1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* ethtool support for ice */ 5 6 #include "ice.h" 7 #include "ice_ethtool.h" 8 #include "ice_flow.h" 9 #include "ice_fltr.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include <net/dcbnl.h> 13 14 struct ice_stats { 15 char stat_string[ETH_GSTRING_LEN]; 16 int sizeof_stat; 17 int stat_offset; 18 }; 19 20 #define ICE_STAT(_type, _name, _stat) { \ 21 .stat_string = _name, \ 22 .sizeof_stat = sizeof_field(_type, _stat), \ 23 .stat_offset = offsetof(_type, _stat) \ 24 } 25 26 #define ICE_VSI_STAT(_name, _stat) \ 27 ICE_STAT(struct ice_vsi, _name, _stat) 28 #define ICE_PF_STAT(_name, _stat) \ 29 ICE_STAT(struct ice_pf, _name, _stat) 30 31 static int ice_q_stats_len(struct net_device *netdev) 32 { 33 struct ice_netdev_priv *np = netdev_priv(netdev); 34 35 return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) * 36 (sizeof(struct ice_q_stats) / sizeof(u64))); 37 } 38 39 #define ICE_PF_STATS_LEN ARRAY_SIZE(ice_gstrings_pf_stats) 40 #define ICE_VSI_STATS_LEN ARRAY_SIZE(ice_gstrings_vsi_stats) 41 42 #define ICE_PFC_STATS_LEN ( \ 43 (sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \ 44 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \ 45 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \ 46 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \ 47 / sizeof(u64)) 48 #define ICE_ALL_STATS_LEN(n) (ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \ 49 ICE_VSI_STATS_LEN + ice_q_stats_len(n)) 50 51 static const struct ice_stats ice_gstrings_vsi_stats[] = { 52 ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast), 53 ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast), 54 ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast), 55 ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast), 56 ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast), 57 ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast), 58 ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes), 59 ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes), 60 ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards), 61 ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol), 62 ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed), 63 ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed), 64 ICE_VSI_STAT("tx_errors", eth_stats.tx_errors), 65 ICE_VSI_STAT("tx_linearize", tx_linearize), 66 ICE_VSI_STAT("tx_busy", tx_busy), 67 ICE_VSI_STAT("tx_restart", tx_restart), 68 }; 69 70 enum ice_ethtool_test_id { 71 ICE_ETH_TEST_REG = 0, 72 ICE_ETH_TEST_EEPROM, 73 ICE_ETH_TEST_INTR, 74 ICE_ETH_TEST_LOOP, 75 ICE_ETH_TEST_LINK, 76 }; 77 78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = { 79 "Register test (offline)", 80 "EEPROM test (offline)", 81 "Interrupt test (offline)", 82 "Loopback test (offline)", 83 "Link test (on/offline)", 84 }; 85 86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN) 87 88 /* These PF_STATs might look like duplicates of some NETDEV_STATs, 89 * but they aren't. This device is capable of supporting multiple 90 * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual 91 * netdevs whereas the PF_STATs are for the physical function that's 92 * hosting these netdevs. 93 * 94 * The PF_STATs are appended to the netdev stats only when ethtool -S 95 * is queried on the base PF netdev. 96 */ 97 static const struct ice_stats ice_gstrings_pf_stats[] = { 98 ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes), 99 ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes), 100 ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast), 101 ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast), 102 ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast), 103 ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast), 104 ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast), 105 ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast), 106 ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors), 107 ICE_PF_STAT("tx_timeout.nic", tx_timeout_count), 108 ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64), 109 ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64), 110 ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127), 111 ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127), 112 ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255), 113 ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255), 114 ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511), 115 ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511), 116 ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023), 117 ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023), 118 ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522), 119 ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522), 120 ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big), 121 ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big), 122 ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx), 123 ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx), 124 ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx), 125 ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx), 126 ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down), 127 ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize), 128 ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments), 129 ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize), 130 ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber), 131 ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error), 132 ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error), 133 ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards), 134 ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors), 135 ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes), 136 ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults), 137 ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults), 138 ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match), 139 ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status), 140 ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped), 141 ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts), 142 ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed), 143 ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded), 144 ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates), 145 }; 146 147 static const u32 ice_regs_dump_list[] = { 148 PFGEN_STATE, 149 PRTGEN_STATUS, 150 QRX_CTRL(0), 151 QINT_TQCTL(0), 152 QINT_RQCTL(0), 153 PFINT_OICR_ENA, 154 QRX_ITR(0), 155 #define GLDCB_TLPM_PCI_DM 0x000A0180 156 GLDCB_TLPM_PCI_DM, 157 #define GLDCB_TLPM_TC2PFC 0x000A0194 158 GLDCB_TLPM_TC2PFC, 159 #define TCDCB_TLPM_WAIT_DM(_i) (0x000A0080 + ((_i) * 4)) 160 TCDCB_TLPM_WAIT_DM(0), 161 TCDCB_TLPM_WAIT_DM(1), 162 TCDCB_TLPM_WAIT_DM(2), 163 TCDCB_TLPM_WAIT_DM(3), 164 TCDCB_TLPM_WAIT_DM(4), 165 TCDCB_TLPM_WAIT_DM(5), 166 TCDCB_TLPM_WAIT_DM(6), 167 TCDCB_TLPM_WAIT_DM(7), 168 TCDCB_TLPM_WAIT_DM(8), 169 TCDCB_TLPM_WAIT_DM(9), 170 TCDCB_TLPM_WAIT_DM(10), 171 TCDCB_TLPM_WAIT_DM(11), 172 TCDCB_TLPM_WAIT_DM(12), 173 TCDCB_TLPM_WAIT_DM(13), 174 TCDCB_TLPM_WAIT_DM(14), 175 TCDCB_TLPM_WAIT_DM(15), 176 TCDCB_TLPM_WAIT_DM(16), 177 TCDCB_TLPM_WAIT_DM(17), 178 TCDCB_TLPM_WAIT_DM(18), 179 TCDCB_TLPM_WAIT_DM(19), 180 TCDCB_TLPM_WAIT_DM(20), 181 TCDCB_TLPM_WAIT_DM(21), 182 TCDCB_TLPM_WAIT_DM(22), 183 TCDCB_TLPM_WAIT_DM(23), 184 TCDCB_TLPM_WAIT_DM(24), 185 TCDCB_TLPM_WAIT_DM(25), 186 TCDCB_TLPM_WAIT_DM(26), 187 TCDCB_TLPM_WAIT_DM(27), 188 TCDCB_TLPM_WAIT_DM(28), 189 TCDCB_TLPM_WAIT_DM(29), 190 TCDCB_TLPM_WAIT_DM(30), 191 TCDCB_TLPM_WAIT_DM(31), 192 #define GLPCI_WATMK_CLNT_PIPEMON 0x000BFD90 193 GLPCI_WATMK_CLNT_PIPEMON, 194 #define GLPCI_CUR_CLNT_COMMON 0x000BFD84 195 GLPCI_CUR_CLNT_COMMON, 196 #define GLPCI_CUR_CLNT_PIPEMON 0x000BFD88 197 GLPCI_CUR_CLNT_PIPEMON, 198 #define GLPCI_PCIERR 0x0009DEB0 199 GLPCI_PCIERR, 200 #define GLPSM_DEBUG_CTL_STATUS 0x000B0600 201 GLPSM_DEBUG_CTL_STATUS, 202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0680 203 GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT, 204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0684 205 GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT, 206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW 0x000B0688 207 GLPSM0_DEBUG_DT_OUT_OF_WINDOW, 208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT 0x000B069C 209 GLPSM0_DEBUG_INTF_HW_ERROR_DETECT, 210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT 0x000B06A0 211 GLPSM0_DEBUG_MISC_HW_ERROR_DETECT, 212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0E80 213 GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT, 214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0E84 215 GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT, 216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT 0x000B0E88 217 GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT, 218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT 0x000B0E8C 219 GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT, 220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT 0x000B0E90 221 GLPSM1_DEBUG_MISC_HW_ERROR_DETECT, 222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT 0x000B1680 223 GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT, 224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B1684 225 GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT, 226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT 0x000B1688 227 GLPSM2_DEBUG_MISC_HW_ERROR_DETECT, 228 #define GLTDPU_TCLAN_COMP_BOB(_i) (0x00049ADC + ((_i) * 4)) 229 GLTDPU_TCLAN_COMP_BOB(1), 230 GLTDPU_TCLAN_COMP_BOB(2), 231 GLTDPU_TCLAN_COMP_BOB(3), 232 GLTDPU_TCLAN_COMP_BOB(4), 233 GLTDPU_TCLAN_COMP_BOB(5), 234 GLTDPU_TCLAN_COMP_BOB(6), 235 GLTDPU_TCLAN_COMP_BOB(7), 236 GLTDPU_TCLAN_COMP_BOB(8), 237 #define GLTDPU_TCB_CMD_BOB(_i) (0x0004975C + ((_i) * 4)) 238 GLTDPU_TCB_CMD_BOB(1), 239 GLTDPU_TCB_CMD_BOB(2), 240 GLTDPU_TCB_CMD_BOB(3), 241 GLTDPU_TCB_CMD_BOB(4), 242 GLTDPU_TCB_CMD_BOB(5), 243 GLTDPU_TCB_CMD_BOB(6), 244 GLTDPU_TCB_CMD_BOB(7), 245 GLTDPU_TCB_CMD_BOB(8), 246 #define GLTDPU_PSM_UPDATE_BOB(_i) (0x00049B5C + ((_i) * 4)) 247 GLTDPU_PSM_UPDATE_BOB(1), 248 GLTDPU_PSM_UPDATE_BOB(2), 249 GLTDPU_PSM_UPDATE_BOB(3), 250 GLTDPU_PSM_UPDATE_BOB(4), 251 GLTDPU_PSM_UPDATE_BOB(5), 252 GLTDPU_PSM_UPDATE_BOB(6), 253 GLTDPU_PSM_UPDATE_BOB(7), 254 GLTDPU_PSM_UPDATE_BOB(8), 255 #define GLTCB_CMD_IN_BOB(_i) (0x000AE288 + ((_i) * 4)) 256 GLTCB_CMD_IN_BOB(1), 257 GLTCB_CMD_IN_BOB(2), 258 GLTCB_CMD_IN_BOB(3), 259 GLTCB_CMD_IN_BOB(4), 260 GLTCB_CMD_IN_BOB(5), 261 GLTCB_CMD_IN_BOB(6), 262 GLTCB_CMD_IN_BOB(7), 263 GLTCB_CMD_IN_BOB(8), 264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i) (0x000FC148 + ((_i) * 4)) 265 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1), 266 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2), 267 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3), 268 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4), 269 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5), 270 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6), 271 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7), 272 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8), 273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4)) 274 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1), 275 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2), 276 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3), 277 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4), 278 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5), 279 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6), 280 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7), 281 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8), 282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i) (0x000FC1C8 + ((_i) * 4)) 283 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1), 284 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2), 285 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3), 286 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4), 287 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5), 288 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6), 289 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7), 290 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8), 291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i) (0x000FC188 + ((_i) * 4)) 292 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1), 293 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2), 294 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3), 295 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4), 296 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5), 297 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6), 298 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7), 299 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8), 300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4)) 301 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1), 302 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2), 303 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3), 304 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4), 305 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5), 306 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6), 307 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7), 308 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8), 309 #define PRTDCB_TCUPM_REG_CM(_i) (0x000BC360 + ((_i) * 4)) 310 PRTDCB_TCUPM_REG_CM(0), 311 PRTDCB_TCUPM_REG_CM(1), 312 PRTDCB_TCUPM_REG_CM(2), 313 PRTDCB_TCUPM_REG_CM(3), 314 #define PRTDCB_TCUPM_REG_DM(_i) (0x000BC3A0 + ((_i) * 4)) 315 PRTDCB_TCUPM_REG_DM(0), 316 PRTDCB_TCUPM_REG_DM(1), 317 PRTDCB_TCUPM_REG_DM(2), 318 PRTDCB_TCUPM_REG_DM(3), 319 #define PRTDCB_TLPM_REG_DM(_i) (0x000A0000 + ((_i) * 4)) 320 PRTDCB_TLPM_REG_DM(0), 321 PRTDCB_TLPM_REG_DM(1), 322 PRTDCB_TLPM_REG_DM(2), 323 PRTDCB_TLPM_REG_DM(3), 324 }; 325 326 struct ice_priv_flag { 327 char name[ETH_GSTRING_LEN]; 328 u32 bitno; /* bit position in pf->flags */ 329 }; 330 331 #define ICE_PRIV_FLAG(_name, _bitno) { \ 332 .name = _name, \ 333 .bitno = _bitno, \ 334 } 335 336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = { 337 ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA), 338 ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT), 339 ICE_PRIV_FLAG("vf-true-promisc-support", 340 ICE_FLAG_VF_TRUE_PROMISC_ENA), 341 ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF), 342 ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING), 343 ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX), 344 }; 345 346 #define ICE_PRIV_FLAG_ARRAY_SIZE ARRAY_SIZE(ice_gstrings_priv_flags) 347 348 static const u32 ice_adv_lnk_speed_100[] __initconst = { 349 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 350 }; 351 352 static const u32 ice_adv_lnk_speed_1000[] __initconst = { 353 ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 354 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 355 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 356 }; 357 358 static const u32 ice_adv_lnk_speed_2500[] __initconst = { 359 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 360 ETHTOOL_LINK_MODE_2500baseX_Full_BIT, 361 }; 362 363 static const u32 ice_adv_lnk_speed_5000[] __initconst = { 364 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 365 }; 366 367 static const u32 ice_adv_lnk_speed_10000[] __initconst = { 368 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 369 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 370 ETHTOOL_LINK_MODE_10000baseSR_Full_BIT, 371 ETHTOOL_LINK_MODE_10000baseLR_Full_BIT, 372 }; 373 374 static const u32 ice_adv_lnk_speed_25000[] __initconst = { 375 ETHTOOL_LINK_MODE_25000baseCR_Full_BIT, 376 ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, 377 ETHTOOL_LINK_MODE_25000baseKR_Full_BIT, 378 }; 379 380 static const u32 ice_adv_lnk_speed_40000[] __initconst = { 381 ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT, 382 ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT, 383 ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT, 384 ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT, 385 }; 386 387 static const u32 ice_adv_lnk_speed_50000[] __initconst = { 388 ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT, 389 ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT, 390 ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT, 391 }; 392 393 static const u32 ice_adv_lnk_speed_100000[] __initconst = { 394 ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT, 395 ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, 396 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT, 397 ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT, 398 ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT, 399 ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT, 400 ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT, 401 }; 402 403 static const u32 ice_adv_lnk_speed_200000[] __initconst = { 404 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT, 405 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT, 406 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT, 407 ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT, 408 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT, 409 }; 410 411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = { 412 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100), 413 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000), 414 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500), 415 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000), 416 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000), 417 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000), 418 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000), 419 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000), 420 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000), 421 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000), 422 }; 423 424 void __init ice_adv_lnk_speed_maps_init(void) 425 { 426 ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps, 427 ARRAY_SIZE(ice_adv_lnk_speed_maps)); 428 } 429 430 static void 431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo, 432 struct ice_vsi *vsi) 433 { 434 struct ice_pf *pf = vsi->back; 435 struct ice_hw *hw = &pf->hw; 436 struct ice_orom_info *orom; 437 struct ice_nvm_info *nvm; 438 439 nvm = &hw->flash.nvm; 440 orom = &hw->flash.orom; 441 442 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 443 444 /* Display NVM version (from which the firmware version can be 445 * determined) which contains more pertinent information. 446 */ 447 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 448 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor, 449 nvm->eetrack, orom->major, orom->build, orom->patch); 450 451 strscpy(drvinfo->bus_info, pci_name(pf->pdev), 452 sizeof(drvinfo->bus_info)); 453 } 454 455 static void 456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 457 { 458 struct ice_netdev_priv *np = netdev_priv(netdev); 459 460 __ice_get_drvinfo(netdev, drvinfo, np->vsi); 461 drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE; 462 } 463 464 static int ice_get_regs_len(struct net_device __always_unused *netdev) 465 { 466 return (sizeof(ice_regs_dump_list) + 467 sizeof(struct ice_regdump_to_ethtool)); 468 } 469 470 /** 471 * ice_ethtool_get_maxspeed - Get the max speed for given lport 472 * @hw: pointer to the HW struct 473 * @lport: logical port for which max speed is requested 474 * @max_speed: return max speed for input lport 475 * 476 * Return: 0 on success, negative on failure. 