xref: /linux/drivers/net/ethernet/intel/ice/ice_ethtool.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* ethtool support for ice */
5 
6 #include "ice.h"
7 #include "ice_ethtool.h"
8 #include "ice_flow.h"
9 #include "ice_fltr.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include <net/dcbnl.h>
13 
14 struct ice_stats {
15 	char stat_string[ETH_GSTRING_LEN];
16 	int sizeof_stat;
17 	int stat_offset;
18 };
19 
20 #define ICE_STAT(_type, _name, _stat) { \
21 	.stat_string = _name, \
22 	.sizeof_stat = sizeof_field(_type, _stat), \
23 	.stat_offset = offsetof(_type, _stat) \
24 }
25 
26 #define ICE_VSI_STAT(_name, _stat) \
27 		ICE_STAT(struct ice_vsi, _name, _stat)
28 #define ICE_PF_STAT(_name, _stat) \
29 		ICE_STAT(struct ice_pf, _name, _stat)
30 
31 static int ice_q_stats_len(struct net_device *netdev)
32 {
33 	struct ice_netdev_priv *np = netdev_priv(netdev);
34 
35 	return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) *
36 		(sizeof(struct ice_q_stats) / sizeof(u64)));
37 }
38 
39 #define ICE_PF_STATS_LEN	ARRAY_SIZE(ice_gstrings_pf_stats)
40 #define ICE_VSI_STATS_LEN	ARRAY_SIZE(ice_gstrings_vsi_stats)
41 
42 #define ICE_PFC_STATS_LEN ( \
43 		(sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \
44 		 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \
45 		 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \
46 		 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \
47 		 / sizeof(u64))
48 #define ICE_ALL_STATS_LEN(n)	(ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \
49 				 ICE_VSI_STATS_LEN + ice_q_stats_len(n))
50 
51 static const struct ice_stats ice_gstrings_vsi_stats[] = {
52 	ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast),
53 	ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast),
54 	ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast),
55 	ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast),
56 	ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast),
57 	ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast),
58 	ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes),
59 	ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes),
60 	ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards),
61 	ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol),
62 	ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed),
63 	ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed),
64 	ICE_VSI_STAT("tx_errors", eth_stats.tx_errors),
65 	ICE_VSI_STAT("tx_linearize", tx_linearize),
66 	ICE_VSI_STAT("tx_busy", tx_busy),
67 	ICE_VSI_STAT("tx_restart", tx_restart),
68 };
69 
70 enum ice_ethtool_test_id {
71 	ICE_ETH_TEST_REG = 0,
72 	ICE_ETH_TEST_EEPROM,
73 	ICE_ETH_TEST_INTR,
74 	ICE_ETH_TEST_LOOP,
75 	ICE_ETH_TEST_LINK,
76 };
77 
78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = {
79 	"Register test  (offline)",
80 	"EEPROM test    (offline)",
81 	"Interrupt test (offline)",
82 	"Loopback test  (offline)",
83 	"Link test   (on/offline)",
84 };
85 
86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN)
87 
88 /* These PF_STATs might look like duplicates of some NETDEV_STATs,
89  * but they aren't. This device is capable of supporting multiple
90  * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual
91  * netdevs whereas the PF_STATs are for the physical function that's
92  * hosting these netdevs.
93  *
94  * The PF_STATs are appended to the netdev stats only when ethtool -S
95  * is queried on the base PF netdev.
96  */
97 static const struct ice_stats ice_gstrings_pf_stats[] = {
98 	ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes),
99 	ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes),
100 	ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast),
101 	ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast),
102 	ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast),
103 	ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast),
104 	ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast),
105 	ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast),
106 	ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors),
107 	ICE_PF_STAT("tx_timeout.nic", tx_timeout_count),
108 	ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64),
109 	ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64),
110 	ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127),
111 	ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127),
112 	ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255),
113 	ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255),
114 	ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511),
115 	ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511),
116 	ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023),
117 	ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023),
118 	ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522),
119 	ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522),
120 	ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big),
121 	ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big),
122 	ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx),
123 	ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx),
124 	ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx),
125 	ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx),
126 	ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down),
127 	ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize),
128 	ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments),
129 	ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize),
130 	ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber),
131 	ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error),
132 	ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error),
133 	ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards),
134 	ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors),
135 	ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes),
136 	ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults),
137 	ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults),
138 	ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match),
139 	ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status),
140 	ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped),
141 	ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts),
142 	ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed),
143 	ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded),
144 	ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates),
145 };
146 
147 static const u32 ice_regs_dump_list[] = {
148 	PFGEN_STATE,
149 	PRTGEN_STATUS,
150 	QRX_CTRL(0),
151 	QINT_TQCTL(0),
152 	QINT_RQCTL(0),
153 	PFINT_OICR_ENA,
154 	QRX_ITR(0),
155 #define GLDCB_TLPM_PCI_DM			0x000A0180
156 	GLDCB_TLPM_PCI_DM,
157 #define GLDCB_TLPM_TC2PFC			0x000A0194
158 	GLDCB_TLPM_TC2PFC,
159 #define TCDCB_TLPM_WAIT_DM(_i)			(0x000A0080 + ((_i) * 4))
160 	TCDCB_TLPM_WAIT_DM(0),
161 	TCDCB_TLPM_WAIT_DM(1),
162 	TCDCB_TLPM_WAIT_DM(2),
163 	TCDCB_TLPM_WAIT_DM(3),
164 	TCDCB_TLPM_WAIT_DM(4),
165 	TCDCB_TLPM_WAIT_DM(5),
166 	TCDCB_TLPM_WAIT_DM(6),
167 	TCDCB_TLPM_WAIT_DM(7),
168 	TCDCB_TLPM_WAIT_DM(8),
169 	TCDCB_TLPM_WAIT_DM(9),
170 	TCDCB_TLPM_WAIT_DM(10),
171 	TCDCB_TLPM_WAIT_DM(11),
172 	TCDCB_TLPM_WAIT_DM(12),
173 	TCDCB_TLPM_WAIT_DM(13),
174 	TCDCB_TLPM_WAIT_DM(14),
175 	TCDCB_TLPM_WAIT_DM(15),
176 	TCDCB_TLPM_WAIT_DM(16),
177 	TCDCB_TLPM_WAIT_DM(17),
178 	TCDCB_TLPM_WAIT_DM(18),
179 	TCDCB_TLPM_WAIT_DM(19),
180 	TCDCB_TLPM_WAIT_DM(20),
181 	TCDCB_TLPM_WAIT_DM(21),
182 	TCDCB_TLPM_WAIT_DM(22),
183 	TCDCB_TLPM_WAIT_DM(23),
184 	TCDCB_TLPM_WAIT_DM(24),
185 	TCDCB_TLPM_WAIT_DM(25),
186 	TCDCB_TLPM_WAIT_DM(26),
187 	TCDCB_TLPM_WAIT_DM(27),
188 	TCDCB_TLPM_WAIT_DM(28),
189 	TCDCB_TLPM_WAIT_DM(29),
190 	TCDCB_TLPM_WAIT_DM(30),
191 	TCDCB_TLPM_WAIT_DM(31),
192 #define GLPCI_WATMK_CLNT_PIPEMON		0x000BFD90
193 	GLPCI_WATMK_CLNT_PIPEMON,
194 #define GLPCI_CUR_CLNT_COMMON			0x000BFD84
195 	GLPCI_CUR_CLNT_COMMON,
196 #define GLPCI_CUR_CLNT_PIPEMON			0x000BFD88
197 	GLPCI_CUR_CLNT_PIPEMON,
198 #define GLPCI_PCIERR				0x0009DEB0
199 	GLPCI_PCIERR,
200 #define GLPSM_DEBUG_CTL_STATUS			0x000B0600
201 	GLPSM_DEBUG_CTL_STATUS,
202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT	0x000B0680
203 	GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT,
204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT	0x000B0684
205 	GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT,
206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW		0x000B0688
207 	GLPSM0_DEBUG_DT_OUT_OF_WINDOW,
208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT	0x000B069C
209 	GLPSM0_DEBUG_INTF_HW_ERROR_DETECT,
210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT	0x000B06A0
211 	GLPSM0_DEBUG_MISC_HW_ERROR_DETECT,
212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT	0x000B0E80
213 	GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT,
214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT	0x000B0E84
215 	GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT,
216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT	0x000B0E88
217 	GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT,
218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT  0x000B0E8C
219 	GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT,
220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT       0x000B0E90
221 	GLPSM1_DEBUG_MISC_HW_ERROR_DETECT,
222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT       0x000B1680
223 	GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT,
224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT      0x000B1684
225 	GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT,
226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT       0x000B1688
227 	GLPSM2_DEBUG_MISC_HW_ERROR_DETECT,
228 #define GLTDPU_TCLAN_COMP_BOB(_i)               (0x00049ADC + ((_i) * 4))
229 	GLTDPU_TCLAN_COMP_BOB(1),
230 	GLTDPU_TCLAN_COMP_BOB(2),
231 	GLTDPU_TCLAN_COMP_BOB(3),
232 	GLTDPU_TCLAN_COMP_BOB(4),
233 	GLTDPU_TCLAN_COMP_BOB(5),
234 	GLTDPU_TCLAN_COMP_BOB(6),
235 	GLTDPU_TCLAN_COMP_BOB(7),
236 	GLTDPU_TCLAN_COMP_BOB(8),
237 #define GLTDPU_TCB_CMD_BOB(_i)                  (0x0004975C + ((_i) * 4))
238 	GLTDPU_TCB_CMD_BOB(1),
239 	GLTDPU_TCB_CMD_BOB(2),
240 	GLTDPU_TCB_CMD_BOB(3),
241 	GLTDPU_TCB_CMD_BOB(4),
242 	GLTDPU_TCB_CMD_BOB(5),
243 	GLTDPU_TCB_CMD_BOB(6),
244 	GLTDPU_TCB_CMD_BOB(7),
245 	GLTDPU_TCB_CMD_BOB(8),
246 #define GLTDPU_PSM_UPDATE_BOB(_i)               (0x00049B5C + ((_i) * 4))
247 	GLTDPU_PSM_UPDATE_BOB(1),
248 	GLTDPU_PSM_UPDATE_BOB(2),
249 	GLTDPU_PSM_UPDATE_BOB(3),
250 	GLTDPU_PSM_UPDATE_BOB(4),
251 	GLTDPU_PSM_UPDATE_BOB(5),
252 	GLTDPU_PSM_UPDATE_BOB(6),
253 	GLTDPU_PSM_UPDATE_BOB(7),
254 	GLTDPU_PSM_UPDATE_BOB(8),
255 #define GLTCB_CMD_IN_BOB(_i)                    (0x000AE288 + ((_i) * 4))
256 	GLTCB_CMD_IN_BOB(1),
257 	GLTCB_CMD_IN_BOB(2),
258 	GLTCB_CMD_IN_BOB(3),
259 	GLTCB_CMD_IN_BOB(4),
260 	GLTCB_CMD_IN_BOB(5),
261 	GLTCB_CMD_IN_BOB(6),
262 	GLTCB_CMD_IN_BOB(7),
263 	GLTCB_CMD_IN_BOB(8),
264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i)   (0x000FC148 + ((_i) * 4))
265 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1),
266 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2),
267 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3),
268 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4),
269 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5),
270 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6),
271 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7),
272 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8),
273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4))
274 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1),
275 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2),
276 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3),
277 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4),
278 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5),
279 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6),
280 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7),
281 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8),
282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i)       (0x000FC1C8 + ((_i) * 4))
283 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1),
284 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2),
285 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3),
286 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4),
287 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5),
288 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6),
289 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7),
290 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8),
291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i)  (0x000FC188 + ((_i) * 4))
292 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1),
293 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2),
294 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3),
295 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4),
296 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5),
297 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6),
298 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7),
299 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8),
300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4))
301 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1),
302 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2),
303 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3),
304 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4),
305 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5),
306 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6),
307 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7),
308 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8),
309 #define PRTDCB_TCUPM_REG_CM(_i)			(0x000BC360 + ((_i) * 4))
310 	PRTDCB_TCUPM_REG_CM(0),
311 	PRTDCB_TCUPM_REG_CM(1),
312 	PRTDCB_TCUPM_REG_CM(2),
313 	PRTDCB_TCUPM_REG_CM(3),
314 #define PRTDCB_TCUPM_REG_DM(_i)			(0x000BC3A0 + ((_i) * 4))
315 	PRTDCB_TCUPM_REG_DM(0),
316 	PRTDCB_TCUPM_REG_DM(1),
317 	PRTDCB_TCUPM_REG_DM(2),
318 	PRTDCB_TCUPM_REG_DM(3),
319 #define PRTDCB_TLPM_REG_DM(_i)			(0x000A0000 + ((_i) * 4))
320 	PRTDCB_TLPM_REG_DM(0),
321 	PRTDCB_TLPM_REG_DM(1),
322 	PRTDCB_TLPM_REG_DM(2),
323 	PRTDCB_TLPM_REG_DM(3),
324 };
325 
326 struct ice_priv_flag {
327 	char name[ETH_GSTRING_LEN];
328 	u32 bitno;			/* bit position in pf->flags */
329 };
330 
331 #define ICE_PRIV_FLAG(_name, _bitno) { \
332 	.name = _name, \
333 	.bitno = _bitno, \
334 }
335 
336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = {
337 	ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA),
338 	ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT),
339 	ICE_PRIV_FLAG("vf-true-promisc-support",
340 		      ICE_FLAG_VF_TRUE_PROMISC_ENA),
341 	ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF),
342 	ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING),
343 	ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX),
344 };
345 
346 #define ICE_PRIV_FLAG_ARRAY_SIZE	ARRAY_SIZE(ice_gstrings_priv_flags)
347 
348 static const u32 ice_adv_lnk_speed_100[] __initconst = {
349 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
350 };
351 
352 static const u32 ice_adv_lnk_speed_1000[] __initconst = {
353 	ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
354 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
355 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
356 };
357 
358 static const u32 ice_adv_lnk_speed_2500[] __initconst = {
359 	ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
360 	ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
361 };
362 
363 static const u32 ice_adv_lnk_speed_5000[] __initconst = {
364 	ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
365 };
366 
367 static const u32 ice_adv_lnk_speed_10000[] __initconst = {
368 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
369 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
370 	ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
371 	ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
372 };
373 
374 static const u32 ice_adv_lnk_speed_25000[] __initconst = {
375 	ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
376 	ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
377 	ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
378 };
379 
380 static const u32 ice_adv_lnk_speed_40000[] __initconst = {
381 	ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
382 	ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
383 	ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
384 	ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
385 };
386 
387 static const u32 ice_adv_lnk_speed_50000[] __initconst = {
388 	ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
389 	ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
390 	ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
391 };
392 
393 static const u32 ice_adv_lnk_speed_100000[] __initconst = {
394 	ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
395 	ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
396 	ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
397 	ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
398 	ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
399 	ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
400 	ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
401 };
402 
403 static const u32 ice_adv_lnk_speed_200000[] __initconst = {
404 	ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
405 	ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
406 	ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
407 	ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT,
408 	ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
409 };
410 
411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = {
412 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100),
413 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000),
414 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500),
415 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000),
416 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000),
417 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000),
418 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000),
419 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000),
420 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000),
421 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000),
422 };
423 
424 void __init ice_adv_lnk_speed_maps_init(void)
425 {
426 	ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps,
427 				       ARRAY_SIZE(ice_adv_lnk_speed_maps));
428 }
429 
430 static void
431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo,
432 		  struct ice_vsi *vsi)
433 {
434 	struct ice_pf *pf = vsi->back;
435 	struct ice_hw *hw = &pf->hw;
436 	struct ice_orom_info *orom;
437 	struct ice_nvm_info *nvm;
438 
439 	nvm = &hw->flash.nvm;
440 	orom = &hw->flash.orom;
441 
442 	strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
443 
444 	/* Display NVM version (from which the firmware version can be
445 	 * determined) which contains more pertinent information.
446 	 */
447 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
448 		 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor,
449 		 nvm->eetrack, orom->major, orom->build, orom->patch);
450 
451 	strscpy(drvinfo->bus_info, pci_name(pf->pdev),
452 		sizeof(drvinfo->bus_info));
453 }
454 
455 static void
456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
457 {
458 	struct ice_netdev_priv *np = netdev_priv(netdev);
459 
460 	__ice_get_drvinfo(netdev, drvinfo, np->vsi);
461 	drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE;
462 }
463 
464 static int ice_get_regs_len(struct net_device __always_unused *netdev)
465 {
466 	return (sizeof(ice_regs_dump_list) +
467 		sizeof(struct ice_regdump_to_ethtool));
468 }
469 
470 /**
471  * ice_ethtool_get_maxspeed - Get the max speed for given lport
472  * @hw: pointer to the HW struct
473  * @lport: logical port for which max speed is requested
474  * @max_speed: return max speed for input lport
475  *
476  * Return: 0 on success, negative on failure.
477  */
478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed)
479 {
480 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {};
481 	bool active_valid = false, pending_valid = true;
482 	u8 option_count = ICE_AQC_PORT_OPT_MAX;
483 	u8 active_idx = 0, pending_idx = 0;
484 	int status;
485 
486 	status = ice_aq_get_port_options(hw, options, &option_count, lport,
487 					 true, &active_idx, &active_valid,
488 					 &pending_idx, &pending_valid);
489 	if (status)
490 		return -EIO;
491 	if (!active_valid)
492 		return -EINVAL;
493 
494 	*max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M;
495 	return 0;
496 }
497 
498 /**
499  * ice_is_serdes_muxed - returns whether serdes is muxed in hardware
500  * @hw: pointer to the HW struct
501  *
502  * Return: true when serdes is muxed, false when serdes is not muxed.
503  */
504 static bool ice_is_serdes_muxed(struct ice_hw *hw)
505 {
506 	u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
507 
508 	return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value);
509 }
510 
511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology,
512 					 u8 lport, bool is_muxed)
513 {
514 	switch (lport) {
515 	case 0:
516 		port_topology->pcs_quad_select = 0;
517 		port_topology->pcs_port = 0;
518 		port_topology->primary_serdes_lane = 0;
519 		break;
520 	case 1:
521 		port_topology->pcs_quad_select = 1;
522 		port_topology->pcs_port = 0;
523 		if (is_muxed)
524 			port_topology->primary_serdes_lane = 2;
525 		else
526 			port_topology->primary_serdes_lane = 4;
527 		break;
528 	case 2:
529 		port_topology->pcs_quad_select = 0;
530 		port_topology->pcs_port = 1;
531 		port_topology->primary_serdes_lane = 1;
532 		break;
533 	case 3:
534 		port_topology->pcs_quad_select = 1;
535 		port_topology->pcs_port = 1;
536 		if (is_muxed)
537 			port_topology->primary_serdes_lane = 3;
538 		else
539 			port_topology->primary_serdes_lane = 5;
540 		break;
541 	case 4:
542 		port_topology->pcs_quad_select = 0;
543 		port_topology->pcs_port = 2;
544 		port_topology->primary_serdes_lane = 2;
545 		break;
546 	case 5:
547 		port_topology->pcs_quad_select = 1;
548 		port_topology->pcs_port = 2;
549 		port_topology->primary_serdes_lane = 6;
550 		break;
551 	case 6:
552 		port_topology->pcs_quad_select = 0;
553 		port_topology->pcs_port = 3;
554 		port_topology->primary_serdes_lane = 3;
555 		break;
556 	case 7:
557 		port_topology->pcs_quad_select = 1;
558 		port_topology->pcs_port = 3;
559 		port_topology->primary_serdes_lane = 7;
560 		break;
561 	default:
562 		return -EINVAL;
563 	}
564 
565 	return 0;
566 }
567 
568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology,
569 					  u8 lport, bool is_muxed)
570 {
571 	switch (lport) {
572 	case 0:
573 		port_topology->pcs_quad_select = 0;
574 		port_topology->pcs_port = 0;
575 		port_topology->primary_serdes_lane = 0;
576 		break;
577 	case 1:
578 		port_topology->pcs_quad_select = 1;
579 		port_topology->pcs_port = 0;
580 		if (is_muxed)
581 			port_topology->primary_serdes_lane = 2;
582 		else
583 			port_topology->primary_serdes_lane = 4;
584 		break;
585 	case 2:
586 		port_topology->pcs_quad_select = 0;
587 		port_topology->pcs_port = 1;
588 		port_topology->primary_serdes_lane = 1;
589 		break;
590 	case 3:
591 		port_topology->pcs_quad_select = 1;
592 		port_topology->pcs_port = 1;
593 		if (is_muxed)
594 			port_topology->primary_serdes_lane = 3;
595 		else
596 			port_topology->primary_serdes_lane = 5;
597 		break;
598 	case 4:
599 		port_topology->pcs_quad_select = 0;
600 		port_topology->pcs_port = 2;
601 		port_topology->primary_serdes_lane = 2;
602 		break;
603 	case 5:
604 		port_topology->pcs_quad_select = 1;
605 		port_topology->pcs_port = 2;
606 		port_topology->primary_serdes_lane = 6;
607 		break;
608 	case 6:
609 		port_topology->pcs_quad_select = 0;
610 		port_topology->pcs_port = 3;
611 		port_topology->primary_serdes_lane = 3;
612 		break;
613 	case 7:
614 		port_topology->pcs_quad_select = 1;
615 		port_topology->pcs_port = 3;
616 		port_topology->primary_serdes_lane = 7;
617 		break;
618 	default:
619 		return -EINVAL;
620 	}
621 
622 	return 0;
623 }
624 
625 /**
626  * ice_get_port_topology - returns physical topology like pcsquad, pcsport,
627  *                         serdes number
628  * @hw: pointer to the HW struct
629  * @lport: logical port for which physical info requested
630  * @port_topology: buffer to hold port topology
631  *
632  * Return: 0 on success, negative on failure.
