1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* ethtool support for ice */ 5 6 #include "ice.h" 7 #include "ice_ethtool.h" 8 #include "ice_flow.h" 9 #include "ice_fltr.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include <net/dcbnl.h> 13 14 struct ice_stats { 15 char stat_string[ETH_GSTRING_LEN]; 16 int sizeof_stat; 17 int stat_offset; 18 }; 19 20 #define ICE_STAT(_type, _name, _stat) { \ 21 .stat_string = _name, \ 22 .sizeof_stat = sizeof_field(_type, _stat), \ 23 .stat_offset = offsetof(_type, _stat) \ 24 } 25 26 #define ICE_VSI_STAT(_name, _stat) \ 27 ICE_STAT(struct ice_vsi, _name, _stat) 28 #define ICE_PF_STAT(_name, _stat) \ 29 ICE_STAT(struct ice_pf, _name, _stat) 30 31 static int ice_q_stats_len(struct net_device *netdev) 32 { 33 struct ice_netdev_priv *np = netdev_priv(netdev); 34 35 return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) * 36 (sizeof(struct ice_q_stats) / sizeof(u64))); 37 } 38 39 #define ICE_PF_STATS_LEN ARRAY_SIZE(ice_gstrings_pf_stats) 40 #define ICE_VSI_STATS_LEN ARRAY_SIZE(ice_gstrings_vsi_stats) 41 42 #define ICE_PFC_STATS_LEN ( \ 43 (sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \ 44 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \ 45 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \ 46 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \ 47 / sizeof(u64)) 48 #define ICE_ALL_STATS_LEN(n) (ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \ 49 ICE_VSI_STATS_LEN + ice_q_stats_len(n)) 50 51 static const struct ice_stats ice_gstrings_vsi_stats[] = { 52 ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast), 53 ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast), 54 ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast), 55 ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast), 56 ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast), 57 ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast), 58 ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes), 59 ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes), 60 ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards), 61 ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol), 62 ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed), 63 ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed), 64 ICE_VSI_STAT("tx_errors", eth_stats.tx_errors), 65 ICE_VSI_STAT("tx_linearize", tx_linearize), 66 ICE_VSI_STAT("tx_busy", tx_busy), 67 ICE_VSI_STAT("tx_restart", tx_restart), 68 }; 69 70 enum ice_ethtool_test_id { 71 ICE_ETH_TEST_REG = 0, 72 ICE_ETH_TEST_EEPROM, 73 ICE_ETH_TEST_INTR, 74 ICE_ETH_TEST_LOOP, 75 ICE_ETH_TEST_LINK, 76 }; 77 78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = { 79 "Register test (offline)", 80 "EEPROM test (offline)", 81 "Interrupt test (offline)", 82 "Loopback test (offline)", 83 "Link test (on/offline)", 84 }; 85 86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN) 87 88 /* These PF_STATs might look like duplicates of some NETDEV_STATs, 89 * but they aren't. This device is capable of supporting multiple 90 * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual 91 * netdevs whereas the PF_STATs are for the physical function that's 92 * hosting these netdevs. 93 * 94 * The PF_STATs are appended to the netdev stats only when ethtool -S 95 * is queried on the base PF netdev. 96 */ 97 static const struct ice_stats ice_gstrings_pf_stats[] = { 98 ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes), 99 ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes), 100 ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast), 101 ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast), 102 ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast), 103 ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast), 104 ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast), 105 ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast), 106 ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors), 107 ICE_PF_STAT("tx_timeout.nic", tx_timeout_count), 108 ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64), 109 ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64), 110 ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127), 111 ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127), 112 ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255), 113 ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255), 114 ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511), 115 ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511), 116 ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023), 117 ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023), 118 ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522), 119 ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522), 120 ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big), 121 ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big), 122 ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx), 123 ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx), 124 ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx), 125 ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx), 126 ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down), 127 ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize), 128 ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments), 129 ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize), 130 ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber), 131 ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error), 132 ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error), 133 ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards), 134 ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors), 135 ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes), 136 ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults), 137 ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults), 138 ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match), 139 ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status), 140 ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped), 141 ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts), 142 ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed), 143 ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded), 144 ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates), 145 }; 146 147 static const u32 ice_regs_dump_list[] = { 148 PFGEN_STATE, 149 PRTGEN_STATUS, 150 QRX_CTRL(0), 151 QINT_TQCTL(0), 152 QINT_RQCTL(0), 153 PFINT_OICR_ENA, 154 QRX_ITR(0), 155 #define GLDCB_TLPM_PCI_DM 0x000A0180 156 GLDCB_TLPM_PCI_DM, 157 #define GLDCB_TLPM_TC2PFC 0x000A0194 158 GLDCB_TLPM_TC2PFC, 159 #define TCDCB_TLPM_WAIT_DM(_i) (0x000A0080 + ((_i) * 4)) 160 TCDCB_TLPM_WAIT_DM(0), 161 TCDCB_TLPM_WAIT_DM(1), 162 TCDCB_TLPM_WAIT_DM(2), 163 TCDCB_TLPM_WAIT_DM(3), 164 TCDCB_TLPM_WAIT_DM(4), 165 TCDCB_TLPM_WAIT_DM(5), 166 TCDCB_TLPM_WAIT_DM(6), 167 TCDCB_TLPM_WAIT_DM(7), 168 TCDCB_TLPM_WAIT_DM(8), 169 TCDCB_TLPM_WAIT_DM(9), 170 TCDCB_TLPM_WAIT_DM(10), 171 TCDCB_TLPM_WAIT_DM(11), 172 TCDCB_TLPM_WAIT_DM(12), 173 TCDCB_TLPM_WAIT_DM(13), 174 TCDCB_TLPM_WAIT_DM(14), 175 TCDCB_TLPM_WAIT_DM(15), 176 TCDCB_TLPM_WAIT_DM(16), 177 TCDCB_TLPM_WAIT_DM(17), 178 TCDCB_TLPM_WAIT_DM(18), 179 TCDCB_TLPM_WAIT_DM(19), 180 TCDCB_TLPM_WAIT_DM(20), 181 TCDCB_TLPM_WAIT_DM(21), 182 TCDCB_TLPM_WAIT_DM(22), 183 TCDCB_TLPM_WAIT_DM(23), 184 TCDCB_TLPM_WAIT_DM(24), 185 TCDCB_TLPM_WAIT_DM(25), 186 TCDCB_TLPM_WAIT_DM(26), 187 TCDCB_TLPM_WAIT_DM(27), 188 TCDCB_TLPM_WAIT_DM(28), 189 TCDCB_TLPM_WAIT_DM(29), 190 TCDCB_TLPM_WAIT_DM(30), 191 TCDCB_TLPM_WAIT_DM(31), 192 #define GLPCI_WATMK_CLNT_PIPEMON 0x000BFD90 193 GLPCI_WATMK_CLNT_PIPEMON, 194 #define GLPCI_CUR_CLNT_COMMON 0x000BFD84 195 GLPCI_CUR_CLNT_COMMON, 196 #define GLPCI_CUR_CLNT_PIPEMON 0x000BFD88 197 GLPCI_CUR_CLNT_PIPEMON, 198 #define GLPCI_PCIERR 0x0009DEB0 199 GLPCI_PCIERR, 200 #define GLPSM_DEBUG_CTL_STATUS 0x000B0600 201 GLPSM_DEBUG_CTL_STATUS, 202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0680 203 GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT, 204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0684 205 GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT, 206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW 0x000B0688 207 GLPSM0_DEBUG_DT_OUT_OF_WINDOW, 208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT 0x000B069C 209 GLPSM0_DEBUG_INTF_HW_ERROR_DETECT, 210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT 0x000B06A0 211 GLPSM0_DEBUG_MISC_HW_ERROR_DETECT, 212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0E80 213 GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT, 214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0E84 215 GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT, 216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT 0x000B0E88 217 GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT, 218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT 0x000B0E8C 219 GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT, 220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT 0x000B0E90 221 GLPSM1_DEBUG_MISC_HW_ERROR_DETECT, 222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT 0x000B1680 223 GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT, 224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B1684 225 GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT, 226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT 0x000B1688 227 GLPSM2_DEBUG_MISC_HW_ERROR_DETECT, 228 #define GLTDPU_TCLAN_COMP_BOB(_i) (0x00049ADC + ((_i) * 4)) 229 GLTDPU_TCLAN_COMP_BOB(1), 230 GLTDPU_TCLAN_COMP_BOB(2), 231 GLTDPU_TCLAN_COMP_BOB(3), 232 GLTDPU_TCLAN_COMP_BOB(4), 233 GLTDPU_TCLAN_COMP_BOB(5), 234 GLTDPU_TCLAN_COMP_BOB(6), 235 GLTDPU_TCLAN_COMP_BOB(7), 236 GLTDPU_TCLAN_COMP_BOB(8), 237 #define GLTDPU_TCB_CMD_BOB(_i) (0x0004975C + ((_i) * 4)) 238 GLTDPU_TCB_CMD_BOB(1), 239 GLTDPU_TCB_CMD_BOB(2), 240 GLTDPU_TCB_CMD_BOB(3), 241 GLTDPU_TCB_CMD_BOB(4), 242 GLTDPU_TCB_CMD_BOB(5), 243 GLTDPU_TCB_CMD_BOB(6), 244 GLTDPU_TCB_CMD_BOB(7), 245 GLTDPU_TCB_CMD_BOB(8), 246 #define GLTDPU_PSM_UPDATE_BOB(_i) (0x00049B5C + ((_i) * 4)) 247 GLTDPU_PSM_UPDATE_BOB(1), 248 GLTDPU_PSM_UPDATE_BOB(2), 249 GLTDPU_PSM_UPDATE_BOB(3), 250 GLTDPU_PSM_UPDATE_BOB(4), 251 GLTDPU_PSM_UPDATE_BOB(5), 252 GLTDPU_PSM_UPDATE_BOB(6), 253 GLTDPU_PSM_UPDATE_BOB(7), 254 GLTDPU_PSM_UPDATE_BOB(8), 255 #define GLTCB_CMD_IN_BOB(_i) (0x000AE288 + ((_i) * 4)) 256 GLTCB_CMD_IN_BOB(1), 257 GLTCB_CMD_IN_BOB(2), 258 GLTCB_CMD_IN_BOB(3), 259 GLTCB_CMD_IN_BOB(4), 260 GLTCB_CMD_IN_BOB(5), 261 GLTCB_CMD_IN_BOB(6), 262 GLTCB_CMD_IN_BOB(7), 263 GLTCB_CMD_IN_BOB(8), 264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i) (0x000FC148 + ((_i) * 4)) 265 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1), 266 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2), 267 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3), 268 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4), 269 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5), 270 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6), 271 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7), 272 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8), 273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4)) 274 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1), 275 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2), 276 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3), 277 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4), 278 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5), 279 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6), 280 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7), 281 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8), 282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i) (0x000FC1C8 + ((_i) * 4)) 283 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1), 284 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2), 285 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3), 286 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4), 287 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5), 288 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6), 289 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7), 290 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8), 291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i) (0x000FC188 + ((_i) * 4)) 292 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1), 293 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2), 294 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3), 295 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4), 296 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5), 297 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6), 298 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7), 299 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8), 300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4)) 301 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1), 302 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2), 303 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3), 304 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4), 305 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5), 306 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6), 307 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7), 308 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8), 309 #define PRTDCB_TCUPM_REG_CM(_i) (0x000BC360 + ((_i) * 4)) 310 PRTDCB_TCUPM_REG_CM(0), 311 PRTDCB_TCUPM_REG_CM(1), 312 PRTDCB_TCUPM_REG_CM(2), 313 PRTDCB_TCUPM_REG_CM(3), 314 #define PRTDCB_TCUPM_REG_DM(_i) (0x000BC3A0 + ((_i) * 4)) 315 PRTDCB_TCUPM_REG_DM(0), 316 PRTDCB_TCUPM_REG_DM(1), 317 PRTDCB_TCUPM_REG_DM(2), 318 PRTDCB_TCUPM_REG_DM(3), 319 #define PRTDCB_TLPM_REG_DM(_i) (0x000A0000 + ((_i) * 4)) 320 PRTDCB_TLPM_REG_DM(0), 321 PRTDCB_TLPM_REG_DM(1), 322 PRTDCB_TLPM_REG_DM(2), 323 PRTDCB_TLPM_REG_DM(3), 324 }; 325 326 struct ice_priv_flag { 327 char name[ETH_GSTRING_LEN]; 328 u32 bitno; /* bit position in pf->flags */ 329 }; 330 331 #define ICE_PRIV_FLAG(_name, _bitno) { \ 332 .name = _name, \ 333 .bitno = _bitno, \ 334 } 335 336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = { 337 ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA), 338 ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT), 339 ICE_PRIV_FLAG("vf-true-promisc-support", 340 ICE_FLAG_VF_TRUE_PROMISC_ENA), 341 ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF), 342 ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING), 343 ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX), 344 }; 345 346 #define ICE_PRIV_FLAG_ARRAY_SIZE ARRAY_SIZE(ice_gstrings_priv_flags) 347 348 static const u32 ice_adv_lnk_speed_100[] __initconst = { 349 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 350 }; 351 352 static const u32 ice_adv_lnk_speed_1000[] __initconst = { 353 ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 354 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 355 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 356 }; 357 358 static const u32 ice_adv_lnk_speed_2500[] __initconst = { 359 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 360 ETHTOOL_LINK_MODE_2500baseX_Full_BIT, 361 }; 362 363 static const u32 ice_adv_lnk_speed_5000[] __initconst = { 364 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 365 }; 366 367 static const u32 ice_adv_lnk_speed_10000[] __initconst = { 368 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 369 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 370 ETHTOOL_LINK_MODE_10000baseSR_Full_BIT, 371 ETHTOOL_LINK_MODE_10000baseLR_Full_BIT, 372 }; 373 374 static const u32 ice_adv_lnk_speed_25000[] __initconst = { 375 ETHTOOL_LINK_MODE_25000baseCR_Full_BIT, 376 ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, 377 ETHTOOL_LINK_MODE_25000baseKR_Full_BIT, 378 }; 379 380 static const u32 ice_adv_lnk_speed_40000[] __initconst = { 381 ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT, 382 ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT, 383 ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT, 384 ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT, 385 }; 386 387 static const u32 ice_adv_lnk_speed_50000[] __initconst = { 388 ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT, 389 ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT, 390 ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT, 391 }; 392 393 static const u32 ice_adv_lnk_speed_100000[] __initconst = { 394 ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT, 395 ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, 396 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT, 397 ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT, 398 ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT, 399 ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT, 400 ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT, 401 }; 402 403 static const u32 ice_adv_lnk_speed_200000[] __initconst = { 404 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT, 405 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT, 406 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT, 407 ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT, 408 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT, 409 }; 410 411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = { 412 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100), 413 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000), 414 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500), 415 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000), 416 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000), 417 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000), 418 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000), 419 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000), 420 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000), 421 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000), 422 }; 423 424 void __init ice_adv_lnk_speed_maps_init(void) 425 { 426 ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps, 427 ARRAY_SIZE(ice_adv_lnk_speed_maps)); 428 } 429 430 static void 431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo, 432 struct ice_vsi *vsi) 433 { 434 struct ice_pf *pf = vsi->back; 435 struct ice_hw *hw = &pf->hw; 436 struct ice_orom_info *orom; 437 struct ice_nvm_info *nvm; 438 439 nvm = &hw->flash.nvm; 440 orom = &hw->flash.orom; 441 442 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 443 444 /* Display NVM version (from which the firmware version can be 445 * determined) which contains more pertinent information. 446 */ 447 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 448 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor, 449 nvm->eetrack, orom->major, orom->build, orom->patch); 450 451 strscpy(drvinfo->bus_info, pci_name(pf->pdev), 452 sizeof(drvinfo->bus_info)); 453 } 454 455 static void 456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 457 { 458 struct ice_netdev_priv *np = netdev_priv(netdev); 459 460 __ice_get_drvinfo(netdev, drvinfo, np->vsi); 461 drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE; 462 } 463 464 static int ice_get_regs_len(struct net_device __always_unused *netdev) 465 { 466 return (sizeof(ice_regs_dump_list) + 467 sizeof(struct ice_regdump_to_ethtool)); 468 } 469 470 /** 471 * ice_ethtool_get_maxspeed - Get the max speed for given lport 472 * @hw: pointer to the HW struct 473 * @lport: logical port for which max speed is requested 474 * @max_speed: return max speed for input lport 475 * 476 * Return: 0 on success, negative on failure. 