477 */ 478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed) 479 { 480 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {}; 481 bool active_valid = false, pending_valid = true; 482 u8 option_count = ICE_AQC_PORT_OPT_MAX; 483 u8 active_idx = 0, pending_idx = 0; 484 int status; 485 486 status = ice_aq_get_port_options(hw, options, &option_count, lport, 487 true, &active_idx, &active_valid, 488 &pending_idx, &pending_valid); 489 if (status) 490 return -EIO; 491 if (!active_valid) 492 return -EINVAL; 493 494 *max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M; 495 return 0; 496 } 497 498 /** 499 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware 500 * @hw: pointer to the HW struct 501 * 502 * Return: true when serdes is muxed, false when serdes is not muxed. 503 */ 504 static bool ice_is_serdes_muxed(struct ice_hw *hw) 505 { 506 u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG); 507 508 return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value); 509 } 510 511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology, 512 u8 lport, bool is_muxed) 513 { 514 switch (lport) { 515 case 0: 516 port_topology->pcs_quad_select = 0; 517 port_topology->pcs_port = 0; 518 port_topology->primary_serdes_lane = 0; 519 break; 520 case 1: 521 port_topology->pcs_quad_select = 1; 522 port_topology->pcs_port = 0; 523 if (is_muxed) 524 port_topology->primary_serdes_lane = 2; 525 else 526 port_topology->primary_serdes_lane = 4; 527 break; 528 case 2: 529 port_topology->pcs_quad_select = 0; 530 port_topology->pcs_port = 1; 531 port_topology->primary_serdes_lane = 1; 532 break; 533 case 3: 534 port_topology->pcs_quad_select = 1; 535 port_topology->pcs_port = 1; 536 if (is_muxed) 537 port_topology->primary_serdes_lane = 3; 538 else 539 port_topology->primary_serdes_lane = 5; 540 break; 541 case 4: 542 port_topology->pcs_quad_select = 0; 543 port_topology->pcs_port = 2; 544 port_topology->primary_serdes_lane = 2; 545 break; 546 case 5: 547 port_topology->pcs_quad_select = 1; 548 port_topology->pcs_port = 2; 549 port_topology->primary_serdes_lane = 6; 550 break; 551 case 6: 552 port_topology->pcs_quad_select = 0; 553 port_topology->pcs_port = 3; 554 port_topology->primary_serdes_lane = 3; 555 break; 556 case 7: 557 port_topology->pcs_quad_select = 1; 558 port_topology->pcs_port = 3; 559 port_topology->primary_serdes_lane = 7; 560 break; 561 default: 562 return -EINVAL; 563 } 564 565 return 0; 566 } 567 568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology, 569 u8 lport, bool is_muxed) 570 { 571 switch (lport) { 572 case 0: 573 port_topology->pcs_quad_select = 0; 574 port_topology->pcs_port = 0; 575 port_topology->primary_serdes_lane = 0; 576 break; 577 case 1: 578 port_topology->pcs_quad_select = 1; 579 port_topology->pcs_port = 0; 580 if (is_muxed) 581 port_topology->primary_serdes_lane = 2; 582 else 583 port_topology->primary_serdes_lane = 4; 584 break; 585 case 2: 586 port_topology->pcs_quad_select = 0; 587 port_topology->pcs_port = 1; 588 port_topology->primary_serdes_lane = 1; 589 break; 590 case 3: 591 port_topology->pcs_quad_select = 1; 592 port_topology->pcs_port = 1; 593 if (is_muxed) 594 port_topology->primary_serdes_lane = 3; 595 else 596 port_topology->primary_serdes_lane = 5; 597 break; 598 case 4: 599 port_topology->pcs_quad_select = 0; 600 port_topology->pcs_port = 2; 601 port_topology->primary_serdes_lane = 2; 602 break; 603 case 5: 604 port_topology->pcs_quad_select = 1; 605 port_topology->pcs_port = 2; 606 port_topology->primary_serdes_lane = 6; 607 break; 608 case 6: 609 port_topology->pcs_quad_select = 0; 610 port_topology->pcs_port = 3; 611 port_topology->primary_serdes_lane = 3; 612 break; 613 case 7: 614 port_topology->pcs_quad_select = 1; 615 port_topology->pcs_port = 3; 616 port_topology->primary_serdes_lane = 7; 617 break; 618 default: 619 return -EINVAL; 620 } 621 622 return 0; 623 } 624 625 /** 626 * ice_get_port_topology - returns physical topology like pcsquad, pcsport, 627 * serdes number 628 * @hw: pointer to the HW struct 629 * @lport: logical port for which physical info requested 630 * @port_topology: buffer to hold port topology 631 * 632 * Return: 0 on success, negative on failure. 633 */ 634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport, 635 struct ice_port_topology *port_topology) 636 { 637 struct ice_aqc_get_link_topo cmd = {}; 638 u16 node_handle = 0; 639 u8 cage_type = 0; 640 bool is_muxed; 641 int err; 642 u8 ctx; 643 644 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S; 645 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; 646 cmd.addr.topo_params.node_type_ctx = ctx; 647 648 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle); 649 if (err) 650 return -EINVAL; 651 652 is_muxed = ice_is_serdes_muxed(hw); 653 654 if (cage_type == 0x11 || /* SFP+ */ 655 cage_type == 0x12) { /* SFP28 */ 656 port_topology->serdes_lane_count = 1; 657 err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed); 658 if (err) 659 return err; 660 } else if (cage_type == 0x13 || /* QSFP */ 661 cage_type == 0x14) { /* QSFP28 */ 662 u8 max_speed = 0; 663 664 err = ice_ethtool_get_maxspeed(hw, lport, &max_speed); 665 if (err) 666 return err; 667 668 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G) 669 port_topology->serdes_lane_count = 4; 670 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G) 671 port_topology->serdes_lane_count = 2; 672 else 673 port_topology->serdes_lane_count = 1; 674 675 err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed); 676 if (err) 677 return err; 678 } else { 679 return -EINVAL; 680 } 681 682 return 0; 683 } 684 685 /** 686 * ice_get_tx_rx_equa - read serdes tx rx equaliser param 687 * @hw: pointer to the HW struct 688 * @serdes_num: represents the serdes number 689 * @ptr: structure to read all serdes parameter for given serdes 690 * 691 * Return: all serdes equalization parameter supported per serdes number 692 */ 693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num, 694 struct ice_serdes_equalization_to_ethtool *ptr) 695 { 696 static const int tx = ICE_AQC_OP_CODE_TX_EQU; 697 static const int rx = ICE_AQC_OP_CODE_RX_EQU; 698 struct { 699 int data_in; 700 int opcode; 701 int *out; 702 } aq_params[] = { 703 { ICE_AQC_TX_EQU_PRE1, tx, &ptr->tx_equ_pre1 }, 704 { ICE_AQC_TX_EQU_PRE3, tx, &ptr->tx_equ_pre3 }, 705 { ICE_AQC_TX_EQU_ATTEN, tx, &ptr->tx_equ_atten }, 706 { ICE_AQC_TX_EQU_POST1, tx, &ptr->tx_equ_post1 }, 707 { ICE_AQC_TX_EQU_PRE2, tx, &ptr->tx_equ_pre2 }, 708 { ICE_AQC_RX_EQU_PRE2, rx, &ptr->rx_equ_pre2 }, 709 { ICE_AQC_RX_EQU_PRE1, rx, &ptr->rx_equ_pre1 }, 710 { ICE_AQC_RX_EQU_POST1, rx, &ptr->rx_equ_post1 }, 711 { ICE_AQC_RX_EQU_BFLF, rx, &ptr->rx_equ_bflf }, 712 { ICE_AQC_RX_EQU_BFHF, rx, &ptr->rx_equ_bfhf }, 713 { ICE_AQC_RX_EQU_DRATE, rx, &ptr->rx_equ_drate }, 714 { ICE_AQC_RX_EQU_CTLE_GAINHF, rx, &ptr->rx_equ_ctle_gainhf }, 715 { ICE_AQC_RX_EQU_CTLE_GAINLF, rx, &ptr->rx_equ_ctle_gainlf }, 716 { ICE_AQC_RX_EQU_CTLE_GAINDC, rx, &ptr->rx_equ_ctle_gaindc }, 717 { ICE_AQC_RX_EQU_CTLE_BW, rx, &ptr->rx_equ_ctle_bw }, 718 { ICE_AQC_RX_EQU_DFE_GAIN, rx, &ptr->rx_equ_dfe_gain }, 719 { ICE_AQC_RX_EQU_DFE_GAIN2, rx, &ptr->rx_equ_dfe_gain_2 }, 720 { ICE_AQC_RX_EQU_DFE_2, rx, &ptr->rx_equ_dfe_2 }, 721 { ICE_AQC_RX_EQU_DFE_3, rx, &ptr->rx_equ_dfe_3 }, 722 { ICE_AQC_RX_EQU_DFE_4, rx, &ptr->rx_equ_dfe_4 }, 723 { ICE_AQC_RX_EQU_DFE_5, rx, &ptr->rx_equ_dfe_5 }, 724 { ICE_AQC_RX_EQU_DFE_6, rx, &ptr->rx_equ_dfe_6 }, 725 { ICE_AQC_RX_EQU_DFE_7, rx, &ptr->rx_equ_dfe_7 }, 726 { ICE_AQC_RX_EQU_DFE_8, rx, &ptr->rx_equ_dfe_8 }, 727 { ICE_AQC_RX_EQU_DFE_9, rx, &ptr->rx_equ_dfe_9 }, 728 { ICE_AQC_RX_EQU_DFE_10, rx, &ptr->rx_equ_dfe_10 }, 729 { ICE_AQC_RX_EQU_DFE_11, rx, &ptr->rx_equ_dfe_11 }, 730 { ICE_AQC_RX_EQU_DFE_12, rx, &ptr->rx_equ_dfe_12 }, 731 }; 732 int err; 733 734 for (int i = 0; i < ARRAY_SIZE(aq_params); i++) { 735 err = ice_aq_get_phy_equalization(hw, aq_params[i].data_in, 736 aq_params[i].opcode, 737 serdes_num, aq_params[i].out); 738 if (err) 739 break; 740 } 741 742 return err; 743 } 744 745 /** 746 * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per 747 * pcsquad, pcsport 748 * @netdev: pointer to net device structure 749 * @p: output buffer to fill requested register dump 750 * 751 * Return: 0 on success, negative on failure. 752 */ 753 static int ice_get_extended_regs(struct net_device *netdev, void *p) 754 { 755 struct ice_netdev_priv *np = netdev_priv(netdev); 756 struct ice_regdump_to_ethtool *ice_prv_regs_buf; 757 struct ice_port_topology port_topology = {}; 758 struct ice_port_info *pi; 759 struct ice_pf *pf; 760 struct ice_hw *hw; 761 unsigned int i; 762 int err; 763 764 pf = np->vsi->back; 765 hw = &pf->hw; 766 pi = np->vsi->port_info; 767 768 /* Serdes parameters are not supported if not the PF VSI */ 769 if (np->vsi->type != ICE_VSI_PF || !pi) 770 return -EINVAL; 771 772 err = ice_get_port_topology(hw, pi->lport, &port_topology); 773 if (err) 774 return -EINVAL; 775 if (port_topology.serdes_lane_count > 4) 776 return -EINVAL; 777 778 ice_prv_regs_buf = p; 779 780 /* Get serdes equalization parameter for available serdes */ 781 for (i = 0; i < port_topology.serdes_lane_count; i++) { 782 u8 serdes_num = 0; 783 784 serdes_num = port_topology.primary_serdes_lane + i; 785 err = ice_get_tx_rx_equa(hw, serdes_num, 786 &ice_prv_regs_buf->equalization[i]); 787 if (err) 788 return -EINVAL; 789 } 790 791 return 0; 792 } 793 794 static void 795 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) 796 { 797 struct ice_netdev_priv *np = netdev_priv(netdev); 798 struct ice_pf *pf = np->vsi->back; 799 struct ice_hw *hw = &pf->hw; 800 u32 *regs_buf = (u32 *)p; 801 unsigned int i; 802 803 regs->version = 2; 804 805 for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i) 806 regs_buf[i] = rd32(hw, ice_regs_dump_list[i]); 807 808 ice_get_extended_regs(netdev, (void *)®s_buf[i]); 809 } 810 811 static u32 ice_get_msglevel(struct net_device *netdev) 812 { 813 struct ice_netdev_priv *np = netdev_priv(netdev); 814 struct ice_pf *pf = np->vsi->back; 815 816 #ifndef CONFIG_DYNAMIC_DEBUG 817 if (pf->hw.debug_mask) 818 netdev_info(netdev, "hw debug_mask: 0x%llX\n", 819 pf->hw.debug_mask); 820 #endif /* !CONFIG_DYNAMIC_DEBUG */ 821 822 return pf->msg_enable; 823 } 824 825 static void ice_set_msglevel(struct net_device *netdev, u32 data) 826 { 827 struct ice_netdev_priv *np = netdev_priv(netdev); 828 struct ice_pf *pf = np->vsi->back; 829 830 #ifndef CONFIG_DYNAMIC_DEBUG 831 if (ICE_DBG_USER & data) 832 pf->hw.debug_mask = data; 833 else 834 pf->msg_enable = data; 835 #else 836 pf->msg_enable = data; 837 #endif /* !CONFIG_DYNAMIC_DEBUG */ 838 } 839 840 static int ice_get_eeprom_len(struct net_device *netdev) 841 { 842 struct ice_netdev_priv *np = netdev_priv(netdev); 843 struct ice_pf *pf = np->vsi->back; 844 845 return (int)pf->hw.flash.flash_size; 846 } 847 848 static int 849 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, 850 u8 *bytes) 851 { 852 struct ice_netdev_priv *np = netdev_priv(netdev); 853 struct ice_vsi *vsi = np->vsi; 854 struct ice_pf *pf = vsi->back; 855 struct ice_hw *hw = &pf->hw; 856 struct device *dev; 857 int ret; 858 u8 *buf; 859 860 dev = ice_pf_to_dev(pf); 861 862 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 863 netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n", 864 eeprom->cmd, eeprom->offset, eeprom->len); 865 866 buf = kzalloc(eeprom->len, GFP_KERNEL); 867 if (!buf) 868 return -ENOMEM; 869 870 ret = ice_acquire_nvm(hw, ICE_RES_READ); 871 if (ret) { 872 dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n", 873 ret, ice_aq_str(hw->adminq.sq_last_status)); 874 goto out; 875 } 876 877 ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf, 878 false); 879 if (ret) { 880 dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n", 881 ret, ice_aq_str(hw->adminq.sq_last_status)); 882 goto release; 883 } 884 885 memcpy(bytes, buf, eeprom->len); 886 release: 887 ice_release_nvm(hw); 888 out: 889 kfree(buf); 890 return ret; 891 } 892 893 /** 894 * ice_active_vfs - check if there are any active VFs 895 * @pf: board private structure 896 * 897 * Returns true if an active VF is found, otherwise returns false 898 */ 899 static bool ice_active_vfs(struct ice_pf *pf) 900 { 901 bool active = false; 902 struct ice_vf *vf; 903 unsigned int bkt; 904 905 rcu_read_lock(); 906 ice_for_each_vf_rcu(pf, bkt, vf) { 907 if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 908 active = true; 909 break; 910 } 911 } 912 rcu_read_unlock(); 913 914 return active; 915 } 916 917 /** 918 * ice_link_test - perform a link test on a given net_device 919 * @netdev: network interface device structure 920 * 921 * This function performs one of the self-tests required by ethtool. 922 * Returns 0 on success, non-zero on failure. 923 */ 924 static u64 ice_link_test(struct net_device *netdev) 925 { 926 struct ice_netdev_priv *np = netdev_priv(netdev); 927 bool link_up = false; 928 int status; 929 930 netdev_info(netdev, "link test\n"); 931 status = ice_get_link_status(np->vsi->port_info, &link_up); 932 if (status) { 933 netdev_err(netdev, "link query error, status = %d\n", 934 status); 935 return 1; 936 } 937 938 if (!link_up) 939 return 2; 940 941 return 0; 942 } 943 944 /** 945 * ice_eeprom_test - perform an EEPROM test on a given net_device 946 * @netdev: network interface device structure 947 * 948 * This function performs one of the self-tests required by ethtool. 949 * Returns 0 on success, non-zero on failure. 950 */ 951 static u64 ice_eeprom_test(struct net_device *netdev) 952 { 953 struct ice_netdev_priv *np = netdev_priv(netdev); 954 struct ice_pf *pf = np->vsi->back; 955 956 netdev_info(netdev, "EEPROM test\n"); 957 return !!(ice_nvm_validate_checksum(&pf->hw)); 958 } 959 960 /** 961 * ice_reg_pattern_test 962 * @hw: pointer to the HW struct 963 * @reg: reg to be tested 964 * @mask: bits to be touched 965 */ 966 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask) 967 { 968 struct ice_pf *pf = (struct ice_pf *)hw->back; 969 struct device *dev = ice_pf_to_dev(pf); 970 static const u32 patterns[] = { 971 0x5A5A5A5A, 0xA5A5A5A5, 972 0x00000000, 0xFFFFFFFF 973 }; 974 u32 val, orig_val; 975 unsigned int i; 976 977 orig_val = rd32(hw, reg); 978 for (i = 0; i < ARRAY_SIZE(patterns); ++i) { 979 u32 pattern = patterns[i] & mask; 980 981 wr32(hw, reg, pattern); 982 val = rd32(hw, reg); 983 if (val == pattern) 984 continue; 985 dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n" 986 , __func__, reg, pattern, val); 987 return 1; 988 } 989 990 wr32(hw, reg, orig_val); 991 val = rd32(hw, reg); 992 if (val != orig_val) { 993 dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n" 994 , __func__, reg, orig_val, val); 995 return 1; 996 } 997 998 return 0; 999 } 1000 1001 /** 1002 * ice_reg_test - perform a register test on a given net_device 1003 * @netdev: network interface device structure 1004 * 1005 * This function performs one of the self-tests required by ethtool. 1006 * Returns 0 on success, non-zero on failure. 1007 */ 1008 static u64 ice_reg_test(struct net_device *netdev) 1009 { 1010 struct ice_netdev_priv *np = netdev_priv(netdev); 1011 struct ice_hw *hw = np->vsi->port_info->hw; 1012 u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ? 1013 hw->func_caps.common_cap.num_msix_vectors - 1 : 1; 1014 struct ice_diag_reg_test_info { 1015 u32 address; 1016 u32 mask; 1017 u32 elem_num; 1018 u32 elem_size; 1019 } ice_reg_list[] = { 1020 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1021 GLINT_ITR(0, 1) - GLINT_ITR(0, 0)}, 1022 {GLINT_ITR(1, 0), 0x00000fff, int_elements, 1023 GLINT_ITR(1, 1) - GLINT_ITR(1, 0)}, 1024 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1025 GLINT_ITR(2, 1) - GLINT_ITR(2, 0)}, 1026 {GLINT_CTL, 0xffff0001, 1, 0} 1027 }; 1028 unsigned int i; 1029 1030 netdev_dbg(netdev, "Register test\n"); 1031 for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) { 1032 u32 j; 1033 1034 for (j = 0; j < ice_reg_list[i].elem_num; ++j) { 1035 u32 mask = ice_reg_list[i].mask; 1036 u32 reg = ice_reg_list[i].address + 1037 (j * ice_reg_list[i].elem_size); 1038 1039 /* bail on failure (non-zero return) */ 1040 if (ice_reg_pattern_test(hw, reg, mask)) 1041 return 1; 1042 } 1043 } 1044 1045 return 0; 1046 } 1047 1048 /** 1049 * ice_lbtest_prepare_rings - configure Tx/Rx test rings 1050 * @vsi: pointer to the VSI structure 1051 * 1052 * Function configures rings of a VSI for loopback test without 1053 * enabling interrupts or informing the kernel about new queues. 1054 * 1055 * Returns 0 on success, negative on failure. 1056 */ 1057 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi) 1058 { 1059 int status; 1060 1061 status = ice_vsi_setup_tx_rings(vsi); 1062 if (status) 1063 goto err_setup_tx_ring; 1064 1065 status = ice_vsi_setup_rx_rings(vsi); 1066 if (status) 1067 goto err_setup_rx_ring; 1068 1069 status = ice_vsi_cfg_lan(vsi); 1070 if (status) 1071 goto err_setup_rx_ring; 1072 1073 status = ice_vsi_start_all_rx_rings(vsi); 1074 if (status) 1075 goto err_start_rx_ring; 1076 1077 return 0; 1078 1079 err_start_rx_ring: 1080 ice_vsi_free_rx_rings(vsi); 1081 err_setup_rx_ring: 1082 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1083 err_setup_tx_ring: 1084 ice_vsi_free_tx_rings(vsi); 1085 1086 return status; 1087 } 1088 1089 /** 1090 * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test 1091 * @vsi: pointer to the VSI structure 1092 * 1093 * Function stops and frees VSI rings after a loopback test. 1094 * Returns 0 on success, negative on failure. 1095 */ 1096 static int ice_lbtest_disable_rings(struct ice_vsi *vsi) 1097 { 1098 int status; 1099 1100 status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1101 if (status) 1102 netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n", 1103 vsi->vsi_num, status); 1104 1105 status = ice_vsi_stop_all_rx_rings(vsi); 1106 if (status) 1107 netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n", 1108 vsi->vsi_num, status); 1109 1110 ice_vsi_free_tx_rings(vsi); 1111 ice_vsi_free_rx_rings(vsi); 1112 1113 return status; 1114 } 1115 1116 /** 1117 * ice_lbtest_create_frame - create test packet 1118 * @pf: pointer to the PF structure 1119 * @ret_data: allocated frame buffer 1120 * @size: size of the packet data 1121 * 1122 * Function allocates a frame with a test pattern on specific offsets. 1123 * Returns 0 on success, non-zero on failure. 1124 */ 1125 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size) 1126 { 1127 u8 *data; 1128 1129 if (!pf) 1130 return -EINVAL; 1131 1132 data = kzalloc(size, GFP_KERNEL); 1133 if (!data) 1134 return -ENOMEM; 1135 1136 /* Since the ethernet test frame should always be at least 1137 * 64 bytes long, fill some octets in the payload with test data. 1138 */ 1139 memset(data, 0xFF, size); 1140 data[32] = 0xDE; 1141 data[42] = 0xAD; 1142 data[44] = 0xBE; 1143 data[46] = 0xEF; 1144 1145 *ret_data = data; 1146 1147 return 0; 1148 } 1149 1150 /** 1151 * ice_lbtest_check_frame - verify received loopback frame 1152 * @frame: pointer to the raw packet data 1153 * 1154 * Function verifies received test frame with a pattern. 