting && use_adaptive_coalesce) { 4250 netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n", 4251 c_type_str, c_type_str); 4252 return -EINVAL; 4253 } 4254 4255 if (coalesce_usecs > ICE_ITR_MAX) { 4256 netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n", 4257 c_type_str, ICE_ITR_MAX); 4258 return -EINVAL; 4259 } 4260 4261 if (use_adaptive_coalesce) { 4262 rc->itr_mode = ITR_DYNAMIC; 4263 } else { 4264 rc->itr_mode = ITR_STATIC; 4265 /* store user facing value how it was set */ 4266 rc->itr_setting = coalesce_usecs; 4267 /* write the change to the register */ 4268 ice_write_itr(rc, coalesce_usecs); 4269 /* force writes to take effect immediately, the flush shouldn't 4270 * be done in the functions above because the intent is for 4271 * them to do lazy writes. 4272 */ 4273 ice_flush(&pf->hw); 4274 } 4275 4276 return 0; 4277 } 4278 4279 /** 4280 * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings 4281 * @vsi: VSI associated to the queue that need updating 4282 * @ec: coalesce settings to program the device with 4283 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4284 * 4285 * Return 0 on success, and negative under the following conditions: 4286 * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed. 4287 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4288 */ 4289 static int 4290 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4291 { 4292 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4293 if (ice_set_rc_coalesce(ec, 4294 &vsi->rx_rings[q_num]->q_vector->rx, 4295 vsi)) 4296 return -EINVAL; 4297 4298 if (ice_set_rc_coalesce(ec, 4299 &vsi->tx_rings[q_num]->q_vector->tx, 4300 vsi)) 4301 return -EINVAL; 4302 } else if (q_num < vsi->num_rxq) { 4303 if (ice_set_rc_coalesce(ec, 4304 &vsi->rx_rings[q_num]->q_vector->rx, 4305 vsi)) 4306 return -EINVAL; 4307 } else if (q_num < vsi->num_txq) { 4308 if (ice_set_rc_coalesce(ec, 4309 &vsi->tx_rings[q_num]->q_vector->tx, 4310 vsi)) 4311 return -EINVAL; 4312 } else { 4313 return -EINVAL; 4314 } 4315 4316 return 0; 4317 } 4318 4319 /** 4320 * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs 4321 * @netdev: netdev used for print 4322 * @itr_setting: previous user setting 4323 * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled 4324 * @coalesce_usecs: requested value of [tx|rx]-usecs 4325 * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs 4326 */ 4327 static void 4328 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting, 4329 u32 use_adaptive_coalesce, u32 coalesce_usecs, 4330 const char *c_type_str) 4331 { 4332 if (use_adaptive_coalesce) 4333 return; 4334 4335 if (itr_setting != coalesce_usecs && (coalesce_usecs % 2)) 4336 netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n", 4337 c_type_str, coalesce_usecs, c_type_str, 4338 ITR_REG_ALIGN(coalesce_usecs)); 4339 } 4340 4341 /** 4342 * __ice_set_coalesce - set ITR/INTRL values for the device 4343 * @netdev: pointer to the netdev associated with this query 4344 * @ec: ethtool structure to fill with driver's coalesce settings 4345 * @q_num: queue number to get the coalesce settings for 4346 * 4347 * If the caller passes in a negative q_num then we set the coalesce settings 4348 * for all Tx/Rx queues, else use the actual q_num passed in. 4349 */ 4350 static int 4351 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4352 int q_num) 4353 { 4354 struct ice_netdev_priv *np = netdev_priv(netdev); 4355 struct ice_vsi *vsi = np->vsi; 4356 4357 if (q_num < 0) { 4358 struct ice_q_vector *q_vector = vsi->q_vectors[0]; 4359 int v_idx; 4360 4361 if (q_vector) { 4362 ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting, 