1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* ethtool support for ice */ 5 6 #include "ice.h" 7 #include "ice_ethtool.h" 8 #include "ice_flow.h" 9 #include "ice_fltr.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include <net/dcbnl.h> 13 14 struct ice_stats { 15 char stat_string[ETH_GSTRING_LEN]; 16 int sizeof_stat; 17 int stat_offset; 18 }; 19 20 #define ICE_STAT(_type, _name, _stat) { \ 21 .stat_string = _name, \ 22 .sizeof_stat = sizeof_field(_type, _stat), \ 23 .stat_offset = offsetof(_type, _stat) \ 24 } 25 26 #define ICE_VSI_STAT(_name, _stat) \ 27 ICE_STAT(struct ice_vsi, _name, _stat) 28 #define ICE_PF_STAT(_name, _stat) \ 29 ICE_STAT(struct ice_pf, _name, _stat) 30 31 static int ice_q_stats_len(struct net_device *netdev) 32 { 33 struct ice_netdev_priv *np = netdev_priv(netdev); 34 35 return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) * 36 (sizeof(struct ice_q_stats) / sizeof(u64))); 37 } 38 39 #define ICE_PF_STATS_LEN ARRAY_SIZE(ice_gstrings_pf_stats) 40 #define ICE_VSI_STATS_LEN ARRAY_SIZE(ice_gstrings_vsi_stats) 41 42 #define ICE_PFC_STATS_LEN ( \ 43 (sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \ 44 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \ 45 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \ 46 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \ 47 / sizeof(u64)) 48 #define ICE_ALL_STATS_LEN(n) (ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \ 49 ICE_VSI_STATS_LEN + ice_q_stats_len(n)) 50 51 static const struct ice_stats ice_gstrings_vsi_stats[] = { 52 ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast), 53 ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast), 54 ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast), 55 ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast), 56 ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast), 57 ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast), 58 ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes), 59 ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes), 60 ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards), 61 ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol), 62 ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed), 63 ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed), 64 ICE_VSI_STAT("tx_errors", eth_stats.tx_errors), 65 ICE_VSI_STAT("tx_linearize", tx_linearize), 66 ICE_VSI_STAT("tx_busy", tx_busy), 67 ICE_VSI_STAT("tx_restart", tx_restart), 68 }; 69 70 enum ice_ethtool_test_id { 71 ICE_ETH_TEST_REG = 0, 72 ICE_ETH_TEST_EEPROM, 73 ICE_ETH_TEST_INTR, 74 ICE_ETH_TEST_LOOP, 75 ICE_ETH_TEST_LINK, 76 }; 77 78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = { 79 "Register test (offline)", 80 "EEPROM test (offline)", 81 "Interrupt test (offline)", 82 "Loopback test (offline)", 83 "Link test (on/offline)", 84 }; 85 86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN) 87 88 /* These PF_STATs might look like duplicates of some NETDEV_STATs, 89 * but they aren't. This device is capable of supporting multiple 90 * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual 91 * netdevs whereas the PF_STATs are for the physical function that's 92 * hosting these netdevs. 93 * 94 * The PF_STATs are appended to the netdev stats only when ethtool -S 95 * is queried on the base PF netdev. 96 */ 97 static const struct ice_stats ice_gstrings_pf_stats[] = { 98 ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes), 99 ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes), 100 ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast), 101 ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast), 102 ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast), 103 ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast), 104 ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast), 105 ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast), 106 ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors), 107 ICE_PF_STAT("tx_timeout.nic", tx_timeout_count), 108 ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64), 109 ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64), 110 ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127), 111 ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127), 112 ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255), 113 ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255), 114 ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511), 115 ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511), 116 ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023), 117 ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023), 118 ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522), 119 ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522), 120 ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big), 121 ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big), 122 ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx), 123 ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx), 124 ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx), 125 ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx), 126 ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down), 127 ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize), 128 ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments), 129 ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize), 130 ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber), 131 ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error), 132 ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error), 133 ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards), 134 ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors), 135 ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes), 136 ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults), 137 ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults), 138 ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match), 139 ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status), 140 ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped), 141 ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts), 142 ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed), 143 ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded), 144 ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates), 145 }; 146 147 static const u32 ice_regs_dump_list[] = { 148 PFGEN_STATE, 149 PRTGEN_STATUS, 150 QRX_CTRL(0), 151 QINT_TQCTL(0), 152 QINT_RQCTL(0), 153 PFINT_OICR_ENA, 154 QRX_ITR(0), 155 #define GLDCB_TLPM_PCI_DM 0x000A0180 156 GLDCB_TLPM_PCI_DM, 157 #define GLDCB_TLPM_TC2PFC 0x000A0194 158 GLDCB_TLPM_TC2PFC, 159 #define TCDCB_TLPM_WAIT_DM(_i) (0x000A0080 + ((_i) * 4)) 160 TCDCB_TLPM_WAIT_DM(0), 161 TCDCB_TLPM_WAIT_DM(1), 162 TCDCB_TLPM_WAIT_DM(2), 163 TCDCB_TLPM_WAIT_DM(3), 164 TCDCB_TLPM_WAIT_DM(4), 165 TCDCB_TLPM_WAIT_DM(5), 166 TCDCB_TLPM_WAIT_DM(6), 167 TCDCB_TLPM_WAIT_DM(7), 168 TCDCB_TLPM_WAIT_DM(8), 169 TCDCB_TLPM_WAIT_DM(9), 170 TCDCB_TLPM_WAIT_DM(10), 171 TCDCB_TLPM_WAIT_DM(11), 172 TCDCB_TLPM_WAIT_DM(12), 173 TCDCB_TLPM_WAIT_DM(13), 174 TCDCB_TLPM_WAIT_DM(14), 175 TCDCB_TLPM_WAIT_DM(15), 176 TCDCB_TLPM_WAIT_DM(16), 177 TCDCB_TLPM_WAIT_DM(17), 178 TCDCB_TLPM_WAIT_DM(18), 179 TCDCB_TLPM_WAIT_DM(19), 180 TCDCB_TLPM_WAIT_DM(20), 181 TCDCB_TLPM_WAIT_DM(21), 182 TCDCB_TLPM_WAIT_DM(22), 183 TCDCB_TLPM_WAIT_DM(23), 184 TCDCB_TLPM_WAIT_DM(24), 185 TCDCB_TLPM_WAIT_DM(25), 186 TCDCB_TLPM_WAIT_DM(26), 187 TCDCB_TLPM_WAIT_DM(27), 188 TCDCB_TLPM_WAIT_DM(28), 189 TCDCB_TLPM_WAIT_DM(29), 190 TCDCB_TLPM_WAIT_DM(30), 191 TCDCB_TLPM_WAIT_DM(31), 192 #define GLPCI_WATMK_CLNT_PIPEMON 0x000BFD90 193 GLPCI_WATMK_CLNT_PIPEMON, 194 #define GLPCI_CUR_CLNT_COMMON 0x000BFD84 195 