1155 * Returns true if frame matches the pattern, false otherwise. 1156 */ 1157 static bool ice_lbtest_check_frame(u8 *frame) 1158 { 1159 /* Validate bytes of a frame under offsets chosen earlier */ 1160 if (frame[32] == 0xDE && 1161 frame[42] == 0xAD && 1162 frame[44] == 0xBE && 1163 frame[46] == 0xEF && 1164 frame[48] == 0xFF) 1165 return true; 1166 1167 return false; 1168 } 1169 1170 /** 1171 * ice_diag_send - send test frames to the test ring 1172 * @tx_ring: pointer to the transmit ring 1173 * @data: pointer to the raw packet data 1174 * @size: size of the packet to send 1175 * 1176 * Function sends loopback packets on a test Tx ring. 1177 */ 1178 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size) 1179 { 1180 struct ice_tx_desc *tx_desc; 1181 struct ice_tx_buf *tx_buf; 1182 dma_addr_t dma; 1183 u64 td_cmd; 1184 1185 tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use); 1186 tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use]; 1187 1188 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 1189 if (dma_mapping_error(tx_ring->dev, dma)) 1190 return -EINVAL; 1191 1192 tx_desc->buf_addr = cpu_to_le64(dma); 1193 1194 /* These flags are required for a descriptor to be pushed out */ 1195 td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); 1196 tx_desc->cmd_type_offset_bsz = 1197 cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | 1198 (td_cmd << ICE_TXD_QW1_CMD_S) | 1199 ((u64)0 << ICE_TXD_QW1_OFFSET_S) | 1200 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | 1201 ((u64)0 << ICE_TXD_QW1_L2TAG1_S)); 1202 1203 tx_buf->next_to_watch = tx_desc; 1204 1205 /* Force memory write to complete before letting h/w know 1206 * there are new descriptors to fetch. 1207 */ 1208 wmb(); 1209 1210 tx_ring->next_to_use++; 1211 if (tx_ring->next_to_use >= tx_ring->count) 1212 tx_ring->next_to_use = 0; 1213 1214 writel_relaxed(tx_ring->next_to_use, tx_ring->tail); 1215 1216 /* Wait until the packets get transmitted to the receive queue. */ 1217 usleep_range(1000, 2000); 1218 dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE); 1219 1220 return 0; 1221 } 1222 1223 #define ICE_LB_FRAME_SIZE 64 1224 /** 1225 * ice_lbtest_receive_frames - receive and verify test frames 1226 * @rx_ring: pointer to the receive ring 1227 * 1228 * Function receives loopback packets and verify their correctness. 1229 * Returns number of received valid frames. 1230 */ 1231 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring) 1232 { 1233 struct ice_rx_buf *rx_buf; 1234 int valid_frames, i; 1235 u8 *received_buf; 1236 1237 valid_frames = 0; 1238 1239 for (i = 0; i < rx_ring->count; i++) { 1240 union ice_32b_rx_flex_desc *rx_desc; 1241 1242 rx_desc = ICE_RX_DESC(rx_ring, i); 1243 1244 if (!(rx_desc->wb.status_error0 & 1245 (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) | 1246 cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S))))) 1247 continue; 1248 1249 rx_buf = &rx_ring->rx_buf[i]; 1250 received_buf = page_address(rx_buf->page) + rx_buf->page_offset; 1251 1252 if (ice_lbtest_check_frame(received_buf)) 1253 valid_frames++; 1254 } 1255 1256 return valid_frames; 1257 } 1258 1259 /** 1260 * ice_loopback_test - perform a loopback test on a given net_device 1261 * @netdev: network interface device structure 1262 * 1263 * This function performs one of the self-tests required by ethtool. 1264 * Returns 0 on success, non-zero on failure. 1265 */ 1266 static u64 ice_loopback_test(struct net_device *netdev) 1267 { 1268 struct ice_netdev_priv *np = netdev_priv(netdev); 1269 struct ice_vsi *orig_vsi = np->vsi, *test_vsi; 1270 struct ice_pf *pf = orig_vsi->back; 1271 u8 *tx_frame __free(kfree) = NULL; 1272 u8 broadcast[ETH_ALEN], ret = 0; 1273 int num_frames, valid_frames; 1274 struct ice_tx_ring *tx_ring; 1275 struct ice_rx_ring *rx_ring; 1276 int i; 1277 1278 netdev_info(netdev, "loopback test\n"); 1279 1280 test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info); 1281 if (!test_vsi) { 1282 netdev_err(netdev, "Failed to create a VSI for the loopback test\n"); 1283 return 1; 1284 } 1285 1286 test_vsi->netdev = netdev; 1287 tx_ring = test_vsi->tx_rings[0]; 1288 rx_ring = test_vsi->rx_rings[0]; 1289 1290 if (ice_lbtest_prepare_rings(test_vsi)) { 1291 ret = 2; 1292 goto lbtest_vsi_close; 1293 } 1294 1295 if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) { 1296 ret = 3; 1297 goto lbtest_rings_dis; 1298 } 1299 1300 /* Enable MAC loopback in firmware */ 1301 if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) { 1302 ret = 4; 1303 goto lbtest_mac_dis; 1304 } 1305 1306 /* Test VSI needs to receive broadcast packets */ 1307 eth_broadcast_addr(broadcast); 1308 if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) { 1309 ret = 5; 1310 goto lbtest_mac_dis; 1311 } 1312 1313 if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) { 1314 ret = 7; 1315 goto remove_mac_filters; 1316 } 1317 1318 num_frames = min_t(int, tx_ring->count, 32); 1319 for (i = 0; i < num_frames; i++) { 1320 if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) { 1321 ret = 8; 1322 goto remove_mac_filters; 1323 } 1324 } 1325 1326 valid_frames = ice_lbtest_receive_frames(rx_ring); 1327 if (!valid_frames) 1328 ret = 9; 1329 else if (valid_frames != num_frames) 1330 ret = 10; 1331 1332 remove_mac_filters: 1333 if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) 1334 netdev_err(netdev, "Could not remove MAC filter for the test VSI\n"); 1335 lbtest_mac_dis: 1336 /* Disable MAC loopback after the test is completed. */ 1337 if (ice_aq_set_mac_loopback(&pf->hw, false, NULL)) 1338 netdev_err(netdev, "Could not disable MAC loopback\n"); 1339 lbtest_rings_dis: 1340 if (ice_lbtest_disable_rings(test_vsi)) 1341 netdev_err(netdev, "Could not disable test rings\n"); 1342 lbtest_vsi_close: 1343 test_vsi->netdev = NULL; 1344 if (ice_vsi_release(test_vsi)) 1345 netdev_err(netdev, "Failed to remove the test VSI\n"); 1346 1347 return ret; 1348 } 1349 1350 /** 1351 * ice_intr_test - perform an interrupt test on a given net_device 1352 * @netdev: network interface device structure 1353 * 1354 * This function performs one of the self-tests required by ethtool. 1355 * Returns 0 on success, non-zero on failure. 1356 */ 1357 static u64 ice_intr_test(struct net_device *netdev) 1358 { 1359 struct ice_netdev_priv *np = netdev_priv(netdev); 1360 struct ice_pf *pf = np->vsi->back; 1361 u16 swic_old = pf->sw_int_count; 1362 1363 netdev_info(netdev, "interrupt test\n"); 1364 1365 wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index), 1366 GLINT_DYN_CTL_SW_ITR_INDX_M | 1367 GLINT_DYN_CTL_INTENA_MSK_M | 1368 GLINT_DYN_CTL_SWINT_TRIG_M); 1369 1370 usleep_range(1000, 2000); 1371 return (swic_old == pf->sw_int_count); 1372 } 1373 1374 /** 1375 * ice_self_test - handler function for performing a self-test by ethtool 1376 * @netdev: network interface device structure 1377 * @eth_test: ethtool_test structure 1378 * @data: required by ethtool.self_test 1379 * 1380 * This function is called after invoking 'ethtool -t devname' command where 1381 * devname is the name of the network device on which ethtool should operate. 1382 * It performs a set of self-tests to check if a device works properly. 1383 */ 1384 static void 1385 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test, 1386 u64 *data) 1387 { 1388 struct ice_netdev_priv *np = netdev_priv(netdev); 1389 bool if_running = netif_running(netdev); 1390 struct ice_pf *pf = np->vsi->back; 1391 struct device *dev; 1392 1393 dev = ice_pf_to_dev(pf); 1394 1395 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1396 netdev_info(netdev, "offline testing starting\n"); 1397 1398 set_bit(ICE_TESTING, pf->state); 1399 1400 if (ice_active_vfs(pf)) { 1401 dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n"); 1402 data[ICE_ETH_TEST_REG] = 1; 1403 data[ICE_ETH_TEST_EEPROM] = 1; 1404 data[ICE_ETH_TEST_INTR] = 1; 1405 data[ICE_ETH_TEST_LOOP] = 1; 1406 data[ICE_ETH_TEST_LINK] = 1; 1407 eth_test->flags |= ETH_TEST_FL_FAILED; 1408 clear_bit(ICE_TESTING, pf->state); 1409 goto skip_ol_tests; 1410 } 1411 /* If the device is online then take it offline */ 1412 if (if_running) 1413 /* indicate we're in test mode */ 1414 ice_stop(netdev); 1415 1416 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1417 data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev); 1418 data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev); 1419 data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev); 1420 data[ICE_ETH_TEST_REG] = ice_reg_test(netdev); 1421 1422 if (data[ICE_ETH_TEST_LINK] || 1423 data[ICE_ETH_TEST_EEPROM] || 1424 data[ICE_ETH_TEST_LOOP] || 1425 data[ICE_ETH_TEST_INTR] || 1426 data[ICE_ETH_TEST_REG]) 1427 eth_test->flags |= ETH_TEST_FL_FAILED; 1428 1429 clear_bit(ICE_TESTING, pf->state); 1430 1431 if (if_running) { 1432 int status = ice_open(netdev); 1433 1434 if (status) { 1435 dev_err(dev, "Could not open device %s, err %d\n", 1436 pf->int_name, status); 1437 } 1438 } 1439 } else { 1440 /* Online tests */ 1441 netdev_info(netdev, "online testing starting\n"); 1442 1443 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1444 if (data[ICE_ETH_TEST_LINK]) 1445 eth_test->flags |= ETH_TEST_FL_FAILED; 1446 1447 /* Offline only tests, not run in online; pass by default */ 1448 data[ICE_ETH_TEST_REG] = 0; 1449 data[ICE_ETH_TEST_EEPROM] = 0; 1450 data[ICE_ETH_TEST_INTR] = 0; 1451 data[ICE_ETH_TEST_LOOP] = 0; 1452 } 1453 1454 skip_ol_tests: 1455 netdev_info(netdev, "testing finished\n"); 1456 } 1457 1458 static void 1459 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data, 1460 struct ice_vsi *vsi) 1461 { 1462 unsigned int i; 1463 u8 *p = data; 1464 1465 switch (stringset) { 1466 case ETH_SS_STATS: 1467 for (i = 0; i < ICE_VSI_STATS_LEN; i++) 1468 ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string); 1469 1470 if (ice_is_port_repr_netdev(netdev)) 1471 return; 1472 1473 ice_for_each_alloc_txq(vsi, i) { 1474 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1475 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1476 } 1477 1478 ice_for_each_alloc_rxq(vsi, i) { 1479 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1480 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1481 } 1482 1483 if (vsi->type != ICE_VSI_PF) 1484 return; 1485 1486 for (i = 0; i < ICE_PF_STATS_LEN; i++) 1487 ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string); 1488 1489 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1490 ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i); 1491 ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i); 1492 } 1493 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1494 ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i); 1495 ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i); 1496 } 1497 break; 1498 case ETH_SS_TEST: 1499 memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN); 1500 break; 1501 case ETH_SS_PRIV_FLAGS: 1502 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) 1503 ethtool_puts(&p, ice_gstrings_priv_flags[i].name); 1504 break; 1505 default: 1506 break; 1507 } 1508 } 1509 1510 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 1511 { 1512 struct ice_netdev_priv *np = netdev_priv(netdev); 1513 1514 __ice_get_strings(netdev, stringset, data, np->vsi); 1515 } 1516 1517 static int 1518 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) 1519 { 1520 struct ice_netdev_priv *np = netdev_priv(netdev); 1521 bool led_active; 1522 1523 switch (state) { 1524 case ETHTOOL_ID_ACTIVE: 1525 led_active = true; 1526 break; 1527 case ETHTOOL_ID_INACTIVE: 1528 led_active = false; 1529 break; 1530 default: 1531 return -EINVAL; 1532 } 1533 1534 if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL)) 1535 return -EIO; 1536 1537 return 0; 1538 } 1539 1540 /** 1541 * ice_set_fec_cfg - Set link FEC options 1542 * @netdev: network interface device structure 1543 * @req_fec: FEC mode to configure 1544 */ 1545 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec) 1546 { 1547 struct ice_netdev_priv *np = netdev_priv(netdev); 1548 struct ice_aqc_set_phy_cfg_data config = { 0 }; 1549 struct ice_vsi *vsi = np->vsi; 1550 struct ice_port_info *pi; 1551 1552 pi = vsi->port_info; 1553 if (!pi) 1554 return -EOPNOTSUPP; 1555 1556 /* Changing the FEC parameters is not supported if not the PF VSI */ 1557 if (vsi->type != ICE_VSI_PF) { 1558 netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n"); 1559 return -EOPNOTSUPP; 1560 } 1561 1562 /* Proceed only if requesting different FEC mode */ 1563 if (pi->phy.curr_user_fec_req == req_fec) 1564 return 0; 1565 1566 /* Copy the current user PHY configuration. The current user PHY 1567 * configuration is initialized during probe from PHY capabilities 1568 * software mode, and updated on set PHY configuration. 1569 */ 1570 memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config)); 1571 1572 ice_cfg_phy_fec(pi, &config, req_fec); 1573 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1574 1575 if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL)) 1576 return -EAGAIN; 1577 1578 /* Save requested FEC config */ 1579 pi->phy.curr_user_fec_req = req_fec; 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * ice_set_fecparam - Set FEC link options 1586 * @netdev: network interface device structure 1587 * @fecparam: Ethtool structure to retrieve FEC parameters 1588 */ 1589 static int 1590 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1591 { 1592 struct ice_netdev_priv *np = netdev_priv(netdev); 1593 struct ice_vsi *vsi = np->vsi; 1594 enum ice_fec_mode fec; 1595 1596 switch (fecparam->fec) { 1597 case ETHTOOL_FEC_AUTO: 1598 fec = ICE_FEC_AUTO; 1599 break; 1600 case ETHTOOL_FEC_RS: 1601 fec = ICE_FEC_RS; 1602 break; 1603 case ETHTOOL_FEC_BASER: 1604 fec = ICE_FEC_BASER; 1605 break; 1606 case ETHTOOL_FEC_OFF: 1607 case ETHTOOL_FEC_NONE: 1608 fec = ICE_FEC_NONE; 1609 break; 1610 default: 1611 dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n", 1612 fecparam->fec); 1613 return -EINVAL; 1614 } 1615 1616 return ice_set_fec_cfg(netdev, fec); 1617 } 1618 1619 /** 1620 * ice_get_fecparam - Get link FEC options 1621 * @netdev: network interface device structure 1622 * @fecparam: Ethtool structure to retrieve FEC parameters 1623 */ 1624 static int 1625 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1626 { 1627 struct ice_netdev_priv *np = netdev_priv(netdev); 1628 struct ice_aqc_get_phy_caps_data *caps; 1629 struct ice_link_status *link_info; 1630 struct ice_vsi *vsi = np->vsi; 1631 struct ice_port_info *pi; 1632 int err; 1633 1634 pi = vsi->port_info; 1635 1636 if (!pi) 1637 return -EOPNOTSUPP; 1638 link_info = &pi->phy.link_info; 1639 1640 /* Set FEC mode based on negotiated link info */ 1641 switch (link_info->fec_info) { 1642 case ICE_AQ_LINK_25G_KR_FEC_EN: 1643 fecparam->active_fec = ETHTOOL_FEC_BASER; 1644 break; 1645 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 1646 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 1647 fecparam->active_fec = ETHTOOL_FEC_RS; 1648 break; 1649 default: 1650 fecparam->active_fec = ETHTOOL_FEC_OFF; 1651 break; 1652 } 1653 1654 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 1655 if (!caps) 1656 return -ENOMEM; 1657 1658 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1659 caps, NULL); 1660 if (err) 1661 goto done; 1662 1663 /* Set supported/configured FEC modes based on PHY capability */ 1664 if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC) 1665 fecparam->fec |= ETHTOOL_FEC_AUTO; 1666 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 1667 caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 1668 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN || 1669 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 1670 fecparam->fec |= ETHTOOL_FEC_BASER; 1671 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 1672 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ || 1673 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 1674 fecparam->fec |= ETHTOOL_FEC_RS; 1675 if (caps->link_fec_options == 0) 1676 fecparam->fec |= ETHTOOL_FEC_OFF; 1677 1678 done: 1679 kfree(caps); 1680 return err; 1681 } 1682 1683 /** 1684 * ice_nway_reset - restart autonegotiation 1685 * @netdev: network interface device structure 1686 */ 1687 static int ice_nway_reset(struct net_device *netdev) 1688 { 1689 struct ice_netdev_priv *np = netdev_priv(netdev); 1690 struct ice_vsi *vsi = np->vsi; 1691 int err; 1692 1693 /* If VSI state is up, then restart autoneg with link up */ 1694 if (!test_bit(ICE_DOWN, vsi->back->state)) 1695 err = ice_set_link(vsi, true); 1696 else 1697 err = ice_set_link(vsi, false); 1698 1699 return err; 1700 } 1701 1702 /** 1703 * ice_get_priv_flags - report device private flags 1704 * @netdev: network interface device structure 1705 * 1706 * The get string set count and the string set should be matched for each 1707 * flag returned. Add new strings for each flag to the ice_gstrings_priv_flags 1708 * array. 1709 * 1710 * Returns a u32 bitmap of flags. 1711 */ 1712 static u32 ice_get_priv_flags(struct net_device *netdev) 1713 { 1714 struct ice_netdev_priv *np = netdev_priv(netdev); 1715 struct ice_vsi *vsi = np->vsi; 1716 struct ice_pf *pf = vsi->back; 1717 u32 i, ret_flags = 0; 1718 1719 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1720 const struct ice_priv_flag *priv_flag; 1721 1722 priv_flag = &ice_gstrings_priv_flags[i]; 1723 1724 if (test_bit(priv_flag->bitno, pf->flags)) 1725 ret_flags |= BIT(i); 1726 } 1727 1728 return ret_flags; 1729 } 1730 1731 /** 1732 * ice_set_priv_flags - set private flags 1733 * @netdev: network interface device structure 1734 * @flags: bit flags to be set 1735 */ 1736 static int ice_set_priv_flags(struct net_device *netdev, u32 flags) 1737 { 1738 struct ice_netdev_priv *np = netdev_priv(netdev); 1739 DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS); 1740 DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS); 1741 struct ice_vsi *vsi = np->vsi; 1742 struct ice_pf *pf = vsi->back; 1743 struct device *dev; 1744 int ret = 0; 1745 u32 i; 1746 1747 if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE)) 1748 return -EINVAL; 1749 1750 dev = ice_pf_to_dev(pf); 1751 set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1752 1753 bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS); 1754 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1755 const struct ice_priv_flag *priv_flag; 1756 1757 priv_flag = &ice_gstrings_priv_flags[i]; 1758 1759 if (flags & BIT(i)) 1760 set_bit(priv_flag->bitno, pf->flags); 1761 else 1762 clear_bit(priv_flag->bitno, pf->flags); 1763 } 1764 1765 bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS); 1766 1767 /* Do not allow change to link-down-on-close when Total Port Shutdown 1768 * is enabled. 1769 */ 1770 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) && 1771 test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 1772 dev_err(dev, "Setting link-down-on-close not supported on this port\n"); 1773 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1774 ret = -EINVAL; 1775 goto ethtool_exit; 1776 } 1777 1778 if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) { 1779 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) { 1780 int status; 1781 1782 /* Disable FW LLDP engine */ 1783 status = ice_cfg_lldp_mib_change(&pf->hw, false); 1784 1785 /* If unregistering for LLDP events fails, this is 1786 * not an error state, as there shouldn't be any 1787 * events to respond to. 1788 */ 1789 if (status) 1790 dev_info(dev, "Failed to unreg for LLDP events\n"); 1791 1792 /* The AQ call to stop the FW LLDP agent will generate 1793 * an error if the agent is already stopped. 