xref: /linux/drivers/net/ethernet/intel/ice/ice_ethtool.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* ethtool support for ice */
5 
6 #include "ice.h"
7 #include "ice_ethtool.h"
8 #include "ice_flow.h"
9 #include "ice_fltr.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include <net/dcbnl.h>
13 
14 struct ice_stats {
15 	char stat_string[ETH_GSTRING_LEN];
16 	int sizeof_stat;
17 	int stat_offset;
18 };
19 
20 #define ICE_STAT(_type, _name, _stat) { \
21 	.stat_string = _name, \
22 	.sizeof_stat = sizeof_field(_type, _stat), \
23 	.stat_offset = offsetof(_type, _stat) \
24 }
25 
26 #define ICE_VSI_STAT(_name, _stat) \
27 		ICE_STAT(struct ice_vsi, _name, _stat)
28 #define ICE_PF_STAT(_name, _stat) \
29 		ICE_STAT(struct ice_pf, _name, _stat)
30 
31 static int ice_q_stats_len(struct net_device *netdev)
32 {
33 	struct ice_netdev_priv *np = netdev_priv(netdev);
34 
35 	return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) *
36 		(sizeof(struct ice_q_stats) / sizeof(u64)));
37 }
38 
39 #define ICE_PF_STATS_LEN	ARRAY_SIZE(ice_gstrings_pf_stats)
40 #define ICE_VSI_STATS_LEN	ARRAY_SIZE(ice_gstrings_vsi_stats)
41 
42 #define ICE_PFC_STATS_LEN ( \
43 		(sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \
44 		 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \
45 		 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \
46 		 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \
47 		 / sizeof(u64))
48 #define ICE_ALL_STATS_LEN(n)	(ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \
49 				 ICE_VSI_STATS_LEN + ice_q_stats_len(n))
50 
51 static const struct ice_stats ice_gstrings_vsi_stats[] = {
52 	ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast),
53 	ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast),
54 	ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast),
55 	ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast),
56 	ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast),
57 	ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast),
58 	ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes),
59 	ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes),
60 	ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards),
61 	ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol),
62 	ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed),
63 	ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed),
64 	ICE_VSI_STAT("tx_errors", eth_stats.tx_errors),
65 	ICE_VSI_STAT("tx_linearize", tx_linearize),
66 	ICE_VSI_STAT("tx_busy", tx_busy),
67 	ICE_VSI_STAT("tx_restart", tx_restart),
68 };
69 
70 enum ice_ethtool_test_id {
71 	ICE_ETH_TEST_REG = 0,
72 	ICE_ETH_TEST_EEPROM,
73 	ICE_ETH_TEST_INTR,
74 	ICE_ETH_TEST_LOOP,
75 	ICE_ETH_TEST_LINK,
76 };
77 
78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = {
79 	"Register test  (offline)",
80 	"EEPROM test    (offline)",
81 	"Interrupt test (offline)",
82 	"Loopback test  (offline)",
83 	"Link test   (on/offline)",
84 };
85 
86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN)
87 
88 /* These PF_STATs might look like duplicates of some NETDEV_STATs,
89  * but they aren't. This device is capable of supporting multiple
90  * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual
91  * netdevs whereas the PF_STATs are for the physical function that's
92  * hosting these netdevs.
93  *
94  * The PF_STATs are appended to the netdev stats only when ethtool -S
95  * is queried on the base PF netdev.
96  */
97 static const struct ice_stats ice_gstrings_pf_stats[] = {
98 	ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes),
99 	ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes),
100 	ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast),
101 	ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast),
102 	ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast),
103 	ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast),
104 	ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast),
105 	ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast),
106 	ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors),
107 	ICE_PF_STAT("tx_timeout.nic", tx_timeout_count),
108 	ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64),
109 	ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64),
110 	ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127),
111 	ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127),
112 	ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255),
113 	ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255),
114 	ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511),
115 	ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511),
116 	ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023),
117 	ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023),
118 	ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522),
119 	ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522),
120 	ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big),
121 	ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big),
122 	ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx),
123 	ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx),
124 	ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx),
125 	ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx),
126 	ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down),
127 	ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize),
128 	ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments),
129 	ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize),
130 	ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber),
131 	ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error),
132 	ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error),
133 	ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards),
134 	ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors),
135 	ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes),
136 	ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults),
137 	ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults),
138 	ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match),
139 	ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status),
140 	ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped),
141 	ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts),
142 	ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed),
143 	ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded),
144 	ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates),
145 };
146 
147 static const u32 ice_regs_dump_list[] = {
148 	PFGEN_STATE,
149 	PRTGEN_STATUS,
150 	QRX_CTRL(0),
151 	QINT_TQCTL(0),
152 	QINT_RQCTL(0),
153 	PFINT_OICR_ENA,
154 	QRX_ITR(0),
155 #define GLDCB_TLPM_PCI_DM			0x000A0180
156 	GLDCB_TLPM_PCI_DM,
157 #define GLDCB_TLPM_TC2PFC			0x000A0194
158 	GLDCB_TLPM_TC2PFC,
159 #define TCDCB_TLPM_WAIT_DM(_i)			(0x000A0080 + ((_i) * 4))
160 	TCDCB_TLPM_WAIT_DM(0),
161 	TCDCB_TLPM_WAIT_DM(1),
162 	TCDCB_TLPM_WAIT_DM(2),
163 	TCDCB_TLPM_WAIT_DM(3),
164 	TCDCB_TLPM_WAIT_DM(4),
165 	TCDCB_TLPM_WAIT_DM(5),
166 	TCDCB_TLPM_WAIT_DM(6),
167 	TCDCB_TLPM_WAIT_DM(7),
168 	TCDCB_TLPM_WAIT_DM(8),
169 	TCDCB_TLPM_WAIT_DM(9),
170 	TCDCB_TLPM_WAIT_DM(10),
171 	TCDCB_TLPM_WAIT_DM(11),
172 	TCDCB_TLPM_WAIT_DM(12),
173 	TCDCB_TLPM_WAIT_DM(13),
174 	TCDCB_TLPM_WAIT_DM(14),
175 	TCDCB_TLPM_WAIT_DM(15),
176 	TCDCB_TLPM_WAIT_DM(16),
177 	TCDCB_TLPM_WAIT_DM(17),
178 	TCDCB_TLPM_WAIT_DM(18),
179 	TCDCB_TLPM_WAIT_DM(19),
180 	TCDCB_TLPM_WAIT_DM(20),
181 	TCDCB_TLPM_WAIT_DM(21),
182 	TCDCB_TLPM_WAIT_DM(22),
183 	TCDCB_TLPM_WAIT_DM(23),
184 	TCDCB_TLPM_WAIT_DM(24),
185 	TCDCB_TLPM_WAIT_DM(25),
186 	TCDCB_TLPM_WAIT_DM(26),
187 	TCDCB_TLPM_WAIT_DM(27),
188 	TCDCB_TLPM_WAIT_DM(28),
189 	TCDCB_TLPM_WAIT_DM(29),
190 	TCDCB_TLPM_WAIT_DM(30),
191 	TCDCB_TLPM_WAIT_DM(31),
192 #define GLPCI_WATMK_CLNT_PIPEMON		0x000BFD90
193 	GLPCI_WATMK_CLNT_PIPEMON,
194 #define GLPCI_CUR_CLNT_COMMON			0x000BFD84
195 	GLPCI_CUR_CLNT_COMMON,
196 #define GLPCI_CUR_CLNT_PIPEMON			0x000BFD88
197 	GLPCI_CUR_CLNT_PIPEMON,
198 #define GLPCI_PCIERR				0x0009DEB0
199 	GLPCI_PCIERR,
200 #define GLPSM_DEBUG_CTL_STATUS			0x000B0600
201 	GLPSM_DEBUG_CTL_STATUS,
202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT	0x000B0680
203 	GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT,
204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT	0x000B0684
205 	GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT,
206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW		0x000B0688
207 	GLPSM0_DEBUG_DT_OUT_OF_WINDOW,
208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT	0x000B069C
209 	GLPSM0_DEBUG_INTF_HW_ERROR_DETECT,
210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT	0x000B06A0
211 	GLPSM0_DEBUG_MISC_HW_ERROR_DETECT,
212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT	0x000B0E80
213 	GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT,
214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT	0x000B0E84
215 	GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT,
216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT	0x000B0E88
217 	GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT,
218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT  0x000B0E8C
219 	GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT,
220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT       0x000B0E90
221 	GLPSM1_DEBUG_MISC_HW_ERROR_DETECT,
222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT       0x000B1680
223 	GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT,
224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT      0x000B1684
225 	GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT,
226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT       0x000B1688
227 	GLPSM2_DEBUG_MISC_HW_ERROR_DETECT,
228 #define GLTDPU_TCLAN_COMP_BOB(_i)               (0x00049ADC + ((_i) * 4))
229 	GLTDPU_TCLAN_COMP_BOB(1),
230 	GLTDPU_TCLAN_COMP_BOB(2),
231 	GLTDPU_TCLAN_COMP_BOB(3),
232 	GLTDPU_TCLAN_COMP_BOB(4),
233 	GLTDPU_TCLAN_COMP_BOB(5),
234 	GLTDPU_TCLAN_COMP_BOB(6),
235 	GLTDPU_TCLAN_COMP_BOB(7),
236 	GLTDPU_TCLAN_COMP_BOB(8),
237 #define GLTDPU_TCB_CMD_BOB(_i)                  (0x0004975C + ((_i) * 4))
238 	GLTDPU_TCB_CMD_BOB(1),
239 	GLTDPU_TCB_CMD_BOB(2),
240 	GLTDPU_TCB_CMD_BOB(3),
241 	GLTDPU_TCB_CMD_BOB(4),
242 	GLTDPU_TCB_CMD_BOB(5),
243 	GLTDPU_TCB_CMD_BOB(6),
244 	GLTDPU_TCB_CMD_BOB(7),
245 	GLTDPU_TCB_CMD_BOB(8),
246 #define GLTDPU_PSM_UPDATE_BOB(_i)               (0x00049B5C + ((_i) * 4))
247 	GLTDPU_PSM_UPDATE_BOB(1),
248 	GLTDPU_PSM_UPDATE_BOB(2),
249 	GLTDPU_PSM_UPDATE_BOB(3),
250 	GLTDPU_PSM_UPDATE_BOB(4),
251 	GLTDPU_PSM_UPDATE_BOB(5),
252 	GLTDPU_PSM_UPDATE_BOB(6),
253 	GLTDPU_PSM_UPDATE_BOB(7),
254 	GLTDPU_PSM_UPDATE_BOB(8),
255 #define GLTCB_CMD_IN_BOB(_i)                    (0x000AE288 + ((_i) * 4))
256 	GLTCB_CMD_IN_BOB(1),
257 	GLTCB_CMD_IN_BOB(2),
258 	GLTCB_CMD_IN_BOB(3),
259 	GLTCB_CMD_IN_BOB(4),
260 	GLTCB_CMD_IN_BOB(5),
261 	GLTCB_CMD_IN_BOB(6),
262 	GLTCB_CMD_IN_BOB(7),
263 	GLTCB_CMD_IN_BOB(8),
264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i)   (0x000FC148 + ((_i) * 4))
265 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1),
266 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2),
267 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3),
268 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4),
269 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5),
270 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6),
271 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7),
272 	GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8),
273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4))
274 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1),
275 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2),
276 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3),
277 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4),
278 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5),
279 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6),
280 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7),
281 	GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8),
282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i)       (0x000FC1C8 + ((_i) * 4))
283 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1),
284 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2),
285 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3),
286 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4),
287 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5),
288 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6),
289 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7),
290 	GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8),
291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i)  (0x000FC188 + ((_i) * 4))
292 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1),
293 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2),
294 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3),
295 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4),
296 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5),
297 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6),
298 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7),
299 	GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8),
300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4))
301 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1),
302 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2),
303 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3),
304 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4),
305 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5),
306 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6),
307 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7),
308 	GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8),
309 #define PRTDCB_TCUPM_REG_CM(_i)			(0x000BC360 + ((_i) * 4))
310 	PRTDCB_TCUPM_REG_CM(0),
311 	PRTDCB_TCUPM_REG_CM(1),
312 	PRTDCB_TCUPM_REG_CM(2),
313 	PRTDCB_TCUPM_REG_CM(3),
314 #define PRTDCB_TCUPM_REG_DM(_i)			(0x000BC3A0 + ((_i) * 4))
315 	PRTDCB_TCUPM_REG_DM(0),
316 	PRTDCB_TCUPM_REG_DM(1),
317 	PRTDCB_TCUPM_REG_DM(2),
318 	PRTDCB_TCUPM_REG_DM(3),
319 #define PRTDCB_TLPM_REG_DM(_i)			(0x000A0000 + ((_i) * 4))
320 	PRTDCB_TLPM_REG_DM(0),
321 	PRTDCB_TLPM_REG_DM(1),
322 	PRTDCB_TLPM_REG_DM(2),
323 	PRTDCB_TLPM_REG_DM(3),
324 };
325 
326 struct ice_priv_flag {
327 	char name[ETH_GSTRING_LEN];
328 	u32 bitno;			/* bit position in pf->flags */
329 };
330 
331 #define ICE_PRIV_FLAG(_name, _bitno) { \
332 	.name = _name, \
333 	.bitno = _bitno, \
334 }
335 
336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = {
337 	ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA),
338 	ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT),
339 	ICE_PRIV_FLAG("vf-true-promisc-support",
340 		      ICE_FLAG_VF_TRUE_PROMISC_ENA),
341 	ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF),
342 	ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING),
343 	ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX),
344 };
345 
346 #define ICE_PRIV_FLAG_ARRAY_SIZE	ARRAY_SIZE(ice_gstrings_priv_flags)
347 
348 static const u32 ice_adv_lnk_speed_100[] __initconst = {
349 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
350 };
351 
352 static const u32 ice_adv_lnk_speed_1000[] __initconst = {
353 	ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
354 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
355 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
356 };
357 
358 static const u32 ice_adv_lnk_speed_2500[] __initconst = {
359 	ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
360 	ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
361 };
362 
363 static const u32 ice_adv_lnk_speed_5000[] __initconst = {
364 	ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
365 };
366 
367 static const u32 ice_adv_lnk_speed_10000[] __initconst = {
368 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
369 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
370 	ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
371 	ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
372 };
373 
374 static const u32 ice_adv_lnk_speed_25000[] __initconst = {
375 	ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
376 	ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
377 	ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
378 };
379 
380 static const u32 ice_adv_lnk_speed_40000[] __initconst = {
381 	ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
382 	ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
383 	ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
384 	ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
385 };
386 
387 static const u32 ice_adv_lnk_speed_50000[] __initconst = {
388 	ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
389 	ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
390 	ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
391 };
392 
393 static const u32 ice_adv_lnk_speed_100000[] __initconst = {
394 	ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
395 	ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
396 	ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
397 	ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
398 	ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
399 	ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
400 	ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
401 };
402 
403 static const u32 ice_adv_lnk_speed_200000[] __initconst = {
404 	ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
405 	ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
406 	ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
407 	ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT,
408 	ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
409 };
410 
411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = {
412 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100),
413 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000),
414 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500),
415 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000),
416 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000),
417 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000),
418 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000),
419 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000),
420 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000),
421 	ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000),
422 };
423 
424 void __init ice_adv_lnk_speed_maps_init(void)
425 {
426 	ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps,
427 				       ARRAY_SIZE(ice_adv_lnk_speed_maps));
428 }
429 
430 static void
431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo,
432 		  struct ice_vsi *vsi)
433 {
434 	struct ice_pf *pf = vsi->back;
435 	struct ice_hw *hw = &pf->hw;
436 	struct ice_orom_info *orom;
437 	struct ice_nvm_info *nvm;
438 
439 	nvm = &hw->flash.nvm;
440 	orom = &hw->flash.orom;
441 
442 	strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
443 
444 	/* Display NVM version (from which the firmware version can be
445 	 * determined) which contains more pertinent information.
446 	 */
447 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
448 		 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor,
449 		 nvm->eetrack, orom->major, orom->build, orom->patch);
450 
451 	strscpy(drvinfo->bus_info, pci_name(pf->pdev),
452 		sizeof(drvinfo->bus_info));
453 }
454 
455 static void
456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
457 {
458 	struct ice_netdev_priv *np = netdev_priv(netdev);
459 
460 	__ice_get_drvinfo(netdev, drvinfo, np->vsi);
461 	drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE;
462 }
463 
464 static int ice_get_regs_len(struct net_device __always_unused *netdev)
465 {
466 	return (sizeof(ice_regs_dump_list) +
467 		sizeof(struct ice_regdump_to_ethtool));
468 }
469 
470 /**
471  * ice_ethtool_get_maxspeed - Get the max speed for given lport
472  * @hw: pointer to the HW struct
473  * @lport: logical port for which max speed is requested
474  * @max_speed: return max speed for input lport
475  *
476  * Return: 0 on success, negative on failure.
477  */
478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed)
479 {
480 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {};
481 	bool active_valid = false, pending_valid = true;
482 	u8 option_count = ICE_AQC_PORT_OPT_MAX;
483 	u8 active_idx = 0, pending_idx = 0;
484 	int status;
485 
486 	status = ice_aq_get_port_options(hw, options, &option_count, lport,
487 					 true, &active_idx, &active_valid,
488 					 &pending_idx, &pending_valid);
489 	if (status)
490 		return -EIO;
491 	if (!active_valid)
492 		return -EINVAL;
493 
494 	*max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M;
495 	return 0;
496 }
497 
498 /**
499  * ice_is_serdes_muxed - returns whether serdes is muxed in hardware
500  * @hw: pointer to the HW struct
501  *
502  * Return: true when serdes is muxed, false when serdes is not muxed.
503  */
504 static bool ice_is_serdes_muxed(struct ice_hw *hw)
505 {
506 	u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
507 
508 	return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value);
509 }
510 
511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology,
512 					 u8 lport, bool is_muxed)
513 {
514 	switch (lport) {
515 	case 0:
516 		port_topology->pcs_quad_select = 0;
517 		port_topology->pcs_port = 0;
518 		port_topology->primary_serdes_lane = 0;
519 		break;
520 	case 1:
521 		port_topology->pcs_quad_select = 1;
522 		port_topology->pcs_port = 0;
523 		if (is_muxed)
524 			port_topology->primary_serdes_lane = 2;
525 		else
526 			port_topology->primary_serdes_lane = 4;
527 		break;
528 	case 2:
529 		port_topology->pcs_quad_select = 0;
530 		port_topology->pcs_port = 1;
531 		port_topology->primary_serdes_lane = 1;
532 		break;
533 	case 3:
534 		port_topology->pcs_quad_select = 1;
535 		port_topology->pcs_port = 1;
536 		if (is_muxed)
537 			port_topology->primary_serdes_lane = 3;
538 		else
539 			port_topology->primary_serdes_lane = 5;
540 		break;
541 	case 4:
542 		port_topology->pcs_quad_select = 0;
543 		port_topology->pcs_port = 2;
544 		port_topology->primary_serdes_lane = 2;
545 		break;
546 	case 5:
547 		port_topology->pcs_quad_select = 1;
548 		port_topology->pcs_port = 2;
549 		port_topology->primary_serdes_lane = 6;
550 		break;
551 	case 6:
552 		port_topology->pcs_quad_select = 0;
553 		port_topology->pcs_port = 3;
554 		port_topology->primary_serdes_lane = 3;
555 		break;
556 	case 7:
557 		port_topology->pcs_quad_select = 1;
558 		port_topology->pcs_port = 3;
559 		port_topology->primary_serdes_lane = 7;
560 		break;
561 	default:
562 		return -EINVAL;
563 	}
564 
565 	return 0;
566 }
567 
568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology,
569 					  u8 lport, bool is_muxed)
570 {
571 	switch (lport) {
572 	case 0:
573 		port_topology->pcs_quad_select = 0;
574 		port_topology->pcs_port = 0;
575 		port_topology->primary_serdes_lane = 0;
576 		break;
577 	case 1:
578 		port_topology->pcs_quad_select = 1;
579 		port_topology->pcs_port = 0;
580 		if (is_muxed)
581 			port_topology->primary_serdes_lane = 2;
582 		else
583 			port_topology->primary_serdes_lane = 4;
584 		break;
585 	case 2:
586 		port_topology->pcs_quad_select = 0;
587 		port_topology->pcs_port = 1;
588 		port_topology->primary_serdes_lane = 1;
589 		break;
590 	case 3:
591 		port_topology->pcs_quad_select = 1;
592 		port_topology->pcs_port = 1;
593 		if (is_muxed)
594 			port_topology->primary_serdes_lane = 3;
595 		else
596 			port_topology->primary_serdes_lane = 5;
597 		break;
598 	case 4:
599 		port_topology->pcs_quad_select = 0;
600 		port_topology->pcs_port = 2;
601 		port_topology->primary_serdes_lane = 2;
602 		break;
603 	case 5:
604 		port_topology->pcs_quad_select = 1;
605 		port_topology->pcs_port = 2;
606 		port_topology->primary_serdes_lane = 6;
607 		break;
608 	case 6:
609 		port_topology->pcs_quad_select = 0;
610 		port_topology->pcs_port = 3;
611 		port_topology->primary_serdes_lane = 3;
612 		break;
613 	case 7:
614 		port_topology->pcs_quad_select = 1;
615 		port_topology->pcs_port = 3;
616 		port_topology->primary_serdes_lane = 7;
617 		break;
618 	default:
619 		return -EINVAL;
620 	}
621 
622 	return 0;
623 }
624 
625 /**
626  * ice_get_port_topology - returns physical topology like pcsquad, pcsport,
627  *                         serdes number
628  * @hw: pointer to the HW struct
629  * @lport: logical port for which physical info requested
630  * @port_topology: buffer to hold port topology
631  *
632  * Return: 0 on success, negative on failure.