477 */ 478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed) 479 { 480 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {}; 481 bool active_valid = false, pending_valid = true; 482 u8 option_count = ICE_AQC_PORT_OPT_MAX; 483 u8 active_idx = 0, pending_idx = 0; 484 int status; 485 486 status = ice_aq_get_port_options(hw, options, &option_count, lport, 487 true, &active_idx, &active_valid, 488 &pending_idx, &pending_valid); 489 if (status) 490 return -EIO; 491 if (!active_valid) 492 return -EINVAL; 493 494 *max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M; 495 return 0; 496 } 497 498 /** 499 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware 500 * @hw: pointer to the HW struct 501 * 502 * Return: true when serdes is muxed, false when serdes is not muxed. 503 */ 504 static bool ice_is_serdes_muxed(struct ice_hw *hw) 505 { 506 u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG); 507 508 return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value); 509 } 510 511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology, 512 u8 lport, bool is_muxed) 513 { 514 switch (lport) { 515 case 0: 516 port_topology->pcs_quad_select = 0; 517 port_topology->pcs_port = 0; 518 port_topology->primary_serdes_lane = 0; 519 break; 520 case 1: 521 port_topology->pcs_quad_select = 1; 522 port_topology->pcs_port = 0; 523 if (is_muxed) 524 port_topology->primary_serdes_lane = 2; 525 else 526 port_topology->primary_serdes_lane = 4; 527 break; 528 case 2: 529 port_topology->pcs_quad_select = 0; 530 port_topology->pcs_port = 1; 531 port_topology->primary_serdes_lane = 1; 532 break; 533 case 3: 534 port_topology->pcs_quad_select = 1; 535 port_topology->pcs_port = 1; 536 if (is_muxed) 537 port_topology->primary_serdes_lane = 3; 538 else 539 port_topology->primary_serdes_lane = 5; 540 break; 541 case 4: 542 port_topology->pcs_quad_select = 0; 543 port_topology->pcs_port = 2; 544 port_topology->primary_serdes_lane = 2; 545 break; 546 case 5: 547 port_topology->pcs_quad_select = 1; 548 port_topology->pcs_port = 2; 549 port_topology->primary_serdes_lane = 6; 550 break; 551 case 6: 552 port_topology->pcs_quad_select = 0; 553 port_topology->pcs_port = 3; 554 port_topology->primary_serdes_lane = 3; 555 break; 556 case 7: 557 port_topology->pcs_quad_select = 1; 558 port_topology->pcs_port = 3; 559 port_topology->primary_serdes_lane = 7; 560 break; 561 default: 562 return -EINVAL; 563 } 564 565 return 0; 566 } 567 568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology, 569 u8 lport, bool is_muxed) 570 { 571 switch (lport) { 572 case 0: 573 port_topology->pcs_quad_select = 0; 574 port_topology->pcs_port = 0; 575 port_topology->primary_serdes_lane = 0; 576 break; 577 case 1: 578 port_topology->pcs_quad_select = 1; 579 port_topology->pcs_port = 0; 580 if (is_muxed) 581 port_topology->primary_serdes_lane = 2; 582 else 583 port_topology->primary_serdes_lane = 4; 584 break; 585 case 2: 586 port_topology->pcs_quad_select = 0; 587 port_topology->pcs_port = 1; 588 port_topology->primary_serdes_lane = 1; 589 break; 590 case 3: 591 port_topology->pcs_quad_select = 1; 592 port_topology->pcs_port = 1; 593 if (is_muxed) 594 port_topology->primary_serdes_lane = 3; 595 else 596 port_topology->primary_serdes_lane = 5; 597 break; 598 case 4: 599 port_topology->pcs_quad_select = 0; 600 port_topology->pcs_port = 2; 601 port_topology->primary_serdes_lane = 2; 602 break; 603 case 5: 604 port_topology->pcs_quad_select = 1; 605 port_topology->pcs_port = 2; 606 port_topology->primary_serdes_lane = 6; 607 break; 608 case 6: 609 port_topology->pcs_quad_select = 0; 610 port_topology->pcs_port = 3; 611 port_topology->primary_serdes_lane = 3; 612 break; 613 case 7: 614 port_topology->pcs_quad_select = 1; 615 port_topology->pcs_port = 3; 616 port_topology->primary_serdes_lane = 7; 617 break; 618 default: 619 return -EINVAL; 620 } 621 622 return 0; 623 } 624 625 /** 626 * ice_get_port_topology - returns physical topology like pcsquad, pcsport, 627 * serdes number 628 * @hw: pointer to the HW struct 629 * @lport: logical port for which physical info requested 630 * @port_topology: buffer to hold port topology 631 * 632 * Return: 0 on success, negative on failure. 633 */ 634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport, 635 struct ice_port_topology *port_topology) 636 { 637 struct ice_aqc_get_link_topo cmd = {}; 638 u16 node_handle = 0; 639 u8 cage_type = 0; 640 bool is_muxed; 641 int err; 642 u8 ctx; 643 644 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S; 645 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; 646 cmd.addr.topo_params.node_type_ctx = ctx; 647 648 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle); 649 if (err) 650 return -EINVAL; 651 652 is_muxed = ice_is_serdes_muxed(hw); 653 654 if (cage_type == 0x11 || /* SFP+ */ 655 cage_type == 0x12) { /* SFP28 */ 656 port_topology->serdes_lane_count = 1; 657 err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed); 658 if (err) 659 return err; 660 } else if (cage_type == 0x13 || /* QSFP */ 661 cage_type == 0x14) { /* QSFP28 */ 662 u8 max_speed = 0; 663 664 err = ice_ethtool_get_maxspeed(hw, lport, &max_speed); 665 if (err) 666 return err; 667 668 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G) 669 port_topology->serdes_lane_count = 4; 670 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G) 671 port_topology->serdes_lane_count = 2; 672 else 673 port_topology->serdes_lane_count = 1; 674 675 err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed); 676 if (err) 677 return err; 678 } else { 679 return -EINVAL; 680 } 681 682 return 0; 683 } 684 685 /** 686 * ice_get_tx_rx_equa - read serdes tx rx equaliser param 687 * @hw: pointer to the HW struct 688 * @serdes_num: represents the serdes number 689 * @ptr: structure to read all serdes parameter for given serdes 690 * 691 * Return: all serdes equalization parameter supported per serdes number 692 */ 693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num, 694 struct ice_serdes_equalization_to_ethtool *ptr) 695 { 696 static const int tx = ICE_AQC_OP_CODE_TX_EQU; 697 static const int rx = ICE_AQC_OP_CODE_RX_EQU; 698 struct { 699 int data_in; 700 int opcode; 701 int *out; 702 } aq_params[] = { 703 { ICE_AQC_TX_EQU_PRE1, tx, &ptr->tx_equ_pre1 }, 704 { ICE_AQC_TX_EQU_PRE3, tx, &ptr->tx_equ_pre3 }, 705 { ICE_AQC_TX_EQU_ATTEN, tx, &ptr->tx_equ_atten }, 706 { ICE_AQC_TX_EQU_POST1, tx, &ptr->tx_equ_post1 }, 707 { ICE_AQC_TX_EQU_PRE2, tx, &ptr->tx_equ_pre2 }, 708 { ICE_AQC_RX_EQU_PRE2, rx, &ptr->rx_equ_pre2 }, 709 { ICE_AQC_RX_EQU_PRE1, rx, &ptr->rx_equ_pre1 }, 710 { ICE_AQC_RX_EQU_POST1, rx, &ptr->rx_equ_post1 }, 711 { ICE_AQC_RX_EQU_BFLF, rx, &ptr->rx_equ_bflf }, 712 { ICE_AQC_RX_EQU_BFHF, rx, &ptr->rx_equ_bfhf }, 713 { ICE_AQC_RX_EQU_CTLE_GAINHF, rx, &ptr->rx_equ_ctle_gainhf }, 714 { ICE_AQC_RX_EQU_CTLE_GAINLF, rx, &ptr->rx_equ_ctle_gainlf }, 715 { ICE_AQC_RX_EQU_CTLE_GAINDC, rx, &ptr->rx_equ_ctle_gaindc }, 716 { ICE_AQC_RX_EQU_CTLE_BW, rx, &ptr->rx_equ_ctle_bw }, 717 { ICE_AQC_RX_EQU_DFE_GAIN, rx, &ptr->rx_equ_dfe_gain }, 718 { ICE_AQC_RX_EQU_DFE_GAIN2, rx, &ptr->rx_equ_dfe_gain_2 }, 719 { ICE_AQC_RX_EQU_DFE_2, rx, &ptr->rx_equ_dfe_2 }, 720 { ICE_AQC_RX_EQU_DFE_3, rx, &ptr->rx_equ_dfe_3 }, 721 { ICE_AQC_RX_EQU_DFE_4, rx, &ptr->rx_equ_dfe_4 }, 722 { ICE_AQC_RX_EQU_DFE_5, rx, &ptr->rx_equ_dfe_5 }, 723 { ICE_AQC_RX_EQU_DFE_6, rx, &ptr->rx_equ_dfe_6 }, 724 { ICE_AQC_RX_EQU_DFE_7, rx, &ptr->rx_equ_dfe_7 }, 725 { ICE_AQC_RX_EQU_DFE_8, rx, &ptr->rx_equ_dfe_8 }, 726 { ICE_AQC_RX_EQU_DFE_9, rx, &ptr->rx_equ_dfe_9 }, 727 { ICE_AQC_RX_EQU_DFE_10, rx, &ptr->rx_equ_dfe_10 }, 728 { ICE_AQC_RX_EQU_DFE_11, rx, &ptr->rx_equ_dfe_11 }, 729 { ICE_AQC_RX_EQU_DFE_12, rx, &ptr->rx_equ_dfe_12 }, 730 }; 731 int err; 732 733 for (int i = 0; i < ARRAY_SIZE(aq_params); i++) { 734 err = ice_aq_get_phy_equalization(hw, aq_params[i].data_in, 735 aq_params[i].opcode, 736 serdes_num, aq_params[i].out); 737 if (err) 738 break; 739 } 740 741 return err; 742 } 743 744 /** 745 * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per 746 * pcsquad, pcsport 747 * @netdev: pointer to net device structure 748 * @p: output buffer to fill requested register dump 749 * 750 * Return: 0 on success, negative on failure. 751 */ 752 static int ice_get_extended_regs(struct net_device *netdev, void *p) 753 { 754 struct ice_netdev_priv *np = netdev_priv(netdev); 755 struct ice_regdump_to_ethtool *ice_prv_regs_buf; 756 struct ice_port_topology port_topology = {}; 757 struct ice_port_info *pi; 758 struct ice_pf *pf; 759 struct ice_hw *hw; 760 unsigned int i; 761 int err; 762 763 pf = np->vsi->back; 764 hw = &pf->hw; 765 pi = np->vsi->port_info; 766 767 /* Serdes parameters are not supported if not the PF VSI */ 768 if (np->vsi->type != ICE_VSI_PF || !pi) 769 return -EINVAL; 770 771 err = ice_get_port_topology(hw, pi->lport, &port_topology); 772 if (err) 773 return -EINVAL; 774 if (port_topology.serdes_lane_count > 4) 775 return -EINVAL; 776 777 ice_prv_regs_buf = p; 778 779 /* Get serdes equalization parameter for available serdes */ 780 for (i = 0; i < port_topology.serdes_lane_count; i++) { 781 u8 serdes_num = 0; 782 783 serdes_num = port_topology.primary_serdes_lane + i; 784 err = ice_get_tx_rx_equa(hw, serdes_num, 785 &ice_prv_regs_buf->equalization[i]); 786 if (err) 787 return -EINVAL; 788 } 789 790 return 0; 791 } 792 793 static void 794 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) 795 { 796 struct ice_netdev_priv *np = netdev_priv(netdev); 797 struct ice_pf *pf = np->vsi->back; 798 struct ice_hw *hw = &pf->hw; 799 u32 *regs_buf = (u32 *)p; 800 unsigned int i; 801 802 regs->version = 2; 803 804 for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i) 805 regs_buf[i] = rd32(hw, ice_regs_dump_list[i]); 806 807 ice_get_extended_regs(netdev, (void *)®s_buf[i]); 808 } 809 810 static u32 ice_get_msglevel(struct net_device *netdev) 811 { 812 struct ice_netdev_priv *np = netdev_priv(netdev); 813 struct ice_pf *pf = np->vsi->back; 814 815 #ifndef CONFIG_DYNAMIC_DEBUG 816 if (pf->hw.debug_mask) 817 netdev_info(netdev, "hw debug_mask: 0x%llX\n", 818 pf->hw.debug_mask); 819 #endif /* !CONFIG_DYNAMIC_DEBUG */ 820 821 return pf->msg_enable; 822 } 823 824 static void ice_set_msglevel(struct net_device *netdev, u32 data) 825 { 826 struct ice_netdev_priv *np = netdev_priv(netdev); 827 struct ice_pf *pf = np->vsi->back; 828 829 #ifndef CONFIG_DYNAMIC_DEBUG 830 if (ICE_DBG_USER & data) 831 pf->hw.debug_mask = data; 832 else 833 pf->msg_enable = data; 834 #else 835 pf->msg_enable = data; 836 #endif /* !CONFIG_DYNAMIC_DEBUG */ 837 } 838 839 static int ice_get_eeprom_len(struct net_device *netdev) 840 { 841 struct ice_netdev_priv *np = netdev_priv(netdev); 842 struct ice_pf *pf = np->vsi->back; 843 844 return (int)pf->hw.flash.flash_size; 845 } 846 847 static int 848 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, 849 u8 *bytes) 850 { 851 struct ice_netdev_priv *np = netdev_priv(netdev); 852 struct ice_vsi *vsi = np->vsi; 853 struct ice_pf *pf = vsi->back; 854 struct ice_hw *hw = &pf->hw; 855 struct device *dev; 856 int ret; 857 u8 *buf; 858 859 dev = ice_pf_to_dev(pf); 860 861 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 862 netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n", 863 eeprom->cmd, eeprom->offset, eeprom->len); 864 865 buf = kzalloc(eeprom->len, GFP_KERNEL); 866 if (!buf) 867 return -ENOMEM; 868 869 ret = ice_acquire_nvm(hw, ICE_RES_READ); 870 if (ret) { 871 dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n", 872 ret, ice_aq_str(hw->adminq.sq_last_status)); 873 goto out; 874 } 875 876 ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf, 877 false); 878 if (ret) { 879 dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n", 880 ret, ice_aq_str(hw->adminq.sq_last_status)); 881 goto release; 882 } 883 884 memcpy(bytes, buf, eeprom->len); 885 release: 886 ice_release_nvm(hw); 887 out: 888 kfree(buf); 889 return ret; 890 } 891 892 /** 893 * ice_active_vfs - check if there are any active VFs 894 * @pf: board private structure 895 * 896 * Returns true if an active VF is found, otherwise returns false 897 */ 898 static bool ice_active_vfs(struct ice_pf *pf) 899 { 900 bool active = false; 901 struct ice_vf *vf; 902 unsigned int bkt; 903 904 rcu_read_lock(); 905 ice_for_each_vf_rcu(pf, bkt, vf) { 906 if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 907 active = true; 908 break; 909 } 910 } 911 rcu_read_unlock(); 912 913 return active; 914 } 915 916 /** 917 * ice_link_test - perform a link test on a given net_device 918 * @netdev: network interface device structure 919 * 920 * This function performs one of the self-tests required by ethtool. 921 * Returns 0 on success, non-zero on failure. 922 */ 923 static u64 ice_link_test(struct net_device *netdev) 924 { 925 struct ice_netdev_priv *np = netdev_priv(netdev); 926 bool link_up = false; 927 int status; 928 929 netdev_info(netdev, "link test\n"); 930 status = ice_get_link_status(np->vsi->port_info, &link_up); 931 if (status) { 932 netdev_err(netdev, "link query error, status = %d\n", 933 status); 934 return 1; 935 } 936 937 if (!link_up) 938 return 2; 939 940 return 0; 941 } 942 943 /** 944 * ice_eeprom_test - perform an EEPROM test on a given net_device 945 * @netdev: network interface device structure 946 * 947 * This function performs one of the self-tests required by ethtool. 948 * Returns 0 on success, non-zero on failure. 949 */ 950 static u64 ice_eeprom_test(struct net_device *netdev) 951 { 952 struct ice_netdev_priv *np = netdev_priv(netdev); 953 struct ice_pf *pf = np->vsi->back; 954 955 netdev_info(netdev, "EEPROM test\n"); 956 return !!(ice_nvm_validate_checksum(&pf->hw)); 957 } 958 959 /** 960 * ice_reg_pattern_test 961 * @hw: pointer to the HW struct 962 * @reg: reg to be tested 963 * @mask: bits to be touched 964 */ 965 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask) 966 { 967 struct ice_pf *pf = (struct ice_pf *)hw->back; 968 struct device *dev = ice_pf_to_dev(pf); 969 static const u32 patterns[] = { 970 0x5A5A5A5A, 0xA5A5A5A5, 971 0x00000000, 0xFFFFFFFF 972 }; 973 u32 val, orig_val; 974 unsigned int i; 975 976 orig_val = rd32(hw, reg); 977 for (i = 0; i < ARRAY_SIZE(patterns); ++i) { 978 u32 pattern = patterns[i] & mask; 979 980 wr32(hw, reg, pattern); 981 val = rd32(hw, reg); 982 if (val == pattern) 983 continue; 984 dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n" 985 , __func__, reg, pattern, val); 986 return 1; 987 } 988 989 wr32(hw, reg, orig_val); 990 val = rd32(hw, reg); 991 if (val != orig_val) { 992 dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n" 993 , __func__, reg, orig_val, val); 994 return 1; 995 } 996 997 return 0; 998 } 999 1000 /** 1001 * ice_reg_test - perform a register test on a given net_device 1002 * @netdev: network interface device structure 1003 * 1004 * This function performs one of the self-tests required by ethtool. 1005 * Returns 0 on success, non-zero on failure. 1006 */ 1007 static u64 ice_reg_test(struct net_device *netdev) 1008 { 1009 struct ice_netdev_priv *np = netdev_priv(netdev); 1010 struct ice_hw *hw = np->vsi->port_info->hw; 1011 u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ? 1012 hw->func_caps.common_cap.num_msix_vectors - 1 : 1; 1013 struct ice_diag_reg_test_info { 1014 u32 address; 1015 u32 mask; 1016 u32 elem_num; 1017 u32 elem_size; 1018 } ice_reg_list[] = { 1019 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1020 GLINT_ITR(0, 1) - GLINT_ITR(0, 0)}, 1021 {GLINT_ITR(1, 0), 0x00000fff, int_elements, 1022 GLINT_ITR(1, 1) - GLINT_ITR(1, 0)}, 1023 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1024 GLINT_ITR(2, 1) - GLINT_ITR(2, 0)}, 1025 {GLINT_CTL, 0xffff0001, 1, 0} 1026 }; 1027 unsigned int i; 1028 1029 netdev_dbg(netdev, "Register test\n"); 1030 for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) { 1031 u32 j; 1032 1033 for (j = 0; j < ice_reg_list[i].elem_num; ++j) { 1034 u32 mask = ice_reg_list[i].mask; 1035 u32 reg = ice_reg_list[i].address + 1036 (j * ice_reg_list[i].elem_size); 1037 1038 /* bail on failure (non-zero return) */ 1039 if (ice_reg_pattern_test(hw, reg, mask)) 1040 return 1; 1041 } 1042 } 1043 1044 return 0; 1045 } 1046 1047 /** 1048 * ice_lbtest_prepare_rings - configure Tx/Rx test rings 1049 * @vsi: pointer to the VSI structure 1050 * 1051 * Function configures rings of a VSI for loopback test without 1052 * enabling interrupts or informing the kernel about new queues. 1053 * 1054 * Returns 0 on success, negative on failure. 1055 */ 1056 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi) 1057 { 1058 int status; 1059 1060 status = ice_vsi_setup_tx_rings(vsi); 1061 if (status) 1062 goto err_setup_tx_ring; 1063 1064 status = ice_vsi_setup_rx_rings(vsi); 1065 if (status) 1066 goto err_setup_rx_ring; 1067 1068 status = ice_vsi_cfg_lan(vsi); 1069 if (status) 1070 goto err_setup_rx_ring; 1071 1072 status = ice_vsi_start_all_rx_rings(vsi); 1073 if (status) 1074 goto err_start_rx_ring; 1075 1076 return 0; 1077 1078 err_start_rx_ring: 1079 ice_vsi_free_rx_rings(vsi); 1080 err_setup_rx_ring: 1081 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1082 err_setup_tx_ring: 1083 ice_vsi_free_tx_rings(vsi); 1084 1085 return status; 1086 } 1087 1088 /** 1089 * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test 1090 * @vsi: pointer to the VSI structure 1091 * 1092 * Function stops and frees VSI rings after a loopback test. 1093 * Returns 0 on success, negative on failure. 1094 */ 1095 static int ice_lbtest_disable_rings(struct ice_vsi *vsi) 1096 { 1097 int status; 1098 1099 status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1100 if (status) 1101 netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n", 1102 vsi->vsi_num, status); 1103 1104 status = ice_vsi_stop_all_rx_rings(vsi); 1105 if (status) 1106 netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n", 1107 vsi->vsi_num, status); 1108 1109 ice_vsi_free_tx_rings(vsi); 1110 ice_vsi_free_rx_rings(vsi); 1111 1112 return status; 1113 } 1114 1115 /** 1116 * ice_lbtest_create_frame - create test packet 1117 * @pf: pointer to the PF structure 1118 * @ret_data: allocated frame buffer 1119 * @size: size of the packet data 1120 * 1121 * Function allocates a frame with a test pattern on specific offsets. 1122 * Returns 0 on success, non-zero on failure. 1123 */ 1124 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size) 1125 { 1126 u8 *data; 1127 1128 if (!pf) 1129 return -EINVAL; 1130 1131 data = kzalloc(size, GFP_KERNEL); 1132 if (!data) 1133 return -ENOMEM; 1134 1135 /* Since the ethernet test frame should always be at least 1136 * 64 bytes long, fill some octets in the payload with test data. 1137 */ 1138 memset(data, 0xFF, size); 1139 data[32] = 0xDE; 1140 data[42] = 0xAD; 1141 data[44] = 0xBE; 1142 data[46] = 0xEF; 1143 1144 *ret_data = data; 1145 1146 return 0; 1147 } 1148 1149 /** 1150 * ice_lbtest_check_frame - verify received loopback frame 1151 * @frame: pointer to the raw packet data 1152 * 1153 * Function verifies received test frame with a pattern. 