1794 */ 1795 status = ice_aq_stop_lldp(&pf->hw, true, true, NULL); 1796 if (status) 1797 dev_warn(dev, "Fail to stop LLDP agent\n"); 1798 /* Use case for having the FW LLDP agent stopped 1799 * will likely not need DCB, so failure to init is 1800 * not a concern of ethtool 1801 */ 1802 status = ice_init_pf_dcb(pf, true); 1803 if (status) 1804 dev_warn(dev, "Fail to init DCB\n"); 1805 1806 pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED; 1807 pf->dcbx_cap |= DCB_CAP_DCBX_HOST; 1808 } else { 1809 bool dcbx_agent_status; 1810 int status; 1811 1812 if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) { 1813 clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags); 1814 dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n"); 1815 ret = -EOPNOTSUPP; 1816 goto ethtool_exit; 1817 } 1818 1819 /* Remove rule to direct LLDP packets to default VSI. 1820 * The FW LLDP engine will now be consuming them. 1821 */ 1822 ice_cfg_sw_lldp(vsi, false, false); 1823 1824 /* AQ command to start FW LLDP agent will return an 1825 * error if the agent is already started 1826 */ 1827 status = ice_aq_start_lldp(&pf->hw, true, NULL); 1828 if (status) 1829 dev_warn(dev, "Fail to start LLDP Agent\n"); 1830 1831 /* AQ command to start FW DCBX agent will fail if 1832 * the agent is already started 1833 */ 1834 status = ice_aq_start_stop_dcbx(&pf->hw, true, 1835 &dcbx_agent_status, 1836 NULL); 1837 if (status) 1838 dev_dbg(dev, "Failed to start FW DCBX\n"); 1839 1840 dev_info(dev, "FW DCBX agent is %s\n", 1841 dcbx_agent_status ? "ACTIVE" : "DISABLED"); 1842 1843 /* Failure to configure MIB change or init DCB is not 1844 * relevant to ethtool. Print notification that 1845 * registration/init failed but do not return error 1846 * state to ethtool 1847 */ 1848 status = ice_init_pf_dcb(pf, true); 1849 if (status) 1850 dev_dbg(dev, "Fail to init DCB\n"); 1851 1852 /* Register for MIB change events */ 1853 status = ice_cfg_lldp_mib_change(&pf->hw, true); 1854 if (status) 1855 dev_dbg(dev, "Fail to enable MIB change events\n"); 1856 1857 pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST; 1858 pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED; 1859 1860 ice_nway_reset(netdev); 1861 } 1862 } 1863 if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) { 1864 /* down and up VSI so that changes of Rx cfg are reflected. */ 1865 ice_down_up(vsi); 1866 } 1867 /* don't allow modification of this flag when a single VF is in 1868 * promiscuous mode because it's not supported 1869 */ 1870 if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) && 1871 ice_is_any_vf_in_unicast_promisc(pf)) { 1872 dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n"); 1873 /* toggle bit back to previous state */ 1874 change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags); 1875 ret = -EAGAIN; 1876 } 1877 1878 if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) && 1879 ice_has_vfs(pf)) { 1880 dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n"); 1881 /* toggle bit back to previous state */ 1882 change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags); 1883 ret = -EOPNOTSUPP; 1884 } 1885 ethtool_exit: 1886 clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1887 return ret; 1888 } 1889 1890 static int ice_get_sset_count(struct net_device *netdev, int sset) 1891 { 1892 switch (sset) { 1893 case ETH_SS_STATS: 1894 /* The number (and order) of strings reported *must* remain 1895 * constant for a given netdevice. This function must not 1896 * report a different number based on run time parameters 1897 * (such as the number of queues in use, or the setting of 1898 * a private ethtool flag). This is due to the nature of the 1899 * ethtool stats API. 1900 * 1901 * Userspace programs such as ethtool must make 3 separate 1902 * ioctl requests, one for size, one for the strings, and 1903 * finally one for the stats. Since these cross into 1904 * userspace, changes to the number or size could result in 1905 * undefined memory access or incorrect string<->value 1906 * correlations for statistics. 1907 * 1908 * Even if it appears to be safe, changes to the size or 1909 * order of strings will suffer from race conditions and are 1910 * not safe. 1911 */ 1912 return ICE_ALL_STATS_LEN(netdev); 1913 case ETH_SS_TEST: 1914 return ICE_TEST_LEN; 1915 case ETH_SS_PRIV_FLAGS: 1916 return ICE_PRIV_FLAG_ARRAY_SIZE; 1917 default: 1918 return -EOPNOTSUPP; 1919 } 1920 } 1921 1922 static void 1923 __ice_get_ethtool_stats(struct net_device *netdev, 1924 struct ethtool_stats __always_unused *stats, u64 *data, 1925 struct ice_vsi *vsi) 1926 { 1927 struct ice_pf *pf = vsi->back; 1928 struct ice_tx_ring *tx_ring; 1929 struct ice_rx_ring *rx_ring; 1930 unsigned int j; 1931 int i = 0; 1932 char *p; 1933 1934 ice_update_pf_stats(pf); 1935 ice_update_vsi_stats(vsi); 1936 1937 for (j = 0; j < ICE_VSI_STATS_LEN; j++) { 1938 p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset; 1939 data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat == 1940 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1941 } 1942 1943 if (ice_is_port_repr_netdev(netdev)) 1944 return; 1945 1946 /* populate per queue stats */ 1947 rcu_read_lock(); 1948 1949 ice_for_each_alloc_txq(vsi, j) { 1950 tx_ring = READ_ONCE(vsi->tx_rings[j]); 1951 if (tx_ring && tx_ring->ring_stats) { 1952 data[i++] = tx_ring->ring_stats->stats.pkts; 1953 data[i++] = tx_ring->ring_stats->stats.bytes; 1954 } else { 1955 data[i++] = 0; 1956 data[i++] = 0; 1957 } 1958 } 1959 1960 ice_for_each_alloc_rxq(vsi, j) { 1961 rx_ring = READ_ONCE(vsi->rx_rings[j]); 1962 if (rx_ring && rx_ring->ring_stats) { 1963 data[i++] = rx_ring->ring_stats->stats.pkts; 1964 data[i++] = rx_ring->ring_stats->stats.bytes; 1965 } else { 1966 data[i++] = 0; 1967 data[i++] = 0; 1968 } 1969 } 1970 1971 rcu_read_unlock(); 1972 1973 if (vsi->type != ICE_VSI_PF) 1974 return; 1975 1976 for (j = 0; j < ICE_PF_STATS_LEN; j++) { 1977 p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset; 1978 data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat == 1979 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1980 } 1981 1982 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 1983 data[i++] = pf->stats.priority_xon_tx[j]; 1984 data[i++] = pf->stats.priority_xoff_tx[j]; 1985 } 1986 1987 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 1988 data[i++] = pf->stats.priority_xon_rx[j]; 1989 data[i++] = pf->stats.priority_xoff_rx[j]; 1990 } 1991 } 1992 1993 static void 1994 ice_get_ethtool_stats(struct net_device *netdev, 1995 struct ethtool_stats __always_unused *stats, u64 *data) 1996 { 1997 struct ice_netdev_priv *np = netdev_priv(netdev); 1998 1999 __ice_get_ethtool_stats(netdev, stats, data, np->vsi); 2000 } 2001 2002 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G (ICE_PHY_TYPE_LOW_100BASE_TX | \ 2003 ICE_PHY_TYPE_LOW_100M_SGMII) 2004 2005 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G (ICE_PHY_TYPE_LOW_MASK_MIN_1G | \ 2006 ICE_PHY_TYPE_LOW_1000BASE_T | \ 2007 ICE_PHY_TYPE_LOW_1000BASE_SX | \ 2008 ICE_PHY_TYPE_LOW_1000BASE_LX | \ 2009 ICE_PHY_TYPE_LOW_1000BASE_KX | \ 2010 ICE_PHY_TYPE_LOW_1G_SGMII | \ 2011 ICE_PHY_TYPE_LOW_2500BASE_T | \ 2012 ICE_PHY_TYPE_LOW_2500BASE_X | \ 2013 ICE_PHY_TYPE_LOW_2500BASE_KX | \ 2014 ICE_PHY_TYPE_LOW_5GBASE_T | \ 2015 ICE_PHY_TYPE_LOW_5GBASE_KR | \ 2016 ICE_PHY_TYPE_LOW_10GBASE_T | \ 2017 ICE_PHY_TYPE_LOW_10G_SFI_DA | \ 2018 ICE_PHY_TYPE_LOW_10GBASE_SR | \ 2019 ICE_PHY_TYPE_LOW_10GBASE_LR | \ 2020 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \ 2021 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \ 2022 ICE_PHY_TYPE_LOW_10G_SFI_C2C) 2023 2024 #define ICE_PHY_TYPE_LOW_MASK_100G (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \ 2025 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \ 2026 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \ 2027 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \ 2028 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \ 2029 ICE_PHY_TYPE_LOW_100G_CAUI4 | \ 2030 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \ 2031 ICE_PHY_TYPE_LOW_100G_AUI4 | \ 2032 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \ 2033 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \ 2034 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \ 2035 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \ 2036 ICE_PHY_TYPE_LOW_100GBASE_DR) 2037 2038 #define ICE_PHY_TYPE_HIGH_MASK_100G (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \ 2039 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\ 2040 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \ 2041 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \ 2042 ICE_PHY_TYPE_HIGH_100G_AUI2) 2043 2044 #define ICE_PHY_TYPE_HIGH_MASK_200G (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \ 2045 ICE_PHY_TYPE_HIGH_200G_SR4 | \ 2046 ICE_PHY_TYPE_HIGH_200G_FR4 | \ 2047 ICE_PHY_TYPE_HIGH_200G_LR4 | \ 2048 ICE_PHY_TYPE_HIGH_200G_DR4 | \ 2049 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \ 2050 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \ 2051 ICE_PHY_TYPE_HIGH_200G_AUI4) 2052 2053 /** 2054 * ice_mask_min_supported_speeds 2055 * @hw: pointer to the HW structure 2056 * @phy_types_high: PHY type high 2057 * @phy_types_low: PHY type low to apply minimum supported speeds mask 2058 * 2059 * Apply minimum supported speeds mask to PHY type low. These are the speeds 2060 * for ethtool supported link mode. 2061 */ 2062 static void 2063 ice_mask_min_supported_speeds(struct ice_hw *hw, 2064 u64 phy_types_high, u64 *phy_types_low) 2065 { 2066 /* if QSFP connection with 100G speed, minimum supported speed is 25G */ 2067 if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) || 2068 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) || 2069 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G)) 2070 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G; 2071 else if (!ice_is_100m_speed_supported(hw)) 2072 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G; 2073 } 2074 2075 /** 2076 * ice_linkmode_set_bit - set link mode bit 2077 * @phy_to_ethtool: PHY type to ethtool link mode struct to set 2078 * @ks: ethtool link ksettings struct to fill out 2079 * @req_speeds: speed requested by user 2080 * @advert_phy_type: advertised PHY type 2081 * @phy_type: PHY type 2082 */ 2083 static void 2084 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool, 2085 struct ethtool_link_ksettings *ks, u32 req_speeds, 2086 u64 advert_phy_type, u32 phy_type) 2087 { 2088 linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported); 2089 2090 if (req_speeds & phy_to_ethtool->aq_link_speed || 2091 (!req_speeds && advert_phy_type & BIT(phy_type))) 2092 linkmode_set_bit(phy_to_ethtool->link_mode, 2093 ks->link_modes.advertising); 2094 } 2095 2096 /** 2097 * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes 2098 * @netdev: network interface device structure 2099 * @ks: ethtool link ksettings struct to fill out 2100 */ 2101 static void 2102 ice_phy_type_to_ethtool(struct net_device *netdev, 2103 struct ethtool_link_ksettings *ks) 2104 { 2105 struct ice_netdev_priv *np = netdev_priv(netdev); 2106 struct ice_vsi *vsi = np->vsi; 2107 struct ice_pf *pf = vsi->back; 2108 u64 advert_phy_type_lo = 0; 2109 u64 advert_phy_type_hi = 0; 2110 u64 phy_types_high = 0; 2111 u64 phy_types_low = 0; 2112 u32 req_speeds; 2113 u32 i; 2114 2115 req_speeds = vsi->port_info->phy.link_info.req_speeds; 2116 2117 /* Check if lenient mode is supported and enabled, or in strict mode. 2118 * 2119 * In lenient mode the Supported link modes are the PHY types without 2120 * media. The Advertising link mode is either 1. the user requested 2121 * speed, 2. the override PHY mask, or 3. the PHY types with media. 2122 * 2123 * In strict mode Supported link mode are the PHY type with media, 2124 * and Advertising link modes are the media PHY type or the speed 2125 * requested by user. 2126 */ 2127 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2128 phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo); 2129 phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi); 2130 2131 ice_mask_min_supported_speeds(&pf->hw, phy_types_high, 2132 &phy_types_low); 2133 /* determine advertised modes based on link override only 2134 * if it's supported and if the FW doesn't abstract the 2135 * driver from having to account for link overrides 2136 */ 2137 if (ice_fw_supports_link_override(&pf->hw) && 2138 !ice_fw_supports_report_dflt_cfg(&pf->hw)) { 2139 struct ice_link_default_override_tlv *ldo; 2140 2141 ldo = &pf->link_dflt_override; 2142 /* If override enabled and PHY mask set, then 2143 * Advertising link mode is the intersection of the PHY 2144 * types without media and the override PHY mask. 2145 */ 2146 if (ldo->options & ICE_LINK_OVERRIDE_EN && 2147 (ldo->phy_type_low || ldo->phy_type_high)) { 2148 advert_phy_type_lo = 2149 le64_to_cpu(pf->nvm_phy_type_lo) & 2150 ldo->phy_type_low; 2151 advert_phy_type_hi = 2152 le64_to_cpu(pf->nvm_phy_type_hi) & 2153 ldo->phy_type_high; 2154 } 2155 } 2156 } else { 2157 /* strict mode */ 2158 phy_types_low = vsi->port_info->phy.phy_type_low; 2159 phy_types_high = vsi->port_info->phy.phy_type_high; 2160 } 2161 2162 /* If Advertising link mode PHY type is not using override PHY type, 2163 * then use PHY type with media. 2164 */ 2165 if (!advert_phy_type_lo && !advert_phy_type_hi) { 2166 advert_phy_type_lo = vsi->port_info->phy.phy_type_low; 2167 advert_phy_type_hi = vsi->port_info->phy.phy_type_high; 2168 } 2169 2170 linkmode_zero(ks->link_modes.supported); 2171 linkmode_zero(ks->link_modes.advertising); 2172 2173 for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) { 2174 if (phy_types_low & BIT_ULL(i)) 2175 ice_linkmode_set_bit(&phy_type_low_lkup[i], ks, 2176 req_speeds, advert_phy_type_lo, 2177 i); 2178 } 2179 2180 for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) { 2181 if (phy_types_high & BIT_ULL(i)) 2182 ice_linkmode_set_bit(&phy_type_high_lkup[i], ks, 2183 req_speeds, advert_phy_type_hi, 2184 i); 2185 } 2186 } 2187 2188 #define TEST_SET_BITS_TIMEOUT 50 2189 #define TEST_SET_BITS_SLEEP_MAX 2000 2190 #define TEST_SET_BITS_SLEEP_MIN 1000 2191 2192 /** 2193 * ice_get_settings_link_up - Get Link settings for when link is up 2194 * @ks: ethtool ksettings to fill in 2195 * @netdev: network interface device structure 2196 */ 2197 static void 2198 ice_get_settings_link_up(struct ethtool_link_ksettings *ks, 2199 struct net_device *netdev) 2200 { 2201 struct ice_netdev_priv *np = netdev_priv(netdev); 2202 struct ice_port_info *pi = np->vsi->port_info; 2203 struct ice_link_status *link_info; 2204 struct ice_vsi *vsi = np->vsi; 2205 2206 link_info = &vsi->port_info->phy.link_info; 2207 2208 /* Get supported and advertised settings from PHY ability with media */ 2209 ice_phy_type_to_ethtool(netdev, ks); 2210 2211 switch (link_info->link_speed) { 2212 case ICE_AQ_LINK_SPEED_200GB: 2213 ks->base.speed = SPEED_200000; 2214 break; 2215 case ICE_AQ_LINK_SPEED_100GB: 2216 ks->base.speed = SPEED_100000; 2217 break; 2218 case ICE_AQ_LINK_SPEED_50GB: 2219 ks->base.speed = SPEED_50000; 2220 break; 2221 case ICE_AQ_LINK_SPEED_40GB: 2222 ks->base.speed = SPEED_40000; 2223 break; 2224 case ICE_AQ_LINK_SPEED_25GB: 2225 ks->base.speed = SPEED_25000; 2226 break; 2227 case ICE_AQ_LINK_SPEED_20GB: 2228 ks->base.speed = SPEED_20000; 2229 break; 2230 case ICE_AQ_LINK_SPEED_10GB: 2231 ks->base.speed = SPEED_10000; 2232 break; 2233 case ICE_AQ_LINK_SPEED_5GB: 2234 ks->base.speed = SPEED_5000; 2235 break; 2236 case ICE_AQ_LINK_SPEED_2500MB: 2237 ks->base.speed = SPEED_2500; 2238 break; 2239 case ICE_AQ_LINK_SPEED_1000MB: 2240 ks->base.speed = SPEED_1000; 2241 break; 2242 case ICE_AQ_LINK_SPEED_100MB: 2243 ks->base.speed = SPEED_100; 2244 break; 2245 default: 2246 netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n", 2247 link_info->link_speed); 2248 break; 2249 } 2250 ks->base.duplex = DUPLEX_FULL; 2251 2252 if (link_info->an_info & ICE_AQ_AN_COMPLETED) 2253 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2254 Autoneg); 2255 2256 /* Set flow control negotiated Rx/Tx pause */ 2257 switch (pi->fc.current_mode) { 2258 case ICE_FC_FULL: 2259 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2260 break; 2261 case ICE_FC_TX_PAUSE: 2262 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2263 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2264 Asym_Pause); 2265 break; 2266 case ICE_FC_RX_PAUSE: 2267 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2268 Asym_Pause); 2269 break; 2270 case ICE_FC_PFC: 2271 default: 2272 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause); 2273 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, 2274 Asym_Pause); 2275 break; 2276 } 2277 } 2278 2279 /** 2280 * ice_get_settings_link_down - Get the Link settings when link is down 2281 * @ks: ethtool ksettings to fill in 2282 * @netdev: network interface device structure 2283 * 2284 * Reports link settings that can be determined when link is down 2285 */ 2286 static void 2287 ice_get_settings_link_down(struct ethtool_link_ksettings *ks, 2288 struct net_device *netdev) 2289 { 2290 /* link is down and the driver needs to fall back on 2291 * supported PHY types to figure out what info to display 2292 */ 2293 ice_phy_type_to_ethtool(netdev, ks); 2294 2295 /* With no link, speed and duplex are unknown */ 2296 ks->base.speed = SPEED_UNKNOWN; 2297 ks->base.duplex = DUPLEX_UNKNOWN; 2298 } 2299 2300 /** 2301 * ice_get_link_ksettings - Get Link Speed and Duplex settings 2302 * @netdev: network interface device structure 2303 * @ks: ethtool ksettings 2304 * 2305 * Reports speed/duplex settings based on media_type 2306 */ 2307 static int 2308 ice_get_link_ksettings(struct net_device *netdev, 2309 struct ethtool_link_ksettings *ks) 2310 { 2311 struct ice_netdev_priv *np = netdev_priv(netdev); 2312 struct ice_aqc_get_phy_caps_data *caps; 2313 struct ice_link_status *hw_link_info; 2314 struct ice_vsi *vsi = np->vsi; 2315 int err; 2316 2317 ethtool_link_ksettings_zero_link_mode(ks, supported); 2318 ethtool_link_ksettings_zero_link_mode(ks, advertising); 2319 ethtool_link_ksettings_zero_link_mode(ks, lp_advertising); 2320 hw_link_info = &vsi->port_info->phy.link_info; 2321 2322 /* set speed and duplex */ 2323 if (hw_link_info->link_info & ICE_AQ_LINK_UP) 2324 ice_get_settings_link_up(ks, netdev); 2325 else 2326 ice_get_settings_link_down(ks, netdev); 2327 2328 /* set autoneg settings */ 2329 ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ? 