633  */
634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport,
635 				 struct ice_port_topology *port_topology)
636 {
637 	struct ice_aqc_get_link_topo cmd = {};
638 	u16 node_handle = 0;
639 	u8 cage_type = 0;
640 	bool is_muxed;
641 	int err;
642 	u8 ctx;
643 
644 	ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
645 	ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
646 	cmd.addr.topo_params.node_type_ctx = ctx;
647 
648 	err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle);
649 	if (err)
650 		return -EINVAL;
651 
652 	is_muxed = ice_is_serdes_muxed(hw);
653 
654 	if (cage_type == 0x11 ||	/* SFP+ */
655 	    cage_type == 0x12) {	/* SFP28 */
656 		port_topology->serdes_lane_count = 1;
657 		err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed);
658 		if (err)
659 			return err;
660 	} else if (cage_type == 0x13 ||	/* QSFP */
661 		   cage_type == 0x14) {	/* QSFP28 */
662 		u8 max_speed = 0;
663 
664 		err = ice_ethtool_get_maxspeed(hw, lport, &max_speed);
665 		if (err)
666 			return err;
667 
668 		if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G)
669 			port_topology->serdes_lane_count = 4;
670 		else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G)
671 			port_topology->serdes_lane_count = 2;
672 		else
673 			port_topology->serdes_lane_count = 1;
674 
675 		err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed);
676 		if (err)
677 			return err;
678 	} else {
679 		return -EINVAL;
680 	}
681 
682 	return 0;
683 }
684 
685 /**
686  * ice_get_tx_rx_equa - read serdes tx rx equaliser param
687  * @hw: pointer to the HW struct
688  * @serdes_num: represents the serdes number
689  * @ptr: structure to read all serdes parameter for given serdes
690  *
691  * Return: all serdes equalization parameter supported per serdes number
692  */
693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num,
694 			      struct ice_serdes_equalization_to_ethtool *ptr)
695 {
696 	int err;
697 
698 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_PRE1,
699 					  ICE_AQC_OP_CODE_TX_EQU, serdes_num,
700 					  &ptr->tx_equalization_pre1);
701 	if (err)
702 		return err;
703 
704 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_PRE3,
705 					  ICE_AQC_OP_CODE_TX_EQU, serdes_num,
706 					  &ptr->tx_equalization_pre3);
707 	if (err)
708 		return err;
709 
710 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_ATTEN,
711 					  ICE_AQC_OP_CODE_TX_EQU, serdes_num,
712 					  &ptr->tx_equalization_atten);
713 	if (err)
714 		return err;
715 
716 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_POST1,
717 					  ICE_AQC_OP_CODE_TX_EQU, serdes_num,
718 					  &ptr->tx_equalization_post1);
719 	if (err)
720 		return err;
721 
722 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_TX_EQU_PRE2,
723 					  ICE_AQC_OP_CODE_TX_EQU, serdes_num,
724 					  &ptr->tx_equalization_pre2);
725 	if (err)
726 		return err;
727 
728 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_PRE2,
729 					  ICE_AQC_OP_CODE_RX_EQU, serdes_num,
730 					  &ptr->rx_equalization_pre2);
731 	if (err)
732 		return err;
733 
734 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_PRE1,
735 					  ICE_AQC_OP_CODE_RX_EQU, serdes_num,
736 					  &ptr->rx_equalization_pre1);
737 	if (err)
738 		return err;
739 
740 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_POST1,
741 					  ICE_AQC_OP_CODE_RX_EQU, serdes_num,
742 					  &ptr->rx_equalization_post1);
743 	if (err)
744 		return err;
745 
746 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_BFLF,
747 					  ICE_AQC_OP_CODE_RX_EQU, serdes_num,
748 					  &ptr->rx_equalization_bflf);
749 	if (err)
750 		return err;
751 
752 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_BFHF,
753 					  ICE_AQC_OP_CODE_RX_EQU, serdes_num,
754 					  &ptr->rx_equalization_bfhf);
755 	if (err)
756 		return err;
757 
758 	err = ice_aq_get_phy_equalization(hw, ICE_AQC_RX_EQU_DRATE,
759 					  ICE_AQC_OP_CODE_RX_EQU, serdes_num,
760 					  &ptr->rx_equalization_drate);
761 	if (err)
762 		return err;
763 
764 	return 0;
765 }
766 
767 /**
768  * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per
769  *                         pcsquad, pcsport
770  * @netdev: pointer to net device structure
771  * @p: output buffer to fill requested register dump
772  *
773  * Return: 0 on success, negative on failure.
774  */
775 static int ice_get_extended_regs(struct net_device *netdev, void *p)
776 {
777 	struct ice_netdev_priv *np = netdev_priv(netdev);
778 	struct ice_regdump_to_ethtool *ice_prv_regs_buf;
779 	struct ice_port_topology port_topology = {};
780 	struct ice_port_info *pi;
781 	struct ice_pf *pf;
782 	struct ice_hw *hw;
783 	unsigned int i;
784 	int err;
785 
786 	pf = np->vsi->back;
787 	hw = &pf->hw;
788 	pi = np->vsi->port_info;
789 
790 	/* Serdes parameters are not supported if not the PF VSI */
791 	if (np->vsi->type != ICE_VSI_PF || !pi)
792 		return -EINVAL;
793 
794 	err = ice_get_port_topology(hw, pi->lport, &port_topology);
795 	if (err)
796 		return -EINVAL;
797 	if (port_topology.serdes_lane_count > 4)
798 		return -EINVAL;
799 
800 	ice_prv_regs_buf = p;
801 
802 	/* Get serdes equalization parameter for available serdes */
803 	for (i = 0; i < port_topology.serdes_lane_count; i++) {
804 		u8 serdes_num = 0;
805 
806 		serdes_num = port_topology.primary_serdes_lane + i;
807 		err = ice_get_tx_rx_equa(hw, serdes_num,
808 					 &ice_prv_regs_buf->equalization[i]);
809 		if (err)
810 			return -EINVAL;
811 	}
812 
813 	return 0;
814 }
815 
816 static void
817 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
818 {
819 	struct ice_netdev_priv *np = netdev_priv(netdev);
820 	struct ice_pf *pf = np->vsi->back;
821 	struct ice_hw *hw = &pf->hw;
822 	u32 *regs_buf = (u32 *)p;
823 	unsigned int i;
824 
825 	regs->version = 2;
826 
827 	for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i)
828 		regs_buf[i] = rd32(hw, ice_regs_dump_list[i]);
829 
830 	ice_get_extended_regs(netdev, (void *)&regs_buf[i]);
831 }
832 
833 static u32 ice_get_msglevel(struct net_device *netdev)
834 {
835 	struct ice_netdev_priv *np = netdev_priv(netdev);
836 	struct ice_pf *pf = np->vsi->back;
837 
838 #ifndef CONFIG_DYNAMIC_DEBUG
839 	if (pf->hw.debug_mask)
840 		netdev_info(netdev, "hw debug_mask: 0x%llX\n",
841 			    pf->hw.debug_mask);
842 #endif /* !CONFIG_DYNAMIC_DEBUG */
843 
844 	return pf->msg_enable;
845 }
846 
847 static void ice_set_msglevel(struct net_device *netdev, u32 data)
848 {
849 	struct ice_netdev_priv *np = netdev_priv(netdev);
850 	struct ice_pf *pf = np->vsi->back;
851 
852 #ifndef CONFIG_DYNAMIC_DEBUG
853 	if (ICE_DBG_USER & data)
854 		pf->hw.debug_mask = data;
855 	else
856 		pf->msg_enable = data;
857 #else
858 	pf->msg_enable = data;
859 #endif /* !CONFIG_DYNAMIC_DEBUG */
860 }
861 
862 static int ice_get_eeprom_len(struct net_device *netdev)
863 {
864 	struct ice_netdev_priv *np = netdev_priv(netdev);
865 	struct ice_pf *pf = np->vsi->back;
866 
867 	return (int)pf->hw.flash.flash_size;
868 }
869 
870 static int
871 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom,
872 	       u8 *bytes)
873 {
874 	struct ice_netdev_priv *np = netdev_priv(netdev);
875 	struct ice_vsi *vsi = np->vsi;
876 	struct ice_pf *pf = vsi->back;
877 	struct ice_hw *hw = &pf->hw;
878 	struct device *dev;
879 	int ret;
880 	u8 *buf;
881 
882 	dev = ice_pf_to_dev(pf);
883 
884 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
885 	netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n",
886 		   eeprom->cmd, eeprom->offset, eeprom->len);
887 
888 	buf = kzalloc(eeprom->len, GFP_KERNEL);
889 	if (!buf)
890 		return -ENOMEM;
891 
892 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
893 	if (ret) {
894 		dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n",
895 			ret, ice_aq_str(hw->adminq.sq_last_status));
896 		goto out;
897 	}
898 
899 	ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf,
900 				false);
901 	if (ret) {
902 		dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n",
903 			ret, ice_aq_str(hw->adminq.sq_last_status));
904 		goto release;
905 	}
906 
907 	memcpy(bytes, buf, eeprom->len);
908 release:
909 	ice_release_nvm(hw);
910 out:
911 	kfree(buf);
912 	return ret;
913 }
914 
915 /**
916  * ice_active_vfs - check if there are any active VFs
917  * @pf: board private structure
918  *
919  * Returns true if an active VF is found, otherwise returns false
920  */
921 static bool ice_active_vfs(struct ice_pf *pf)
922 {
923 	bool active = false;
924 	struct ice_vf *vf;
925 	unsigned int bkt;
926 
927 	rcu_read_lock();
928 	ice_for_each_vf_rcu(pf, bkt, vf) {
929 		if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
930 			active = true;
931 			break;
932 		}
933 	}
934 	rcu_read_unlock();
935 
936 	return active;
937 }
938 
939 /**
940  * ice_link_test - perform a link test on a given net_device
941  * @netdev: network interface device structure
942  *
943  * This function performs one of the self-tests required by ethtool.
944  * Returns 0 on success, non-zero on failure.
945  */
946 static u64 ice_link_test(struct net_device *netdev)
947 {
948 	struct ice_netdev_priv *np = netdev_priv(netdev);
949 	bool link_up = false;
950 	int status;
951 
952 	netdev_info(netdev, "link test\n");
953 	status = ice_get_link_status(np->vsi->port_info, &link_up);
954 	if (status) {
955 		netdev_err(netdev, "link query error, status = %d\n",
956 			   status);
957 		return 1;
958 	}
959 
960 	if (!link_up)
961 		return 2;
962 
963 	return 0;
964 }
965 
966 /**
967  * ice_eeprom_test - perform an EEPROM test on a given net_device
968  * @netdev: network interface device structure
969  *
970  * This function performs one of the self-tests required by ethtool.
971  * Returns 0 on success, non-zero on failure.
972  */
973 static u64 ice_eeprom_test(struct net_device *netdev)
974 {
975 	struct ice_netdev_priv *np = netdev_priv(netdev);
976 	struct ice_pf *pf = np->vsi->back;
977 
978 	netdev_info(netdev, "EEPROM test\n");
979 	return !!(ice_nvm_validate_checksum(&pf->hw));
980 }
981 
982 /**
983  * ice_reg_pattern_test
984  * @hw: pointer to the HW struct
985  * @reg: reg to be tested
986  * @mask: bits to be touched
987  */
988 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask)
989 {
990 	struct ice_pf *pf = (struct ice_pf *)hw->back;
991 	struct device *dev = ice_pf_to_dev(pf);
992 	static const u32 patterns[] = {
993 		0x5A5A5A5A, 0xA5A5A5A5,
994 		0x00000000, 0xFFFFFFFF
995 	};
996 	u32 val, orig_val;
997 	unsigned int i;
998 
999 	orig_val = rd32(hw, reg);
1000 	for (i = 0; i < ARRAY_SIZE(patterns); ++i) {
1001 		u32 pattern = patterns[i] & mask;
1002 
1003 		wr32(hw, reg, pattern);
1004 		val = rd32(hw, reg);
1005 		if (val == pattern)
1006 			continue;
1007 		dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n"
1008 			, __func__, reg, pattern, val);
1009 		return 1;
1010 	}
1011 
1012 	wr32(hw, reg, orig_val);
1013 	val = rd32(hw, reg);
1014 	if (val != orig_val) {
1015 		dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n"
1016 			, __func__, reg, orig_val, val);
1017 		return 1;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * ice_reg_test - perform a register test on a given net_device
1025  * @netdev: network interface device structure
1026  *
1027  * This function performs one of the self-tests required by ethtool.
1028  * Returns 0 on success, non-zero on failure.
1029  */
1030 static u64 ice_reg_test(struct net_device *netdev)
1031 {
1032 	struct ice_netdev_priv *np = netdev_priv(netdev);
1033 	struct ice_hw *hw = np->vsi->port_info->hw;
1034 	u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ?
1035 		hw->func_caps.common_cap.num_msix_vectors - 1 : 1;
1036 	struct ice_diag_reg_test_info {
1037 		u32 address;
1038 		u32 mask;
1039 		u32 elem_num;
1040 		u32 elem_size;
1041 	} ice_reg_list[] = {
1042 		{GLINT_ITR(0, 0), 0x00000fff, int_elements,
1043 			GLINT_ITR(0, 1) - GLINT_ITR(0, 0)},
1044 		{GLINT_ITR(1, 0), 0x00000fff, int_elements,
1045 			GLINT_ITR(1, 1) - GLINT_ITR(1, 0)},
1046 		{GLINT_ITR(0, 0), 0x00000fff, int_elements,
1047 			GLINT_ITR(2, 1) - GLINT_ITR(2, 0)},
1048 		{GLINT_CTL, 0xffff0001, 1, 0}
1049 	};
1050 	unsigned int i;
1051 
1052 	netdev_dbg(netdev, "Register test\n");
1053 	for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) {
1054 		u32 j;
1055 
1056 		for (j = 0; j < ice_reg_list[i].elem_num; ++j) {
1057 			u32 mask = ice_reg_list[i].mask;
1058 			u32 reg = ice_reg_list[i].address +
1059 				(j * ice_reg_list[i].elem_size);
1060 
1061 			/* bail on failure (non-zero return) */
1062 			if (ice_reg_pattern_test(hw, reg, mask))
1063 				return 1;
1064 		}
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 /**
1071  * ice_lbtest_prepare_rings - configure Tx/Rx test rings
1072  * @vsi: pointer to the VSI structure
1073  *
1074  * Function configures rings of a VSI for loopback test without
1075  * enabling interrupts or informing the kernel about new queues.
1076  *
1077  * Returns 0 on success, negative on failure.
1078  */
1079 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi)
1080 {
1081 	int status;
1082 
1083 	status = ice_vsi_setup_tx_rings(vsi);
1084 	if (status)
1085 		goto err_setup_tx_ring;
1086 
1087 	status = ice_vsi_setup_rx_rings(vsi);
1088 	if (status)
1089 		goto err_setup_rx_ring;
1090 
1091 	status = ice_vsi_cfg_lan(vsi);
1092 	if (status)
1093 		goto err_setup_rx_ring;
1094 
1095 	status = ice_vsi_start_all_rx_rings(vsi);
1096 	if (status)
1097 		goto err_start_rx_ring;
1098 
1099 	return 0;
1100 
1101 err_start_rx_ring:
1102 	ice_vsi_free_rx_rings(vsi);
1103 err_setup_rx_ring:
1104 	ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1105 err_setup_tx_ring:
1106 	ice_vsi_free_tx_rings(vsi);
1107 
1108 	return status;
1109 }
1110 
1111 /**
1112  * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test
1113  * @vsi: pointer to the VSI structure
1114  *
1115  * Function stops and frees VSI rings after a loopback test.
1116  * Returns 0 on success, negative on failure.
1117  */
1118 static int ice_lbtest_disable_rings(struct ice_vsi *vsi)
1119 {
1120 	int status;
1121 
1122 	status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1123 	if (status)
1124 		netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n",
1125 			   vsi->vsi_num, status);
1126 
1127 	status = ice_vsi_stop_all_rx_rings(vsi);
1128 	if (status)
1129 		netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n",
1130 			   vsi->vsi_num, status);
1131 
1132 	ice_vsi_free_tx_rings(vsi);
1133 	ice_vsi_free_rx_rings(vsi);
1134 
1135 	return status;
1136 }
1137 
1138 /**
1139  * ice_lbtest_create_frame - create test packet
1140  * @pf: pointer to the PF structure
1141  * @ret_data: allocated frame buffer
1142  * @size: size of the packet data
1143  *
1144  * Function allocates a frame with a test pattern on specific offsets.
1145  * Returns 0 on success, non-zero on failure.
1146  */
1147 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size)
1148 {
1149 	u8 *data;
1150 
1151 	if (!pf)
1152 		return -EINVAL;
1153 
1154 	data = kzalloc(size, GFP_KERNEL);
1155 	if (!data)
1156 		return -ENOMEM;
1157 
1158 	/* Since the ethernet test frame should always be at least
1159 	 * 64 bytes long, fill some octets in the payload with test data.
1160 	 */
1161 	memset(data, 0xFF, size);
1162 	data[32] = 0xDE;
1163 	data[42] = 0xAD;
1164 	data[44] = 0xBE;
1165 	data[46] = 0xEF;
1166 
1167 	*ret_data = data;
1168 
1169 	return 0;
1170 }
1171 
1172 /**
1173  * ice_lbtest_check_frame - verify received loopback frame
1174  * @frame: pointer to the raw packet data
1175  *
1176  * Function verifies received test frame with a pattern.
1177  * Returns true if frame matches the pattern, false otherwise.
1178  */
1179 static bool ice_lbtest_check_frame(u8 *frame)
1180 {
1181 	/* Validate bytes of a frame under offsets chosen earlier */
1182 	if (frame[32] == 0xDE &&
1183 	    frame[42] == 0xAD &&
1184 	    frame[44] == 0xBE &&
1185 	    frame[46] == 0xEF &&
1186 	    frame[48] == 0xFF)
1187 		return true;
1188 
1189 	return false;
1190 }
1191 
1192 /**
1193  * ice_diag_send - send test frames to the test ring
1194  * @tx_ring: pointer to the transmit ring
1195  * @data: pointer to the raw packet data
1196  * @size: size of the packet to send
1197  *
1198  * Function sends loopback packets on a test Tx ring.
1199  */
1200 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size)
1201 {
1202 	struct ice_tx_desc *tx_desc;
1203 	struct ice_tx_buf *tx_buf;
1204 	dma_addr_t dma;
1205 	u64 td_cmd;
1206 
1207 	tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use);
1208 	tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use];
1209 
1210 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1211 	if (dma_mapping_error(tx_ring->dev, dma))
1212 		return -EINVAL;
1213 
1214 	tx_desc->buf_addr = cpu_to_le64(dma);
1215 
1216 	/* These flags are required for a descriptor to be pushed out */
1217 	td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1218 	tx_desc->cmd_type_offset_bsz =
1219 		cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1220 			    (td_cmd << ICE_TXD_QW1_CMD_S) |
1221 			    ((u64)0 << ICE_TXD_QW1_OFFSET_S) |
1222 			    ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1223 			    ((u64)0 << ICE_TXD_QW1_L2TAG1_S));
1224 
1225 	tx_buf->next_to_watch = tx_desc;
1226 
1227 	/* Force memory write to complete before letting h/w know
1228 	 * there are new descriptors to fetch.
1229 	 */
1230 	wmb();
1231 
1232 	tx_ring->next_to_use++;
1233 	if (tx_ring->next_to_use >= tx_ring->count)
1234 		tx_ring->next_to_use = 0;
1235 
1236 	writel_relaxed(tx_ring->next_to_use, tx_ring->tail);
1237 
1238 	/* Wait until the packets get transmitted to the receive queue. */
1239 	usleep_range(1000, 2000);
1240 	dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE);
1241 
1242 	return 0;
1243 }
1244 
1245 #define ICE_LB_FRAME_SIZE 64
1246 /**
1247  * ice_lbtest_receive_frames - receive and verify test frames
1248  * @rx_ring: pointer to the receive ring
1249  *
1250  * Function receives loopback packets and verify their correctness.
1251  * Returns number of received valid frames.
1252  */
1253 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring)
1254 {
1255 	struct ice_rx_buf *rx_buf;
1256 	int valid_frames, i;
1257 	u8 *received_buf;
1258 
1259 	valid_frames = 0;
1260 
1261 	for (i = 0; i < rx_ring->count; i++) {
1262 		union ice_32b_rx_flex_desc *rx_desc;
1263 
1264 		rx_desc = ICE_RX_DESC(rx_ring, i);
1265 
1266 		if (!(rx_desc->wb.status_error0 &
1267 		    (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) |
1268 		     cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)))))
1269 			continue;
1270 
1271 		rx_buf = &rx_ring->rx_buf[i];
1272 		received_buf = page_address(rx_buf->page) + rx_buf->page_offset;
1273 
1274 		if (ice_lbtest_check_frame(received_buf))
1275 			valid_frames++;
1276 	}
1277 
1278 	return valid_frames;
1279 }
1280 
1281 /**
1282  * ice_loopback_test - perform a loopback test on a given net_device
1283  * @netdev: network interface device structure
1284  *
1285  * This function performs one of the self-tests required by ethtool.