GLPCI_CUR_CLNT_COMMON, 196 #define GLPCI_CUR_CLNT_PIPEMON 0x000BFD88 197 GLPCI_CUR_CLNT_PIPEMON, 198 #define GLPCI_PCIERR 0x0009DEB0 199 GLPCI_PCIERR, 200 #define GLPSM_DEBUG_CTL_STATUS 0x000B0600 201 GLPSM_DEBUG_CTL_STATUS, 202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0680 203 GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT, 204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0684 205 GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT, 206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW 0x000B0688 207 GLPSM0_DEBUG_DT_OUT_OF_WINDOW, 208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT 0x000B069C 209 GLPSM0_DEBUG_INTF_HW_ERROR_DETECT, 210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT 0x000B06A0 211 GLPSM0_DEBUG_MISC_HW_ERROR_DETECT, 212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0E80 213 GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT, 214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0E84 215 GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT, 216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT 0x000B0E88 217 GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT, 218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT 0x000B0E8C 219 GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT, 220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT 0x000B0E90 221 GLPSM1_DEBUG_MISC_HW_ERROR_DETECT, 222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT 0x000B1680 223 GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT, 224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B1684 225 GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT, 226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT 0x000B1688 227 GLPSM2_DEBUG_MISC_HW_ERROR_DETECT, 228 #define GLTDPU_TCLAN_COMP_BOB(_i) (0x00049ADC + ((_i) * 4)) 229 GLTDPU_TCLAN_COMP_BOB(1), 230 GLTDPU_TCLAN_COMP_BOB(2), 231 GLTDPU_TCLAN_COMP_BOB(3), 232 GLTDPU_TCLAN_COMP_BOB(4), 233 GLTDPU_TCLAN_COMP_BOB(5), 234 GLTDPU_TCLAN_COMP_BOB(6), 235 GLTDPU_TCLAN_COMP_BOB(7), 236 GLTDPU_TCLAN_COMP_BOB(8), 237 #define GLTDPU_TCB_CMD_BOB(_i) (0x0004975C + ((_i) * 4)) 238 GLTDPU_TCB_CMD_BOB(1), 239 GLTDPU_TCB_CMD_BOB(2), 240 GLTDPU_TCB_CMD_BOB(3), 241 GLTDPU_TCB_CMD_BOB(4), 242 GLTDPU_TCB_CMD_BOB(5), 243 GLTDPU_TCB_CMD_BOB(6), 244 GLTDPU_TCB_CMD_BOB(7), 245 GLTDPU_TCB_CMD_BOB(8), 246 #define GLTDPU_PSM_UPDATE_BOB(_i) (0x00049B5C + ((_i) * 4)) 247 GLTDPU_PSM_UPDATE_BOB(1), 248 GLTDPU_PSM_UPDATE_BOB(2), 249 GLTDPU_PSM_UPDATE_BOB(3), 250 GLTDPU_PSM_UPDATE_BOB(4), 251 GLTDPU_PSM_UPDATE_BOB(5), 252 GLTDPU_PSM_UPDATE_BOB(6), 253 GLTDPU_PSM_UPDATE_BOB(7), 254 GLTDPU_PSM_UPDATE_BOB(8), 255 #define GLTCB_CMD_IN_BOB(_i) (0x000AE288 + ((_i) * 4)) 256 GLTCB_CMD_IN_BOB(1), 257 GLTCB_CMD_IN_BOB(2), 258 GLTCB_CMD_IN_BOB(3), 259 GLTCB_CMD_IN_BOB(4), 260 GLTCB_CMD_IN_BOB(5), 261 GLTCB_CMD_IN_BOB(6), 262 GLTCB_CMD_IN_BOB(7), 263 GLTCB_CMD_IN_BOB(8), 264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i) (0x000FC148 + ((_i) * 4)) 265 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1), 266 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2), 267 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3), 268 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4), 269 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5), 270 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6), 271 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7), 272 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8), 273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4)) 274 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1), 275 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2), 276 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3), 277 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4), 278 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5), 279 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6), 280 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7), 281 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8), 282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i) (0x000FC1C8 + ((_i) * 4)) 283 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1), 284 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2), 285 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3), 286 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4), 287 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5), 288 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6), 289 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7), 290 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8), 291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i) (0x000FC188 + ((_i) * 4)) 292 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1), 293 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2), 294 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3), 295 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4), 296 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5), 297 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6), 298 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7), 299 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8), 300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4)) 301 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1), 302 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2), 303 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3), 304 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4), 305 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5), 306 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6), 307 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7), 308 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8), 309 #define PRTDCB_TCUPM_REG_CM(_i) (0x000BC360 + ((_i) * 4)) 310 PRTDCB_TCUPM_REG_CM(0), 311 PRTDCB_TCUPM_REG_CM(1), 312 PRTDCB_TCUPM_REG_CM(2), 313 PRTDCB_TCUPM_REG_CM(3), 314 #define PRTDCB_TCUPM_REG_DM(_i) (0x000BC3A0 + ((_i) * 4)) 315 PRTDCB_TCUPM_REG_DM(0), 316 PRTDCB_TCUPM_REG_DM(1), 317 PRTDCB_TCUPM_REG_DM(2), 318 PRTDCB_TCUPM_REG_DM(3), 319 #define PRTDCB_TLPM_REG_DM(_i) (0x000A0000 + ((_i) * 4)) 320 PRTDCB_TLPM_REG_DM(0), 321 PRTDCB_TLPM_REG_DM(1), 322 PRTDCB_TLPM_REG_DM(2), 323 PRTDCB_TLPM_REG_DM(3), 324 }; 325 326 struct ice_priv_flag { 327 char name[ETH_GSTRING_LEN]; 328 u32 bitno; /* bit position in pf->flags */ 329 }; 330 331 #define ICE_PRIV_FLAG(_name, _bitno) { \ 332 .name = _name, \ 333 .bitno = _bitno, \ 334 } 335 336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = { 337 ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA), 338 ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT), 339 ICE_PRIV_FLAG("vf-true-promisc-support", 340 ICE_FLAG_VF_TRUE_PROMISC_ENA), 341 ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF), 342 ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING), 343 ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX), 344 }; 345 346 #define ICE_PRIV_FLAG_ARRAY_SIZE ARRAY_SIZE(ice_gstrings_priv_flags) 347 348 static const u32 ice_adv_lnk_speed_100[] __initconst = { 349 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 350 }; 351 352 static const u32 ice_adv_lnk_speed_1000[] __initconst = { 353 ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 354 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 355 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 356 }; 357 358 static const u32 ice_adv_lnk_speed_2500[] __initconst = { 359 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 360 ETHTOOL_LINK_MODE_2500baseX_Full_BIT, 361 }; 362 363 static const u32 ice_adv_lnk_speed_5000[] __initconst = { 364 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 365 }; 366 367 static const u32 ice_adv_lnk_speed_10000[] __initconst = { 368 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 369 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 370 ETHTOOL_LINK_MODE_10000baseSR_Full_BIT, 371 ETHTOOL_LINK_MODE_10000baseLR_Full_BIT, 372 }; 373 374 static const u32 ice_adv_lnk_speed_25000[] __initconst = { 375 ETHTOOL_LINK_MODE_25000baseCR_Full_BIT, 376 ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, 377 ETHTOOL_LINK_MODE_25000baseKR_Full_BIT, 378 }; 379 380 static const u32 ice_adv_lnk_speed_40000[] __initconst = { 381 ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT, 382 ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT, 383 ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT, 384 ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT, 385 }; 386 387 static const u32 ice_adv_lnk_speed_50000[] __initconst = { 388 ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT, 389 ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT, 390 ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT, 391 }; 392 393 static const u32 ice_adv_lnk_speed_100000[] __initconst = { 394 ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT, 395 ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, 396 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT, 397 ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT, 398 ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT, 399 ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT, 400 ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT, 401 }; 402 403 static const u32 ice_adv_lnk_speed_200000[] __initconst = { 404 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT, 405 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT, 406 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT, 407 ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT, 408 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT, 409 }; 410 411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = { 412 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100), 413 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000), 414 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500), 415 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000), 416 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000), 417 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000), 418 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000), 419 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000), 420 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000), 421 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000), 422 }; 423 424 void __init ice_adv_lnk_speed_maps_init(void) 425 { 426 ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps, 427 ARRAY_SIZE(ice_adv_lnk_speed_maps)); 428 } 429 430 static void 431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo, 432 struct ice_vsi *vsi) 433 { 434 struct ice_pf *pf = vsi->back; 435 struct ice_hw *hw = &pf->hw; 436 struct ice_orom_info *orom; 437 struct ice_nvm_info *nvm; 438 439 nvm = &hw->flash.nvm; 440 orom = &hw->flash.orom; 441 442 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver)); 443 444 /* Display NVM version (from which the firmware version can be 445 * determined) which contains more pertinent information. 446 */ 447 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 448 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor, 449 nvm->eetrack, orom->major, orom->build, orom->patch); 450 451 strscpy(drvinfo->bus_info, pci_name(pf->pdev), 452 sizeof(drvinfo->bus_info)); 453 } 454 455 static void 456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) 457 { 458 struct ice_netdev_priv *np = netdev_priv(netdev); 459 460 __ice_get_drvinfo(netdev, drvinfo, np->vsi); 461 drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE; 462 } 463 464 static int ice_get_regs_len(struct net_device __always_unused *netdev) 465 { 466 return (sizeof(ice_regs_dump_list) + 467 sizeof(struct ice_regdump_to_ethtool)); 468 } 469 470 /** 471 * ice_ethtool_get_maxspeed - Get the max speed for given lport 472 * @hw: pointer to the HW struct 473 * @lport: logical port for which max speed is requested 474 * @max_speed: return max speed for input lport 475 * 476 * Return: 0 on success, negative on failure. 477 */ 478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed) 479 { 480 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {}; 481 bool active_valid = false, pending_valid = true; 482 u8 option_count = ICE_AQC_PORT_OPT_MAX; 483 u8 active_idx = 0, pending_idx = 0; 484 int status; 485 486 status = ice_aq_get_port_options(hw, options, &option_count, lport, 487 true, &active_idx, &active_valid, 488 &pending_idx, &pending_valid); 489 if (status) 490 return -EIO; 491 if (!active_valid) 492 return -EINVAL; 493 494 *max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M; 495 return 0; 496 } 497 498 /** 499 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware 500 * @hw: pointer to the HW struct 501 * 502 * Return: true when serdes is muxed, false when serdes is not muxed. 503 */ 504 static bool ice_is_serdes_muxed(struct ice_hw *hw) 505 { 506 u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG); 507 508 return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value); 509 } 510 511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology, 512 u8 lport, bool is_muxed) 513 { 514 switch (lport) { 515 case 0: 516 port_topology->pcs_quad_select = 0; 517 port_topology->pcs_port = 0; 518 port_topology->primary_serdes_lane = 0; 519 break; 520 case 1: 521 port_topology->pcs_quad_select = 1; 522 port_topology->pcs_port = 0; 523 if (is_muxed) 524 port_topology->primary_serdes_lane = 2; 525 else 526 port_topology->primary_serdes_lane = 4; 527 break; 528 case 2: 529 port_topology->pcs_quad_select = 0; 530 port_topology->pcs_port = 1; 531 port_topology->primary_serdes_lane = 1; 532 break; 533 case 3: 534 port_topology->pcs_quad_select = 1; 535 port_topology->pcs_port = 1; 536 if (is_muxed) 537 port_topology->primary_serdes_lane = 3; 538 else 539 port_topology->primary_serdes_lane = 5; 540 break; 541 case 4: 542 port_topology->pcs_quad_select = 0; 543 port_topology->pcs_port = 2; 544 port_topology->primary_serdes_lane = 2; 545 break; 546 case 5: 547 port_topology->pcs_quad_select = 1; 548 port_topology->pcs_port = 2; 549 port_topology->primary_serdes_lane = 6; 550 break; 551 case 6: 552 port_topology->pcs_quad_select = 0; 553 port_topology->pcs_port = 3; 554 port_topology->primary_serdes_lane = 3; 555 break; 556 case 7: 557 port_topology->pcs_quad_select = 1; 558 port_topology->pcs_port = 3; 559 port_topology->primary_serdes_lane = 7; 560 break; 561 default: 562 return -EINVAL; 563 } 564 565 return 0; 566 } 567 568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology, 569 u8 lport, bool is_muxed) 570 { 571 switch (lport) { 572 case 0: 573 port_topology->pcs_quad_select = 0; 574 port_topology->pcs_port = 0; 575 port_topology->primary_serdes_lane = 0; 576 break; 577 case 1: 578 port_topology->pcs_quad_select = 1; 579 port_topology->pcs_port = 0; 580 if (is_muxed) 581 port_topology->primary_serdes_lane = 2; 582 else 583 port_topology->primary_serdes_lane = 4; 584 break; 585 case 2: 586 port_topology->pcs_quad_select = 0; 587 port_topology->pcs_port = 1; 588 port_topology->primary_serdes_lane = 1; 589 break; 590 case 3: 591 port_topology->pcs_quad_select = 1; 592 port_topology->pcs_port = 1; 593 if (is_muxed) 594 port_topology->primary_serdes_lane = 3; 595 else 596 port_topology->primary_serdes_lane = 5; 597 break; 598 case 4: 599 port_topology->pcs_quad_select = 0; 600 port_topology->pcs_port = 2; 601 port_topology->primary_serdes_lane = 2; 602 break; 603 case 5: 604 port_topology->pcs_quad_select = 1; 605 port_topology->pcs_port = 2; 606 port_topology->primary_serdes_lane = 6; 607 break; 608 case 6: 609 port_topology->pcs_quad_select = 0; 610 port_topology->pcs_port = 3; 611 port_topology->primary_serdes_lane = 3; 612 break; 613 case 7: 614 port_topology->pcs_quad_select = 1; 615 port_topology->pcs_port = 3; 616 port_topology->primary_serdes_lane = 7; 617 break; 618 default: 619 return -EINVAL; 620 } 621 622 return 0; 623 } 624 625 /** 626 * ice_get_port_topology - returns physical topology like pcsquad, pcsport, 627 * serdes number 628 * @hw: pointer to the HW struct 629 * @lport: logical port for which physical info requested 630 * @port_topology: buffer to hold port topology 631 * 632 * Return: 0 on success, negative on failure. 