2330 AUTONEG_ENABLE : AUTONEG_DISABLE; 2331 2332 /* set media type settings */ 2333 switch (vsi->port_info->phy.media_type) { 2334 case ICE_MEDIA_FIBER: 2335 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2336 ks->base.port = PORT_FIBRE; 2337 break; 2338 case ICE_MEDIA_BASET: 2339 ethtool_link_ksettings_add_link_mode(ks, supported, TP); 2340 ethtool_link_ksettings_add_link_mode(ks, advertising, TP); 2341 ks->base.port = PORT_TP; 2342 break; 2343 case ICE_MEDIA_BACKPLANE: 2344 ethtool_link_ksettings_add_link_mode(ks, supported, Backplane); 2345 ethtool_link_ksettings_add_link_mode(ks, advertising, 2346 Backplane); 2347 ks->base.port = PORT_NONE; 2348 break; 2349 case ICE_MEDIA_DA: 2350 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2351 ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE); 2352 ks->base.port = PORT_DA; 2353 break; 2354 default: 2355 ks->base.port = PORT_OTHER; 2356 break; 2357 } 2358 2359 /* flow control is symmetric and always supported */ 2360 ethtool_link_ksettings_add_link_mode(ks, supported, Pause); 2361 2362 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2363 if (!caps) 2364 return -ENOMEM; 2365 2366 err = ice_aq_get_phy_caps(vsi->port_info, false, 2367 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 2368 if (err) 2369 goto done; 2370 2371 /* Set the advertised flow control based on the PHY capability */ 2372 if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) && 2373 (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) { 2374 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2375 ethtool_link_ksettings_add_link_mode(ks, advertising, 2376 Asym_Pause); 2377 } else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) { 2378 ethtool_link_ksettings_add_link_mode(ks, advertising, 2379 Asym_Pause); 2380 } else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) { 2381 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2382 ethtool_link_ksettings_add_link_mode(ks, advertising, 2383 Asym_Pause); 2384 } else { 2385 ethtool_link_ksettings_del_link_mode(ks, advertising, Pause); 2386 ethtool_link_ksettings_del_link_mode(ks, advertising, 2387 Asym_Pause); 2388 } 2389 2390 /* Set advertised FEC modes based on PHY capability */ 2391 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE); 2392 2393 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 2394 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 2395 ethtool_link_ksettings_add_link_mode(ks, advertising, 2396 FEC_BASER); 2397 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 2398 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 2399 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS); 2400 2401 err = ice_aq_get_phy_caps(vsi->port_info, false, 2402 ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL); 2403 if (err) 2404 goto done; 2405 2406 /* Set supported FEC modes based on PHY capability */ 2407 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE); 2408 2409 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 2410 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN) 2411 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER); 2412 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 2413 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS); 2414 2415 /* Set supported and advertised autoneg */ 2416 if (ice_is_phy_caps_an_enabled(caps)) { 2417 ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg); 2418 ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg); 2419 } 2420 2421 done: 2422 kfree(caps); 2423 return err; 2424 } 2425 2426 /** 2427 * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed 2428 * @speed: ethtool forced speed 2429 */ 2430 static u16 ice_speed_to_aq_link(int speed) 2431 { 2432 int aq_speed; 2433 2434 switch (speed) { 2435 case SPEED_10: 2436 aq_speed = ICE_AQ_LINK_SPEED_10MB; 2437 break; 2438 case SPEED_100: 2439 aq_speed = ICE_AQ_LINK_SPEED_100MB; 2440 break; 2441 case SPEED_1000: 2442 aq_speed = ICE_AQ_LINK_SPEED_1000MB; 2443 break; 2444 case SPEED_2500: 2445 aq_speed = ICE_AQ_LINK_SPEED_2500MB; 2446 break; 2447 case SPEED_5000: 2448 aq_speed = ICE_AQ_LINK_SPEED_5GB; 2449 break; 2450 case SPEED_10000: 2451 aq_speed = ICE_AQ_LINK_SPEED_10GB; 2452 break; 2453 case SPEED_20000: 2454 aq_speed = ICE_AQ_LINK_SPEED_20GB; 2455 break; 2456 case SPEED_25000: 2457 aq_speed = ICE_AQ_LINK_SPEED_25GB; 2458 break; 2459 case SPEED_40000: 2460 aq_speed = ICE_AQ_LINK_SPEED_40GB; 2461 break; 2462 case SPEED_50000: 2463 aq_speed = ICE_AQ_LINK_SPEED_50GB; 2464 break; 2465 case SPEED_100000: 2466 aq_speed = ICE_AQ_LINK_SPEED_100GB; 2467 break; 2468 default: 2469 aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN; 2470 break; 2471 } 2472 return aq_speed; 2473 } 2474 2475 /** 2476 * ice_ksettings_find_adv_link_speed - Find advertising link speed 2477 * @ks: ethtool ksettings 2478 */ 2479 static u16 2480 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks) 2481 { 2482 const struct ethtool_forced_speed_map *map; 2483 u16 adv_link_speed = 0; 2484 2485 for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) { 2486 map = ice_adv_lnk_speed_maps + i; 2487 if (linkmode_intersects(ks->link_modes.advertising, map->caps)) 2488 adv_link_speed |= ice_speed_to_aq_link(map->speed); 2489 } 2490 2491 return adv_link_speed; 2492 } 2493 2494 /** 2495 * ice_setup_autoneg 2496 * @p: port info 2497 * @ks: ethtool_link_ksettings 2498 * @config: configuration that will be sent down to FW 2499 * @autoneg_enabled: autonegotiation is enabled or not 2500 * @autoneg_changed: will there a change in autonegotiation 2501 * @netdev: network interface device structure 2502 * 2503 * Setup PHY autonegotiation feature 2504 */ 2505 static int 2506 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks, 2507 struct ice_aqc_set_phy_cfg_data *config, 2508 u8 autoneg_enabled, u8 *autoneg_changed, 2509 struct net_device *netdev) 2510 { 2511 int err = 0; 2512 2513 *autoneg_changed = 0; 2514 2515 /* Check autoneg */ 2516 if (autoneg_enabled == AUTONEG_ENABLE) { 2517 /* If autoneg was not already enabled */ 2518 if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) { 2519 /* If autoneg is not supported, return error */ 2520 if (!ethtool_link_ksettings_test_link_mode(ks, 2521 supported, 2522 Autoneg)) { 2523 netdev_info(netdev, "Autoneg not supported on this phy.\n"); 2524 err = -EINVAL; 2525 } else { 2526 /* Autoneg is allowed to change */ 2527 config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2528 *autoneg_changed = 1; 2529 } 2530 } 2531 } else { 2532 /* If autoneg is currently enabled */ 2533 if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) { 2534 /* If autoneg is supported 10GBASE_T is the only PHY 2535 * that can disable it, so otherwise return error 2536 */ 2537 if (ethtool_link_ksettings_test_link_mode(ks, 2538 supported, 2539 Autoneg)) { 2540 netdev_info(netdev, "Autoneg cannot be disabled on this phy\n"); 2541 err = -EINVAL; 2542 } else { 2543 /* Autoneg is allowed to change */ 2544 config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2545 *autoneg_changed = 1; 2546 } 2547 } 2548 } 2549 2550 return err; 2551 } 2552 2553 /** 2554 * ice_set_phy_type_from_speed - set phy_types based on speeds 2555 * and advertised modes 2556 * @ks: ethtool link ksettings struct 2557 * @phy_type_low: pointer to the lower part of phy_type 2558 * @phy_type_high: pointer to the higher part of phy_type 2559 * @adv_link_speed: targeted link speeds bitmap 2560 */ 2561 static void 2562 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks, 2563 u64 *phy_type_low, u64 *phy_type_high, 2564 u16 adv_link_speed) 2565 { 2566 /* Handle 1000M speed in a special way because ice_update_phy_type 2567 * enables all link modes, but having mixed copper and optical 2568 * standards is not supported. 2569 */ 2570 adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB; 2571 2572 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2573 1000baseT_Full)) 2574 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T | 2575 ICE_PHY_TYPE_LOW_1G_SGMII; 2576 2577 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2578 1000baseKX_Full)) 2579 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX; 2580 2581 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2582 1000baseX_Full)) 2583 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX | 2584 ICE_PHY_TYPE_LOW_1000BASE_LX; 2585 2586 ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed); 2587 } 2588 2589 /** 2590 * ice_set_link_ksettings - Set Speed and Duplex 2591 * @netdev: network interface device structure 2592 * @ks: ethtool ksettings 2593 * 2594 * Set speed/duplex per media_types advertised/forced 2595 */ 2596 static int 2597 ice_set_link_ksettings(struct net_device *netdev, 2598 const struct ethtool_link_ksettings *ks) 2599 { 2600 struct ice_netdev_priv *np = netdev_priv(netdev); 2601 u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT; 2602 struct ethtool_link_ksettings copy_ks = *ks; 2603 struct ethtool_link_ksettings safe_ks = {}; 2604 struct ice_aqc_get_phy_caps_data *phy_caps; 2605 struct ice_aqc_set_phy_cfg_data config; 2606 u16 adv_link_speed, curr_link_speed; 2607 struct ice_pf *pf = np->vsi->back; 2608 struct ice_port_info *pi; 2609 u8 autoneg_changed = 0; 2610 u64 phy_type_high = 0; 2611 u64 phy_type_low = 0; 2612 bool linkup; 2613 int err; 2614 2615 pi = np->vsi->port_info; 2616 2617 if (!pi) 2618 return -EIO; 2619 2620 if (pi->phy.media_type != ICE_MEDIA_BASET && 2621 pi->phy.media_type != ICE_MEDIA_FIBER && 2622 pi->phy.media_type != ICE_MEDIA_BACKPLANE && 2623 pi->phy.media_type != ICE_MEDIA_DA && 2624 pi->phy.link_info.link_info & ICE_AQ_LINK_UP) 2625 return -EOPNOTSUPP; 2626 2627 phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL); 2628 if (!phy_caps) 2629 return -ENOMEM; 2630 2631 /* Get the PHY capabilities based on media */ 2632 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2633 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2634 phy_caps, NULL); 2635 else 2636 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2637 phy_caps, NULL); 2638 if (err) 2639 goto done; 2640 2641 /* save autoneg out of ksettings */ 2642 autoneg = copy_ks.base.autoneg; 2643 2644 /* Get link modes supported by hardware.*/ 2645 ice_phy_type_to_ethtool(netdev, &safe_ks); 2646 2647 /* and check against modes requested by user. 2648 * Return an error if unsupported mode was set. 2649 */ 2650 if (!bitmap_subset(copy_ks.link_modes.advertising, 2651 safe_ks.link_modes.supported, 2652 __ETHTOOL_LINK_MODE_MASK_NBITS)) { 2653 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) 2654 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2655 err = -EOPNOTSUPP; 2656 goto done; 2657 } 2658 2659 /* get our own copy of the bits to check against */ 2660 memset(&safe_ks, 0, sizeof(safe_ks)); 2661 safe_ks.base.cmd = copy_ks.base.cmd; 2662 safe_ks.base.link_mode_masks_nwords = 2663 copy_ks.base.link_mode_masks_nwords; 2664 ice_get_link_ksettings(netdev, &safe_ks); 2665 2666 /* set autoneg back to what it currently is */ 2667 copy_ks.base.autoneg = safe_ks.base.autoneg; 2668 /* we don't compare the speed */ 2669 copy_ks.base.speed = safe_ks.base.speed; 2670 2671 /* If copy_ks.base and safe_ks.base are not the same now, then they are 2672 * trying to set something that we do not support. 2673 */ 2674 if (memcmp(©_ks.base, &safe_ks.base, sizeof(copy_ks.base))) { 2675 err = -EOPNOTSUPP; 2676 goto done; 2677 } 2678 2679 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 2680 timeout--; 2681 if (!timeout) { 2682 err = -EBUSY; 2683 goto done; 2684 } 2685 usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX); 2686 } 2687 2688 /* Copy the current user PHY configuration. The current user PHY 2689 * configuration is initialized during probe from PHY capabilities 2690 * software mode, and updated on set PHY configuration. 2691 */ 2692 config = pi->phy.curr_user_phy_cfg; 2693 2694 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2695 2696 /* Check autoneg */ 2697 err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed, 2698 netdev); 2699 2700 if (err) 2701 goto done; 2702 2703 /* Call to get the current link speed */ 2704 pi->phy.get_link_info = true; 2705 err = ice_get_link_status(pi, &linkup); 2706 if (err) 2707 goto done; 2708 2709 curr_link_speed = pi->phy.curr_user_speed_req; 2710 adv_link_speed = ice_ksettings_find_adv_link_speed(ks); 2711 2712 /* If speed didn't get set, set it to what it currently is. 2713 * This is needed because if advertise is 0 (as it is when autoneg 2714 * is disabled) then speed won't get set. 2715 */ 2716 if (!adv_link_speed) 2717 adv_link_speed = curr_link_speed; 2718 2719 /* Convert the advertise link speeds to their corresponded PHY_TYPE */ 2720 ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high, 2721 adv_link_speed); 2722 2723 if (!autoneg_changed && adv_link_speed == curr_link_speed) { 2724 netdev_info(netdev, "Nothing changed, exiting without setting anything.\n"); 2725 goto done; 2726 } 2727 2728 /* save the requested speeds */ 2729 pi->phy.link_info.req_speeds = adv_link_speed; 2730 2731 /* set link and auto negotiation so changes take effect */ 2732 config.caps |= ICE_AQ_PHY_ENA_LINK; 2733 2734 /* check if there is a PHY type for the requested advertised speed */ 2735 if (!(phy_type_low || phy_type_high)) { 2736 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2737 err = -EOPNOTSUPP; 2738 goto done; 2739 } 2740 2741 /* intersect requested advertised speed PHY types with media PHY types 2742 * for set PHY configuration 2743 */ 2744 config.phy_type_high = cpu_to_le64(phy_type_high) & 2745 phy_caps->phy_type_high; 2746 config.phy_type_low = cpu_to_le64(phy_type_low) & 2747 phy_caps->phy_type_low; 2748 2749 if (!(config.phy_type_high || config.phy_type_low)) { 2750 /* If there is no intersection and lenient mode is enabled, then 2751 * intersect the requested advertised speed with NVM media type 2752 * PHY types. 2753 */ 2754 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2755 config.phy_type_high = cpu_to_le64(phy_type_high) & 2756 pf->nvm_phy_type_hi; 2757 config.phy_type_low = cpu_to_le64(phy_type_low) & 2758 pf->nvm_phy_type_lo; 2759 } else { 2760 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2761 err = -EOPNOTSUPP; 2762 goto done; 2763 } 2764 } 2765 2766 /* If link is up put link down */ 2767 if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) { 2768 /* Tell the OS link is going down, the link will go 2769 * back up when fw says it is ready asynchronously 2770 */ 2771 ice_print_link_msg(np->vsi, false); 2772 netif_carrier_off(netdev); 2773 netif_tx_stop_all_queues(netdev); 2774 } 2775 2776 /* make the aq call */ 2777 err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL); 2778 if (err) { 2779 netdev_info(netdev, "Set phy config failed,\n"); 2780 goto done; 2781 } 2782 2783 /* Save speed request */ 2784 pi->phy.curr_user_speed_req = adv_link_speed; 2785 done: 2786 kfree(phy_caps); 2787 clear_bit(ICE_CFG_BUSY, pf->state); 2788 2789 return err; 2790 } 2791 2792 /** 2793 * ice_parse_hdrs - parses headers from RSS hash input 2794 * @nfc: ethtool rxnfc command 2795 * 2796 * This function parses the rxnfc command and returns intended 2797 * header types for RSS configuration 2798 */ 2799 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc) 2800 { 2801 u32 hdrs = ICE_FLOW_SEG_HDR_NONE; 2802 2803 switch (nfc->flow_type) { 2804 case TCP_V4_FLOW: 2805 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4; 2806 break; 2807 case UDP_V4_FLOW: 2808 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4; 2809 break; 2810 case SCTP_V4_FLOW: 2811 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4; 2812 break; 2813 case GTPU_V4_FLOW: 2814 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4; 2815 break; 2816 case GTPC_V4_FLOW: 2817 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4; 2818 break; 2819 case GTPC_TEID_V4_FLOW: 2820 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4; 2821 break; 2822 case GTPU_EH_V4_FLOW: 2823 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4; 2824 break; 2825 case GTPU_UL_V4_FLOW: 2826 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4; 2827 break; 2828 case GTPU_DL_V4_FLOW: 2829 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4; 2830 break; 2831 case TCP_V6_FLOW: 2832 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6; 2833 break; 2834 case UDP_V6_FLOW: 2835 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6; 2836 break; 2837 case SCTP_V6_FLOW: 2838 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6; 2839 break; 2840 case GTPU_V6_FLOW: 2841 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6; 2842 break; 2843 case GTPC_V6_FLOW: 2844 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6; 2845 break; 2846 case GTPC_TEID_V6_FLOW: 2847 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6; 2848 break; 2849 case GTPU_EH_V6_FLOW: 2850 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6; 2851 break; 2852 case GTPU_UL_V6_FLOW: 2853 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6; 2854 break; 2855 case GTPU_DL_V6_FLOW: 2856 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6; 2857 break; 2858 default: 2859 break; 2860 } 2861 return hdrs; 2862 } 2863 2864 /** 2865 * ice_parse_hash_flds - parses hash fields from RSS hash input 2866 * @nfc: ethtool rxnfc command 2867 * @symm: true if Symmetric Topelitz is set 2868 * 2869 * This function parses the rxnfc command and returns intended 2870 * hash fields for RSS configuration 2871 */ 2872 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm) 2873 { 2874 u64 hfld = ICE_HASH_INVALID; 2875 2876 if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) { 2877 switch (nfc->flow_type) { 2878 case TCP_V4_FLOW: 2879 case UDP_V4_FLOW: 2880 case SCTP_V4_FLOW: 2881 case GTPU_V4_FLOW: 2882 case GTPC_V4_FLOW: 2883 case GTPC_TEID_V4_FLOW: 2884 case GTPU_EH_V4_FLOW: 2885 case GTPU_UL_V4_FLOW: 2886 case GTPU_DL_V4_FLOW: 2887 if (nfc->data & RXH_IP_SRC) 2888 hfld |= ICE_FLOW_HASH_FLD_IPV4_SA; 2889 if (nfc->data & RXH_IP_DST) 2890 hfld |= ICE_FLOW_HASH_FLD_IPV4_DA; 2891 break; 2892 case TCP_V6_FLOW: 2893 case UDP_V6_FLOW: 2894 case SCTP_V6_FLOW: 2895 case GTPU_V6_FLOW: 2896 case GTPC_V6_FLOW: 2897 case GTPC_TEID_V6_FLOW: 2898 case GTPU_EH_V6_FLOW: 2899 case GTPU_UL_V6_FLOW: 2900 case GTPU_DL_V6_FLOW: 2901 if (nfc->data & RXH_IP_SRC) 2902 hfld |= ICE_FLOW_HASH_FLD_IPV6_SA; 2903 if (nfc->data & RXH_IP_DST) 2904 hfld |= ICE_FLOW_HASH_FLD_IPV6_DA; 2905 break; 2906 default: 2907 break; 2908 } 2909 } 2910 2911 if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) { 2912 switch (nfc->flow_type) { 2913 case TCP_V4_FLOW: 2914 case TCP_V6_FLOW: 2915 if (nfc->data & RXH_L4_B_0_1) 2916 hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT; 2917 if (nfc->data & RXH_L4_B_2_3) 2918 hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT; 2919 break; 2920 case UDP_V4_FLOW: 2921 case UDP_V6_FLOW: 2922 if (nfc->data & RXH_L4_B_0_1) 2923 hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT; 2924 if (nfc->data & RXH_L4_B_2_3) 2925 hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT; 2926 break; 2927 case SCTP_V4_FLOW: 2928 case SCTP_V6_FLOW: 2929 if (nfc->data & RXH_L4_B_0_1) 2930 hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT; 2931 if (nfc->data & RXH_L4_B_2_3) 2932 hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT; 2933 break; 2934 default: 2935 break; 2936 } 2937 } 2938 2939 if (nfc->data & RXH_GTP_TEID) { 2940 switch (nfc->flow_type) { 2941 case GTPC_TEID_V4_FLOW: 2942 case GTPC_TEID_V6_FLOW: 2943 hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID; 2944 break; 2945 case GTPU_V4_FLOW: 2946 case GTPU_V6_FLOW: 2947 hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID; 2948 break; 2949 case GTPU_EH_V4_FLOW: 2950 case GTPU_EH_V6_FLOW: 2951 hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID; 2952 break; 2953 case GTPU_UL_V4_FLOW: 2954 case GTPU_UL_V6_FLOW: 2955 hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID; 2956 break; 2957 case GTPU_DL_V4_FLOW: 2958 case GTPU_DL_V6_FLOW: 2959 hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID; 2960 break; 2961 default: 2962 break; 2963 } 2964 } 2965 2966 return hfld; 2967 } 2968 2969 /** 2970 * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash 2971 * @vsi: the VSI being configured 2972 * @nfc: ethtool rxnfc command 2973 * 2974 * Returns Success if the flow input set is supported. 