4363 ec->use_adaptive_rx_coalesce, 4364 ec->rx_coalesce_usecs, "rx"); 4365 4366 ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting, 4367 ec->use_adaptive_tx_coalesce, 4368 ec->tx_coalesce_usecs, "tx"); 4369 } 4370 4371 ice_for_each_q_vector(vsi, v_idx) { 4372 /* In some cases if DCB is configured the num_[rx|tx]q 4373 * can be less than vsi->num_q_vectors. This check 4374 * accounts for that so we don't report a false failure 4375 */ 4376 if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq) 4377 goto set_complete; 4378 4379 if (ice_set_q_coalesce(vsi, ec, v_idx)) 4380 return -EINVAL; 4381 4382 ice_set_q_vector_intrl(vsi->q_vectors[v_idx]); 4383 } 4384 goto set_complete; 4385 } 4386 4387 if (ice_set_q_coalesce(vsi, ec, q_num)) 4388 return -EINVAL; 4389 4390 ice_set_q_vector_intrl(vsi->q_vectors[q_num]); 4391 4392 set_complete: 4393 return 0; 4394 } 4395 4396 static int ice_set_coalesce(struct net_device *netdev, 4397 struct ethtool_coalesce *ec, 4398 struct kernel_ethtool_coalesce *kernel_coal, 4399 struct netlink_ext_ack *extack) 4400 { 4401 return __ice_set_coalesce(netdev, ec, -1); 4402 } 4403 4404 static int 4405 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num, 4406 struct ethtool_coalesce *ec) 4407 { 4408 return __ice_set_coalesce(netdev, ec, q_num); 4409 } 4410 4411 static void 4412 ice_repr_get_drvinfo(struct net_device *netdev, 4413 struct ethtool_drvinfo *drvinfo) 4414 { 4415 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4416 4417 if (ice_check_vf_ready_for_cfg(repr->vf)) 4418 return; 4419 4420 __ice_get_drvinfo(netdev, drvinfo, repr->src_vsi); 4421 } 4422 4423 static void 4424 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 4425 { 4426 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4427 4428 /* for port representors only ETH_SS_STATS is supported */ 4429 if (ice_check_vf_ready_for_cfg(repr->vf) || 4430 stringset != ETH_SS_STATS) 4431 return; 4432 4433 __ice_get_strings(netdev, stringset, data, repr->src_vsi); 4434 } 4435 4436 static void 4437 ice_repr_get_ethtool_stats(struct net_device *netdev, 4438 struct ethtool_stats __always_unused *stats, 4439 u64 *data) 4440 { 4441 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4442 4443 if (ice_check_vf_ready_for_cfg(repr->vf)) 4444 return; 4445 4446 __ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi); 4447 } 4448 4449 static int ice_repr_get_sset_count(struct net_device *netdev, int sset) 4450 { 4451 switch (sset) { 4452 case ETH_SS_STATS: 4453 return ICE_VSI_STATS_LEN; 4454 default: 4455 return -EOPNOTSUPP; 4456 } 4457 } 4458 4459 #define ICE_I2C_EEPROM_DEV_ADDR 0xA0 4460 #define ICE_I2C_EEPROM_DEV_ADDR2 0xA2 4461 #define ICE_MODULE_TYPE_SFP 0x03 4462 #define ICE_MODULE_TYPE_QSFP_PLUS 0x0D 4463 #define ICE_MODULE_TYPE_QSFP28 0x11 4464 #define ICE_MODULE_SFF_ADDR_MODE 0x04 4465 #define ICE_MODULE_SFF_DIAG_CAPAB 0x40 4466 #define ICE_MODULE_REVISION_ADDR 0x01 4467 #define ICE_MODULE_SFF_8472_COMP 0x5E 4468 #define ICE_MODULE_SFF_8472_SWAP 0x5C 4469 #define ICE_MODULE_QSFP_MAX_LEN 640 4470 4471 /** 4472 * ice_get_module_info - get SFF module type and revision information 4473 * @netdev: network interface device structure 4474 * @modinfo: module EEPROM size and layout information structure 4475 */ 4476 static int 4477 ice_get_module_info(struct net_device *netdev, 4478 struct ethtool_modinfo *modinfo) 4479 { 4480 struct ice_netdev_priv *np = netdev_priv(netdev); 4481 struct ice_vsi *vsi = np->vsi; 4482 struct ice_pf *pf = vsi->back; 4483 struct ice_hw *hw = &pf->hw; 4484 u8 sff8472_comp = 0; 4485 u8 sff8472_swap = 0; 4486 u8 sff8636_rev = 0; 4487 u8 value = 0; 4488 int status; 4489 4490 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00, 4491 0, &value, 1, 0, NULL); 4492 if (status) 4493 return status; 4494 4495 switch (value) { 4496 case ICE_MODULE_TYPE_SFP: 4497 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4498 ICE_MODULE_SFF_8472_COMP, 0x00, 0, 4499 &sff8472_comp, 1, 0, NULL); 4500 if (status) 4501 return status; 4502 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4503 ICE_MODULE_SFF_8472_SWAP, 0x00, 0, 4504 &sff8472_swap, 1, 0, NULL); 4505 if (status) 4506 return status; 4507 4508 if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) { 4509 modinfo->type = ETH_MODULE_SFF_8079; 4510 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4511 } else if (sff8472_comp && 4512 (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) { 4513 modinfo->type = ETH_MODULE_SFF_8472; 4514 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 4515 } else { 4516 modinfo->type = ETH_MODULE_SFF_8079; 4517 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4518 } 4519 break; 4520 case ICE_MODULE_TYPE_QSFP_PLUS: 4521 case ICE_MODULE_TYPE_QSFP28: 4522 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4523 ICE_MODULE_REVISION_ADDR, 0x00, 0, 4524 &sff8636_rev, 1, 0, NULL); 4525 if (status) 4526 return status; 4527 /* Check revision compliance */ 4528 if (sff8636_rev > 0x02) { 4529 /* Module is SFF-8636 compliant */ 4530 modinfo->type = ETH_MODULE_SFF_8636; 4531 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4532 } else { 4533 modinfo->type = ETH_MODULE_SFF_8436; 4534 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4535 } 4536 break; 4537 default: 4538 netdev_warn(netdev, "SFF Module Type not recognized.\n"); 4539 return -EINVAL; 4540 } 4541 return 0; 4542 } 4543 4544 /** 4545 * ice_get_module_eeprom - fill buffer with SFF EEPROM contents 4546 * @netdev: network interface device structure 4547 * @ee: EEPROM dump request structure 4548 * @data: buffer to be filled with EEPROM contents 4549 */ 4550 static int 4551 ice_get_module_eeprom(struct net_device *netdev, 4552 struct ethtool_eeprom *ee, u8 *data) 4553 { 4554 struct ice_netdev_priv *np = netdev_priv(netdev); 4555 #define SFF_READ_BLOCK_SIZE 8 4556 u8 value[SFF_READ_BLOCK_SIZE] = { 0 }; 4557 u8 addr = ICE_I2C_EEPROM_DEV_ADDR; 4558 struct ice_vsi *vsi = np->vsi; 4559 struct ice_pf *pf = vsi->back; 4560 struct ice_hw *hw = &pf->hw; 4561 bool is_sfp = false; 4562 unsigned int i, j; 4563 u16 offset = 0; 4564 u8 page = 0; 4565 int status; 4566 4567 if (!ee || !ee->len || !data) 4568 return -EINVAL; 4569 4570 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0, 4571 NULL); 4572 if (status) 4573 return status; 4574 4575 if (value[0] == ICE_MODULE_TYPE_SFP) 4576 is_sfp = true; 4577 4578 memset(data, 0, ee->len); 4579 for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) { 4580 offset = i + ee->offset; 4581 page = 0; 4582 4583 /* Check if we need to access the other memory page */ 4584 if (is_sfp) { 4585 if (offset >= ETH_MODULE_SFF_8079_LEN) { 4586 offset -= ETH_MODULE_SFF_8079_LEN; 4587 addr = ICE_I2C_EEPROM_DEV_ADDR2; 4588 } 4589 } else { 4590 while (offset >= ETH_MODULE_SFF_8436_LEN) { 4591 /* Compute memory page number and offset. */ 4592 offset -= ETH_MODULE_SFF_8436_LEN / 2; 4593 page++; 4594 } 4595 } 4596 4597 /* Bit 2 of EEPROM address 0x02 declares upper 4598 * pages are disabled on QSFP modules. 4599 * SFP modules only ever use page 0. 4600 */ 4601 if (page == 0 || !(data[0x2] & 0x4)) { 4602 u32 copy_len; 4603 4604 /* If i2c bus is busy due to slow page change or 4605 * link management access, call can fail. This is normal. 