633 */ 634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport, 635 struct ice_port_topology *port_topology) 636 { 637 struct ice_aqc_get_link_topo cmd = {}; 638 u16 node_handle = 0; 639 u8 cage_type = 0; 640 bool is_muxed; 641 int err; 642 u8 ctx; 643 644 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S; 645 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S; 646 cmd.addr.topo_params.node_type_ctx = ctx; 647 648 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle); 649 if (err) 650 return -EINVAL; 651 652 is_muxed = ice_is_serdes_muxed(hw); 653 654 if (cage_type == 0x11 || /* SFP+ */ 655 cage_type == 0x12) { /* SFP28 */ 656 port_topology->serdes_lane_count = 1; 657 err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed); 658 if (err) 659 return err; 660 } else if (cage_type == 0x13 || /* QSFP */ 661 cage_type == 0x14) { /* QSFP28 */ 662 u8 max_speed = 0; 663 664 err = ice_ethtool_get_maxspeed(hw, lport, &max_speed); 665 if (err) 666 return err; 667 668 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G) 669 port_topology->serdes_lane_count = 4; 670 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G || 671 max_speed == ICE_AQC_PORT_OPT_MAX_LANE_40G) 672 port_topology->serdes_lane_count = 2; 673 else 674 port_topology->serdes_lane_count = 1; 675 676 err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed); 677 if (err) 678 return err; 679 } else { 680 return -EINVAL; 681 } 682 683 return 0; 684 } 685 686 /** 687 * ice_get_tx_rx_equa - read serdes tx rx equaliser param 688 * @hw: pointer to the HW struct 689 * @serdes_num: represents the serdes number 690 * @ptr: structure to read all serdes parameter for given serdes 691 * 692 * Return: all serdes equalization parameter supported per serdes number 693 */ 694 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num, 695 struct ice_serdes_equalization_to_ethtool *ptr) 696 { 697 static const int tx = ICE_AQC_OP_CODE_TX_EQU; 698 static const int rx = ICE_AQC_OP_CODE_RX_EQU; 699 struct { 700 int data_in; 701 int opcode; 702 int *out; 703 } aq_params[] = { 704 { ICE_AQC_TX_EQU_PRE1, tx, &ptr->tx_equ_pre1 }, 705 { ICE_AQC_TX_EQU_PRE3, tx, &ptr->tx_equ_pre3 }, 706 { ICE_AQC_TX_EQU_ATTEN, tx, &ptr->tx_equ_atten }, 707 { ICE_AQC_TX_EQU_POST1, tx, &ptr->tx_equ_post1 }, 708 { ICE_AQC_TX_EQU_PRE2, tx, &ptr->tx_equ_pre2 }, 709 { ICE_AQC_RX_EQU_PRE2, rx, &ptr->rx_equ_pre2 }, 710 { ICE_AQC_RX_EQU_PRE1, rx, &ptr->rx_equ_pre1 }, 711 { ICE_AQC_RX_EQU_POST1, rx, &ptr->rx_equ_post1 }, 712 { ICE_AQC_RX_EQU_BFLF, rx, &ptr->rx_equ_bflf }, 713 { ICE_AQC_RX_EQU_BFHF, rx, &ptr->rx_equ_bfhf }, 714 { ICE_AQC_RX_EQU_CTLE_GAINHF, rx, &ptr->rx_equ_ctle_gainhf }, 715 { ICE_AQC_RX_EQU_CTLE_GAINLF, rx, &ptr->rx_equ_ctle_gainlf }, 716 { ICE_AQC_RX_EQU_CTLE_GAINDC, rx, &ptr->rx_equ_ctle_gaindc }, 717 { ICE_AQC_RX_EQU_CTLE_BW, rx, &ptr->rx_equ_ctle_bw }, 718 { ICE_AQC_RX_EQU_DFE_GAIN, rx, &ptr->rx_equ_dfe_gain }, 719 { ICE_AQC_RX_EQU_DFE_GAIN2, rx, &ptr->rx_equ_dfe_gain_2 }, 720 { ICE_AQC_RX_EQU_DFE_2, rx, &ptr->rx_equ_dfe_2 }, 721 { ICE_AQC_RX_EQU_DFE_3, rx, &ptr->rx_equ_dfe_3 }, 722 { ICE_AQC_RX_EQU_DFE_4, rx, &ptr->rx_equ_dfe_4 }, 723 { ICE_AQC_RX_EQU_DFE_5, rx, &ptr->rx_equ_dfe_5 }, 724 { ICE_AQC_RX_EQU_DFE_6, rx, &ptr->rx_equ_dfe_6 }, 725 { ICE_AQC_RX_EQU_DFE_7, rx, &ptr->rx_equ_dfe_7 }, 726 { ICE_AQC_RX_EQU_DFE_8, rx, &ptr->rx_equ_dfe_8 }, 727 { ICE_AQC_RX_EQU_DFE_9, rx, &ptr->rx_equ_dfe_9 }, 728 { ICE_AQC_RX_EQU_DFE_10, rx, &ptr->rx_equ_dfe_10 }, 729 { ICE_AQC_RX_EQU_DFE_11, rx, &ptr->rx_equ_dfe_11 }, 730 { ICE_AQC_RX_EQU_DFE_12, rx, &ptr->rx_equ_dfe_12 }, 731 }; 732 int err; 733 734 for (int i = 0; i < ARRAY_SIZE(aq_params); i++) { 735 err = ice_aq_get_phy_equalization(hw, aq_params[i].data_in, 736 aq_params[i].opcode, 737 serdes_num, aq_params[i].out); 738 if (err) 739 break; 740 } 741 742 return err; 743 } 744 745 /** 746 * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per 747 * pcsquad, pcsport 748 * @netdev: pointer to net device structure 749 * @p: output buffer to fill requested register dump 750 * 751 * Return: 0 on success, negative on failure. 752 */ 753 static int ice_get_extended_regs(struct net_device *netdev, void *p) 754 { 755 struct ice_netdev_priv *np = netdev_priv(netdev); 756 struct ice_regdump_to_ethtool *ice_prv_regs_buf; 757 struct ice_port_topology port_topology = {}; 758 struct ice_port_info *pi; 759 struct ice_pf *pf; 760 struct ice_hw *hw; 761 unsigned int i; 762 int err; 763 764 pf = np->vsi->back; 765 hw = &pf->hw; 766 pi = np->vsi->port_info; 767 768 /* Serdes parameters are not supported if not the PF VSI */ 769 if (np->vsi->type != ICE_VSI_PF || !pi) 770 return -EINVAL; 771 772 err = ice_get_port_topology(hw, pi->lport, &port_topology); 773 if (err) 774 return -EINVAL; 775 if (port_topology.serdes_lane_count > 4) 776 return -EINVAL; 777 778 ice_prv_regs_buf = p; 779 780 /* Get serdes equalization parameter for available serdes */ 781 for (i = 0; i < port_topology.serdes_lane_count; i++) { 782 u8 serdes_num = 0; 783 784 serdes_num = port_topology.primary_serdes_lane + i; 785 err = ice_get_tx_rx_equa(hw, serdes_num, 786 &ice_prv_regs_buf->equalization[i]); 787 if (err) 788 return -EINVAL; 789 } 790 791 return 0; 792 } 793 794 static void 795 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) 796 { 797 struct ice_netdev_priv *np = netdev_priv(netdev); 798 struct ice_pf *pf = np->vsi->back; 799 struct ice_hw *hw = &pf->hw; 800 u32 *regs_buf = (u32 *)p; 801 unsigned int i; 802 803 regs->version = 2; 804 805 for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i) 806 regs_buf[i] = rd32(hw, ice_regs_dump_list[i]); 807 808 ice_get_extended_regs(netdev, (void *)®s_buf[i]); 809 } 810 811 static u32 ice_get_msglevel(struct net_device *netdev) 812 { 813 struct ice_netdev_priv *np = netdev_priv(netdev); 814 struct ice_pf *pf = np->vsi->back; 815 816 #ifndef CONFIG_DYNAMIC_DEBUG 817 if (pf->hw.debug_mask) 818 netdev_info(netdev, "hw debug_mask: 0x%llX\n", 819 pf->hw.debug_mask); 820 #endif /* !CONFIG_DYNAMIC_DEBUG */ 821 822 return pf->msg_enable; 823 } 824 825 static void ice_set_msglevel(struct net_device *netdev, u32 data) 826 { 827 struct ice_netdev_priv *np = netdev_priv(netdev); 828 struct ice_pf *pf = np->vsi->back; 829 830 #ifndef CONFIG_DYNAMIC_DEBUG 831 if (ICE_DBG_USER & data) 832 pf->hw.debug_mask = data; 833 else 834 pf->msg_enable = data; 835 #else 836 pf->msg_enable = data; 837 #endif /* !CONFIG_DYNAMIC_DEBUG */ 838 } 839 840 static void ice_get_link_ext_stats(struct net_device *netdev, 841 struct ethtool_link_ext_stats *stats) 842 { 843 struct ice_netdev_priv *np = netdev_priv(netdev); 844 struct ice_pf *pf = np->vsi->back; 845 846 stats->link_down_events = pf->link_down_events; 847 } 848 849 static int ice_get_eeprom_len(struct net_device *netdev) 850 { 851 struct ice_netdev_priv *np = netdev_priv(netdev); 852 struct ice_pf *pf = np->vsi->back; 853 854 return (int)pf->hw.flash.flash_size; 855 } 856 857 static int 858 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, 859 u8 *bytes) 860 { 