1154 * Returns true if frame matches the pattern, false otherwise. 1155 */ 1156 static bool ice_lbtest_check_frame(u8 *frame) 1157 { 1158 /* Validate bytes of a frame under offsets chosen earlier */ 1159 if (frame[32] == 0xDE && 1160 frame[42] == 0xAD && 1161 frame[44] == 0xBE && 1162 frame[46] == 0xEF && 1163 frame[48] == 0xFF) 1164 return true; 1165 1166 return false; 1167 } 1168 1169 /** 1170 * ice_diag_send - send test frames to the test ring 1171 * @tx_ring: pointer to the transmit ring 1172 * @data: pointer to the raw packet data 1173 * @size: size of the packet to send 1174 * 1175 * Function sends loopback packets on a test Tx ring. 1176 */ 1177 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size) 1178 { 1179 struct ice_tx_desc *tx_desc; 1180 struct ice_tx_buf *tx_buf; 1181 dma_addr_t dma; 1182 u64 td_cmd; 1183 1184 tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use); 1185 tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use]; 1186 1187 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 1188 if (dma_mapping_error(tx_ring->dev, dma)) 1189 return -EINVAL; 1190 1191 tx_desc->buf_addr = cpu_to_le64(dma); 1192 1193 /* These flags are required for a descriptor to be pushed out */ 1194 td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); 1195 tx_desc->cmd_type_offset_bsz = 1196 cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | 1197 (td_cmd << ICE_TXD_QW1_CMD_S) | 1198 ((u64)0 << ICE_TXD_QW1_OFFSET_S) | 1199 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | 1200 ((u64)0 << ICE_TXD_QW1_L2TAG1_S)); 1201 1202 tx_buf->next_to_watch = tx_desc; 1203 1204 /* Force memory write to complete before letting h/w know 1205 * there are new descriptors to fetch. 1206 */ 1207 wmb(); 1208 1209 tx_ring->next_to_use++; 1210 if (tx_ring->next_to_use >= tx_ring->count) 1211 tx_ring->next_to_use = 0; 1212 1213 writel_relaxed(tx_ring->next_to_use, tx_ring->tail); 1214 1215 /* Wait until the packets get transmitted to the receive queue. */ 1216 usleep_range(1000, 2000); 1217 dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE); 1218 1219 return 0; 1220 } 1221 1222 #define ICE_LB_FRAME_SIZE 64 1223 /** 1224 * ice_lbtest_receive_frames - receive and verify test frames 1225 * @rx_ring: pointer to the receive ring 1226 * 1227 * Function receives loopback packets and verify their correctness. 1228 * Returns number of received valid frames. 1229 */ 1230 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring) 1231 { 1232 struct ice_rx_buf *rx_buf; 1233 int valid_frames, i; 1234 u8 *received_buf; 1235 1236 valid_frames = 0; 1237 1238 for (i = 0; i < rx_ring->count; i++) { 1239 union ice_32b_rx_flex_desc *rx_desc; 1240 1241 rx_desc = ICE_RX_DESC(rx_ring, i); 1242 1243 if (!(rx_desc->wb.status_error0 & 1244 (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) | 1245 cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S))))) 1246 continue; 1247 1248 rx_buf = &rx_ring->rx_buf[i]; 1249 received_buf = page_address(rx_buf->page) + rx_buf->page_offset; 1250 1251 if (ice_lbtest_check_frame(received_buf)) 1252 valid_frames++; 1253 } 1254 1255 return valid_frames; 1256 } 1257 1258 /** 1259 * ice_loopback_test - perform a loopback test on a given net_device 1260 * @netdev: network interface device structure 1261 * 1262 * This function performs one of the self-tests required by ethtool. 1263 * Returns 0 on success, non-zero on failure. 1264 */ 1265 static u64 ice_loopback_test(struct net_device *netdev) 1266 { 1267 struct ice_netdev_priv *np = netdev_priv(netdev); 1268 struct ice_vsi *orig_vsi = np->vsi, *test_vsi; 1269 struct ice_pf *pf = orig_vsi->back; 1270 u8 *tx_frame __free(kfree) = NULL; 1271 u8 broadcast[ETH_ALEN], ret = 0; 1272 int num_frames, valid_frames; 1273 struct ice_tx_ring *tx_ring; 1274 struct ice_rx_ring *rx_ring; 1275 int i; 1276 1277 netdev_info(netdev, "loopback test\n"); 1278 1279 test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info); 1280 if (!test_vsi) { 1281 netdev_err(netdev, "Failed to create a VSI for the loopback test\n"); 1282 return 1; 1283 } 1284 1285 test_vsi->netdev = netdev; 1286 tx_ring = test_vsi->tx_rings[0]; 1287 rx_ring = test_vsi->rx_rings[0]; 1288 1289 if (ice_lbtest_prepare_rings(test_vsi)) { 1290 ret = 2; 1291 goto lbtest_vsi_close; 1292 } 1293 1294 if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) { 1295 ret = 3; 1296 goto lbtest_rings_dis; 1297 } 1298 1299 /* Enable MAC loopback in firmware */ 1300 if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) { 1301 ret = 4; 1302 goto lbtest_mac_dis; 1303 } 1304 1305 /* Test VSI needs to receive broadcast packets */ 1306 eth_broadcast_addr(broadcast); 1307 if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) { 1308 ret = 5; 1309 goto lbtest_mac_dis; 1310 } 1311 1312 if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) { 1313 ret = 7; 1314 goto remove_mac_filters; 1315 } 1316 1317 num_frames = min_t(int, tx_ring->count, 32); 1318 for (i = 0; i < num_frames; i++) { 1319 if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) { 1320 ret = 8; 1321 goto remove_mac_filters; 1322 } 1323 } 1324 1325 valid_frames = ice_lbtest_receive_frames(rx_ring); 1326 if (!valid_frames) 1327 ret = 9; 1328 else if (valid_frames != num_frames) 1329 ret = 10; 1330 1331 remove_mac_filters: 1332 if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) 1333 netdev_err(netdev, "Could not remove MAC filter for the test VSI\n"); 1334 lbtest_mac_dis: 1335 /* Disable MAC loopback after the test is completed. */ 1336 if (ice_aq_set_mac_loopback(&pf->hw, false, NULL)) 1337 netdev_err(netdev, "Could not disable MAC loopback\n"); 1338 lbtest_rings_dis: 1339 if (ice_lbtest_disable_rings(test_vsi)) 1340 netdev_err(netdev, "Could not disable test rings\n"); 1341 lbtest_vsi_close: 1342 test_vsi->netdev = NULL; 1343 if (ice_vsi_release(test_vsi)) 1344 netdev_err(netdev, "Failed to remove the test VSI\n"); 1345 1346 return ret; 1347 } 1348 1349 /** 1350 * ice_intr_test - perform an interrupt test on a given net_device 1351 * @netdev: network interface device structure 1352 * 1353 * This function performs one of the self-tests required by ethtool. 1354 * Returns 0 on success, non-zero on failure. 1355 */ 1356 static u64 ice_intr_test(struct net_device *netdev) 1357 { 1358 struct ice_netdev_priv *np = netdev_priv(netdev); 1359 struct ice_pf *pf = np->vsi->back; 1360 u16 swic_old = pf->sw_int_count; 1361 1362 netdev_info(netdev, "interrupt test\n"); 1363 1364 wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index), 1365 GLINT_DYN_CTL_SW_ITR_INDX_M | 1366 GLINT_DYN_CTL_INTENA_MSK_M | 1367 GLINT_DYN_CTL_SWINT_TRIG_M); 1368 1369 usleep_range(1000, 2000); 1370 return (swic_old == pf->sw_int_count); 1371 } 1372 1373 /** 1374 * ice_self_test - handler function for performing a self-test by ethtool 1375 * @netdev: network interface device structure 1376 * @eth_test: ethtool_test structure 1377 * @data: required by ethtool.self_test 1378 * 1379 * This function is called after invoking 'ethtool -t devname' command where 1380 * devname is the name of the network device on which ethtool should operate. 1381 * It performs a set of self-tests to check if a device works properly. 1382 */ 1383 static void 1384 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test, 1385 u64 *data) 1386 { 1387 struct ice_netdev_priv *np = netdev_priv(netdev); 1388 bool if_running = netif_running(netdev); 1389 struct ice_pf *pf = np->vsi->back; 1390 struct device *dev; 1391 1392 dev = ice_pf_to_dev(pf); 1393 1394 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1395 netdev_info(netdev, "offline testing starting\n"); 1396 1397 set_bit(ICE_TESTING, pf->state); 1398 1399 if (ice_active_vfs(pf)) { 1400 dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n"); 1401 data[ICE_ETH_TEST_REG] = 1; 1402 data[ICE_ETH_TEST_EEPROM] = 1; 1403 data[ICE_ETH_TEST_INTR] = 1; 1404 data[ICE_ETH_TEST_LOOP] = 1; 1405 data[ICE_ETH_TEST_LINK] = 1; 1406 eth_test->flags |= ETH_TEST_FL_FAILED; 1407 clear_bit(ICE_TESTING, pf->state); 1408 goto skip_ol_tests; 1409 } 1410 /* If the device is online then take it offline */ 1411 if (if_running) 1412 /* indicate we're in test mode */ 1413 ice_stop(netdev); 1414 1415 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1416 data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev); 1417 data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev); 1418 data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev); 1419 data[ICE_ETH_TEST_REG] = ice_reg_test(netdev); 1420 1421 if (data[ICE_ETH_TEST_LINK] || 1422 data[ICE_ETH_TEST_EEPROM] || 1423 data[ICE_ETH_TEST_LOOP] || 1424 data[ICE_ETH_TEST_INTR] || 1425 data[ICE_ETH_TEST_REG]) 1426 eth_test->flags |= ETH_TEST_FL_FAILED; 1427 1428 clear_bit(ICE_TESTING, pf->state); 1429 1430 if (if_running) { 1431 int status = ice_open(netdev); 1432 1433 if (status) { 1434 dev_err(dev, "Could not open device %s, err %d\n", 1435 pf->int_name, status); 1436 } 1437 } 1438 } else { 1439 /* Online tests */ 1440 netdev_info(netdev, "online testing starting\n"); 1441 1442 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1443 if (data[ICE_ETH_TEST_LINK]) 1444 eth_test->flags |= ETH_TEST_FL_FAILED; 1445 1446 /* Offline only tests, not run in online; pass by default */ 1447 data[ICE_ETH_TEST_REG] = 0; 1448 data[ICE_ETH_TEST_EEPROM] = 0; 1449 data[ICE_ETH_TEST_INTR] = 0; 1450 data[ICE_ETH_TEST_LOOP] = 0; 1451 } 1452 1453 skip_ol_tests: 1454 netdev_info(netdev, "testing finished\n"); 1455 } 1456 1457 static void 1458 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data, 1459 struct ice_vsi *vsi) 1460 { 1461 unsigned int i; 1462 u8 *p = data; 1463 1464 switch (stringset) { 1465 case ETH_SS_STATS: 1466 for (i = 0; i < ICE_VSI_STATS_LEN; i++) 1467 ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string); 1468 1469 if (ice_is_port_repr_netdev(netdev)) 1470 return; 1471 1472 ice_for_each_alloc_txq(vsi, i) { 1473 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1474 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1475 } 1476 1477 ice_for_each_alloc_rxq(vsi, i) { 1478 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1479 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1480 } 1481 1482 if (vsi->type != ICE_VSI_PF) 1483 return; 1484 1485 for (i = 0; i < ICE_PF_STATS_LEN; i++) 1486 ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string); 1487 1488 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1489 ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i); 1490 ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i); 1491 } 1492 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1493 ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i); 1494 ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i); 1495 } 1496 break; 1497 case ETH_SS_TEST: 1498 memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN); 1499 break; 1500 case ETH_SS_PRIV_FLAGS: 1501 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) 1502 ethtool_puts(&p, ice_gstrings_priv_flags[i].name); 1503 break; 1504 default: 1505 break; 1506 } 1507 } 1508 1509 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 1510 { 1511 struct ice_netdev_priv *np = netdev_priv(netdev); 1512 1513 __ice_get_strings(netdev, stringset, data, np->vsi); 1514 } 1515 1516 static int 1517 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) 1518 { 1519 struct ice_netdev_priv *np = netdev_priv(netdev); 1520 bool led_active; 1521 1522 switch (state) { 1523 case ETHTOOL_ID_ACTIVE: 1524 led_active = true; 1525 break; 1526 case ETHTOOL_ID_INACTIVE: 1527 led_active = false; 1528 break; 1529 default: 1530 return -EINVAL; 1531 } 1532 1533 if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL)) 1534 return -EIO; 1535 1536 return 0; 1537 } 1538 1539 /** 1540 * ice_set_fec_cfg - Set link FEC options 1541 * @netdev: network interface device structure 1542 * @req_fec: FEC mode to configure 1543 */ 1544 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec) 1545 { 1546 struct ice_netdev_priv *np = netdev_priv(netdev); 1547 struct ice_aqc_set_phy_cfg_data config = { 0 }; 1548 struct ice_vsi *vsi = np->vsi; 1549 struct ice_port_info *pi; 1550 1551 pi = vsi->port_info; 1552 if (!pi) 1553 return -EOPNOTSUPP; 1554 1555 /* Changing the FEC parameters is not supported if not the PF VSI */ 1556 if (vsi->type != ICE_VSI_PF) { 1557 netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n"); 1558 return -EOPNOTSUPP; 1559 } 1560 1561 /* Proceed only if requesting different FEC mode */ 1562 if (pi->phy.curr_user_fec_req == req_fec) 1563 return 0; 1564 1565 /* Copy the current user PHY configuration. The current user PHY 1566 * configuration is initialized during probe from PHY capabilities 1567 * software mode, and updated on set PHY configuration. 1568 */ 1569 memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config)); 1570 1571 ice_cfg_phy_fec(pi, &config, req_fec); 1572 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1573 1574 if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL)) 1575 return -EAGAIN; 1576 1577 /* Save requested FEC config */ 1578 pi->phy.curr_user_fec_req = req_fec; 1579 1580 return 0; 1581 } 1582 1583 /** 1584 * ice_set_fecparam - Set FEC link options 1585 * @netdev: network interface device structure 1586 * @fecparam: Ethtool structure to retrieve FEC parameters 1587 */ 1588 static int 1589 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1590 { 1591 struct ice_netdev_priv *np = netdev_priv(netdev); 1592 struct ice_vsi *vsi = np->vsi; 1593 enum ice_fec_mode fec; 1594 1595 switch (fecparam->fec) { 1596 case ETHTOOL_FEC_AUTO: 1597 fec = ICE_FEC_AUTO; 1598 break; 1599 case ETHTOOL_FEC_RS: 1600 fec = ICE_FEC_RS; 1601 break; 1602 case ETHTOOL_FEC_BASER: 1603 fec = ICE_FEC_BASER; 1604 break; 1605 case ETHTOOL_FEC_OFF: 1606 case ETHTOOL_FEC_NONE: 1607 fec = ICE_FEC_NONE; 1608 break; 1609 default: 1610 dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n", 1611 fecparam->fec); 1612 return -EINVAL; 1613 } 1614 1615 return ice_set_fec_cfg(netdev, fec); 1616 } 1617 1618 /** 1619 * ice_get_fecparam - Get link FEC options 1620 * @netdev: network interface device structure 1621 * @fecparam: Ethtool structure to retrieve FEC parameters 1622 */ 1623 static int 1624 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1625 { 1626 struct ice_netdev_priv *np = netdev_priv(netdev); 1627 struct ice_aqc_get_phy_caps_data *caps; 1628 struct ice_link_status *link_info; 1629 struct ice_vsi *vsi = np->vsi; 1630 struct ice_port_info *pi; 1631 int err; 1632 1633 pi = vsi->port_info; 1634 1635 if (!pi) 1636 return -EOPNOTSUPP; 1637 link_info = &pi->phy.link_info; 1638 1639 /* Set FEC mode based on negotiated link info */ 1640 switch (link_info->fec_info) { 1641 case ICE_AQ_LINK_25G_KR_FEC_EN: 1642 fecparam->active_fec = ETHTOOL_FEC_BASER; 1643 break; 1644 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 1645 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 1646 fecparam->active_fec = ETHTOOL_FEC_RS; 1647 break; 1648 default: 1649 fecparam->active_fec = ETHTOOL_FEC_OFF; 1650 break; 1651 } 1652 1653 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 1654 if (!caps) 1655 return -ENOMEM; 1656 1657 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1658 caps, NULL); 1659 if (err) 1660 goto done; 1661 1662 /* Set supported/configured FEC modes based on PHY capability */ 1663 if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC) 1664 fecparam->fec |= ETHTOOL_FEC_AUTO; 1665 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 1666 caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 1667 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN || 1668 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 1669 fecparam->fec |= ETHTOOL_FEC_BASER; 1670 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 1671 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ || 1672 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 1673 fecparam->fec |= ETHTOOL_FEC_RS; 1674 if (caps->link_fec_options == 0) 1675 fecparam->fec |= ETHTOOL_FEC_OFF; 1676 1677 done: 1678 kfree(caps); 1679 return err; 1680 } 1681 1682 /** 1683 * ice_nway_reset - restart autonegotiation 1684 * @netdev: network interface device structure 1685 */ 1686 static int ice_nway_reset(struct net_device *netdev) 1687 { 1688 struct ice_netdev_priv *np = netdev_priv(netdev); 1689 struct ice_vsi *vsi = np->vsi; 1690 int err; 1691 1692 /* If VSI state is up, then restart autoneg with link up */ 1693 if (!test_bit(ICE_DOWN, vsi->back->state)) 1694 err = ice_set_link(vsi, true); 1695 else 1696 err = ice_set_link(vsi, false); 1697 1698 return err; 1699 } 1700 1701 /** 1702 * ice_get_priv_flags - report device private flags 1703 * @netdev: network interface device structure 1704 * 1705 * The get string set count and the string set should be matched for each 1706 * flag returned. Add new strings for each flag to the ice_gstrings_priv_flags 1707 * array. 1708 * 1709 * Returns a u32 bitmap of flags. 1710 */ 1711 static u32 ice_get_priv_flags(struct net_device *netdev) 1712 { 1713 struct ice_netdev_priv *np = netdev_priv(netdev); 1714 struct ice_vsi *vsi = np->vsi; 1715 struct ice_pf *pf = vsi->back; 1716 u32 i, ret_flags = 0; 1717 1718 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1719 const struct ice_priv_flag *priv_flag; 1720 1721 priv_flag = &ice_gstrings_priv_flags[i]; 1722 1723 if (test_bit(priv_flag->bitno, pf->flags)) 1724 ret_flags |= BIT(i); 1725 } 1726 1727 return ret_flags; 1728 } 1729 1730 /** 1731 * ice_set_priv_flags - set private flags 1732 * @netdev: network interface device structure 1733 * @flags: bit flags to be set 1734 */ 1735 static int ice_set_priv_flags(struct net_device *netdev, u32 flags) 1736 { 1737 struct ice_netdev_priv *np = netdev_priv(netdev); 1738 DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS); 1739 DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS); 1740 struct ice_vsi *vsi = np->vsi; 1741 struct ice_pf *pf = vsi->back; 1742 struct device *dev; 1743 int ret = 0; 1744 u32 i; 1745 1746 if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE)) 1747 return -EINVAL; 1748 1749 dev = ice_pf_to_dev(pf); 1750 set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1751 1752 bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS); 1753 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1754 const struct ice_priv_flag *priv_flag; 1755 1756 priv_flag = &ice_gstrings_priv_flags[i]; 1757 1758 if (flags & BIT(i)) 1759 set_bit(priv_flag->bitno, pf->flags); 1760 else 1761 clear_bit(priv_flag->bitno, pf->flags); 1762 } 1763 1764 bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS); 1765 1766 /* Do not allow change to link-down-on-close when Total Port Shutdown 1767 * is enabled. 1768 */ 1769 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) && 1770 test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 1771 dev_err(dev, "Setting link-down-on-close not supported on this port\n"); 1772 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1773 ret = -EINVAL; 1774 goto ethtool_exit; 1775 } 1776 1777 if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) { 1778 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) { 1779 int status; 1780 1781 /* Disable FW LLDP engine */ 1782 status = ice_cfg_lldp_mib_change(&pf->hw, false); 1783 1784 /* If unregistering for LLDP events fails, this is 1785 * not an error state, as there shouldn't be any 1786 * events to respond to. 1787 */ 1788 if (status) 1789 dev_info(dev, "Failed to unreg for LLDP events\n"); 1790 1791 /* The AQ call to stop the FW LLDP agent will generate 1792 * an error if the agent is already stopped. 