1286  * Returns 0 on success, non-zero on failure.
1287  */
1288 static u64 ice_loopback_test(struct net_device *netdev)
1289 {
1290 	struct ice_netdev_priv *np = netdev_priv(netdev);
1291 	struct ice_vsi *orig_vsi = np->vsi, *test_vsi;
1292 	struct ice_pf *pf = orig_vsi->back;
1293 	u8 *tx_frame __free(kfree) = NULL;
1294 	u8 broadcast[ETH_ALEN], ret = 0;
1295 	int num_frames, valid_frames;
1296 	struct ice_tx_ring *tx_ring;
1297 	struct ice_rx_ring *rx_ring;
1298 	int i;
1299 
1300 	netdev_info(netdev, "loopback test\n");
1301 
1302 	test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info);
1303 	if (!test_vsi) {
1304 		netdev_err(netdev, "Failed to create a VSI for the loopback test\n");
1305 		return 1;
1306 	}
1307 
1308 	test_vsi->netdev = netdev;
1309 	tx_ring = test_vsi->tx_rings[0];
1310 	rx_ring = test_vsi->rx_rings[0];
1311 
1312 	if (ice_lbtest_prepare_rings(test_vsi)) {
1313 		ret = 2;
1314 		goto lbtest_vsi_close;
1315 	}
1316 
1317 	if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) {
1318 		ret = 3;
1319 		goto lbtest_rings_dis;
1320 	}
1321 
1322 	/* Enable MAC loopback in firmware */
1323 	if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) {
1324 		ret = 4;
1325 		goto lbtest_mac_dis;
1326 	}
1327 
1328 	/* Test VSI needs to receive broadcast packets */
1329 	eth_broadcast_addr(broadcast);
1330 	if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) {
1331 		ret = 5;
1332 		goto lbtest_mac_dis;
1333 	}
1334 
1335 	if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) {
1336 		ret = 7;
1337 		goto remove_mac_filters;
1338 	}
1339 
1340 	num_frames = min_t(int, tx_ring->count, 32);
1341 	for (i = 0; i < num_frames; i++) {
1342 		if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) {
1343 			ret = 8;
1344 			goto remove_mac_filters;
1345 		}
1346 	}
1347 
1348 	valid_frames = ice_lbtest_receive_frames(rx_ring);
1349 	if (!valid_frames)
1350 		ret = 9;
1351 	else if (valid_frames != num_frames)
1352 		ret = 10;
1353 
1354 remove_mac_filters:
1355 	if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI))
1356 		netdev_err(netdev, "Could not remove MAC filter for the test VSI\n");
1357 lbtest_mac_dis:
1358 	/* Disable MAC loopback after the test is completed. */
1359 	if (ice_aq_set_mac_loopback(&pf->hw, false, NULL))
1360 		netdev_err(netdev, "Could not disable MAC loopback\n");
1361 lbtest_rings_dis:
1362 	if (ice_lbtest_disable_rings(test_vsi))
1363 		netdev_err(netdev, "Could not disable test rings\n");
1364 lbtest_vsi_close:
1365 	test_vsi->netdev = NULL;
1366 	if (ice_vsi_release(test_vsi))
1367 		netdev_err(netdev, "Failed to remove the test VSI\n");
1368 
1369 	return ret;
1370 }
1371 
1372 /**
1373  * ice_intr_test - perform an interrupt test on a given net_device
1374  * @netdev: network interface device structure
1375  *
1376  * This function performs one of the self-tests required by ethtool.
1377  * Returns 0 on success, non-zero on failure.
1378  */
1379 static u64 ice_intr_test(struct net_device *netdev)
1380 {
1381 	struct ice_netdev_priv *np = netdev_priv(netdev);
1382 	struct ice_pf *pf = np->vsi->back;
1383 	u16 swic_old = pf->sw_int_count;
1384 
1385 	netdev_info(netdev, "interrupt test\n");
1386 
1387 	wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index),
1388 	     GLINT_DYN_CTL_SW_ITR_INDX_M |
1389 	     GLINT_DYN_CTL_INTENA_MSK_M |
1390 	     GLINT_DYN_CTL_SWINT_TRIG_M);
1391 
1392 	usleep_range(1000, 2000);
1393 	return (swic_old == pf->sw_int_count);
1394 }
1395 
1396 /**
1397  * ice_self_test - handler function for performing a self-test by ethtool
1398  * @netdev: network interface device structure
1399  * @eth_test: ethtool_test structure
1400  * @data: required by ethtool.self_test
1401  *
1402  * This function is called after invoking 'ethtool -t devname' command where
1403  * devname is the name of the network device on which ethtool should operate.
1404  * It performs a set of self-tests to check if a device works properly.
1405  */
1406 static void
1407 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test,
1408 	      u64 *data)
1409 {
1410 	struct ice_netdev_priv *np = netdev_priv(netdev);
1411 	bool if_running = netif_running(netdev);
1412 	struct ice_pf *pf = np->vsi->back;
1413 	struct device *dev;
1414 
1415 	dev = ice_pf_to_dev(pf);
1416 
1417 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1418 		netdev_info(netdev, "offline testing starting\n");
1419 
1420 		set_bit(ICE_TESTING, pf->state);
1421 
1422 		if (ice_active_vfs(pf)) {
1423 			dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n");
1424 			data[ICE_ETH_TEST_REG] = 1;
1425 			data[ICE_ETH_TEST_EEPROM] = 1;
1426 			data[ICE_ETH_TEST_INTR] = 1;
1427 			data[ICE_ETH_TEST_LOOP] = 1;
1428 			data[ICE_ETH_TEST_LINK] = 1;
1429 			eth_test->flags |= ETH_TEST_FL_FAILED;
1430 			clear_bit(ICE_TESTING, pf->state);
1431 			goto skip_ol_tests;
1432 		}
1433 		/* If the device is online then take it offline */
1434 		if (if_running)
1435 			/* indicate we're in test mode */
1436 			ice_stop(netdev);
1437 
1438 		data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1439 		data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev);
1440 		data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev);
1441 		data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev);
1442 		data[ICE_ETH_TEST_REG] = ice_reg_test(netdev);
1443 
1444 		if (data[ICE_ETH_TEST_LINK] ||
1445 		    data[ICE_ETH_TEST_EEPROM] ||
1446 		    data[ICE_ETH_TEST_LOOP] ||
1447 		    data[ICE_ETH_TEST_INTR] ||
1448 		    data[ICE_ETH_TEST_REG])
1449 			eth_test->flags |= ETH_TEST_FL_FAILED;
1450 
1451 		clear_bit(ICE_TESTING, pf->state);
1452 
1453 		if (if_running) {
1454 			int status = ice_open(netdev);
1455 
1456 			if (status) {
1457 				dev_err(dev, "Could not open device %s, err %d\n",
1458 					pf->int_name, status);
1459 			}
1460 		}
1461 	} else {
1462 		/* Online tests */
1463 		netdev_info(netdev, "online testing starting\n");
1464 
1465 		data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1466 		if (data[ICE_ETH_TEST_LINK])
1467 			eth_test->flags |= ETH_TEST_FL_FAILED;
1468 
1469 		/* Offline only tests, not run in online; pass by default */
1470 		data[ICE_ETH_TEST_REG] = 0;
1471 		data[ICE_ETH_TEST_EEPROM] = 0;
1472 		data[ICE_ETH_TEST_INTR] = 0;
1473 		data[ICE_ETH_TEST_LOOP] = 0;
1474 	}
1475 
1476 skip_ol_tests:
1477 	netdev_info(netdev, "testing finished\n");
1478 }
1479 
1480 static void
1481 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data,
1482 		  struct ice_vsi *vsi)
1483 {
1484 	unsigned int i;
1485 	u8 *p = data;
1486 
1487 	switch (stringset) {
1488 	case ETH_SS_STATS:
1489 		for (i = 0; i < ICE_VSI_STATS_LEN; i++)
1490 			ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string);
1491 
1492 		if (ice_is_port_repr_netdev(netdev))
1493 			return;
1494 
1495 		ice_for_each_alloc_txq(vsi, i) {
1496 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1497 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1498 		}
1499 
1500 		ice_for_each_alloc_rxq(vsi, i) {
1501 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1502 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1503 		}
1504 
1505 		if (vsi->type != ICE_VSI_PF)
1506 			return;
1507 
1508 		for (i = 0; i < ICE_PF_STATS_LEN; i++)
1509 			ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string);
1510 
1511 		for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1512 			ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i);
1513 			ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i);
1514 		}
1515 		for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1516 			ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i);
1517 			ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i);
1518 		}
1519 		break;
1520 	case ETH_SS_TEST:
1521 		memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN);
1522 		break;
1523 	case ETH_SS_PRIV_FLAGS:
1524 		for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++)
1525 			ethtool_puts(&p, ice_gstrings_priv_flags[i].name);
1526 		break;
1527 	default:
1528 		break;
1529 	}
1530 }
1531 
1532 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1533 {
1534 	struct ice_netdev_priv *np = netdev_priv(netdev);
1535 
1536 	__ice_get_strings(netdev, stringset, data, np->vsi);
1537 }
1538 
1539 static int
1540 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)
1541 {
1542 	struct ice_netdev_priv *np = netdev_priv(netdev);
1543 	bool led_active;
1544 
1545 	switch (state) {
1546 	case ETHTOOL_ID_ACTIVE:
1547 		led_active = true;
1548 		break;
1549 	case ETHTOOL_ID_INACTIVE:
1550 		led_active = false;
1551 		break;
1552 	default:
1553 		return -EINVAL;
1554 	}
1555 
1556 	if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL))
1557 		return -EIO;
1558 
1559 	return 0;
1560 }
1561 
1562 /**
1563  * ice_set_fec_cfg - Set link FEC options
1564  * @netdev: network interface device structure
1565  * @req_fec: FEC mode to configure
1566  */
1567 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec)
1568 {
1569 	struct ice_netdev_priv *np = netdev_priv(netdev);
1570 	struct ice_aqc_set_phy_cfg_data config = { 0 };
1571 	struct ice_vsi *vsi = np->vsi;
1572 	struct ice_port_info *pi;
1573 
1574 	pi = vsi->port_info;
1575 	if (!pi)
1576 		return -EOPNOTSUPP;
1577 
1578 	/* Changing the FEC parameters is not supported if not the PF VSI */
1579 	if (vsi->type != ICE_VSI_PF) {
1580 		netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n");
1581 		return -EOPNOTSUPP;
1582 	}
1583 
1584 	/* Proceed only if requesting different FEC mode */
1585 	if (pi->phy.curr_user_fec_req == req_fec)
1586 		return 0;
1587 
1588 	/* Copy the current user PHY configuration. The current user PHY
1589 	 * configuration is initialized during probe from PHY capabilities
1590 	 * software mode, and updated on set PHY configuration.
1591 	 */
1592 	memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config));
1593 
1594 	ice_cfg_phy_fec(pi, &config, req_fec);
1595 	config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1596 
1597 	if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL))
1598 		return -EAGAIN;
1599 
1600 	/* Save requested FEC config */
1601 	pi->phy.curr_user_fec_req = req_fec;
1602 
1603 	return 0;
1604 }
1605 
1606 /**
1607  * ice_set_fecparam - Set FEC link options
1608  * @netdev: network interface device structure
1609  * @fecparam: Ethtool structure to retrieve FEC parameters
1610  */
1611 static int
1612 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1613 {
1614 	struct ice_netdev_priv *np = netdev_priv(netdev);
1615 	struct ice_vsi *vsi = np->vsi;
1616 	enum ice_fec_mode fec;
1617 
1618 	switch (fecparam->fec) {
1619 	case ETHTOOL_FEC_AUTO:
1620 		fec = ICE_FEC_AUTO;
1621 		break;
1622 	case ETHTOOL_FEC_RS:
1623 		fec = ICE_FEC_RS;
1624 		break;
1625 	case ETHTOOL_FEC_BASER:
1626 		fec = ICE_FEC_BASER;
1627 		break;
1628 	case ETHTOOL_FEC_OFF:
1629 	case ETHTOOL_FEC_NONE:
1630 		fec = ICE_FEC_NONE;
1631 		break;
1632 	default:
1633 		dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n",
1634 			 fecparam->fec);
1635 		return -EINVAL;
1636 	}
1637 
1638 	return ice_set_fec_cfg(netdev, fec);
1639 }
1640 
1641 /**
1642  * ice_get_fecparam - Get link FEC options
1643  * @netdev: network interface device structure
1644  * @fecparam: Ethtool structure to retrieve FEC parameters
1645  */
1646 static int
1647 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1648 {
1649 	struct ice_netdev_priv *np = netdev_priv(netdev);
1650 	struct ice_aqc_get_phy_caps_data *caps;
1651 	struct ice_link_status *link_info;
1652 	struct ice_vsi *vsi = np->vsi;
1653 	struct ice_port_info *pi;
1654 	int err;
1655 
1656 	pi = vsi->port_info;
1657 
1658 	if (!pi)
1659 		return -EOPNOTSUPP;
1660 	link_info = &pi->phy.link_info;
1661 
1662 	/* Set FEC mode based on negotiated link info */
1663 	switch (link_info->fec_info) {
1664 	case ICE_AQ_LINK_25G_KR_FEC_EN:
1665 		fecparam->active_fec = ETHTOOL_FEC_BASER;
1666 		break;
1667 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
1668 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
1669 		fecparam->active_fec = ETHTOOL_FEC_RS;
1670 		break;
1671 	default:
1672 		fecparam->active_fec = ETHTOOL_FEC_OFF;
1673 		break;
1674 	}
1675 
1676 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
1677 	if (!caps)
1678 		return -ENOMEM;
1679 
1680 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1681 				  caps, NULL);
1682 	if (err)
1683 		goto done;
1684 
1685 	/* Set supported/configured FEC modes based on PHY capability */
1686 	if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC)
1687 		fecparam->fec |= ETHTOOL_FEC_AUTO;
1688 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
1689 	    caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
1690 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN ||
1691 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
1692 		fecparam->fec |= ETHTOOL_FEC_BASER;
1693 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
1694 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ ||
1695 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
1696 		fecparam->fec |= ETHTOOL_FEC_RS;
1697 	if (caps->link_fec_options == 0)
1698 		fecparam->fec |= ETHTOOL_FEC_OFF;
1699 
1700 done:
1701 	kfree(caps);
1702 	return err;
1703 }
1704 
1705 /**
1706  * ice_nway_reset - restart autonegotiation
1707  * @netdev: network interface device structure
1708  */
1709 static int ice_nway_reset(struct net_device *netdev)
1710 {
1711 	struct ice_netdev_priv *np = netdev_priv(netdev);
1712 	struct ice_vsi *vsi = np->vsi;
1713 	int err;
1714 
1715 	/* If VSI state is up, then restart autoneg with link up */
1716 	if (!test_bit(ICE_DOWN, vsi->back->state))
1717 		err = ice_set_link(vsi, true);
1718 	else
1719 		err = ice_set_link(vsi, false);
1720 
1721 	return err;
1722 }
1723 
1724 /**
1725  * ice_get_priv_flags - report device private flags
1726  * @netdev: network interface device structure
1727  *
1728  * The get string set count and the string set should be matched for each
1729  * flag returned.  Add new strings for each flag to the ice_gstrings_priv_flags
1730  * array.
1731  *
1732  * Returns a u32 bitmap of flags.
1733  */
1734 static u32 ice_get_priv_flags(struct net_device *netdev)
1735 {
1736 	struct ice_netdev_priv *np = netdev_priv(netdev);
1737 	struct ice_vsi *vsi = np->vsi;
1738 	struct ice_pf *pf = vsi->back;
1739 	u32 i, ret_flags = 0;
1740 
1741 	for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1742 		const struct ice_priv_flag *priv_flag;
1743 
1744 		priv_flag = &ice_gstrings_priv_flags[i];
1745 
1746 		if (test_bit(priv_flag->bitno, pf->flags))
1747 			ret_flags |= BIT(i);
1748 	}
1749 
1750 	return ret_flags;
1751 }
1752 
1753 /**
1754  * ice_set_priv_flags - set private flags
1755  * @netdev: network interface device structure
1756  * @flags: bit flags to be set
1757  */
1758 static int ice_set_priv_flags(struct net_device *netdev, u32 flags)
1759 {
1760 	struct ice_netdev_priv *np = netdev_priv(netdev);
1761 	DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS);
1762 	DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS);
1763 	struct ice_vsi *vsi = np->vsi;
1764 	struct ice_pf *pf = vsi->back;
1765 	struct device *dev;
1766 	int ret = 0;
1767 	u32 i;
1768 
1769 	if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE))
1770 		return -EINVAL;
1771 
1772 	dev = ice_pf_to_dev(pf);
1773 	set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1774 
1775 	bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS);
1776 	for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1777 		const struct ice_priv_flag *priv_flag;
1778 
1779 		priv_flag = &ice_gstrings_priv_flags[i];
1780 
1781 		if (flags & BIT(i))
1782 			set_bit(priv_flag->bitno, pf->flags);
1783 		else
1784 			clear_bit(priv_flag->bitno, pf->flags);
1785 	}
1786 
1787 	bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS);
1788 
1789 	/* Do not allow change to link-down-on-close when Total Port Shutdown
1790 	 * is enabled.
1791 	 */
1792 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) &&
1793 	    test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
1794 		dev_err(dev, "Setting link-down-on-close not supported on this port\n");
1795 		set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1796 		ret = -EINVAL;
1797 		goto ethtool_exit;
1798 	}
1799 
1800 	if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) {
1801 		if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) {
1802 			int status;
1803 
1804 			/* Disable FW LLDP engine */
1805 			status = ice_cfg_lldp_mib_change(&pf->hw, false);
1806 
1807 			/* If unregistering for LLDP events fails, this is
1808 			 * not an error state, as there shouldn't be any
1809 			 * events to respond to.
1810 			 */
1811 			if (status)
1812 				dev_info(dev, "Failed to unreg for LLDP events\n");
1813 
1814 			/* The AQ call to stop the FW LLDP agent will generate
1815 			 * an error if the agent is already stopped.
1816 			 */
1817 			status = ice_aq_stop_lldp(&pf->hw, true, true, NULL);
1818 			if (status)
1819 				dev_warn(dev, "Fail to stop LLDP agent\n");
1820 			/* Use case for having the FW LLDP agent stopped
1821 			 * will likely not need DCB, so failure to init is
1822 			 * not a concern of ethtool
1823 			 */
1824 			status = ice_init_pf_dcb(pf, true);
1825 			if (status)
1826 				dev_warn(dev, "Fail to init DCB\n");
1827 
1828 			pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED;
1829 			pf->dcbx_cap |= DCB_CAP_DCBX_HOST;
1830 		} else {
1831 			bool dcbx_agent_status;
1832 			int status;
1833 
1834 			if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) {
1835 				clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags);
1836 				dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n");
1837 				ret = -EOPNOTSUPP;
1838 				goto ethtool_exit;
1839 			}
1840 
1841 			/* Remove rule to direct LLDP packets to default VSI.
1842 			 * The FW LLDP engine will now be consuming them.
1843 			 */
1844 			ice_cfg_sw_lldp(vsi, false, false);
1845 
1846 			/* AQ command to start FW LLDP agent will return an
1847 			 * error if the agent is already started
1848 			 */
1849 			status = ice_aq_start_lldp(&pf->hw, true, NULL);
1850 			if (status)
1851 				dev_warn(dev, "Fail to start LLDP Agent\n");
1852 
1853 			/* AQ command to start FW DCBX agent will fail if
1854 			 * the agent is already started
1855 			 */
1856 			status = ice_aq_start_stop_dcbx(&pf->hw, true,
1857 							&dcbx_agent_status,
1858 							NULL);
1859 			if (status)
1860 				dev_dbg(dev, "Failed to start FW DCBX\n");
1861 
1862 			dev_info(dev, "FW DCBX agent is %s\n",
1863 				 dcbx_agent_status ? "ACTIVE" : "DISABLED");
1864 
1865 			/* Failure to configure MIB change or init DCB is not
1866 			 * relevant to ethtool.  Print notification that
1867 			 * registration/init failed but do not return error
1868 			 * state to ethtool
1869 			 */
1870 			status = ice_init_pf_dcb(pf, true);
1871 			if (status)
1872 				dev_dbg(dev, "Fail to init DCB\n");
1873 
1874 			/* Register for MIB change events */
1875 			status = ice_cfg_lldp_mib_change(&pf->hw, true);
1876 			if (status)
1877 				dev_dbg(dev, "Fail to enable MIB change events\n");
1878 
1879 			pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST;
1880 			pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED;
1881 
1882 			ice_nway_reset(netdev);
1883 		}
1884 	}
1885 	if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) {
1886 		/* down and up VSI so that changes of Rx cfg are reflected. */
1887 		ice_down_up(vsi);
1888 	}
1889 	/* don't allow modification of this flag when a single VF is in
1890 	 * promiscuous mode because it's not supported
1891 	 */
1892 	if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) &&
1893 	    ice_is_any_vf_in_unicast_promisc(pf)) {
1894 		dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n");
1895 		/* toggle bit back to previous state */
1896 		change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags);
1897 		ret = -EAGAIN;
1898 	}
1899 
1900 	if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) &&
1901 	    ice_has_vfs(pf)) {
1902 		dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n");
1903 		/* toggle bit back to previous state */
1904 		change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags);
1905 		ret = -EOPNOTSUPP;
1906 	}
1907 ethtool_exit:
1908 	clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1909 	return ret;
1910 }
1911 
1912 static int ice_get_sset_count(struct net_device *netdev, int sset)
1913 {
1914 	switch (sset) {
1915 	case ETH_SS_STATS:
1916 		/* The number (and order) of strings reported *must* remain
1917 		 * constant for a given netdevice. This function must not
1918 		 * report a different number based on run time parameters
1919 		 * (such as the number of queues in use, or the setting of
1920 		 * a private ethtool flag). This is due to the nature of the
1921 		 * ethtool stats API.