861 struct ice_netdev_priv *np = netdev_priv(netdev); 862 struct ice_vsi *vsi = np->vsi; 863 struct ice_pf *pf = vsi->back; 864 struct ice_hw *hw = &pf->hw; 865 struct device *dev; 866 int ret; 867 u8 *buf; 868 869 dev = ice_pf_to_dev(pf); 870 871 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 872 netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n", 873 eeprom->cmd, eeprom->offset, eeprom->len); 874 875 buf = kzalloc(eeprom->len, GFP_KERNEL); 876 if (!buf) 877 return -ENOMEM; 878 879 ret = ice_acquire_nvm(hw, ICE_RES_READ); 880 if (ret) { 881 dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n", 882 ret, libie_aq_str(hw->adminq.sq_last_status)); 883 goto out; 884 } 885 886 ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf, 887 false); 888 if (ret) { 889 dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n", 890 ret, libie_aq_str(hw->adminq.sq_last_status)); 891 goto release; 892 } 893 894 memcpy(bytes, buf, eeprom->len); 895 release: 896 ice_release_nvm(hw); 897 out: 898 kfree(buf); 899 return ret; 900 } 901 902 /** 903 * ice_active_vfs - check if there are any active VFs 904 * @pf: board private structure 905 * 906 * Returns true if an active VF is found, otherwise returns false 907 */ 908 static bool ice_active_vfs(struct ice_pf *pf) 909 { 910 bool active = false; 911 struct ice_vf *vf; 912 unsigned int bkt; 913 914 rcu_read_lock(); 915 ice_for_each_vf_rcu(pf, bkt, vf) { 916 if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 917 active = true; 918 break; 919 } 920 } 921 rcu_read_unlock(); 922 923 return active; 924 } 925 926 /** 927 * ice_link_test - perform a link test on a given net_device 928 * @netdev: network interface device structure 929 * 930 * This function performs one of the self-tests required by ethtool. 931 * Returns 0 on success, non-zero on failure. 932 */ 933 static u64 ice_link_test(struct net_device *netdev) 934 { 935 struct ice_netdev_priv *np = netdev_priv(netdev); 936 bool link_up = false; 937 int status; 938 939 netdev_info(netdev, "link test\n"); 940 status = ice_get_link_status(np->vsi->port_info, &link_up); 941 if (status) { 942 netdev_err(netdev, "link query error, status = %d\n", 943 status); 944 return 1; 945 } 946 947 if (!link_up) 948 return 2; 949 950 return 0; 951 } 952 953 /** 954 * ice_eeprom_test - perform an EEPROM test on a given net_device 955 * @netdev: network interface device structure 956 * 957 * This function performs one of the self-tests required by ethtool. 958 * Returns 0 on success, non-zero on failure. 959 */ 960 static u64 ice_eeprom_test(struct net_device *netdev) 961 { 962 struct ice_netdev_priv *np = netdev_priv(netdev); 963 struct ice_pf *pf = np->vsi->back; 964 965 netdev_info(netdev, "EEPROM test\n"); 966 return !!(ice_nvm_validate_checksum(&pf->hw)); 967 } 968 969 /** 970 * ice_reg_pattern_test 971 * @hw: pointer to the HW struct 972 * @reg: reg to be tested 973 * @mask: bits to be touched 974 */ 975 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask) 976 { 977 struct ice_pf *pf = (struct ice_pf *)hw->back; 978 struct device *dev = ice_pf_to_dev(pf); 979 static const u32 patterns[] = { 980 0x5A5A5A5A, 0xA5A5A5A5, 981 0x00000000, 0xFFFFFFFF 982 }; 983 u32 val, orig_val; 984 unsigned int i; 985 986 orig_val = rd32(hw, reg); 987 for (i = 0; i < ARRAY_SIZE(patterns); ++i) { 988 u32 pattern = patterns[i] & mask; 989 990 wr32(hw, reg, pattern); 991 val = rd32(hw, reg); 992 if (val == pattern) 993 continue; 994 dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n" 995 , __func__, reg, pattern, val); 996 return 1; 997 } 998 999 wr32(hw, reg, orig_val); 1000 val = rd32(hw, reg); 1001 if (val != orig_val) { 1002 dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n" 1003 , __func__, reg, orig_val, val); 1004 return 1; 1005 } 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * ice_reg_test - perform a register test on a given net_device 1012 * @netdev: network interface device structure 1013 * 1014 * This function performs one of the self-tests required by ethtool. 1015 * Returns 0 on success, non-zero on failure. 1016 */ 1017 static u64 ice_reg_test(struct net_device *netdev) 1018 { 1019 struct ice_netdev_priv *np = netdev_priv(netdev); 1020 struct ice_hw *hw = np->vsi->port_info->hw; 1021 u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ? 1022 hw->func_caps.common_cap.num_msix_vectors - 1 : 1; 1023 struct ice_diag_reg_test_info { 1024 u32 address; 1025 u32 mask; 1026 u32 elem_num; 1027 u32 elem_size; 1028 } ice_reg_list[] = { 1029 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1030 GLINT_ITR(0, 1) - GLINT_ITR(0, 0)}, 1031 {GLINT_ITR(1, 0), 0x00000fff, int_elements, 1032 GLINT_ITR(1, 1) - GLINT_ITR(1, 0)}, 1033 {GLINT_ITR(0, 0), 0x00000fff, int_elements, 1034 GLINT_ITR(2, 1) - GLINT_ITR(2, 0)}, 1035 {GLINT_CTL, 0xffff0001, 1, 0} 1036 }; 1037 unsigned int i; 1038 1039 netdev_dbg(netdev, "Register test\n"); 1040 for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) { 1041 u32 j; 1042 1043 for (j = 0; j < ice_reg_list[i].elem_num; ++j) { 1044 u32 mask = ice_reg_list[i].mask; 1045 u32 reg = ice_reg_list[i].address + 1046 (j * ice_reg_list[i].elem_size); 1047 1048 /* bail on failure (non-zero return) */ 1049 if (ice_reg_pattern_test(hw, reg, mask)) 1050 return 1; 1051 } 1052 } 1053 1054 return 0; 1055 } 1056 1057 /** 1058 * ice_lbtest_prepare_rings - configure Tx/Rx test rings 1059 * @vsi: pointer to the VSI structure 1060 * 1061 * Function configures rings of a VSI for loopback test without 1062 * enabling interrupts or informing the kernel about new queues. 1063 * 1064 * Returns 0 on success, negative on failure. 1065 */ 1066 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi) 1067 { 1068 int status; 1069 1070 status = ice_vsi_setup_tx_rings(vsi); 1071 if (status) 1072 goto err_setup_tx_ring; 1073 1074 status = ice_vsi_setup_rx_rings(vsi); 1075 if (status) 1076 goto err_setup_rx_ring; 1077 1078 status = ice_vsi_cfg_lan(vsi); 1079 if (status) 1080 goto err_setup_rx_ring; 1081 1082 status = ice_vsi_start_all_rx_rings(vsi); 1083 if (status) 1084 goto err_start_rx_ring; 1085 1086 return 0; 1087 1088 err_start_rx_ring: 1089 ice_vsi_free_rx_rings(vsi); 1090 err_setup_rx_ring: 1091 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1092 err_setup_tx_ring: 1093 ice_vsi_free_tx_rings(vsi); 1094 1095 return status; 1096 } 1097 1098 /** 1099 * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test 1100 * @vsi: pointer to the VSI structure 1101 * 1102 * Function stops and frees VSI rings after a loopback test. 1103 * Returns 0 on success, negative on failure. 1104 */ 1105 static int ice_lbtest_disable_rings(struct ice_vsi *vsi) 1106 { 1107 int status; 1108 1109 status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 1110 if (status) 1111 netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n", 1112 vsi->vsi_num, status); 1113 1114 status = ice_vsi_stop_all_rx_rings(vsi); 1115 if (status) 1116 netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n", 1117 vsi->vsi_num, status); 1118 1119 ice_vsi_free_tx_rings(vsi); 1120 ice_vsi_free_rx_rings(vsi); 1121 1122 return status; 1123 } 1124 1125 /** 1126 * ice_lbtest_create_frame - create test packet 1127 * @pf: pointer to the PF structure 1128 * @ret_data: allocated frame buffer 1129 * @size: size of the packet data 1130 * 1131 * Function allocates a frame with a test pattern on specific offsets. 1132 * Returns 0 on success, non-zero on failure. 