1793 */ 1794 status = ice_aq_stop_lldp(&pf->hw, true, true, NULL); 1795 if (status) 1796 dev_warn(dev, "Fail to stop LLDP agent\n"); 1797 /* Use case for having the FW LLDP agent stopped 1798 * will likely not need DCB, so failure to init is 1799 * not a concern of ethtool 1800 */ 1801 status = ice_init_pf_dcb(pf, true); 1802 if (status) 1803 dev_warn(dev, "Fail to init DCB\n"); 1804 1805 pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED; 1806 pf->dcbx_cap |= DCB_CAP_DCBX_HOST; 1807 } else { 1808 bool dcbx_agent_status; 1809 int status; 1810 1811 if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) { 1812 clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags); 1813 dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n"); 1814 ret = -EOPNOTSUPP; 1815 goto ethtool_exit; 1816 } 1817 1818 /* Remove rule to direct LLDP packets to default VSI. 1819 * The FW LLDP engine will now be consuming them. 1820 */ 1821 ice_cfg_sw_lldp(vsi, false, false); 1822 1823 /* AQ command to start FW LLDP agent will return an 1824 * error if the agent is already started 1825 */ 1826 status = ice_aq_start_lldp(&pf->hw, true, NULL); 1827 if (status) 1828 dev_warn(dev, "Fail to start LLDP Agent\n"); 1829 1830 /* AQ command to start FW DCBX agent will fail if 1831 * the agent is already started 1832 */ 1833 status = ice_aq_start_stop_dcbx(&pf->hw, true, 1834 &dcbx_agent_status, 1835 NULL); 1836 if (status) 1837 dev_dbg(dev, "Failed to start FW DCBX\n"); 1838 1839 dev_info(dev, "FW DCBX agent is %s\n", 1840 dcbx_agent_status ? "ACTIVE" : "DISABLED"); 1841 1842 /* Failure to configure MIB change or init DCB is not 1843 * relevant to ethtool. Print notification that 1844 * registration/init failed but do not return error 1845 * state to ethtool 1846 */ 1847 status = ice_init_pf_dcb(pf, true); 1848 if (status) 1849 dev_dbg(dev, "Fail to init DCB\n"); 1850 1851 /* Register for MIB change events */ 1852 status = ice_cfg_lldp_mib_change(&pf->hw, true); 1853 if (status) 1854 dev_dbg(dev, "Fail to enable MIB change events\n"); 1855 1856 pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST; 1857 pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED; 1858 1859 ice_nway_reset(netdev); 1860 } 1861 } 1862 if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) { 1863 /* down and up VSI so that changes of Rx cfg are reflected. */ 1864 ice_down_up(vsi); 1865 } 1866 /* don't allow modification of this flag when a single VF is in 1867 * promiscuous mode because it's not supported 1868 */ 1869 if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) && 1870 ice_is_any_vf_in_unicast_promisc(pf)) { 1871 dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n"); 1872 /* toggle bit back to previous state */ 1873 change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags); 1874 ret = -EAGAIN; 1875 } 1876 1877 if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) && 1878 ice_has_vfs(pf)) { 1879 dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n"); 1880 /* toggle bit back to previous state */ 1881 change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags); 1882 ret = -EOPNOTSUPP; 1883 } 1884 ethtool_exit: 1885 clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1886 return ret; 1887 } 1888 1889 static int ice_get_sset_count(struct net_device *netdev, int sset) 1890 { 1891 switch (sset) { 1892 case ETH_SS_STATS: 1893 /* The number (and order) of strings reported *must* remain 1894 * constant for a given netdevice. This function must not 1895 * report a different number based on run time parameters 1896 * (such as the number of queues in use, or the setting of 1897 * a private ethtool flag). This is due to the nature of the 1898 * ethtool stats API. 1899 * 1900 * Userspace programs such as ethtool must make 3 separate 1901 * ioctl requests, one for size, one for the strings, and 1902 * finally one for the stats. Since these cross into 1903 * userspace, changes to the number or size could result in 1904 * undefined memory access or incorrect string<->value 1905 * correlations for statistics. 1906 * 1907 * Even if it appears to be safe, changes to the size or 1908 * order of strings will suffer from race conditions and are 1909 * not safe. 1910 */ 1911 return ICE_ALL_STATS_LEN(netdev); 1912 case ETH_SS_TEST: 1913 return ICE_TEST_LEN; 1914 case ETH_SS_PRIV_FLAGS: 1915 return ICE_PRIV_FLAG_ARRAY_SIZE; 1916 default: 1917 return -EOPNOTSUPP; 1918 } 1919 } 1920 1921 static void 1922 __ice_get_ethtool_stats(struct net_device *netdev, 1923 struct ethtool_stats __always_unused *stats, u64 *data, 1924 struct ice_vsi *vsi) 1925 { 1926 struct ice_pf *pf = vsi->back; 1927 struct ice_tx_ring *tx_ring; 1928 struct ice_rx_ring *rx_ring; 1929 unsigned int j; 1930 int i = 0; 1931 char *p; 1932 1933 ice_update_pf_stats(pf); 1934 ice_update_vsi_stats(vsi); 1935 1936 for (j = 0; j < ICE_VSI_STATS_LEN; j++) { 1937 p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset; 1938 data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat == 1939 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1940 } 1941 1942 if (ice_is_port_repr_netdev(netdev)) 1943 return; 1944 1945 /* populate per queue stats */ 1946 rcu_read_lock(); 1947 1948 ice_for_each_alloc_txq(vsi, j) { 1949 tx_ring = READ_ONCE(vsi->tx_rings[j]); 1950 if (tx_ring && tx_ring->ring_stats) { 1951 data[i++] = tx_ring->ring_stats->stats.pkts; 1952 data[i++] = tx_ring->ring_stats->stats.bytes; 1953 } else { 1954 data[i++] = 0; 1955 data[i++] = 0; 1956 } 1957 } 1958 1959 ice_for_each_alloc_rxq(vsi, j) { 1960 rx_ring = READ_ONCE(vsi->rx_rings[j]); 1961 if (rx_ring && rx_ring->ring_stats) { 1962 data[i++] = rx_ring->ring_stats->stats.pkts; 1963 data[i++] = rx_ring->ring_stats->stats.bytes; 1964 } else { 1965 data[i++] = 0; 1966 data[i++] = 0; 1967 } 1968 } 1969 1970 rcu_read_unlock(); 1971 1972 if (vsi->type != ICE_VSI_PF) 1973 return; 1974 1975 for (j = 0; j < ICE_PF_STATS_LEN; j++) { 1976 p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset; 1977 data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat == 1978 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1979 } 1980 1981 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 1982 data[i++] = pf->stats.priority_xon_tx[j]; 1983 data[i++] = pf->stats.priority_xoff_tx[j]; 1984 } 1985 1986 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 1987 data[i++] = pf->stats.priority_xon_rx[j]; 1988 data[i++] = pf->stats.priority_xoff_rx[j]; 1989 } 1990 } 1991 1992 static void 1993 ice_get_ethtool_stats(struct net_device *netdev, 1994 struct ethtool_stats __always_unused *stats, u64 *data) 1995 { 1996 struct ice_netdev_priv *np = netdev_priv(netdev); 1997 1998 __ice_get_ethtool_stats(netdev, stats, data, np->vsi); 1999 } 2000 2001 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G (ICE_PHY_TYPE_LOW_100BASE_TX | \ 2002 ICE_PHY_TYPE_LOW_100M_SGMII) 2003 2004 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G (ICE_PHY_TYPE_LOW_MASK_MIN_1G | \ 2005 ICE_PHY_TYPE_LOW_1000BASE_T | \ 2006 ICE_PHY_TYPE_LOW_1000BASE_SX | \ 2007 ICE_PHY_TYPE_LOW_1000BASE_LX | \ 2008 ICE_PHY_TYPE_LOW_1000BASE_KX | \ 2009 ICE_PHY_TYPE_LOW_1G_SGMII | \ 2010 ICE_PHY_TYPE_LOW_2500BASE_T | \ 2011 ICE_PHY_TYPE_LOW_2500BASE_X | \ 2012 ICE_PHY_TYPE_LOW_2500BASE_KX | \ 2013 ICE_PHY_TYPE_LOW_5GBASE_T | \ 2014 ICE_PHY_TYPE_LOW_5GBASE_KR | \ 2015 ICE_PHY_TYPE_LOW_10GBASE_T | \ 2016 ICE_PHY_TYPE_LOW_10G_SFI_DA | \ 2017 ICE_PHY_TYPE_LOW_10GBASE_SR | \ 2018 ICE_PHY_TYPE_LOW_10GBASE_LR | \ 2019 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \ 2020 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \ 2021 ICE_PHY_TYPE_LOW_10G_SFI_C2C) 2022 2023 #define ICE_PHY_TYPE_LOW_MASK_100G (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \ 2024 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \ 2025 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \ 2026 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \ 2027 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \ 2028 ICE_PHY_TYPE_LOW_100G_CAUI4 | \ 2029 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \ 2030 ICE_PHY_TYPE_LOW_100G_AUI4 | \ 2031 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \ 2032 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \ 2033 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \ 2034 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \ 2035 ICE_PHY_TYPE_LOW_100GBASE_DR) 2036 2037 #define ICE_PHY_TYPE_HIGH_MASK_100G (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \ 2038 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\ 2039 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \ 2040 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \ 2041 ICE_PHY_TYPE_HIGH_100G_AUI2) 2042 2043 #define ICE_PHY_TYPE_HIGH_MASK_200G (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \ 2044 ICE_PHY_TYPE_HIGH_200G_SR4 | \ 2045 ICE_PHY_TYPE_HIGH_200G_FR4 | \ 2046 ICE_PHY_TYPE_HIGH_200G_LR4 | \ 2047 ICE_PHY_TYPE_HIGH_200G_DR4 | \ 2048 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \ 2049 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \ 2050 ICE_PHY_TYPE_HIGH_200G_AUI4) 2051 2052 /** 2053 * ice_mask_min_supported_speeds 2054 * @hw: pointer to the HW structure 2055 * @phy_types_high: PHY type high 2056 * @phy_types_low: PHY type low to apply minimum supported speeds mask 2057 * 2058 * Apply minimum supported speeds mask to PHY type low. These are the speeds 2059 * for ethtool supported link mode. 2060 */ 2061 static void 2062 ice_mask_min_supported_speeds(struct ice_hw *hw, 2063 u64 phy_types_high, u64 *phy_types_low) 2064 { 2065 /* if QSFP connection with 100G speed, minimum supported speed is 25G */ 2066 if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) || 2067 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) || 2068 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G)) 2069 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G; 2070 else if (!ice_is_100m_speed_supported(hw)) 2071 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G; 2072 } 2073 2074 /** 2075 * ice_linkmode_set_bit - set link mode bit 2076 * @phy_to_ethtool: PHY type to ethtool link mode struct to set 2077 * @ks: ethtool link ksettings struct to fill out 2078 * @req_speeds: speed requested by user 2079 * @advert_phy_type: advertised PHY type 2080 * @phy_type: PHY type 2081 */ 2082 static void 2083 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool, 2084 struct ethtool_link_ksettings *ks, u32 req_speeds, 2085 u64 advert_phy_type, u32 phy_type) 2086 { 2087 linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported); 2088 2089 if (req_speeds & phy_to_ethtool->aq_link_speed || 2090 (!req_speeds && advert_phy_type & BIT(phy_type))) 2091 linkmode_set_bit(phy_to_ethtool->link_mode, 2092 ks->link_modes.advertising); 2093 } 2094 2095 /** 2096 * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes 2097 * @netdev: network interface device structure 2098 * @ks: ethtool link ksettings struct to fill out 2099 */ 2100 static void 2101 ice_phy_type_to_ethtool(struct net_device *netdev, 2102 struct ethtool_link_ksettings *ks) 2103 { 2104 struct ice_netdev_priv *np = netdev_priv(netdev); 2105 struct ice_vsi *vsi = np->vsi; 2106 struct ice_pf *pf = vsi->back; 2107 u64 advert_phy_type_lo = 0; 2108 u64 advert_phy_type_hi = 0; 2109 u64 phy_types_high = 0; 2110 u64 phy_types_low = 0; 2111 u32 req_speeds; 2112 u32 i; 2113 2114 req_speeds = vsi->port_info->phy.link_info.req_speeds; 2115 2116 /* Check if lenient mode is supported and enabled, or in strict mode. 2117 * 2118 * In lenient mode the Supported link modes are the PHY types without 2119 * media. The Advertising link mode is either 1. the user requested 2120 * speed, 2. the override PHY mask, or 3. the PHY types with media. 2121 * 2122 * In strict mode Supported link mode are the PHY type with media, 2123 * and Advertising link modes are the media PHY type or the speed 2124 * requested by user. 2125 */ 2126 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2127 phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo); 2128 phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi); 2129 2130 ice_mask_min_supported_speeds(&pf->hw, phy_types_high, 2131 &phy_types_low); 2132 /* determine advertised modes based on link override only 2133 * if it's supported and if the FW doesn't abstract the 2134 * driver from having to account for link overrides 2135 */ 2136 if (ice_fw_supports_link_override(&pf->hw) && 2137 !ice_fw_supports_report_dflt_cfg(&pf->hw)) { 2138 struct ice_link_default_override_tlv *ldo; 2139 2140 ldo = &pf->link_dflt_override; 2141 /* If override enabled and PHY mask set, then 2142 * Advertising link mode is the intersection of the PHY 2143 * types without media and the override PHY mask. 2144 */ 2145 if (ldo->options & ICE_LINK_OVERRIDE_EN && 2146 (ldo->phy_type_low || ldo->phy_type_high)) { 2147 advert_phy_type_lo = 2148 le64_to_cpu(pf->nvm_phy_type_lo) & 2149 ldo->phy_type_low; 2150 advert_phy_type_hi = 2151 le64_to_cpu(pf->nvm_phy_type_hi) & 2152 ldo->phy_type_high; 2153 } 2154 } 2155 } else { 2156 /* strict mode */ 2157 phy_types_low = vsi->port_info->phy.phy_type_low; 2158 phy_types_high = vsi->port_info->phy.phy_type_high; 2159 } 2160 2161 /* If Advertising link mode PHY type is not using override PHY type, 2162 * then use PHY type with media. 2163 */ 2164 if (!advert_phy_type_lo && !advert_phy_type_hi) { 2165 advert_phy_type_lo = vsi->port_info->phy.phy_type_low; 2166 advert_phy_type_hi = vsi->port_info->phy.phy_type_high; 2167 } 2168 2169 linkmode_zero(ks->link_modes.supported); 2170 linkmode_zero(ks->link_modes.advertising); 2171 2172 for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) { 2173 if (phy_types_low & BIT_ULL(i)) 2174 ice_linkmode_set_bit(&phy_type_low_lkup[i], ks, 2175 req_speeds, advert_phy_type_lo, 2176 i); 2177 } 2178 2179 for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) { 2180 if (phy_types_high & BIT_ULL(i)) 2181 ice_linkmode_set_bit(&phy_type_high_lkup[i], ks, 2182 req_speeds, advert_phy_type_hi, 2183 i); 2184 } 2185 } 2186 2187 #define TEST_SET_BITS_TIMEOUT 50 2188 #define TEST_SET_BITS_SLEEP_MAX 2000 2189 #define TEST_SET_BITS_SLEEP_MIN 1000 2190 2191 /** 2192 * ice_get_settings_link_up - Get Link settings for when link is up 2193 * @ks: ethtool ksettings to fill in 2194 * @netdev: network interface device structure 2195 */ 2196 static void 2197 ice_get_settings_link_up(struct ethtool_link_ksettings *ks, 2198 struct net_device *netdev) 2199 { 2200 struct ice_netdev_priv *np = netdev_priv(netdev); 2201 struct ice_port_info *pi = np->vsi->port_info; 2202 struct ice_link_status *link_info; 2203 struct ice_vsi *vsi = np->vsi; 2204 2205 link_info = &vsi->port_info->phy.link_info; 2206 2207 /* Get supported and advertised settings from PHY ability with media */ 2208 ice_phy_type_to_ethtool(netdev, ks); 2209 2210 switch (link_info->link_speed) { 2211 case ICE_AQ_LINK_SPEED_200GB: 2212 ks->base.speed = SPEED_200000; 2213 break; 2214 case ICE_AQ_LINK_SPEED_100GB: 2215 ks->base.speed = SPEED_100000; 2216 break; 2217 case ICE_AQ_LINK_SPEED_50GB: 2218 ks->base.speed = SPEED_50000; 2219 break; 2220 case ICE_AQ_LINK_SPEED_40GB: 2221 ks->base.speed = SPEED_40000; 2222 break; 2223 case ICE_AQ_LINK_SPEED_25GB: 2224 ks->base.speed = SPEED_25000; 2225 break; 2226 case ICE_AQ_LINK_SPEED_20GB: 2227 ks->base.speed = SPEED_20000; 2228 break; 2229 case ICE_AQ_LINK_SPEED_10GB: 2230 ks->base.speed = SPEED_10000; 2231 break; 2232 case ICE_AQ_LINK_SPEED_5GB: 2233 ks->base.speed = SPEED_5000; 2234 break; 2235 case ICE_AQ_LINK_SPEED_2500MB: 2236 ks->base.speed = SPEED_2500; 2237 break; 2238 case ICE_AQ_LINK_SPEED_1000MB: 2239 ks->base.speed = SPEED_1000; 2240 break; 2241 case ICE_AQ_LINK_SPEED_100MB: 2242 ks->base.speed = SPEED_100; 2243 break; 2244 default: 2245 netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n", 2246 link_info->link_speed); 2247 break; 2248 } 2249 ks->base.duplex = DUPLEX_FULL; 2250 2251 if (link_info->an_info & ICE_AQ_AN_COMPLETED) 2252 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2253 Autoneg); 2254 2255 /* Set flow control negotiated Rx/Tx pause */ 2256 switch (pi->fc.current_mode) { 2257 case ICE_FC_FULL: 2258 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2259 break; 2260 case ICE_FC_TX_PAUSE: 2261 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2262 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2263 Asym_Pause); 2264 break; 2265 case ICE_FC_RX_PAUSE: 2266 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2267 Asym_Pause); 2268 break; 2269 case ICE_FC_PFC: 2270 default: 2271 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause); 2272 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, 2273 Asym_Pause); 2274 break; 2275 } 2276 } 2277 2278 /** 2279 * ice_get_settings_link_down - Get the Link settings when link is down 2280 * @ks: ethtool ksettings to fill in 2281 * @netdev: network interface device structure 2282 * 2283 * Reports link settings that can be determined when link is down 2284 */ 2285 static void 2286 ice_get_settings_link_down(struct ethtool_link_ksettings *ks, 2287 struct net_device *netdev) 2288 { 2289 /* link is down and the driver needs to fall back on 2290 * supported PHY types to figure out what info to display 2291 */ 2292 ice_phy_type_to_ethtool(netdev, ks); 2293 2294 /* With no link, speed and duplex are unknown */ 2295 ks->base.speed = SPEED_UNKNOWN; 2296 ks->base.duplex = DUPLEX_UNKNOWN; 2297 } 2298 2299 /** 2300 * ice_get_link_ksettings - Get Link Speed and Duplex settings 2301 * @netdev: network interface device structure 2302 * @ks: ethtool ksettings 2303 * 2304 * Reports speed/duplex settings based on media_type 2305 */ 2306 static int 2307 ice_get_link_ksettings(struct net_device *netdev, 2308 struct ethtool_link_ksettings *ks) 2309 { 2310 struct ice_netdev_priv *np = netdev_priv(netdev); 2311 struct ice_aqc_get_phy_caps_data *caps; 2312 struct ice_link_status *hw_link_info; 2313 struct ice_vsi *vsi = np->vsi; 2314 int err; 2315 2316 ethtool_link_ksettings_zero_link_mode(ks, supported); 2317 ethtool_link_ksettings_zero_link_mode(ks, advertising); 2318 ethtool_link_ksettings_zero_link_mode(ks, lp_advertising); 2319 hw_link_info = &vsi->port_info->phy.link_info; 2320 2321 /* set speed and duplex */ 2322 if (hw_link_info->link_info & ICE_AQ_LINK_UP) 2323 ice_get_settings_link_up(ks, netdev); 2324 else 2325 ice_get_settings_link_down(ks, netdev); 2326 2327 /* set autoneg settings */ 2328 ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ? 