633  */
634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport,
635 				 struct ice_port_topology *port_topology)
636 {
637 	struct ice_aqc_get_link_topo cmd = {};
638 	u16 node_handle = 0;
639 	u8 cage_type = 0;
640 	bool is_muxed;
641 	int err;
642 	u8 ctx;
643 
644 	ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
645 	ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
646 	cmd.addr.topo_params.node_type_ctx = ctx;
647 
648 	err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle);
649 	if (err)
650 		return -EINVAL;
651 
652 	is_muxed = ice_is_serdes_muxed(hw);
653 
654 	if (cage_type == 0x11 ||	/* SFP+ */
655 	    cage_type == 0x12) {	/* SFP28 */
656 		port_topology->serdes_lane_count = 1;
657 		err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed);
658 		if (err)
659 			return err;
660 	} else if (cage_type == 0x13 ||	/* QSFP */
661 		   cage_type == 0x14) {	/* QSFP28 */
662 		u8 max_speed = 0;
663 
664 		err = ice_ethtool_get_maxspeed(hw, lport, &max_speed);
665 		if (err)
666 			return err;
667 
668 		if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G)
669 			port_topology->serdes_lane_count = 4;
670 		else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G)
671 			port_topology->serdes_lane_count = 2;
672 		else
673 			port_topology->serdes_lane_count = 1;
674 
675 		err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed);
676 		if (err)
677 			return err;
678 	} else {
679 		return -EINVAL;
680 	}
681 
682 	return 0;
683 }
684 
685 /**
686  * ice_get_tx_rx_equa - read serdes tx rx equaliser param
687  * @hw: pointer to the HW struct
688  * @serdes_num: represents the serdes number
689  * @ptr: structure to read all serdes parameter for given serdes
690  *
691  * Return: all serdes equalization parameter supported per serdes number
692  */
693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num,
694 			      struct ice_serdes_equalization_to_ethtool *ptr)
695 {
696 	static const int tx = ICE_AQC_OP_CODE_TX_EQU;
697 	static const int rx = ICE_AQC_OP_CODE_RX_EQU;
698 	struct {
699 		int data_in;
700 		int opcode;
701 		int *out;
702 	} aq_params[] = {
703 		{ ICE_AQC_TX_EQU_PRE1, tx, &ptr->tx_equ_pre1 },
704 		{ ICE_AQC_TX_EQU_PRE3, tx, &ptr->tx_equ_pre3 },
705 		{ ICE_AQC_TX_EQU_ATTEN, tx, &ptr->tx_equ_atten },
706 		{ ICE_AQC_TX_EQU_POST1, tx, &ptr->tx_equ_post1 },
707 		{ ICE_AQC_TX_EQU_PRE2, tx, &ptr->tx_equ_pre2 },
708 		{ ICE_AQC_RX_EQU_PRE2, rx, &ptr->rx_equ_pre2 },
709 		{ ICE_AQC_RX_EQU_PRE1, rx, &ptr->rx_equ_pre1 },
710 		{ ICE_AQC_RX_EQU_POST1, rx, &ptr->rx_equ_post1 },
711 		{ ICE_AQC_RX_EQU_BFLF, rx, &ptr->rx_equ_bflf },
712 		{ ICE_AQC_RX_EQU_BFHF, rx, &ptr->rx_equ_bfhf },
713 		{ ICE_AQC_RX_EQU_DRATE, rx, &ptr->rx_equ_drate },
714 		{ ICE_AQC_RX_EQU_CTLE_GAINHF, rx, &ptr->rx_equ_ctle_gainhf },
715 		{ ICE_AQC_RX_EQU_CTLE_GAINLF, rx, &ptr->rx_equ_ctle_gainlf },
716 		{ ICE_AQC_RX_EQU_CTLE_GAINDC, rx, &ptr->rx_equ_ctle_gaindc },
717 		{ ICE_AQC_RX_EQU_CTLE_BW, rx, &ptr->rx_equ_ctle_bw },
718 		{ ICE_AQC_RX_EQU_DFE_GAIN, rx, &ptr->rx_equ_dfe_gain },
719 		{ ICE_AQC_RX_EQU_DFE_GAIN2, rx, &ptr->rx_equ_dfe_gain_2 },
720 		{ ICE_AQC_RX_EQU_DFE_2, rx, &ptr->rx_equ_dfe_2 },
721 		{ ICE_AQC_RX_EQU_DFE_3, rx, &ptr->rx_equ_dfe_3 },
722 		{ ICE_AQC_RX_EQU_DFE_4, rx, &ptr->rx_equ_dfe_4 },
723 		{ ICE_AQC_RX_EQU_DFE_5, rx, &ptr->rx_equ_dfe_5 },
724 		{ ICE_AQC_RX_EQU_DFE_6, rx, &ptr->rx_equ_dfe_6 },
725 		{ ICE_AQC_RX_EQU_DFE_7, rx, &ptr->rx_equ_dfe_7 },
726 		{ ICE_AQC_RX_EQU_DFE_8, rx, &ptr->rx_equ_dfe_8 },
727 		{ ICE_AQC_RX_EQU_DFE_9, rx, &ptr->rx_equ_dfe_9 },
728 		{ ICE_AQC_RX_EQU_DFE_10, rx, &ptr->rx_equ_dfe_10 },
729 		{ ICE_AQC_RX_EQU_DFE_11, rx, &ptr->rx_equ_dfe_11 },
730 		{ ICE_AQC_RX_EQU_DFE_12, rx, &ptr->rx_equ_dfe_12 },
731 	};
732 	int err;
733 
734 	for (int i = 0; i < ARRAY_SIZE(aq_params); i++) {
735 		err = ice_aq_get_phy_equalization(hw, aq_params[i].data_in,
736 						  aq_params[i].opcode,
737 						  serdes_num, aq_params[i].out);
738 		if (err)
739 			break;
740 	}
741 
742 	return err;
743 }
744 
745 /**
746  * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per
747  *                         pcsquad, pcsport
748  * @netdev: pointer to net device structure
749  * @p: output buffer to fill requested register dump
750  *
751  * Return: 0 on success, negative on failure.
752  */
753 static int ice_get_extended_regs(struct net_device *netdev, void *p)
754 {
755 	struct ice_netdev_priv *np = netdev_priv(netdev);
756 	struct ice_regdump_to_ethtool *ice_prv_regs_buf;
757 	struct ice_port_topology port_topology = {};
758 	struct ice_port_info *pi;
759 	struct ice_pf *pf;
760 	struct ice_hw *hw;
761 	unsigned int i;
762 	int err;
763 
764 	pf = np->vsi->back;
765 	hw = &pf->hw;
766 	pi = np->vsi->port_info;
767 
768 	/* Serdes parameters are not supported if not the PF VSI */
769 	if (np->vsi->type != ICE_VSI_PF || !pi)
770 		return -EINVAL;
771 
772 	err = ice_get_port_topology(hw, pi->lport, &port_topology);
773 	if (err)
774 		return -EINVAL;
775 	if (port_topology.serdes_lane_count > 4)
776 		return -EINVAL;
777 
778 	ice_prv_regs_buf = p;
779 
780 	/* Get serdes equalization parameter for available serdes */
781 	for (i = 0; i < port_topology.serdes_lane_count; i++) {
782 		u8 serdes_num = 0;
783 
784 		serdes_num = port_topology.primary_serdes_lane + i;
785 		err = ice_get_tx_rx_equa(hw, serdes_num,
786 					 &ice_prv_regs_buf->equalization[i]);
787 		if (err)
788 			return -EINVAL;
789 	}
790 
791 	return 0;
792 }
793 
794 static void
795 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
796 {
797 	struct ice_netdev_priv *np = netdev_priv(netdev);
798 	struct ice_pf *pf = np->vsi->back;
799 	struct ice_hw *hw = &pf->hw;
800 	u32 *regs_buf = (u32 *)p;
801 	unsigned int i;
802 
803 	regs->version = 2;
804 
805 	for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i)
806 		regs_buf[i] = rd32(hw, ice_regs_dump_list[i]);
807 
808 	ice_get_extended_regs(netdev, (void *)&regs_buf[i]);
809 }
810 
811 static u32 ice_get_msglevel(struct net_device *netdev)
812 {
813 	struct ice_netdev_priv *np = netdev_priv(netdev);
814 	struct ice_pf *pf = np->vsi->back;
815 
816 #ifndef CONFIG_DYNAMIC_DEBUG
817 	if (pf->hw.debug_mask)
818 		netdev_info(netdev, "hw debug_mask: 0x%llX\n",
819 			    pf->hw.debug_mask);
820 #endif /* !CONFIG_DYNAMIC_DEBUG */
821 
822 	return pf->msg_enable;
823 }
824 
825 static void ice_set_msglevel(struct net_device *netdev, u32 data)
826 {
827 	struct ice_netdev_priv *np = netdev_priv(netdev);
828 	struct ice_pf *pf = np->vsi->back;
829 
830 #ifndef CONFIG_DYNAMIC_DEBUG
831 	if (ICE_DBG_USER & data)
832 		pf->hw.debug_mask = data;
833 	else
834 		pf->msg_enable = data;
835 #else
836 	pf->msg_enable = data;
837 #endif /* !CONFIG_DYNAMIC_DEBUG */
838 }
839 
840 static int ice_get_eeprom_len(struct net_device *netdev)
841 {
842 	struct ice_netdev_priv *np = netdev_priv(netdev);
843 	struct ice_pf *pf = np->vsi->back;
844 
845 	return (int)pf->hw.flash.flash_size;
846 }
847 
848 static int
849 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom,
850 	       u8 *bytes)
851 {
852 	struct ice_netdev_priv *np = netdev_priv(netdev);
853 	struct ice_vsi *vsi = np->vsi;
854 	struct ice_pf *pf = vsi->back;
855 	struct ice_hw *hw = &pf->hw;
856 	struct device *dev;
857 	int ret;
858 	u8 *buf;
859 
860 	dev = ice_pf_to_dev(pf);
861 
862 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
863 	netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n",
864 		   eeprom->cmd, eeprom->offset, eeprom->len);
865 
866 	buf = kzalloc(eeprom->len, GFP_KERNEL);
867 	if (!buf)
868 		return -ENOMEM;
869 
870 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
871 	if (ret) {
872 		dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n",
873 			ret, ice_aq_str(hw->adminq.sq_last_status));
874 		goto out;
875 	}
876 
877 	ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf,
878 				false);
879 	if (ret) {
880 		dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n",
881 			ret, ice_aq_str(hw->adminq.sq_last_status));
882 		goto release;
883 	}
884 
885 	memcpy(bytes, buf, eeprom->len);
886 release:
887 	ice_release_nvm(hw);
888 out:
889 	kfree(buf);
890 	return ret;
891 }
892 
893 /**
894  * ice_active_vfs - check if there are any active VFs
895  * @pf: board private structure
896  *
897  * Returns true if an active VF is found, otherwise returns false
898  */
899 static bool ice_active_vfs(struct ice_pf *pf)
900 {
901 	bool active = false;
902 	struct ice_vf *vf;
903 	unsigned int bkt;
904 
905 	rcu_read_lock();
906 	ice_for_each_vf_rcu(pf, bkt, vf) {
907 		if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
908 			active = true;
909 			break;
910 		}
911 	}
912 	rcu_read_unlock();
913 
914 	return active;
915 }
916 
917 /**
918  * ice_link_test - perform a link test on a given net_device
919  * @netdev: network interface device structure
920  *
921  * This function performs one of the self-tests required by ethtool.
922  * Returns 0 on success, non-zero on failure.
923  */
924 static u64 ice_link_test(struct net_device *netdev)
925 {
926 	struct ice_netdev_priv *np = netdev_priv(netdev);
927 	bool link_up = false;
928 	int status;
929 
930 	netdev_info(netdev, "link test\n");
931 	status = ice_get_link_status(np->vsi->port_info, &link_up);
932 	if (status) {
933 		netdev_err(netdev, "link query error, status = %d\n",
934 			   status);
935 		return 1;
936 	}
937 
938 	if (!link_up)
939 		return 2;
940 
941 	return 0;
942 }
943 
944 /**
945  * ice_eeprom_test - perform an EEPROM test on a given net_device
946  * @netdev: network interface device structure
947  *
948  * This function performs one of the self-tests required by ethtool.
949  * Returns 0 on success, non-zero on failure.
950  */
951 static u64 ice_eeprom_test(struct net_device *netdev)
952 {
953 	struct ice_netdev_priv *np = netdev_priv(netdev);
954 	struct ice_pf *pf = np->vsi->back;
955 
956 	netdev_info(netdev, "EEPROM test\n");
957 	return !!(ice_nvm_validate_checksum(&pf->hw));
958 }
959 
960 /**
961  * ice_reg_pattern_test
962  * @hw: pointer to the HW struct
963  * @reg: reg to be tested
964  * @mask: bits to be touched
965  */
966 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask)
967 {
968 	struct ice_pf *pf = (struct ice_pf *)hw->back;
969 	struct device *dev = ice_pf_to_dev(pf);
970 	static const u32 patterns[] = {
971 		0x5A5A5A5A, 0xA5A5A5A5,
972 		0x00000000, 0xFFFFFFFF
973 	};
974 	u32 val, orig_val;
975 	unsigned int i;
976 
977 	orig_val = rd32(hw, reg);
978 	for (i = 0; i < ARRAY_SIZE(patterns); ++i) {
979 		u32 pattern = patterns[i] & mask;
980 
981 		wr32(hw, reg, pattern);
982 		val = rd32(hw, reg);
983 		if (val == pattern)
984 			continue;
985 		dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n"
986 			, __func__, reg, pattern, val);
987 		return 1;
988 	}
989 
990 	wr32(hw, reg, orig_val);
991 	val = rd32(hw, reg);
992 	if (val != orig_val) {
993 		dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n"
994 			, __func__, reg, orig_val, val);
995 		return 1;
996 	}
997 
998 	return 0;
999 }
1000 
1001 /**
1002  * ice_reg_test - perform a register test on a given net_device
1003  * @netdev: network interface device structure
1004  *
1005  * This function performs one of the self-tests required by ethtool.
1006  * Returns 0 on success, non-zero on failure.
1007  */
1008 static u64 ice_reg_test(struct net_device *netdev)
1009 {
1010 	struct ice_netdev_priv *np = netdev_priv(netdev);
1011 	struct ice_hw *hw = np->vsi->port_info->hw;
1012 	u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ?
1013 		hw->func_caps.common_cap.num_msix_vectors - 1 : 1;
1014 	struct ice_diag_reg_test_info {
1015 		u32 address;
1016 		u32 mask;
1017 		u32 elem_num;
1018 		u32 elem_size;
1019 	} ice_reg_list[] = {
1020 		{GLINT_ITR(0, 0), 0x00000fff, int_elements,
1021 			GLINT_ITR(0, 1) - GLINT_ITR(0, 0)},
1022 		{GLINT_ITR(1, 0), 0x00000fff, int_elements,
1023 			GLINT_ITR(1, 1) - GLINT_ITR(1, 0)},
1024 		{GLINT_ITR(0, 0), 0x00000fff, int_elements,
1025 			GLINT_ITR(2, 1) - GLINT_ITR(2, 0)},
1026 		{GLINT_CTL, 0xffff0001, 1, 0}
1027 	};
1028 	unsigned int i;
1029 
1030 	netdev_dbg(netdev, "Register test\n");
1031 	for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) {
1032 		u32 j;
1033 
1034 		for (j = 0; j < ice_reg_list[i].elem_num; ++j) {
1035 			u32 mask = ice_reg_list[i].mask;
1036 			u32 reg = ice_reg_list[i].address +
1037 				(j * ice_reg_list[i].elem_size);
1038 
1039 			/* bail on failure (non-zero return) */
1040 			if (ice_reg_pattern_test(hw, reg, mask))
1041 				return 1;
1042 		}
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * ice_lbtest_prepare_rings - configure Tx/Rx test rings
1050  * @vsi: pointer to the VSI structure
1051  *
1052  * Function configures rings of a VSI for loopback test without
1053  * enabling interrupts or informing the kernel about new queues.
1054  *
1055  * Returns 0 on success, negative on failure.
1056  */
1057 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi)
1058 {
1059 	int status;
1060 
1061 	status = ice_vsi_setup_tx_rings(vsi);
1062 	if (status)
1063 		goto err_setup_tx_ring;
1064 
1065 	status = ice_vsi_setup_rx_rings(vsi);
1066 	if (status)
1067 		goto err_setup_rx_ring;
1068 
1069 	status = ice_vsi_cfg_lan(vsi);
1070 	if (status)
1071 		goto err_setup_rx_ring;
1072 
1073 	status = ice_vsi_start_all_rx_rings(vsi);
1074 	if (status)
1075 		goto err_start_rx_ring;
1076 
1077 	return 0;
1078 
1079 err_start_rx_ring:
1080 	ice_vsi_free_rx_rings(vsi);
1081 err_setup_rx_ring:
1082 	ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1083 err_setup_tx_ring:
1084 	ice_vsi_free_tx_rings(vsi);
1085 
1086 	return status;
1087 }
1088 
1089 /**
1090  * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test
1091  * @vsi: pointer to the VSI structure
1092  *
1093  * Function stops and frees VSI rings after a loopback test.
1094  * Returns 0 on success, negative on failure.
1095  */
1096 static int ice_lbtest_disable_rings(struct ice_vsi *vsi)
1097 {
1098 	int status;
1099 
1100 	status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1101 	if (status)
1102 		netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n",
1103 			   vsi->vsi_num, status);
1104 
1105 	status = ice_vsi_stop_all_rx_rings(vsi);
1106 	if (status)
1107 		netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n",
1108 			   vsi->vsi_num, status);
1109 
1110 	ice_vsi_free_tx_rings(vsi);
1111 	ice_vsi_free_rx_rings(vsi);
1112 
1113 	return status;
1114 }
1115 
1116 /**
1117  * ice_lbtest_create_frame - create test packet
1118  * @pf: pointer to the PF structure
1119  * @ret_data: allocated frame buffer
1120  * @size: size of the packet data
1121  *
1122  * Function allocates a frame with a test pattern on specific offsets.
1123  * Returns 0 on success, non-zero on failure.
1124  */
1125 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size)
1126 {
1127 	u8 *data;
1128 
1129 	if (!pf)
1130 		return -EINVAL;
1131 
1132 	data = kzalloc(size, GFP_KERNEL);
1133 	if (!data)
1134 		return -ENOMEM;
1135 
1136 	/* Since the ethernet test frame should always be at least
1137 	 * 64 bytes long, fill some octets in the payload with test data.
1138 	 */
1139 	memset(data, 0xFF, size);
1140 	data[32] = 0xDE;
1141 	data[42] = 0xAD;
1142 	data[44] = 0xBE;
1143 	data[46] = 0xEF;
1144 
1145 	*ret_data = data;
1146 
1147 	return 0;
1148 }
1149 
1150 /**
1151  * ice_lbtest_check_frame - verify received loopback frame
1152  * @frame: pointer to the raw packet data
1153  *
1154  * Function verifies received test frame with a pattern.
1155  * Returns true if frame matches the pattern, false otherwise.
1156  */
1157 static bool ice_lbtest_check_frame(u8 *frame)
1158 {
1159 	/* Validate bytes of a frame under offsets chosen earlier */
1160 	if (frame[32] == 0xDE &&
1161 	    frame[42] == 0xAD &&
1162 	    frame[44] == 0xBE &&
1163 	    frame[46] == 0xEF &&
1164 	    frame[48] == 0xFF)
1165 		return true;
1166 
1167 	return false;
1168 }
1169 
1170 /**
1171  * ice_diag_send - send test frames to the test ring
1172  * @tx_ring: pointer to the transmit ring
1173  * @data: pointer to the raw packet data
1174  * @size: size of the packet to send
1175  *
1176  * Function sends loopback packets on a test Tx ring.
1177  */
1178 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size)
1179 {
1180 	struct ice_tx_desc *tx_desc;
1181 	struct ice_tx_buf *tx_buf;
1182 	dma_addr_t dma;
1183 	u64 td_cmd;
1184 
1185 	tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use);
1186 	tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use];
1187 
1188 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1189 	if (dma_mapping_error(tx_ring->dev, dma))
1190 		return -EINVAL;
1191 
1192 	tx_desc->buf_addr = cpu_to_le64(dma);
1193 
1194 	/* These flags are required for a descriptor to be pushed out */
1195 	td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1196 	tx_desc->cmd_type_offset_bsz =
1197 		cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1198 			    (td_cmd << ICE_TXD_QW1_CMD_S) |
1199 			    ((u64)0 << ICE_TXD_QW1_OFFSET_S) |
1200 			    ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1201 			    ((u64)0 << ICE_TXD_QW1_L2TAG1_S));
1202 
1203 	tx_buf->next_to_watch = tx_desc;
1204 
1205 	/* Force memory write to complete before letting h/w know
1206 	 * there are new descriptors to fetch.
1207 	 */
1208 	wmb();
1209 
1210 	tx_ring->next_to_use++;
1211 	if (tx_ring->next_to_use >= tx_ring->count)
1212 		tx_ring->next_to_use = 0;
1213 
1214 	writel_relaxed(tx_ring->next_to_use, tx_ring->tail);
1215 
1216 	/* Wait until the packets get transmitted to the receive queue. */
1217 	usleep_range(1000, 2000);
1218 	dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE);
1219 
1220 	return 0;
1221 }
1222 
1223 #define ICE_LB_FRAME_SIZE 64
1224 /**
1225  * ice_lbtest_receive_frames - receive and verify test frames
1226  * @rx_ring: pointer to the receive ring
1227  *
1228  * Function receives loopback packets and verify their correctness.
1229  * Returns number of received valid frames.