1133 */ 1134 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size) 1135 { 1136 u8 *data; 1137 1138 if (!pf) 1139 return -EINVAL; 1140 1141 data = kzalloc(size, GFP_KERNEL); 1142 if (!data) 1143 return -ENOMEM; 1144 1145 /* Since the ethernet test frame should always be at least 1146 * 64 bytes long, fill some octets in the payload with test data. 1147 */ 1148 memset(data, 0xFF, size); 1149 data[32] = 0xDE; 1150 data[42] = 0xAD; 1151 data[44] = 0xBE; 1152 data[46] = 0xEF; 1153 1154 *ret_data = data; 1155 1156 return 0; 1157 } 1158 1159 /** 1160 * ice_lbtest_check_frame - verify received loopback frame 1161 * @frame: pointer to the raw packet data 1162 * 1163 * Function verifies received test frame with a pattern. 1164 * Returns true if frame matches the pattern, false otherwise. 1165 */ 1166 static bool ice_lbtest_check_frame(u8 *frame) 1167 { 1168 /* Validate bytes of a frame under offsets chosen earlier */ 1169 if (frame[32] == 0xDE && 1170 frame[42] == 0xAD && 1171 frame[44] == 0xBE && 1172 frame[46] == 0xEF && 1173 frame[48] == 0xFF) 1174 return true; 1175 1176 return false; 1177 } 1178 1179 /** 1180 * ice_diag_send - send test frames to the test ring 1181 * @tx_ring: pointer to the transmit ring 1182 * @data: pointer to the raw packet data 1183 * @size: size of the packet to send 1184 * 1185 * Function sends loopback packets on a test Tx ring. 1186 */ 1187 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size) 1188 { 1189 struct ice_tx_desc *tx_desc; 1190 struct ice_tx_buf *tx_buf; 1191 dma_addr_t dma; 1192 u64 td_cmd; 1193 1194 tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use); 1195 tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use]; 1196 1197 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 1198 if (dma_mapping_error(tx_ring->dev, dma)) 1199 return -EINVAL; 1200 1201 tx_desc->buf_addr = cpu_to_le64(dma); 1202 1203 /* These flags are required for a descriptor to be pushed out */ 1204 td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS); 1205 tx_desc->cmd_type_offset_bsz = 1206 cpu_to_le64(ICE_TX_DESC_DTYPE_DATA | 1207 (td_cmd << ICE_TXD_QW1_CMD_S) | 1208 ((u64)0 << ICE_TXD_QW1_OFFSET_S) | 1209 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) | 1210 ((u64)0 << ICE_TXD_QW1_L2TAG1_S)); 1211 1212 tx_buf->next_to_watch = tx_desc; 1213 1214 /* Force memory write to complete before letting h/w know 1215 * there are new descriptors to fetch. 1216 */ 1217 wmb(); 1218 1219 tx_ring->next_to_use++; 1220 if (tx_ring->next_to_use >= tx_ring->count) 1221 tx_ring->next_to_use = 0; 1222 1223 writel_relaxed(tx_ring->next_to_use, tx_ring->tail); 1224 1225 /* Wait until the packets get transmitted to the receive queue. */ 1226 usleep_range(1000, 2000); 1227 dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE); 1228 1229 return 0; 1230 } 1231 1232 #define ICE_LB_FRAME_SIZE 64 1233 /** 1234 * ice_lbtest_receive_frames - receive and verify test frames 1235 * @rx_ring: pointer to the receive ring 1236 * 1237 * Function receives loopback packets and verify their correctness. 1238 * Returns number of received valid frames. 1239 */ 1240 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring) 1241 { 1242 struct ice_rx_buf *rx_buf; 1243 int valid_frames, i; 1244 u8 *received_buf; 1245 1246 valid_frames = 0; 1247 1248 for (i = 0; i < rx_ring->count; i++) { 1249 union ice_32b_rx_flex_desc *rx_desc; 1250 1251 rx_desc = ICE_RX_DESC(rx_ring, i); 1252 1253 if (!(rx_desc->wb.status_error0 & 1254 (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) | 1255 cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S))))) 1256 continue; 1257 1258 rx_buf = &rx_ring->rx_buf[i]; 1259 received_buf = page_address(rx_buf->page) + rx_buf->page_offset; 1260 1261 if (ice_lbtest_check_frame(received_buf)) 1262 valid_frames++; 1263 } 1264 1265 return valid_frames; 1266 } 1267 1268 /** 1269 * ice_loopback_test - perform a loopback test on a given net_device 1270 * @netdev: network interface device structure 1271 * 1272 * This function performs one of the self-tests required by ethtool. 1273 * Returns 0 on success, non-zero on failure. 1274 */ 1275 static u64 ice_loopback_test(struct net_device *netdev) 1276 { 1277 struct ice_netdev_priv *np = netdev_priv(netdev); 1278 struct ice_vsi *orig_vsi = np->vsi, *test_vsi; 1279 struct ice_pf *pf = orig_vsi->back; 1280 u8 *tx_frame __free(kfree) = NULL; 1281 u8 broadcast[ETH_ALEN], ret = 0; 1282 int num_frames, valid_frames; 1283 struct ice_tx_ring *tx_ring; 1284 struct ice_rx_ring *rx_ring; 1285 int i; 1286 1287 netdev_info(netdev, "loopback test\n"); 1288 1289 test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info); 1290 if (!test_vsi) { 1291 netdev_err(netdev, "Failed to create a VSI for the loopback test\n"); 1292 return 1; 1293 } 1294 1295 test_vsi->netdev = netdev; 1296 tx_ring = test_vsi->tx_rings[0]; 1297 rx_ring = test_vsi->rx_rings[0]; 1298 1299 if (ice_lbtest_prepare_rings(test_vsi)) { 1300 ret = 2; 1301 goto lbtest_vsi_close; 1302 } 1303 1304 if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) { 1305 ret = 3; 1306 goto lbtest_rings_dis; 1307 } 1308 1309 /* Enable MAC loopback in firmware */ 1310 if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) { 1311 ret = 4; 1312 goto lbtest_mac_dis; 1313 } 1314 1315 /* Test VSI needs to receive broadcast packets */ 1316 eth_broadcast_addr(broadcast); 1317 if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) { 1318 ret = 5; 1319 goto lbtest_mac_dis; 1320 } 1321 1322 if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) { 1323 ret = 7; 1324 goto remove_mac_filters; 1325 } 1326 1327 num_frames = min_t(int, tx_ring->count, 32); 1328 for (i = 0; i < num_frames; i++) { 1329 if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) { 1330 ret = 8; 1331 goto remove_mac_filters; 1332 } 1333 } 1334 1335 valid_frames = ice_lbtest_receive_frames(rx_ring); 1336 if (!valid_frames) 1337 ret = 9; 1338 else if (valid_frames != num_frames) 1339 ret = 10; 1340 1341 remove_mac_filters: 1342 if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) 1343 netdev_err(netdev, "Could not remove MAC filter for the test VSI\n"); 1344 lbtest_mac_dis: 1345 /* Disable MAC loopback after the test is completed. */ 1346 if (ice_aq_set_mac_loopback(&pf->hw, false, NULL)) 1347 netdev_err(netdev, "Could not disable MAC loopback\n"); 1348 lbtest_rings_dis: 1349 if (ice_lbtest_disable_rings(test_vsi)) 1350 netdev_err(netdev, "Could not disable test rings\n"); 1351 lbtest_vsi_close: 1352 test_vsi->netdev = NULL; 1353 if (ice_vsi_release(test_vsi)) 1354 netdev_err(netdev, "Failed to remove the test VSI\n"); 1355 1356 return ret; 1357 } 1358 1359 /** 1360 * ice_intr_test - perform an interrupt test on a given net_device 1361 * @netdev: network interface device structure 1362 * 1363 * This function performs one of the self-tests required by ethtool. 1364 * Returns 0 on success, non-zero on failure. 1365 */ 1366 static u64 ice_intr_test(struct net_device *netdev) 1367 { 1368 struct ice_netdev_priv *np = netdev_priv(netdev); 1369 struct ice_pf *pf = np->vsi->back; 1370 u16 swic_old = pf->sw_int_count; 1371 1372 netdev_info(netdev, "interrupt test\n"); 1373 1374 wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index), 1375 GLINT_DYN_CTL_SW_ITR_INDX_M | 1376 GLINT_DYN_CTL_INTENA_MSK_M | 1377 GLINT_DYN_CTL_SWINT_TRIG_M); 1378 1379 usleep_range(1000, 2000); 1380 return (swic_old == pf->sw_int_count); 1381 } 1382 1383 /** 1384 * ice_self_test - handler function for performing a self-test by ethtool 1385 * @netdev: network interface device structure 1386 * @eth_test: ethtool_test structure 1387 * @data: required by ethtool.self_test 1388 * 1389 * This function is called after invoking 'ethtool -t devname' command where 1390 * devname is the name of the network device on which ethtool should operate. 1391 * It performs a set of self-tests to check if a device works properly. 