1922 		 *
1923 		 * Userspace programs such as ethtool must make 3 separate
1924 		 * ioctl requests, one for size, one for the strings, and
1925 		 * finally one for the stats. Since these cross into
1926 		 * userspace, changes to the number or size could result in
1927 		 * undefined memory access or incorrect string<->value
1928 		 * correlations for statistics.
1929 		 *
1930 		 * Even if it appears to be safe, changes to the size or
1931 		 * order of strings will suffer from race conditions and are
1932 		 * not safe.
1933 		 */
1934 		return ICE_ALL_STATS_LEN(netdev);
1935 	case ETH_SS_TEST:
1936 		return ICE_TEST_LEN;
1937 	case ETH_SS_PRIV_FLAGS:
1938 		return ICE_PRIV_FLAG_ARRAY_SIZE;
1939 	default:
1940 		return -EOPNOTSUPP;
1941 	}
1942 }
1943 
1944 static void
1945 __ice_get_ethtool_stats(struct net_device *netdev,
1946 			struct ethtool_stats __always_unused *stats, u64 *data,
1947 			struct ice_vsi *vsi)
1948 {
1949 	struct ice_pf *pf = vsi->back;
1950 	struct ice_tx_ring *tx_ring;
1951 	struct ice_rx_ring *rx_ring;
1952 	unsigned int j;
1953 	int i = 0;
1954 	char *p;
1955 
1956 	ice_update_pf_stats(pf);
1957 	ice_update_vsi_stats(vsi);
1958 
1959 	for (j = 0; j < ICE_VSI_STATS_LEN; j++) {
1960 		p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset;
1961 		data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat ==
1962 			     sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1963 	}
1964 
1965 	if (ice_is_port_repr_netdev(netdev))
1966 		return;
1967 
1968 	/* populate per queue stats */
1969 	rcu_read_lock();
1970 
1971 	ice_for_each_alloc_txq(vsi, j) {
1972 		tx_ring = READ_ONCE(vsi->tx_rings[j]);
1973 		if (tx_ring && tx_ring->ring_stats) {
1974 			data[i++] = tx_ring->ring_stats->stats.pkts;
1975 			data[i++] = tx_ring->ring_stats->stats.bytes;
1976 		} else {
1977 			data[i++] = 0;
1978 			data[i++] = 0;
1979 		}
1980 	}
1981 
1982 	ice_for_each_alloc_rxq(vsi, j) {
1983 		rx_ring = READ_ONCE(vsi->rx_rings[j]);
1984 		if (rx_ring && rx_ring->ring_stats) {
1985 			data[i++] = rx_ring->ring_stats->stats.pkts;
1986 			data[i++] = rx_ring->ring_stats->stats.bytes;
1987 		} else {
1988 			data[i++] = 0;
1989 			data[i++] = 0;
1990 		}
1991 	}
1992 
1993 	rcu_read_unlock();
1994 
1995 	if (vsi->type != ICE_VSI_PF)
1996 		return;
1997 
1998 	for (j = 0; j < ICE_PF_STATS_LEN; j++) {
1999 		p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset;
2000 		data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat ==
2001 			     sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2002 	}
2003 
2004 	for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
2005 		data[i++] = pf->stats.priority_xon_tx[j];
2006 		data[i++] = pf->stats.priority_xoff_tx[j];
2007 	}
2008 
2009 	for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
2010 		data[i++] = pf->stats.priority_xon_rx[j];
2011 		data[i++] = pf->stats.priority_xoff_rx[j];
2012 	}
2013 }
2014 
2015 static void
2016 ice_get_ethtool_stats(struct net_device *netdev,
2017 		      struct ethtool_stats __always_unused *stats, u64 *data)
2018 {
2019 	struct ice_netdev_priv *np = netdev_priv(netdev);
2020 
2021 	__ice_get_ethtool_stats(netdev, stats, data, np->vsi);
2022 }
2023 
2024 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G	(ICE_PHY_TYPE_LOW_100BASE_TX | \
2025 					 ICE_PHY_TYPE_LOW_100M_SGMII)
2026 
2027 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G	(ICE_PHY_TYPE_LOW_MASK_MIN_1G | \
2028 					 ICE_PHY_TYPE_LOW_1000BASE_T | \
2029 					 ICE_PHY_TYPE_LOW_1000BASE_SX | \
2030 					 ICE_PHY_TYPE_LOW_1000BASE_LX | \
2031 					 ICE_PHY_TYPE_LOW_1000BASE_KX | \
2032 					 ICE_PHY_TYPE_LOW_1G_SGMII | \
2033 					 ICE_PHY_TYPE_LOW_2500BASE_T | \
2034 					 ICE_PHY_TYPE_LOW_2500BASE_X | \
2035 					 ICE_PHY_TYPE_LOW_2500BASE_KX | \
2036 					 ICE_PHY_TYPE_LOW_5GBASE_T | \
2037 					 ICE_PHY_TYPE_LOW_5GBASE_KR | \
2038 					 ICE_PHY_TYPE_LOW_10GBASE_T | \
2039 					 ICE_PHY_TYPE_LOW_10G_SFI_DA | \
2040 					 ICE_PHY_TYPE_LOW_10GBASE_SR | \
2041 					 ICE_PHY_TYPE_LOW_10GBASE_LR | \
2042 					 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
2043 					 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
2044 					 ICE_PHY_TYPE_LOW_10G_SFI_C2C)
2045 
2046 #define ICE_PHY_TYPE_LOW_MASK_100G	(ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
2047 					 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
2048 					 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
2049 					 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
2050 					 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
2051 					 ICE_PHY_TYPE_LOW_100G_CAUI4 | \
2052 					 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
2053 					 ICE_PHY_TYPE_LOW_100G_AUI4 | \
2054 					 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
2055 					 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
2056 					 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
2057 					 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
2058 					 ICE_PHY_TYPE_LOW_100GBASE_DR)
2059 
2060 #define ICE_PHY_TYPE_HIGH_MASK_100G	(ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
2061 					 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\
2062 					 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
2063 					 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
2064 					 ICE_PHY_TYPE_HIGH_100G_AUI2)
2065 
2066 #define ICE_PHY_TYPE_HIGH_MASK_200G	(ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \
2067 					 ICE_PHY_TYPE_HIGH_200G_SR4 | \
2068 					 ICE_PHY_TYPE_HIGH_200G_FR4 | \
2069 					 ICE_PHY_TYPE_HIGH_200G_LR4 | \
2070 					 ICE_PHY_TYPE_HIGH_200G_DR4 | \
2071 					 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \
2072 					 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \
2073 					 ICE_PHY_TYPE_HIGH_200G_AUI4)
2074 
2075 /**
2076  * ice_mask_min_supported_speeds
2077  * @hw: pointer to the HW structure
2078  * @phy_types_high: PHY type high
2079  * @phy_types_low: PHY type low to apply minimum supported speeds mask
2080  *
2081  * Apply minimum supported speeds mask to PHY type low. These are the speeds
2082  * for ethtool supported link mode.
2083  */
2084 static void
2085 ice_mask_min_supported_speeds(struct ice_hw *hw,
2086 			      u64 phy_types_high, u64 *phy_types_low)
2087 {
2088 	/* if QSFP connection with 100G speed, minimum supported speed is 25G */
2089 	if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) ||
2090 	    (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) ||
2091 	    (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G))
2092 		*phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G;
2093 	else if (!ice_is_100m_speed_supported(hw))
2094 		*phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G;
2095 }
2096 
2097 /**
2098  * ice_linkmode_set_bit - set link mode bit
2099  * @phy_to_ethtool: PHY type to ethtool link mode struct to set
2100  * @ks: ethtool link ksettings struct to fill out
2101  * @req_speeds: speed requested by user
2102  * @advert_phy_type: advertised PHY type
2103  * @phy_type: PHY type
2104  */
2105 static void
2106 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool,
2107 		     struct ethtool_link_ksettings *ks, u32 req_speeds,
2108 		     u64 advert_phy_type, u32 phy_type)
2109 {
2110 	linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported);
2111 
2112 	if (req_speeds & phy_to_ethtool->aq_link_speed ||
2113 	    (!req_speeds && advert_phy_type & BIT(phy_type)))
2114 		linkmode_set_bit(phy_to_ethtool->link_mode,
2115 				 ks->link_modes.advertising);
2116 }
2117 
2118 /**
2119  * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes
2120  * @netdev: network interface device structure
2121  * @ks: ethtool link ksettings struct to fill out
2122  */
2123 static void
2124 ice_phy_type_to_ethtool(struct net_device *netdev,
2125 			struct ethtool_link_ksettings *ks)
2126 {
2127 	struct ice_netdev_priv *np = netdev_priv(netdev);
2128 	struct ice_vsi *vsi = np->vsi;
2129 	struct ice_pf *pf = vsi->back;
2130 	u64 advert_phy_type_lo = 0;
2131 	u64 advert_phy_type_hi = 0;
2132 	u64 phy_types_high = 0;
2133 	u64 phy_types_low = 0;
2134 	u32 req_speeds;
2135 	u32 i;
2136 
2137 	req_speeds = vsi->port_info->phy.link_info.req_speeds;
2138 
2139 	/* Check if lenient mode is supported and enabled, or in strict mode.
2140 	 *
2141 	 * In lenient mode the Supported link modes are the PHY types without
2142 	 * media. The Advertising link mode is either 1. the user requested
2143 	 * speed, 2. the override PHY mask, or 3. the PHY types with media.
2144 	 *
2145 	 * In strict mode Supported link mode are the PHY type with media,
2146 	 * and Advertising link modes are the media PHY type or the speed
2147 	 * requested by user.
2148 	 */
2149 	if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2150 		phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo);
2151 		phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi);
2152 
2153 		ice_mask_min_supported_speeds(&pf->hw, phy_types_high,
2154 					      &phy_types_low);
2155 		/* determine advertised modes based on link override only
2156 		 * if it's supported and if the FW doesn't abstract the
2157 		 * driver from having to account for link overrides
2158 		 */
2159 		if (ice_fw_supports_link_override(&pf->hw) &&
2160 		    !ice_fw_supports_report_dflt_cfg(&pf->hw)) {
2161 			struct ice_link_default_override_tlv *ldo;
2162 
2163 			ldo = &pf->link_dflt_override;
2164 			/* If override enabled and PHY mask set, then
2165 			 * Advertising link mode is the intersection of the PHY
2166 			 * types without media and the override PHY mask.
2167 			 */
2168 			if (ldo->options & ICE_LINK_OVERRIDE_EN &&
2169 			    (ldo->phy_type_low || ldo->phy_type_high)) {
2170 				advert_phy_type_lo =
2171 					le64_to_cpu(pf->nvm_phy_type_lo) &
2172 					ldo->phy_type_low;
2173 				advert_phy_type_hi =
2174 					le64_to_cpu(pf->nvm_phy_type_hi) &
2175 					ldo->phy_type_high;
2176 			}
2177 		}
2178 	} else {
2179 		/* strict mode */
2180 		phy_types_low = vsi->port_info->phy.phy_type_low;
2181 		phy_types_high = vsi->port_info->phy.phy_type_high;
2182 	}
2183 
2184 	/* If Advertising link mode PHY type is not using override PHY type,
2185 	 * then use PHY type with media.
2186 	 */
2187 	if (!advert_phy_type_lo && !advert_phy_type_hi) {
2188 		advert_phy_type_lo = vsi->port_info->phy.phy_type_low;
2189 		advert_phy_type_hi = vsi->port_info->phy.phy_type_high;
2190 	}
2191 
2192 	linkmode_zero(ks->link_modes.supported);
2193 	linkmode_zero(ks->link_modes.advertising);
2194 
2195 	for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) {
2196 		if (phy_types_low & BIT_ULL(i))
2197 			ice_linkmode_set_bit(&phy_type_low_lkup[i], ks,
2198 					     req_speeds, advert_phy_type_lo,
2199 					     i);
2200 	}
2201 
2202 	for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) {
2203 		if (phy_types_high & BIT_ULL(i))
2204 			ice_linkmode_set_bit(&phy_type_high_lkup[i], ks,
2205 					     req_speeds, advert_phy_type_hi,
2206 					     i);
2207 	}
2208 }
2209 
2210 #define TEST_SET_BITS_TIMEOUT	50
2211 #define TEST_SET_BITS_SLEEP_MAX	2000
2212 #define TEST_SET_BITS_SLEEP_MIN	1000
2213 
2214 /**
2215  * ice_get_settings_link_up - Get Link settings for when link is up
2216  * @ks: ethtool ksettings to fill in
2217  * @netdev: network interface device structure
2218  */
2219 static void
2220 ice_get_settings_link_up(struct ethtool_link_ksettings *ks,
2221 			 struct net_device *netdev)
2222 {
2223 	struct ice_netdev_priv *np = netdev_priv(netdev);
2224 	struct ice_port_info *pi = np->vsi->port_info;
2225 	struct ice_link_status *link_info;
2226 	struct ice_vsi *vsi = np->vsi;
2227 
2228 	link_info = &vsi->port_info->phy.link_info;
2229 
2230 	/* Get supported and advertised settings from PHY ability with media */
2231 	ice_phy_type_to_ethtool(netdev, ks);
2232 
2233 	switch (link_info->link_speed) {
2234 	case ICE_AQ_LINK_SPEED_200GB:
2235 		ks->base.speed = SPEED_200000;
2236 		break;
2237 	case ICE_AQ_LINK_SPEED_100GB:
2238 		ks->base.speed = SPEED_100000;
2239 		break;
2240 	case ICE_AQ_LINK_SPEED_50GB:
2241 		ks->base.speed = SPEED_50000;
2242 		break;
2243 	case ICE_AQ_LINK_SPEED_40GB:
2244 		ks->base.speed = SPEED_40000;
2245 		break;
2246 	case ICE_AQ_LINK_SPEED_25GB:
2247 		ks->base.speed = SPEED_25000;
2248 		break;
2249 	case ICE_AQ_LINK_SPEED_20GB:
2250 		ks->base.speed = SPEED_20000;
2251 		break;
2252 	case ICE_AQ_LINK_SPEED_10GB:
2253 		ks->base.speed = SPEED_10000;
2254 		break;
2255 	case ICE_AQ_LINK_SPEED_5GB:
2256 		ks->base.speed = SPEED_5000;
2257 		break;
2258 	case ICE_AQ_LINK_SPEED_2500MB:
2259 		ks->base.speed = SPEED_2500;
2260 		break;
2261 	case ICE_AQ_LINK_SPEED_1000MB:
2262 		ks->base.speed = SPEED_1000;
2263 		break;
2264 	case ICE_AQ_LINK_SPEED_100MB:
2265 		ks->base.speed = SPEED_100;
2266 		break;
2267 	default:
2268 		netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n",
2269 			    link_info->link_speed);
2270 		break;
2271 	}
2272 	ks->base.duplex = DUPLEX_FULL;
2273 
2274 	if (link_info->an_info & ICE_AQ_AN_COMPLETED)
2275 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2276 						     Autoneg);
2277 
2278 	/* Set flow control negotiated Rx/Tx pause */
2279 	switch (pi->fc.current_mode) {
2280 	case ICE_FC_FULL:
2281 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2282 		break;
2283 	case ICE_FC_TX_PAUSE:
2284 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2285 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2286 						     Asym_Pause);
2287 		break;
2288 	case ICE_FC_RX_PAUSE:
2289 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2290 						     Asym_Pause);
2291 		break;
2292 	case ICE_FC_PFC:
2293 	default:
2294 		ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause);
2295 		ethtool_link_ksettings_del_link_mode(ks, lp_advertising,
2296 						     Asym_Pause);
2297 		break;
2298 	}
2299 }
2300 
2301 /**
2302  * ice_get_settings_link_down - Get the Link settings when link is down
2303  * @ks: ethtool ksettings to fill in
2304  * @netdev: network interface device structure
2305  *
2306  * Reports link settings that can be determined when link is down
2307  */
2308 static void
2309 ice_get_settings_link_down(struct ethtool_link_ksettings *ks,
2310 			   struct net_device *netdev)
2311 {
2312 	/* link is down and the driver needs to fall back on
2313 	 * supported PHY types to figure out what info to display
2314 	 */
2315 	ice_phy_type_to_ethtool(netdev, ks);
2316 
2317 	/* With no link, speed and duplex are unknown */
2318 	ks->base.speed = SPEED_UNKNOWN;
2319 	ks->base.duplex = DUPLEX_UNKNOWN;
2320 }
2321 
2322 /**
2323  * ice_get_link_ksettings - Get Link Speed and Duplex settings
2324  * @netdev: network interface device structure
2325  * @ks: ethtool ksettings
2326  *
2327  * Reports speed/duplex settings based on media_type
2328  */
2329 static int
2330 ice_get_link_ksettings(struct net_device *netdev,
2331 		       struct ethtool_link_ksettings *ks)
2332 {
2333 	struct ice_netdev_priv *np = netdev_priv(netdev);
2334 	struct ice_aqc_get_phy_caps_data *caps;
2335 	struct ice_link_status *hw_link_info;
2336 	struct ice_vsi *vsi = np->vsi;
2337 	int err;
2338 
2339 	ethtool_link_ksettings_zero_link_mode(ks, supported);
2340 	ethtool_link_ksettings_zero_link_mode(ks, advertising);
2341 	ethtool_link_ksettings_zero_link_mode(ks, lp_advertising);
2342 	hw_link_info = &vsi->port_info->phy.link_info;
2343 
2344 	/* set speed and duplex */
2345 	if (hw_link_info->link_info & ICE_AQ_LINK_UP)
2346 		ice_get_settings_link_up(ks, netdev);
2347 	else
2348 		ice_get_settings_link_down(ks, netdev);
2349 
2350 	/* set autoneg settings */
2351 	ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ?