2329 AUTONEG_ENABLE : AUTONEG_DISABLE; 2330 2331 /* set media type settings */ 2332 switch (vsi->port_info->phy.media_type) { 2333 case ICE_MEDIA_FIBER: 2334 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2335 ks->base.port = PORT_FIBRE; 2336 break; 2337 case ICE_MEDIA_BASET: 2338 ethtool_link_ksettings_add_link_mode(ks, supported, TP); 2339 ethtool_link_ksettings_add_link_mode(ks, advertising, TP); 2340 ks->base.port = PORT_TP; 2341 break; 2342 case ICE_MEDIA_BACKPLANE: 2343 ethtool_link_ksettings_add_link_mode(ks, supported, Backplane); 2344 ethtool_link_ksettings_add_link_mode(ks, advertising, 2345 Backplane); 2346 ks->base.port = PORT_NONE; 2347 break; 2348 case ICE_MEDIA_DA: 2349 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2350 ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE); 2351 ks->base.port = PORT_DA; 2352 break; 2353 default: 2354 ks->base.port = PORT_OTHER; 2355 break; 2356 } 2357 2358 /* flow control is symmetric and always supported */ 2359 ethtool_link_ksettings_add_link_mode(ks, supported, Pause); 2360 2361 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2362 if (!caps) 2363 return -ENOMEM; 2364 2365 err = ice_aq_get_phy_caps(vsi->port_info, false, 2366 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 2367 if (err) 2368 goto done; 2369 2370 /* Set the advertised flow control based on the PHY capability */ 2371 if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) && 2372 (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) { 2373 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2374 ethtool_link_ksettings_add_link_mode(ks, advertising, 2375 Asym_Pause); 2376 } else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) { 2377 ethtool_link_ksettings_add_link_mode(ks, advertising, 2378 Asym_Pause); 2379 } else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) { 2380 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2381 ethtool_link_ksettings_add_link_mode(ks, advertising, 2382 Asym_Pause); 2383 } else { 2384 ethtool_link_ksettings_del_link_mode(ks, advertising, Pause); 2385 ethtool_link_ksettings_del_link_mode(ks, advertising, 2386 Asym_Pause); 2387 } 2388 2389 /* Set advertised FEC modes based on PHY capability */ 2390 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE); 2391 2392 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 2393 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 2394 ethtool_link_ksettings_add_link_mode(ks, advertising, 2395 FEC_BASER); 2396 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 2397 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 2398 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS); 2399 2400 err = ice_aq_get_phy_caps(vsi->port_info, false, 2401 ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL); 2402 if (err) 2403 goto done; 2404 2405 /* Set supported FEC modes based on PHY capability */ 2406 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE); 2407 2408 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 2409 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN) 2410 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER); 2411 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 2412 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS); 2413 2414 /* Set supported and advertised autoneg */ 2415 if (ice_is_phy_caps_an_enabled(caps)) { 2416 ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg); 2417 ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg); 2418 } 2419 2420 done: 2421 kfree(caps); 2422 return err; 2423 } 2424 2425 /** 2426 * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed 2427 * @speed: ethtool forced speed 2428 */ 2429 static u16 ice_speed_to_aq_link(int speed) 2430 { 2431 int aq_speed; 2432 2433 switch (speed) { 2434 case SPEED_10: 2435 aq_speed = ICE_AQ_LINK_SPEED_10MB; 2436 break; 2437 case SPEED_100: 2438 aq_speed = ICE_AQ_LINK_SPEED_100MB; 2439 break; 2440 case SPEED_1000: 2441 aq_speed = ICE_AQ_LINK_SPEED_1000MB; 2442 break; 2443 case SPEED_2500: 2444 aq_speed = ICE_AQ_LINK_SPEED_2500MB; 2445 break; 2446 case SPEED_5000: 2447 aq_speed = ICE_AQ_LINK_SPEED_5GB; 2448 break; 2449 case SPEED_10000: 2450 aq_speed = ICE_AQ_LINK_SPEED_10GB; 2451 break; 2452 case SPEED_20000: 2453 aq_speed = ICE_AQ_LINK_SPEED_20GB; 2454 break; 2455 case SPEED_25000: 2456 aq_speed = ICE_AQ_LINK_SPEED_25GB; 2457 break; 2458 case SPEED_40000: 2459 aq_speed = ICE_AQ_LINK_SPEED_40GB; 2460 break; 2461 case SPEED_50000: 2462 aq_speed = ICE_AQ_LINK_SPEED_50GB; 2463 break; 2464 case SPEED_100000: 2465 aq_speed = ICE_AQ_LINK_SPEED_100GB; 2466 break; 2467 default: 2468 aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN; 2469 break; 2470 } 2471 return aq_speed; 2472 } 2473 2474 /** 2475 * ice_ksettings_find_adv_link_speed - Find advertising link speed 2476 * @ks: ethtool ksettings 2477 */ 2478 static u16 2479 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks) 2480 { 2481 const struct ethtool_forced_speed_map *map; 2482 u16 adv_link_speed = 0; 2483 2484 for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) { 2485 map = ice_adv_lnk_speed_maps + i; 2486 if (linkmode_intersects(ks->link_modes.advertising, map->caps)) 2487 adv_link_speed |= ice_speed_to_aq_link(map->speed); 2488 } 2489 2490 return adv_link_speed; 2491 } 2492 2493 /** 2494 * ice_setup_autoneg 2495 * @p: port info 2496 * @ks: ethtool_link_ksettings 2497 * @config: configuration that will be sent down to FW 2498 * @autoneg_enabled: autonegotiation is enabled or not 2499 * @autoneg_changed: will there a change in autonegotiation 2500 * @netdev: network interface device structure 2501 * 2502 * Setup PHY autonegotiation feature 2503 */ 2504 static int 2505 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks, 2506 struct ice_aqc_set_phy_cfg_data *config, 2507 u8 autoneg_enabled, u8 *autoneg_changed, 2508 struct net_device *netdev) 2509 { 2510 int err = 0; 2511 2512 *autoneg_changed = 0; 2513 2514 /* Check autoneg */ 2515 if (autoneg_enabled == AUTONEG_ENABLE) { 2516 /* If autoneg was not already enabled */ 2517 if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) { 2518 /* If autoneg is not supported, return error */ 2519 if (!ethtool_link_ksettings_test_link_mode(ks, 2520 supported, 2521 Autoneg)) { 2522 netdev_info(netdev, "Autoneg not supported on this phy.\n"); 2523 err = -EINVAL; 2524 } else { 2525 /* Autoneg is allowed to change */ 2526 config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2527 *autoneg_changed = 1; 2528 } 2529 } 2530 } else { 2531 /* If autoneg is currently enabled */ 2532 if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) { 2533 /* If autoneg is supported 10GBASE_T is the only PHY 2534 * that can disable it, so otherwise return error 2535 */ 2536 if (ethtool_link_ksettings_test_link_mode(ks, 2537 supported, 2538 Autoneg)) { 2539 netdev_info(netdev, "Autoneg cannot be disabled on this phy\n"); 2540 err = -EINVAL; 2541 } else { 2542 /* Autoneg is allowed to change */ 2543 config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2544 *autoneg_changed = 1; 2545 } 2546 } 2547 } 2548 2549 return err; 2550 } 2551 2552 /** 2553 * ice_set_phy_type_from_speed - set phy_types based on speeds 2554 * and advertised modes 2555 * @ks: ethtool link ksettings struct 2556 * @phy_type_low: pointer to the lower part of phy_type 2557 * @phy_type_high: pointer to the higher part of phy_type 2558 * @adv_link_speed: targeted link speeds bitmap 2559 */ 2560 static void 2561 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks, 2562 u64 *phy_type_low, u64 *phy_type_high, 2563 u16 adv_link_speed) 2564 { 2565 /* Handle 1000M speed in a special way because ice_update_phy_type 2566 * enables all link modes, but having mixed copper and optical 2567 * standards is not supported. 2568 */ 2569 adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB; 2570 2571 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2572 1000baseT_Full)) 2573 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T | 2574 ICE_PHY_TYPE_LOW_1G_SGMII; 2575 2576 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2577 1000baseKX_Full)) 2578 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX; 2579 2580 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2581 1000baseX_Full)) 2582 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX | 2583 ICE_PHY_TYPE_LOW_1000BASE_LX; 2584 2585 ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed); 2586 } 2587 2588 /** 2589 * ice_set_link_ksettings - Set Speed and Duplex 2590 * @netdev: network interface device structure 2591 * @ks: ethtool ksettings 2592 * 2593 * Set speed/duplex per media_types advertised/forced 2594 */ 2595 static int 2596 ice_set_link_ksettings(struct net_device *netdev, 2597 const struct ethtool_link_ksettings *ks) 2598 { 2599 struct ice_netdev_priv *np = netdev_priv(netdev); 2600 u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT; 2601 struct ethtool_link_ksettings copy_ks = *ks; 2602 struct ethtool_link_ksettings safe_ks = {}; 2603 struct ice_aqc_get_phy_caps_data *phy_caps; 2604 struct ice_aqc_set_phy_cfg_data config; 2605 u16 adv_link_speed, curr_link_speed; 2606 struct ice_pf *pf = np->vsi->back; 2607 struct ice_port_info *pi; 2608 u8 autoneg_changed = 0; 2609 u64 phy_type_high = 0; 2610 u64 phy_type_low = 0; 2611 bool linkup; 2612 int err; 2613 2614 pi = np->vsi->port_info; 2615 2616 if (!pi) 2617 return -EIO; 2618 2619 if (pi->phy.media_type != ICE_MEDIA_BASET && 2620 pi->phy.media_type != ICE_MEDIA_FIBER && 2621 pi->phy.media_type != ICE_MEDIA_BACKPLANE && 2622 pi->phy.media_type != ICE_MEDIA_DA && 2623 pi->phy.link_info.link_info & ICE_AQ_LINK_UP) 2624 return -EOPNOTSUPP; 2625 2626 phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL); 2627 if (!phy_caps) 2628 return -ENOMEM; 2629 2630 /* Get the PHY capabilities based on media */ 2631 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2632 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2633 phy_caps, NULL); 2634 else 2635 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2636 phy_caps, NULL); 2637 if (err) 2638 goto done; 2639 2640 /* save autoneg out of ksettings */ 2641 autoneg = copy_ks.base.autoneg; 2642 2643 /* Get link modes supported by hardware.*/ 2644 ice_phy_type_to_ethtool(netdev, &safe_ks); 2645 2646 /* and check against modes requested by user. 2647 * Return an error if unsupported mode was set. 2648 */ 2649 if (!bitmap_subset(copy_ks.link_modes.advertising, 2650 safe_ks.link_modes.supported, 2651 __ETHTOOL_LINK_MODE_MASK_NBITS)) { 2652 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) 2653 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2654 err = -EOPNOTSUPP; 2655 goto done; 2656 } 2657 2658 /* get our own copy of the bits to check against */ 2659 memset(&safe_ks, 0, sizeof(safe_ks)); 2660 safe_ks.base.cmd = copy_ks.base.cmd; 2661 safe_ks.base.link_mode_masks_nwords = 2662 copy_ks.base.link_mode_masks_nwords; 2663 ice_get_link_ksettings(netdev, &safe_ks); 2664 2665 /* set autoneg back to what it currently is */ 2666 copy_ks.base.autoneg = safe_ks.base.autoneg; 2667 /* we don't compare the speed */ 2668 copy_ks.base.speed = safe_ks.base.speed; 2669 2670 /* If copy_ks.base and safe_ks.base are not the same now, then they are 2671 * trying to set something that we do not support. 2672 */ 2673 if (memcmp(©_ks.base, &safe_ks.base, sizeof(copy_ks.base))) { 2674 err = -EOPNOTSUPP; 2675 goto done; 2676 } 2677 2678 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 2679 timeout--; 2680 if (!timeout) { 2681 err = -EBUSY; 2682 goto done; 2683 } 2684 usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX); 2685 } 2686 2687 /* Copy the current user PHY configuration. The current user PHY 2688 * configuration is initialized during probe from PHY capabilities 2689 * software mode, and updated on set PHY configuration. 2690 */ 2691 config = pi->phy.curr_user_phy_cfg; 2692 2693 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2694 2695 /* Check autoneg */ 2696 err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed, 2697 netdev); 2698 2699 if (err) 2700 goto done; 2701 2702 /* Call to get the current link speed */ 2703 pi->phy.get_link_info = true; 2704 err = ice_get_link_status(pi, &linkup); 2705 if (err) 2706 goto done; 2707 2708 curr_link_speed = pi->phy.curr_user_speed_req; 2709 adv_link_speed = ice_ksettings_find_adv_link_speed(ks); 2710 2711 /* If speed didn't get set, set it to what it currently is. 2712 * This is needed because if advertise is 0 (as it is when autoneg 2713 * is disabled) then speed won't get set. 2714 */ 2715 if (!adv_link_speed) 2716 adv_link_speed = curr_link_speed; 2717 2718 /* Convert the advertise link speeds to their corresponded PHY_TYPE */ 2719 ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high, 2720 adv_link_speed); 2721 2722 if (!autoneg_changed && adv_link_speed == curr_link_speed) { 2723 netdev_info(netdev, "Nothing changed, exiting without setting anything.\n"); 2724 goto done; 2725 } 2726 2727 /* save the requested speeds */ 2728 pi->phy.link_info.req_speeds = adv_link_speed; 2729 2730 /* set link and auto negotiation so changes take effect */ 2731 config.caps |= ICE_AQ_PHY_ENA_LINK; 2732 2733 /* check if there is a PHY type for the requested advertised speed */ 2734 if (!(phy_type_low || phy_type_high)) { 2735 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2736 err = -EOPNOTSUPP; 2737 goto done; 2738 } 2739 2740 /* intersect requested advertised speed PHY types with media PHY types 2741 * for set PHY configuration 2742 */ 2743 config.phy_type_high = cpu_to_le64(phy_type_high) & 2744 phy_caps->phy_type_high; 2745 config.phy_type_low = cpu_to_le64(phy_type_low) & 2746 phy_caps->phy_type_low; 2747 2748 if (!(config.phy_type_high || config.phy_type_low)) { 2749 /* If there is no intersection and lenient mode is enabled, then 2750 * intersect the requested advertised speed with NVM media type 2751 * PHY types. 2752 */ 2753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2754 config.phy_type_high = cpu_to_le64(phy_type_high) & 2755 pf->nvm_phy_type_hi; 2756 config.phy_type_low = cpu_to_le64(phy_type_low) & 2757 pf->nvm_phy_type_lo; 2758 } else { 2759 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2760 err = -EOPNOTSUPP; 2761 goto done; 2762 } 2763 } 2764 2765 /* If link is up put link down */ 2766 if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) { 2767 /* Tell the OS link is going down, the link will go 2768 * back up when fw says it is ready asynchronously 2769 */ 2770 ice_print_link_msg(np->vsi, false); 2771 netif_carrier_off(netdev); 2772 netif_tx_stop_all_queues(netdev); 2773 } 2774 2775 /* make the aq call */ 2776 err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL); 2777 if (err) { 2778 netdev_info(netdev, "Set phy config failed,\n"); 2779 goto done; 2780 } 2781 2782 /* Save speed request */ 2783 pi->phy.curr_user_speed_req = adv_link_speed; 2784 done: 2785 kfree(phy_caps); 2786 clear_bit(ICE_CFG_BUSY, pf->state); 2787 2788 return err; 2789 } 2790 2791 /** 2792 * ice_parse_hdrs - parses headers from RSS hash input 2793 * @nfc: ethtool rxnfc command 2794 * 2795 * This function parses the rxnfc command and returns intended 2796 * header types for RSS configuration 2797 */ 2798 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc) 2799 { 2800 u32 hdrs = ICE_FLOW_SEG_HDR_NONE; 2801 2802 switch (nfc->flow_type) { 2803 case TCP_V4_FLOW: 2804 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4; 2805 break; 2806 case UDP_V4_FLOW: 2807 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4; 2808 break; 2809 case SCTP_V4_FLOW: 2810 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4; 2811 break; 2812 case GTPU_V4_FLOW: 2813 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4; 2814 break; 2815 case GTPC_V4_FLOW: 2816 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4; 2817 break; 2818 case GTPC_TEID_V4_FLOW: 2819 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4; 2820 break; 2821 case GTPU_EH_V4_FLOW: 2822 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4; 2823 break; 2824 case GTPU_UL_V4_FLOW: 2825 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4; 2826 break; 2827 case GTPU_DL_V4_FLOW: 2828 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4; 2829 break; 2830 case TCP_V6_FLOW: 2831 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6; 2832 break; 2833 case UDP_V6_FLOW: 2834 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6; 2835 break; 2836 case SCTP_V6_FLOW: 2837 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6; 2838 break; 2839 case GTPU_V6_FLOW: 2840 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6; 2841 break; 2842 case GTPC_V6_FLOW: 2843 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6; 2844 break; 2845 case GTPC_TEID_V6_FLOW: 2846 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6; 2847 break; 2848 case GTPU_EH_V6_FLOW: 2849 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6; 2850 break; 2851 case GTPU_UL_V6_FLOW: 2852 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6; 2853 break; 2854 case GTPU_DL_V6_FLOW: 2855 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6; 2856 break; 2857 default: 2858 break; 2859 } 2860 return hdrs; 2861 } 2862 2863 /** 2864 * ice_parse_hash_flds - parses hash fields from RSS hash input 2865 * @nfc: ethtool rxnfc command 2866 * @symm: true if Symmetric Topelitz is set 2867 * 2868 * This function parses the rxnfc command and returns intended 2869 * hash fields for RSS configuration 2870 */ 2871 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm) 2872 { 2873 u64 hfld = ICE_HASH_INVALID; 2874 2875 if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) { 2876 switch (nfc->flow_type) { 2877 case TCP_V4_FLOW: 2878 case UDP_V4_FLOW: 2879 case SCTP_V4_FLOW: 2880 case GTPU_V4_FLOW: 2881 case GTPC_V4_FLOW: 2882 case GTPC_TEID_V4_FLOW: 2883 case GTPU_EH_V4_FLOW: 2884 case GTPU_UL_V4_FLOW: 2885 case GTPU_DL_V4_FLOW: 2886 if (nfc->data & RXH_IP_SRC) 2887 hfld |= ICE_FLOW_HASH_FLD_IPV4_SA; 2888 if (nfc->data & RXH_IP_DST) 2889 hfld |= ICE_FLOW_HASH_FLD_IPV4_DA; 2890 break; 2891 case TCP_V6_FLOW: 2892 case UDP_V6_FLOW: 2893 case SCTP_V6_FLOW: 2894 case GTPU_V6_FLOW: 2895 case GTPC_V6_FLOW: 2896 case GTPC_TEID_V6_FLOW: 2897 case GTPU_EH_V6_FLOW: 2898 case GTPU_UL_V6_FLOW: 2899 case GTPU_DL_V6_FLOW: 2900 if (nfc->data & RXH_IP_SRC) 2901 hfld |= ICE_FLOW_HASH_FLD_IPV6_SA; 2902 if (nfc->data & RXH_IP_DST) 2903 hfld |= ICE_FLOW_HASH_FLD_IPV6_DA; 2904 break; 2905 default: 2906 break; 2907 } 2908 } 2909 2910 if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) { 2911 switch (nfc->flow_type) { 2912 case TCP_V4_FLOW: 2913 case TCP_V6_FLOW: 2914 if (nfc->data & RXH_L4_B_0_1) 2915 hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT; 2916 if (nfc->data & RXH_L4_B_2_3) 2917 hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT; 2918 break; 2919 case UDP_V4_FLOW: 2920 case UDP_V6_FLOW: 2921 if (nfc->data & RXH_L4_B_0_1) 2922 hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT; 2923 if (nfc->data & RXH_L4_B_2_3) 2924 hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT; 2925 break; 2926 case SCTP_V4_FLOW: 2927 case SCTP_V6_FLOW: 2928 if (nfc->data & RXH_L4_B_0_1) 2929 hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT; 2930 if (nfc->data & RXH_L4_B_2_3) 2931 hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT; 2932 break; 2933 default: 2934 break; 2935 } 2936 } 2937 2938 if (nfc->data & RXH_GTP_TEID) { 2939 switch (nfc->flow_type) { 2940 case GTPC_TEID_V4_FLOW: 2941 case GTPC_TEID_V6_FLOW: 2942 hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID; 2943 break; 2944 case GTPU_V4_FLOW: 2945 case GTPU_V6_FLOW: 2946 hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID; 2947 break; 2948 case GTPU_EH_V4_FLOW: 2949 case GTPU_EH_V6_FLOW: 2950 hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID; 2951 break; 2952 case GTPU_UL_V4_FLOW: 2953 case GTPU_UL_V6_FLOW: 2954 hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID; 2955 break; 2956 case GTPU_DL_V4_FLOW: 2957 case GTPU_DL_V6_FLOW: 2958 hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID; 2959 break; 2960 default: 2961 break; 2962 } 2963 } 2964 2965 return hfld; 2966 } 2967 2968 /** 2969 * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash 2970 * @vsi: the VSI being configured 2971 * @nfc: ethtool rxnfc command 2972 * 2973 * Returns Success if the flow input set is supported. 