1392 */ 1393 static void 1394 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test, 1395 u64 *data) 1396 { 1397 struct ice_netdev_priv *np = netdev_priv(netdev); 1398 bool if_running = netif_running(netdev); 1399 struct ice_pf *pf = np->vsi->back; 1400 struct device *dev; 1401 1402 dev = ice_pf_to_dev(pf); 1403 1404 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1405 netdev_info(netdev, "offline testing starting\n"); 1406 1407 set_bit(ICE_TESTING, pf->state); 1408 1409 if (ice_active_vfs(pf)) { 1410 dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n"); 1411 data[ICE_ETH_TEST_REG] = 1; 1412 data[ICE_ETH_TEST_EEPROM] = 1; 1413 data[ICE_ETH_TEST_INTR] = 1; 1414 data[ICE_ETH_TEST_LOOP] = 1; 1415 data[ICE_ETH_TEST_LINK] = 1; 1416 eth_test->flags |= ETH_TEST_FL_FAILED; 1417 clear_bit(ICE_TESTING, pf->state); 1418 goto skip_ol_tests; 1419 } 1420 /* If the device is online then take it offline */ 1421 if (if_running) 1422 /* indicate we're in test mode */ 1423 ice_stop(netdev); 1424 1425 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1426 data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev); 1427 data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev); 1428 data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev); 1429 data[ICE_ETH_TEST_REG] = ice_reg_test(netdev); 1430 1431 if (data[ICE_ETH_TEST_LINK] || 1432 data[ICE_ETH_TEST_EEPROM] || 1433 data[ICE_ETH_TEST_LOOP] || 1434 data[ICE_ETH_TEST_INTR] || 1435 data[ICE_ETH_TEST_REG]) 1436 eth_test->flags |= ETH_TEST_FL_FAILED; 1437 1438 clear_bit(ICE_TESTING, pf->state); 1439 1440 if (if_running) { 1441 int status = ice_open(netdev); 1442 1443 if (status) { 1444 dev_err(dev, "Could not open device %s, err %d\n", 1445 pf->int_name, status); 1446 } 1447 } 1448 } else { 1449 /* Online tests */ 1450 netdev_info(netdev, "online testing starting\n"); 1451 1452 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev); 1453 if (data[ICE_ETH_TEST_LINK]) 1454 eth_test->flags |= ETH_TEST_FL_FAILED; 1455 1456 /* Offline only tests, not run in online; pass by default */ 1457 data[ICE_ETH_TEST_REG] = 0; 1458 data[ICE_ETH_TEST_EEPROM] = 0; 1459 data[ICE_ETH_TEST_INTR] = 0; 1460 data[ICE_ETH_TEST_LOOP] = 0; 1461 } 1462 1463 skip_ol_tests: 1464 netdev_info(netdev, "testing finished\n"); 1465 } 1466 1467 static void 1468 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data, 1469 struct ice_vsi *vsi) 1470 { 1471 unsigned int i; 1472 u8 *p = data; 1473 1474 switch (stringset) { 1475 case ETH_SS_STATS: 1476 for (i = 0; i < ICE_VSI_STATS_LEN; i++) 1477 ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string); 1478 1479 if (ice_is_port_repr_netdev(netdev)) 1480 return; 1481 1482 ice_for_each_alloc_txq(vsi, i) { 1483 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 1484 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 1485 } 1486 1487 ice_for_each_alloc_rxq(vsi, i) { 1488 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 1489 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 1490 } 1491 1492 if (vsi->type != ICE_VSI_PF) 1493 return; 1494 1495 for (i = 0; i < ICE_PF_STATS_LEN; i++) 1496 ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string); 1497 1498 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1499 ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i); 1500 ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i); 1501 } 1502 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 1503 ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i); 1504 ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i); 1505 } 1506 break; 1507 case ETH_SS_TEST: 1508 memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN); 1509 break; 1510 case ETH_SS_PRIV_FLAGS: 1511 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) 1512 ethtool_puts(&p, ice_gstrings_priv_flags[i].name); 1513 break; 1514 default: 1515 break; 1516 } 1517 } 1518 1519 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 1520 { 1521 struct ice_netdev_priv *np = netdev_priv(netdev); 1522 1523 __ice_get_strings(netdev, stringset, data, np->vsi); 1524 } 1525 1526 static int 1527 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) 1528 { 1529 struct ice_netdev_priv *np = netdev_priv(netdev); 1530 bool led_active; 1531 1532 switch (state) { 1533 case ETHTOOL_ID_ACTIVE: 1534 led_active = true; 1535 break; 1536 case ETHTOOL_ID_INACTIVE: 1537 led_active = false; 1538 break; 1539 default: 1540 return -EINVAL; 1541 } 1542 1543 if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL)) 1544 return -EIO; 1545 1546 return 0; 1547 } 1548 1549 /** 1550 * ice_set_fec_cfg - Set link FEC options 1551 * @netdev: network interface device structure 1552 * @req_fec: FEC mode to configure 1553 */ 1554 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec) 1555 { 1556 struct ice_netdev_priv *np = netdev_priv(netdev); 1557 struct ice_aqc_set_phy_cfg_data config = { 0 }; 1558 struct ice_vsi *vsi = np->vsi; 1559 struct ice_port_info *pi; 1560 1561 pi = vsi->port_info; 1562 if (!pi) 1563 return -EOPNOTSUPP; 1564 1565 /* Changing the FEC parameters is not supported if not the PF VSI */ 1566 if (vsi->type != ICE_VSI_PF) { 1567 netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n"); 1568 return -EOPNOTSUPP; 1569 } 1570 1571 /* Proceed only if requesting different FEC mode */ 1572 if (pi->phy.curr_user_fec_req == req_fec) 1573 return 0; 1574 1575 /* Copy the current user PHY configuration. The current user PHY 1576 * configuration is initialized during probe from PHY capabilities 1577 * software mode, and updated on set PHY configuration. 1578 */ 1579 memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config)); 1580 1581 ice_cfg_phy_fec(pi, &config, req_fec); 1582 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1583 1584 if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL)) 1585 return -EAGAIN; 1586 1587 /* Save requested FEC config */ 1588 pi->phy.curr_user_fec_req = req_fec; 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * ice_set_fecparam - Set FEC link options 1595 * @netdev: network interface device structure 1596 * @fecparam: Ethtool structure to retrieve FEC parameters 1597 */ 1598 static int 1599 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1600 { 1601 struct ice_netdev_priv *np = netdev_priv(netdev); 1602 struct ice_vsi *vsi = np->vsi; 1603 enum ice_fec_mode fec; 1604 1605 switch (fecparam->fec) { 1606 case ETHTOOL_FEC_AUTO: 1607 fec = ICE_FEC_AUTO; 1608 break; 1609 case ETHTOOL_FEC_RS: 1610 fec = ICE_FEC_RS; 1611 break; 1612 case ETHTOOL_FEC_BASER: 1613 fec = ICE_FEC_BASER; 1614 break; 1615 case ETHTOOL_FEC_OFF: 1616 case ETHTOOL_FEC_NONE: 1617 fec = ICE_FEC_NONE; 1618 break; 1619 default: 1620 dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n", 1621 fecparam->fec); 1622 return -EINVAL; 1623 } 1624 1625 return ice_set_fec_cfg(netdev, fec); 1626 } 1627 1628 /** 1629 * ice_get_fecparam - Get link FEC options 1630 * @netdev: network interface device structure 1631 * @fecparam: Ethtool structure to retrieve FEC parameters 1632 */ 1633 static int 1634 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam) 1635 { 1636 struct ice_netdev_priv *np = netdev_priv(netdev); 1637 struct ice_aqc_get_phy_caps_data *caps; 1638 struct ice_link_status *link_info; 1639 struct ice_vsi *vsi = np->vsi; 1640 struct ice_port_info *pi; 1641 int err; 1642 1643 pi = vsi->port_info; 1644 1645 if (!pi) 1646 return -EOPNOTSUPP; 1647 link_info = &pi->phy.link_info; 1648 1649 /* Set FEC mode based on negotiated link info */ 1650 switch (link_info->fec_info) { 1651 case ICE_AQ_LINK_25G_KR_FEC_EN: 1652 fecparam->active_fec = ETHTOOL_FEC_BASER; 1653 break; 1654 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 1655 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 1656 fecparam->active_fec = ETHTOOL_FEC_RS; 1657 break; 1658 default: 1659 fecparam->active_fec = ETHTOOL_FEC_OFF; 