1230  */
1231 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring)
1232 {
1233 	struct ice_rx_buf *rx_buf;
1234 	int valid_frames, i;
1235 	u8 *received_buf;
1236 
1237 	valid_frames = 0;
1238 
1239 	for (i = 0; i < rx_ring->count; i++) {
1240 		union ice_32b_rx_flex_desc *rx_desc;
1241 
1242 		rx_desc = ICE_RX_DESC(rx_ring, i);
1243 
1244 		if (!(rx_desc->wb.status_error0 &
1245 		    (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) |
1246 		     cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)))))
1247 			continue;
1248 
1249 		rx_buf = &rx_ring->rx_buf[i];
1250 		received_buf = page_address(rx_buf->page) + rx_buf->page_offset;
1251 
1252 		if (ice_lbtest_check_frame(received_buf))
1253 			valid_frames++;
1254 	}
1255 
1256 	return valid_frames;
1257 }
1258 
1259 /**
1260  * ice_loopback_test - perform a loopback test on a given net_device
1261  * @netdev: network interface device structure
1262  *
1263  * This function performs one of the self-tests required by ethtool.
1264  * Returns 0 on success, non-zero on failure.
1265  */
1266 static u64 ice_loopback_test(struct net_device *netdev)
1267 {
1268 	struct ice_netdev_priv *np = netdev_priv(netdev);
1269 	struct ice_vsi *orig_vsi = np->vsi, *test_vsi;
1270 	struct ice_pf *pf = orig_vsi->back;
1271 	u8 *tx_frame __free(kfree) = NULL;
1272 	u8 broadcast[ETH_ALEN], ret = 0;
1273 	int num_frames, valid_frames;
1274 	struct ice_tx_ring *tx_ring;
1275 	struct ice_rx_ring *rx_ring;
1276 	int i;
1277 
1278 	netdev_info(netdev, "loopback test\n");
1279 
1280 	test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info);
1281 	if (!test_vsi) {
1282 		netdev_err(netdev, "Failed to create a VSI for the loopback test\n");
1283 		return 1;
1284 	}
1285 
1286 	test_vsi->netdev = netdev;
1287 	tx_ring = test_vsi->tx_rings[0];
1288 	rx_ring = test_vsi->rx_rings[0];
1289 
1290 	if (ice_lbtest_prepare_rings(test_vsi)) {
1291 		ret = 2;
1292 		goto lbtest_vsi_close;
1293 	}
1294 
1295 	if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) {
1296 		ret = 3;
1297 		goto lbtest_rings_dis;
1298 	}
1299 
1300 	/* Enable MAC loopback in firmware */
1301 	if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) {
1302 		ret = 4;
1303 		goto lbtest_mac_dis;
1304 	}
1305 
1306 	/* Test VSI needs to receive broadcast packets */
1307 	eth_broadcast_addr(broadcast);
1308 	if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) {
1309 		ret = 5;
1310 		goto lbtest_mac_dis;
1311 	}
1312 
1313 	if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) {
1314 		ret = 7;
1315 		goto remove_mac_filters;
1316 	}
1317 
1318 	num_frames = min_t(int, tx_ring->count, 32);
1319 	for (i = 0; i < num_frames; i++) {
1320 		if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) {
1321 			ret = 8;
1322 			goto remove_mac_filters;
1323 		}
1324 	}
1325 
1326 	valid_frames = ice_lbtest_receive_frames(rx_ring);
1327 	if (!valid_frames)
1328 		ret = 9;
1329 	else if (valid_frames != num_frames)
1330 		ret = 10;
1331 
1332 remove_mac_filters:
1333 	if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI))
1334 		netdev_err(netdev, "Could not remove MAC filter for the test VSI\n");
1335 lbtest_mac_dis:
1336 	/* Disable MAC loopback after the test is completed. */
1337 	if (ice_aq_set_mac_loopback(&pf->hw, false, NULL))
1338 		netdev_err(netdev, "Could not disable MAC loopback\n");
1339 lbtest_rings_dis:
1340 	if (ice_lbtest_disable_rings(test_vsi))
1341 		netdev_err(netdev, "Could not disable test rings\n");
1342 lbtest_vsi_close:
1343 	test_vsi->netdev = NULL;
1344 	if (ice_vsi_release(test_vsi))
1345 		netdev_err(netdev, "Failed to remove the test VSI\n");
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  * ice_intr_test - perform an interrupt test on a given net_device
1352  * @netdev: network interface device structure
1353  *
1354  * This function performs one of the self-tests required by ethtool.
1355  * Returns 0 on success, non-zero on failure.
1356  */
1357 static u64 ice_intr_test(struct net_device *netdev)
1358 {
1359 	struct ice_netdev_priv *np = netdev_priv(netdev);
1360 	struct ice_pf *pf = np->vsi->back;
1361 	u16 swic_old = pf->sw_int_count;
1362 
1363 	netdev_info(netdev, "interrupt test\n");
1364 
1365 	wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index),
1366 	     GLINT_DYN_CTL_SW_ITR_INDX_M |
1367 	     GLINT_DYN_CTL_INTENA_MSK_M |
1368 	     GLINT_DYN_CTL_SWINT_TRIG_M);
1369 
1370 	usleep_range(1000, 2000);
1371 	return (swic_old == pf->sw_int_count);
1372 }
1373 
1374 /**
1375  * ice_self_test - handler function for performing a self-test by ethtool
1376  * @netdev: network interface device structure
1377  * @eth_test: ethtool_test structure
1378  * @data: required by ethtool.self_test
1379  *
1380  * This function is called after invoking 'ethtool -t devname' command where
1381  * devname is the name of the network device on which ethtool should operate.
1382  * It performs a set of self-tests to check if a device works properly.
1383  */
1384 static void
1385 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test,
1386 	      u64 *data)
1387 {
1388 	struct ice_netdev_priv *np = netdev_priv(netdev);
1389 	bool if_running = netif_running(netdev);
1390 	struct ice_pf *pf = np->vsi->back;
1391 	struct device *dev;
1392 
1393 	dev = ice_pf_to_dev(pf);
1394 
1395 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1396 		netdev_info(netdev, "offline testing starting\n");
1397 
1398 		set_bit(ICE_TESTING, pf->state);
1399 
1400 		if (ice_active_vfs(pf)) {
1401 			dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n");
1402 			data[ICE_ETH_TEST_REG] = 1;
1403 			data[ICE_ETH_TEST_EEPROM] = 1;
1404 			data[ICE_ETH_TEST_INTR] = 1;
1405 			data[ICE_ETH_TEST_LOOP] = 1;
1406 			data[ICE_ETH_TEST_LINK] = 1;
1407 			eth_test->flags |= ETH_TEST_FL_FAILED;
1408 			clear_bit(ICE_TESTING, pf->state);
1409 			goto skip_ol_tests;
1410 		}
1411 		/* If the device is online then take it offline */
1412 		if (if_running)
1413 			/* indicate we're in test mode */
1414 			ice_stop(netdev);
1415 
1416 		data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1417 		data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev);
1418 		data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev);
1419 		data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev);
1420 		data[ICE_ETH_TEST_REG] = ice_reg_test(netdev);
1421 
1422 		if (data[ICE_ETH_TEST_LINK] ||
1423 		    data[ICE_ETH_TEST_EEPROM] ||
1424 		    data[ICE_ETH_TEST_LOOP] ||
1425 		    data[ICE_ETH_TEST_INTR] ||
1426 		    data[ICE_ETH_TEST_REG])
1427 			eth_test->flags |= ETH_TEST_FL_FAILED;
1428 
1429 		clear_bit(ICE_TESTING, pf->state);
1430 
1431 		if (if_running) {
1432 			int status = ice_open(netdev);
1433 
1434 			if (status) {
1435 				dev_err(dev, "Could not open device %s, err %d\n",
1436 					pf->int_name, status);
1437 			}
1438 		}
1439 	} else {
1440 		/* Online tests */
1441 		netdev_info(netdev, "online testing starting\n");
1442 
1443 		data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1444 		if (data[ICE_ETH_TEST_LINK])
1445 			eth_test->flags |= ETH_TEST_FL_FAILED;
1446 
1447 		/* Offline only tests, not run in online; pass by default */
1448 		data[ICE_ETH_TEST_REG] = 0;
1449 		data[ICE_ETH_TEST_EEPROM] = 0;
1450 		data[ICE_ETH_TEST_INTR] = 0;
1451 		data[ICE_ETH_TEST_LOOP] = 0;
1452 	}
1453 
1454 skip_ol_tests:
1455 	netdev_info(netdev, "testing finished\n");
1456 }
1457 
1458 static void
1459 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data,
1460 		  struct ice_vsi *vsi)
1461 {
1462 	unsigned int i;
1463 	u8 *p = data;
1464 
1465 	switch (stringset) {
1466 	case ETH_SS_STATS:
1467 		for (i = 0; i < ICE_VSI_STATS_LEN; i++)
1468 			ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string);
1469 
1470 		if (ice_is_port_repr_netdev(netdev))
1471 			return;
1472 
1473 		ice_for_each_alloc_txq(vsi, i) {
1474 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1475 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1476 		}
1477 
1478 		ice_for_each_alloc_rxq(vsi, i) {
1479 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1480 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1481 		}
1482 
1483 		if (vsi->type != ICE_VSI_PF)
1484 			return;
1485 
1486 		for (i = 0; i < ICE_PF_STATS_LEN; i++)
1487 			ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string);
1488 
1489 		for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1490 			ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i);
1491 			ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i);
1492 		}
1493 		for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1494 			ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i);
1495 			ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i);
1496 		}
1497 		break;
1498 	case ETH_SS_TEST:
1499 		memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN);
1500 		break;
1501 	case ETH_SS_PRIV_FLAGS:
1502 		for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++)
1503 			ethtool_puts(&p, ice_gstrings_priv_flags[i].name);
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 }
1509 
1510 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1511 {
1512 	struct ice_netdev_priv *np = netdev_priv(netdev);
1513 
1514 	__ice_get_strings(netdev, stringset, data, np->vsi);
1515 }
1516 
1517 static int
1518 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)
1519 {
1520 	struct ice_netdev_priv *np = netdev_priv(netdev);
1521 	bool led_active;
1522 
1523 	switch (state) {
1524 	case ETHTOOL_ID_ACTIVE:
1525 		led_active = true;
1526 		break;
1527 	case ETHTOOL_ID_INACTIVE:
1528 		led_active = false;
1529 		break;
1530 	default:
1531 		return -EINVAL;
1532 	}
1533 
1534 	if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL))
1535 		return -EIO;
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * ice_set_fec_cfg - Set link FEC options
1542  * @netdev: network interface device structure
1543  * @req_fec: FEC mode to configure
1544  */
1545 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec)
1546 {
1547 	struct ice_netdev_priv *np = netdev_priv(netdev);
1548 	struct ice_aqc_set_phy_cfg_data config = { 0 };
1549 	struct ice_vsi *vsi = np->vsi;
1550 	struct ice_port_info *pi;
1551 
1552 	pi = vsi->port_info;
1553 	if (!pi)
1554 		return -EOPNOTSUPP;
1555 
1556 	/* Changing the FEC parameters is not supported if not the PF VSI */
1557 	if (vsi->type != ICE_VSI_PF) {
1558 		netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n");
1559 		return -EOPNOTSUPP;
1560 	}
1561 
1562 	/* Proceed only if requesting different FEC mode */
1563 	if (pi->phy.curr_user_fec_req == req_fec)
1564 		return 0;
1565 
1566 	/* Copy the current user PHY configuration. The current user PHY
1567 	 * configuration is initialized during probe from PHY capabilities
1568 	 * software mode, and updated on set PHY configuration.
1569 	 */
1570 	memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config));
1571 
1572 	ice_cfg_phy_fec(pi, &config, req_fec);
1573 	config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1574 
1575 	if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL))
1576 		return -EAGAIN;
1577 
1578 	/* Save requested FEC config */
1579 	pi->phy.curr_user_fec_req = req_fec;
1580 
1581 	return 0;
1582 }
1583 
1584 /**
1585  * ice_set_fecparam - Set FEC link options
1586  * @netdev: network interface device structure
1587  * @fecparam: Ethtool structure to retrieve FEC parameters
1588  */
1589 static int
1590 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1591 {
1592 	struct ice_netdev_priv *np = netdev_priv(netdev);
1593 	struct ice_vsi *vsi = np->vsi;
1594 	enum ice_fec_mode fec;
1595 
1596 	switch (fecparam->fec) {
1597 	case ETHTOOL_FEC_AUTO:
1598 		fec = ICE_FEC_AUTO;
1599 		break;
1600 	case ETHTOOL_FEC_RS:
1601 		fec = ICE_FEC_RS;
1602 		break;
1603 	case ETHTOOL_FEC_BASER:
1604 		fec = ICE_FEC_BASER;
1605 		break;
1606 	case ETHTOOL_FEC_OFF:
1607 	case ETHTOOL_FEC_NONE:
1608 		fec = ICE_FEC_NONE;
1609 		break;
1610 	default:
1611 		dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n",
1612 			 fecparam->fec);
1613 		return -EINVAL;
1614 	}
1615 
1616 	return ice_set_fec_cfg(netdev, fec);
1617 }
1618 
1619 /**
1620  * ice_get_fecparam - Get link FEC options
1621  * @netdev: network interface device structure
1622  * @fecparam: Ethtool structure to retrieve FEC parameters
1623  */
1624 static int
1625 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1626 {
1627 	struct ice_netdev_priv *np = netdev_priv(netdev);
1628 	struct ice_aqc_get_phy_caps_data *caps;
1629 	struct ice_link_status *link_info;
1630 	struct ice_vsi *vsi = np->vsi;
1631 	struct ice_port_info *pi;
1632 	int err;
1633 
1634 	pi = vsi->port_info;
1635 
1636 	if (!pi)
1637 		return -EOPNOTSUPP;
1638 	link_info = &pi->phy.link_info;
1639 
1640 	/* Set FEC mode based on negotiated link info */
1641 	switch (link_info->fec_info) {
1642 	case ICE_AQ_LINK_25G_KR_FEC_EN:
1643 		fecparam->active_fec = ETHTOOL_FEC_BASER;
1644 		break;
1645 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
1646 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
1647 		fecparam->active_fec = ETHTOOL_FEC_RS;
1648 		break;
1649 	default:
1650 		fecparam->active_fec = ETHTOOL_FEC_OFF;
1651 		break;
1652 	}
1653 
1654 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
1655 	if (!caps)
1656 		return -ENOMEM;
1657 
1658 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1659 				  caps, NULL);
1660 	if (err)
1661 		goto done;
1662 
1663 	/* Set supported/configured FEC modes based on PHY capability */
1664 	if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC)
1665 		fecparam->fec |= ETHTOOL_FEC_AUTO;
1666 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
1667 	    caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
1668 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN ||
1669 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
1670 		fecparam->fec |= ETHTOOL_FEC_BASER;
1671 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
1672 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ ||
1673 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
1674 		fecparam->fec |= ETHTOOL_FEC_RS;
1675 	if (caps->link_fec_options == 0)
1676 		fecparam->fec |= ETHTOOL_FEC_OFF;
1677 
1678 done:
1679 	kfree(caps);
1680 	return err;
1681 }
1682 
1683 /**
1684  * ice_nway_reset - restart autonegotiation
1685  * @netdev: network interface device structure
1686  */
1687 static int ice_nway_reset(struct net_device *netdev)
1688 {
1689 	struct ice_netdev_priv *np = netdev_priv(netdev);
1690 	struct ice_vsi *vsi = np->vsi;
1691 	int err;
1692 
1693 	/* If VSI state is up, then restart autoneg with link up */
1694 	if (!test_bit(ICE_DOWN, vsi->back->state))
1695 		err = ice_set_link(vsi, true);
1696 	else
1697 		err = ice_set_link(vsi, false);
1698 
1699 	return err;
1700 }
1701 
1702 /**
1703  * ice_get_priv_flags - report device private flags
1704  * @netdev: network interface device structure
1705  *
1706  * The get string set count and the string set should be matched for each
1707  * flag returned.  Add new strings for each flag to the ice_gstrings_priv_flags
1708  * array.
1709  *
1710  * Returns a u32 bitmap of flags.
1711  */
1712 static u32 ice_get_priv_flags(struct net_device *netdev)
1713 {
1714 	struct ice_netdev_priv *np = netdev_priv(netdev);
1715 	struct ice_vsi *vsi = np->vsi;
1716 	struct ice_pf *pf = vsi->back;
1717 	u32 i, ret_flags = 0;
1718 
1719 	for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1720 		const struct ice_priv_flag *priv_flag;
1721 
1722 		priv_flag = &ice_gstrings_priv_flags[i];
1723 
1724 		if (test_bit(priv_flag->bitno, pf->flags))
1725 			ret_flags |= BIT(i);
1726 	}
1727 
1728 	return ret_flags;
1729 }
1730 
1731 /**
1732  * ice_set_priv_flags - set private flags
1733  * @netdev: network interface device structure
1734  * @flags: bit flags to be set
1735  */
1736 static int ice_set_priv_flags(struct net_device *netdev, u32 flags)
1737 {
1738 	struct ice_netdev_priv *np = netdev_priv(netdev);
1739 	DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS);
1740 	DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS);
1741 	struct ice_vsi *vsi = np->vsi;
1742 	struct ice_pf *pf = vsi->back;
1743 	struct device *dev;
1744 	int ret = 0;
1745 	u32 i;
1746 
1747 	if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE))
1748 		return -EINVAL;
1749 
1750 	dev = ice_pf_to_dev(pf);
1751 	set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1752 
1753 	bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS);
1754 	for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1755 		const struct ice_priv_flag *priv_flag;
1756 
1757 		priv_flag = &ice_gstrings_priv_flags[i];
1758 
1759 		if (flags & BIT(i))
1760 			set_bit(priv_flag->bitno, pf->flags);
1761 		else
1762 			clear_bit(priv_flag->bitno, pf->flags);
1763 	}
1764 
1765 	bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS);
1766 
1767 	/* Do not allow change to link-down-on-close when Total Port Shutdown
1768 	 * is enabled.
1769 	 */
1770 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) &&
1771 	    test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
1772 		dev_err(dev, "Setting link-down-on-close not supported on this port\n");
1773 		set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1774 		ret = -EINVAL;
1775 		goto ethtool_exit;
1776 	}
1777 
1778 	if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) {
1779 		if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) {
1780 			int status;
1781 
1782 			/* Disable FW LLDP engine */
1783 			status = ice_cfg_lldp_mib_change(&pf->hw, false);
1784 
1785 			/* If unregistering for LLDP events fails, this is
1786 			 * not an error state, as there shouldn't be any
1787 			 * events to respond to.
1788 			 */
1789 			if (status)
1790 				dev_info(dev, "Failed to unreg for LLDP events\n");
1791 
1792 			/* The AQ call to stop the FW LLDP agent will generate
1793 			 * an error if the agent is already stopped.
1794 			 */
1795 			status = ice_aq_stop_lldp(&pf->hw, true, true, NULL);
1796 			if (status)
1797 				dev_warn(dev, "Fail to stop LLDP agent\n");
1798 			/* Use case for having the FW LLDP agent stopped
1799 			 * will likely not need DCB, so failure to init is
1800 			 * not a concern of ethtool
1801 			 */
1802 			status = ice_init_pf_dcb(pf, true);
1803 			if (status)
1804 				dev_warn(dev, "Fail to init DCB\n");
1805 
1806 			pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED;
1807 			pf->dcbx_cap |= DCB_CAP_DCBX_HOST;
1808 		} else {
1809 			bool dcbx_agent_status;
1810 			int status;
1811 
1812 			if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) {
1813 				clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags);
1814 				dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n");
1815 				ret = -EOPNOTSUPP;
1816 				goto ethtool_exit;
1817 			}
1818 
1819 			/* Remove rule to direct LLDP packets to default VSI.
1820 			 * The FW LLDP engine will now be consuming them.
1821 			 */
1822 			ice_cfg_sw_lldp(vsi, false, false);
1823 
1824 			/* AQ command to start FW LLDP agent will return an
1825 			 * error if the agent is already started
1826 			 */
1827 			status = ice_aq_start_lldp(&pf->hw, true, NULL);
1828 			if (status)
1829 				dev_warn(dev, "Fail to start LLDP Agent\n");
1830 
1831 			/* AQ command to start FW DCBX agent will fail if
1832 			 * the agent is already started
1833 			 */
1834 			status = ice_aq_start_stop_dcbx(&pf->hw, true,
1835 							&dcbx_agent_status,
1836 							NULL);
1837 			if (status)
1838 				dev_dbg(dev, "Failed to start FW DCBX\n");
1839 
1840 			dev_info(dev, "FW DCBX agent is %s\n",
1841 				 dcbx_agent_status ? "ACTIVE" : "DISABLED");
1842 
1843 			/* Failure to configure MIB change or init DCB is not
1844 			 * relevant to ethtool.  Print notification that
1845 			 * registration/init failed but do not return error
1846 			 * state to ethtool
1847 			 */
1848 			status = ice_init_pf_dcb(pf, true);
1849 			if (status)
1850 				dev_dbg(dev, "Fail to init DCB\n");
1851 
1852 			/* Register for MIB change events */
1853 			status = ice_cfg_lldp_mib_change(&pf->hw, true);
1854 			if (status)
1855 				dev_dbg(dev, "Fail to enable MIB change events\n");
1856 
1857 			pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST;
1858 			pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED;
1859 
1860 			ice_nway_reset(netdev);
1861 		}
1862 	}
1863 	if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) {
1864 		/* down and up VSI so that changes of Rx cfg are reflected. */
1865 		ice_down_up(vsi);
1866 	}
1867 	/* don't allow modification of this flag when a single VF is in
1868 	 * promiscuous mode because it's not supported
1869 	 */
1870 	if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) &&
1871 	    ice_is_any_vf_in_unicast_promisc(pf)) {
1872 		dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n");
1873 		/* toggle bit back to previous state */
1874 		change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags);
1875 		ret = -EAGAIN;
1876 	}
1877 
1878 	if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) &&
1879 	    ice_has_vfs(pf)) {
1880 		dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n");
1881 		/* toggle bit back to previous state */
1882 		change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags);
1883 		ret = -EOPNOTSUPP;
1884 	}
1885 ethtool_exit:
1886 	clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1887 	return ret;
1888 }
1889 
1890 static int ice_get_sset_count(struct net_device *netdev, int sset)
1891 {
1892 	switch (sset) {
1893 	case ETH_SS_STATS:
1894 		/* The number (and order) of strings reported *must* remain
1895 		 * constant for a given netdevice. This function must not
1896 		 * report a different number based on run time parameters
1897 		 * (such as the number of queues in use, or the setting of
1898 		 * a private ethtool flag). This is due to the nature of the
1899 		 * ethtool stats API.