2974 */ 2975 static int 2976 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc) 2977 { 2978 struct ice_pf *pf = vsi->back; 2979 struct ice_rss_hash_cfg cfg; 2980 struct device *dev; 2981 u64 hashed_flds; 2982 int status; 2983 bool symm; 2984 u32 hdrs; 2985 2986 dev = ice_pf_to_dev(pf); 2987 if (ice_is_safe_mode(pf)) { 2988 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 2989 vsi->vsi_num); 2990 return -EINVAL; 2991 } 2992 2993 symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 2994 hashed_flds = ice_parse_hash_flds(nfc, symm); 2995 if (hashed_flds == ICE_HASH_INVALID) { 2996 dev_dbg(dev, "Invalid hash fields, vsi num = %d\n", 2997 vsi->vsi_num); 2998 return -EINVAL; 2999 } 3000 3001 hdrs = ice_parse_hdrs(nfc); 3002 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3003 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3004 vsi->vsi_num); 3005 return -EINVAL; 3006 } 3007 3008 cfg.hash_flds = hashed_flds; 3009 cfg.addl_hdrs = hdrs; 3010 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 3011 cfg.symm = symm; 3012 3013 status = ice_add_rss_cfg(&pf->hw, vsi, &cfg); 3014 if (status) { 3015 dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n", 3016 vsi->vsi_num, status); 3017 return status; 3018 } 3019 3020 return 0; 3021 } 3022 3023 /** 3024 * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type 3025 * @vsi: the VSI being configured 3026 * @nfc: ethtool rxnfc command 3027 */ 3028 static void 3029 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc) 3030 { 3031 struct ice_pf *pf = vsi->back; 3032 struct device *dev; 3033 u64 hash_flds; 3034 bool symm; 3035 u32 hdrs; 3036 3037 dev = ice_pf_to_dev(pf); 3038 3039 nfc->data = 0; 3040 if (ice_is_safe_mode(pf)) { 3041 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 3042 vsi->vsi_num); 3043 return; 3044 } 3045 3046 hdrs = ice_parse_hdrs(nfc); 3047 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3048 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3049 vsi->vsi_num); 3050 return; 3051 } 3052 3053 hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm); 3054 if (hash_flds == ICE_HASH_INVALID) { 3055 dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n", 3056 vsi->vsi_num); 3057 return; 3058 } 3059 3060 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA || 3061 hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA) 3062 nfc->data |= (u64)RXH_IP_SRC; 3063 3064 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA || 3065 hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA) 3066 nfc->data |= (u64)RXH_IP_DST; 3067 3068 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT || 3069 hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT || 3070 hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) 3071 nfc->data |= (u64)RXH_L4_B_0_1; 3072 3073 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT || 3074 hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT || 3075 hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT) 3076 nfc->data |= (u64)RXH_L4_B_2_3; 3077 3078 if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID || 3079 hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID || 3080 hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID || 3081 hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID || 3082 hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID) 3083 nfc->data |= (u64)RXH_GTP_TEID; 3084 } 3085 3086 /** 3087 * ice_set_rxnfc - command to set Rx flow rules. 3088 * @netdev: network interface device structure 3089 * @cmd: ethtool rxnfc command 3090 * 3091 * Returns 0 for success and negative values for errors 3092 */ 3093 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3094 { 3095 struct ice_netdev_priv *np = netdev_priv(netdev); 3096 struct ice_vsi *vsi = np->vsi; 3097 3098 switch (cmd->cmd) { 3099 case ETHTOOL_SRXCLSRLINS: 3100 return ice_add_fdir_ethtool(vsi, cmd); 3101 case ETHTOOL_SRXCLSRLDEL: 3102 return ice_del_fdir_ethtool(vsi, cmd); 3103 case ETHTOOL_SRXFH: 3104 return ice_set_rss_hash_opt(vsi, cmd); 3105 default: 3106 break; 3107 } 3108 return -EOPNOTSUPP; 3109 } 3110 3111 /** 3112 * ice_get_rxnfc - command to get Rx flow classification rules 3113 * @netdev: network interface device structure 3114 * @cmd: ethtool rxnfc command 3115 * @rule_locs: buffer to rturn Rx flow classification rules 3116 * 3117 * Returns Success if the command is supported. 3118 */ 3119 static int 3120 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3121 u32 __always_unused *rule_locs) 3122 { 3123 struct ice_netdev_priv *np = netdev_priv(netdev); 3124 struct ice_vsi *vsi = np->vsi; 3125 int ret = -EOPNOTSUPP; 3126 struct ice_hw *hw; 3127 3128 hw = &vsi->back->hw; 3129 3130 switch (cmd->cmd) { 3131 case ETHTOOL_GRXRINGS: 3132 cmd->data = vsi->rss_size; 3133 ret = 0; 3134 break; 3135 case ETHTOOL_GRXCLSRLCNT: 3136 cmd->rule_cnt = hw->fdir_active_fltr; 3137 /* report total rule count */ 3138 cmd->data = ice_get_fdir_cnt_all(hw); 3139 ret = 0; 3140 break; 3141 case ETHTOOL_GRXCLSRULE: 3142 ret = ice_get_ethtool_fdir_entry(hw, cmd); 3143 break; 3144 case ETHTOOL_GRXCLSRLALL: 3145 ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs); 3146 break; 3147 case ETHTOOL_GRXFH: 3148 ice_get_rss_hash_opt(vsi, cmd); 3149 ret = 0; 3150 break; 3151 default: 3152 break; 3153 } 3154 3155 return ret; 3156 } 3157 3158 static void 3159 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3160 struct kernel_ethtool_ringparam *kernel_ring, 3161 struct netlink_ext_ack *extack) 3162 { 3163 struct ice_netdev_priv *np = netdev_priv(netdev); 3164 struct ice_vsi *vsi = np->vsi; 3165 3166 ring->rx_max_pending = ICE_MAX_NUM_DESC; 3167 ring->tx_max_pending = ICE_MAX_NUM_DESC; 3168 if (vsi->tx_rings && vsi->rx_rings) { 3169 ring->rx_pending = vsi->rx_rings[0]->count; 3170 ring->tx_pending = vsi->tx_rings[0]->count; 3171 } else { 3172 ring->rx_pending = 0; 3173 ring->tx_pending = 0; 3174 } 3175 3176 /* Rx mini and jumbo rings are not supported */ 3177 ring->rx_mini_max_pending = 0; 3178 ring->rx_jumbo_max_pending = 0; 3179 ring->rx_mini_pending = 0; 3180 ring->rx_jumbo_pending = 0; 3181 } 3182 3183 static int 3184 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3185 struct kernel_ethtool_ringparam *kernel_ring, 3186 struct netlink_ext_ack *extack) 3187 { 3188 struct ice_netdev_priv *np = netdev_priv(netdev); 3189 struct ice_tx_ring *xdp_rings = NULL; 3190 struct ice_tx_ring *tx_rings = NULL; 3191 struct ice_rx_ring *rx_rings = NULL; 3192 struct ice_vsi *vsi = np->vsi; 3193 struct ice_pf *pf = vsi->back; 3194 int i, timeout = 50, err = 0; 3195 u16 new_rx_cnt, new_tx_cnt; 3196 3197 if (ring->tx_pending > ICE_MAX_NUM_DESC || 3198 ring->tx_pending < ICE_MIN_NUM_DESC || 3199 ring->rx_pending > ICE_MAX_NUM_DESC || 3200 ring->rx_pending < ICE_MIN_NUM_DESC) { 3201 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 3202 ring->tx_pending, ring->rx_pending, 3203 ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC, 3204 ICE_REQ_DESC_MULTIPLE); 3205 return -EINVAL; 3206 } 3207 3208 /* Return if there is no rings (device is reloading) */ 3209 if (!vsi->tx_rings || !vsi->rx_rings) 3210 return -EBUSY; 3211 3212 new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE); 3213 if (new_tx_cnt != ring->tx_pending) 3214 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 3215 new_tx_cnt); 3216 new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE); 3217 if (new_rx_cnt != ring->rx_pending) 3218 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 3219 new_rx_cnt); 3220 3221 /* if nothing to do return success */ 3222 if (new_tx_cnt == vsi->tx_rings[0]->count && 3223 new_rx_cnt == vsi->rx_rings[0]->count) { 3224 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 3225 return 0; 3226 } 3227 3228 /* If there is a AF_XDP UMEM attached to any of Rx rings, 3229 * disallow changing the number of descriptors -- regardless 3230 * if the netdev is running or not. 3231 */ 3232 if (ice_xsk_any_rx_ring_ena(vsi)) 3233 return -EBUSY; 3234 3235 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3236 timeout--; 3237 if (!timeout) 3238 return -EBUSY; 3239 usleep_range(1000, 2000); 3240 } 3241 3242 /* set for the next time the netdev is started */ 3243 if (!netif_running(vsi->netdev)) { 3244 ice_for_each_alloc_txq(vsi, i) 3245 vsi->tx_rings[i]->count = new_tx_cnt; 3246 ice_for_each_alloc_rxq(vsi, i) 3247 vsi->rx_rings[i]->count = new_rx_cnt; 3248 if (ice_is_xdp_ena_vsi(vsi)) 3249 ice_for_each_xdp_txq(vsi, i) 3250 vsi->xdp_rings[i]->count = new_tx_cnt; 3251 vsi->num_tx_desc = (u16)new_tx_cnt; 3252 vsi->num_rx_desc = (u16)new_rx_cnt; 3253 netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n"); 3254 goto done; 3255 } 3256 3257 if (new_tx_cnt == vsi->tx_rings[0]->count) 3258 goto process_rx; 3259 3260 /* alloc updated Tx resources */ 3261 netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n", 3262 vsi->tx_rings[0]->count, new_tx_cnt); 3263 3264 tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL); 3265 if (!tx_rings) { 3266 err = -ENOMEM; 3267 goto done; 3268 } 3269 3270 ice_for_each_txq(vsi, i) { 3271 /* clone ring and setup updated count */ 3272 tx_rings[i] = *vsi->tx_rings[i]; 3273 tx_rings[i].count = new_tx_cnt; 3274 tx_rings[i].desc = NULL; 3275 tx_rings[i].tx_buf = NULL; 3276 tx_rings[i].tx_tstamps = &pf->ptp.port.tx; 3277 err = ice_setup_tx_ring(&tx_rings[i]); 3278 if (err) { 3279 while (i--) 3280 ice_clean_tx_ring(&tx_rings[i]); 3281 kfree(tx_rings); 3282 goto done; 3283 } 3284 } 3285 3286 if (!ice_is_xdp_ena_vsi(vsi)) 3287 goto process_rx; 3288 3289 /* alloc updated XDP resources */ 3290 netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n", 3291 vsi->xdp_rings[0]->count, new_tx_cnt); 3292 3293 xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL); 3294 if (!xdp_rings) { 3295 err = -ENOMEM; 3296 goto free_tx; 3297 } 3298 3299 ice_for_each_xdp_txq(vsi, i) { 3300 /* clone ring and setup updated count */ 3301 xdp_rings[i] = *vsi->xdp_rings[i]; 3302 xdp_rings[i].count = new_tx_cnt; 3303 xdp_rings[i].desc = NULL; 3304 xdp_rings[i].tx_buf = NULL; 3305 err = ice_setup_tx_ring(&xdp_rings[i]); 3306 if (err) { 3307 while (i--) 3308 ice_clean_tx_ring(&xdp_rings[i]); 3309 kfree(xdp_rings); 3310 goto free_tx; 3311 } 3312 ice_set_ring_xdp(&xdp_rings[i]); 3313 } 3314 3315 process_rx: 3316 if (new_rx_cnt == vsi->rx_rings[0]->count) 3317 goto process_link; 3318 3319 /* alloc updated Rx resources */ 3320 netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n", 3321 vsi->rx_rings[0]->count, new_rx_cnt); 3322 3323 rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL); 3324 if (!rx_rings) { 3325 err = -ENOMEM; 3326 goto done; 3327 } 3328 3329 ice_for_each_rxq(vsi, i) { 3330 /* clone ring and setup updated count */ 3331 rx_rings[i] = *vsi->rx_rings[i]; 3332 rx_rings[i].count = new_rx_cnt; 3333 rx_rings[i].cached_phctime = pf->ptp.cached_phc_time; 3334 rx_rings[i].desc = NULL; 3335 rx_rings[i].rx_buf = NULL; 3336 /* this is to allow wr32 to have something to write to 3337 * during early allocation of Rx buffers 3338 */ 3339 rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS; 3340 3341 err = ice_setup_rx_ring(&rx_rings[i]); 3342 if (err) 3343 goto rx_unwind; 3344 3345 /* allocate Rx buffers */ 3346 err = ice_alloc_rx_bufs(&rx_rings[i], 3347 ICE_RX_DESC_UNUSED(&rx_rings[i])); 3348 rx_unwind: 3349 if (err) { 3350 while (i) { 3351 i--; 3352 ice_free_rx_ring(&rx_rings[i]); 3353 } 3354 kfree(rx_rings); 3355 err = -ENOMEM; 3356 goto free_tx; 3357 } 3358 } 3359 3360 process_link: 3361 /* Bring interface down, copy in the new ring info, then restore the 3362 * interface. if VSI is up, bring it down and then back up 3363 */ 3364 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3365 ice_down(vsi); 3366 3367 if (tx_rings) { 3368 ice_for_each_txq(vsi, i) { 3369 ice_free_tx_ring(vsi->tx_rings[i]); 3370 *vsi->tx_rings[i] = tx_rings[i]; 3371 } 3372 kfree(tx_rings); 3373 } 3374 3375 if (rx_rings) { 3376 ice_for_each_rxq(vsi, i) { 3377 ice_free_rx_ring(vsi->rx_rings[i]); 3378 /* copy the real tail offset */ 3379 rx_rings[i].tail = vsi->rx_rings[i]->tail; 3380 /* this is to fake out the allocation routine 3381 * into thinking it has to realloc everything 3382 * but the recycling logic will let us re-use 3383 * the buffers allocated above 3384 */ 3385 rx_rings[i].next_to_use = 0; 3386 rx_rings[i].next_to_clean = 0; 3387 rx_rings[i].next_to_alloc = 0; 3388 *vsi->rx_rings[i] = rx_rings[i]; 3389 } 3390 kfree(rx_rings); 3391 } 3392 3393 if (xdp_rings) { 3394 ice_for_each_xdp_txq(vsi, i) { 3395 ice_free_tx_ring(vsi->xdp_rings[i]); 3396 *vsi->xdp_rings[i] = xdp_rings[i]; 3397 } 3398 kfree(xdp_rings); 3399 } 3400 3401 vsi->num_tx_desc = new_tx_cnt; 3402 vsi->num_rx_desc = new_rx_cnt; 3403 ice_up(vsi); 3404 } 3405 goto done; 3406 3407 free_tx: 3408 /* error cleanup if the Rx allocations failed after getting Tx */ 3409 if (tx_rings) { 3410 ice_for_each_txq(vsi, i) 3411 ice_free_tx_ring(&tx_rings[i]); 3412 kfree(tx_rings); 3413 } 3414 3415 done: 3416 clear_bit(ICE_CFG_BUSY, pf->state); 3417 return err; 3418 } 3419 3420 /** 3421 * ice_get_pauseparam - Get Flow Control status 3422 * @netdev: network interface device structure 3423 * @pause: ethernet pause (flow control) parameters 3424 * 3425 * Get requested flow control status from PHY capability. 3426 * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which 3427 * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report 3428 * the negotiated Rx/Tx pause via lp_advertising. 3429 */ 3430 static void 3431 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3432 { 3433 struct ice_netdev_priv *np = netdev_priv(netdev); 3434 struct ice_port_info *pi = np->vsi->port_info; 3435 struct ice_aqc_get_phy_caps_data *pcaps; 3436 struct ice_dcbx_cfg *dcbx_cfg; 3437 int status; 3438 3439 /* Initialize pause params */ 3440 pause->rx_pause = 0; 3441 pause->tx_pause = 0; 3442 3443 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3444 3445 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3446 if (!pcaps) 3447 return; 3448 3449 /* Get current PHY config */ 3450 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3451 NULL); 3452 if (status) 3453 goto out; 3454 3455 pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3456 AUTONEG_DISABLE; 3457 3458 if (dcbx_cfg->pfc.pfcena) 3459 /* PFC enabled so report LFC as off */ 3460 goto out; 3461 3462 if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3463 pause->tx_pause = 1; 3464 if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3465 pause->rx_pause = 1; 3466 3467 out: 3468 kfree(pcaps); 3469 } 3470 3471 /** 3472 * ice_set_pauseparam - Set Flow Control parameter 3473 * @netdev: network interface device structure 3474 * @pause: return Tx/Rx flow control status 3475 */ 3476 static int 3477 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3478 { 3479 struct ice_netdev_priv *np = netdev_priv(netdev); 3480 struct ice_aqc_get_phy_caps_data *pcaps; 3481 struct ice_link_status *hw_link_info; 3482 struct ice_pf *pf = np->vsi->back; 3483 struct ice_dcbx_cfg *dcbx_cfg; 3484 struct ice_vsi *vsi = np->vsi; 3485 struct ice_hw *hw = &pf->hw; 3486 struct ice_port_info *pi; 3487 u8 aq_failures; 3488 bool link_up; 3489 u32 is_an; 3490 int err; 3491 3492 pi = vsi->port_info; 3493 hw_link_info = &pi->phy.link_info; 3494 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3495 link_up = hw_link_info->link_info & ICE_AQ_LINK_UP; 3496 3497 /* Changing the port's flow control is not supported if this isn't the 3498 * PF VSI 3499 */ 3500 if (vsi->type != ICE_VSI_PF) { 3501 netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n"); 3502 return -EOPNOTSUPP; 3503 } 3504 3505 /* Get pause param reports configured and negotiated flow control pause 3506 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is 3507 * defined get pause param pause->autoneg reports SW configured setting, 3508 * so compare pause->autoneg with SW configured to prevent the user from 3509 * using set pause param to chance autoneg. 3510 */ 3511 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3512 if (!pcaps) 3513 return -ENOMEM; 3514 3515 /* Get current PHY config */ 3516 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3517 NULL); 3518 if (err) { 3519 kfree(pcaps); 3520 return err; 3521 } 3522 3523 is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3524 AUTONEG_DISABLE; 3525 3526 kfree(pcaps); 3527 3528 if (pause->autoneg != is_an) { 3529 netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 3530 return -EOPNOTSUPP; 3531 } 3532 3533 /* If we have link and don't have autoneg */ 3534 if (!test_bit(ICE_DOWN, pf->state) && 3535 !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) { 3536 /* Send message that it might not necessarily work*/ 3537 netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n"); 3538 } 3539 3540 if (dcbx_cfg->pfc.pfcena) { 3541 netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n"); 3542 return -EOPNOTSUPP; 3543 } 3544 if (pause->rx_pause && pause->tx_pause) 3545 pi->fc.req_mode = ICE_FC_FULL; 3546 else if (pause->rx_pause && !pause->tx_pause) 3547 pi->fc.req_mode = ICE_FC_RX_PAUSE; 3548 else if (!pause->rx_pause && pause->tx_pause) 3549 pi->fc.req_mode = ICE_FC_TX_PAUSE; 3550 else if (!pause->rx_pause && !pause->tx_pause) 3551 pi->fc.req_mode = ICE_FC_NONE; 3552 else 3553 return -EINVAL; 3554 3555 /* Set the FC mode and only restart AN if link is up */ 3556 err = ice_set_fc(pi, &aq_failures, link_up); 3557 3558 if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) { 3559 netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n", 3560 err, ice_aq_str(hw->adminq.sq_last_status)); 3561 err = -EAGAIN; 3562 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) { 3563 netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n", 3564 err, ice_aq_str(hw->adminq.sq_last_status)); 3565 err = -EAGAIN; 3566 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) { 3567 netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n", 3568 err, ice_aq_str(hw->adminq.sq_last_status)); 3569 err = -EAGAIN; 3570 } 3571 3572 return err; 3573 } 3574 3575 /** 3576 * ice_get_rxfh_key_size - get the RSS hash key size 3577 * @netdev: network interface device structure 3578 * 3579 * Returns the table size. 3580 */ 3581 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev) 3582 { 3583 return ICE_VSIQF_HKEY_ARRAY_SIZE; 3584 } 3585 3586 /** 3587 * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size 3588 * @netdev: network interface device structure 3589 * 3590 * Returns the table size. 3591 */ 3592 static u32 ice_get_rxfh_indir_size(struct net_device *netdev) 3593 { 3594 struct ice_netdev_priv *np = netdev_priv(netdev); 3595 3596 return np->vsi->rss_table_size; 3597 } 3598 3599 /** 3600 * ice_get_rxfh - get the Rx flow hash indirection table 3601 * @netdev: network interface device structure 3602 * @rxfh: pointer to param struct (indir, key, hfunc) 3603 * 3604 * Reads the indirection table directly from the hardware. 