2352 		AUTONEG_ENABLE : AUTONEG_DISABLE;
2353 
2354 	/* set media type settings */
2355 	switch (vsi->port_info->phy.media_type) {
2356 	case ICE_MEDIA_FIBER:
2357 		ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2358 		ks->base.port = PORT_FIBRE;
2359 		break;
2360 	case ICE_MEDIA_BASET:
2361 		ethtool_link_ksettings_add_link_mode(ks, supported, TP);
2362 		ethtool_link_ksettings_add_link_mode(ks, advertising, TP);
2363 		ks->base.port = PORT_TP;
2364 		break;
2365 	case ICE_MEDIA_BACKPLANE:
2366 		ethtool_link_ksettings_add_link_mode(ks, supported, Backplane);
2367 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2368 						     Backplane);
2369 		ks->base.port = PORT_NONE;
2370 		break;
2371 	case ICE_MEDIA_DA:
2372 		ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2373 		ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE);
2374 		ks->base.port = PORT_DA;
2375 		break;
2376 	default:
2377 		ks->base.port = PORT_OTHER;
2378 		break;
2379 	}
2380 
2381 	/* flow control is symmetric and always supported */
2382 	ethtool_link_ksettings_add_link_mode(ks, supported, Pause);
2383 
2384 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2385 	if (!caps)
2386 		return -ENOMEM;
2387 
2388 	err = ice_aq_get_phy_caps(vsi->port_info, false,
2389 				  ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
2390 	if (err)
2391 		goto done;
2392 
2393 	/* Set the advertised flow control based on the PHY capability */
2394 	if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) &&
2395 	    (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) {
2396 		ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2397 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2398 						     Asym_Pause);
2399 	} else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) {
2400 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2401 						     Asym_Pause);
2402 	} else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) {
2403 		ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2404 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2405 						     Asym_Pause);
2406 	} else {
2407 		ethtool_link_ksettings_del_link_mode(ks, advertising, Pause);
2408 		ethtool_link_ksettings_del_link_mode(ks, advertising,
2409 						     Asym_Pause);
2410 	}
2411 
2412 	/* Set advertised FEC modes based on PHY capability */
2413 	ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE);
2414 
2415 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
2416 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
2417 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2418 						     FEC_BASER);
2419 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
2420 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
2421 		ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS);
2422 
2423 	err = ice_aq_get_phy_caps(vsi->port_info, false,
2424 				  ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL);
2425 	if (err)
2426 		goto done;
2427 
2428 	/* Set supported FEC modes based on PHY capability */
2429 	ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE);
2430 
2431 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
2432 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN)
2433 		ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER);
2434 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
2435 		ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS);
2436 
2437 	/* Set supported and advertised autoneg */
2438 	if (ice_is_phy_caps_an_enabled(caps)) {
2439 		ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg);
2440 		ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg);
2441 	}
2442 
2443 done:
2444 	kfree(caps);
2445 	return err;
2446 }
2447 
2448 /**
2449  * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed
2450  * @speed: ethtool forced speed
2451  */
2452 static u16 ice_speed_to_aq_link(int speed)
2453 {
2454 	int aq_speed;
2455 
2456 	switch (speed) {
2457 	case SPEED_10:
2458 		aq_speed = ICE_AQ_LINK_SPEED_10MB;
2459 		break;
2460 	case SPEED_100:
2461 		aq_speed = ICE_AQ_LINK_SPEED_100MB;
2462 		break;
2463 	case SPEED_1000:
2464 		aq_speed = ICE_AQ_LINK_SPEED_1000MB;
2465 		break;
2466 	case SPEED_2500:
2467 		aq_speed = ICE_AQ_LINK_SPEED_2500MB;
2468 		break;
2469 	case SPEED_5000:
2470 		aq_speed = ICE_AQ_LINK_SPEED_5GB;
2471 		break;
2472 	case SPEED_10000:
2473 		aq_speed = ICE_AQ_LINK_SPEED_10GB;
2474 		break;
2475 	case SPEED_20000:
2476 		aq_speed = ICE_AQ_LINK_SPEED_20GB;
2477 		break;
2478 	case SPEED_25000:
2479 		aq_speed = ICE_AQ_LINK_SPEED_25GB;
2480 		break;
2481 	case SPEED_40000:
2482 		aq_speed = ICE_AQ_LINK_SPEED_40GB;
2483 		break;
2484 	case SPEED_50000:
2485 		aq_speed = ICE_AQ_LINK_SPEED_50GB;
2486 		break;
2487 	case SPEED_100000:
2488 		aq_speed = ICE_AQ_LINK_SPEED_100GB;
2489 		break;
2490 	default:
2491 		aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN;
2492 		break;
2493 	}
2494 	return aq_speed;
2495 }
2496 
2497 /**
2498  * ice_ksettings_find_adv_link_speed - Find advertising link speed
2499  * @ks: ethtool ksettings
2500  */
2501 static u16
2502 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks)
2503 {
2504 	const struct ethtool_forced_speed_map *map;
2505 	u16 adv_link_speed = 0;
2506 
2507 	for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) {
2508 		map = ice_adv_lnk_speed_maps + i;
2509 		if (linkmode_intersects(ks->link_modes.advertising, map->caps))
2510 			adv_link_speed |= ice_speed_to_aq_link(map->speed);
2511 	}
2512 
2513 	return adv_link_speed;
2514 }
2515 
2516 /**
2517  * ice_setup_autoneg
2518  * @p: port info
2519  * @ks: ethtool_link_ksettings
2520  * @config: configuration that will be sent down to FW
2521  * @autoneg_enabled: autonegotiation is enabled or not
2522  * @autoneg_changed: will there a change in autonegotiation
2523  * @netdev: network interface device structure
2524  *
2525  * Setup PHY autonegotiation feature
2526  */
2527 static int
2528 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks,
2529 		  struct ice_aqc_set_phy_cfg_data *config,
2530 		  u8 autoneg_enabled, u8 *autoneg_changed,
2531 		  struct net_device *netdev)
2532 {
2533 	int err = 0;
2534 
2535 	*autoneg_changed = 0;
2536 
2537 	/* Check autoneg */
2538 	if (autoneg_enabled == AUTONEG_ENABLE) {
2539 		/* If autoneg was not already enabled */
2540 		if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) {
2541 			/* If autoneg is not supported, return error */
2542 			if (!ethtool_link_ksettings_test_link_mode(ks,
2543 								   supported,
2544 								   Autoneg)) {
2545 				netdev_info(netdev, "Autoneg not supported on this phy.\n");
2546 				err = -EINVAL;
2547 			} else {
2548 				/* Autoneg is allowed to change */
2549 				config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2550 				*autoneg_changed = 1;
2551 			}
2552 		}
2553 	} else {
2554 		/* If autoneg is currently enabled */
2555 		if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) {
2556 			/* If autoneg is supported 10GBASE_T is the only PHY
2557 			 * that can disable it, so otherwise return error
2558 			 */
2559 			if (ethtool_link_ksettings_test_link_mode(ks,
2560 								  supported,
2561 								  Autoneg)) {
2562 				netdev_info(netdev, "Autoneg cannot be disabled on this phy\n");
2563 				err = -EINVAL;
2564 			} else {
2565 				/* Autoneg is allowed to change */
2566 				config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2567 				*autoneg_changed = 1;
2568 			}
2569 		}
2570 	}
2571 
2572 	return err;
2573 }
2574 
2575 /**
2576  * ice_set_phy_type_from_speed - set phy_types based on speeds
2577  * and advertised modes
2578  * @ks: ethtool link ksettings struct
2579  * @phy_type_low: pointer to the lower part of phy_type
2580  * @phy_type_high: pointer to the higher part of phy_type
2581  * @adv_link_speed: targeted link speeds bitmap
2582  */
2583 static void
2584 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks,
2585 			    u64 *phy_type_low, u64 *phy_type_high,
2586 			    u16 adv_link_speed)
2587 {
2588 	/* Handle 1000M speed in a special way because ice_update_phy_type
2589 	 * enables all link modes, but having mixed copper and optical
2590 	 * standards is not supported.
2591 	 */
2592 	adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB;
2593 
2594 	if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2595 						  1000baseT_Full))
2596 		*phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T |
2597 				 ICE_PHY_TYPE_LOW_1G_SGMII;
2598 
2599 	if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2600 						  1000baseKX_Full))
2601 		*phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX;
2602 
2603 	if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2604 						  1000baseX_Full))
2605 		*phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX |
2606 				 ICE_PHY_TYPE_LOW_1000BASE_LX;
2607 
2608 	ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed);
2609 }
2610 
2611 /**
2612  * ice_set_link_ksettings - Set Speed and Duplex
2613  * @netdev: network interface device structure
2614  * @ks: ethtool ksettings
2615  *
2616  * Set speed/duplex per media_types advertised/forced
2617  */
2618 static int
2619 ice_set_link_ksettings(struct net_device *netdev,
2620 		       const struct ethtool_link_ksettings *ks)
2621 {
2622 	struct ice_netdev_priv *np = netdev_priv(netdev);
2623 	u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT;
2624 	struct ethtool_link_ksettings copy_ks = *ks;
2625 	struct ethtool_link_ksettings safe_ks = {};
2626 	struct ice_aqc_get_phy_caps_data *phy_caps;
2627 	struct ice_aqc_set_phy_cfg_data config;
2628 	u16 adv_link_speed, curr_link_speed;
2629 	struct ice_pf *pf = np->vsi->back;
2630 	struct ice_port_info *pi;
2631 	u8 autoneg_changed = 0;
2632 	u64 phy_type_high = 0;
2633 	u64 phy_type_low = 0;
2634 	bool linkup;
2635 	int err;
2636 
2637 	pi = np->vsi->port_info;
2638 
2639 	if (!pi)
2640 		return -EIO;
2641 
2642 	if (pi->phy.media_type != ICE_MEDIA_BASET &&
2643 	    pi->phy.media_type != ICE_MEDIA_FIBER &&
2644 	    pi->phy.media_type != ICE_MEDIA_BACKPLANE &&
2645 	    pi->phy.media_type != ICE_MEDIA_DA &&
2646 	    pi->phy.link_info.link_info & ICE_AQ_LINK_UP)
2647 		return -EOPNOTSUPP;
2648 
2649 	phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL);
2650 	if (!phy_caps)
2651 		return -ENOMEM;
2652 
2653 	/* Get the PHY capabilities based on media */
2654 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2655 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2656 					  phy_caps, NULL);
2657 	else
2658 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2659 					  phy_caps, NULL);
2660 	if (err)
2661 		goto done;
2662 
2663 	/* save autoneg out of ksettings */
2664 	autoneg = copy_ks.base.autoneg;
2665 
2666 	/* Get link modes supported by hardware.*/
2667 	ice_phy_type_to_ethtool(netdev, &safe_ks);
2668 
2669 	/* and check against modes requested by user.
2670 	 * Return an error if unsupported mode was set.
2671 	 */
2672 	if (!bitmap_subset(copy_ks.link_modes.advertising,
2673 			   safe_ks.link_modes.supported,
2674 			   __ETHTOOL_LINK_MODE_MASK_NBITS)) {
2675 		if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags))
2676 			netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2677 		err = -EOPNOTSUPP;
2678 		goto done;
2679 	}
2680 
2681 	/* get our own copy of the bits to check against */
2682 	memset(&safe_ks, 0, sizeof(safe_ks));
2683 	safe_ks.base.cmd = copy_ks.base.cmd;
2684 	safe_ks.base.link_mode_masks_nwords =
2685 		copy_ks.base.link_mode_masks_nwords;
2686 	ice_get_link_ksettings(netdev, &safe_ks);
2687 
2688 	/* set autoneg back to what it currently is */
2689 	copy_ks.base.autoneg = safe_ks.base.autoneg;
2690 	/* we don't compare the speed */
2691 	copy_ks.base.speed = safe_ks.base.speed;
2692 
2693 	/* If copy_ks.base and safe_ks.base are not the same now, then they are
2694 	 * trying to set something that we do not support.
2695 	 */
2696 	if (memcmp(&copy_ks.base, &safe_ks.base, sizeof(copy_ks.base))) {
2697 		err = -EOPNOTSUPP;
2698 		goto done;
2699 	}
2700 
2701 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
2702 		timeout--;
2703 		if (!timeout) {
2704 			err = -EBUSY;
2705 			goto done;
2706 		}
2707 		usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX);
2708 	}
2709 
2710 	/* Copy the current user PHY configuration. The current user PHY
2711 	 * configuration is initialized during probe from PHY capabilities
2712 	 * software mode, and updated on set PHY configuration.
2713 	 */
2714 	config = pi->phy.curr_user_phy_cfg;
2715 
2716 	config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2717 
2718 	/* Check autoneg */
2719 	err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed,
2720 				netdev);
2721 
2722 	if (err)
2723 		goto done;
2724 
2725 	/* Call to get the current link speed */
2726 	pi->phy.get_link_info = true;
2727 	err = ice_get_link_status(pi, &linkup);
2728 	if (err)
2729 		goto done;
2730 
2731 	curr_link_speed = pi->phy.curr_user_speed_req;
2732 	adv_link_speed = ice_ksettings_find_adv_link_speed(ks);
2733 
2734 	/* If speed didn't get set, set it to what it currently is.
2735 	 * This is needed because if advertise is 0 (as it is when autoneg
2736 	 * is disabled) then speed won't get set.
2737 	 */
2738 	if (!adv_link_speed)
2739 		adv_link_speed = curr_link_speed;
2740 
2741 	/* Convert the advertise link speeds to their corresponded PHY_TYPE */
2742 	ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high,
2743 				    adv_link_speed);
2744 
2745 	if (!autoneg_changed && adv_link_speed == curr_link_speed) {
2746 		netdev_info(netdev, "Nothing changed, exiting without setting anything.\n");
2747 		goto done;
2748 	}
2749 
2750 	/* save the requested speeds */
2751 	pi->phy.link_info.req_speeds = adv_link_speed;
2752 
2753 	/* set link and auto negotiation so changes take effect */
2754 	config.caps |= ICE_AQ_PHY_ENA_LINK;
2755 
2756 	/* check if there is a PHY type for the requested advertised speed */
2757 	if (!(phy_type_low || phy_type_high)) {
2758 		netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2759 		err = -EOPNOTSUPP;
2760 		goto done;
2761 	}
2762 
2763 	/* intersect requested advertised speed PHY types with media PHY types
2764 	 * for set PHY configuration
2765 	 */
2766 	config.phy_type_high = cpu_to_le64(phy_type_high) &
2767 			phy_caps->phy_type_high;
2768 	config.phy_type_low = cpu_to_le64(phy_type_low) &
2769 			phy_caps->phy_type_low;
2770 
2771 	if (!(config.phy_type_high || config.phy_type_low)) {
2772 		/* If there is no intersection and lenient mode is enabled, then
2773 		 * intersect the requested advertised speed with NVM media type
2774 		 * PHY types.
2775 		 */
2776 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2777 			config.phy_type_high = cpu_to_le64(phy_type_high) &
2778 					       pf->nvm_phy_type_hi;
2779 			config.phy_type_low = cpu_to_le64(phy_type_low) &
2780 					      pf->nvm_phy_type_lo;
2781 		} else {
2782 			netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2783 			err = -EOPNOTSUPP;
2784 			goto done;
2785 		}
2786 	}
2787 
2788 	/* If link is up put link down */
2789 	if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) {
2790 		/* Tell the OS link is going down, the link will go
2791 		 * back up when fw says it is ready asynchronously
2792 		 */
2793 		ice_print_link_msg(np->vsi, false);
2794 		netif_carrier_off(netdev);
2795 		netif_tx_stop_all_queues(netdev);
2796 	}
2797 
2798 	/* make the aq call */
2799 	err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL);
2800 	if (err) {
2801 		netdev_info(netdev, "Set phy config failed,\n");
2802 		goto done;
2803 	}
2804 
2805 	/* Save speed request */
2806 	pi->phy.curr_user_speed_req = adv_link_speed;
2807 done:
2808 	kfree(phy_caps);
2809 	clear_bit(ICE_CFG_BUSY, pf->state);
2810 
2811 	return err;
2812 }
2813 
2814 /**
2815  * ice_parse_hdrs - parses headers from RSS hash input
2816  * @nfc: ethtool rxnfc command
2817  *
2818  * This function parses the rxnfc command and returns intended
2819  * header types for RSS configuration
2820  */
2821 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc)
2822 {
2823 	u32 hdrs = ICE_FLOW_SEG_HDR_NONE;
2824 
2825 	switch (nfc->flow_type) {
2826 	case TCP_V4_FLOW:
2827 		hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4;
2828 		break;
2829 	case UDP_V4_FLOW:
2830 		hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4;
2831 		break;
2832 	case SCTP_V4_FLOW:
2833 		hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4;
2834 		break;
2835 	case GTPU_V4_FLOW:
2836 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4;
2837 		break;
2838 	case GTPC_V4_FLOW:
2839 		hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4;
2840 		break;
2841 	case GTPC_TEID_V4_FLOW:
2842 		hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4;
2843 		break;
2844 	case GTPU_EH_V4_FLOW:
2845 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4;
2846 		break;
2847 	case GTPU_UL_V4_FLOW:
2848 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4;
2849 		break;
2850 	case GTPU_DL_V4_FLOW:
2851 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4;
2852 		break;
2853 	case TCP_V6_FLOW:
2854 		hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6;
2855 		break;
2856 	case UDP_V6_FLOW:
2857 		hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6;
2858 		break;
2859 	case SCTP_V6_FLOW:
2860 		hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6;
2861 		break;
2862 	case GTPU_V6_FLOW:
2863 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6;
2864 		break;
2865 	case GTPC_V6_FLOW:
2866 		hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6;
2867 		break;
2868 	case GTPC_TEID_V6_FLOW:
2869 		hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6;
2870 		break;
2871 	case GTPU_EH_V6_FLOW:
2872 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6;
2873 		break;
2874 	case GTPU_UL_V6_FLOW:
2875 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6;
2876 		break;
2877 	case GTPU_DL_V6_FLOW:
2878 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6;
2879 		break;
2880 	default:
2881 		break;
2882 	}
2883 	return hdrs;
2884 }
2885 
2886 /**
2887  * ice_parse_hash_flds - parses hash fields from RSS hash input
2888  * @nfc: ethtool rxnfc command
2889  * @symm: true if Symmetric Topelitz is set
2890  *
2891  * This function parses the rxnfc command and returns intended
2892  * hash fields for RSS configuration
2893  */
2894 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm)
2895 {
2896 	u64 hfld = ICE_HASH_INVALID;
2897 
2898 	if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) {
2899 		switch (nfc->flow_type) {
2900 		case TCP_V4_FLOW:
2901 		case UDP_V4_FLOW:
2902 		case SCTP_V4_FLOW:
2903 		case GTPU_V4_FLOW:
2904 		case GTPC_V4_FLOW:
2905 		case GTPC_TEID_V4_FLOW:
2906 		case GTPU_EH_V4_FLOW:
2907 		case GTPU_UL_V4_FLOW:
2908 		case GTPU_DL_V4_FLOW:
2909 			if (nfc->data & RXH_IP_SRC)
2910 				hfld |= ICE_FLOW_HASH_FLD_IPV4_SA;
2911 			if (nfc->data & RXH_IP_DST)
2912 				hfld |= ICE_FLOW_HASH_FLD_IPV4_DA;
2913 			break;
2914 		case TCP_V6_FLOW:
2915 		case UDP_V6_FLOW:
2916 		case SCTP_V6_FLOW:
2917 		case GTPU_V6_FLOW:
2918 		case GTPC_V6_FLOW:
2919 		case GTPC_TEID_V6_FLOW:
2920 		case GTPU_EH_V6_FLOW:
2921 		case GTPU_UL_V6_FLOW:
2922 		case GTPU_DL_V6_FLOW:
2923 			if (nfc->data & RXH_IP_SRC)
2924 				hfld |= ICE_FLOW_HASH_FLD_IPV6_SA;
2925 			if (nfc->data & RXH_IP_DST)
2926 				hfld |= ICE_FLOW_HASH_FLD_IPV6_DA;
2927 			break;
2928 		default:
2929 			break;
2930 		}
2931 	}
2932 
2933 	if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) {
2934 		switch (nfc->flow_type) {
2935 		case TCP_V4_FLOW:
2936 		case TCP_V6_FLOW:
2937 			if (nfc->data & RXH_L4_B_0_1)
2938 				hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT;
2939 			if (nfc->data & RXH_L4_B_2_3)
2940 				hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT;
2941 			break;
2942 		case UDP_V4_FLOW:
2943 		case UDP_V6_FLOW:
2944 			if (nfc->data & RXH_L4_B_0_1)
2945 				hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT;
2946 			if (nfc->data & RXH_L4_B_2_3)
2947 				hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT;
2948 			break;
2949 		case SCTP_V4_FLOW:
2950 		case SCTP_V6_FLOW:
2951 			if (nfc->data & RXH_L4_B_0_1)
2952 				hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT;
2953 			if (nfc->data & RXH_L4_B_2_3)
2954 				hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT;
2955 			break;
2956 		default:
2957 			break;
2958 		}
2959 	}
2960 
2961 	if (nfc->data & RXH_GTP_TEID) {
2962 		switch (nfc->flow_type) {
2963 		case GTPC_TEID_V4_FLOW:
2964 		case GTPC_TEID_V6_FLOW:
2965 			hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID;
2966 			break;
2967 		case GTPU_V4_FLOW:
2968 		case GTPU_V6_FLOW:
2969 			hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID;
2970 			break;
2971 		case GTPU_EH_V4_FLOW:
2972 		case GTPU_EH_V6_FLOW:
2973 			hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID;
2974 			break;
2975 		case GTPU_UL_V4_FLOW:
2976 		case GTPU_UL_V6_FLOW:
2977 			hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID;
2978 			break;
2979 		case GTPU_DL_V4_FLOW:
2980 		case GTPU_DL_V6_FLOW:
2981 			hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID;
2982 			break;
2983 		default:
2984 			break;
2985 		}
2986 	}
2987 
2988 	return hfld;
2989 }
2990 
2991 /**
2992  * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash
2993  * @vsi: the VSI being configured
2994  * @nfc: ethtool rxnfc command
2995  *
2996  * Returns Success if the flow input set is supported.