1900 		 *
1901 		 * Userspace programs such as ethtool must make 3 separate
1902 		 * ioctl requests, one for size, one for the strings, and
1903 		 * finally one for the stats. Since these cross into
1904 		 * userspace, changes to the number or size could result in
1905 		 * undefined memory access or incorrect string<->value
1906 		 * correlations for statistics.
1907 		 *
1908 		 * Even if it appears to be safe, changes to the size or
1909 		 * order of strings will suffer from race conditions and are
1910 		 * not safe.
1911 		 */
1912 		return ICE_ALL_STATS_LEN(netdev);
1913 	case ETH_SS_TEST:
1914 		return ICE_TEST_LEN;
1915 	case ETH_SS_PRIV_FLAGS:
1916 		return ICE_PRIV_FLAG_ARRAY_SIZE;
1917 	default:
1918 		return -EOPNOTSUPP;
1919 	}
1920 }
1921 
1922 static void
1923 __ice_get_ethtool_stats(struct net_device *netdev,
1924 			struct ethtool_stats __always_unused *stats, u64 *data,
1925 			struct ice_vsi *vsi)
1926 {
1927 	struct ice_pf *pf = vsi->back;
1928 	struct ice_tx_ring *tx_ring;
1929 	struct ice_rx_ring *rx_ring;
1930 	unsigned int j;
1931 	int i = 0;
1932 	char *p;
1933 
1934 	ice_update_pf_stats(pf);
1935 	ice_update_vsi_stats(vsi);
1936 
1937 	for (j = 0; j < ICE_VSI_STATS_LEN; j++) {
1938 		p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset;
1939 		data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat ==
1940 			     sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1941 	}
1942 
1943 	if (ice_is_port_repr_netdev(netdev))
1944 		return;
1945 
1946 	/* populate per queue stats */
1947 	rcu_read_lock();
1948 
1949 	ice_for_each_alloc_txq(vsi, j) {
1950 		tx_ring = READ_ONCE(vsi->tx_rings[j]);
1951 		if (tx_ring && tx_ring->ring_stats) {
1952 			data[i++] = tx_ring->ring_stats->stats.pkts;
1953 			data[i++] = tx_ring->ring_stats->stats.bytes;
1954 		} else {
1955 			data[i++] = 0;
1956 			data[i++] = 0;
1957 		}
1958 	}
1959 
1960 	ice_for_each_alloc_rxq(vsi, j) {
1961 		rx_ring = READ_ONCE(vsi->rx_rings[j]);
1962 		if (rx_ring && rx_ring->ring_stats) {
1963 			data[i++] = rx_ring->ring_stats->stats.pkts;
1964 			data[i++] = rx_ring->ring_stats->stats.bytes;
1965 		} else {
1966 			data[i++] = 0;
1967 			data[i++] = 0;
1968 		}
1969 	}
1970 
1971 	rcu_read_unlock();
1972 
1973 	if (vsi->type != ICE_VSI_PF)
1974 		return;
1975 
1976 	for (j = 0; j < ICE_PF_STATS_LEN; j++) {
1977 		p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset;
1978 		data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat ==
1979 			     sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1980 	}
1981 
1982 	for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
1983 		data[i++] = pf->stats.priority_xon_tx[j];
1984 		data[i++] = pf->stats.priority_xoff_tx[j];
1985 	}
1986 
1987 	for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
1988 		data[i++] = pf->stats.priority_xon_rx[j];
1989 		data[i++] = pf->stats.priority_xoff_rx[j];
1990 	}
1991 }
1992 
1993 static void
1994 ice_get_ethtool_stats(struct net_device *netdev,
1995 		      struct ethtool_stats __always_unused *stats, u64 *data)
1996 {
1997 	struct ice_netdev_priv *np = netdev_priv(netdev);
1998 
1999 	__ice_get_ethtool_stats(netdev, stats, data, np->vsi);
2000 }
2001 
2002 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G	(ICE_PHY_TYPE_LOW_100BASE_TX | \
2003 					 ICE_PHY_TYPE_LOW_100M_SGMII)
2004 
2005 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G	(ICE_PHY_TYPE_LOW_MASK_MIN_1G | \
2006 					 ICE_PHY_TYPE_LOW_1000BASE_T | \
2007 					 ICE_PHY_TYPE_LOW_1000BASE_SX | \
2008 					 ICE_PHY_TYPE_LOW_1000BASE_LX | \
2009 					 ICE_PHY_TYPE_LOW_1000BASE_KX | \
2010 					 ICE_PHY_TYPE_LOW_1G_SGMII | \
2011 					 ICE_PHY_TYPE_LOW_2500BASE_T | \
2012 					 ICE_PHY_TYPE_LOW_2500BASE_X | \
2013 					 ICE_PHY_TYPE_LOW_2500BASE_KX | \
2014 					 ICE_PHY_TYPE_LOW_5GBASE_T | \
2015 					 ICE_PHY_TYPE_LOW_5GBASE_KR | \
2016 					 ICE_PHY_TYPE_LOW_10GBASE_T | \
2017 					 ICE_PHY_TYPE_LOW_10G_SFI_DA | \
2018 					 ICE_PHY_TYPE_LOW_10GBASE_SR | \
2019 					 ICE_PHY_TYPE_LOW_10GBASE_LR | \
2020 					 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
2021 					 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
2022 					 ICE_PHY_TYPE_LOW_10G_SFI_C2C)
2023 
2024 #define ICE_PHY_TYPE_LOW_MASK_100G	(ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
2025 					 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
2026 					 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
2027 					 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
2028 					 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
2029 					 ICE_PHY_TYPE_LOW_100G_CAUI4 | \
2030 					 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
2031 					 ICE_PHY_TYPE_LOW_100G_AUI4 | \
2032 					 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
2033 					 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
2034 					 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
2035 					 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
2036 					 ICE_PHY_TYPE_LOW_100GBASE_DR)
2037 
2038 #define ICE_PHY_TYPE_HIGH_MASK_100G	(ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
2039 					 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\
2040 					 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
2041 					 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
2042 					 ICE_PHY_TYPE_HIGH_100G_AUI2)
2043 
2044 #define ICE_PHY_TYPE_HIGH_MASK_200G	(ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \
2045 					 ICE_PHY_TYPE_HIGH_200G_SR4 | \
2046 					 ICE_PHY_TYPE_HIGH_200G_FR4 | \
2047 					 ICE_PHY_TYPE_HIGH_200G_LR4 | \
2048 					 ICE_PHY_TYPE_HIGH_200G_DR4 | \
2049 					 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \
2050 					 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \
2051 					 ICE_PHY_TYPE_HIGH_200G_AUI4)
2052 
2053 /**
2054  * ice_mask_min_supported_speeds
2055  * @hw: pointer to the HW structure
2056  * @phy_types_high: PHY type high
2057  * @phy_types_low: PHY type low to apply minimum supported speeds mask
2058  *
2059  * Apply minimum supported speeds mask to PHY type low. These are the speeds
2060  * for ethtool supported link mode.
2061  */
2062 static void
2063 ice_mask_min_supported_speeds(struct ice_hw *hw,
2064 			      u64 phy_types_high, u64 *phy_types_low)
2065 {
2066 	/* if QSFP connection with 100G speed, minimum supported speed is 25G */
2067 	if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) ||
2068 	    (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) ||
2069 	    (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G))
2070 		*phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G;
2071 	else if (!ice_is_100m_speed_supported(hw))
2072 		*phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G;
2073 }
2074 
2075 /**
2076  * ice_linkmode_set_bit - set link mode bit
2077  * @phy_to_ethtool: PHY type to ethtool link mode struct to set
2078  * @ks: ethtool link ksettings struct to fill out
2079  * @req_speeds: speed requested by user
2080  * @advert_phy_type: advertised PHY type
2081  * @phy_type: PHY type
2082  */
2083 static void
2084 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool,
2085 		     struct ethtool_link_ksettings *ks, u32 req_speeds,
2086 		     u64 advert_phy_type, u32 phy_type)
2087 {
2088 	linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported);
2089 
2090 	if (req_speeds & phy_to_ethtool->aq_link_speed ||
2091 	    (!req_speeds && advert_phy_type & BIT(phy_type)))
2092 		linkmode_set_bit(phy_to_ethtool->link_mode,
2093 				 ks->link_modes.advertising);
2094 }
2095 
2096 /**
2097  * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes
2098  * @netdev: network interface device structure
2099  * @ks: ethtool link ksettings struct to fill out
2100  */
2101 static void
2102 ice_phy_type_to_ethtool(struct net_device *netdev,
2103 			struct ethtool_link_ksettings *ks)
2104 {
2105 	struct ice_netdev_priv *np = netdev_priv(netdev);
2106 	struct ice_vsi *vsi = np->vsi;
2107 	struct ice_pf *pf = vsi->back;
2108 	u64 advert_phy_type_lo = 0;
2109 	u64 advert_phy_type_hi = 0;
2110 	u64 phy_types_high = 0;
2111 	u64 phy_types_low = 0;
2112 	u32 req_speeds;
2113 	u32 i;
2114 
2115 	req_speeds = vsi->port_info->phy.link_info.req_speeds;
2116 
2117 	/* Check if lenient mode is supported and enabled, or in strict mode.
2118 	 *
2119 	 * In lenient mode the Supported link modes are the PHY types without
2120 	 * media. The Advertising link mode is either 1. the user requested
2121 	 * speed, 2. the override PHY mask, or 3. the PHY types with media.
2122 	 *
2123 	 * In strict mode Supported link mode are the PHY type with media,
2124 	 * and Advertising link modes are the media PHY type or the speed
2125 	 * requested by user.
2126 	 */
2127 	if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2128 		phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo);
2129 		phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi);
2130 
2131 		ice_mask_min_supported_speeds(&pf->hw, phy_types_high,
2132 					      &phy_types_low);
2133 		/* determine advertised modes based on link override only
2134 		 * if it's supported and if the FW doesn't abstract the
2135 		 * driver from having to account for link overrides
2136 		 */
2137 		if (ice_fw_supports_link_override(&pf->hw) &&
2138 		    !ice_fw_supports_report_dflt_cfg(&pf->hw)) {
2139 			struct ice_link_default_override_tlv *ldo;
2140 
2141 			ldo = &pf->link_dflt_override;
2142 			/* If override enabled and PHY mask set, then
2143 			 * Advertising link mode is the intersection of the PHY
2144 			 * types without media and the override PHY mask.
2145 			 */
2146 			if (ldo->options & ICE_LINK_OVERRIDE_EN &&
2147 			    (ldo->phy_type_low || ldo->phy_type_high)) {
2148 				advert_phy_type_lo =
2149 					le64_to_cpu(pf->nvm_phy_type_lo) &
2150 					ldo->phy_type_low;
2151 				advert_phy_type_hi =
2152 					le64_to_cpu(pf->nvm_phy_type_hi) &
2153 					ldo->phy_type_high;
2154 			}
2155 		}
2156 	} else {
2157 		/* strict mode */
2158 		phy_types_low = vsi->port_info->phy.phy_type_low;
2159 		phy_types_high = vsi->port_info->phy.phy_type_high;
2160 	}
2161 
2162 	/* If Advertising link mode PHY type is not using override PHY type,
2163 	 * then use PHY type with media.
2164 	 */
2165 	if (!advert_phy_type_lo && !advert_phy_type_hi) {
2166 		advert_phy_type_lo = vsi->port_info->phy.phy_type_low;
2167 		advert_phy_type_hi = vsi->port_info->phy.phy_type_high;
2168 	}
2169 
2170 	linkmode_zero(ks->link_modes.supported);
2171 	linkmode_zero(ks->link_modes.advertising);
2172 
2173 	for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) {
2174 		if (phy_types_low & BIT_ULL(i))
2175 			ice_linkmode_set_bit(&phy_type_low_lkup[i], ks,
2176 					     req_speeds, advert_phy_type_lo,
2177 					     i);
2178 	}
2179 
2180 	for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) {
2181 		if (phy_types_high & BIT_ULL(i))
2182 			ice_linkmode_set_bit(&phy_type_high_lkup[i], ks,
2183 					     req_speeds, advert_phy_type_hi,
2184 					     i);
2185 	}
2186 }
2187 
2188 #define TEST_SET_BITS_TIMEOUT	50
2189 #define TEST_SET_BITS_SLEEP_MAX	2000
2190 #define TEST_SET_BITS_SLEEP_MIN	1000
2191 
2192 /**
2193  * ice_get_settings_link_up - Get Link settings for when link is up
2194  * @ks: ethtool ksettings to fill in
2195  * @netdev: network interface device structure
2196  */
2197 static void
2198 ice_get_settings_link_up(struct ethtool_link_ksettings *ks,
2199 			 struct net_device *netdev)
2200 {
2201 	struct ice_netdev_priv *np = netdev_priv(netdev);
2202 	struct ice_port_info *pi = np->vsi->port_info;
2203 	struct ice_link_status *link_info;
2204 	struct ice_vsi *vsi = np->vsi;
2205 
2206 	link_info = &vsi->port_info->phy.link_info;
2207 
2208 	/* Get supported and advertised settings from PHY ability with media */
2209 	ice_phy_type_to_ethtool(netdev, ks);
2210 
2211 	switch (link_info->link_speed) {
2212 	case ICE_AQ_LINK_SPEED_200GB:
2213 		ks->base.speed = SPEED_200000;
2214 		break;
2215 	case ICE_AQ_LINK_SPEED_100GB:
2216 		ks->base.speed = SPEED_100000;
2217 		break;
2218 	case ICE_AQ_LINK_SPEED_50GB:
2219 		ks->base.speed = SPEED_50000;
2220 		break;
2221 	case ICE_AQ_LINK_SPEED_40GB:
2222 		ks->base.speed = SPEED_40000;
2223 		break;
2224 	case ICE_AQ_LINK_SPEED_25GB:
2225 		ks->base.speed = SPEED_25000;
2226 		break;
2227 	case ICE_AQ_LINK_SPEED_20GB:
2228 		ks->base.speed = SPEED_20000;
2229 		break;
2230 	case ICE_AQ_LINK_SPEED_10GB:
2231 		ks->base.speed = SPEED_10000;
2232 		break;
2233 	case ICE_AQ_LINK_SPEED_5GB:
2234 		ks->base.speed = SPEED_5000;
2235 		break;
2236 	case ICE_AQ_LINK_SPEED_2500MB:
2237 		ks->base.speed = SPEED_2500;
2238 		break;
2239 	case ICE_AQ_LINK_SPEED_1000MB:
2240 		ks->base.speed = SPEED_1000;
2241 		break;
2242 	case ICE_AQ_LINK_SPEED_100MB:
2243 		ks->base.speed = SPEED_100;
2244 		break;
2245 	default:
2246 		netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n",
2247 			    link_info->link_speed);
2248 		break;
2249 	}
2250 	ks->base.duplex = DUPLEX_FULL;
2251 
2252 	if (link_info->an_info & ICE_AQ_AN_COMPLETED)
2253 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2254 						     Autoneg);
2255 
2256 	/* Set flow control negotiated Rx/Tx pause */
2257 	switch (pi->fc.current_mode) {
2258 	case ICE_FC_FULL:
2259 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2260 		break;
2261 	case ICE_FC_TX_PAUSE:
2262 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2263 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2264 						     Asym_Pause);
2265 		break;
2266 	case ICE_FC_RX_PAUSE:
2267 		ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2268 						     Asym_Pause);
2269 		break;
2270 	case ICE_FC_PFC:
2271 	default:
2272 		ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause);
2273 		ethtool_link_ksettings_del_link_mode(ks, lp_advertising,
2274 						     Asym_Pause);
2275 		break;
2276 	}
2277 }
2278 
2279 /**
2280  * ice_get_settings_link_down - Get the Link settings when link is down
2281  * @ks: ethtool ksettings to fill in
2282  * @netdev: network interface device structure
2283  *
2284  * Reports link settings that can be determined when link is down
2285  */
2286 static void
2287 ice_get_settings_link_down(struct ethtool_link_ksettings *ks,
2288 			   struct net_device *netdev)
2289 {
2290 	/* link is down and the driver needs to fall back on
2291 	 * supported PHY types to figure out what info to display
2292 	 */
2293 	ice_phy_type_to_ethtool(netdev, ks);
2294 
2295 	/* With no link, speed and duplex are unknown */
2296 	ks->base.speed = SPEED_UNKNOWN;
2297 	ks->base.duplex = DUPLEX_UNKNOWN;
2298 }
2299 
2300 /**
2301  * ice_get_link_ksettings - Get Link Speed and Duplex settings
2302  * @netdev: network interface device structure
2303  * @ks: ethtool ksettings
2304  *
2305  * Reports speed/duplex settings based on media_type
2306  */
2307 static int
2308 ice_get_link_ksettings(struct net_device *netdev,
2309 		       struct ethtool_link_ksettings *ks)
2310 {
2311 	struct ice_netdev_priv *np = netdev_priv(netdev);
2312 	struct ice_aqc_get_phy_caps_data *caps;
2313 	struct ice_link_status *hw_link_info;
2314 	struct ice_vsi *vsi = np->vsi;
2315 	int err;
2316 
2317 	ethtool_link_ksettings_zero_link_mode(ks, supported);
2318 	ethtool_link_ksettings_zero_link_mode(ks, advertising);
2319 	ethtool_link_ksettings_zero_link_mode(ks, lp_advertising);
2320 	hw_link_info = &vsi->port_info->phy.link_info;
2321 
2322 	/* set speed and duplex */
2323 	if (hw_link_info->link_info & ICE_AQ_LINK_UP)
2324 		ice_get_settings_link_up(ks, netdev);
2325 	else
2326 		ice_get_settings_link_down(ks, netdev);
2327 
2328 	/* set autoneg settings */
2329 	ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ?