3605 */ 3606 static int 3607 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh) 3608 { 3609 struct ice_netdev_priv *np = netdev_priv(netdev); 3610 u32 rss_context = rxfh->rss_context; 3611 struct ice_vsi *vsi = np->vsi; 3612 struct ice_pf *pf = vsi->back; 3613 u16 qcount, offset; 3614 int err, num_tc, i; 3615 u8 *lut; 3616 3617 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3618 netdev_warn(netdev, "RSS is not supported on this VSI!\n"); 3619 return -EOPNOTSUPP; 3620 } 3621 3622 if (rss_context && !ice_is_adq_active(pf)) { 3623 netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n"); 3624 return -EINVAL; 3625 } 3626 3627 qcount = vsi->mqprio_qopt.qopt.count[rss_context]; 3628 offset = vsi->mqprio_qopt.qopt.offset[rss_context]; 3629 3630 if (rss_context && ice_is_adq_active(pf)) { 3631 num_tc = vsi->mqprio_qopt.qopt.num_tc; 3632 if (rss_context >= num_tc) { 3633 netdev_err(netdev, "RSS context:%d > num_tc:%d\n", 3634 rss_context, num_tc); 3635 return -EINVAL; 3636 } 3637 /* Use channel VSI of given TC */ 3638 vsi = vsi->tc_map_vsi[rss_context]; 3639 } 3640 3641 rxfh->hfunc = ETH_RSS_HASH_TOP; 3642 if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 3643 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR; 3644 3645 if (!rxfh->indir) 3646 return 0; 3647 3648 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3649 if (!lut) 3650 return -ENOMEM; 3651 3652 err = ice_get_rss_key(vsi, rxfh->key); 3653 if (err) 3654 goto out; 3655 3656 err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size); 3657 if (err) 3658 goto out; 3659 3660 if (ice_is_adq_active(pf)) { 3661 for (i = 0; i < vsi->rss_table_size; i++) 3662 rxfh->indir[i] = offset + lut[i] % qcount; 3663 goto out; 3664 } 3665 3666 for (i = 0; i < vsi->rss_table_size; i++) 3667 rxfh->indir[i] = lut[i]; 3668 3669 out: 3670 kfree(lut); 3671 return err; 3672 } 3673 3674 /** 3675 * ice_set_rxfh - set the Rx flow hash indirection table 3676 * @netdev: network interface device structure 3677 * @rxfh: pointer to param struct (indir, key, hfunc) 3678 * @extack: extended ACK from the Netlink message 3679 * 3680 * Returns -EINVAL if the table specifies an invalid queue ID, otherwise 3681 * returns 0 after programming the table. 3682 */ 3683 static int 3684 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh, 3685 struct netlink_ext_ack *extack) 3686 { 3687 struct ice_netdev_priv *np = netdev_priv(netdev); 3688 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 3689 struct ice_vsi *vsi = np->vsi; 3690 struct ice_pf *pf = vsi->back; 3691 struct device *dev; 3692 int err; 3693 3694 dev = ice_pf_to_dev(pf); 3695 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 3696 rxfh->hfunc != ETH_RSS_HASH_TOP) 3697 return -EOPNOTSUPP; 3698 3699 if (rxfh->rss_context) 3700 return -EOPNOTSUPP; 3701 3702 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3703 /* RSS not supported return error here */ 3704 netdev_warn(netdev, "RSS is not configured on this VSI!\n"); 3705 return -EIO; 3706 } 3707 3708 if (ice_is_adq_active(pf)) { 3709 netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n"); 3710 return -EOPNOTSUPP; 3711 } 3712 3713 /* Update the VSI's hash function */ 3714 if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR) 3715 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 3716 3717 err = ice_set_rss_hfunc(vsi, hfunc); 3718 if (err) 3719 return err; 3720 3721 if (rxfh->key) { 3722 if (!vsi->rss_hkey_user) { 3723 vsi->rss_hkey_user = 3724 devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE, 3725 GFP_KERNEL); 3726 if (!vsi->rss_hkey_user) 3727 return -ENOMEM; 3728 } 3729 memcpy(vsi->rss_hkey_user, rxfh->key, 3730 ICE_VSIQF_HKEY_ARRAY_SIZE); 3731 3732 err = ice_set_rss_key(vsi, vsi->rss_hkey_user); 3733 if (err) 3734 return err; 3735 } 3736 3737 if (!vsi->rss_lut_user) { 3738 vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size, 3739 GFP_KERNEL); 3740 if (!vsi->rss_lut_user) 3741 return -ENOMEM; 3742 } 3743 3744 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 3745 if (rxfh->indir) { 3746 int i; 3747 3748 for (i = 0; i < vsi->rss_table_size; i++) 3749 vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]); 3750 } else { 3751 ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size, 3752 vsi->rss_size); 3753 } 3754 3755 err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size); 3756 if (err) 3757 return err; 3758 3759 return 0; 3760 } 3761 3762 static int 3763 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) 3764 { 3765 struct ice_pf *pf = ice_netdev_to_pf(dev); 3766 3767 /* only report timestamping if PTP is enabled */ 3768 if (pf->ptp.state != ICE_PTP_READY) 3769 return ethtool_op_get_ts_info(dev, info); 3770 3771 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 3772 SOF_TIMESTAMPING_TX_HARDWARE | 3773 SOF_TIMESTAMPING_RX_HARDWARE | 3774 SOF_TIMESTAMPING_RAW_HARDWARE; 3775 3776 info->phc_index = ice_ptp_clock_index(pf); 3777 3778 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 3779 3780 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL); 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * ice_get_max_txq - return the maximum number of Tx queues for in a PF 3787 * @pf: PF structure 3788 */ 3789 static int ice_get_max_txq(struct ice_pf *pf) 3790 { 3791 return min3(pf->num_lan_msix, (u16)num_online_cpus(), 3792 (u16)pf->hw.func_caps.common_cap.num_txq); 3793 } 3794 3795 /** 3796 * ice_get_max_rxq - return the maximum number of Rx queues for in a PF 3797 * @pf: PF structure 3798 */ 3799 static int ice_get_max_rxq(struct ice_pf *pf) 3800 { 3801 return min3(pf->num_lan_msix, (u16)num_online_cpus(), 3802 (u16)pf->hw.func_caps.common_cap.num_rxq); 3803 } 3804 3805 /** 3806 * ice_get_combined_cnt - return the current number of combined channels 3807 * @vsi: PF VSI pointer 3808 * 3809 * Go through all queue vectors and count ones that have both Rx and Tx ring 3810 * attached 3811 */ 3812 static u32 ice_get_combined_cnt(struct ice_vsi *vsi) 3813 { 3814 u32 combined = 0; 3815 int q_idx; 3816 3817 ice_for_each_q_vector(vsi, q_idx) { 3818 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3819 3820 if (q_vector->rx.rx_ring && q_vector->tx.tx_ring) 3821 combined++; 3822 } 3823 3824 return combined; 3825 } 3826 3827 /** 3828 * ice_get_channels - get the current and max supported channels 3829 * @dev: network interface device structure 3830 * @ch: ethtool channel data structure 3831 */ 3832 static void 3833 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch) 3834 { 3835 struct ice_netdev_priv *np = netdev_priv(dev); 3836 struct ice_vsi *vsi = np->vsi; 3837 struct ice_pf *pf = vsi->back; 3838 3839 /* report maximum channels */ 3840 ch->max_rx = ice_get_max_rxq(pf); 3841 ch->max_tx = ice_get_max_txq(pf); 3842 ch->max_combined = min_t(int, ch->max_rx, ch->max_tx); 3843 3844 /* report current channels */ 3845 ch->combined_count = ice_get_combined_cnt(vsi); 3846 ch->rx_count = vsi->num_rxq - ch->combined_count; 3847 ch->tx_count = vsi->num_txq - ch->combined_count; 3848 3849 /* report other queues */ 3850 ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 3851 ch->max_other = ch->other_count; 3852 } 3853 3854 /** 3855 * ice_get_valid_rss_size - return valid number of RSS queues 3856 * @hw: pointer to the HW structure 3857 * @new_size: requested RSS queues 3858 */ 3859 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size) 3860 { 3861 struct ice_hw_common_caps *caps = &hw->func_caps.common_cap; 3862 3863 return min_t(int, new_size, BIT(caps->rss_table_entry_width)); 3864 } 3865 3866 /** 3867 * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size 3868 * @vsi: VSI to reconfigure RSS LUT on 3869 * @req_rss_size: requested range of queue numbers for hashing 3870 * 3871 * Set the VSI's RSS parameters, configure the RSS LUT based on these. 3872 */ 3873 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size) 3874 { 3875 struct ice_pf *pf = vsi->back; 3876 struct device *dev; 3877 struct ice_hw *hw; 3878 int err; 3879 u8 *lut; 3880 3881 dev = ice_pf_to_dev(pf); 3882 hw = &pf->hw; 3883 3884 if (!req_rss_size) 3885 return -EINVAL; 3886 3887 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3888 if (!lut) 3889 return -ENOMEM; 3890 3891 /* set RSS LUT parameters */ 3892 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3893 vsi->rss_size = 1; 3894 else 3895 vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size); 3896 3897 /* create/set RSS LUT */ 3898 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 3899 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 3900 if (err) 3901 dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err, 3902 ice_aq_str(hw->adminq.sq_last_status)); 3903 3904 kfree(lut); 3905 return err; 3906 } 3907 3908 /** 3909 * ice_set_channels - set the number channels 3910 * @dev: network interface device structure 3911 * @ch: ethtool channel data structure 3912 */ 3913 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch) 3914 { 3915 struct ice_netdev_priv *np = netdev_priv(dev); 3916 struct ice_vsi *vsi = np->vsi; 3917 struct ice_pf *pf = vsi->back; 3918 int new_rx = 0, new_tx = 0; 3919 bool locked = false; 3920 int ret = 0; 3921 3922 /* do not support changing channels in Safe Mode */ 3923 if (ice_is_safe_mode(pf)) { 3924 netdev_err(dev, "Changing channel in Safe Mode is not supported\n"); 3925 return -EOPNOTSUPP; 3926 } 3927 /* do not support changing other_count */ 3928 if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U)) 3929 return -EINVAL; 3930 3931 if (ice_is_adq_active(pf)) { 3932 netdev_err(dev, "Cannot set channels with ADQ configured.\n"); 3933 return -EOPNOTSUPP; 3934 } 3935 3936 if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) { 3937 netdev_err(dev, "Cannot set channels when Flow Director filters are active\n"); 3938 return -EOPNOTSUPP; 3939 } 3940 3941 if (ch->rx_count && ch->tx_count) { 3942 netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n"); 3943 return -EINVAL; 3944 } 3945 3946 new_rx = ch->combined_count + ch->rx_count; 3947 new_tx = ch->combined_count + ch->tx_count; 3948 3949 if (new_rx < vsi->tc_cfg.numtc) { 3950 netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n", 3951 vsi->tc_cfg.numtc); 3952 return -EINVAL; 3953 } 3954 if (new_tx < vsi->tc_cfg.numtc) { 3955 netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n", 3956 vsi->tc_cfg.numtc); 3957 return -EINVAL; 3958 } 3959 if (new_rx > ice_get_max_rxq(pf)) { 3960 netdev_err(dev, "Maximum allowed Rx channels is %d\n", 3961 ice_get_max_rxq(pf)); 3962 return -EINVAL; 3963 } 3964 if (new_tx > ice_get_max_txq(pf)) { 3965 netdev_err(dev, "Maximum allowed Tx channels is %d\n", 3966 ice_get_max_txq(pf)); 3967 return -EINVAL; 3968 } 3969 3970 if (pf->adev) { 3971 mutex_lock(&pf->adev_mutex); 3972 device_lock(&pf->adev->dev); 3973 locked = true; 3974 if (pf->adev->dev.driver) { 3975 netdev_err(dev, "Cannot change channels when RDMA is active\n"); 3976 ret = -EBUSY; 3977 goto adev_unlock; 3978 } 3979 } 3980 3981 ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked); 3982 3983 if (!netif_is_rxfh_configured(dev)) { 3984 ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx); 3985 goto adev_unlock; 3986 } 3987 3988 /* Update rss_size due to change in Rx queues */ 3989 vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx); 3990 3991 adev_unlock: 3992 if (locked) { 3993 device_unlock(&pf->adev->dev); 3994 mutex_unlock(&pf->adev_mutex); 3995 } 3996 return ret; 3997 } 3998 3999 /** 4000 * ice_get_wol - get current Wake on LAN configuration 4001 * @netdev: network interface device structure 4002 * @wol: Ethtool structure to retrieve WoL settings 4003 */ 4004 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 4005 { 4006 struct ice_netdev_priv *np = netdev_priv(netdev); 4007 struct ice_pf *pf = np->vsi->back; 4008 4009 if (np->vsi->type != ICE_VSI_PF) 4010 netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n"); 4011 4012 /* Get WoL settings based on the HW capability */ 4013 if (ice_is_wol_supported(&pf->hw)) { 4014 wol->supported = WAKE_MAGIC; 4015 wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0; 4016 } else { 4017 wol->supported = 0; 4018 wol->wolopts = 0; 4019 } 4020 } 4021 4022 /** 4023 * ice_set_wol - set Wake on LAN on supported device 4024 * @netdev: network interface device structure 4025 * @wol: Ethtool structure to set WoL 4026 */ 4027 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 4028 { 4029 struct ice_netdev_priv *np = netdev_priv(netdev); 4030 struct ice_vsi *vsi = np->vsi; 4031 struct ice_pf *pf = vsi->back; 4032 4033 if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw)) 4034 return -EOPNOTSUPP; 4035 4036 /* only magic packet is supported */ 4037 if (wol->wolopts && wol->wolopts != WAKE_MAGIC) 4038 return -EOPNOTSUPP; 4039 4040 /* Set WoL only if there is a new value */ 4041 if (pf->wol_ena != !!wol->wolopts) { 4042 pf->wol_ena = !!wol->wolopts; 4043 device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena); 4044 netdev_dbg(netdev, "WoL magic packet %sabled\n", 4045 pf->wol_ena ? "en" : "dis"); 4046 } 4047 4048 return 0; 4049 } 4050 4051 /** 4052 * ice_get_rc_coalesce - get ITR values for specific ring container 4053 * @ec: ethtool structure to fill with driver's coalesce settings 4054 * @rc: ring container that the ITR values will come from 4055 * 4056 * Query the device for ice_ring_container specific ITR values. This is 4057 * done per ice_ring_container because each q_vector can have 1 or more rings 4058 * and all of said ring(s) will have the same ITR values. 4059 * 4060 * Returns 0 on success, negative otherwise. 4061 */ 4062 static int 4063 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc) 4064 { 4065 if (!rc->rx_ring) 4066 return -EINVAL; 4067 4068 switch (rc->type) { 4069 case ICE_RX_CONTAINER: 4070 ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc); 4071 ec->rx_coalesce_usecs = rc->itr_setting; 4072 ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl; 4073 break; 4074 case ICE_TX_CONTAINER: 4075 ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc); 4076 ec->tx_coalesce_usecs = rc->itr_setting; 4077 break; 4078 default: 4079 dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type); 4080 return -EINVAL; 4081 } 4082 4083 return 0; 4084 } 4085 4086 /** 4087 * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings 4088 * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings 4089 * @ec: coalesce settings to program the device with 4090 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4091 * 4092 * Return 0 on success, and negative under the following conditions: 4093 * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed. 4094 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4095 */ 4096 static int 4097 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4098 { 4099 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4100 if (ice_get_rc_coalesce(ec, 4101 &vsi->rx_rings[q_num]->q_vector->rx)) 4102 return -EINVAL; 4103 if (ice_get_rc_coalesce(ec, 4104 &vsi->tx_rings[q_num]->q_vector->tx)) 4105 return -EINVAL; 4106 } else if (q_num < vsi->num_rxq) { 4107 if (ice_get_rc_coalesce(ec, 4108 &vsi->rx_rings[q_num]->q_vector->rx)) 4109 return -EINVAL; 4110 } else if (q_num < vsi->num_txq) { 4111 if (ice_get_rc_coalesce(ec, 4112 &vsi->tx_rings[q_num]->q_vector->tx)) 4113 return -EINVAL; 4114 } else { 4115 return -EINVAL; 4116 } 4117 4118 return 0; 4119 } 4120 4121 /** 4122 * __ice_get_coalesce - get ITR/INTRL values for the device 4123 * @netdev: pointer to the netdev associated with this query 4124 * @ec: ethtool structure to fill with driver's coalesce settings 4125 * @q_num: queue number to get the coalesce settings for 4126 * 4127 * If the caller passes in a negative q_num then we return coalesce settings 4128 * based on queue number 0, else use the actual q_num passed in. 4129 */ 4130 static int 4131 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4132 int q_num) 4133 { 4134 struct ice_netdev_priv *np = netdev_priv(netdev); 4135 struct ice_vsi *vsi = np->vsi; 4136 4137 if (q_num < 0) 4138 q_num = 0; 4139 4140 if (ice_get_q_coalesce(vsi, ec, q_num)) 4141 return -EINVAL; 4142 4143 return 0; 4144 } 4145 4146 static int ice_get_coalesce(struct net_device *netdev, 4147 struct ethtool_coalesce *ec, 4148 struct kernel_ethtool_coalesce *kernel_coal, 4149 struct netlink_ext_ack *extack) 4150 { 4151 return __ice_get_coalesce(netdev, ec, -1); 4152 } 4153 4154 static int 4155 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num, 4156 struct ethtool_coalesce *ec) 4157 { 4158 return __ice_get_coalesce(netdev, ec, q_num); 4159 } 4160 4161 /** 4162 * ice_set_rc_coalesce - set ITR values for specific ring container 4163 * @ec: ethtool structure from user to update ITR settings 4164 * @rc: ring container that the ITR values will come from 4165 * @vsi: VSI associated to the ring container 4166 * 4167 * Set specific ITR values. This is done per ice_ring_container because each 4168 * q_vector can have 1 or more rings and all of said ring(s) will have the same 4169 * ITR values. 4170 * 4171 * Returns 0 on success, negative otherwise. 4172 */ 4173 static int 4174 ice_set_rc_coalesce(struct ethtool_coalesce *ec, 4175 struct ice_ring_container *rc, struct ice_vsi *vsi) 4176 { 4177 const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx"; 4178 u32 use_adaptive_coalesce, coalesce_usecs; 4179 struct ice_pf *pf = vsi->back; 4180 u16 itr_setting; 4181 4182 if (!rc->rx_ring) 4183 return -EINVAL; 4184 4185 switch (rc->type) { 4186 case ICE_RX_CONTAINER: 4187 { 4188 struct ice_q_vector *q_vector = rc->rx_ring->q_vector; 4189 4190 if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL || 4191 (ec->rx_coalesce_usecs_high && 4192 ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) { 4193 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n", 4194 c_type_str, pf->hw.intrl_gran, 4195 ICE_MAX_INTRL); 4196 return -EINVAL; 4197 } 4198 if (ec->rx_coalesce_usecs_high != q_vector->intrl && 4199 (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) { 4200 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n", 4201 c_type_str); 4202 return -EINVAL; 4203 } 4204 if (ec->rx_coalesce_usecs_high != q_vector->intrl) 4205 q_vector->intrl = ec->rx_coalesce_usecs_high; 4206 4207 use_adaptive_coalesce = ec->use_adaptive_rx_coalesce; 4208 coalesce_usecs = ec->rx_coalesce_usecs; 4209 4210 break; 4211 } 4212 case ICE_TX_CONTAINER: 4213 use_adaptive_coalesce = ec->use_adaptive_tx_coalesce; 4214 coalesce_usecs = ec->tx_coalesce_usecs; 4215 4216 break; 4217 default: 4218 dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n", 4219 rc->type); 4220 return -EINVAL; 4221 } 4222 4223 itr_setting = rc->itr_setting; 4224 if (coalesce_usecs != itr_setting && use_adaptive_coalesce) { 4225 netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n", 4226 c_type_str, c_type_str); 4227 return -EINVAL; 4228 } 4229 4230 if (coalesce_usecs > ICE_ITR_MAX) { 4231 netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n", 4232 c_type_str, ICE_ITR_MAX); 4233 return -EINVAL; 4234 } 4235 4236 if (use_adaptive_coalesce) { 4237 rc->itr_mode = ITR_DYNAMIC; 4238 } else { 4239 rc->itr_mode = ITR_STATIC; 4240 /* store user facing value how it was set */ 4241 rc->itr_setting = coalesce_usecs; 4242 /* write the change to the register */ 4243 ice_write_itr(rc, coalesce_usecs); 4244 /* force writes to take effect immediately, the flush shouldn't 4245 * be done in the functions above because the intent is for 4246 * them to do lazy writes. 