4606 * So we retry this a few times. 4607 */ 4608 for (j = 0; j < 4; j++) { 4609 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 4610 !is_sfp, value, 4611 SFF_READ_BLOCK_SIZE, 4612 0, NULL); 4613 netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n", 4614 addr, offset, page, is_sfp, 4615 value[0], value[1], value[2], value[3], 4616 value[4], value[5], value[6], value[7], 4617 status); 4618 if (status) { 4619 usleep_range(1500, 2500); 4620 memset(value, 0, SFF_READ_BLOCK_SIZE); 4621 continue; 4622 } 4623 break; 4624 } 4625 4626 /* Make sure we have enough room for the new block */ 4627 copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i); 4628 memcpy(data + i, value, copy_len); 4629 } 4630 } 4631 return 0; 4632 } 4633 4634 /** 4635 * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per 4636 * pcsquad, pcsport 4637 * @hw: pointer to the HW struct 4638 * @pcs_quad: pcsquad for input port 4639 * @pcs_port: pcsport for input port 4640 * @fec_stats: buffer to hold FEC statistics for given port 4641 * 4642 * Return: 0 on success, negative on failure. 4643 */ 4644 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port, 4645 struct ethtool_fec_stats *fec_stats) 4646 { 4647 u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0; 4648 u32 fec_corr_low_val = 0, fec_corr_high_val = 0; 4649 int err; 4650 4651 if (pcs_quad > 1 || pcs_port > 3) 4652 return -EINVAL; 4653 4654 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW, 4655 &fec_corr_low_val); 4656 if (err) 4657 return err; 4658 4659 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH, 4660 &fec_corr_high_val); 4661 if (err) 4662 return err; 4663 4664 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4665 ICE_FEC_UNCORR_LOW, 4666 &fec_uncorr_low_val); 4667 if (err) 4668 return err; 4669 4670 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4671 ICE_FEC_UNCORR_HIGH, 4672 &fec_uncorr_high_val); 4673 if (err) 4674 return err; 4675 4676 fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) + 4677 fec_corr_low_val; 4678 fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) + 4679 fec_uncorr_low_val; 4680 return 0; 4681 } 4682 4683 /** 4684 * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev 4685 * @netdev: network interface device structure 4686 * @fec_stats: buffer to hold FEC statistics for given port 4687 * 4688 */ 4689 static void ice_get_fec_stats(struct net_device *netdev, 4690 struct ethtool_fec_stats *fec_stats) 4691 { 4692 struct ice_netdev_priv *np = netdev_priv(netdev); 4693 struct ice_port_topology port_topology; 4694 struct ice_port_info *pi; 4695 struct ice_pf *pf; 4696 struct ice_hw *hw; 4697 int err; 4698 4699 pf = np->vsi->back; 4700 hw = &pf->hw; 4701 pi = np->vsi->port_info; 4702 4703 /* Serdes parameters are not supported if not the PF VSI */ 4704 if (np->vsi->type != ICE_VSI_PF || !pi) 4705 return; 4706 4707 err = ice_get_port_topology(hw, pi->lport, &port_topology); 4708 if (err) { 4709 netdev_info(netdev, "Extended register dump failed Lport %d\n", 4710 pi->lport); 4711 return; 4712 } 4713 4714 /* Get FEC correctable, uncorrectable counter */ 4715 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select, 4716 port_topology.pcs_port, fec_stats); 4717 if (err) 4718 netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n", 4719 pi->lport, err); 4720 } 4721 4722 static const struct ethtool_ops ice_ethtool_ops = { 4723 .cap_rss_ctx_supported = true, 4724 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 4725 ETHTOOL_COALESCE_USE_ADAPTIVE | 4726 ETHTOOL_COALESCE_RX_USECS_HIGH, 4727 .cap_rss_sym_xor_supported = true, 4728 .get_link_ksettings = ice_get_link_ksettings, 