2975 */ 2976 static int 2977 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc) 2978 { 2979 struct ice_pf *pf = vsi->back; 2980 struct ice_rss_hash_cfg cfg; 2981 struct device *dev; 2982 u64 hashed_flds; 2983 int status; 2984 bool symm; 2985 u32 hdrs; 2986 2987 dev = ice_pf_to_dev(pf); 2988 if (ice_is_safe_mode(pf)) { 2989 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 2990 vsi->vsi_num); 2991 return -EINVAL; 2992 } 2993 2994 symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 2995 hashed_flds = ice_parse_hash_flds(nfc, symm); 2996 if (hashed_flds == ICE_HASH_INVALID) { 2997 dev_dbg(dev, "Invalid hash fields, vsi num = %d\n", 2998 vsi->vsi_num); 2999 return -EINVAL; 3000 } 3001 3002 hdrs = ice_parse_hdrs(nfc); 3003 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3004 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3005 vsi->vsi_num); 3006 return -EINVAL; 3007 } 3008 3009 cfg.hash_flds = hashed_flds; 3010 cfg.addl_hdrs = hdrs; 3011 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 3012 cfg.symm = symm; 3013 3014 status = ice_add_rss_cfg(&pf->hw, vsi, &cfg); 3015 if (status) { 3016 dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n", 3017 vsi->vsi_num, status); 3018 return status; 3019 } 3020 3021 return 0; 3022 } 3023 3024 /** 3025 * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type 3026 * @vsi: the VSI being configured 3027 * @nfc: ethtool rxnfc command 3028 */ 3029 static void 3030 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc) 3031 { 3032 struct ice_pf *pf = vsi->back; 3033 struct device *dev; 3034 u64 hash_flds; 3035 bool symm; 3036 u32 hdrs; 3037 3038 dev = ice_pf_to_dev(pf); 3039 3040 nfc->data = 0; 3041 if (ice_is_safe_mode(pf)) { 3042 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 3043 vsi->vsi_num); 3044 return; 3045 } 3046 3047 hdrs = ice_parse_hdrs(nfc); 3048 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3049 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3050 vsi->vsi_num); 3051 return; 3052 } 3053 3054 hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm); 3055 if (hash_flds == ICE_HASH_INVALID) { 3056 dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n", 3057 vsi->vsi_num); 3058 return; 3059 } 3060 3061 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA || 3062 hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA) 3063 nfc->data |= (u64)RXH_IP_SRC; 3064 3065 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA || 3066 hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA) 3067 nfc->data |= (u64)RXH_IP_DST; 3068 3069 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT || 3070 hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT || 3071 hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) 3072 nfc->data |= (u64)RXH_L4_B_0_1; 3073 3074 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT || 3075 hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT || 3076 hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT) 3077 nfc->data |= (u64)RXH_L4_B_2_3; 3078 3079 if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID || 3080 hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID || 3081 hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID || 3082 hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID || 3083 hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID) 3084 nfc->data |= (u64)RXH_GTP_TEID; 3085 } 3086 3087 /** 3088 * ice_set_rxnfc - command to set Rx flow rules. 3089 * @netdev: network interface device structure 3090 * @cmd: ethtool rxnfc command 3091 * 3092 * Returns 0 for success and negative values for errors 3093 */ 3094 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3095 { 3096 struct ice_netdev_priv *np = netdev_priv(netdev); 3097 struct ice_vsi *vsi = np->vsi; 3098 3099 switch (cmd->cmd) { 3100 case ETHTOOL_SRXCLSRLINS: 3101 return ice_add_fdir_ethtool(vsi, cmd); 3102 case ETHTOOL_SRXCLSRLDEL: 3103 return ice_del_fdir_ethtool(vsi, cmd); 3104 case ETHTOOL_SRXFH: 3105 return ice_set_rss_hash_opt(vsi, cmd); 3106 default: 3107 break; 3108 } 3109 return -EOPNOTSUPP; 3110 } 3111 3112 /** 3113 * ice_get_rxnfc - command to get Rx flow classification rules 3114 * @netdev: network interface device structure 3115 * @cmd: ethtool rxnfc command 3116 * @rule_locs: buffer to rturn Rx flow classification rules 3117 * 3118 * Returns Success if the command is supported. 3119 */ 3120 static int 3121 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3122 u32 __always_unused *rule_locs) 3123 { 3124 struct ice_netdev_priv *np = netdev_priv(netdev); 3125 struct ice_vsi *vsi = np->vsi; 3126 int ret = -EOPNOTSUPP; 3127 struct ice_hw *hw; 3128 3129 hw = &vsi->back->hw; 3130 3131 switch (cmd->cmd) { 3132 case ETHTOOL_GRXRINGS: 3133 cmd->data = vsi->rss_size; 3134 ret = 0; 3135 break; 3136 case ETHTOOL_GRXCLSRLCNT: 3137 cmd->rule_cnt = hw->fdir_active_fltr; 3138 /* report total rule count */ 3139 cmd->data = ice_get_fdir_cnt_all(hw); 3140 ret = 0; 3141 break; 3142 case ETHTOOL_GRXCLSRULE: 3143 ret = ice_get_ethtool_fdir_entry(hw, cmd); 3144 break; 3145 case ETHTOOL_GRXCLSRLALL: 3146 ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs); 3147 break; 3148 case ETHTOOL_GRXFH: 3149 ice_get_rss_hash_opt(vsi, cmd); 3150 ret = 0; 3151 break; 3152 default: 3153 break; 3154 } 3155 3156 return ret; 3157 } 3158 3159 static void 3160 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3161 struct kernel_ethtool_ringparam *kernel_ring, 3162 struct netlink_ext_ack *extack) 3163 { 3164 struct ice_netdev_priv *np = netdev_priv(netdev); 3165 struct ice_vsi *vsi = np->vsi; 3166 3167 ring->rx_max_pending = ICE_MAX_NUM_DESC; 3168 ring->tx_max_pending = ICE_MAX_NUM_DESC; 3169 if (vsi->tx_rings && vsi->rx_rings) { 3170 ring->rx_pending = vsi->rx_rings[0]->count; 3171 ring->tx_pending = vsi->tx_rings[0]->count; 3172 } else { 3173 ring->rx_pending = 0; 3174 ring->tx_pending = 0; 3175 } 3176 3177 /* Rx mini and jumbo rings are not supported */ 3178 ring->rx_mini_max_pending = 0; 3179 ring->rx_jumbo_max_pending = 0; 3180 ring->rx_mini_pending = 0; 3181 ring->rx_jumbo_pending = 0; 3182 } 3183 3184 static int 3185 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3186 struct kernel_ethtool_ringparam *kernel_ring, 3187 struct netlink_ext_ack *extack) 3188 { 3189 struct ice_netdev_priv *np = netdev_priv(netdev); 3190 struct ice_tx_ring *xdp_rings = NULL; 3191 struct ice_tx_ring *tx_rings = NULL; 3192 struct ice_rx_ring *rx_rings = NULL; 3193 struct ice_vsi *vsi = np->vsi; 3194 struct ice_pf *pf = vsi->back; 3195 int i, timeout = 50, err = 0; 3196 u16 new_rx_cnt, new_tx_cnt; 3197 3198 if (ring->tx_pending > ICE_MAX_NUM_DESC || 3199 ring->tx_pending < ICE_MIN_NUM_DESC || 3200 ring->rx_pending > ICE_MAX_NUM_DESC || 3201 ring->rx_pending < ICE_MIN_NUM_DESC) { 3202 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 3203 ring->tx_pending, ring->rx_pending, 3204 ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC, 3205 ICE_REQ_DESC_MULTIPLE); 3206 return -EINVAL; 3207 } 3208 3209 /* Return if there is no rings (device is reloading) */ 3210 if (!vsi->tx_rings || !vsi->rx_rings) 3211 return -EBUSY; 3212 3213 new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE); 3214 if (new_tx_cnt != ring->tx_pending) 3215 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 3216 new_tx_cnt); 3217 new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE); 3218 if (new_rx_cnt != ring->rx_pending) 3219 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 3220 new_rx_cnt); 3221 3222 /* if nothing to do return success */ 3223 if (new_tx_cnt == vsi->tx_rings[0]->count && 3224 new_rx_cnt == vsi->rx_rings[0]->count) { 3225 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 3226 return 0; 3227 } 3228 3229 /* If there is a AF_XDP UMEM attached to any of Rx rings, 3230 * disallow changing the number of descriptors -- regardless 3231 * if the netdev is running or not. 3232 */ 3233 if (ice_xsk_any_rx_ring_ena(vsi)) 3234 return -EBUSY; 3235 3236 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3237 timeout--; 3238 if (!timeout) 3239 return -EBUSY; 3240 usleep_range(1000, 2000); 3241 } 3242 3243 /* set for the next time the netdev is started */ 3244 if (!netif_running(vsi->netdev)) { 3245 ice_for_each_alloc_txq(vsi, i) 3246 vsi->tx_rings[i]->count = new_tx_cnt; 3247 ice_for_each_alloc_rxq(vsi, i) 3248 vsi->rx_rings[i]->count = new_rx_cnt; 3249 if (ice_is_xdp_ena_vsi(vsi)) 3250 ice_for_each_xdp_txq(vsi, i) 3251 vsi->xdp_rings[i]->count = new_tx_cnt; 3252 vsi->num_tx_desc = (u16)new_tx_cnt; 3253 vsi->num_rx_desc = (u16)new_rx_cnt; 3254 netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n"); 3255 goto done; 3256 } 3257 3258 if (new_tx_cnt == vsi->tx_rings[0]->count) 3259 goto process_rx; 3260 3261 /* alloc updated Tx resources */ 3262 netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n", 3263 vsi->tx_rings[0]->count, new_tx_cnt); 3264 3265 tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL); 3266 if (!tx_rings) { 3267 err = -ENOMEM; 3268 goto done; 3269 } 3270 3271 ice_for_each_txq(vsi, i) { 3272 /* clone ring and setup updated count */ 3273 tx_rings[i] = *vsi->tx_rings[i]; 3274 tx_rings[i].count = new_tx_cnt; 3275 tx_rings[i].desc = NULL; 3276 tx_rings[i].tx_buf = NULL; 3277 tx_rings[i].tx_tstamps = &pf->ptp.port.tx; 3278 err = ice_setup_tx_ring(&tx_rings[i]); 3279 if (err) { 3280 while (i--) 3281 ice_clean_tx_ring(&tx_rings[i]); 3282 kfree(tx_rings); 3283 goto done; 3284 } 3285 } 3286 3287 if (!ice_is_xdp_ena_vsi(vsi)) 3288 goto process_rx; 3289 3290 /* alloc updated XDP resources */ 3291 netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n", 3292 vsi->xdp_rings[0]->count, new_tx_cnt); 3293 3294 xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL); 3295 if (!xdp_rings) { 3296 err = -ENOMEM; 3297 goto free_tx; 3298 } 3299 3300 ice_for_each_xdp_txq(vsi, i) { 3301 /* clone ring and setup updated count */ 3302 xdp_rings[i] = *vsi->xdp_rings[i]; 3303 xdp_rings[i].count = new_tx_cnt; 3304 xdp_rings[i].desc = NULL; 3305 xdp_rings[i].tx_buf = NULL; 3306 err = ice_setup_tx_ring(&xdp_rings[i]); 3307 if (err) { 3308 while (i--) 3309 ice_clean_tx_ring(&xdp_rings[i]); 3310 kfree(xdp_rings); 3311 goto free_tx; 3312 } 3313 ice_set_ring_xdp(&xdp_rings[i]); 3314 } 3315 3316 process_rx: 3317 if (new_rx_cnt == vsi->rx_rings[0]->count) 3318 goto process_link; 3319 3320 /* alloc updated Rx resources */ 3321 netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n", 3322 vsi->rx_rings[0]->count, new_rx_cnt); 3323 3324 rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL); 3325 if (!rx_rings) { 3326 err = -ENOMEM; 3327 goto done; 3328 } 3329 3330 ice_for_each_rxq(vsi, i) { 3331 /* clone ring and setup updated count */ 3332 rx_rings[i] = *vsi->rx_rings[i]; 3333 rx_rings[i].count = new_rx_cnt; 3334 rx_rings[i].cached_phctime = pf->ptp.cached_phc_time; 3335 rx_rings[i].desc = NULL; 3336 rx_rings[i].rx_buf = NULL; 3337 /* this is to allow wr32 to have something to write to 3338 * during early allocation of Rx buffers 3339 */ 3340 rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS; 3341 3342 err = ice_setup_rx_ring(&rx_rings[i]); 3343 if (err) 3344 goto rx_unwind; 3345 3346 /* allocate Rx buffers */ 3347 err = ice_alloc_rx_bufs(&rx_rings[i], 3348 ICE_RX_DESC_UNUSED(&rx_rings[i])); 3349 rx_unwind: 3350 if (err) { 3351 while (i) { 3352 i--; 3353 ice_free_rx_ring(&rx_rings[i]); 3354 } 3355 kfree(rx_rings); 3356 err = -ENOMEM; 3357 goto free_tx; 3358 } 3359 } 3360 3361 process_link: 3362 /* Bring interface down, copy in the new ring info, then restore the 3363 * interface. if VSI is up, bring it down and then back up 3364 */ 3365 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3366 ice_down(vsi); 3367 3368 if (tx_rings) { 3369 ice_for_each_txq(vsi, i) { 3370 ice_free_tx_ring(vsi->tx_rings[i]); 3371 *vsi->tx_rings[i] = tx_rings[i]; 3372 } 3373 kfree(tx_rings); 3374 } 3375 3376 if (rx_rings) { 3377 ice_for_each_rxq(vsi, i) { 3378 ice_free_rx_ring(vsi->rx_rings[i]); 3379 /* copy the real tail offset */ 3380 rx_rings[i].tail = vsi->rx_rings[i]->tail; 3381 /* this is to fake out the allocation routine 3382 * into thinking it has to realloc everything 3383 * but the recycling logic will let us re-use 3384 * the buffers allocated above 3385 */ 3386 rx_rings[i].next_to_use = 0; 3387 rx_rings[i].next_to_clean = 0; 3388 rx_rings[i].next_to_alloc = 0; 3389 *vsi->rx_rings[i] = rx_rings[i]; 3390 } 3391 kfree(rx_rings); 3392 } 3393 3394 if (xdp_rings) { 3395 ice_for_each_xdp_txq(vsi, i) { 3396 ice_free_tx_ring(vsi->xdp_rings[i]); 3397 *vsi->xdp_rings[i] = xdp_rings[i]; 3398 } 3399 kfree(xdp_rings); 3400 } 3401 3402 vsi->num_tx_desc = new_tx_cnt; 3403 vsi->num_rx_desc = new_rx_cnt; 3404 ice_up(vsi); 3405 } 3406 goto done; 3407 3408 free_tx: 3409 /* error cleanup if the Rx allocations failed after getting Tx */ 3410 if (tx_rings) { 3411 ice_for_each_txq(vsi, i) 3412 ice_free_tx_ring(&tx_rings[i]); 3413 kfree(tx_rings); 3414 } 3415 3416 done: 3417 clear_bit(ICE_CFG_BUSY, pf->state); 3418 return err; 3419 } 3420 3421 /** 3422 * ice_get_pauseparam - Get Flow Control status 3423 * @netdev: network interface device structure 3424 * @pause: ethernet pause (flow control) parameters 3425 * 3426 * Get requested flow control status from PHY capability. 3427 * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which 3428 * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report 3429 * the negotiated Rx/Tx pause via lp_advertising. 3430 */ 3431 static void 3432 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3433 { 3434 struct ice_netdev_priv *np = netdev_priv(netdev); 3435 struct ice_port_info *pi = np->vsi->port_info; 3436 struct ice_aqc_get_phy_caps_data *pcaps; 3437 struct ice_dcbx_cfg *dcbx_cfg; 3438 int status; 3439 3440 /* Initialize pause params */ 3441 pause->rx_pause = 0; 3442 pause->tx_pause = 0; 3443 3444 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3445 3446 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3447 if (!pcaps) 3448 return; 3449 3450 /* Get current PHY config */ 3451 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3452 NULL); 3453 if (status) 3454 goto out; 3455 3456 pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3457 AUTONEG_DISABLE; 3458 3459 if (dcbx_cfg->pfc.pfcena) 3460 /* PFC enabled so report LFC as off */ 3461 goto out; 3462 3463 if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3464 pause->tx_pause = 1; 3465 if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3466 pause->rx_pause = 1; 3467 3468 out: 3469 kfree(pcaps); 3470 } 3471 3472 /** 3473 * ice_set_pauseparam - Set Flow Control parameter 3474 * @netdev: network interface device structure 3475 * @pause: return Tx/Rx flow control status 3476 */ 3477 static int 3478 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3479 { 3480 struct ice_netdev_priv *np = netdev_priv(netdev); 3481 struct ice_aqc_get_phy_caps_data *pcaps; 3482 struct ice_link_status *hw_link_info; 3483 struct ice_pf *pf = np->vsi->back; 3484 struct ice_dcbx_cfg *dcbx_cfg; 3485 struct ice_vsi *vsi = np->vsi; 3486 struct ice_hw *hw = &pf->hw; 3487 struct ice_port_info *pi; 3488 u8 aq_failures; 3489 bool link_up; 3490 u32 is_an; 3491 int err; 3492 3493 pi = vsi->port_info; 3494 hw_link_info = &pi->phy.link_info; 3495 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3496 link_up = hw_link_info->link_info & ICE_AQ_LINK_UP; 3497 3498 /* Changing the port's flow control is not supported if this isn't the 3499 * PF VSI 3500 */ 3501 if (vsi->type != ICE_VSI_PF) { 3502 netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n"); 3503 return -EOPNOTSUPP; 3504 } 3505 3506 /* Get pause param reports configured and negotiated flow control pause 3507 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is 3508 * defined get pause param pause->autoneg reports SW configured setting, 3509 * so compare pause->autoneg with SW configured to prevent the user from 3510 * using set pause param to chance autoneg. 3511 */ 3512 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3513 if (!pcaps) 3514 return -ENOMEM; 3515 3516 /* Get current PHY config */ 3517 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3518 NULL); 3519 if (err) { 3520 kfree(pcaps); 3521 return err; 3522 } 3523 3524 is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3525 AUTONEG_DISABLE; 3526 3527 kfree(pcaps); 3528 3529 if (pause->autoneg != is_an) { 3530 netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 3531 return -EOPNOTSUPP; 3532 } 3533 3534 /* If we have link and don't have autoneg */ 3535 if (!test_bit(ICE_DOWN, pf->state) && 3536 !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) { 3537 /* Send message that it might not necessarily work*/ 3538 netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n"); 3539 } 3540 3541 if (dcbx_cfg->pfc.pfcena) { 3542 netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n"); 3543 return -EOPNOTSUPP; 3544 } 3545 if (pause->rx_pause && pause->tx_pause) 3546 pi->fc.req_mode = ICE_FC_FULL; 3547 else if (pause->rx_pause && !pause->tx_pause) 3548 pi->fc.req_mode = ICE_FC_RX_PAUSE; 3549 else if (!pause->rx_pause && pause->tx_pause) 3550 pi->fc.req_mode = ICE_FC_TX_PAUSE; 3551 else if (!pause->rx_pause && !pause->tx_pause) 3552 pi->fc.req_mode = ICE_FC_NONE; 3553 else 3554 return -EINVAL; 3555 3556 /* Set the FC mode and only restart AN if link is up */ 3557 err = ice_set_fc(pi, &aq_failures, link_up); 3558 3559 if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) { 3560 netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n", 3561 err, ice_aq_str(hw->adminq.sq_last_status)); 3562 err = -EAGAIN; 3563 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) { 3564 netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n", 3565 err, ice_aq_str(hw->adminq.sq_last_status)); 3566 err = -EAGAIN; 3567 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) { 3568 netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n", 3569 err, ice_aq_str(hw->adminq.sq_last_status)); 3570 err = -EAGAIN; 3571 } 3572 3573 return err; 3574 } 3575 3576 /** 3577 * ice_get_rxfh_key_size - get the RSS hash key size 3578 * @netdev: network interface device structure 3579 * 3580 * Returns the table size. 3581 */ 3582 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev) 3583 { 3584 return ICE_VSIQF_HKEY_ARRAY_SIZE; 3585 } 3586 3587 /** 3588 * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size 3589 * @netdev: network interface device structure 3590 * 3591 * Returns the table size. 3592 */ 3593 static u32 ice_get_rxfh_indir_size(struct net_device *netdev) 3594 { 3595 struct ice_netdev_priv *np = netdev_priv(netdev); 3596 3597 return np->vsi->rss_table_size; 3598 } 3599 3600 /** 3601 * ice_get_rxfh - get the Rx flow hash indirection table 3602 * @netdev: network interface device structure 3603 * @rxfh: pointer to param struct (indir, key, hfunc) 3604 * 3605 * Reads the indirection table directly from the hardware. 