2330 		AUTONEG_ENABLE : AUTONEG_DISABLE;
2331 
2332 	/* set media type settings */
2333 	switch (vsi->port_info->phy.media_type) {
2334 	case ICE_MEDIA_FIBER:
2335 		ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2336 		ks->base.port = PORT_FIBRE;
2337 		break;
2338 	case ICE_MEDIA_BASET:
2339 		ethtool_link_ksettings_add_link_mode(ks, supported, TP);
2340 		ethtool_link_ksettings_add_link_mode(ks, advertising, TP);
2341 		ks->base.port = PORT_TP;
2342 		break;
2343 	case ICE_MEDIA_BACKPLANE:
2344 		ethtool_link_ksettings_add_link_mode(ks, supported, Backplane);
2345 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2346 						     Backplane);
2347 		ks->base.port = PORT_NONE;
2348 		break;
2349 	case ICE_MEDIA_DA:
2350 		ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2351 		ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE);
2352 		ks->base.port = PORT_DA;
2353 		break;
2354 	default:
2355 		ks->base.port = PORT_OTHER;
2356 		break;
2357 	}
2358 
2359 	/* flow control is symmetric and always supported */
2360 	ethtool_link_ksettings_add_link_mode(ks, supported, Pause);
2361 
2362 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2363 	if (!caps)
2364 		return -ENOMEM;
2365 
2366 	err = ice_aq_get_phy_caps(vsi->port_info, false,
2367 				  ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
2368 	if (err)
2369 		goto done;
2370 
2371 	/* Set the advertised flow control based on the PHY capability */
2372 	if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) &&
2373 	    (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) {
2374 		ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2375 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2376 						     Asym_Pause);
2377 	} else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) {
2378 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2379 						     Asym_Pause);
2380 	} else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) {
2381 		ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2382 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2383 						     Asym_Pause);
2384 	} else {
2385 		ethtool_link_ksettings_del_link_mode(ks, advertising, Pause);
2386 		ethtool_link_ksettings_del_link_mode(ks, advertising,
2387 						     Asym_Pause);
2388 	}
2389 
2390 	/* Set advertised FEC modes based on PHY capability */
2391 	ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE);
2392 
2393 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
2394 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
2395 		ethtool_link_ksettings_add_link_mode(ks, advertising,
2396 						     FEC_BASER);
2397 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
2398 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
2399 		ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS);
2400 
2401 	err = ice_aq_get_phy_caps(vsi->port_info, false,
2402 				  ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL);
2403 	if (err)
2404 		goto done;
2405 
2406 	/* Set supported FEC modes based on PHY capability */
2407 	ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE);
2408 
2409 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
2410 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN)
2411 		ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER);
2412 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
2413 		ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS);
2414 
2415 	/* Set supported and advertised autoneg */
2416 	if (ice_is_phy_caps_an_enabled(caps)) {
2417 		ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg);
2418 		ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg);
2419 	}
2420 
2421 done:
2422 	kfree(caps);
2423 	return err;
2424 }
2425 
2426 /**
2427  * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed
2428  * @speed: ethtool forced speed
2429  */
2430 static u16 ice_speed_to_aq_link(int speed)
2431 {
2432 	int aq_speed;
2433 
2434 	switch (speed) {
2435 	case SPEED_10:
2436 		aq_speed = ICE_AQ_LINK_SPEED_10MB;
2437 		break;
2438 	case SPEED_100:
2439 		aq_speed = ICE_AQ_LINK_SPEED_100MB;
2440 		break;
2441 	case SPEED_1000:
2442 		aq_speed = ICE_AQ_LINK_SPEED_1000MB;
2443 		break;
2444 	case SPEED_2500:
2445 		aq_speed = ICE_AQ_LINK_SPEED_2500MB;
2446 		break;
2447 	case SPEED_5000:
2448 		aq_speed = ICE_AQ_LINK_SPEED_5GB;
2449 		break;
2450 	case SPEED_10000:
2451 		aq_speed = ICE_AQ_LINK_SPEED_10GB;
2452 		break;
2453 	case SPEED_20000:
2454 		aq_speed = ICE_AQ_LINK_SPEED_20GB;
2455 		break;
2456 	case SPEED_25000:
2457 		aq_speed = ICE_AQ_LINK_SPEED_25GB;
2458 		break;
2459 	case SPEED_40000:
2460 		aq_speed = ICE_AQ_LINK_SPEED_40GB;
2461 		break;
2462 	case SPEED_50000:
2463 		aq_speed = ICE_AQ_LINK_SPEED_50GB;
2464 		break;
2465 	case SPEED_100000:
2466 		aq_speed = ICE_AQ_LINK_SPEED_100GB;
2467 		break;
2468 	default:
2469 		aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN;
2470 		break;
2471 	}
2472 	return aq_speed;
2473 }
2474 
2475 /**
2476  * ice_ksettings_find_adv_link_speed - Find advertising link speed
2477  * @ks: ethtool ksettings
2478  */
2479 static u16
2480 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks)
2481 {
2482 	const struct ethtool_forced_speed_map *map;
2483 	u16 adv_link_speed = 0;
2484 
2485 	for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) {
2486 		map = ice_adv_lnk_speed_maps + i;
2487 		if (linkmode_intersects(ks->link_modes.advertising, map->caps))
2488 			adv_link_speed |= ice_speed_to_aq_link(map->speed);
2489 	}
2490 
2491 	return adv_link_speed;
2492 }
2493 
2494 /**
2495  * ice_setup_autoneg
2496  * @p: port info
2497  * @ks: ethtool_link_ksettings
2498  * @config: configuration that will be sent down to FW
2499  * @autoneg_enabled: autonegotiation is enabled or not
2500  * @autoneg_changed: will there a change in autonegotiation
2501  * @netdev: network interface device structure
2502  *
2503  * Setup PHY autonegotiation feature
2504  */
2505 static int
2506 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks,
2507 		  struct ice_aqc_set_phy_cfg_data *config,
2508 		  u8 autoneg_enabled, u8 *autoneg_changed,
2509 		  struct net_device *netdev)
2510 {
2511 	int err = 0;
2512 
2513 	*autoneg_changed = 0;
2514 
2515 	/* Check autoneg */
2516 	if (autoneg_enabled == AUTONEG_ENABLE) {
2517 		/* If autoneg was not already enabled */
2518 		if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) {
2519 			/* If autoneg is not supported, return error */
2520 			if (!ethtool_link_ksettings_test_link_mode(ks,
2521 								   supported,
2522 								   Autoneg)) {
2523 				netdev_info(netdev, "Autoneg not supported on this phy.\n");
2524 				err = -EINVAL;
2525 			} else {
2526 				/* Autoneg is allowed to change */
2527 				config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2528 				*autoneg_changed = 1;
2529 			}
2530 		}
2531 	} else {
2532 		/* If autoneg is currently enabled */
2533 		if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) {
2534 			/* If autoneg is supported 10GBASE_T is the only PHY
2535 			 * that can disable it, so otherwise return error
2536 			 */
2537 			if (ethtool_link_ksettings_test_link_mode(ks,
2538 								  supported,
2539 								  Autoneg)) {
2540 				netdev_info(netdev, "Autoneg cannot be disabled on this phy\n");
2541 				err = -EINVAL;
2542 			} else {
2543 				/* Autoneg is allowed to change */
2544 				config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2545 				*autoneg_changed = 1;
2546 			}
2547 		}
2548 	}
2549 
2550 	return err;
2551 }
2552 
2553 /**
2554  * ice_set_phy_type_from_speed - set phy_types based on speeds
2555  * and advertised modes
2556  * @ks: ethtool link ksettings struct
2557  * @phy_type_low: pointer to the lower part of phy_type
2558  * @phy_type_high: pointer to the higher part of phy_type
2559  * @adv_link_speed: targeted link speeds bitmap
2560  */
2561 static void
2562 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks,
2563 			    u64 *phy_type_low, u64 *phy_type_high,
2564 			    u16 adv_link_speed)
2565 {
2566 	/* Handle 1000M speed in a special way because ice_update_phy_type
2567 	 * enables all link modes, but having mixed copper and optical
2568 	 * standards is not supported.
2569 	 */
2570 	adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB;
2571 
2572 	if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2573 						  1000baseT_Full))
2574 		*phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T |
2575 				 ICE_PHY_TYPE_LOW_1G_SGMII;
2576 
2577 	if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2578 						  1000baseKX_Full))
2579 		*phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX;
2580 
2581 	if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2582 						  1000baseX_Full))
2583 		*phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX |
2584 				 ICE_PHY_TYPE_LOW_1000BASE_LX;
2585 
2586 	ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed);
2587 }
2588 
2589 /**
2590  * ice_set_link_ksettings - Set Speed and Duplex
2591  * @netdev: network interface device structure
2592  * @ks: ethtool ksettings
2593  *
2594  * Set speed/duplex per media_types advertised/forced
2595  */
2596 static int
2597 ice_set_link_ksettings(struct net_device *netdev,
2598 		       const struct ethtool_link_ksettings *ks)
2599 {
2600 	struct ice_netdev_priv *np = netdev_priv(netdev);
2601 	u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT;
2602 	struct ethtool_link_ksettings copy_ks = *ks;
2603 	struct ethtool_link_ksettings safe_ks = {};
2604 	struct ice_aqc_get_phy_caps_data *phy_caps;
2605 	struct ice_aqc_set_phy_cfg_data config;
2606 	u16 adv_link_speed, curr_link_speed;
2607 	struct ice_pf *pf = np->vsi->back;
2608 	struct ice_port_info *pi;
2609 	u8 autoneg_changed = 0;
2610 	u64 phy_type_high = 0;
2611 	u64 phy_type_low = 0;
2612 	bool linkup;
2613 	int err;
2614 
2615 	pi = np->vsi->port_info;
2616 
2617 	if (!pi)
2618 		return -EIO;
2619 
2620 	if (pi->phy.media_type != ICE_MEDIA_BASET &&
2621 	    pi->phy.media_type != ICE_MEDIA_FIBER &&
2622 	    pi->phy.media_type != ICE_MEDIA_BACKPLANE &&
2623 	    pi->phy.media_type != ICE_MEDIA_DA &&
2624 	    pi->phy.link_info.link_info & ICE_AQ_LINK_UP)
2625 		return -EOPNOTSUPP;
2626 
2627 	phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL);
2628 	if (!phy_caps)
2629 		return -ENOMEM;
2630 
2631 	/* Get the PHY capabilities based on media */
2632 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2633 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2634 					  phy_caps, NULL);
2635 	else
2636 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2637 					  phy_caps, NULL);
2638 	if (err)
2639 		goto done;
2640 
2641 	/* save autoneg out of ksettings */
2642 	autoneg = copy_ks.base.autoneg;
2643 
2644 	/* Get link modes supported by hardware.*/
2645 	ice_phy_type_to_ethtool(netdev, &safe_ks);
2646 
2647 	/* and check against modes requested by user.
2648 	 * Return an error if unsupported mode was set.
2649 	 */
2650 	if (!bitmap_subset(copy_ks.link_modes.advertising,
2651 			   safe_ks.link_modes.supported,
2652 			   __ETHTOOL_LINK_MODE_MASK_NBITS)) {
2653 		if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags))
2654 			netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2655 		err = -EOPNOTSUPP;
2656 		goto done;
2657 	}
2658 
2659 	/* get our own copy of the bits to check against */
2660 	memset(&safe_ks, 0, sizeof(safe_ks));
2661 	safe_ks.base.cmd = copy_ks.base.cmd;
2662 	safe_ks.base.link_mode_masks_nwords =
2663 		copy_ks.base.link_mode_masks_nwords;
2664 	ice_get_link_ksettings(netdev, &safe_ks);
2665 
2666 	/* set autoneg back to what it currently is */
2667 	copy_ks.base.autoneg = safe_ks.base.autoneg;
2668 	/* we don't compare the speed */
2669 	copy_ks.base.speed = safe_ks.base.speed;
2670 
2671 	/* If copy_ks.base and safe_ks.base are not the same now, then they are
2672 	 * trying to set something that we do not support.
2673 	 */
2674 	if (memcmp(&copy_ks.base, &safe_ks.base, sizeof(copy_ks.base))) {
2675 		err = -EOPNOTSUPP;
2676 		goto done;
2677 	}
2678 
2679 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
2680 		timeout--;
2681 		if (!timeout) {
2682 			err = -EBUSY;
2683 			goto done;
2684 		}
2685 		usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX);
2686 	}
2687 
2688 	/* Copy the current user PHY configuration. The current user PHY
2689 	 * configuration is initialized during probe from PHY capabilities
2690 	 * software mode, and updated on set PHY configuration.
2691 	 */
2692 	config = pi->phy.curr_user_phy_cfg;
2693 
2694 	config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2695 
2696 	/* Check autoneg */
2697 	err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed,
2698 				netdev);
2699 
2700 	if (err)
2701 		goto done;
2702 
2703 	/* Call to get the current link speed */
2704 	pi->phy.get_link_info = true;
2705 	err = ice_get_link_status(pi, &linkup);
2706 	if (err)
2707 		goto done;
2708 
2709 	curr_link_speed = pi->phy.curr_user_speed_req;
2710 	adv_link_speed = ice_ksettings_find_adv_link_speed(ks);
2711 
2712 	/* If speed didn't get set, set it to what it currently is.
2713 	 * This is needed because if advertise is 0 (as it is when autoneg
2714 	 * is disabled) then speed won't get set.
2715 	 */
2716 	if (!adv_link_speed)
2717 		adv_link_speed = curr_link_speed;
2718 
2719 	/* Convert the advertise link speeds to their corresponded PHY_TYPE */
2720 	ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high,
2721 				    adv_link_speed);
2722 
2723 	if (!autoneg_changed && adv_link_speed == curr_link_speed) {
2724 		netdev_info(netdev, "Nothing changed, exiting without setting anything.\n");
2725 		goto done;
2726 	}
2727 
2728 	/* save the requested speeds */
2729 	pi->phy.link_info.req_speeds = adv_link_speed;
2730 
2731 	/* set link and auto negotiation so changes take effect */
2732 	config.caps |= ICE_AQ_PHY_ENA_LINK;
2733 
2734 	/* check if there is a PHY type for the requested advertised speed */
2735 	if (!(phy_type_low || phy_type_high)) {
2736 		netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2737 		err = -EOPNOTSUPP;
2738 		goto done;
2739 	}
2740 
2741 	/* intersect requested advertised speed PHY types with media PHY types
2742 	 * for set PHY configuration
2743 	 */
2744 	config.phy_type_high = cpu_to_le64(phy_type_high) &
2745 			phy_caps->phy_type_high;
2746 	config.phy_type_low = cpu_to_le64(phy_type_low) &
2747 			phy_caps->phy_type_low;
2748 
2749 	if (!(config.phy_type_high || config.phy_type_low)) {
2750 		/* If there is no intersection and lenient mode is enabled, then
2751 		 * intersect the requested advertised speed with NVM media type
2752 		 * PHY types.
2753 		 */
2754 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2755 			config.phy_type_high = cpu_to_le64(phy_type_high) &
2756 					       pf->nvm_phy_type_hi;
2757 			config.phy_type_low = cpu_to_le64(phy_type_low) &
2758 					      pf->nvm_phy_type_lo;
2759 		} else {
2760 			netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2761 			err = -EOPNOTSUPP;
2762 			goto done;
2763 		}
2764 	}
2765 
2766 	/* If link is up put link down */
2767 	if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) {
2768 		/* Tell the OS link is going down, the link will go
2769 		 * back up when fw says it is ready asynchronously
2770 		 */
2771 		ice_print_link_msg(np->vsi, false);
2772 		netif_carrier_off(netdev);
2773 		netif_tx_stop_all_queues(netdev);
2774 	}
2775 
2776 	/* make the aq call */
2777 	err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL);
2778 	if (err) {
2779 		netdev_info(netdev, "Set phy config failed,\n");
2780 		goto done;
2781 	}
2782 
2783 	/* Save speed request */
2784 	pi->phy.curr_user_speed_req = adv_link_speed;
2785 done:
2786 	kfree(phy_caps);
2787 	clear_bit(ICE_CFG_BUSY, pf->state);
2788 
2789 	return err;
2790 }
2791 
2792 /**
2793  * ice_parse_hdrs - parses headers from RSS hash input
2794  * @nfc: ethtool rxnfc command
2795  *
2796  * This function parses the rxnfc command and returns intended
2797  * header types for RSS configuration
2798  */
2799 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc)
2800 {
2801 	u32 hdrs = ICE_FLOW_SEG_HDR_NONE;
2802 
2803 	switch (nfc->flow_type) {
2804 	case TCP_V4_FLOW:
2805 		hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4;
2806 		break;
2807 	case UDP_V4_FLOW:
2808 		hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4;
2809 		break;
2810 	case SCTP_V4_FLOW:
2811 		hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4;
2812 		break;
2813 	case GTPU_V4_FLOW:
2814 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4;
2815 		break;
2816 	case GTPC_V4_FLOW:
2817 		hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4;
2818 		break;
2819 	case GTPC_TEID_V4_FLOW:
2820 		hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4;
2821 		break;
2822 	case GTPU_EH_V4_FLOW:
2823 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4;
2824 		break;
2825 	case GTPU_UL_V4_FLOW:
2826 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4;
2827 		break;
2828 	case GTPU_DL_V4_FLOW:
2829 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4;
2830 		break;
2831 	case TCP_V6_FLOW:
2832 		hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6;
2833 		break;
2834 	case UDP_V6_FLOW:
2835 		hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6;
2836 		break;
2837 	case SCTP_V6_FLOW:
2838 		hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6;
2839 		break;
2840 	case GTPU_V6_FLOW:
2841 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6;
2842 		break;
2843 	case GTPC_V6_FLOW:
2844 		hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6;
2845 		break;
2846 	case GTPC_TEID_V6_FLOW:
2847 		hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6;
2848 		break;
2849 	case GTPU_EH_V6_FLOW:
2850 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6;
2851 		break;
2852 	case GTPU_UL_V6_FLOW:
2853 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6;
2854 		break;
2855 	case GTPU_DL_V6_FLOW:
2856 		hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6;
2857 		break;
2858 	default:
2859 		break;
2860 	}
2861 	return hdrs;
2862 }
2863 
2864 /**
2865  * ice_parse_hash_flds - parses hash fields from RSS hash input
2866  * @nfc: ethtool rxnfc command
2867  * @symm: true if Symmetric Topelitz is set
2868  *
2869  * This function parses the rxnfc command and returns intended
2870  * hash fields for RSS configuration
2871  */
2872 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm)
2873 {
2874 	u64 hfld = ICE_HASH_INVALID;
2875 
2876 	if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) {
2877 		switch (nfc->flow_type) {
2878 		case TCP_V4_FLOW:
2879 		case UDP_V4_FLOW:
2880 		case SCTP_V4_FLOW:
2881 		case GTPU_V4_FLOW:
2882 		case GTPC_V4_FLOW:
2883 		case GTPC_TEID_V4_FLOW:
2884 		case GTPU_EH_V4_FLOW:
2885 		case GTPU_UL_V4_FLOW:
2886 		case GTPU_DL_V4_FLOW:
2887 			if (nfc->data & RXH_IP_SRC)
2888 				hfld |= ICE_FLOW_HASH_FLD_IPV4_SA;
2889 			if (nfc->data & RXH_IP_DST)
2890 				hfld |= ICE_FLOW_HASH_FLD_IPV4_DA;
2891 			break;
2892 		case TCP_V6_FLOW:
2893 		case UDP_V6_FLOW:
2894 		case SCTP_V6_FLOW:
2895 		case GTPU_V6_FLOW:
2896 		case GTPC_V6_FLOW:
2897 		case GTPC_TEID_V6_FLOW:
2898 		case GTPU_EH_V6_FLOW:
2899 		case GTPU_UL_V6_FLOW:
2900 		case GTPU_DL_V6_FLOW:
2901 			if (nfc->data & RXH_IP_SRC)
2902 				hfld |= ICE_FLOW_HASH_FLD_IPV6_SA;
2903 			if (nfc->data & RXH_IP_DST)
2904 				hfld |= ICE_FLOW_HASH_FLD_IPV6_DA;
2905 			break;
2906 		default:
2907 			break;
2908 		}
2909 	}
2910 
2911 	if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) {
2912 		switch (nfc->flow_type) {
2913 		case TCP_V4_FLOW:
2914 		case TCP_V6_FLOW:
2915 			if (nfc->data & RXH_L4_B_0_1)
2916 				hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT;
2917 			if (nfc->data & RXH_L4_B_2_3)
2918 				hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT;
2919 			break;
2920 		case UDP_V4_FLOW:
2921 		case UDP_V6_FLOW:
2922 			if (nfc->data & RXH_L4_B_0_1)
2923 				hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT;
2924 			if (nfc->data & RXH_L4_B_2_3)
2925 				hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT;
2926 			break;
2927 		case SCTP_V4_FLOW:
2928 		case SCTP_V6_FLOW:
2929 			if (nfc->data & RXH_L4_B_0_1)
2930 				hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT;
2931 			if (nfc->data & RXH_L4_B_2_3)
2932 				hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT;
2933 			break;
2934 		default:
2935 			break;
2936 		}
2937 	}
2938 
2939 	if (nfc->data & RXH_GTP_TEID) {
2940 		switch (nfc->flow_type) {
2941 		case GTPC_TEID_V4_FLOW:
2942 		case GTPC_TEID_V6_FLOW:
2943 			hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID;
2944 			break;
2945 		case GTPU_V4_FLOW:
2946 		case GTPU_V6_FLOW:
2947 			hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID;
2948 			break;
2949 		case GTPU_EH_V4_FLOW:
2950 		case GTPU_EH_V6_FLOW:
2951 			hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID;
2952 			break;
2953 		case GTPU_UL_V4_FLOW:
2954 		case GTPU_UL_V6_FLOW:
2955 			hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID;
2956 			break;
2957 		case GTPU_DL_V4_FLOW:
2958 		case GTPU_DL_V6_FLOW:
2959 			hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID;
2960 			break;
2961 		default:
2962 			break;
2963 		}
2964 	}
2965 
2966 	return hfld;
2967 }
2968 
2969 /**
2970  * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash
2971  * @vsi: the VSI being configured
2972  * @nfc: ethtool rxnfc command
2973  *
2974  * Returns Success if the flow input set is supported.
2975  */
2976 static int
2977 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
2978 {
2979 	struct ice_pf *pf = vsi->back;
2980 	struct ice_rss_hash_cfg cfg;
2981 	struct device *dev;
2982 	u64 hashed_flds;
2983 	int status;
2984 	bool symm;
2985 	u32 hdrs;
2986 
2987 	dev = ice_pf_to_dev(pf);
2988 	if (ice_is_safe_mode(pf)) {
2989 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
2990 			vsi->vsi_num);
2991 		return -EINVAL;
2992 	}
2993 
2994 	symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
2995 	hashed_flds = ice_parse_hash_flds(nfc, symm);
2996 	if (hashed_flds == ICE_HASH_INVALID) {
2997 		dev_dbg(dev, "Invalid hash fields, vsi num = %d\n",
2998 			vsi->vsi_num);
2999 		return -EINVAL;
3000 	}
3001 
3002 	hdrs = ice_parse_hdrs(nfc);
3003 	if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3004 		dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3005 			vsi->vsi_num);
3006 		return -EINVAL;
3007 	}
3008 
3009 	cfg.hash_flds = hashed_flds;
3010 	cfg.addl_hdrs = hdrs;
3011 	cfg.hdr_type = ICE_RSS_ANY_HEADERS;
3012 	cfg.symm = symm;
3013 
3014 	status = ice_add_rss_cfg(&pf->hw, vsi, &cfg);
3015 	if (status) {
3016 		dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n",
3017 			vsi->vsi_num, status);
3018 		return status;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 /**
3025  * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type
3026  * @vsi: the VSI being configured
3027  * @nfc: ethtool rxnfc command
3028  */
3029 static void
3030 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
3031 {
3032 	struct ice_pf *pf = vsi->back;
3033 	struct device *dev;
3034 	u64 hash_flds;
3035 	bool symm;
3036 	u32 hdrs;
3037 
3038 	dev = ice_pf_to_dev(pf);
3039 
3040 	nfc->data = 0;
3041 	if (ice_is_safe_mode(pf)) {
3042 		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
3043 			vsi->vsi_num);
3044 		return;
3045 	}
3046 
3047 	hdrs = ice_parse_hdrs(nfc);
3048 	if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3049 		dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3050 			vsi->vsi_num);
3051 		return;
3052 	}
3053 
3054 	hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm);
3055 	if (hash_flds == ICE_HASH_INVALID) {
3056 		dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n",
3057 			vsi->vsi_num);
3058 		return;
3059 	}
3060 
3061 	if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA ||
3062 	    hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA)
3063 		nfc->data |= (u64)RXH_IP_SRC;
3064 
3065 	if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA ||
3066 	    hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA)
3067 		nfc->data |= (u64)RXH_IP_DST;
3068 
3069 	if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT ||
3070 	    hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT ||
3071 	    hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT)
3072 		nfc->data |= (u64)RXH_L4_B_0_1;
3073 
3074 	if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT ||
3075 	    hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT ||
3076 	    hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)
3077 		nfc->data |= (u64)RXH_L4_B_2_3;
3078 
3079 	if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID ||
3080 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID ||
3081 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID ||
3082 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID ||
3083 	    hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID)
3084 		nfc->data |= (u64)RXH_GTP_TEID;
3085 }
3086 
3087 /**
3088  * ice_set_rxnfc - command to set Rx flow rules.