2997  */
2998 static int
2999 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
3000 {
3001 	struct ice_pf *pf = vsi->back;
3002 	struct ice_rss_hash_cfg cfg;
3003 	struct device *dev;
3004 	u64 hashed_flds;
3005 	int status;
3006 	bool symm;
3007 	u32 hdrs;
3008 
3009 	dev = ice_pf_to_dev(pf);
3010 	if (ice_is_safe_mode(pf)) {
3011 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
3012 			vsi->vsi_num);
3013 		return -EINVAL;
3014 	}
3015 
3016 	symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
3017 	hashed_flds = ice_parse_hash_flds(nfc, symm);
3018 	if (hashed_flds == ICE_HASH_INVALID) {
3019 		dev_dbg(dev, "Invalid hash fields, vsi num = %d\n",
3020 			vsi->vsi_num);
3021 		return -EINVAL;
3022 	}
3023 
3024 	hdrs = ice_parse_hdrs(nfc);
3025 	if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3026 		dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3027 			vsi->vsi_num);
3028 		return -EINVAL;
3029 	}
3030 
3031 	cfg.hash_flds = hashed_flds;
3032 	cfg.addl_hdrs = hdrs;
3033 	cfg.hdr_type = ICE_RSS_ANY_HEADERS;
3034 	cfg.symm = symm;
3035 
3036 	status = ice_add_rss_cfg(&pf->hw, vsi, &cfg);
3037 	if (status) {
3038 		dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n",
3039 			vsi->vsi_num, status);
3040 		return status;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type
3048  * @vsi: the VSI being configured
3049  * @nfc: ethtool rxnfc command
3050  */
3051 static void
3052 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
3053 {
3054 	struct ice_pf *pf = vsi->back;
3055 	struct device *dev;
3056 	u64 hash_flds;
3057 	bool symm;
3058 	u32 hdrs;
3059 
3060 	dev = ice_pf_to_dev(pf);
3061 
3062 	nfc->data = 0;
3063 	if (ice_is_safe_mode(pf)) {
3064 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
3065 			vsi->vsi_num);
3066 		return;
3067 	}
3068 
3069 	hdrs = ice_parse_hdrs(nfc);
3070 	if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3071 		dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3072 			vsi->vsi_num);
3073 		return;
3074 	}
3075 
3076 	hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm);
3077 	if (hash_flds == ICE_HASH_INVALID) {
3078 		dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n",
3079 			vsi->vsi_num);
3080 		return;
3081 	}
3082 
3083 	if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA ||
3084 	    hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA)
3085 		nfc->data |= (u64)RXH_IP_SRC;
3086 
3087 	if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA ||
3088 	    hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA)
3089 		nfc->data |= (u64)RXH_IP_DST;
3090 
3091 	if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT ||
3092 	    hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT ||
3093 	    hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT)
3094 		nfc->data |= (u64)RXH_L4_B_0_1;
3095 
3096 	if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT ||
3097 	    hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT ||
3098 	    hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)
3099 		nfc->data |= (u64)RXH_L4_B_2_3;
3100 
3101 	if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID ||
3102 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID ||
3103 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID ||
3104 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID ||
3105 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID)
3106 		nfc->data |= (u64)RXH_GTP_TEID;
3107 }
3108 
3109 /**
3110  * ice_set_rxnfc - command to set Rx flow rules.
3111  * @netdev: network interface device structure
3112  * @cmd: ethtool rxnfc command
3113  *
3114  * Returns 0 for success and negative values for errors
3115  */
3116 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3117 {
3118 	struct ice_netdev_priv *np = netdev_priv(netdev);
3119 	struct ice_vsi *vsi = np->vsi;
3120 
3121 	switch (cmd->cmd) {
3122 	case ETHTOOL_SRXCLSRLINS:
3123 		return ice_add_fdir_ethtool(vsi, cmd);
3124 	case ETHTOOL_SRXCLSRLDEL:
3125 		return ice_del_fdir_ethtool(vsi, cmd);
3126 	case ETHTOOL_SRXFH:
3127 		return ice_set_rss_hash_opt(vsi, cmd);
3128 	default:
3129 		break;
3130 	}
3131 	return -EOPNOTSUPP;
3132 }
3133 
3134 /**
3135  * ice_get_rxnfc - command to get Rx flow classification rules
3136  * @netdev: network interface device structure
3137  * @cmd: ethtool rxnfc command
3138  * @rule_locs: buffer to rturn Rx flow classification rules
3139  *
3140  * Returns Success if the command is supported.
3141  */
3142 static int
3143 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3144 	      u32 __always_unused *rule_locs)
3145 {
3146 	struct ice_netdev_priv *np = netdev_priv(netdev);
3147 	struct ice_vsi *vsi = np->vsi;
3148 	int ret = -EOPNOTSUPP;
3149 	struct ice_hw *hw;
3150 
3151 	hw = &vsi->back->hw;
3152 
3153 	switch (cmd->cmd) {
3154 	case ETHTOOL_GRXRINGS:
3155 		cmd->data = vsi->rss_size;
3156 		ret = 0;
3157 		break;
3158 	case ETHTOOL_GRXCLSRLCNT:
3159 		cmd->rule_cnt = hw->fdir_active_fltr;
3160 		/* report total rule count */
3161 		cmd->data = ice_get_fdir_cnt_all(hw);
3162 		ret = 0;
3163 		break;
3164 	case ETHTOOL_GRXCLSRULE:
3165 		ret = ice_get_ethtool_fdir_entry(hw, cmd);
3166 		break;
3167 	case ETHTOOL_GRXCLSRLALL:
3168 		ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs);
3169 		break;
3170 	case ETHTOOL_GRXFH:
3171 		ice_get_rss_hash_opt(vsi, cmd);
3172 		ret = 0;
3173 		break;
3174 	default:
3175 		break;
3176 	}
3177 
3178 	return ret;
3179 }
3180 
3181 static void
3182 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3183 		  struct kernel_ethtool_ringparam *kernel_ring,
3184 		  struct netlink_ext_ack *extack)
3185 {
3186 	struct ice_netdev_priv *np = netdev_priv(netdev);
3187 	struct ice_vsi *vsi = np->vsi;
3188 
3189 	ring->rx_max_pending = ICE_MAX_NUM_DESC;
3190 	ring->tx_max_pending = ICE_MAX_NUM_DESC;
3191 	if (vsi->tx_rings && vsi->rx_rings) {
3192 		ring->rx_pending = vsi->rx_rings[0]->count;
3193 		ring->tx_pending = vsi->tx_rings[0]->count;
3194 	} else {
3195 		ring->rx_pending = 0;
3196 		ring->tx_pending = 0;
3197 	}
3198 
3199 	/* Rx mini and jumbo rings are not supported */
3200 	ring->rx_mini_max_pending = 0;
3201 	ring->rx_jumbo_max_pending = 0;
3202 	ring->rx_mini_pending = 0;
3203 	ring->rx_jumbo_pending = 0;
3204 }
3205 
3206 static int
3207 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3208 		  struct kernel_ethtool_ringparam *kernel_ring,
3209 		  struct netlink_ext_ack *extack)
3210 {
3211 	struct ice_netdev_priv *np = netdev_priv(netdev);
3212 	struct ice_tx_ring *xdp_rings = NULL;
3213 	struct ice_tx_ring *tx_rings = NULL;
3214 	struct ice_rx_ring *rx_rings = NULL;
3215 	struct ice_vsi *vsi = np->vsi;
3216 	struct ice_pf *pf = vsi->back;
3217 	int i, timeout = 50, err = 0;
3218 	u16 new_rx_cnt, new_tx_cnt;
3219 
3220 	if (ring->tx_pending > ICE_MAX_NUM_DESC ||
3221 	    ring->tx_pending < ICE_MIN_NUM_DESC ||
3222 	    ring->rx_pending > ICE_MAX_NUM_DESC ||
3223 	    ring->rx_pending < ICE_MIN_NUM_DESC) {
3224 		netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
3225 			   ring->tx_pending, ring->rx_pending,
3226 			   ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC,
3227 			   ICE_REQ_DESC_MULTIPLE);
3228 		return -EINVAL;
3229 	}
3230 
3231 	/* Return if there is no rings (device is reloading) */
3232 	if (!vsi->tx_rings || !vsi->rx_rings)
3233 		return -EBUSY;
3234 
3235 	new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE);
3236 	if (new_tx_cnt != ring->tx_pending)
3237 		netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
3238 			    new_tx_cnt);
3239 	new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE);
3240 	if (new_rx_cnt != ring->rx_pending)
3241 		netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
3242 			    new_rx_cnt);
3243 
3244 	/* if nothing to do return success */
3245 	if (new_tx_cnt == vsi->tx_rings[0]->count &&
3246 	    new_rx_cnt == vsi->rx_rings[0]->count) {
3247 		netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
3248 		return 0;
3249 	}
3250 
3251 	/* If there is a AF_XDP UMEM attached to any of Rx rings,
3252 	 * disallow changing the number of descriptors -- regardless
3253 	 * if the netdev is running or not.
3254 	 */
3255 	if (ice_xsk_any_rx_ring_ena(vsi))
3256 		return -EBUSY;
3257 
3258 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3259 		timeout--;
3260 		if (!timeout)
3261 			return -EBUSY;
3262 		usleep_range(1000, 2000);
3263 	}
3264 
3265 	/* set for the next time the netdev is started */
3266 	if (!netif_running(vsi->netdev)) {
3267 		ice_for_each_alloc_txq(vsi, i)
3268 			vsi->tx_rings[i]->count = new_tx_cnt;
3269 		ice_for_each_alloc_rxq(vsi, i)
3270 			vsi->rx_rings[i]->count = new_rx_cnt;
3271 		if (ice_is_xdp_ena_vsi(vsi))
3272 			ice_for_each_xdp_txq(vsi, i)
3273 				vsi->xdp_rings[i]->count = new_tx_cnt;
3274 		vsi->num_tx_desc = (u16)new_tx_cnt;
3275 		vsi->num_rx_desc = (u16)new_rx_cnt;
3276 		netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n");
3277 		goto done;
3278 	}
3279 
3280 	if (new_tx_cnt == vsi->tx_rings[0]->count)
3281 		goto process_rx;
3282 
3283 	/* alloc updated Tx resources */
3284 	netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n",
3285 		    vsi->tx_rings[0]->count, new_tx_cnt);
3286 
3287 	tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL);
3288 	if (!tx_rings) {
3289 		err = -ENOMEM;
3290 		goto done;
3291 	}
3292 
3293 	ice_for_each_txq(vsi, i) {
3294 		/* clone ring and setup updated count */
3295 		tx_rings[i] = *vsi->tx_rings[i];
3296 		tx_rings[i].count = new_tx_cnt;
3297 		tx_rings[i].desc = NULL;
3298 		tx_rings[i].tx_buf = NULL;
3299 		tx_rings[i].tx_tstamps = &pf->ptp.port.tx;
3300 		err = ice_setup_tx_ring(&tx_rings[i]);
3301 		if (err) {
3302 			while (i--)
3303 				ice_clean_tx_ring(&tx_rings[i]);
3304 			kfree(tx_rings);
3305 			goto done;
3306 		}
3307 	}
3308 
3309 	if (!ice_is_xdp_ena_vsi(vsi))
3310 		goto process_rx;
3311 
3312 	/* alloc updated XDP resources */
3313 	netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n",
3314 		    vsi->xdp_rings[0]->count, new_tx_cnt);
3315 
3316 	xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL);
3317 	if (!xdp_rings) {
3318 		err = -ENOMEM;
3319 		goto free_tx;
3320 	}
3321 
3322 	ice_for_each_xdp_txq(vsi, i) {
3323 		/* clone ring and setup updated count */
3324 		xdp_rings[i] = *vsi->xdp_rings[i];
3325 		xdp_rings[i].count = new_tx_cnt;
3326 		xdp_rings[i].desc = NULL;
3327 		xdp_rings[i].tx_buf = NULL;
3328 		err = ice_setup_tx_ring(&xdp_rings[i]);
3329 		if (err) {
3330 			while (i--)
3331 				ice_clean_tx_ring(&xdp_rings[i]);
3332 			kfree(xdp_rings);
3333 			goto free_tx;
3334 		}
3335 		ice_set_ring_xdp(&xdp_rings[i]);
3336 	}
3337 
3338 process_rx:
3339 	if (new_rx_cnt == vsi->rx_rings[0]->count)
3340 		goto process_link;
3341 
3342 	/* alloc updated Rx resources */
3343 	netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n",
3344 		    vsi->rx_rings[0]->count, new_rx_cnt);
3345 
3346 	rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL);
3347 	if (!rx_rings) {
3348 		err = -ENOMEM;
3349 		goto done;
3350 	}
3351 
3352 	ice_for_each_rxq(vsi, i) {
3353 		/* clone ring and setup updated count */
3354 		rx_rings[i] = *vsi->rx_rings[i];
3355 		rx_rings[i].count = new_rx_cnt;
3356 		rx_rings[i].cached_phctime = pf->ptp.cached_phc_time;
3357 		rx_rings[i].desc = NULL;
3358 		rx_rings[i].rx_buf = NULL;
3359 		/* this is to allow wr32 to have something to write to
3360 		 * during early allocation of Rx buffers
3361 		 */
3362 		rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS;
3363 
3364 		err = ice_setup_rx_ring(&rx_rings[i]);
3365 		if (err)
3366 			goto rx_unwind;
3367 
3368 		/* allocate Rx buffers */
3369 		err = ice_alloc_rx_bufs(&rx_rings[i],
3370 					ICE_RX_DESC_UNUSED(&rx_rings[i]));
3371 rx_unwind:
3372 		if (err) {
3373 			while (i) {
3374 				i--;
3375 				ice_free_rx_ring(&rx_rings[i]);
3376 			}
3377 			kfree(rx_rings);
3378 			err = -ENOMEM;
3379 			goto free_tx;
3380 		}
3381 	}
3382 
3383 process_link:
3384 	/* Bring interface down, copy in the new ring info, then restore the
3385 	 * interface. if VSI is up, bring it down and then back up
3386 	 */
3387 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
3388 		ice_down(vsi);
3389 
3390 		if (tx_rings) {
3391 			ice_for_each_txq(vsi, i) {
3392 				ice_free_tx_ring(vsi->tx_rings[i]);
3393 				*vsi->tx_rings[i] = tx_rings[i];
3394 			}
3395 			kfree(tx_rings);
3396 		}
3397 
3398 		if (rx_rings) {
3399 			ice_for_each_rxq(vsi, i) {
3400 				ice_free_rx_ring(vsi->rx_rings[i]);
3401 				/* copy the real tail offset */
3402 				rx_rings[i].tail = vsi->rx_rings[i]->tail;
3403 				/* this is to fake out the allocation routine
3404 				 * into thinking it has to realloc everything
3405 				 * but the recycling logic will let us re-use
3406 				 * the buffers allocated above
3407 				 */
3408 				rx_rings[i].next_to_use = 0;
3409 				rx_rings[i].next_to_clean = 0;
3410 				rx_rings[i].next_to_alloc = 0;
3411 				*vsi->rx_rings[i] = rx_rings[i];
3412 			}
3413 			kfree(rx_rings);
3414 		}
3415 
3416 		if (xdp_rings) {
3417 			ice_for_each_xdp_txq(vsi, i) {
3418 				ice_free_tx_ring(vsi->xdp_rings[i]);
3419 				*vsi->xdp_rings[i] = xdp_rings[i];
3420 			}
3421 			kfree(xdp_rings);
3422 		}
3423 
3424 		vsi->num_tx_desc = new_tx_cnt;
3425 		vsi->num_rx_desc = new_rx_cnt;
3426 		ice_up(vsi);
3427 	}
3428 	goto done;
3429 
3430 free_tx:
3431 	/* error cleanup if the Rx allocations failed after getting Tx */
3432 	if (tx_rings) {
3433 		ice_for_each_txq(vsi, i)
3434 			ice_free_tx_ring(&tx_rings[i]);
3435 		kfree(tx_rings);
3436 	}
3437 
3438 done:
3439 	clear_bit(ICE_CFG_BUSY, pf->state);
3440 	return err;
3441 }
3442 
3443 /**
3444  * ice_get_pauseparam - Get Flow Control status
3445  * @netdev: network interface device structure
3446  * @pause: ethernet pause (flow control) parameters
3447  *
3448  * Get requested flow control status from PHY capability.
3449  * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which
3450  * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report
3451  * the negotiated Rx/Tx pause via lp_advertising.
3452  */
3453 static void
3454 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3455 {
3456 	struct ice_netdev_priv *np = netdev_priv(netdev);
3457 	struct ice_port_info *pi = np->vsi->port_info;
3458 	struct ice_aqc_get_phy_caps_data *pcaps;
3459 	struct ice_dcbx_cfg *dcbx_cfg;
3460 	int status;
3461 
3462 	/* Initialize pause params */
3463 	pause->rx_pause = 0;
3464 	pause->tx_pause = 0;
3465 
3466 	dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3467 
3468 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3469 	if (!pcaps)
3470 		return;
3471 
3472 	/* Get current PHY config */
3473 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3474 				     NULL);
3475 	if (status)
3476 		goto out;
3477 
3478 	pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3479 							     AUTONEG_DISABLE;
3480 
3481 	if (dcbx_cfg->pfc.pfcena)
3482 		/* PFC enabled so report LFC as off */
3483 		goto out;
3484 
3485 	if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3486 		pause->tx_pause = 1;
3487 	if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3488 		pause->rx_pause = 1;
3489 
3490 out:
3491 	kfree(pcaps);
3492 }
3493 
3494 /**
3495  * ice_set_pauseparam - Set Flow Control parameter
3496  * @netdev: network interface device structure
3497  * @pause: return Tx/Rx flow control status
3498  */
3499 static int
3500 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3501 {
3502 	struct ice_netdev_priv *np = netdev_priv(netdev);
3503 	struct ice_aqc_get_phy_caps_data *pcaps;
3504 	struct ice_link_status *hw_link_info;
3505 	struct ice_pf *pf = np->vsi->back;
3506 	struct ice_dcbx_cfg *dcbx_cfg;
3507 	struct ice_vsi *vsi = np->vsi;
3508 	struct ice_hw *hw = &pf->hw;
3509 	struct ice_port_info *pi;
3510 	u8 aq_failures;
3511 	bool link_up;
3512 	u32 is_an;
3513 	int err;
3514 
3515 	pi = vsi->port_info;
3516 	hw_link_info = &pi->phy.link_info;
3517 	dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3518 	link_up = hw_link_info->link_info & ICE_AQ_LINK_UP;
3519 
3520 	/* Changing the port's flow control is not supported if this isn't the
3521 	 * PF VSI
3522 	 */
3523 	if (vsi->type != ICE_VSI_PF) {
3524 		netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n");
3525 		return -EOPNOTSUPP;
3526 	}
3527 
3528 	/* Get pause param reports configured and negotiated flow control pause
3529 	 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is
3530 	 * defined get pause param pause->autoneg reports SW configured setting,
3531 	 * so compare pause->autoneg with SW configured to prevent the user from
3532 	 * using set pause param to chance autoneg.
3533 	 */
3534 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3535 	if (!pcaps)
3536 		return -ENOMEM;
3537 
3538 	/* Get current PHY config */
3539 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3540 				  NULL);
3541 	if (err) {
3542 		kfree(pcaps);
3543 		return err;
3544 	}
3545 
3546 	is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3547 						    AUTONEG_DISABLE;
3548 
3549 	kfree(pcaps);
3550 
3551 	if (pause->autoneg != is_an) {
3552 		netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
3553 		return -EOPNOTSUPP;
3554 	}
3555 
3556 	/* If we have link and don't have autoneg */
3557 	if (!test_bit(ICE_DOWN, pf->state) &&
3558 	    !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) {
3559 		/* Send message that it might not necessarily work*/
3560 		netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n");
3561 	}
3562 
3563 	if (dcbx_cfg->pfc.pfcena) {
3564 		netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n");
3565 		return -EOPNOTSUPP;
3566 	}
3567 	if (pause->rx_pause && pause->tx_pause)
3568 		pi->fc.req_mode = ICE_FC_FULL;
3569 	else if (pause->rx_pause && !pause->tx_pause)
3570 		pi->fc.req_mode = ICE_FC_RX_PAUSE;
3571 	else if (!pause->rx_pause && pause->tx_pause)
3572 		pi->fc.req_mode = ICE_FC_TX_PAUSE;
3573 	else if (!pause->rx_pause && !pause->tx_pause)
3574 		pi->fc.req_mode = ICE_FC_NONE;
3575 	else
3576 		return -EINVAL;
3577 
3578 	/* Set the FC mode and only restart AN if link is up */
3579 	err = ice_set_fc(pi, &aq_failures, link_up);
3580 
3581 	if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) {
3582 		netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n",
3583 			    err, ice_aq_str(hw->adminq.sq_last_status));
3584 		err = -EAGAIN;
3585 	} else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) {
3586 		netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n",
3587 			    err, ice_aq_str(hw->adminq.sq_last_status));
3588 		err = -EAGAIN;
3589 	} else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) {
3590 		netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n",
3591 			    err, ice_aq_str(hw->adminq.sq_last_status));
3592 		err = -EAGAIN;
3593 	}
3594 
3595 	return err;
3596 }
3597 
3598 /**
3599  * ice_get_rxfh_key_size - get the RSS hash key size
3600  * @netdev: network interface device structure
3601  *
3602  * Returns the table size.
3603  */
3604 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev)
3605 {
3606 	return ICE_VSIQF_HKEY_ARRAY_SIZE;
3607 }
3608 
3609 /**
3610  * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size
3611  * @netdev: network interface device structure
3612  *
3613  * Returns the table size.
3614  */
3615 static u32 ice_get_rxfh_indir_size(struct net_device *netdev)
3616 {
3617 	struct ice_netdev_priv *np = netdev_priv(netdev);
3618 
3619 	return np->vsi->rss_table_size;
3620 }
3621 
3622 /**
3623  * ice_get_rxfh - get the Rx flow hash indirection table
3624  * @netdev: network interface device structure
3625  * @rxfh: pointer to param struct (indir, key, hfunc)
3626  *
3627  * Reads the indirection table directly from the hardware.