4729 .set_link_ksettings = ice_set_link_ksettings, 4730 .get_fec_stats = ice_get_fec_stats, 4731 .get_drvinfo = ice_get_drvinfo, 4732 .get_regs_len = ice_get_regs_len, 4733 .get_regs = ice_get_regs, 4734 .get_wol = ice_get_wol, 4735 .set_wol = ice_set_wol, 4736 .get_msglevel = ice_get_msglevel, 4737 .set_msglevel = ice_set_msglevel, 4738 .self_test = ice_self_test, 4739 .get_link = ethtool_op_get_link, 4740 .get_eeprom_len = ice_get_eeprom_len, 4741 .get_eeprom = ice_get_eeprom, 4742 .get_coalesce = ice_get_coalesce, 4743 .set_coalesce = ice_set_coalesce, 4744 .get_strings = ice_get_strings, 4745 .set_phys_id = ice_set_phys_id, 4746 .get_ethtool_stats = ice_get_ethtool_stats, 4747 .get_priv_flags = ice_get_priv_flags, 4748 .set_priv_flags = ice_set_priv_flags, 4749 .get_sset_count = ice_get_sset_count, 4750 .get_rxnfc = ice_get_rxnfc, 4751 .set_rxnfc = ice_set_rxnfc, 4752 .get_ringparam = ice_get_ringparam, 4753 .set_ringparam = ice_set_ringparam, 4754 .nway_reset = ice_nway_reset, 4755 .get_pauseparam = ice_get_pauseparam, 4756 .set_pauseparam = ice_set_pauseparam, 4757 .get_rxfh_key_size = ice_get_rxfh_key_size, 4758 .get_rxfh_indir_size = ice_get_rxfh_indir_size, 4759 .get_rxfh = ice_get_rxfh, 4760 .set_rxfh = ice_set_rxfh, 4761 .get_channels = ice_get_channels, 4762 .set_channels = ice_set_channels, 4763 .get_ts_info = ice_get_ts_info, 4764 .get_per_queue_coalesce = ice_get_per_q_coalesce, 4765 .set_per_queue_coalesce = ice_set_per_q_coalesce, 4766 .get_fecparam = ice_get_fecparam, 4767 .set_fecparam = ice_set_fecparam, 4768 .get_module_info = ice_get_module_info, 4769 .get_module_eeprom = ice_get_module_eeprom, 4770 }; 4771 4772 static const struct ethtool_ops ice_ethtool_safe_mode_ops = { 4773 .get_link_ksettings = ice_get_link_ksettings, 4774 .set_link_ksettings = ice_set_link_ksettings, 4775 .get_drvinfo = ice_get_drvinfo, 4776 .get_regs_len = ice_get_regs_len, 4777 .get_regs = ice_get_regs, 4778 .get_wol = ice_get_wol, 4779 .set_wol = ice_set_wol, 4780 .get_msglevel = ice_get_msglevel, 4781 .set_msglevel = ice_set_msglevel, 4782 .get_link = ethtool_op_get_link, 4783 .get_eeprom_len = ice_get_eeprom_len, 4784 .get_eeprom = ice_get_eeprom, 4785 .get_strings = ice_get_strings, 4786 .get_ethtool_stats = ice_get_ethtool_stats, 4787 .get_sset_count = ice_get_sset_count, 4788 .get_ringparam = ice_get_ringparam, 4789 .set_ringparam = ice_set_ringparam, 4790 .nway_reset = ice_nway_reset, 4791 .get_channels = ice_get_channels, 4792 }; 4793 4794 /** 4795 * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops 4796 * @netdev: network interface device structure 4797 */ 4798 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev) 4799 { 4800 netdev->ethtool_ops = &ice_ethtool_safe_mode_ops; 4801 } 4802 4803 static const struct ethtool_ops ice_ethtool_repr_ops = { 4804 .get_drvinfo = ice_repr_get_drvinfo, 4805 .get_link = ethtool_op_get_link, 4806 .get_strings = ice_repr_get_strings, 4807 .get_ethtool_stats = ice_repr_get_ethtool_stats, 4808 .get_sset_count = ice_repr_get_sset_count, 4809 }; 4810 4811 /** 4812 * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops 4813 * @netdev: network interface device structure 4814 */ 4815 void ice_set_ethtool_repr_ops(struct net_device *netdev) 4816 { 4817 netdev->ethtool_ops = &ice_ethtool_repr_ops; 4818 } 4819 4820 /** 4821 * ice_set_ethtool_ops - setup netdev ethtool ops 4822 * @netdev: network interface device structure 4823 * 4824 * setup netdev ethtool ops with ice specific ops 4825 */ 4826 void ice_set_ethtool_ops(struct net_device *netdev) 4827 { 4828 netdev->ethtool_ops = &ice_ethtool_ops; 4829 } 4830