3606 */ 3607 static int 3608 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh) 3609 { 3610 struct ice_netdev_priv *np = netdev_priv(netdev); 3611 u32 rss_context = rxfh->rss_context; 3612 struct ice_vsi *vsi = np->vsi; 3613 struct ice_pf *pf = vsi->back; 3614 u16 qcount, offset; 3615 int err, num_tc, i; 3616 u8 *lut; 3617 3618 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3619 netdev_warn(netdev, "RSS is not supported on this VSI!\n"); 3620 return -EOPNOTSUPP; 3621 } 3622 3623 if (rss_context && !ice_is_adq_active(pf)) { 3624 netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n"); 3625 return -EINVAL; 3626 } 3627 3628 qcount = vsi->mqprio_qopt.qopt.count[rss_context]; 3629 offset = vsi->mqprio_qopt.qopt.offset[rss_context]; 3630 3631 if (rss_context && ice_is_adq_active(pf)) { 3632 num_tc = vsi->mqprio_qopt.qopt.num_tc; 3633 if (rss_context >= num_tc) { 3634 netdev_err(netdev, "RSS context:%d > num_tc:%d\n", 3635 rss_context, num_tc); 3636 return -EINVAL; 3637 } 3638 /* Use channel VSI of given TC */ 3639 vsi = vsi->tc_map_vsi[rss_context]; 3640 } 3641 3642 rxfh->hfunc = ETH_RSS_HASH_TOP; 3643 if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 3644 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR; 3645 3646 if (!rxfh->indir) 3647 return 0; 3648 3649 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3650 if (!lut) 3651 return -ENOMEM; 3652 3653 err = ice_get_rss_key(vsi, rxfh->key); 3654 if (err) 3655 goto out; 3656 3657 err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size); 3658 if (err) 3659 goto out; 3660 3661 if (ice_is_adq_active(pf)) { 3662 for (i = 0; i < vsi->rss_table_size; i++) 3663 rxfh->indir[i] = offset + lut[i] % qcount; 3664 goto out; 3665 } 3666 3667 for (i = 0; i < vsi->rss_table_size; i++) 3668 rxfh->indir[i] = lut[i]; 3669 3670 out: 3671 kfree(lut); 3672 return err; 3673 } 3674 3675 /** 3676 * ice_set_rxfh - set the Rx flow hash indirection table 3677 * @netdev: network interface device structure 3678 * @rxfh: pointer to param struct (indir, key, hfunc) 3679 * @extack: extended ACK from the Netlink message 3680 * 3681 * Returns -EINVAL if the table specifies an invalid queue ID, otherwise 3682 * returns 0 after programming the table. 3683 */ 3684 static int 3685 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh, 3686 struct netlink_ext_ack *extack) 3687 { 3688 struct ice_netdev_priv *np = netdev_priv(netdev); 3689 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 3690 struct ice_vsi *vsi = np->vsi; 3691 struct ice_pf *pf = vsi->back; 3692 struct device *dev; 3693 int err; 3694 3695 dev = ice_pf_to_dev(pf); 3696 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 3697 rxfh->hfunc != ETH_RSS_HASH_TOP) 3698 return -EOPNOTSUPP; 3699 3700 if (rxfh->rss_context) 3701 return -EOPNOTSUPP; 3702 3703 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3704 /* RSS not supported return error here */ 3705 netdev_warn(netdev, "RSS is not configured on this VSI!\n"); 3706 return -EIO; 3707 } 3708 3709 if (ice_is_adq_active(pf)) { 3710 netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n"); 3711 return -EOPNOTSUPP; 3712 } 3713 3714 /* Update the VSI's hash function */ 3715 if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR) 3716 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 3717 3718 err = ice_set_rss_hfunc(vsi, hfunc); 3719 if (err) 3720 return err; 3721 3722 if (rxfh->key) { 3723 if (!vsi->rss_hkey_user) { 3724 vsi->rss_hkey_user = 3725 devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE, 3726 GFP_KERNEL); 3727 if (!vsi->rss_hkey_user) 3728 return -ENOMEM; 3729 } 3730 memcpy(vsi->rss_hkey_user, rxfh->key, 3731 ICE_VSIQF_HKEY_ARRAY_SIZE); 3732 3733 err = ice_set_rss_key(vsi, vsi->rss_hkey_user); 3734 if (err) 3735 return err; 3736 } 3737 3738 if (!vsi->rss_lut_user) { 3739 vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size, 3740 GFP_KERNEL); 3741 if (!vsi->rss_lut_user) 3742 return -ENOMEM; 3743 } 3744 3745 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 3746 if (rxfh->indir) { 3747 int i; 3748 3749 for (i = 0; i < vsi->rss_table_size; i++) 3750 vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]); 3751 } else { 3752 ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size, 3753 vsi->rss_size); 3754 } 3755 3756 err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size); 3757 if (err) 3758 return err; 3759 3760 return 0; 3761 } 3762 3763 static int 3764 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) 3765 { 3766 struct ice_pf *pf = ice_netdev_to_pf(dev); 3767 3768 /* only report timestamping if PTP is enabled */ 3769 if (pf->ptp.state != ICE_PTP_READY) 3770 return ethtool_op_get_ts_info(dev, info); 3771 3772 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 3773 SOF_TIMESTAMPING_TX_HARDWARE | 3774 SOF_TIMESTAMPING_RX_HARDWARE | 3775 SOF_TIMESTAMPING_RAW_HARDWARE; 3776 3777 info->phc_index = ice_ptp_clock_index(pf); 3778 3779 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 3780 3781 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL); 3782 3783 return 0; 3784 } 3785 3786 /** 3787 * ice_get_max_txq - return the maximum number of Tx queues for in a PF 3788 * @pf: PF structure 3789 */ 3790 static int ice_get_max_txq(struct ice_pf *pf) 3791 { 3792 return min3(pf->num_lan_msix, (u16)num_online_cpus(), 3793 (u16)pf->hw.func_caps.common_cap.num_txq); 3794 } 3795 3796 /** 3797 * ice_get_max_rxq - return the maximum number of Rx queues for in a PF 3798 * @pf: PF structure 3799 */ 3800 static int ice_get_max_rxq(struct ice_pf *pf) 3801 { 3802 return min3(pf->num_lan_msix, (u16)num_online_cpus(), 3803 (u16)pf->hw.func_caps.common_cap.num_rxq); 3804 } 3805 3806 /** 3807 * ice_get_combined_cnt - return the current number of combined channels 3808 * @vsi: PF VSI pointer 3809 * 3810 * Go through all queue vectors and count ones that have both Rx and Tx ring 3811 * attached 3812 */ 3813 static u32 ice_get_combined_cnt(struct ice_vsi *vsi) 3814 { 3815 u32 combined = 0; 3816 int q_idx; 3817 3818 ice_for_each_q_vector(vsi, q_idx) { 3819 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3820 3821 if (q_vector->rx.rx_ring && q_vector->tx.tx_ring) 3822 combined++; 3823 } 3824 3825 return combined; 3826 } 3827 3828 /** 3829 * ice_get_channels - get the current and max supported channels 3830 * @dev: network interface device structure 3831 * @ch: ethtool channel data structure 3832 */ 3833 static void 3834 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch) 3835 { 3836 struct ice_netdev_priv *np = netdev_priv(dev); 3837 struct ice_vsi *vsi = np->vsi; 3838 struct ice_pf *pf = vsi->back; 3839 3840 /* report maximum channels */ 3841 ch->max_rx = ice_get_max_rxq(pf); 3842 ch->max_tx = ice_get_max_txq(pf); 3843 ch->max_combined = min_t(int, ch->max_rx, ch->max_tx); 3844 3845 /* report current channels */ 3846 ch->combined_count = ice_get_combined_cnt(vsi); 3847 ch->rx_count = vsi->num_rxq - ch->combined_count; 3848 ch->tx_count = vsi->num_txq - ch->combined_count; 3849 3850 /* report other queues */ 3851 ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 3852 ch->max_other = ch->other_count; 3853 } 3854 3855 /** 3856 * ice_get_valid_rss_size - return valid number of RSS queues 3857 * @hw: pointer to the HW structure 3858 * @new_size: requested RSS queues 3859 */ 3860 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size) 3861 { 3862 struct ice_hw_common_caps *caps = &hw->func_caps.common_cap; 3863 3864 return min_t(int, new_size, BIT(caps->rss_table_entry_width)); 3865 } 3866 3867 /** 3868 * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size 3869 * @vsi: VSI to reconfigure RSS LUT on 3870 * @req_rss_size: requested range of queue numbers for hashing 3871 * 3872 * Set the VSI's RSS parameters, configure the RSS LUT based on these. 3873 */ 3874 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size) 3875 { 3876 struct ice_pf *pf = vsi->back; 3877 struct device *dev; 3878 struct ice_hw *hw; 3879 int err; 3880 u8 *lut; 3881 3882 dev = ice_pf_to_dev(pf); 3883 hw = &pf->hw; 3884 3885 if (!req_rss_size) 3886 return -EINVAL; 3887 3888 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3889 if (!lut) 3890 return -ENOMEM; 3891 3892 /* set RSS LUT parameters */ 3893 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3894 vsi->rss_size = 1; 3895 else 3896 vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size); 3897 3898 /* create/set RSS LUT */ 3899 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 3900 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 3901 if (err) 3902 dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err, 3903 ice_aq_str(hw->adminq.sq_last_status)); 3904 3905 kfree(lut); 3906 return err; 3907 } 3908 3909 /** 3910 * ice_set_channels - set the number channels 3911 * @dev: network interface device structure 3912 * @ch: ethtool channel data structure 3913 */ 3914 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch) 3915 { 3916 struct ice_netdev_priv *np = netdev_priv(dev); 3917 struct ice_vsi *vsi = np->vsi; 3918 struct ice_pf *pf = vsi->back; 3919 int new_rx = 0, new_tx = 0; 3920 bool locked = false; 3921 int ret = 0; 3922 3923 /* do not support changing channels in Safe Mode */ 3924 if (ice_is_safe_mode(pf)) { 3925 netdev_err(dev, "Changing channel in Safe Mode is not supported\n"); 3926 return -EOPNOTSUPP; 3927 } 3928 /* do not support changing other_count */ 3929 if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U)) 3930 return -EINVAL; 3931 3932 if (ice_is_adq_active(pf)) { 3933 netdev_err(dev, "Cannot set channels with ADQ configured.\n"); 3934 return -EOPNOTSUPP; 3935 } 3936 3937 if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) { 3938 netdev_err(dev, "Cannot set channels when Flow Director filters are active\n"); 3939 return -EOPNOTSUPP; 3940 } 3941 3942 if (ch->rx_count && ch->tx_count) { 3943 netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n"); 3944 return -EINVAL; 3945 } 3946 3947 new_rx = ch->combined_count + ch->rx_count; 3948 new_tx = ch->combined_count + ch->tx_count; 3949 3950 if (new_rx < vsi->tc_cfg.numtc) { 3951 netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n", 3952 vsi->tc_cfg.numtc); 3953 return -EINVAL; 3954 } 3955 if (new_tx < vsi->tc_cfg.numtc) { 3956 netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n", 3957 vsi->tc_cfg.numtc); 3958 return -EINVAL; 3959 } 3960 if (new_rx > ice_get_max_rxq(pf)) { 3961 netdev_err(dev, "Maximum allowed Rx channels is %d\n", 3962 ice_get_max_rxq(pf)); 3963 return -EINVAL; 3964 } 3965 if (new_tx > ice_get_max_txq(pf)) { 3966 netdev_err(dev, "Maximum allowed Tx channels is %d\n", 3967 ice_get_max_txq(pf)); 3968 return -EINVAL; 3969 } 3970 3971 if (pf->adev) { 3972 mutex_lock(&pf->adev_mutex); 3973 device_lock(&pf->adev->dev); 3974 locked = true; 3975 if (pf->adev->dev.driver) { 3976 netdev_err(dev, "Cannot change channels when RDMA is active\n"); 3977 ret = -EBUSY; 3978 goto adev_unlock; 3979 } 3980 } 3981 3982 ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked); 3983 3984 if (!netif_is_rxfh_configured(dev)) { 3985 ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx); 3986 goto adev_unlock; 3987 } 3988 3989 /* Update rss_size due to change in Rx queues */ 3990 vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx); 3991 3992 adev_unlock: 3993 if (locked) { 3994 device_unlock(&pf->adev->dev); 3995 mutex_unlock(&pf->adev_mutex); 3996 } 3997 return ret; 3998 } 3999 4000 /** 4001 * ice_get_wol - get current Wake on LAN configuration 4002 * @netdev: network interface device structure 4003 * @wol: Ethtool structure to retrieve WoL settings 4004 */ 4005 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 4006 { 4007 struct ice_netdev_priv *np = netdev_priv(netdev); 4008 struct ice_pf *pf = np->vsi->back; 4009 4010 if (np->vsi->type != ICE_VSI_PF) 4011 netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n"); 4012 4013 /* Get WoL settings based on the HW capability */ 4014 if (ice_is_wol_supported(&pf->hw)) { 4015 wol->supported = WAKE_MAGIC; 4016 wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0; 4017 } else { 4018 wol->supported = 0; 4019 wol->wolopts = 0; 4020 } 4021 } 4022 4023 /** 4024 * ice_set_wol - set Wake on LAN on supported device 4025 * @netdev: network interface device structure 4026 * @wol: Ethtool structure to set WoL 4027 */ 4028 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 4029 { 4030 struct ice_netdev_priv *np = netdev_priv(netdev); 4031 struct ice_vsi *vsi = np->vsi; 4032 struct ice_pf *pf = vsi->back; 4033 4034 if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw)) 4035 return -EOPNOTSUPP; 4036 4037 /* only magic packet is supported */ 4038 if (wol->wolopts && wol->wolopts != WAKE_MAGIC) 4039 return -EOPNOTSUPP; 4040 4041 /* Set WoL only if there is a new value */ 4042 if (pf->wol_ena != !!wol->wolopts) { 4043 pf->wol_ena = !!wol->wolopts; 4044 device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena); 4045 netdev_dbg(netdev, "WoL magic packet %sabled\n", 4046 pf->wol_ena ? "en" : "dis"); 4047 } 4048 4049 return 0; 4050 } 4051 4052 /** 4053 * ice_get_rc_coalesce - get ITR values for specific ring container 4054 * @ec: ethtool structure to fill with driver's coalesce settings 4055 * @rc: ring container that the ITR values will come from 4056 * 4057 * Query the device for ice_ring_container specific ITR values. This is 4058 * done per ice_ring_container because each q_vector can have 1 or more rings 4059 * and all of said ring(s) will have the same ITR values. 4060 * 4061 * Returns 0 on success, negative otherwise. 4062 */ 4063 static int 4064 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc) 4065 { 4066 if (!rc->rx_ring) 4067 return -EINVAL; 4068 4069 switch (rc->type) { 4070 case ICE_RX_CONTAINER: 4071 ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc); 4072 ec->rx_coalesce_usecs = rc->itr_setting; 4073 ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl; 4074 break; 4075 case ICE_TX_CONTAINER: 4076 ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc); 4077 ec->tx_coalesce_usecs = rc->itr_setting; 4078 break; 4079 default: 4080 dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type); 4081 return -EINVAL; 4082 } 4083 4084 return 0; 4085 } 4086 4087 /** 4088 * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings 4089 * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings 4090 * @ec: coalesce settings to program the device with 4091 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4092 * 4093 * Return 0 on success, and negative under the following conditions: 4094 * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed. 4095 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4096 */ 4097 static int 4098 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4099 { 4100 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4101 if (ice_get_rc_coalesce(ec, 4102 &vsi->rx_rings[q_num]->q_vector->rx)) 4103 return -EINVAL; 4104 if (ice_get_rc_coalesce(ec, 4105 &vsi->tx_rings[q_num]->q_vector->tx)) 4106 return -EINVAL; 4107 } else if (q_num < vsi->num_rxq) { 4108 if (ice_get_rc_coalesce(ec, 4109 &vsi->rx_rings[q_num]->q_vector->rx)) 4110 return -EINVAL; 4111 } else if (q_num < vsi->num_txq) { 4112 if (ice_get_rc_coalesce(ec, 4113 &vsi->tx_rings[q_num]->q_vector->tx)) 4114 return -EINVAL; 4115 } else { 4116 return -EINVAL; 4117 } 4118 4119 return 0; 4120 } 4121 4122 /** 4123 * __ice_get_coalesce - get ITR/INTRL values for the device 4124 * @netdev: pointer to the netdev associated with this query 4125 * @ec: ethtool structure to fill with driver's coalesce settings 4126 * @q_num: queue number to get the coalesce settings for 4127 * 4128 * If the caller passes in a negative q_num then we return coalesce settings 4129 * based on queue number 0, else use the actual q_num passed in. 4130 */ 4131 static int 4132 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4133 int q_num) 4134 { 4135 struct ice_netdev_priv *np = netdev_priv(netdev); 4136 struct ice_vsi *vsi = np->vsi; 4137 4138 if (q_num < 0) 4139 q_num = 0; 4140 4141 if (ice_get_q_coalesce(vsi, ec, q_num)) 4142 return -EINVAL; 4143 4144 return 0; 4145 } 4146 4147 static int ice_get_coalesce(struct net_device *netdev, 4148 struct ethtool_coalesce *ec, 4149 struct kernel_ethtool_coalesce *kernel_coal, 4150 struct netlink_ext_ack *extack) 4151 { 4152 return __ice_get_coalesce(netdev, ec, -1); 4153 } 4154 4155 static int 4156 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num, 4157 struct ethtool_coalesce *ec) 4158 { 4159 return __ice_get_coalesce(netdev, ec, q_num); 4160 } 4161 4162 /** 4163 * ice_set_rc_coalesce - set ITR values for specific ring container 4164 * @ec: ethtool structure from user to update ITR settings 4165 * @rc: ring container that the ITR values will come from 4166 * @vsi: VSI associated to the ring container 4167 * 4168 * Set specific ITR values. This is done per ice_ring_container because each 4169 * q_vector can have 1 or more rings and all of said ring(s) will have the same 4170 * ITR values. 4171 * 4172 * Returns 0 on success, negative otherwise. 4173 */ 4174 static int 4175 ice_set_rc_coalesce(struct ethtool_coalesce *ec, 4176 struct ice_ring_container *rc, struct ice_vsi *vsi) 4177 { 4178 const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx"; 4179 u32 use_adaptive_coalesce, coalesce_usecs; 4180 struct ice_pf *pf = vsi->back; 4181 u16 itr_setting; 4182 4183 if (!rc->rx_ring) 4184 return -EINVAL; 4185 4186 switch (rc->type) { 4187 case ICE_RX_CONTAINER: 4188 { 4189 struct ice_q_vector *q_vector = rc->rx_ring->q_vector; 4190 4191 if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL || 4192 (ec->rx_coalesce_usecs_high && 4193 ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) { 4194 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n", 4195 c_type_str, pf->hw.intrl_gran, 4196 ICE_MAX_INTRL); 4197 return -EINVAL; 4198 } 4199 if (ec->rx_coalesce_usecs_high != q_vector->intrl && 4200 (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) { 4201 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n", 4202 c_type_str); 4203 return -EINVAL; 4204 } 4205 if (ec->rx_coalesce_usecs_high != q_vector->intrl) 4206 q_vector->intrl = ec->rx_coalesce_usecs_high; 4207 4208 use_adaptive_coalesce = ec->use_adaptive_rx_coalesce; 4209 coalesce_usecs = ec->rx_coalesce_usecs; 4210 4211 break; 4212 } 4213 case ICE_TX_CONTAINER: 4214 use_adaptive_coalesce = ec->use_adaptive_tx_coalesce; 4215 coalesce_usecs = ec->tx_coalesce_usecs; 4216 4217 break; 4218 default: 4219 dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n", 4220 rc->type); 4221 return -EINVAL; 4222 } 4223 4224 itr_setting = rc->itr_setting; 4225 if (coalesce_usecs != itr_setting && use_adaptive_coalesce) { 4226 netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n", 4227 c_type_str, c_type_str); 4228 return -EINVAL; 4229 } 4230 4231 if (coalesce_usecs > ICE_ITR_MAX) { 4232 netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n", 4233 c_type_str, ICE_ITR_MAX); 4234 return -EINVAL; 4235 } 4236 4237 if (use_adaptive_coalesce) { 4238 rc->itr_mode = ITR_DYNAMIC; 4239 } else { 4240 rc->itr_mode = ITR_STATIC; 4241 /* store user facing value how it was set */ 4242 rc->itr_setting = coalesce_usecs; 4243 /* write the change to the register */ 4244 ice_write_itr(rc, coalesce_usecs); 4245 /* force writes to take effect immediately, the flush shouldn't 4246 * be done in the functions above because the intent is for 4247 * them to do lazy writes. 