3089  * @netdev: network interface device structure
3090  * @cmd: ethtool rxnfc command
3091  *
3092  * Returns 0 for success and negative values for errors
3093  */
3094 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3095 {
3096 	struct ice_netdev_priv *np = netdev_priv(netdev);
3097 	struct ice_vsi *vsi = np->vsi;
3098 
3099 	switch (cmd->cmd) {
3100 	case ETHTOOL_SRXCLSRLINS:
3101 		return ice_add_fdir_ethtool(vsi, cmd);
3102 	case ETHTOOL_SRXCLSRLDEL:
3103 		return ice_del_fdir_ethtool(vsi, cmd);
3104 	case ETHTOOL_SRXFH:
3105 		return ice_set_rss_hash_opt(vsi, cmd);
3106 	default:
3107 		break;
3108 	}
3109 	return -EOPNOTSUPP;
3110 }
3111 
3112 /**
3113  * ice_get_rxnfc - command to get Rx flow classification rules
3114  * @netdev: network interface device structure
3115  * @cmd: ethtool rxnfc command
3116  * @rule_locs: buffer to rturn Rx flow classification rules
3117  *
3118  * Returns Success if the command is supported.
3119  */
3120 static int
3121 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3122 	      u32 __always_unused *rule_locs)
3123 {
3124 	struct ice_netdev_priv *np = netdev_priv(netdev);
3125 	struct ice_vsi *vsi = np->vsi;
3126 	int ret = -EOPNOTSUPP;
3127 	struct ice_hw *hw;
3128 
3129 	hw = &vsi->back->hw;
3130 
3131 	switch (cmd->cmd) {
3132 	case ETHTOOL_GRXRINGS:
3133 		cmd->data = vsi->rss_size;
3134 		ret = 0;
3135 		break;
3136 	case ETHTOOL_GRXCLSRLCNT:
3137 		cmd->rule_cnt = hw->fdir_active_fltr;
3138 		/* report total rule count */
3139 		cmd->data = ice_get_fdir_cnt_all(hw);
3140 		ret = 0;
3141 		break;
3142 	case ETHTOOL_GRXCLSRULE:
3143 		ret = ice_get_ethtool_fdir_entry(hw, cmd);
3144 		break;
3145 	case ETHTOOL_GRXCLSRLALL:
3146 		ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs);
3147 		break;
3148 	case ETHTOOL_GRXFH:
3149 		ice_get_rss_hash_opt(vsi, cmd);
3150 		ret = 0;
3151 		break;
3152 	default:
3153 		break;
3154 	}
3155 
3156 	return ret;
3157 }
3158 
3159 static void
3160 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3161 		  struct kernel_ethtool_ringparam *kernel_ring,
3162 		  struct netlink_ext_ack *extack)
3163 {
3164 	struct ice_netdev_priv *np = netdev_priv(netdev);
3165 	struct ice_vsi *vsi = np->vsi;
3166 
3167 	ring->rx_max_pending = ICE_MAX_NUM_DESC;
3168 	ring->tx_max_pending = ICE_MAX_NUM_DESC;
3169 	if (vsi->tx_rings && vsi->rx_rings) {
3170 		ring->rx_pending = vsi->rx_rings[0]->count;
3171 		ring->tx_pending = vsi->tx_rings[0]->count;
3172 	} else {
3173 		ring->rx_pending = 0;
3174 		ring->tx_pending = 0;
3175 	}
3176 
3177 	/* Rx mini and jumbo rings are not supported */
3178 	ring->rx_mini_max_pending = 0;
3179 	ring->rx_jumbo_max_pending = 0;
3180 	ring->rx_mini_pending = 0;
3181 	ring->rx_jumbo_pending = 0;
3182 }
3183 
3184 static int
3185 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3186 		  struct kernel_ethtool_ringparam *kernel_ring,
3187 		  struct netlink_ext_ack *extack)
3188 {
3189 	struct ice_netdev_priv *np = netdev_priv(netdev);
3190 	struct ice_tx_ring *xdp_rings = NULL;
3191 	struct ice_tx_ring *tx_rings = NULL;
3192 	struct ice_rx_ring *rx_rings = NULL;
3193 	struct ice_vsi *vsi = np->vsi;
3194 	struct ice_pf *pf = vsi->back;
3195 	int i, timeout = 50, err = 0;
3196 	u16 new_rx_cnt, new_tx_cnt;
3197 
3198 	if (ring->tx_pending > ICE_MAX_NUM_DESC ||
3199 	    ring->tx_pending < ICE_MIN_NUM_DESC ||
3200 	    ring->rx_pending > ICE_MAX_NUM_DESC ||
3201 	    ring->rx_pending < ICE_MIN_NUM_DESC) {
3202 		netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
3203 			   ring->tx_pending, ring->rx_pending,
3204 			   ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC,
3205 			   ICE_REQ_DESC_MULTIPLE);
3206 		return -EINVAL;
3207 	}
3208 
3209 	/* Return if there is no rings (device is reloading) */
3210 	if (!vsi->tx_rings || !vsi->rx_rings)
3211 		return -EBUSY;
3212 
3213 	new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE);
3214 	if (new_tx_cnt != ring->tx_pending)
3215 		netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
3216 			    new_tx_cnt);
3217 	new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE);
3218 	if (new_rx_cnt != ring->rx_pending)
3219 		netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
3220 			    new_rx_cnt);
3221 
3222 	/* if nothing to do return success */
3223 	if (new_tx_cnt == vsi->tx_rings[0]->count &&
3224 	    new_rx_cnt == vsi->rx_rings[0]->count) {
3225 		netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
3226 		return 0;
3227 	}
3228 
3229 	/* If there is a AF_XDP UMEM attached to any of Rx rings,
3230 	 * disallow changing the number of descriptors -- regardless
3231 	 * if the netdev is running or not.
3232 	 */
3233 	if (ice_xsk_any_rx_ring_ena(vsi))
3234 		return -EBUSY;
3235 
3236 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3237 		timeout--;
3238 		if (!timeout)
3239 			return -EBUSY;
3240 		usleep_range(1000, 2000);
3241 	}
3242 
3243 	/* set for the next time the netdev is started */
3244 	if (!netif_running(vsi->netdev)) {
3245 		ice_for_each_alloc_txq(vsi, i)
3246 			vsi->tx_rings[i]->count = new_tx_cnt;
3247 		ice_for_each_alloc_rxq(vsi, i)
3248 			vsi->rx_rings[i]->count = new_rx_cnt;
3249 		if (ice_is_xdp_ena_vsi(vsi))
3250 			ice_for_each_xdp_txq(vsi, i)
3251 				vsi->xdp_rings[i]->count = new_tx_cnt;
3252 		vsi->num_tx_desc = (u16)new_tx_cnt;
3253 		vsi->num_rx_desc = (u16)new_rx_cnt;
3254 		netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n");
3255 		goto done;
3256 	}
3257 
3258 	if (new_tx_cnt == vsi->tx_rings[0]->count)
3259 		goto process_rx;
3260 
3261 	/* alloc updated Tx resources */
3262 	netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n",
3263 		    vsi->tx_rings[0]->count, new_tx_cnt);
3264 
3265 	tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL);
3266 	if (!tx_rings) {
3267 		err = -ENOMEM;
3268 		goto done;
3269 	}
3270 
3271 	ice_for_each_txq(vsi, i) {
3272 		/* clone ring and setup updated count */
3273 		tx_rings[i] = *vsi->tx_rings[i];
3274 		tx_rings[i].count = new_tx_cnt;
3275 		tx_rings[i].desc = NULL;
3276 		tx_rings[i].tx_buf = NULL;
3277 		tx_rings[i].tx_tstamps = &pf->ptp.port.tx;
3278 		err = ice_setup_tx_ring(&tx_rings[i]);
3279 		if (err) {
3280 			while (i--)
3281 				ice_clean_tx_ring(&tx_rings[i]);
3282 			kfree(tx_rings);
3283 			goto done;
3284 		}
3285 	}
3286 
3287 	if (!ice_is_xdp_ena_vsi(vsi))
3288 		goto process_rx;
3289 
3290 	/* alloc updated XDP resources */
3291 	netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n",
3292 		    vsi->xdp_rings[0]->count, new_tx_cnt);
3293 
3294 	xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL);
3295 	if (!xdp_rings) {
3296 		err = -ENOMEM;
3297 		goto free_tx;
3298 	}
3299 
3300 	ice_for_each_xdp_txq(vsi, i) {
3301 		/* clone ring and setup updated count */
3302 		xdp_rings[i] = *vsi->xdp_rings[i];
3303 		xdp_rings[i].count = new_tx_cnt;
3304 		xdp_rings[i].desc = NULL;
3305 		xdp_rings[i].tx_buf = NULL;
3306 		err = ice_setup_tx_ring(&xdp_rings[i]);
3307 		if (err) {
3308 			while (i--)
3309 				ice_clean_tx_ring(&xdp_rings[i]);
3310 			kfree(xdp_rings);
3311 			goto free_tx;
3312 		}
3313 		ice_set_ring_xdp(&xdp_rings[i]);
3314 	}
3315 
3316 process_rx:
3317 	if (new_rx_cnt == vsi->rx_rings[0]->count)
3318 		goto process_link;
3319 
3320 	/* alloc updated Rx resources */
3321 	netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n",
3322 		    vsi->rx_rings[0]->count, new_rx_cnt);
3323 
3324 	rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL);
3325 	if (!rx_rings) {
3326 		err = -ENOMEM;
3327 		goto done;
3328 	}
3329 
3330 	ice_for_each_rxq(vsi, i) {
3331 		/* clone ring and setup updated count */
3332 		rx_rings[i] = *vsi->rx_rings[i];
3333 		rx_rings[i].count = new_rx_cnt;
3334 		rx_rings[i].cached_phctime = pf->ptp.cached_phc_time;
3335 		rx_rings[i].desc = NULL;
3336 		rx_rings[i].rx_buf = NULL;
3337 		/* this is to allow wr32 to have something to write to
3338 		 * during early allocation of Rx buffers
3339 		 */
3340 		rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS;
3341 
3342 		err = ice_setup_rx_ring(&rx_rings[i]);
3343 		if (err)
3344 			goto rx_unwind;
3345 
3346 		/* allocate Rx buffers */
3347 		err = ice_alloc_rx_bufs(&rx_rings[i],
3348 					ICE_RX_DESC_UNUSED(&rx_rings[i]));
3349 rx_unwind:
3350 		if (err) {
3351 			while (i) {
3352 				i--;
3353 				ice_free_rx_ring(&rx_rings[i]);
3354 			}
3355 			kfree(rx_rings);
3356 			err = -ENOMEM;
3357 			goto free_tx;
3358 		}
3359 	}
3360 
3361 process_link:
3362 	/* Bring interface down, copy in the new ring info, then restore the
3363 	 * interface. if VSI is up, bring it down and then back up
3364 	 */
3365 	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
3366 		ice_down(vsi);
3367 
3368 		if (tx_rings) {
3369 			ice_for_each_txq(vsi, i) {
3370 				ice_free_tx_ring(vsi->tx_rings[i]);
3371 				*vsi->tx_rings[i] = tx_rings[i];
3372 			}
3373 			kfree(tx_rings);
3374 		}
3375 
3376 		if (rx_rings) {
3377 			ice_for_each_rxq(vsi, i) {
3378 				ice_free_rx_ring(vsi->rx_rings[i]);
3379 				/* copy the real tail offset */
3380 				rx_rings[i].tail = vsi->rx_rings[i]->tail;
3381 				/* this is to fake out the allocation routine
3382 				 * into thinking it has to realloc everything
3383 				 * but the recycling logic will let us re-use
3384 				 * the buffers allocated above
3385 				 */
3386 				rx_rings[i].next_to_use = 0;
3387 				rx_rings[i].next_to_clean = 0;
3388 				rx_rings[i].next_to_alloc = 0;
3389 				*vsi->rx_rings[i] = rx_rings[i];
3390 			}
3391 			kfree(rx_rings);
3392 		}
3393 
3394 		if (xdp_rings) {
3395 			ice_for_each_xdp_txq(vsi, i) {
3396 				ice_free_tx_ring(vsi->xdp_rings[i]);
3397 				*vsi->xdp_rings[i] = xdp_rings[i];
3398 			}
3399 			kfree(xdp_rings);
3400 		}
3401 
3402 		vsi->num_tx_desc = new_tx_cnt;
3403 		vsi->num_rx_desc = new_rx_cnt;
3404 		ice_up(vsi);
3405 	}
3406 	goto done;
3407 
3408 free_tx:
3409 	/* error cleanup if the Rx allocations failed after getting Tx */
3410 	if (tx_rings) {
3411 		ice_for_each_txq(vsi, i)
3412 			ice_free_tx_ring(&tx_rings[i]);
3413 		kfree(tx_rings);
3414 	}
3415 
3416 done:
3417 	clear_bit(ICE_CFG_BUSY, pf->state);
3418 	return err;
3419 }
3420 
3421 /**
3422  * ice_get_pauseparam - Get Flow Control status
3423  * @netdev: network interface device structure
3424  * @pause: ethernet pause (flow control) parameters
3425  *
3426  * Get requested flow control status from PHY capability.
3427  * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which
3428  * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report
3429  * the negotiated Rx/Tx pause via lp_advertising.
3430  */
3431 static void
3432 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3433 {
3434 	struct ice_netdev_priv *np = netdev_priv(netdev);
3435 	struct ice_port_info *pi = np->vsi->port_info;
3436 	struct ice_aqc_get_phy_caps_data *pcaps;
3437 	struct ice_dcbx_cfg *dcbx_cfg;
3438 	int status;
3439 
3440 	/* Initialize pause params */
3441 	pause->rx_pause = 0;
3442 	pause->tx_pause = 0;
3443 
3444 	dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3445 
3446 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3447 	if (!pcaps)
3448 		return;
3449 
3450 	/* Get current PHY config */
3451 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3452 				     NULL);
3453 	if (status)
3454 		goto out;
3455 
3456 	pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3457 							     AUTONEG_DISABLE;
3458 
3459 	if (dcbx_cfg->pfc.pfcena)
3460 		/* PFC enabled so report LFC as off */
3461 		goto out;
3462 
3463 	if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3464 		pause->tx_pause = 1;
3465 	if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3466 		pause->rx_pause = 1;
3467 
3468 out:
3469 	kfree(pcaps);
3470 }
3471 
3472 /**
3473  * ice_set_pauseparam - Set Flow Control parameter
3474  * @netdev: network interface device structure
3475  * @pause: return Tx/Rx flow control status
3476  */
3477 static int
3478 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3479 {
3480 	struct ice_netdev_priv *np = netdev_priv(netdev);
3481 	struct ice_aqc_get_phy_caps_data *pcaps;
3482 	struct ice_link_status *hw_link_info;
3483 	struct ice_pf *pf = np->vsi->back;
3484 	struct ice_dcbx_cfg *dcbx_cfg;
3485 	struct ice_vsi *vsi = np->vsi;
3486 	struct ice_hw *hw = &pf->hw;
3487 	struct ice_port_info *pi;
3488 	u8 aq_failures;
3489 	bool link_up;
3490 	u32 is_an;
3491 	int err;
3492 
3493 	pi = vsi->port_info;
3494 	hw_link_info = &pi->phy.link_info;
3495 	dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3496 	link_up = hw_link_info->link_info & ICE_AQ_LINK_UP;
3497 
3498 	/* Changing the port's flow control is not supported if this isn't the
3499 	 * PF VSI
3500 	 */
3501 	if (vsi->type != ICE_VSI_PF) {
3502 		netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n");
3503 		return -EOPNOTSUPP;
3504 	}
3505 
3506 	/* Get pause param reports configured and negotiated flow control pause
3507 	 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is
3508 	 * defined get pause param pause->autoneg reports SW configured setting,
3509 	 * so compare pause->autoneg with SW configured to prevent the user from
3510 	 * using set pause param to chance autoneg.
3511 	 */
3512 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3513 	if (!pcaps)
3514 		return -ENOMEM;
3515 
3516 	/* Get current PHY config */
3517 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3518 				  NULL);
3519 	if (err) {
3520 		kfree(pcaps);
3521 		return err;
3522 	}
3523 
3524 	is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3525 						    AUTONEG_DISABLE;
3526 
3527 	kfree(pcaps);
3528 
3529 	if (pause->autoneg != is_an) {
3530 		netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
3531 		return -EOPNOTSUPP;
3532 	}
3533 
3534 	/* If we have link and don't have autoneg */
3535 	if (!test_bit(ICE_DOWN, pf->state) &&
3536 	    !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) {
3537 		/* Send message that it might not necessarily work*/
3538 		netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n");
3539 	}
3540 
3541 	if (dcbx_cfg->pfc.pfcena) {
3542 		netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n");
3543 		return -EOPNOTSUPP;
3544 	}
3545 	if (pause->rx_pause && pause->tx_pause)
3546 		pi->fc.req_mode = ICE_FC_FULL;
3547 	else if (pause->rx_pause && !pause->tx_pause)
3548 		pi->fc.req_mode = ICE_FC_RX_PAUSE;
3549 	else if (!pause->rx_pause && pause->tx_pause)
3550 		pi->fc.req_mode = ICE_FC_TX_PAUSE;
3551 	else if (!pause->rx_pause && !pause->tx_pause)
3552 		pi->fc.req_mode = ICE_FC_NONE;
3553 	else
3554 		return -EINVAL;
3555 
3556 	/* Set the FC mode and only restart AN if link is up */
3557 	err = ice_set_fc(pi, &aq_failures, link_up);
3558 
3559 	if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) {
3560 		netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n",
3561 			    err, ice_aq_str(hw->adminq.sq_last_status));
3562 		err = -EAGAIN;
3563 	} else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) {
3564 		netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n",
3565 			    err, ice_aq_str(hw->adminq.sq_last_status));
3566 		err = -EAGAIN;
3567 	} else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) {
3568 		netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n",
3569 			    err, ice_aq_str(hw->adminq.sq_last_status));
3570 		err = -EAGAIN;
3571 	}
3572 
3573 	return err;
3574 }
3575 
3576 /**
3577  * ice_get_rxfh_key_size - get the RSS hash key size
3578  * @netdev: network interface device structure
3579  *
3580  * Returns the table size.
3581  */
3582 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev)
3583 {
3584 	return ICE_VSIQF_HKEY_ARRAY_SIZE;
3585 }
3586 
3587 /**
3588  * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size
3589  * @netdev: network interface device structure
3590  *
3591  * Returns the table size.
3592  */
3593 static u32 ice_get_rxfh_indir_size(struct net_device *netdev)
3594 {
3595 	struct ice_netdev_priv *np = netdev_priv(netdev);
3596 
3597 	return np->vsi->rss_table_size;
3598 }
3599 
3600 /**
3601  * ice_get_rxfh - get the Rx flow hash indirection table
3602  * @netdev: network interface device structure
3603  * @rxfh: pointer to param struct (indir, key, hfunc)
3604  *
3605  * Reads the indirection table directly from the hardware.
3606  */
3607 static int
3608 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh)
3609 {
3610 	struct ice_netdev_priv *np = netdev_priv(netdev);
3611 	u32 rss_context = rxfh->rss_context;
3612 	struct ice_vsi *vsi = np->vsi;
3613 	struct ice_pf *pf = vsi->back;
3614 	u16 qcount, offset;
3615 	int err, num_tc, i;
3616 	u8 *lut;
3617 
3618 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3619 		netdev_warn(netdev, "RSS is not supported on this VSI!\n");
3620 		return -EOPNOTSUPP;
3621 	}
3622 
3623 	if (rss_context && !ice_is_adq_active(pf)) {
3624 		netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n");
3625 		return -EINVAL;
3626 	}
3627 
3628 	qcount = vsi->mqprio_qopt.qopt.count[rss_context];
3629 	offset = vsi->mqprio_qopt.qopt.offset[rss_context];
3630 
3631 	if (rss_context && ice_is_adq_active(pf)) {
3632 		num_tc = vsi->mqprio_qopt.qopt.num_tc;
3633 		if (rss_context >= num_tc) {
3634 			netdev_err(netdev, "RSS context:%d  > num_tc:%d\n",
3635 				   rss_context, num_tc);
3636 			return -EINVAL;
3637 		}
3638 		/* Use channel VSI of given TC */
3639 		vsi = vsi->tc_map_vsi[rss_context];
3640 	}
3641 
3642 	rxfh->hfunc = ETH_RSS_HASH_TOP;
3643 	if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
3644 		rxfh->input_xfrm |= RXH_XFRM_SYM_XOR;
3645 
3646 	if (!rxfh->indir)
3647 		return 0;
3648 
3649 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3650 	if (!lut)
3651 		return -ENOMEM;
3652 
3653 	err = ice_get_rss_key(vsi, rxfh->key);
3654 	if (err)
3655 		goto out;
3656 
3657 	err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size);
3658 	if (err)
3659 		goto out;
3660 
3661 	if (ice_is_adq_active(pf)) {
3662 		for (i = 0; i < vsi->rss_table_size; i++)
3663 			rxfh->indir[i] = offset + lut[i] % qcount;
3664 		goto out;
3665 	}
3666 
3667 	for (i = 0; i < vsi->rss_table_size; i++)
3668 		rxfh->indir[i] = lut[i];
3669 
3670 out:
3671 	kfree(lut);
3672 	return err;
3673 }
3674 
3675 /**
3676  * ice_set_rxfh - set the Rx flow hash indirection table
3677  * @netdev: network interface device structure
3678  * @rxfh: pointer to param struct (indir, key, hfunc)
3679  * @extack: extended ACK from the Netlink message
3680  *
3681  * Returns -EINVAL if the table specifies an invalid queue ID, otherwise
3682  * returns 0 after programming the table.