3628  */
3629 static int
3630 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh)
3631 {
3632 	struct ice_netdev_priv *np = netdev_priv(netdev);
3633 	u32 rss_context = rxfh->rss_context;
3634 	struct ice_vsi *vsi = np->vsi;
3635 	struct ice_pf *pf = vsi->back;
3636 	u16 qcount, offset;
3637 	int err, num_tc, i;
3638 	u8 *lut;
3639 
3640 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3641 		netdev_warn(netdev, "RSS is not supported on this VSI!\n");
3642 		return -EOPNOTSUPP;
3643 	}
3644 
3645 	if (rss_context && !ice_is_adq_active(pf)) {
3646 		netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n");
3647 		return -EINVAL;
3648 	}
3649 
3650 	qcount = vsi->mqprio_qopt.qopt.count[rss_context];
3651 	offset = vsi->mqprio_qopt.qopt.offset[rss_context];
3652 
3653 	if (rss_context && ice_is_adq_active(pf)) {
3654 		num_tc = vsi->mqprio_qopt.qopt.num_tc;
3655 		if (rss_context >= num_tc) {
3656 			netdev_err(netdev, "RSS context:%d  > num_tc:%d\n",
3657 				   rss_context, num_tc);
3658 			return -EINVAL;
3659 		}
3660 		/* Use channel VSI of given TC */
3661 		vsi = vsi->tc_map_vsi[rss_context];
3662 	}
3663 
3664 	rxfh->hfunc = ETH_RSS_HASH_TOP;
3665 	if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
3666 		rxfh->input_xfrm |= RXH_XFRM_SYM_XOR;
3667 
3668 	if (!rxfh->indir)
3669 		return 0;
3670 
3671 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3672 	if (!lut)
3673 		return -ENOMEM;
3674 
3675 	err = ice_get_rss_key(vsi, rxfh->key);
3676 	if (err)
3677 		goto out;
3678 
3679 	err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size);
3680 	if (err)
3681 		goto out;
3682 
3683 	if (ice_is_adq_active(pf)) {
3684 		for (i = 0; i < vsi->rss_table_size; i++)
3685 			rxfh->indir[i] = offset + lut[i] % qcount;
3686 		goto out;
3687 	}
3688 
3689 	for (i = 0; i < vsi->rss_table_size; i++)
3690 		rxfh->indir[i] = lut[i];
3691 
3692 out:
3693 	kfree(lut);
3694 	return err;
3695 }
3696 
3697 /**
3698  * ice_set_rxfh - set the Rx flow hash indirection table
3699  * @netdev: network interface device structure
3700  * @rxfh: pointer to param struct (indir, key, hfunc)
3701  * @extack: extended ACK from the Netlink message
3702  *
3703  * Returns -EINVAL if the table specifies an invalid queue ID, otherwise
3704  * returns 0 after programming the table.
3705  */
3706 static int
3707 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh,
3708 	     struct netlink_ext_ack *extack)
3709 {
3710 	struct ice_netdev_priv *np = netdev_priv(netdev);
3711 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
3712 	struct ice_vsi *vsi = np->vsi;
3713 	struct ice_pf *pf = vsi->back;
3714 	struct device *dev;
3715 	int err;
3716 
3717 	dev = ice_pf_to_dev(pf);
3718 	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
3719 	    rxfh->hfunc != ETH_RSS_HASH_TOP)
3720 		return -EOPNOTSUPP;
3721 
3722 	if (rxfh->rss_context)
3723 		return -EOPNOTSUPP;
3724 
3725 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3726 		/* RSS not supported return error here */
3727 		netdev_warn(netdev, "RSS is not configured on this VSI!\n");
3728 		return -EIO;
3729 	}
3730 
3731 	if (ice_is_adq_active(pf)) {
3732 		netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n");
3733 		return -EOPNOTSUPP;
3734 	}
3735 
3736 	/* Update the VSI's hash function */
3737 	if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR)
3738 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
3739 
3740 	err = ice_set_rss_hfunc(vsi, hfunc);
3741 	if (err)
3742 		return err;
3743 
3744 	if (rxfh->key) {
3745 		if (!vsi->rss_hkey_user) {
3746 			vsi->rss_hkey_user =
3747 				devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE,
3748 					     GFP_KERNEL);
3749 			if (!vsi->rss_hkey_user)
3750 				return -ENOMEM;
3751 		}
3752 		memcpy(vsi->rss_hkey_user, rxfh->key,
3753 		       ICE_VSIQF_HKEY_ARRAY_SIZE);
3754 
3755 		err = ice_set_rss_key(vsi, vsi->rss_hkey_user);
3756 		if (err)
3757 			return err;
3758 	}
3759 
3760 	if (!vsi->rss_lut_user) {
3761 		vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size,
3762 						 GFP_KERNEL);
3763 		if (!vsi->rss_lut_user)
3764 			return -ENOMEM;
3765 	}
3766 
3767 	/* Each 32 bits pointed by 'indir' is stored with a lut entry */
3768 	if (rxfh->indir) {
3769 		int i;
3770 
3771 		for (i = 0; i < vsi->rss_table_size; i++)
3772 			vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]);
3773 	} else {
3774 		ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size,
3775 				 vsi->rss_size);
3776 	}
3777 
3778 	err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size);
3779 	if (err)
3780 		return err;
3781 
3782 	return 0;
3783 }
3784 
3785 static int
3786 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info)
3787 {
3788 	struct ice_pf *pf = ice_netdev_to_pf(dev);
3789 
3790 	/* only report timestamping if PTP is enabled */
3791 	if (pf->ptp.state != ICE_PTP_READY)
3792 		return ethtool_op_get_ts_info(dev, info);
3793 
3794 	info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
3795 				SOF_TIMESTAMPING_TX_HARDWARE |
3796 				SOF_TIMESTAMPING_RX_HARDWARE |
3797 				SOF_TIMESTAMPING_RAW_HARDWARE;
3798 
3799 	info->phc_index = ice_ptp_clock_index(pf);
3800 
3801 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
3802 
3803 	info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL);
3804 
3805 	return 0;
3806 }
3807 
3808 /**
3809  * ice_get_max_txq - return the maximum number of Tx queues for in a PF
3810  * @pf: PF structure
3811  */
3812 static int ice_get_max_txq(struct ice_pf *pf)
3813 {
3814 	return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3815 		    (u16)pf->hw.func_caps.common_cap.num_txq);
3816 }
3817 
3818 /**
3819  * ice_get_max_rxq - return the maximum number of Rx queues for in a PF
3820  * @pf: PF structure
3821  */
3822 static int ice_get_max_rxq(struct ice_pf *pf)
3823 {
3824 	return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3825 		    (u16)pf->hw.func_caps.common_cap.num_rxq);
3826 }
3827 
3828 /**
3829  * ice_get_combined_cnt - return the current number of combined channels
3830  * @vsi: PF VSI pointer
3831  *
3832  * Go through all queue vectors and count ones that have both Rx and Tx ring
3833  * attached
3834  */
3835 static u32 ice_get_combined_cnt(struct ice_vsi *vsi)
3836 {
3837 	u32 combined = 0;
3838 	int q_idx;
3839 
3840 	ice_for_each_q_vector(vsi, q_idx) {
3841 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3842 
3843 		if (q_vector->rx.rx_ring && q_vector->tx.tx_ring)
3844 			combined++;
3845 	}
3846 
3847 	return combined;
3848 }
3849 
3850 /**
3851  * ice_get_channels - get the current and max supported channels
3852  * @dev: network interface device structure
3853  * @ch: ethtool channel data structure
3854  */
3855 static void
3856 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch)
3857 {
3858 	struct ice_netdev_priv *np = netdev_priv(dev);
3859 	struct ice_vsi *vsi = np->vsi;
3860 	struct ice_pf *pf = vsi->back;
3861 
3862 	/* report maximum channels */
3863 	ch->max_rx = ice_get_max_rxq(pf);
3864 	ch->max_tx = ice_get_max_txq(pf);
3865 	ch->max_combined = min_t(int, ch->max_rx, ch->max_tx);
3866 
3867 	/* report current channels */
3868 	ch->combined_count = ice_get_combined_cnt(vsi);
3869 	ch->rx_count = vsi->num_rxq - ch->combined_count;
3870 	ch->tx_count = vsi->num_txq - ch->combined_count;
3871 
3872 	/* report other queues */
3873 	ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
3874 	ch->max_other = ch->other_count;
3875 }
3876 
3877 /**
3878  * ice_get_valid_rss_size - return valid number of RSS queues
3879  * @hw: pointer to the HW structure
3880  * @new_size: requested RSS queues
3881  */
3882 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size)
3883 {
3884 	struct ice_hw_common_caps *caps = &hw->func_caps.common_cap;
3885 
3886 	return min_t(int, new_size, BIT(caps->rss_table_entry_width));
3887 }
3888 
3889 /**
3890  * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size
3891  * @vsi: VSI to reconfigure RSS LUT on
3892  * @req_rss_size: requested range of queue numbers for hashing
3893  *
3894  * Set the VSI's RSS parameters, configure the RSS LUT based on these.
3895  */
3896 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size)
3897 {
3898 	struct ice_pf *pf = vsi->back;
3899 	struct device *dev;
3900 	struct ice_hw *hw;
3901 	int err;
3902 	u8 *lut;
3903 
3904 	dev = ice_pf_to_dev(pf);
3905 	hw = &pf->hw;
3906 
3907 	if (!req_rss_size)
3908 		return -EINVAL;
3909 
3910 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3911 	if (!lut)
3912 		return -ENOMEM;
3913 
3914 	/* set RSS LUT parameters */
3915 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3916 		vsi->rss_size = 1;
3917 	else
3918 		vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size);
3919 
3920 	/* create/set RSS LUT */
3921 	ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
3922 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
3923 	if (err)
3924 		dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err,
3925 			ice_aq_str(hw->adminq.sq_last_status));
3926 
3927 	kfree(lut);
3928 	return err;
3929 }
3930 
3931 /**
3932  * ice_set_channels - set the number channels
3933  * @dev: network interface device structure
3934  * @ch: ethtool channel data structure
3935  */
3936 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch)
3937 {
3938 	struct ice_netdev_priv *np = netdev_priv(dev);
3939 	struct ice_vsi *vsi = np->vsi;
3940 	struct ice_pf *pf = vsi->back;
3941 	int new_rx = 0, new_tx = 0;
3942 	bool locked = false;
3943 	int ret = 0;
3944 
3945 	/* do not support changing channels in Safe Mode */
3946 	if (ice_is_safe_mode(pf)) {
3947 		netdev_err(dev, "Changing channel in Safe Mode is not supported\n");
3948 		return -EOPNOTSUPP;
3949 	}
3950 	/* do not support changing other_count */
3951 	if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U))
3952 		return -EINVAL;
3953 
3954 	if (ice_is_adq_active(pf)) {
3955 		netdev_err(dev, "Cannot set channels with ADQ configured.\n");
3956 		return -EOPNOTSUPP;
3957 	}
3958 
3959 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) {
3960 		netdev_err(dev, "Cannot set channels when Flow Director filters are active\n");
3961 		return -EOPNOTSUPP;
3962 	}
3963 
3964 	if (ch->rx_count && ch->tx_count) {
3965 		netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n");
3966 		return -EINVAL;
3967 	}
3968 
3969 	new_rx = ch->combined_count + ch->rx_count;
3970 	new_tx = ch->combined_count + ch->tx_count;
3971 
3972 	if (new_rx < vsi->tc_cfg.numtc) {
3973 		netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n",
3974 			   vsi->tc_cfg.numtc);
3975 		return -EINVAL;
3976 	}
3977 	if (new_tx < vsi->tc_cfg.numtc) {
3978 		netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n",
3979 			   vsi->tc_cfg.numtc);
3980 		return -EINVAL;
3981 	}
3982 	if (new_rx > ice_get_max_rxq(pf)) {
3983 		netdev_err(dev, "Maximum allowed Rx channels is %d\n",
3984 			   ice_get_max_rxq(pf));
3985 		return -EINVAL;
3986 	}
3987 	if (new_tx > ice_get_max_txq(pf)) {
3988 		netdev_err(dev, "Maximum allowed Tx channels is %d\n",
3989 			   ice_get_max_txq(pf));
3990 		return -EINVAL;
3991 	}
3992 
3993 	if (pf->adev) {
3994 		mutex_lock(&pf->adev_mutex);
3995 		device_lock(&pf->adev->dev);
3996 		locked = true;
3997 		if (pf->adev->dev.driver) {
3998 			netdev_err(dev, "Cannot change channels when RDMA is active\n");
3999 			ret = -EBUSY;
4000 			goto adev_unlock;
4001 		}
4002 	}
4003 
4004 	ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked);
4005 
4006 	if (!netif_is_rxfh_configured(dev)) {
4007 		ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx);
4008 		goto adev_unlock;
4009 	}
4010 
4011 	/* Update rss_size due to change in Rx queues */
4012 	vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx);
4013 
4014 adev_unlock:
4015 	if (locked) {
4016 		device_unlock(&pf->adev->dev);
4017 		mutex_unlock(&pf->adev_mutex);
4018 	}
4019 	return ret;
4020 }
4021 
4022 /**
4023  * ice_get_wol - get current Wake on LAN configuration
4024  * @netdev: network interface device structure
4025  * @wol: Ethtool structure to retrieve WoL settings
4026  */
4027 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4028 {
4029 	struct ice_netdev_priv *np = netdev_priv(netdev);
4030 	struct ice_pf *pf = np->vsi->back;
4031 
4032 	if (np->vsi->type != ICE_VSI_PF)
4033 		netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n");
4034 
4035 	/* Get WoL settings based on the HW capability */
4036 	if (ice_is_wol_supported(&pf->hw)) {
4037 		wol->supported = WAKE_MAGIC;
4038 		wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0;
4039 	} else {
4040 		wol->supported = 0;
4041 		wol->wolopts = 0;
4042 	}
4043 }
4044 
4045 /**
4046  * ice_set_wol - set Wake on LAN on supported device
4047  * @netdev: network interface device structure
4048  * @wol: Ethtool structure to set WoL
4049  */
4050 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4051 {
4052 	struct ice_netdev_priv *np = netdev_priv(netdev);
4053 	struct ice_vsi *vsi = np->vsi;
4054 	struct ice_pf *pf = vsi->back;
4055 
4056 	if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw))
4057 		return -EOPNOTSUPP;
4058 
4059 	/* only magic packet is supported */
4060 	if (wol->wolopts && wol->wolopts != WAKE_MAGIC)
4061 		return -EOPNOTSUPP;
4062 
4063 	/* Set WoL only if there is a new value */
4064 	if (pf->wol_ena != !!wol->wolopts) {
4065 		pf->wol_ena = !!wol->wolopts;
4066 		device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena);
4067 		netdev_dbg(netdev, "WoL magic packet %sabled\n",
4068 			   pf->wol_ena ? "en" : "dis");
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 /**
4075  * ice_get_rc_coalesce - get ITR values for specific ring container
4076  * @ec: ethtool structure to fill with driver's coalesce settings
4077  * @rc: ring container that the ITR values will come from
4078  *
4079  * Query the device for ice_ring_container specific ITR values. This is
4080  * done per ice_ring_container because each q_vector can have 1 or more rings
4081  * and all of said ring(s) will have the same ITR values.
4082  *
4083  * Returns 0 on success, negative otherwise.
4084  */
4085 static int
4086 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc)
4087 {
4088 	if (!rc->rx_ring)
4089 		return -EINVAL;
4090 
4091 	switch (rc->type) {
4092 	case ICE_RX_CONTAINER:
4093 		ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc);
4094 		ec->rx_coalesce_usecs = rc->itr_setting;
4095 		ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl;
4096 		break;
4097 	case ICE_TX_CONTAINER:
4098 		ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc);
4099 		ec->tx_coalesce_usecs = rc->itr_setting;
4100 		break;
4101 	default:
4102 		dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type);
4103 		return -EINVAL;
4104 	}
4105 
4106 	return 0;
4107 }
4108 
4109 /**
4110  * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings
4111  * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings
4112  * @ec: coalesce settings to program the device with
4113  * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4114  *
4115  * Return 0 on success, and negative under the following conditions:
4116  * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed.
4117  * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4118  */
4119 static int
4120 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4121 {
4122 	if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4123 		if (ice_get_rc_coalesce(ec,
4124 					&vsi->rx_rings[q_num]->q_vector->rx))
4125 			return -EINVAL;
4126 		if (ice_get_rc_coalesce(ec,
4127 					&vsi->tx_rings[q_num]->q_vector->tx))
4128 			return -EINVAL;
4129 	} else if (q_num < vsi->num_rxq) {
4130 		if (ice_get_rc_coalesce(ec,
4131 					&vsi->rx_rings[q_num]->q_vector->rx))
4132 			return -EINVAL;
4133 	} else if (q_num < vsi->num_txq) {
4134 		if (ice_get_rc_coalesce(ec,
4135 					&vsi->tx_rings[q_num]->q_vector->tx))
4136 			return -EINVAL;
4137 	} else {
4138 		return -EINVAL;
4139 	}
4140 
4141 	return 0;
4142 }
4143 
4144 /**
4145  * __ice_get_coalesce - get ITR/INTRL values for the device
4146  * @netdev: pointer to the netdev associated with this query
4147  * @ec: ethtool structure to fill with driver's coalesce settings
4148  * @q_num: queue number to get the coalesce settings for
4149  *
4150  * If the caller passes in a negative q_num then we return coalesce settings
4151  * based on queue number 0, else use the actual q_num passed in.
4152  */
4153 static int
4154 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4155 		   int q_num)
4156 {
4157 	struct ice_netdev_priv *np = netdev_priv(netdev);
4158 	struct ice_vsi *vsi = np->vsi;
4159 
4160 	if (q_num < 0)
4161 		q_num = 0;
4162 
4163 	if (ice_get_q_coalesce(vsi, ec, q_num))
4164 		return -EINVAL;
4165 
4166 	return 0;
4167 }
4168 
4169 static int ice_get_coalesce(struct net_device *netdev,
4170 			    struct ethtool_coalesce *ec,
4171 			    struct kernel_ethtool_coalesce *kernel_coal,
4172 			    struct netlink_ext_ack *extack)
4173 {
4174 	return __ice_get_coalesce(netdev, ec, -1);
4175 }
4176 
4177 static int
4178 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num,
4179 		       struct ethtool_coalesce *ec)
4180 {
4181 	return __ice_get_coalesce(netdev, ec, q_num);
4182 }
4183 
4184 /**
4185  * ice_set_rc_coalesce - set ITR values for specific ring container
4186  * @ec: ethtool structure from user to update ITR settings
4187  * @rc: ring container that the ITR values will come from
4188  * @vsi: VSI associated to the ring container
4189  *
4190  * Set specific ITR values. This is done per ice_ring_container because each
4191  * q_vector can have 1 or more rings and all of said ring(s) will have the same
4192  * ITR values.
4193  *
4194  * Returns 0 on success, negative otherwise.
4195  */
4196 static int
4197 ice_set_rc_coalesce(struct ethtool_coalesce *ec,
4198 		    struct ice_ring_container *rc, struct ice_vsi *vsi)
4199 {
4200 	const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx";
4201 	u32 use_adaptive_coalesce, coalesce_usecs;
4202 	struct ice_pf *pf = vsi->back;
4203 	u16 itr_setting;
4204 
4205 	if (!rc->rx_ring)
4206 		return -EINVAL;
4207 
4208 	switch (rc->type) {
4209 	case ICE_RX_CONTAINER:
4210 	{
4211 		struct ice_q_vector *q_vector = rc->rx_ring->q_vector;
4212 
4213 		if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL ||
4214 		    (ec->rx_coalesce_usecs_high &&
4215 		     ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) {
4216 			netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n",
4217 				    c_type_str, pf->hw.intrl_gran,
4218 				    ICE_MAX_INTRL);
4219 			return -EINVAL;
4220 		}
4221 		if (ec->rx_coalesce_usecs_high != q_vector->intrl &&
4222 		    (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) {
4223 			netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n",
4224 				    c_type_str);
4225 			return -EINVAL;
4226 		}
4227 		if (ec->rx_coalesce_usecs_high != q_vector->intrl)
4228 			q_vector->intrl = ec->rx_coalesce_usecs_high;
4229 
4230 		use_adaptive_coalesce = ec->use_adaptive_rx_coalesce;
4231 		coalesce_usecs = ec->rx_coalesce_usecs;
4232 
4233 		break;
4234 	}
4235 	case ICE_TX_CONTAINER:
4236 		use_adaptive_coalesce = ec->use_adaptive_tx_coalesce;
4237 		coalesce_usecs = ec->tx_coalesce_usecs;
4238 
4239 		break;
4240 	default:
4241 		dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n",
4242 			rc->type);
4243 		return -EINVAL;
4244 	}
4245 
4246 	itr_setting = rc->itr_setting;
4247 	if (coalesce_usecs != itr_setting && use_adaptive_coalesce) {
4248 		netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n",
4249 			    c_type_str, c_type_str);
4250 		return -EINVAL;
4251 	}
4252 
4253 	if (coalesce_usecs > ICE_ITR_MAX) {
4254 		netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n",
4255 			    c_type_str, ICE_ITR_MAX);
4256 		return -EINVAL;
4257 	}
4258 
4259 	if (use_adaptive_coalesce) {
4260 		rc->itr_mode = ITR_DYNAMIC;
4261 	} else {
4262 		rc->itr_mode = ITR_STATIC;
4263 		/* store user facing value how it was set */
4264 		rc->itr_setting = coalesce_usecs;
4265 		/* write the change to the register */
4266 		ice_write_itr(rc, coalesce_usecs);
4267 		/* force writes to take effect immediately, the flush shouldn't
4268 		 * be done in the functions above because the intent is for
4269 		 * them to do lazy writes.