4248 */ 4249 ice_flush(&pf->hw); 4250 } 4251 4252 return 0; 4253 } 4254 4255 /** 4256 * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings 4257 * @vsi: VSI associated to the queue that need updating 4258 * @ec: coalesce settings to program the device with 4259 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4260 * 4261 * Return 0 on success, and negative under the following conditions: 4262 * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed. 4263 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4264 */ 4265 static int 4266 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4267 { 4268 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4269 if (ice_set_rc_coalesce(ec, 4270 &vsi->rx_rings[q_num]->q_vector->rx, 4271 vsi)) 4272 return -EINVAL; 4273 4274 if (ice_set_rc_coalesce(ec, 4275 &vsi->tx_rings[q_num]->q_vector->tx, 4276 vsi)) 4277 return -EINVAL; 4278 } else if (q_num < vsi->num_rxq) { 4279 if (ice_set_rc_coalesce(ec, 4280 &vsi->rx_rings[q_num]->q_vector->rx, 4281 vsi)) 4282 return -EINVAL; 4283 } else if (q_num < vsi->num_txq) { 4284 if (ice_set_rc_coalesce(ec, 4285 &vsi->tx_rings[q_num]->q_vector->tx, 4286 vsi)) 4287 return -EINVAL; 4288 } else { 4289 return -EINVAL; 4290 } 4291 4292 return 0; 4293 } 4294 4295 /** 4296 * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs 4297 * @netdev: netdev used for print 4298 * @itr_setting: previous user setting 4299 * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled 4300 * @coalesce_usecs: requested value of [tx|rx]-usecs 4301 * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs 4302 */ 4303 static void 4304 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting, 4305 u32 use_adaptive_coalesce, u32 coalesce_usecs, 4306 const char *c_type_str) 4307 { 4308 if (use_adaptive_coalesce) 4309 return; 4310 4311 if (itr_setting != coalesce_usecs && (coalesce_usecs % 2)) 4312 netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n", 4313 c_type_str, coalesce_usecs, c_type_str, 4314 ITR_REG_ALIGN(coalesce_usecs)); 4315 } 4316 4317 /** 4318 * __ice_set_coalesce - set ITR/INTRL values for the device 4319 * @netdev: pointer to the netdev associated with this query 4320 * @ec: ethtool structure to fill with driver's coalesce settings 4321 * @q_num: queue number to get the coalesce settings for 4322 * 4323 * If the caller passes in a negative q_num then we set the coalesce settings 4324 * for all Tx/Rx queues, else use the actual q_num passed in. 4325 */ 4326 static int 4327 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4328 int q_num) 4329 { 4330 struct ice_netdev_priv *np = netdev_priv(netdev); 4331 struct ice_vsi *vsi = np->vsi; 4332 4333 if (q_num < 0) { 4334 struct ice_q_vector *q_vector = vsi->q_vectors[0]; 4335 int v_idx; 4336 4337 if (q_vector) { 4338 ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting, 4339 ec->use_adaptive_rx_coalesce, 4340 ec->rx_coalesce_usecs, "rx"); 4341 4342 ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting, 4343 ec->use_adaptive_tx_coalesce, 4344 ec->tx_coalesce_usecs, "tx"); 4345 } 4346 4347 ice_for_each_q_vector(vsi, v_idx) { 4348 /* In some cases if DCB is configured the num_[rx|tx]q 4349 * can be less than vsi->num_q_vectors. This check 4350 * accounts for that so we don't report a false failure 4351 */ 4352 if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq) 4353 goto set_complete; 4354 4355 if (ice_set_q_coalesce(vsi, ec, v_idx)) 4356 return -EINVAL; 4357 4358 ice_set_q_vector_intrl(vsi->q_vectors[v_idx]); 4359 } 4360 goto set_complete; 4361 } 4362 4363 if (ice_set_q_coalesce(vsi, ec, q_num)) 4364 return -EINVAL; 4365 4366 ice_set_q_vector_intrl(vsi->q_vectors[q_num]); 4367 4368 set_complete: 4369 return 0; 4370 } 4371 4372 static int ice_set_coalesce(struct net_device *netdev, 4373 struct ethtool_coalesce *ec, 4374 struct kernel_ethtool_coalesce *kernel_coal, 4375 struct netlink_ext_ack *extack) 4376 { 4377 return __ice_set_coalesce(netdev, ec, -1); 4378 } 4379 4380 static int 4381 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num, 4382 struct ethtool_coalesce *ec) 4383 { 4384 return __ice_set_coalesce(netdev, ec, q_num); 4385 } 4386 4387 static void 4388 ice_repr_get_drvinfo(struct net_device *netdev, 4389 struct ethtool_drvinfo *drvinfo) 4390 { 4391 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4392 4393 if (repr->ops.ready(repr)) 4394 return; 4395 4396 __ice_get_drvinfo(netdev, drvinfo, repr->src_vsi); 4397 } 4398 4399 static void 4400 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 4401 { 4402 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4403 4404 /* for port representors only ETH_SS_STATS is supported */ 4405 if (repr->ops.ready(repr) || stringset != ETH_SS_STATS) 4406 return; 4407 4408 __ice_get_strings(netdev, stringset, data, repr->src_vsi); 4409 } 4410 4411 static void 4412 ice_repr_get_ethtool_stats(struct net_device *netdev, 4413 struct ethtool_stats __always_unused *stats, 4414 u64 *data) 4415 { 4416 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4417 4418 if (repr->ops.ready(repr)) 4419 return; 4420 4421 __ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi); 4422 } 4423 4424 static int ice_repr_get_sset_count(struct net_device *netdev, int sset) 4425 { 4426 switch (sset) { 4427 case ETH_SS_STATS: 4428 return ICE_VSI_STATS_LEN; 4429 default: 4430 return -EOPNOTSUPP; 4431 } 4432 } 4433 4434 #define ICE_I2C_EEPROM_DEV_ADDR 0xA0 4435 #define ICE_I2C_EEPROM_DEV_ADDR2 0xA2 4436 #define ICE_MODULE_TYPE_SFP 0x03 4437 #define ICE_MODULE_TYPE_QSFP_PLUS 0x0D 4438 #define ICE_MODULE_TYPE_QSFP28 0x11 4439 #define ICE_MODULE_SFF_ADDR_MODE 0x04 4440 #define ICE_MODULE_SFF_DIAG_CAPAB 0x40 4441 #define ICE_MODULE_REVISION_ADDR 0x01 4442 #define ICE_MODULE_SFF_8472_COMP 0x5E 4443 #define ICE_MODULE_SFF_8472_SWAP 0x5C 4444 #define ICE_MODULE_QSFP_MAX_LEN 640 4445 4446 /** 4447 * ice_get_module_info - get SFF module type and revision information 4448 * @netdev: network interface device structure 4449 * @modinfo: module EEPROM size and layout information structure 4450 */ 4451 static int 4452 ice_get_module_info(struct net_device *netdev, 4453 struct ethtool_modinfo *modinfo) 4454 { 4455 struct ice_netdev_priv *np = netdev_priv(netdev); 4456 struct ice_vsi *vsi = np->vsi; 4457 struct ice_pf *pf = vsi->back; 4458 struct ice_hw *hw = &pf->hw; 4459 u8 sff8472_comp = 0; 4460 u8 sff8472_swap = 0; 4461 u8 sff8636_rev = 0; 4462 u8 value = 0; 4463 int status; 4464 4465 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00, 4466 0, &value, 1, 0, NULL); 4467 if (status) 4468 return status; 4469 4470 switch (value) { 4471 case ICE_MODULE_TYPE_SFP: 4472 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4473 ICE_MODULE_SFF_8472_COMP, 0x00, 0, 4474 &sff8472_comp, 1, 0, NULL); 4475 if (status) 4476 return status; 4477 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4478 ICE_MODULE_SFF_8472_SWAP, 0x00, 0, 4479 &sff8472_swap, 1, 0, NULL); 4480 if (status) 4481 return status; 4482 4483 if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) { 4484 modinfo->type = ETH_MODULE_SFF_8079; 4485 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4486 } else if (sff8472_comp && 4487 (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) { 4488 modinfo->type = ETH_MODULE_SFF_8472; 4489 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 4490 } else { 4491 modinfo->type = ETH_MODULE_SFF_8079; 4492 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4493 } 4494 break; 4495 case ICE_MODULE_TYPE_QSFP_PLUS: 4496 case ICE_MODULE_TYPE_QSFP28: 4497 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4498 ICE_MODULE_REVISION_ADDR, 0x00, 0, 4499 &sff8636_rev, 1, 0, NULL); 4500 if (status) 4501 return status; 4502 /* Check revision compliance */ 4503 if (sff8636_rev > 0x02) { 4504 /* Module is SFF-8636 compliant */ 4505 modinfo->type = ETH_MODULE_SFF_8636; 4506 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4507 } else { 4508 modinfo->type = ETH_MODULE_SFF_8436; 4509 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4510 } 4511 break; 4512 default: 4513 netdev_warn(netdev, "SFF Module Type not recognized.\n"); 4514 return -EINVAL; 4515 } 4516 return 0; 4517 } 4518 4519 /** 4520 * ice_get_module_eeprom - fill buffer with SFF EEPROM contents 4521 * @netdev: network interface device structure 4522 * @ee: EEPROM dump request structure 4523 * @data: buffer to be filled with EEPROM contents 4524 */ 4525 static int 4526 ice_get_module_eeprom(struct net_device *netdev, 4527 struct ethtool_eeprom *ee, u8 *data) 4528 { 4529 struct ice_netdev_priv *np = netdev_priv(netdev); 4530 #define SFF_READ_BLOCK_SIZE 8 4531 u8 value[SFF_READ_BLOCK_SIZE] = { 0 }; 4532 u8 addr = ICE_I2C_EEPROM_DEV_ADDR; 4533 struct ice_vsi *vsi = np->vsi; 4534 struct ice_pf *pf = vsi->back; 4535 struct ice_hw *hw = &pf->hw; 4536 bool is_sfp = false; 4537 unsigned int i, j; 4538 u16 offset = 0; 4539 u8 page = 0; 4540 int status; 4541 4542 if (!ee || !ee->len || !data) 4543 return -EINVAL; 4544 4545 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0, 4546 NULL); 4547 if (status) 4548 return status; 4549 4550 if (value[0] == ICE_MODULE_TYPE_SFP) 4551 is_sfp = true; 4552 4553 memset(data, 0, ee->len); 4554 for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) { 4555 offset = i + ee->offset; 4556 page = 0; 4557 4558 /* Check if we need to access the other memory page */ 4559 if (is_sfp) { 4560 if (offset >= ETH_MODULE_SFF_8079_LEN) { 4561 offset -= ETH_MODULE_SFF_8079_LEN; 4562 addr = ICE_I2C_EEPROM_DEV_ADDR2; 4563 } 4564 } else { 4565 while (offset >= ETH_MODULE_SFF_8436_LEN) { 4566 /* Compute memory page number and offset. */ 4567 offset -= ETH_MODULE_SFF_8436_LEN / 2; 4568 page++; 4569 } 4570 } 4571 4572 /* Bit 2 of EEPROM address 0x02 declares upper 4573 * pages are disabled on QSFP modules. 4574 * SFP modules only ever use page 0. 4575 */ 4576 if (page == 0 || !(data[0x2] & 0x4)) { 4577 u32 copy_len; 4578 4579 /* If i2c bus is busy due to slow page change or 4580 * link management access, call can fail. This is normal. 4581 * So we retry this a few times. 4582 */ 4583 for (j = 0; j < 4; j++) { 4584 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 4585 !is_sfp, value, 4586 SFF_READ_BLOCK_SIZE, 4587 0, NULL); 4588 netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n", 4589 addr, offset, page, is_sfp, 4590 value[0], value[1], value[2], value[3], 4591 value[4], value[5], value[6], value[7], 4592 status); 4593 if (status) { 4594 usleep_range(1500, 2500); 4595 memset(value, 0, SFF_READ_BLOCK_SIZE); 4596 continue; 4597 } 4598 break; 4599 } 4600 4601 /* Make sure we have enough room for the new block */ 4602 copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i); 4603 memcpy(data + i, value, copy_len); 4604 } 4605 } 4606 return 0; 4607 } 4608 4609 /** 4610 * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per 4611 * pcsquad, pcsport 4612 * @hw: pointer to the HW struct 4613 * @pcs_quad: pcsquad for input port 4614 * @pcs_port: pcsport for input port 4615 * @fec_stats: buffer to hold FEC statistics for given port 4616 * 4617 * Return: 0 on success, negative on failure. 4618 */ 4619 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port, 4620 struct ethtool_fec_stats *fec_stats) 4621 { 4622 u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0; 4623 u32 fec_corr_low_val = 0, fec_corr_high_val = 0; 4624 int err; 4625 4626 if (pcs_quad > 1 || pcs_port > 3) 4627 return -EINVAL; 4628 4629 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW, 4630 &fec_corr_low_val); 4631 if (err) 4632 return err; 4633 4634 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH, 4635 &fec_corr_high_val); 4636 if (err) 4637 return err; 4638 4639 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4640 ICE_FEC_UNCORR_LOW, 4641 &fec_uncorr_low_val); 4642 if (err) 4643 return err; 4644 4645 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4646 ICE_FEC_UNCORR_HIGH, 4647 &fec_uncorr_high_val); 4648 if (err) 4649 return err; 4650 4651 fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) + 4652 fec_corr_low_val; 4653 fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) + 4654 fec_uncorr_low_val; 4655 return 0; 4656 } 4657 4658 /** 4659 * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev 4660 * @netdev: network interface device structure 4661 * @fec_stats: buffer to hold FEC statistics for given port 4662 * 4663 */ 4664 static void ice_get_fec_stats(struct net_device *netdev, 4665 struct ethtool_fec_stats *fec_stats) 4666 { 4667 struct ice_netdev_priv *np = netdev_priv(netdev); 4668 struct ice_port_topology port_topology; 4669 struct ice_port_info *pi; 4670 struct ice_pf *pf; 4671 struct ice_hw *hw; 4672 int err; 4673 4674 pf = np->vsi->back; 4675 hw = &pf->hw; 4676 pi = np->vsi->port_info; 4677 4678 /* Serdes parameters are not supported if not the PF VSI */ 4679 if (np->vsi->type != ICE_VSI_PF || !pi) 4680 return; 4681 4682 err = ice_get_port_topology(hw, pi->lport, &port_topology); 4683 if (err) { 4684 netdev_info(netdev, "Extended register dump failed Lport %d\n", 4685 pi->lport); 4686 return; 4687 } 4688 4689 /* Get FEC correctable, uncorrectable counter */ 4690 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select, 4691 port_topology.pcs_port, fec_stats); 4692 if (err) 4693 netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n", 4694 pi->lport, err); 4695 } 4696 4697 #define ICE_ETHTOOL_PFR (ETH_RESET_IRQ | ETH_RESET_DMA | \ 4698 ETH_RESET_FILTER | ETH_RESET_OFFLOAD) 4699 4700 #define ICE_ETHTOOL_CORER ((ICE_ETHTOOL_PFR | ETH_RESET_RAM) << \ 4701 ETH_RESET_SHARED_SHIFT) 4702 4703 #define ICE_ETHTOOL_GLOBR (ICE_ETHTOOL_CORER | \ 4704 (ETH_RESET_MAC << ETH_RESET_SHARED_SHIFT) | \ 4705 (ETH_RESET_PHY << ETH_RESET_SHARED_SHIFT)) 4706 4707 #define ICE_ETHTOOL_VFR ICE_ETHTOOL_PFR 4708 4709 /** 4710 * ice_ethtool_reset - triggers a given type of reset 4711 * @dev: network interface device structure 4712 * @flags: set of reset flags 4713 * 4714 * Return: 0 on success, -EOPNOTSUPP when using unsupported set of flags. 4715 */ 4716 static int ice_ethtool_reset(struct net_device *dev, u32 *flags) 4717 { 4718 struct ice_netdev_priv *np = netdev_priv(dev); 4719 struct ice_pf *pf = np->vsi->back; 4720 enum ice_reset_req reset; 4721 4722 switch (*flags) { 4723 case ICE_ETHTOOL_CORER: 4724 reset = ICE_RESET_CORER; 4725 break; 4726 case ICE_ETHTOOL_GLOBR: 4727 reset = ICE_RESET_GLOBR; 4728 break; 4729 case ICE_ETHTOOL_PFR: 4730 reset = ICE_RESET_PFR; 4731 break; 4732 default: 4733 netdev_info(dev, "Unsupported set of ethtool flags"); 4734 return -EOPNOTSUPP; 4735 } 4736 4737 ice_schedule_reset(pf, reset); 4738 4739 *flags = 0; 4740 4741 return 0; 4742 } 4743 4744 /** 4745 * ice_repr_ethtool_reset - triggers a VF reset 4746 * @dev: network interface device structure 4747 * @flags: set of reset flags 4748 * 4749 * Return: 0 on success, 4750 * -EOPNOTSUPP when using unsupported set of flags 4751 * -EBUSY when VF is not ready for reset. 4752 */ 4753 static int ice_repr_ethtool_reset(struct net_device *dev, u32 *flags) 4754 { 4755 struct ice_repr *repr = ice_netdev_to_repr(dev); 4756 struct ice_vf *vf; 4757 4758 if (repr->type != ICE_REPR_TYPE_VF || 4759 *flags != ICE_ETHTOOL_VFR) 4760 return -EOPNOTSUPP; 4761 4762 vf = repr->vf; 4763 4764 if (ice_check_vf_ready_for_cfg(vf)) 4765 return -EBUSY; 4766 4767 *flags = 0; 4768 4769 return ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 4770 } 4771 4772 static const struct ethtool_ops ice_ethtool_ops = { 4773 .cap_rss_ctx_supported = true, 4774 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 4775 ETHTOOL_COALESCE_USE_ADAPTIVE | 4776 ETHTOOL_COALESCE_RX_USECS_HIGH, 4777 .cap_rss_sym_xor_supported = true, 4778 .rxfh_per_ctx_key = true, 4779 .get_link_ksettings = ice_get_link_ksettings, 4780 .set_link_ksettings = ice_set_link_ksettings, 4781 .get_fec_stats = ice_get_fec_stats, 4782 .get_drvinfo = ice_get_drvinfo, 4783 .get_regs_len = ice_get_regs_len, 4784 .get_regs = ice_get_regs, 4785 .get_wol = ice_get_wol, 4786 .set_wol = ice_set_wol, 4787 .get_msglevel = ice_get_msglevel, 4788 .set_msglevel = ice_set_msglevel, 4789 .self_test = ice_self_test, 4790 .get_link = ethtool_op_get_link, 4791 .get_eeprom_len = ice_get_eeprom_len, 4792 .get_eeprom = ice_get_eeprom, 4793 .get_coalesce = ice_get_coalesce, 4794 .set_coalesce = ice_set_coalesce, 4795 .get_strings = ice_get_strings, 4796 .set_phys_id = ice_set_phys_id, 4797 .get_ethtool_stats = ice_get_ethtool_stats, 4798 .get_priv_flags = ice_get_priv_flags, 4799 .set_priv_flags = ice_set_priv_flags, 4800 .get_sset_count = ice_get_sset_count, 4801 .get_rxnfc = ice_get_rxnfc, 4802 .set_rxnfc = ice_set_rxnfc, 4803 .get_ringparam = ice_get_ringparam, 4804 .set_ringparam = ice_set_ringparam, 4805 .nway_reset = ice_nway_reset, 4806 .get_pauseparam = ice_get_pauseparam, 4807 .set_pauseparam = ice_set_pauseparam, 4808 .reset = ice_ethtool_reset, 4809 .get_rxfh_key_size = ice_get_rxfh_key_size, 4810 .get_rxfh_indir_size = ice_get_rxfh_indir_size, 4811 .get_rxfh = ice_get_rxfh, 4812 .set_rxfh = ice_set_rxfh, 4813 .get_channels = ice_get_channels, 4814 .set_channels = ice_set_channels, 4815 .get_ts_info = ice_get_ts_info, 4816 .get_per_queue_coalesce = ice_get_per_q_coalesce, 4817 .set_per_queue_coalesce = ice_set_per_q_coalesce, 4818 .get_fecparam = ice_get_fecparam, 4819 .set_fecparam = ice_set_fecparam, 4820 .get_module_info = ice_get_module_info, 4821 .get_module_eeprom = ice_get_module_eeprom, 4822 }; 4823 4824 static const struct ethtool_ops ice_ethtool_safe_mode_ops = { 4825 .get_link_ksettings = ice_get_link_ksettings, 4826 .set_link_ksettings = ice_set_link_ksettings, 4827 .get_drvinfo = ice_get_drvinfo, 4828 .get_regs_len = ice_get_regs_len, 4829 .get_regs = ice_get_regs, 4830 .get_wol = ice_get_wol, 4831 .set_wol = ice_set_wol, 4832 .get_msglevel = ice_get_msglevel, 4833 .set_msglevel = ice_set_msglevel, 4834 .get_link = ethtool_op_get_link, 4835 .get_eeprom_len = ice_get_eeprom_len, 4836 .get_eeprom = ice_get_eeprom, 4837 .get_strings = ice_get_strings, 4838 .get_ethtool_stats = ice_get_ethtool_stats, 4839 .get_sset_count = ice_get_sset_count, 4840 .get_ringparam = ice_get_ringparam, 4841 .set_ringparam = ice_set_ringparam, 4842 .nway_reset = ice_nway_reset, 4843 .get_channels = ice_get_channels, 4844 }; 4845 4846 /** 4847 * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops 4848 * @netdev: network interface device structure 4849 */ 4850 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev) 4851 { 4852 netdev->ethtool_ops = &ice_ethtool_safe_mode_ops; 4853 } 4854 4855 static const struct ethtool_ops ice_ethtool_repr_ops = { 4856 .get_drvinfo = ice_repr_get_drvinfo, 4857 .get_link = ethtool_op_get_link, 4858 .get_strings = ice_repr_get_strings, 4859 .get_ethtool_stats = ice_repr_get_ethtool_stats, 4860 .get_sset_count = ice_repr_get_sset_count, 4861 .reset = ice_repr_ethtool_reset, 4862 }; 4863 4864 /** 4865 * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops 4866 * @netdev: network interface device structure 4867 */ 4868 void ice_set_ethtool_repr_ops(struct net_device *netdev) 4869 { 4870 netdev->ethtool_ops = &ice_ethtool_repr_ops; 4871 } 4872 4873 /** 4874 * ice_set_ethtool_ops - setup netdev ethtool ops 4875 * @netdev: network interface device structure 4876 * 4877 * setup netdev ethtool ops with ice specific ops 4878 */ 4879 void ice_set_ethtool_ops(struct net_device *netdev) 4880 { 4881 netdev->ethtool_ops = &ice_ethtool_ops; 4882 } 4883