3683  */
3684 static int
3685 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh,
3686 	     struct netlink_ext_ack *extack)
3687 {
3688 	struct ice_netdev_priv *np = netdev_priv(netdev);
3689 	u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
3690 	struct ice_vsi *vsi = np->vsi;
3691 	struct ice_pf *pf = vsi->back;
3692 	struct device *dev;
3693 	int err;
3694 
3695 	dev = ice_pf_to_dev(pf);
3696 	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
3697 	    rxfh->hfunc != ETH_RSS_HASH_TOP)
3698 		return -EOPNOTSUPP;
3699 
3700 	if (rxfh->rss_context)
3701 		return -EOPNOTSUPP;
3702 
3703 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3704 		/* RSS not supported return error here */
3705 		netdev_warn(netdev, "RSS is not configured on this VSI!\n");
3706 		return -EIO;
3707 	}
3708 
3709 	if (ice_is_adq_active(pf)) {
3710 		netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n");
3711 		return -EOPNOTSUPP;
3712 	}
3713 
3714 	/* Update the VSI's hash function */
3715 	if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR)
3716 		hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
3717 
3718 	err = ice_set_rss_hfunc(vsi, hfunc);
3719 	if (err)
3720 		return err;
3721 
3722 	if (rxfh->key) {
3723 		if (!vsi->rss_hkey_user) {
3724 			vsi->rss_hkey_user =
3725 				devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE,
3726 					     GFP_KERNEL);
3727 			if (!vsi->rss_hkey_user)
3728 				return -ENOMEM;
3729 		}
3730 		memcpy(vsi->rss_hkey_user, rxfh->key,
3731 		       ICE_VSIQF_HKEY_ARRAY_SIZE);
3732 
3733 		err = ice_set_rss_key(vsi, vsi->rss_hkey_user);
3734 		if (err)
3735 			return err;
3736 	}
3737 
3738 	if (!vsi->rss_lut_user) {
3739 		vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size,
3740 						 GFP_KERNEL);
3741 		if (!vsi->rss_lut_user)
3742 			return -ENOMEM;
3743 	}
3744 
3745 	/* Each 32 bits pointed by 'indir' is stored with a lut entry */
3746 	if (rxfh->indir) {
3747 		int i;
3748 
3749 		for (i = 0; i < vsi->rss_table_size; i++)
3750 			vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]);
3751 	} else {
3752 		ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size,
3753 				 vsi->rss_size);
3754 	}
3755 
3756 	err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size);
3757 	if (err)
3758 		return err;
3759 
3760 	return 0;
3761 }
3762 
3763 static int
3764 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info)
3765 {
3766 	struct ice_pf *pf = ice_netdev_to_pf(dev);
3767 
3768 	/* only report timestamping if PTP is enabled */
3769 	if (pf->ptp.state != ICE_PTP_READY)
3770 		return ethtool_op_get_ts_info(dev, info);
3771 
3772 	info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
3773 				SOF_TIMESTAMPING_TX_HARDWARE |
3774 				SOF_TIMESTAMPING_RX_HARDWARE |
3775 				SOF_TIMESTAMPING_RAW_HARDWARE;
3776 
3777 	info->phc_index = ice_ptp_clock_index(pf);
3778 
3779 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
3780 
3781 	info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL);
3782 
3783 	return 0;
3784 }
3785 
3786 /**
3787  * ice_get_max_txq - return the maximum number of Tx queues for in a PF
3788  * @pf: PF structure
3789  */
3790 static int ice_get_max_txq(struct ice_pf *pf)
3791 {
3792 	return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3793 		    (u16)pf->hw.func_caps.common_cap.num_txq);
3794 }
3795 
3796 /**
3797  * ice_get_max_rxq - return the maximum number of Rx queues for in a PF
3798  * @pf: PF structure
3799  */
3800 static int ice_get_max_rxq(struct ice_pf *pf)
3801 {
3802 	return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3803 		    (u16)pf->hw.func_caps.common_cap.num_rxq);
3804 }
3805 
3806 /**
3807  * ice_get_combined_cnt - return the current number of combined channels
3808  * @vsi: PF VSI pointer
3809  *
3810  * Go through all queue vectors and count ones that have both Rx and Tx ring
3811  * attached
3812  */
3813 static u32 ice_get_combined_cnt(struct ice_vsi *vsi)
3814 {
3815 	u32 combined = 0;
3816 	int q_idx;
3817 
3818 	ice_for_each_q_vector(vsi, q_idx) {
3819 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3820 
3821 		if (q_vector->rx.rx_ring && q_vector->tx.tx_ring)
3822 			combined++;
3823 	}
3824 
3825 	return combined;
3826 }
3827 
3828 /**
3829  * ice_get_channels - get the current and max supported channels
3830  * @dev: network interface device structure
3831  * @ch: ethtool channel data structure
3832  */
3833 static void
3834 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch)
3835 {
3836 	struct ice_netdev_priv *np = netdev_priv(dev);
3837 	struct ice_vsi *vsi = np->vsi;
3838 	struct ice_pf *pf = vsi->back;
3839 
3840 	/* report maximum channels */
3841 	ch->max_rx = ice_get_max_rxq(pf);
3842 	ch->max_tx = ice_get_max_txq(pf);
3843 	ch->max_combined = min_t(int, ch->max_rx, ch->max_tx);
3844 
3845 	/* report current channels */
3846 	ch->combined_count = ice_get_combined_cnt(vsi);
3847 	ch->rx_count = vsi->num_rxq - ch->combined_count;
3848 	ch->tx_count = vsi->num_txq - ch->combined_count;
3849 
3850 	/* report other queues */
3851 	ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
3852 	ch->max_other = ch->other_count;
3853 }
3854 
3855 /**
3856  * ice_get_valid_rss_size - return valid number of RSS queues
3857  * @hw: pointer to the HW structure
3858  * @new_size: requested RSS queues
3859  */
3860 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size)
3861 {
3862 	struct ice_hw_common_caps *caps = &hw->func_caps.common_cap;
3863 
3864 	return min_t(int, new_size, BIT(caps->rss_table_entry_width));
3865 }
3866 
3867 /**
3868  * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size
3869  * @vsi: VSI to reconfigure RSS LUT on
3870  * @req_rss_size: requested range of queue numbers for hashing
3871  *
3872  * Set the VSI's RSS parameters, configure the RSS LUT based on these.
3873  */
3874 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size)
3875 {
3876 	struct ice_pf *pf = vsi->back;
3877 	struct device *dev;
3878 	struct ice_hw *hw;
3879 	int err;
3880 	u8 *lut;
3881 
3882 	dev = ice_pf_to_dev(pf);
3883 	hw = &pf->hw;
3884 
3885 	if (!req_rss_size)
3886 		return -EINVAL;
3887 
3888 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3889 	if (!lut)
3890 		return -ENOMEM;
3891 
3892 	/* set RSS LUT parameters */
3893 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3894 		vsi->rss_size = 1;
3895 	else
3896 		vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size);
3897 
3898 	/* create/set RSS LUT */
3899 	ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
3900 	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
3901 	if (err)
3902 		dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err,
3903 			ice_aq_str(hw->adminq.sq_last_status));
3904 
3905 	kfree(lut);
3906 	return err;
3907 }
3908 
3909 /**
3910  * ice_set_channels - set the number channels
3911  * @dev: network interface device structure
3912  * @ch: ethtool channel data structure
3913  */
3914 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch)
3915 {
3916 	struct ice_netdev_priv *np = netdev_priv(dev);
3917 	struct ice_vsi *vsi = np->vsi;
3918 	struct ice_pf *pf = vsi->back;
3919 	int new_rx = 0, new_tx = 0;
3920 	bool locked = false;
3921 	int ret = 0;
3922 
3923 	/* do not support changing channels in Safe Mode */
3924 	if (ice_is_safe_mode(pf)) {
3925 		netdev_err(dev, "Changing channel in Safe Mode is not supported\n");
3926 		return -EOPNOTSUPP;
3927 	}
3928 	/* do not support changing other_count */
3929 	if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U))
3930 		return -EINVAL;
3931 
3932 	if (ice_is_adq_active(pf)) {
3933 		netdev_err(dev, "Cannot set channels with ADQ configured.\n");
3934 		return -EOPNOTSUPP;
3935 	}
3936 
3937 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) {
3938 		netdev_err(dev, "Cannot set channels when Flow Director filters are active\n");
3939 		return -EOPNOTSUPP;
3940 	}
3941 
3942 	if (ch->rx_count && ch->tx_count) {
3943 		netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n");
3944 		return -EINVAL;
3945 	}
3946 
3947 	new_rx = ch->combined_count + ch->rx_count;
3948 	new_tx = ch->combined_count + ch->tx_count;
3949 
3950 	if (new_rx < vsi->tc_cfg.numtc) {
3951 		netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n",
3952 			   vsi->tc_cfg.numtc);
3953 		return -EINVAL;
3954 	}
3955 	if (new_tx < vsi->tc_cfg.numtc) {
3956 		netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n",
3957 			   vsi->tc_cfg.numtc);
3958 		return -EINVAL;
3959 	}
3960 	if (new_rx > ice_get_max_rxq(pf)) {
3961 		netdev_err(dev, "Maximum allowed Rx channels is %d\n",
3962 			   ice_get_max_rxq(pf));
3963 		return -EINVAL;
3964 	}
3965 	if (new_tx > ice_get_max_txq(pf)) {
3966 		netdev_err(dev, "Maximum allowed Tx channels is %d\n",
3967 			   ice_get_max_txq(pf));
3968 		return -EINVAL;
3969 	}
3970 
3971 	if (pf->adev) {
3972 		mutex_lock(&pf->adev_mutex);
3973 		device_lock(&pf->adev->dev);
3974 		locked = true;
3975 		if (pf->adev->dev.driver) {
3976 			netdev_err(dev, "Cannot change channels when RDMA is active\n");
3977 			ret = -EBUSY;
3978 			goto adev_unlock;
3979 		}
3980 	}
3981 
3982 	ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked);
3983 
3984 	if (!netif_is_rxfh_configured(dev)) {
3985 		ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx);
3986 		goto adev_unlock;
3987 	}
3988 
3989 	/* Update rss_size due to change in Rx queues */
3990 	vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx);
3991 
3992 adev_unlock:
3993 	if (locked) {
3994 		device_unlock(&pf->adev->dev);
3995 		mutex_unlock(&pf->adev_mutex);
3996 	}
3997 	return ret;
3998 }
3999 
4000 /**
4001  * ice_get_wol - get current Wake on LAN configuration
4002  * @netdev: network interface device structure
4003  * @wol: Ethtool structure to retrieve WoL settings
4004  */
4005 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4006 {
4007 	struct ice_netdev_priv *np = netdev_priv(netdev);
4008 	struct ice_pf *pf = np->vsi->back;
4009 
4010 	if (np->vsi->type != ICE_VSI_PF)
4011 		netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n");
4012 
4013 	/* Get WoL settings based on the HW capability */
4014 	if (ice_is_wol_supported(&pf->hw)) {
4015 		wol->supported = WAKE_MAGIC;
4016 		wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0;
4017 	} else {
4018 		wol->supported = 0;
4019 		wol->wolopts = 0;
4020 	}
4021 }
4022 
4023 /**
4024  * ice_set_wol - set Wake on LAN on supported device
4025  * @netdev: network interface device structure
4026  * @wol: Ethtool structure to set WoL
4027  */
4028 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4029 {
4030 	struct ice_netdev_priv *np = netdev_priv(netdev);
4031 	struct ice_vsi *vsi = np->vsi;
4032 	struct ice_pf *pf = vsi->back;
4033 
4034 	if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw))
4035 		return -EOPNOTSUPP;
4036 
4037 	/* only magic packet is supported */
4038 	if (wol->wolopts && wol->wolopts != WAKE_MAGIC)
4039 		return -EOPNOTSUPP;
4040 
4041 	/* Set WoL only if there is a new value */
4042 	if (pf->wol_ena != !!wol->wolopts) {
4043 		pf->wol_ena = !!wol->wolopts;
4044 		device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena);
4045 		netdev_dbg(netdev, "WoL magic packet %sabled\n",
4046 			   pf->wol_ena ? "en" : "dis");
4047 	}
4048 
4049 	return 0;
4050 }
4051 
4052 /**
4053  * ice_get_rc_coalesce - get ITR values for specific ring container
4054  * @ec: ethtool structure to fill with driver's coalesce settings
4055  * @rc: ring container that the ITR values will come from
4056  *
4057  * Query the device for ice_ring_container specific ITR values. This is
4058  * done per ice_ring_container because each q_vector can have 1 or more rings
4059  * and all of said ring(s) will have the same ITR values.
4060  *
4061  * Returns 0 on success, negative otherwise.
4062  */
4063 static int
4064 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc)
4065 {
4066 	if (!rc->rx_ring)
4067 		return -EINVAL;
4068 
4069 	switch (rc->type) {
4070 	case ICE_RX_CONTAINER:
4071 		ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc);
4072 		ec->rx_coalesce_usecs = rc->itr_setting;
4073 		ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl;
4074 		break;
4075 	case ICE_TX_CONTAINER:
4076 		ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc);
4077 		ec->tx_coalesce_usecs = rc->itr_setting;
4078 		break;
4079 	default:
4080 		dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type);
4081 		return -EINVAL;
4082 	}
4083 
4084 	return 0;
4085 }
4086 
4087 /**
4088  * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings
4089  * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings
4090  * @ec: coalesce settings to program the device with
4091  * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4092  *
4093  * Return 0 on success, and negative under the following conditions:
4094  * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed.
4095  * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4096  */
4097 static int
4098 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4099 {
4100 	if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4101 		if (ice_get_rc_coalesce(ec,
4102 					&vsi->rx_rings[q_num]->q_vector->rx))
4103 			return -EINVAL;
4104 		if (ice_get_rc_coalesce(ec,
4105 					&vsi->tx_rings[q_num]->q_vector->tx))
4106 			return -EINVAL;
4107 	} else if (q_num < vsi->num_rxq) {
4108 		if (ice_get_rc_coalesce(ec,
4109 					&vsi->rx_rings[q_num]->q_vector->rx))
4110 			return -EINVAL;
4111 	} else if (q_num < vsi->num_txq) {
4112 		if (ice_get_rc_coalesce(ec,
4113 					&vsi->tx_rings[q_num]->q_vector->tx))
4114 			return -EINVAL;
4115 	} else {
4116 		return -EINVAL;
4117 	}
4118 
4119 	return 0;
4120 }
4121 
4122 /**
4123  * __ice_get_coalesce - get ITR/INTRL values for the device
4124  * @netdev: pointer to the netdev associated with this query
4125  * @ec: ethtool structure to fill with driver's coalesce settings
4126  * @q_num: queue number to get the coalesce settings for
4127  *
4128  * If the caller passes in a negative q_num then we return coalesce settings
4129  * based on queue number 0, else use the actual q_num passed in.
4130  */
4131 static int
4132 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4133 		   int q_num)
4134 {
4135 	struct ice_netdev_priv *np = netdev_priv(netdev);
4136 	struct ice_vsi *vsi = np->vsi;
4137 
4138 	if (q_num < 0)
4139 		q_num = 0;
4140 
4141 	if (ice_get_q_coalesce(vsi, ec, q_num))
4142 		return -EINVAL;
4143 
4144 	return 0;
4145 }
4146 
4147 static int ice_get_coalesce(struct net_device *netdev,
4148 			    struct ethtool_coalesce *ec,
4149 			    struct kernel_ethtool_coalesce *kernel_coal,
4150 			    struct netlink_ext_ack *extack)
4151 {
4152 	return __ice_get_coalesce(netdev, ec, -1);
4153 }
4154 
4155 static int
4156 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num,
4157 		       struct ethtool_coalesce *ec)
4158 {
4159 	return __ice_get_coalesce(netdev, ec, q_num);
4160 }
4161 
4162 /**
4163  * ice_set_rc_coalesce - set ITR values for specific ring container
4164  * @ec: ethtool structure from user to update ITR settings
4165  * @rc: ring container that the ITR values will come from
4166  * @vsi: VSI associated to the ring container
4167  *
4168  * Set specific ITR values. This is done per ice_ring_container because each
4169  * q_vector can have 1 or more rings and all of said ring(s) will have the same
4170  * ITR values.
4171  *
4172  * Returns 0 on success, negative otherwise.
4173  */
4174 static int
4175 ice_set_rc_coalesce(struct ethtool_coalesce *ec,
4176 		    struct ice_ring_container *rc, struct ice_vsi *vsi)
4177 {
4178 	const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx";
4179 	u32 use_adaptive_coalesce, coalesce_usecs;
4180 	struct ice_pf *pf = vsi->back;
4181 	u16 itr_setting;
4182 
4183 	if (!rc->rx_ring)
4184 		return -EINVAL;
4185 
4186 	switch (rc->type) {
4187 	case ICE_RX_CONTAINER:
4188 	{
4189 		struct ice_q_vector *q_vector = rc->rx_ring->q_vector;
4190 
4191 		if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL ||
4192 		    (ec->rx_coalesce_usecs_high &&
4193 		     ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) {
4194 			netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n",
4195 				    c_type_str, pf->hw.intrl_gran,
4196 				    ICE_MAX_INTRL);
4197 			return -EINVAL;
4198 		}
4199 		if (ec->rx_coalesce_usecs_high != q_vector->intrl &&
4200 		    (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) {
4201 			netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n",
4202 				    c_type_str);
4203 			return -EINVAL;
4204 		}
4205 		if (ec->rx_coalesce_usecs_high != q_vector->intrl)
4206 			q_vector->intrl = ec->rx_coalesce_usecs_high;
4207 
4208 		use_adaptive_coalesce = ec->use_adaptive_rx_coalesce;
4209 		coalesce_usecs = ec->rx_coalesce_usecs;
4210 
4211 		break;
4212 	}
4213 	case ICE_TX_CONTAINER:
4214 		use_adaptive_coalesce = ec->use_adaptive_tx_coalesce;
4215 		coalesce_usecs = ec->tx_coalesce_usecs;
4216 
4217 		break;
4218 	default:
4219 		dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n",
4220 			rc->type);
4221 		return -EINVAL;
4222 	}
4223 
4224 	itr_setting = rc->itr_setting;
4225 	if (coalesce_usecs != itr_setting && use_adaptive_coalesce) {
4226 		netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n",
4227 			    c_type_str, c_type_str);
4228 		return -EINVAL;
4229 	}
4230 
4231 	if (coalesce_usecs > ICE_ITR_MAX) {
4232 		netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n",
4233 			    c_type_str, ICE_ITR_MAX);
4234 		return -EINVAL;
4235 	}
4236 
4237 	if (use_adaptive_coalesce) {
4238 		rc->itr_mode = ITR_DYNAMIC;
4239 	} else {
4240 		rc->itr_mode = ITR_STATIC;
4241 		/* store user facing value how it was set */
4242 		rc->itr_setting = coalesce_usecs;
4243 		/* write the change to the register */
4244 		ice_write_itr(rc, coalesce_usecs);
4245 		/* force writes to take effect immediately, the flush shouldn't
4246 		 * be done in the functions above because the intent is for
4247 		 * them to do lazy writes.
4248 		 */
4249 		ice_flush(&pf->hw);
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 /**
4256  * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings
4257  * @vsi: VSI associated to the queue that need updating
4258  * @ec: coalesce settings to program the device with
4259  * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4260  *
4261  * Return 0 on success, and negative under the following conditions:
4262  * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed.
4263  * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4264  */
4265 static int
4266 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4267 {
4268 	if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4269 		if (ice_set_rc_coalesce(ec,
4270 					&vsi->rx_rings[q_num]->q_vector->rx,
4271 					vsi))
4272 			return -EINVAL;
4273 
4274 		if (ice_set_rc_coalesce(ec,
4275 					&vsi->tx_rings[q_num]->q_vector->tx,
4276 					vsi))
4277 			return -EINVAL;
4278 	} else if (q_num < vsi->num_rxq) {
4279 		if (ice_set_rc_coalesce(ec,
4280 					&vsi->rx_rings[q_num]->q_vector->rx,
4281 					vsi))
4282 			return -EINVAL;
4283 	} else if (q_num < vsi->num_txq) {
4284 		if (ice_set_rc_coalesce(ec,
4285 					&vsi->tx_rings[q_num]->q_vector->tx,
4286 					vsi))
4287 			return -EINVAL;
4288 	} else {
4289 		return -EINVAL;
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 /**
4296  * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs
4297  * @netdev: netdev used for print
4298  * @itr_setting: previous user setting
4299  * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled
4300  * @coalesce_usecs: requested value of [tx|rx]-usecs
4301  * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs
4302  */
4303 static void
4304 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting,
4305 		       u32 use_adaptive_coalesce, u32 coalesce_usecs,
4306 		       const char *c_type_str)
4307 {
4308 	if (use_adaptive_coalesce)
4309 		return;
4310 
4311 	if (itr_setting != coalesce_usecs && (coalesce_usecs % 2))
4312 		netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n",
4313 			    c_type_str, coalesce_usecs, c_type_str,
4314 			    ITR_REG_ALIGN(coalesce_usecs));
4315 }
4316 
4317 /**
4318  * __ice_set_coalesce - set ITR/INTRL values for the device
4319  * @netdev: pointer to the netdev associated with this query
4320  * @ec: ethtool structure to fill with driver's coalesce settings
4321  * @q_num: queue number to get the coalesce settings for
4322  *
4323  * If the caller passes in a negative q_num then we set the coalesce settings
4324  * for all Tx/Rx queues, else use the actual q_num passed in.