4270 		 */
4271 		ice_flush(&pf->hw);
4272 	}
4273 
4274 	return 0;
4275 }
4276 
4277 /**
4278  * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings
4279  * @vsi: VSI associated to the queue that need updating
4280  * @ec: coalesce settings to program the device with
4281  * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4282  *
4283  * Return 0 on success, and negative under the following conditions:
4284  * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed.
4285  * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4286  */
4287 static int
4288 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4289 {
4290 	if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4291 		if (ice_set_rc_coalesce(ec,
4292 					&vsi->rx_rings[q_num]->q_vector->rx,
4293 					vsi))
4294 			return -EINVAL;
4295 
4296 		if (ice_set_rc_coalesce(ec,
4297 					&vsi->tx_rings[q_num]->q_vector->tx,
4298 					vsi))
4299 			return -EINVAL;
4300 	} else if (q_num < vsi->num_rxq) {
4301 		if (ice_set_rc_coalesce(ec,
4302 					&vsi->rx_rings[q_num]->q_vector->rx,
4303 					vsi))
4304 			return -EINVAL;
4305 	} else if (q_num < vsi->num_txq) {
4306 		if (ice_set_rc_coalesce(ec,
4307 					&vsi->tx_rings[q_num]->q_vector->tx,
4308 					vsi))
4309 			return -EINVAL;
4310 	} else {
4311 		return -EINVAL;
4312 	}
4313 
4314 	return 0;
4315 }
4316 
4317 /**
4318  * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs
4319  * @netdev: netdev used for print
4320  * @itr_setting: previous user setting
4321  * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled
4322  * @coalesce_usecs: requested value of [tx|rx]-usecs
4323  * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs
4324  */
4325 static void
4326 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting,
4327 		       u32 use_adaptive_coalesce, u32 coalesce_usecs,
4328 		       const char *c_type_str)
4329 {
4330 	if (use_adaptive_coalesce)
4331 		return;
4332 
4333 	if (itr_setting != coalesce_usecs && (coalesce_usecs % 2))
4334 		netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n",
4335 			    c_type_str, coalesce_usecs, c_type_str,
4336 			    ITR_REG_ALIGN(coalesce_usecs));
4337 }
4338 
4339 /**
4340  * __ice_set_coalesce - set ITR/INTRL values for the device
4341  * @netdev: pointer to the netdev associated with this query
4342  * @ec: ethtool structure to fill with driver's coalesce settings
4343  * @q_num: queue number to get the coalesce settings for
4344  *
4345  * If the caller passes in a negative q_num then we set the coalesce settings
4346  * for all Tx/Rx queues, else use the actual q_num passed in.
4347  */
4348 static int
4349 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4350 		   int q_num)
4351 {
4352 	struct ice_netdev_priv *np = netdev_priv(netdev);
4353 	struct ice_vsi *vsi = np->vsi;
4354 
4355 	if (q_num < 0) {
4356 		struct ice_q_vector *q_vector = vsi->q_vectors[0];
4357 		int v_idx;
4358 
4359 		if (q_vector) {
4360 			ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting,
4361 					       ec->use_adaptive_rx_coalesce,
4362 					       ec->rx_coalesce_usecs, "rx");
4363 
4364 			ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting,
4365 					       ec->use_adaptive_tx_coalesce,
4366 					       ec->tx_coalesce_usecs, "tx");
4367 		}
4368 
4369 		ice_for_each_q_vector(vsi, v_idx) {
4370 			/* In some cases if DCB is configured the num_[rx|tx]q
4371 			 * can be less than vsi->num_q_vectors. This check
4372 			 * accounts for that so we don't report a false failure
4373 			 */
4374 			if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq)
4375 				goto set_complete;
4376 
4377 			if (ice_set_q_coalesce(vsi, ec, v_idx))
4378 				return -EINVAL;
4379 
4380 			ice_set_q_vector_intrl(vsi->q_vectors[v_idx]);
4381 		}
4382 		goto set_complete;
4383 	}
4384 
4385 	if (ice_set_q_coalesce(vsi, ec, q_num))
4386 		return -EINVAL;
4387 
4388 	ice_set_q_vector_intrl(vsi->q_vectors[q_num]);
4389 
4390 set_complete:
4391 	return 0;
4392 }
4393 
4394 static int ice_set_coalesce(struct net_device *netdev,
4395 			    struct ethtool_coalesce *ec,
4396 			    struct kernel_ethtool_coalesce *kernel_coal,
4397 			    struct netlink_ext_ack *extack)
4398 {
4399 	return __ice_set_coalesce(netdev, ec, -1);
4400 }
4401 
4402 static int
4403 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num,
4404 		       struct ethtool_coalesce *ec)
4405 {
4406 	return __ice_set_coalesce(netdev, ec, q_num);
4407 }
4408 
4409 static void
4410 ice_repr_get_drvinfo(struct net_device *netdev,
4411 		     struct ethtool_drvinfo *drvinfo)
4412 {
4413 	struct ice_repr *repr = ice_netdev_to_repr(netdev);
4414 
4415 	if (ice_check_vf_ready_for_cfg(repr->vf))
4416 		return;
4417 
4418 	__ice_get_drvinfo(netdev, drvinfo, repr->src_vsi);
4419 }
4420 
4421 static void
4422 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
4423 {
4424 	struct ice_repr *repr = ice_netdev_to_repr(netdev);
4425 
4426 	/* for port representors only ETH_SS_STATS is supported */
4427 	if (ice_check_vf_ready_for_cfg(repr->vf) ||
4428 	    stringset != ETH_SS_STATS)
4429 		return;
4430 
4431 	__ice_get_strings(netdev, stringset, data, repr->src_vsi);
4432 }
4433 
4434 static void
4435 ice_repr_get_ethtool_stats(struct net_device *netdev,
4436 			   struct ethtool_stats __always_unused *stats,
4437 			   u64 *data)
4438 {
4439 	struct ice_repr *repr = ice_netdev_to_repr(netdev);
4440 
4441 	if (ice_check_vf_ready_for_cfg(repr->vf))
4442 		return;
4443 
4444 	__ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi);
4445 }
4446 
4447 static int ice_repr_get_sset_count(struct net_device *netdev, int sset)
4448 {
4449 	switch (sset) {
4450 	case ETH_SS_STATS:
4451 		return ICE_VSI_STATS_LEN;
4452 	default:
4453 		return -EOPNOTSUPP;
4454 	}
4455 }
4456 
4457 #define ICE_I2C_EEPROM_DEV_ADDR		0xA0
4458 #define ICE_I2C_EEPROM_DEV_ADDR2	0xA2
4459 #define ICE_MODULE_TYPE_SFP		0x03
4460 #define ICE_MODULE_TYPE_QSFP_PLUS	0x0D
4461 #define ICE_MODULE_TYPE_QSFP28		0x11
4462 #define ICE_MODULE_SFF_ADDR_MODE	0x04
4463 #define ICE_MODULE_SFF_DIAG_CAPAB	0x40
4464 #define ICE_MODULE_REVISION_ADDR	0x01
4465 #define ICE_MODULE_SFF_8472_COMP	0x5E
4466 #define ICE_MODULE_SFF_8472_SWAP	0x5C
4467 #define ICE_MODULE_QSFP_MAX_LEN		640
4468 
4469 /**
4470  * ice_get_module_info - get SFF module type and revision information
4471  * @netdev: network interface device structure
4472  * @modinfo: module EEPROM size and layout information structure
4473  */
4474 static int
4475 ice_get_module_info(struct net_device *netdev,
4476 		    struct ethtool_modinfo *modinfo)
4477 {
4478 	struct ice_netdev_priv *np = netdev_priv(netdev);
4479 	struct ice_vsi *vsi = np->vsi;
4480 	struct ice_pf *pf = vsi->back;
4481 	struct ice_hw *hw = &pf->hw;
4482 	u8 sff8472_comp = 0;
4483 	u8 sff8472_swap = 0;
4484 	u8 sff8636_rev = 0;
4485 	u8 value = 0;
4486 	int status;
4487 
4488 	status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00,
4489 				   0, &value, 1, 0, NULL);
4490 	if (status)
4491 		return status;
4492 
4493 	switch (value) {
4494 	case ICE_MODULE_TYPE_SFP:
4495 		status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4496 					   ICE_MODULE_SFF_8472_COMP, 0x00, 0,
4497 					   &sff8472_comp, 1, 0, NULL);
4498 		if (status)
4499 			return status;
4500 		status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4501 					   ICE_MODULE_SFF_8472_SWAP, 0x00, 0,
4502 					   &sff8472_swap, 1, 0, NULL);
4503 		if (status)
4504 			return status;
4505 
4506 		if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) {
4507 			modinfo->type = ETH_MODULE_SFF_8079;
4508 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4509 		} else if (sff8472_comp &&
4510 			   (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) {
4511 			modinfo->type = ETH_MODULE_SFF_8472;
4512 			modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
4513 		} else {
4514 			modinfo->type = ETH_MODULE_SFF_8079;
4515 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4516 		}
4517 		break;
4518 	case ICE_MODULE_TYPE_QSFP_PLUS:
4519 	case ICE_MODULE_TYPE_QSFP28:
4520 		status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4521 					   ICE_MODULE_REVISION_ADDR, 0x00, 0,
4522 					   &sff8636_rev, 1, 0, NULL);
4523 		if (status)
4524 			return status;
4525 		/* Check revision compliance */
4526 		if (sff8636_rev > 0x02) {
4527 			/* Module is SFF-8636 compliant */
4528 			modinfo->type = ETH_MODULE_SFF_8636;
4529 			modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4530 		} else {
4531 			modinfo->type = ETH_MODULE_SFF_8436;
4532 			modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4533 		}
4534 		break;
4535 	default:
4536 		netdev_warn(netdev, "SFF Module Type not recognized.\n");
4537 		return -EINVAL;
4538 	}
4539 	return 0;
4540 }
4541 
4542 /**
4543  * ice_get_module_eeprom - fill buffer with SFF EEPROM contents
4544  * @netdev: network interface device structure
4545  * @ee: EEPROM dump request structure
4546  * @data: buffer to be filled with EEPROM contents
4547  */
4548 static int
4549 ice_get_module_eeprom(struct net_device *netdev,
4550 		      struct ethtool_eeprom *ee, u8 *data)
4551 {
4552 	struct ice_netdev_priv *np = netdev_priv(netdev);
4553 #define SFF_READ_BLOCK_SIZE 8
4554 	u8 value[SFF_READ_BLOCK_SIZE] = { 0 };
4555 	u8 addr = ICE_I2C_EEPROM_DEV_ADDR;
4556 	struct ice_vsi *vsi = np->vsi;
4557 	struct ice_pf *pf = vsi->back;
4558 	struct ice_hw *hw = &pf->hw;
4559 	bool is_sfp = false;
4560 	unsigned int i, j;
4561 	u16 offset = 0;
4562 	u8 page = 0;
4563 	int status;
4564 
4565 	if (!ee || !ee->len || !data)
4566 		return -EINVAL;
4567 
4568 	status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0,
4569 				   NULL);
4570 	if (status)
4571 		return status;
4572 
4573 	if (value[0] == ICE_MODULE_TYPE_SFP)
4574 		is_sfp = true;
4575 
4576 	memset(data, 0, ee->len);
4577 	for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) {
4578 		offset = i + ee->offset;
4579 		page = 0;
4580 
4581 		/* Check if we need to access the other memory page */
4582 		if (is_sfp) {
4583 			if (offset >= ETH_MODULE_SFF_8079_LEN) {
4584 				offset -= ETH_MODULE_SFF_8079_LEN;
4585 				addr = ICE_I2C_EEPROM_DEV_ADDR2;
4586 			}
4587 		} else {
4588 			while (offset >= ETH_MODULE_SFF_8436_LEN) {
4589 				/* Compute memory page number and offset. */
4590 				offset -= ETH_MODULE_SFF_8436_LEN / 2;
4591 				page++;
4592 			}
4593 		}
4594 
4595 		/* Bit 2 of EEPROM address 0x02 declares upper
4596 		 * pages are disabled on QSFP modules.
4597 		 * SFP modules only ever use page 0.
4598 		 */
4599 		if (page == 0 || !(data[0x2] & 0x4)) {
4600 			u32 copy_len;
4601 
4602 			/* If i2c bus is busy due to slow page change or
4603 			 * link management access, call can fail. This is normal.
4604 			 * So we retry this a few times.
4605 			 */
4606 			for (j = 0; j < 4; j++) {
4607 				status = ice_aq_sff_eeprom(hw, 0, addr, offset, page,
4608 							   !is_sfp, value,
4609 							   SFF_READ_BLOCK_SIZE,
4610 							   0, NULL);
4611 				netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n",
4612 					   addr, offset, page, is_sfp,
4613 					   value[0], value[1], value[2], value[3],
4614 					   value[4], value[5], value[6], value[7],
4615 					   status);
4616 				if (status) {
4617 					usleep_range(1500, 2500);
4618 					memset(value, 0, SFF_READ_BLOCK_SIZE);
4619 					continue;
4620 				}
4621 				break;
4622 			}
4623 
4624 			/* Make sure we have enough room for the new block */
4625 			copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i);
4626 			memcpy(data + i, value, copy_len);
4627 		}
4628 	}
4629 	return 0;
4630 }
4631 
4632 /**
4633  * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per
4634  *                          pcsquad, pcsport
4635  * @hw: pointer to the HW struct
4636  * @pcs_quad: pcsquad for input port
4637  * @pcs_port: pcsport for input port
4638  * @fec_stats: buffer to hold FEC statistics for given port
4639  *
4640  * Return: 0 on success, negative on failure.
4641  */
4642 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
4643 				  struct ethtool_fec_stats *fec_stats)
4644 {
4645 	u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0;
4646 	u32 fec_corr_low_val = 0, fec_corr_high_val = 0;
4647 	int err;
4648 
4649 	if (pcs_quad > 1 || pcs_port > 3)
4650 		return -EINVAL;
4651 
4652 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW,
4653 				   &fec_corr_low_val);
4654 	if (err)
4655 		return err;
4656 
4657 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH,
4658 				   &fec_corr_high_val);
4659 	if (err)
4660 		return err;
4661 
4662 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4663 				   ICE_FEC_UNCORR_LOW,
4664 				   &fec_uncorr_low_val);
4665 	if (err)
4666 		return err;
4667 
4668 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4669 				   ICE_FEC_UNCORR_HIGH,
4670 				   &fec_uncorr_high_val);
4671 	if (err)
4672 		return err;
4673 
4674 	fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) +
4675 					     fec_corr_low_val;
4676 	fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) +
4677 						 fec_uncorr_low_val;
4678 	return 0;
4679 }
4680 
4681 /**
4682  * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev
4683  * @netdev: network interface device structure
4684  * @fec_stats: buffer to hold FEC statistics for given port
4685  *
4686  */
4687 static void ice_get_fec_stats(struct net_device *netdev,
4688 			      struct ethtool_fec_stats *fec_stats)
4689 {
4690 	struct ice_netdev_priv *np = netdev_priv(netdev);
4691 	struct ice_port_topology port_topology;
4692 	struct ice_port_info *pi;
4693 	struct ice_pf *pf;
4694 	struct ice_hw *hw;
4695 	int err;
4696 
4697 	pf = np->vsi->back;
4698 	hw = &pf->hw;
4699 	pi = np->vsi->port_info;
4700 
4701 	/* Serdes parameters are not supported if not the PF VSI */
4702 	if (np->vsi->type != ICE_VSI_PF || !pi)
4703 		return;
4704 
4705 	err = ice_get_port_topology(hw, pi->lport, &port_topology);
4706 	if (err) {
4707 		netdev_info(netdev, "Extended register dump failed Lport %d\n",
4708 			    pi->lport);
4709 		return;
4710 	}
4711 
4712 	/* Get FEC correctable, uncorrectable counter */
4713 	err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select,
4714 				     port_topology.pcs_port, fec_stats);
4715 	if (err)
4716 		netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n",
4717 			    pi->lport, err);
4718 }
4719 
4720 static const struct ethtool_ops ice_ethtool_ops = {
4721 	.cap_rss_ctx_supported  = true,
4722 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
4723 				     ETHTOOL_COALESCE_USE_ADAPTIVE |
4724 				     ETHTOOL_COALESCE_RX_USECS_HIGH,
4725 	.cap_rss_sym_xor_supported = true,
4726 	.rxfh_per_ctx_key	= true,
4727 	.get_link_ksettings	= ice_get_link_ksettings,
4728 	.set_link_ksettings	= ice_set_link_ksettings,
4729 	.get_fec_stats		= ice_get_fec_stats,
4730 	.get_drvinfo		= ice_get_drvinfo,
4731 	.get_regs_len		= ice_get_regs_len,
4732 	.get_regs		= ice_get_regs,
4733 	.get_wol		= ice_get_wol,
4734 	.set_wol		= ice_set_wol,
4735 	.get_msglevel		= ice_get_msglevel,
4736 	.set_msglevel		= ice_set_msglevel,
4737 	.self_test		= ice_self_test,
4738 	.get_link		= ethtool_op_get_link,
4739 	.get_eeprom_len		= ice_get_eeprom_len,
4740 	.get_eeprom		= ice_get_eeprom,
4741 	.get_coalesce		= ice_get_coalesce,
4742 	.set_coalesce		= ice_set_coalesce,
4743 	.get_strings		= ice_get_strings,
4744 	.set_phys_id		= ice_set_phys_id,
4745 	.get_ethtool_stats      = ice_get_ethtool_stats,
4746 	.get_priv_flags		= ice_get_priv_flags,
4747 	.set_priv_flags		= ice_set_priv_flags,
4748 	.get_sset_count		= ice_get_sset_count,
4749 	.get_rxnfc		= ice_get_rxnfc,
4750 	.set_rxnfc		= ice_set_rxnfc,
4751 	.get_ringparam		= ice_get_ringparam,
4752 	.set_ringparam		= ice_set_ringparam,
4753 	.nway_reset		= ice_nway_reset,
4754 	.get_pauseparam		= ice_get_pauseparam,
4755 	.set_pauseparam		= ice_set_pauseparam,
4756 	.get_rxfh_key_size	= ice_get_rxfh_key_size,
4757 	.get_rxfh_indir_size	= ice_get_rxfh_indir_size,
4758 	.get_rxfh		= ice_get_rxfh,
4759 	.set_rxfh		= ice_set_rxfh,
4760 	.get_channels		= ice_get_channels,
4761 	.set_channels		= ice_set_channels,
4762 	.get_ts_info		= ice_get_ts_info,
4763 	.get_per_queue_coalesce	= ice_get_per_q_coalesce,
4764 	.set_per_queue_coalesce	= ice_set_per_q_coalesce,
4765 	.get_fecparam		= ice_get_fecparam,
4766 	.set_fecparam		= ice_set_fecparam,
4767 	.get_module_info	= ice_get_module_info,
4768 	.get_module_eeprom	= ice_get_module_eeprom,
4769 };
4770 
4771 static const struct ethtool_ops ice_ethtool_safe_mode_ops = {
4772 	.get_link_ksettings	= ice_get_link_ksettings,
4773 	.set_link_ksettings	= ice_set_link_ksettings,
4774 	.get_drvinfo		= ice_get_drvinfo,
4775 	.get_regs_len		= ice_get_regs_len,
4776 	.get_regs		= ice_get_regs,
4777 	.get_wol		= ice_get_wol,
4778 	.set_wol		= ice_set_wol,
4779 	.get_msglevel		= ice_get_msglevel,
4780 	.set_msglevel		= ice_set_msglevel,
4781 	.get_link		= ethtool_op_get_link,
4782 	.get_eeprom_len		= ice_get_eeprom_len,
4783 	.get_eeprom		= ice_get_eeprom,
4784 	.get_strings		= ice_get_strings,
4785 	.get_ethtool_stats	= ice_get_ethtool_stats,
4786 	.get_sset_count		= ice_get_sset_count,
4787 	.get_ringparam		= ice_get_ringparam,
4788 	.set_ringparam		= ice_set_ringparam,
4789 	.nway_reset		= ice_nway_reset,
4790 	.get_channels		= ice_get_channels,
4791 };
4792 
4793 /**
4794  * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops
4795  * @netdev: network interface device structure
4796  */
4797 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev)
4798 {
4799 	netdev->ethtool_ops = &ice_ethtool_safe_mode_ops;
4800 }
4801 
4802 static const struct ethtool_ops ice_ethtool_repr_ops = {
4803 	.get_drvinfo		= ice_repr_get_drvinfo,
4804 	.get_link		= ethtool_op_get_link,
4805 	.get_strings		= ice_repr_get_strings,
4806 	.get_ethtool_stats      = ice_repr_get_ethtool_stats,
4807 	.get_sset_count		= ice_repr_get_sset_count,
4808 };
4809 
4810 /**
4811  * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops
4812  * @netdev: network interface device structure
4813  */
4814 void ice_set_ethtool_repr_ops(struct net_device *netdev)
4815 {
4816 	netdev->ethtool_ops = &ice_ethtool_repr_ops;
4817 }
4818 
4819 /**
4820  * ice_set_ethtool_ops - setup netdev ethtool ops
4821  * @netdev: network interface device structure
4822  *
4823  * setup netdev ethtool ops with ice specific ops
4824  */
4825 void ice_set_ethtool_ops(struct net_device *netdev)
4826 {
4827 	netdev->ethtool_ops = &ice_ethtool_ops;
4828 }
4829