4247 */ 4248 ice_flush(&pf->hw); 4249 } 4250 4251 return 0; 4252 } 4253 4254 /** 4255 * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings 4256 * @vsi: VSI associated to the queue that need updating 4257 * @ec: coalesce settings to program the device with 4258 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4259 * 4260 * Return 0 on success, and negative under the following conditions: 4261 * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed. 4262 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4263 */ 4264 static int 4265 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4266 { 4267 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4268 if (ice_set_rc_coalesce(ec, 4269 &vsi->rx_rings[q_num]->q_vector->rx, 4270 vsi)) 4271 return -EINVAL; 4272 4273 if (ice_set_rc_coalesce(ec, 4274 &vsi->tx_rings[q_num]->q_vector->tx, 4275 vsi)) 4276 return -EINVAL; 4277 } else if (q_num < vsi->num_rxq) { 4278 if (ice_set_rc_coalesce(ec, 4279 &vsi->rx_rings[q_num]->q_vector->rx, 4280 vsi)) 4281 return -EINVAL; 4282 } else if (q_num < vsi->num_txq) { 4283 if (ice_set_rc_coalesce(ec, 4284 &vsi->tx_rings[q_num]->q_vector->tx, 4285 vsi)) 4286 return -EINVAL; 4287 } else { 4288 return -EINVAL; 4289 } 4290 4291 return 0; 4292 } 4293 4294 /** 4295 * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs 4296 * @netdev: netdev used for print 4297 * @itr_setting: previous user setting 4298 * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled 4299 * @coalesce_usecs: requested value of [tx|rx]-usecs 4300 * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs 4301 */ 4302 static void 4303 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting, 4304 u32 use_adaptive_coalesce, u32 coalesce_usecs, 4305 const char *c_type_str) 4306 { 4307 if (use_adaptive_coalesce) 4308 return; 4309 4310 if (itr_setting != coalesce_usecs && (coalesce_usecs % 2)) 4311 netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n", 4312 c_type_str, coalesce_usecs, c_type_str, 4313 ITR_REG_ALIGN(coalesce_usecs)); 4314 } 4315 4316 /** 4317 * __ice_set_coalesce - set ITR/INTRL values for the device 4318 * @netdev: pointer to the netdev associated with this query 4319 * @ec: ethtool structure to fill with driver's coalesce settings 4320 * @q_num: queue number to get the coalesce settings for 4321 * 4322 * If the caller passes in a negative q_num then we set the coalesce settings 4323 * for all Tx/Rx queues, else use the actual q_num passed in. 4324 */ 4325 static int 4326 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4327 int q_num) 4328 { 4329 struct ice_netdev_priv *np = netdev_priv(netdev); 4330 struct ice_vsi *vsi = np->vsi; 4331 4332 if (q_num < 0) { 4333 struct ice_q_vector *q_vector = vsi->q_vectors[0]; 4334 int v_idx; 4335 4336 if (q_vector) { 4337 ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting, 4338 ec->use_adaptive_rx_coalesce, 4339 ec->rx_coalesce_usecs, "rx"); 4340 4341 ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting, 4342 ec->use_adaptive_tx_coalesce, 4343 ec->tx_coalesce_usecs, "tx"); 4344 } 4345 4346 ice_for_each_q_vector(vsi, v_idx) { 4347 /* In some cases if DCB is configured the num_[rx|tx]q 4348 * can be less than vsi->num_q_vectors. This check 4349 * accounts for that so we don't report a false failure 4350 */ 4351 if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq) 4352 goto set_complete; 4353 4354 if (ice_set_q_coalesce(vsi, ec, v_idx)) 4355 return -EINVAL; 4356 4357 ice_set_q_vector_intrl(vsi->q_vectors[v_idx]); 4358 } 4359 goto set_complete; 4360 } 4361 4362 if (ice_set_q_coalesce(vsi, ec, q_num)) 4363 return -EINVAL; 4364 4365 ice_set_q_vector_intrl(vsi->q_vectors[q_num]); 4366 4367 set_complete: 4368 return 0; 4369 } 4370 4371 static int ice_set_coalesce(struct net_device *netdev, 4372 struct ethtool_coalesce *ec, 4373 struct kernel_ethtool_coalesce *kernel_coal, 4374 struct netlink_ext_ack *extack) 4375 { 4376 return __ice_set_coalesce(netdev, ec, -1); 4377 } 4378 4379 static int 4380 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num, 4381 struct ethtool_coalesce *ec) 4382 { 4383 return __ice_set_coalesce(netdev, ec, q_num); 4384 } 4385 4386 static void 4387 ice_repr_get_drvinfo(struct net_device *netdev, 4388 struct ethtool_drvinfo *drvinfo) 4389 { 4390 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4391 4392 if (repr->ops.ready(repr)) 4393 return; 4394 4395 __ice_get_drvinfo(netdev, drvinfo, repr->src_vsi); 4396 } 4397 4398 static void 4399 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 4400 { 4401 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4402 4403 /* for port representors only ETH_SS_STATS is supported */ 4404 if (repr->ops.ready(repr) || stringset != ETH_SS_STATS) 4405 return; 4406 4407 __ice_get_strings(netdev, stringset, data, repr->src_vsi); 4408 } 4409 4410 static void 4411 ice_repr_get_ethtool_stats(struct net_device *netdev, 4412 struct ethtool_stats __always_unused *stats, 4413 u64 *data) 4414 { 4415 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4416 4417 if (repr->ops.ready(repr)) 4418 return; 4419 4420 __ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi); 4421 } 4422 4423 static int ice_repr_get_sset_count(struct net_device *netdev, int sset) 4424 { 4425 switch (sset) { 4426 case ETH_SS_STATS: 4427 return ICE_VSI_STATS_LEN; 4428 default: 4429 return -EOPNOTSUPP; 4430 } 4431 } 4432 4433 #define ICE_I2C_EEPROM_DEV_ADDR 0xA0 4434 #define ICE_I2C_EEPROM_DEV_ADDR2 0xA2 4435 #define ICE_MODULE_TYPE_SFP 0x03 4436 #define ICE_MODULE_TYPE_QSFP_PLUS 0x0D 4437 #define ICE_MODULE_TYPE_QSFP28 0x11 4438 #define ICE_MODULE_SFF_ADDR_MODE 0x04 4439 #define ICE_MODULE_SFF_DIAG_CAPAB 0x40 4440 #define ICE_MODULE_REVISION_ADDR 0x01 4441 #define ICE_MODULE_SFF_8472_COMP 0x5E 4442 #define ICE_MODULE_SFF_8472_SWAP 0x5C 4443 #define ICE_MODULE_QSFP_MAX_LEN 640 4444 4445 /** 4446 * ice_get_module_info - get SFF module type and revision information 4447 * @netdev: network interface device structure 4448 * @modinfo: module EEPROM size and layout information structure 4449 */ 4450 static int 4451 ice_get_module_info(struct net_device *netdev, 4452 struct ethtool_modinfo *modinfo) 4453 { 4454 struct ice_netdev_priv *np = netdev_priv(netdev); 4455 struct ice_vsi *vsi = np->vsi; 4456 struct ice_pf *pf = vsi->back; 4457 struct ice_hw *hw = &pf->hw; 4458 u8 sff8472_comp = 0; 4459 u8 sff8472_swap = 0; 4460 u8 sff8636_rev = 0; 4461 u8 value = 0; 4462 int status; 4463 4464 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00, 4465 0, &value, 1, 0, NULL); 4466 if (status) 4467 return status; 4468 4469 switch (value) { 4470 case ICE_MODULE_TYPE_SFP: 4471 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4472 ICE_MODULE_SFF_8472_COMP, 0x00, 0, 4473 &sff8472_comp, 1, 0, NULL); 4474 if (status) 4475 return status; 4476 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4477 ICE_MODULE_SFF_8472_SWAP, 0x00, 0, 4478 &sff8472_swap, 1, 0, NULL); 4479 if (status) 4480 return status; 4481 4482 if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) { 4483 modinfo->type = ETH_MODULE_SFF_8079; 4484 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4485 } else if (sff8472_comp && 4486 (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) { 4487 modinfo->type = ETH_MODULE_SFF_8472; 4488 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 4489 } else { 4490 modinfo->type = ETH_MODULE_SFF_8079; 4491 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4492 } 4493 break; 4494 case ICE_MODULE_TYPE_QSFP_PLUS: 4495 case ICE_MODULE_TYPE_QSFP28: 4496 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4497 ICE_MODULE_REVISION_ADDR, 0x00, 0, 4498 &sff8636_rev, 1, 0, NULL); 4499 if (status) 4500 return status; 4501 /* Check revision compliance */ 4502 if (sff8636_rev > 0x02) { 4503 /* Module is SFF-8636 compliant */ 4504 modinfo->type = ETH_MODULE_SFF_8636; 4505 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4506 } else { 4507 modinfo->type = ETH_MODULE_SFF_8436; 4508 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4509 } 4510 break; 4511 default: 4512 netdev_warn(netdev, "SFF Module Type not recognized.\n"); 4513 return -EINVAL; 4514 } 4515 return 0; 4516 } 4517 4518 /** 4519 * ice_get_module_eeprom - fill buffer with SFF EEPROM contents 4520 * @netdev: network interface device structure 4521 * @ee: EEPROM dump request structure 4522 * @data: buffer to be filled with EEPROM contents 4523 */ 4524 static int 4525 ice_get_module_eeprom(struct net_device *netdev, 4526 struct ethtool_eeprom *ee, u8 *data) 4527 { 4528 struct ice_netdev_priv *np = netdev_priv(netdev); 4529 #define SFF_READ_BLOCK_SIZE 8 4530 u8 value[SFF_READ_BLOCK_SIZE] = { 0 }; 4531 u8 addr = ICE_I2C_EEPROM_DEV_ADDR; 4532 struct ice_vsi *vsi = np->vsi; 4533 struct ice_pf *pf = vsi->back; 4534 struct ice_hw *hw = &pf->hw; 4535 bool is_sfp = false; 4536 unsigned int i, j; 4537 u16 offset = 0; 4538 u8 page = 0; 4539 int status; 4540 4541 if (!ee || !ee->len || !data) 4542 return -EINVAL; 4543 4544 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0, 4545 NULL); 4546 if (status) 4547 return status; 4548 4549 if (value[0] == ICE_MODULE_TYPE_SFP) 4550 is_sfp = true; 4551 4552 memset(data, 0, ee->len); 4553 for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) { 4554 offset = i + ee->offset; 4555 page = 0; 4556 4557 /* Check if we need to access the other memory page */ 4558 if (is_sfp) { 4559 if (offset >= ETH_MODULE_SFF_8079_LEN) { 4560 offset -= ETH_MODULE_SFF_8079_LEN; 4561 addr = ICE_I2C_EEPROM_DEV_ADDR2; 4562 } 4563 } else { 4564 while (offset >= ETH_MODULE_SFF_8436_LEN) { 4565 /* Compute memory page number and offset. */ 4566 offset -= ETH_MODULE_SFF_8436_LEN / 2; 4567 page++; 4568 } 4569 } 4570 4571 /* Bit 2 of EEPROM address 0x02 declares upper 4572 * pages are disabled on QSFP modules. 4573 * SFP modules only ever use page 0. 4574 */ 4575 if (page == 0 || !(data[0x2] & 0x4)) { 4576 u32 copy_len; 4577 4578 /* If i2c bus is busy due to slow page change or 4579 * link management access, call can fail. This is normal. 4580 * So we retry this a few times. 4581 */ 4582 for (j = 0; j < 4; j++) { 4583 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 4584 !is_sfp, value, 4585 SFF_READ_BLOCK_SIZE, 4586 0, NULL); 4587 netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n", 4588 addr, offset, page, is_sfp, 4589 value[0], value[1], value[2], value[3], 4590 value[4], value[5], value[6], value[7], 4591 status); 4592 if (status) { 4593 usleep_range(1500, 2500); 4594 memset(value, 0, SFF_READ_BLOCK_SIZE); 4595 continue; 4596 } 4597 break; 4598 } 4599 4600 /* Make sure we have enough room for the new block */ 4601 copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i); 4602 memcpy(data + i, value, copy_len); 4603 } 4604 } 4605 return 0; 4606 } 4607 4608 /** 4609 * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per 4610 * pcsquad, pcsport 4611 * @hw: pointer to the HW struct 4612 * @pcs_quad: pcsquad for input port 4613 * @pcs_port: pcsport for input port 4614 * @fec_stats: buffer to hold FEC statistics for given port 4615 * 4616 * Return: 0 on success, negative on failure. 4617 */ 4618 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port, 4619 struct ethtool_fec_stats *fec_stats) 4620 { 4621 u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0; 4622 u32 fec_corr_low_val = 0, fec_corr_high_val = 0; 4623 int err; 4624 4625 if (pcs_quad > 1 || pcs_port > 3) 4626 return -EINVAL; 4627 4628 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW, 4629 &fec_corr_low_val); 4630 if (err) 4631 return err; 4632 4633 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH, 4634 &fec_corr_high_val); 4635 if (err) 4636 return err; 4637 4638 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4639 ICE_FEC_UNCORR_LOW, 4640 &fec_uncorr_low_val); 4641 if (err) 4642 return err; 4643 4644 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4645 ICE_FEC_UNCORR_HIGH, 4646 &fec_uncorr_high_val); 4647 if (err) 4648 return err; 4649 4650 fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) + 4651 fec_corr_low_val; 4652 fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) + 4653 fec_uncorr_low_val; 4654 return 0; 4655 } 4656 4657 /** 4658 * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev 4659 * @netdev: network interface device structure 4660 * @fec_stats: buffer to hold FEC statistics for given port 4661 * 4662 */ 4663 static void ice_get_fec_stats(struct net_device *netdev, 4664 struct ethtool_fec_stats *fec_stats) 4665 { 4666 struct ice_netdev_priv *np = netdev_priv(netdev); 4667 struct ice_port_topology port_topology; 4668 struct ice_port_info *pi; 4669 struct ice_pf *pf; 4670 struct ice_hw *hw; 4671 int err; 4672 4673 pf = np->vsi->back; 4674 hw = &pf->hw; 4675 pi = np->vsi->port_info; 4676 4677 /* Serdes parameters are not supported if not the PF VSI */ 4678 if (np->vsi->type != ICE_VSI_PF || !pi) 4679 return; 4680 4681 err = ice_get_port_topology(hw, pi->lport, &port_topology); 4682 if (err) { 4683 netdev_info(netdev, "Extended register dump failed Lport %d\n", 4684 pi->lport); 4685 return; 4686 } 4687 4688 /* Get FEC correctable, uncorrectable counter */ 4689 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select, 4690 port_topology.pcs_port, fec_stats); 4691 if (err) 4692 netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n", 4693 pi->lport, err); 4694 } 4695 4696 #define ICE_ETHTOOL_PFR (ETH_RESET_IRQ | ETH_RESET_DMA | \ 4697 ETH_RESET_FILTER | ETH_RESET_OFFLOAD) 4698 4699 #define ICE_ETHTOOL_CORER ((ICE_ETHTOOL_PFR | ETH_RESET_RAM) << \ 4700 ETH_RESET_SHARED_SHIFT) 4701 4702 #define ICE_ETHTOOL_GLOBR (ICE_ETHTOOL_CORER | \ 4703 (ETH_RESET_MAC << ETH_RESET_SHARED_SHIFT) | \ 4704 (ETH_RESET_PHY << ETH_RESET_SHARED_SHIFT)) 4705 4706 #define ICE_ETHTOOL_VFR ICE_ETHTOOL_PFR 4707 4708 /** 4709 * ice_ethtool_reset - triggers a given type of reset 4710 * @dev: network interface device structure 4711 * @flags: set of reset flags 4712 * 4713 * Return: 0 on success, -EOPNOTSUPP when using unsupported set of flags. 4714 */ 4715 static int ice_ethtool_reset(struct net_device *dev, u32 *flags) 4716 { 4717 struct ice_netdev_priv *np = netdev_priv(dev); 4718 struct ice_pf *pf = np->vsi->back; 4719 enum ice_reset_req reset; 4720 4721 switch (*flags) { 4722 case ICE_ETHTOOL_CORER: 4723 reset = ICE_RESET_CORER; 4724 break; 4725 case ICE_ETHTOOL_GLOBR: 4726 reset = ICE_RESET_GLOBR; 4727 break; 4728 case ICE_ETHTOOL_PFR: 4729 reset = ICE_RESET_PFR; 4730 break; 4731 default: 4732 netdev_info(dev, "Unsupported set of ethtool flags"); 4733 return -EOPNOTSUPP; 4734 } 4735 4736 ice_schedule_reset(pf, reset); 4737 4738 *flags = 0; 4739 4740 return 0; 4741 } 4742 4743 /** 4744 * ice_repr_ethtool_reset - triggers a VF reset 4745 * @dev: network interface device structure 4746 * @flags: set of reset flags 4747 * 4748 * Return: 0 on success, 4749 * -EOPNOTSUPP when using unsupported set of flags 4750 * -EBUSY when VF is not ready for reset. 4751 */ 4752 static int ice_repr_ethtool_reset(struct net_device *dev, u32 *flags) 4753 { 4754 struct ice_repr *repr = ice_netdev_to_repr(dev); 4755 struct ice_vf *vf; 4756 4757 if (repr->type != ICE_REPR_TYPE_VF || 4758 *flags != ICE_ETHTOOL_VFR) 4759 return -EOPNOTSUPP; 4760 4761 vf = repr->vf; 4762 4763 if (ice_check_vf_ready_for_cfg(vf)) 4764 return -EBUSY; 4765 4766 *flags = 0; 4767 4768 return ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 4769 } 4770 4771 static const struct ethtool_ops ice_ethtool_ops = { 4772 .cap_rss_ctx_supported = true, 4773 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 4774 ETHTOOL_COALESCE_USE_ADAPTIVE | 4775 ETHTOOL_COALESCE_RX_USECS_HIGH, 4776 .cap_rss_sym_xor_supported = true, 4777 .rxfh_per_ctx_key = true, 4778 .get_link_ksettings = ice_get_link_ksettings, 4779 .set_link_ksettings = ice_set_link_ksettings, 4780 .get_fec_stats = ice_get_fec_stats, 4781 .get_drvinfo = ice_get_drvinfo, 4782 .get_regs_len = ice_get_regs_len, 4783 .get_regs = ice_get_regs, 4784 .get_wol = ice_get_wol, 4785 .set_wol = ice_set_wol, 4786 .get_msglevel = ice_get_msglevel, 4787 .set_msglevel = ice_set_msglevel, 4788 .self_test = ice_self_test, 4789 .get_link = ethtool_op_get_link, 4790 .get_eeprom_len = ice_get_eeprom_len, 4791 .get_eeprom = ice_get_eeprom, 4792 .get_coalesce = ice_get_coalesce, 4793 .set_coalesce = ice_set_coalesce, 4794 .get_strings = ice_get_strings, 4795 .set_phys_id = ice_set_phys_id, 4796 .get_ethtool_stats = ice_get_ethtool_stats, 4797 .get_priv_flags = ice_get_priv_flags, 4798 .set_priv_flags = ice_set_priv_flags, 4799 .get_sset_count = ice_get_sset_count, 4800 .get_rxnfc = ice_get_rxnfc, 4801 .set_rxnfc = ice_set_rxnfc, 4802 .get_ringparam = ice_get_ringparam, 4803 .set_ringparam = ice_set_ringparam, 4804 .nway_reset = ice_nway_reset, 4805 .get_pauseparam = ice_get_pauseparam, 4806 .set_pauseparam = ice_set_pauseparam, 4807 .reset = ice_ethtool_reset, 4808 .get_rxfh_key_size = ice_get_rxfh_key_size, 4809 .get_rxfh_indir_size = ice_get_rxfh_indir_size, 4810 .get_rxfh = ice_get_rxfh, 4811 .set_rxfh = ice_set_rxfh, 4812 .get_channels = ice_get_channels, 4813 .set_channels = ice_set_channels, 4814 .get_ts_info = ice_get_ts_info, 4815 .get_per_queue_coalesce = ice_get_per_q_coalesce, 4816 .set_per_queue_coalesce = ice_set_per_q_coalesce, 4817 .get_fecparam = ice_get_fecparam, 4818 .set_fecparam = ice_set_fecparam, 4819 .get_module_info = ice_get_module_info, 4820 .get_module_eeprom = ice_get_module_eeprom, 4821 }; 4822 4823 static const struct ethtool_ops ice_ethtool_safe_mode_ops = { 4824 .get_link_ksettings = ice_get_link_ksettings, 4825 .set_link_ksettings = ice_set_link_ksettings, 4826 .get_drvinfo = ice_get_drvinfo, 4827 .get_regs_len = ice_get_regs_len, 4828 .get_regs = ice_get_regs, 4829 .get_wol = ice_get_wol, 4830 .set_wol = ice_set_wol, 4831 .get_msglevel = ice_get_msglevel, 4832 .set_msglevel = ice_set_msglevel, 4833 .get_link = ethtool_op_get_link, 4834 .get_eeprom_len = ice_get_eeprom_len, 4835 .get_eeprom = ice_get_eeprom, 4836 .get_strings = ice_get_strings, 4837 .get_ethtool_stats = ice_get_ethtool_stats, 4838 .get_sset_count = ice_get_sset_count, 4839 .get_ringparam = ice_get_ringparam, 4840 .set_ringparam = ice_set_ringparam, 4841 .nway_reset = ice_nway_reset, 4842 .get_channels = ice_get_channels, 4843 }; 4844 4845 /** 4846 * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops 4847 * @netdev: network interface device structure 4848 */ 4849 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev) 4850 { 4851 netdev->ethtool_ops = &ice_ethtool_safe_mode_ops; 4852 } 4853 4854 static const struct ethtool_ops ice_ethtool_repr_ops = { 4855 .get_drvinfo = ice_repr_get_drvinfo, 4856 .get_link = ethtool_op_get_link, 4857 .get_strings = ice_repr_get_strings, 4858 .get_ethtool_stats = ice_repr_get_ethtool_stats, 4859 .get_sset_count = ice_repr_get_sset_count, 4860 .reset = ice_repr_ethtool_reset, 4861 }; 4862 4863 /** 4864 * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops 4865 * @netdev: network interface device structure 4866 */ 4867 void ice_set_ethtool_repr_ops(struct net_device *netdev) 4868 { 4869 netdev->ethtool_ops = &ice_ethtool_repr_ops; 4870 } 4871 4872 /** 4873 * ice_set_ethtool_ops - setup netdev ethtool ops 4874 * @netdev: network interface device structure 4875 * 4876 * setup netdev ethtool ops with ice specific ops 4877 */ 4878 void ice_set_ethtool_ops(struct net_device *netdev) 4879 { 4880 netdev->ethtool_ops = &ice_ethtool_ops; 4881 } 4882