4325  */
4326 static int
4327 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4328 		   int q_num)
4329 {
4330 	struct ice_netdev_priv *np = netdev_priv(netdev);
4331 	struct ice_vsi *vsi = np->vsi;
4332 
4333 	if (q_num < 0) {
4334 		struct ice_q_vector *q_vector = vsi->q_vectors[0];
4335 		int v_idx;
4336 
4337 		if (q_vector) {
4338 			ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting,
4339 					       ec->use_adaptive_rx_coalesce,
4340 					       ec->rx_coalesce_usecs, "rx");
4341 
4342 			ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting,
4343 					       ec->use_adaptive_tx_coalesce,
4344 					       ec->tx_coalesce_usecs, "tx");
4345 		}
4346 
4347 		ice_for_each_q_vector(vsi, v_idx) {
4348 			/* In some cases if DCB is configured the num_[rx|tx]q
4349 			 * can be less than vsi->num_q_vectors. This check
4350 			 * accounts for that so we don't report a false failure
4351 			 */
4352 			if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq)
4353 				goto set_complete;
4354 
4355 			if (ice_set_q_coalesce(vsi, ec, v_idx))
4356 				return -EINVAL;
4357 
4358 			ice_set_q_vector_intrl(vsi->q_vectors[v_idx]);
4359 		}
4360 		goto set_complete;
4361 	}
4362 
4363 	if (ice_set_q_coalesce(vsi, ec, q_num))
4364 		return -EINVAL;
4365 
4366 	ice_set_q_vector_intrl(vsi->q_vectors[q_num]);
4367 
4368 set_complete:
4369 	return 0;
4370 }
4371 
4372 static int ice_set_coalesce(struct net_device *netdev,
4373 			    struct ethtool_coalesce *ec,
4374 			    struct kernel_ethtool_coalesce *kernel_coal,
4375 			    struct netlink_ext_ack *extack)
4376 {
4377 	return __ice_set_coalesce(netdev, ec, -1);
4378 }
4379 
4380 static int
4381 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num,
4382 		       struct ethtool_coalesce *ec)
4383 {
4384 	return __ice_set_coalesce(netdev, ec, q_num);
4385 }
4386 
4387 static void
4388 ice_repr_get_drvinfo(struct net_device *netdev,
4389 		     struct ethtool_drvinfo *drvinfo)
4390 {
4391 	struct ice_repr *repr = ice_netdev_to_repr(netdev);
4392 
4393 	if (repr->ops.ready(repr))
4394 		return;
4395 
4396 	__ice_get_drvinfo(netdev, drvinfo, repr->src_vsi);
4397 }
4398 
4399 static void
4400 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
4401 {
4402 	struct ice_repr *repr = ice_netdev_to_repr(netdev);
4403 
4404 	/* for port representors only ETH_SS_STATS is supported */
4405 	if (repr->ops.ready(repr) || stringset != ETH_SS_STATS)
4406 		return;
4407 
4408 	__ice_get_strings(netdev, stringset, data, repr->src_vsi);
4409 }
4410 
4411 static void
4412 ice_repr_get_ethtool_stats(struct net_device *netdev,
4413 			   struct ethtool_stats __always_unused *stats,
4414 			   u64 *data)
4415 {
4416 	struct ice_repr *repr = ice_netdev_to_repr(netdev);
4417 
4418 	if (repr->ops.ready(repr))
4419 		return;
4420 
4421 	__ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi);
4422 }
4423 
4424 static int ice_repr_get_sset_count(struct net_device *netdev, int sset)
4425 {
4426 	switch (sset) {
4427 	case ETH_SS_STATS:
4428 		return ICE_VSI_STATS_LEN;
4429 	default:
4430 		return -EOPNOTSUPP;
4431 	}
4432 }
4433 
4434 #define ICE_I2C_EEPROM_DEV_ADDR		0xA0
4435 #define ICE_I2C_EEPROM_DEV_ADDR2	0xA2
4436 #define ICE_MODULE_TYPE_SFP		0x03
4437 #define ICE_MODULE_TYPE_QSFP_PLUS	0x0D
4438 #define ICE_MODULE_TYPE_QSFP28		0x11
4439 #define ICE_MODULE_SFF_ADDR_MODE	0x04
4440 #define ICE_MODULE_SFF_DIAG_CAPAB	0x40
4441 #define ICE_MODULE_REVISION_ADDR	0x01
4442 #define ICE_MODULE_SFF_8472_COMP	0x5E
4443 #define ICE_MODULE_SFF_8472_SWAP	0x5C
4444 #define ICE_MODULE_QSFP_MAX_LEN		640
4445 
4446 /**
4447  * ice_get_module_info - get SFF module type and revision information
4448  * @netdev: network interface device structure
4449  * @modinfo: module EEPROM size and layout information structure
4450  */
4451 static int
4452 ice_get_module_info(struct net_device *netdev,
4453 		    struct ethtool_modinfo *modinfo)
4454 {
4455 	struct ice_netdev_priv *np = netdev_priv(netdev);
4456 	struct ice_vsi *vsi = np->vsi;
4457 	struct ice_pf *pf = vsi->back;
4458 	struct ice_hw *hw = &pf->hw;
4459 	u8 sff8472_comp = 0;
4460 	u8 sff8472_swap = 0;
4461 	u8 sff8636_rev = 0;
4462 	u8 value = 0;
4463 	int status;
4464 
4465 	status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00,
4466 				   0, &value, 1, 0, NULL);
4467 	if (status)
4468 		return status;
4469 
4470 	switch (value) {
4471 	case ICE_MODULE_TYPE_SFP:
4472 		status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4473 					   ICE_MODULE_SFF_8472_COMP, 0x00, 0,
4474 					   &sff8472_comp, 1, 0, NULL);
4475 		if (status)
4476 			return status;
4477 		status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4478 					   ICE_MODULE_SFF_8472_SWAP, 0x00, 0,
4479 					   &sff8472_swap, 1, 0, NULL);
4480 		if (status)
4481 			return status;
4482 
4483 		if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) {
4484 			modinfo->type = ETH_MODULE_SFF_8079;
4485 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4486 		} else if (sff8472_comp &&
4487 			   (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) {
4488 			modinfo->type = ETH_MODULE_SFF_8472;
4489 			modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
4490 		} else {
4491 			modinfo->type = ETH_MODULE_SFF_8079;
4492 			modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4493 		}
4494 		break;
4495 	case ICE_MODULE_TYPE_QSFP_PLUS:
4496 	case ICE_MODULE_TYPE_QSFP28:
4497 		status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4498 					   ICE_MODULE_REVISION_ADDR, 0x00, 0,
4499 					   &sff8636_rev, 1, 0, NULL);
4500 		if (status)
4501 			return status;
4502 		/* Check revision compliance */
4503 		if (sff8636_rev > 0x02) {
4504 			/* Module is SFF-8636 compliant */
4505 			modinfo->type = ETH_MODULE_SFF_8636;
4506 			modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4507 		} else {
4508 			modinfo->type = ETH_MODULE_SFF_8436;
4509 			modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4510 		}
4511 		break;
4512 	default:
4513 		netdev_warn(netdev, "SFF Module Type not recognized.\n");
4514 		return -EINVAL;
4515 	}
4516 	return 0;
4517 }
4518 
4519 /**
4520  * ice_get_module_eeprom - fill buffer with SFF EEPROM contents
4521  * @netdev: network interface device structure
4522  * @ee: EEPROM dump request structure
4523  * @data: buffer to be filled with EEPROM contents
4524  */
4525 static int
4526 ice_get_module_eeprom(struct net_device *netdev,
4527 		      struct ethtool_eeprom *ee, u8 *data)
4528 {
4529 	struct ice_netdev_priv *np = netdev_priv(netdev);
4530 #define SFF_READ_BLOCK_SIZE 8
4531 	u8 value[SFF_READ_BLOCK_SIZE] = { 0 };
4532 	u8 addr = ICE_I2C_EEPROM_DEV_ADDR;
4533 	struct ice_vsi *vsi = np->vsi;
4534 	struct ice_pf *pf = vsi->back;
4535 	struct ice_hw *hw = &pf->hw;
4536 	bool is_sfp = false;
4537 	unsigned int i, j;
4538 	u16 offset = 0;
4539 	u8 page = 0;
4540 	int status;
4541 
4542 	if (!ee || !ee->len || !data)
4543 		return -EINVAL;
4544 
4545 	status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0,
4546 				   NULL);
4547 	if (status)
4548 		return status;
4549 
4550 	if (value[0] == ICE_MODULE_TYPE_SFP)
4551 		is_sfp = true;
4552 
4553 	memset(data, 0, ee->len);
4554 	for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) {
4555 		offset = i + ee->offset;
4556 		page = 0;
4557 
4558 		/* Check if we need to access the other memory page */
4559 		if (is_sfp) {
4560 			if (offset >= ETH_MODULE_SFF_8079_LEN) {
4561 				offset -= ETH_MODULE_SFF_8079_LEN;
4562 				addr = ICE_I2C_EEPROM_DEV_ADDR2;
4563 			}
4564 		} else {
4565 			while (offset >= ETH_MODULE_SFF_8436_LEN) {
4566 				/* Compute memory page number and offset. */
4567 				offset -= ETH_MODULE_SFF_8436_LEN / 2;
4568 				page++;
4569 			}
4570 		}
4571 
4572 		/* Bit 2 of EEPROM address 0x02 declares upper
4573 		 * pages are disabled on QSFP modules.
4574 		 * SFP modules only ever use page 0.
4575 		 */
4576 		if (page == 0 || !(data[0x2] & 0x4)) {
4577 			u32 copy_len;
4578 
4579 			/* If i2c bus is busy due to slow page change or
4580 			 * link management access, call can fail. This is normal.
4581 			 * So we retry this a few times.
4582 			 */
4583 			for (j = 0; j < 4; j++) {
4584 				status = ice_aq_sff_eeprom(hw, 0, addr, offset, page,
4585 							   !is_sfp, value,
4586 							   SFF_READ_BLOCK_SIZE,
4587 							   0, NULL);
4588 				netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n",
4589 					   addr, offset, page, is_sfp,
4590 					   value[0], value[1], value[2], value[3],
4591 					   value[4], value[5], value[6], value[7],
4592 					   status);
4593 				if (status) {
4594 					usleep_range(1500, 2500);
4595 					memset(value, 0, SFF_READ_BLOCK_SIZE);
4596 					continue;
4597 				}
4598 				break;
4599 			}
4600 
4601 			/* Make sure we have enough room for the new block */
4602 			copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i);
4603 			memcpy(data + i, value, copy_len);
4604 		}
4605 	}
4606 	return 0;
4607 }
4608 
4609 /**
4610  * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per
4611  *                          pcsquad, pcsport
4612  * @hw: pointer to the HW struct
4613  * @pcs_quad: pcsquad for input port
4614  * @pcs_port: pcsport for input port
4615  * @fec_stats: buffer to hold FEC statistics for given port
4616  *
4617  * Return: 0 on success, negative on failure.
4618  */
4619 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
4620 				  struct ethtool_fec_stats *fec_stats)
4621 {
4622 	u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0;
4623 	u32 fec_corr_low_val = 0, fec_corr_high_val = 0;
4624 	int err;
4625 
4626 	if (pcs_quad > 1 || pcs_port > 3)
4627 		return -EINVAL;
4628 
4629 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW,
4630 				   &fec_corr_low_val);
4631 	if (err)
4632 		return err;
4633 
4634 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH,
4635 				   &fec_corr_high_val);
4636 	if (err)
4637 		return err;
4638 
4639 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4640 				   ICE_FEC_UNCORR_LOW,
4641 				   &fec_uncorr_low_val);
4642 	if (err)
4643 		return err;
4644 
4645 	err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4646 				   ICE_FEC_UNCORR_HIGH,
4647 				   &fec_uncorr_high_val);
4648 	if (err)
4649 		return err;
4650 
4651 	fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) +
4652 					     fec_corr_low_val;
4653 	fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) +
4654 						 fec_uncorr_low_val;
4655 	return 0;
4656 }
4657 
4658 /**
4659  * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev
4660  * @netdev: network interface device structure
4661  * @fec_stats: buffer to hold FEC statistics for given port
4662  *
4663  */
4664 static void ice_get_fec_stats(struct net_device *netdev,
4665 			      struct ethtool_fec_stats *fec_stats)
4666 {
4667 	struct ice_netdev_priv *np = netdev_priv(netdev);
4668 	struct ice_port_topology port_topology;
4669 	struct ice_port_info *pi;
4670 	struct ice_pf *pf;
4671 	struct ice_hw *hw;
4672 	int err;
4673 
4674 	pf = np->vsi->back;
4675 	hw = &pf->hw;
4676 	pi = np->vsi->port_info;
4677 
4678 	/* Serdes parameters are not supported if not the PF VSI */
4679 	if (np->vsi->type != ICE_VSI_PF || !pi)
4680 		return;
4681 
4682 	err = ice_get_port_topology(hw, pi->lport, &port_topology);
4683 	if (err) {
4684 		netdev_info(netdev, "Extended register dump failed Lport %d\n",
4685 			    pi->lport);
4686 		return;
4687 	}
4688 
4689 	/* Get FEC correctable, uncorrectable counter */
4690 	err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select,
4691 				     port_topology.pcs_port, fec_stats);
4692 	if (err)
4693 		netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n",
4694 			    pi->lport, err);
4695 }
4696 
4697 #define ICE_ETHTOOL_PFR (ETH_RESET_IRQ | ETH_RESET_DMA | \
4698 	ETH_RESET_FILTER | ETH_RESET_OFFLOAD)
4699 
4700 #define ICE_ETHTOOL_CORER ((ICE_ETHTOOL_PFR | ETH_RESET_RAM) << \
4701 	ETH_RESET_SHARED_SHIFT)
4702 
4703 #define ICE_ETHTOOL_GLOBR (ICE_ETHTOOL_CORER | \
4704 	(ETH_RESET_MAC << ETH_RESET_SHARED_SHIFT) | \
4705 	(ETH_RESET_PHY << ETH_RESET_SHARED_SHIFT))
4706 
4707 #define ICE_ETHTOOL_VFR ICE_ETHTOOL_PFR
4708 
4709 /**
4710  * ice_ethtool_reset - triggers a given type of reset
4711  * @dev: network interface device structure
4712  * @flags: set of reset flags
4713  *
4714  * Return: 0 on success, -EOPNOTSUPP when using unsupported set of flags.
4715  */
4716 static int ice_ethtool_reset(struct net_device *dev, u32 *flags)
4717 {
4718 	struct ice_netdev_priv *np = netdev_priv(dev);
4719 	struct ice_pf *pf = np->vsi->back;
4720 	enum ice_reset_req reset;
4721 
4722 	switch (*flags) {
4723 	case ICE_ETHTOOL_CORER:
4724 		reset = ICE_RESET_CORER;
4725 		break;
4726 	case ICE_ETHTOOL_GLOBR:
4727 		reset = ICE_RESET_GLOBR;
4728 		break;
4729 	case ICE_ETHTOOL_PFR:
4730 		reset = ICE_RESET_PFR;
4731 		break;
4732 	default:
4733 		netdev_info(dev, "Unsupported set of ethtool flags");
4734 		return -EOPNOTSUPP;
4735 	}
4736 
4737 	ice_schedule_reset(pf, reset);
4738 
4739 	*flags = 0;
4740 
4741 	return 0;
4742 }
4743 
4744 /**
4745  * ice_repr_ethtool_reset - triggers a VF reset
4746  * @dev: network interface device structure
4747  * @flags: set of reset flags
4748  *
4749  * Return: 0 on success,
4750  * -EOPNOTSUPP when using unsupported set of flags
4751  * -EBUSY when VF is not ready for reset.
4752  */
4753 static int ice_repr_ethtool_reset(struct net_device *dev, u32 *flags)
4754 {
4755 	struct ice_repr *repr = ice_netdev_to_repr(dev);
4756 	struct ice_vf *vf;
4757 
4758 	if (repr->type != ICE_REPR_TYPE_VF ||
4759 	    *flags != ICE_ETHTOOL_VFR)
4760 		return -EOPNOTSUPP;
4761 
4762 	vf = repr->vf;
4763 
4764 	if (ice_check_vf_ready_for_cfg(vf))
4765 		return -EBUSY;
4766 
4767 	*flags = 0;
4768 
4769 	return ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
4770 }
4771 
4772 static const struct ethtool_ops ice_ethtool_ops = {
4773 	.cap_rss_ctx_supported  = true,
4774 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
4775 				     ETHTOOL_COALESCE_USE_ADAPTIVE |
4776 				     ETHTOOL_COALESCE_RX_USECS_HIGH,
4777 	.cap_rss_sym_xor_supported = true,
4778 	.rxfh_per_ctx_key	= true,
4779 	.get_link_ksettings	= ice_get_link_ksettings,
4780 	.set_link_ksettings	= ice_set_link_ksettings,
4781 	.get_fec_stats		= ice_get_fec_stats,
4782 	.get_drvinfo		= ice_get_drvinfo,
4783 	.get_regs_len		= ice_get_regs_len,
4784 	.get_regs		= ice_get_regs,
4785 	.get_wol		= ice_get_wol,
4786 	.set_wol		= ice_set_wol,
4787 	.get_msglevel		= ice_get_msglevel,
4788 	.set_msglevel		= ice_set_msglevel,
4789 	.self_test		= ice_self_test,
4790 	.get_link		= ethtool_op_get_link,
4791 	.get_eeprom_len		= ice_get_eeprom_len,
4792 	.get_eeprom		= ice_get_eeprom,
4793 	.get_coalesce		= ice_get_coalesce,
4794 	.set_coalesce		= ice_set_coalesce,
4795 	.get_strings		= ice_get_strings,
4796 	.set_phys_id		= ice_set_phys_id,
4797 	.get_ethtool_stats      = ice_get_ethtool_stats,
4798 	.get_priv_flags		= ice_get_priv_flags,
4799 	.set_priv_flags		= ice_set_priv_flags,
4800 	.get_sset_count		= ice_get_sset_count,
4801 	.get_rxnfc		= ice_get_rxnfc,
4802 	.set_rxnfc		= ice_set_rxnfc,
4803 	.get_ringparam		= ice_get_ringparam,
4804 	.set_ringparam		= ice_set_ringparam,
4805 	.nway_reset		= ice_nway_reset,
4806 	.get_pauseparam		= ice_get_pauseparam,
4807 	.set_pauseparam		= ice_set_pauseparam,
4808 	.reset			= ice_ethtool_reset,
4809 	.get_rxfh_key_size	= ice_get_rxfh_key_size,
4810 	.get_rxfh_indir_size	= ice_get_rxfh_indir_size,
4811 	.get_rxfh		= ice_get_rxfh,
4812 	.set_rxfh		= ice_set_rxfh,
4813 	.get_channels		= ice_get_channels,
4814 	.set_channels		= ice_set_channels,
4815 	.get_ts_info		= ice_get_ts_info,
4816 	.get_per_queue_coalesce	= ice_get_per_q_coalesce,
4817 	.set_per_queue_coalesce	= ice_set_per_q_coalesce,
4818 	.get_fecparam		= ice_get_fecparam,
4819 	.set_fecparam		= ice_set_fecparam,
4820 	.get_module_info	= ice_get_module_info,
4821 	.get_module_eeprom	= ice_get_module_eeprom,
4822 };
4823 
4824 static const struct ethtool_ops ice_ethtool_safe_mode_ops = {
4825 	.get_link_ksettings	= ice_get_link_ksettings,
4826 	.set_link_ksettings	= ice_set_link_ksettings,
4827 	.get_drvinfo		= ice_get_drvinfo,
4828 	.get_regs_len		= ice_get_regs_len,
4829 	.get_regs		= ice_get_regs,
4830 	.get_wol		= ice_get_wol,
4831 	.set_wol		= ice_set_wol,
4832 	.get_msglevel		= ice_get_msglevel,
4833 	.set_msglevel		= ice_set_msglevel,
4834 	.get_link		= ethtool_op_get_link,
4835 	.get_eeprom_len		= ice_get_eeprom_len,
4836 	.get_eeprom		= ice_get_eeprom,
4837 	.get_strings		= ice_get_strings,
4838 	.get_ethtool_stats	= ice_get_ethtool_stats,
4839 	.get_sset_count		= ice_get_sset_count,
4840 	.get_ringparam		= ice_get_ringparam,
4841 	.set_ringparam		= ice_set_ringparam,
4842 	.nway_reset		= ice_nway_reset,
4843 	.get_channels		= ice_get_channels,
4844 };
4845 
4846 /**
4847  * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops
4848  * @netdev: network interface device structure
4849  */
4850 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev)
4851 {
4852 	netdev->ethtool_ops = &ice_ethtool_safe_mode_ops;
4853 }
4854 
4855 static const struct ethtool_ops ice_ethtool_repr_ops = {
4856 	.get_drvinfo		= ice_repr_get_drvinfo,
4857 	.get_link		= ethtool_op_get_link,
4858 	.get_strings		= ice_repr_get_strings,
4859 	.get_ethtool_stats      = ice_repr_get_ethtool_stats,
4860 	.get_sset_count		= ice_repr_get_sset_count,
4861 	.reset			= ice_repr_ethtool_reset,
4862 };
4863 
4864 /**
4865  * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops
4866  * @netdev: network interface device structure
4867  */
4868 void ice_set_ethtool_repr_ops(struct net_device *netdev)
4869 {
4870 	netdev->ethtool_ops = &ice_ethtool_repr_ops;
4871 }
4872 
4873 /**
4874  * ice_set_ethtool_ops - setup netdev ethtool ops
4875  * @netdev: network interface device structure
4876  *
4877  * setup netdev ethtool ops with ice specific ops
4878  */
4879 void ice_set_ethtool_ops(struct net_device *netdev)
4880 {
4881 	netdev->ethtool_ops = &ice_ethtool_ops;
4882 }
4883