1660 break; 1661 } 1662 1663 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 1664 if (!caps) 1665 return -ENOMEM; 1666 1667 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1668 caps, NULL); 1669 if (err) 1670 goto done; 1671 1672 /* Set supported/configured FEC modes based on PHY capability */ 1673 if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC) 1674 fecparam->fec |= ETHTOOL_FEC_AUTO; 1675 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 1676 caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 1677 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN || 1678 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 1679 fecparam->fec |= ETHTOOL_FEC_BASER; 1680 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 1681 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ || 1682 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 1683 fecparam->fec |= ETHTOOL_FEC_RS; 1684 if (caps->link_fec_options == 0) 1685 fecparam->fec |= ETHTOOL_FEC_OFF; 1686 1687 done: 1688 kfree(caps); 1689 return err; 1690 } 1691 1692 /** 1693 * ice_nway_reset - restart autonegotiation 1694 * @netdev: network interface device structure 1695 */ 1696 static int ice_nway_reset(struct net_device *netdev) 1697 { 1698 struct ice_netdev_priv *np = netdev_priv(netdev); 1699 struct ice_vsi *vsi = np->vsi; 1700 int err; 1701 1702 /* If VSI state is up, then restart autoneg with link up */ 1703 if (!test_bit(ICE_DOWN, vsi->back->state)) 1704 err = ice_set_link(vsi, true); 1705 else 1706 err = ice_set_link(vsi, false); 1707 1708 return err; 1709 } 1710 1711 /** 1712 * ice_get_priv_flags - report device private flags 1713 * @netdev: network interface device structure 1714 * 1715 * The get string set count and the string set should be matched for each 1716 * flag returned. Add new strings for each flag to the ice_gstrings_priv_flags 1717 * array. 1718 * 1719 * Returns a u32 bitmap of flags. 1720 */ 1721 static u32 ice_get_priv_flags(struct net_device *netdev) 1722 { 1723 struct ice_netdev_priv *np = netdev_priv(netdev); 1724 struct ice_vsi *vsi = np->vsi; 1725 struct ice_pf *pf = vsi->back; 1726 u32 i, ret_flags = 0; 1727 1728 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1729 const struct ice_priv_flag *priv_flag; 1730 1731 priv_flag = &ice_gstrings_priv_flags[i]; 1732 1733 if (test_bit(priv_flag->bitno, pf->flags)) 1734 ret_flags |= BIT(i); 1735 } 1736 1737 return ret_flags; 1738 } 1739 1740 /** 1741 * ice_set_priv_flags - set private flags 1742 * @netdev: network interface device structure 1743 * @flags: bit flags to be set 1744 */ 1745 static int ice_set_priv_flags(struct net_device *netdev, u32 flags) 1746 { 1747 struct ice_netdev_priv *np = netdev_priv(netdev); 1748 DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS); 1749 DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS); 1750 struct ice_vsi *vsi = np->vsi; 1751 struct ice_pf *pf = vsi->back; 1752 struct device *dev; 1753 int ret = 0; 1754 u32 i; 1755 1756 if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE)) 1757 return -EINVAL; 1758 1759 dev = ice_pf_to_dev(pf); 1760 set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1761 1762 bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS); 1763 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) { 1764 const struct ice_priv_flag *priv_flag; 1765 1766 priv_flag = &ice_gstrings_priv_flags[i]; 1767 1768 if (flags & BIT(i)) 1769 set_bit(priv_flag->bitno, pf->flags); 1770 else 1771 clear_bit(priv_flag->bitno, pf->flags); 1772 } 1773 1774 bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS); 1775 1776 /* Do not allow change to link-down-on-close when Total Port Shutdown 1777 * is enabled. 1778 */ 1779 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) && 1780 test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) { 1781 dev_err(dev, "Setting link-down-on-close not supported on this port\n"); 1782 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1783 ret = -EINVAL; 1784 goto ethtool_exit; 1785 } 1786 1787 if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) { 1788 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) { 1789 int status; 1790 1791 /* Disable FW LLDP engine */ 1792 status = ice_cfg_lldp_mib_change(&pf->hw, false); 1793 1794 /* If unregistering for LLDP events fails, this is 1795 * not an error state, as there shouldn't be any 1796 * events to respond to. 1797 */ 1798 if (status) 1799 dev_info(dev, "Failed to unreg for LLDP events\n"); 1800 1801 /* The AQ call to stop the FW LLDP agent will generate 1802 * an error if the agent is already stopped. 1803 */ 1804 status = ice_aq_stop_lldp(&pf->hw, true, true, NULL); 1805 if (status) 1806 dev_warn(dev, "Fail to stop LLDP agent\n"); 1807 /* Use case for having the FW LLDP agent stopped 1808 * will likely not need DCB, so failure to init is 1809 * not a concern of ethtool 1810 */ 1811 status = ice_init_pf_dcb(pf, true); 1812 if (status) 1813 dev_warn(dev, "Fail to init DCB\n"); 1814 1815 pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED; 1816 pf->dcbx_cap |= DCB_CAP_DCBX_HOST; 1817 } else { 1818 bool dcbx_agent_status; 1819 int status; 1820 1821 if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) { 1822 clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags); 1823 dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n"); 1824 ret = -EOPNOTSUPP; 1825 goto ethtool_exit; 1826 } 1827 1828 /* Remove rule to direct LLDP packets to default VSI. 1829 * The FW LLDP engine will now be consuming them. 1830 */ 1831 ice_cfg_sw_rx_lldp(vsi->back, false); 1832 1833 /* AQ command to start FW LLDP agent will return an 1834 * error if the agent is already started 1835 */ 1836 status = ice_aq_start_lldp(&pf->hw, true, NULL); 1837 if (status) 1838 dev_warn(dev, "Fail to start LLDP Agent\n"); 1839 1840 /* AQ command to start FW DCBX agent will fail if 1841 * the agent is already started 1842 */ 1843 status = ice_aq_start_stop_dcbx(&pf->hw, true, 1844 &dcbx_agent_status, 1845 NULL); 1846 if (status) 1847 dev_dbg(dev, "Failed to start FW DCBX\n"); 1848 1849 dev_info(dev, "FW DCBX agent is %s\n", 1850 dcbx_agent_status ? "ACTIVE" : "DISABLED"); 1851 1852 /* Failure to configure MIB change or init DCB is not 1853 * relevant to ethtool. Print notification that 1854 * registration/init failed but do not return error 1855 * state to ethtool 1856 */ 1857 status = ice_init_pf_dcb(pf, true); 1858 if (status) 1859 dev_dbg(dev, "Fail to init DCB\n"); 1860 1861 /* Register for MIB change events */ 1862 status = ice_cfg_lldp_mib_change(&pf->hw, true); 1863 if (status) 1864 dev_dbg(dev, "Fail to enable MIB change events\n"); 1865 1866 pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST; 1867 pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED; 1868 1869 ice_nway_reset(netdev); 1870 } 1871 } 1872 if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) { 1873 /* down and up VSI so that changes of Rx cfg are reflected. */ 1874 ice_down_up(vsi); 1875 } 1876 /* don't allow modification of this flag when a single VF is in 1877 * promiscuous mode because it's not supported 1878 */ 1879 if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) && 1880 ice_is_any_vf_in_unicast_promisc(pf)) { 1881 dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n"); 1882 /* toggle bit back to previous state */ 1883 change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags); 1884 ret = -EAGAIN; 1885 } 1886 1887 if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) && 1888 ice_has_vfs(pf)) { 1889 dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n"); 1890 /* toggle bit back to previous state */ 1891 change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags); 1892 ret = -EOPNOTSUPP; 1893 } 1894 ethtool_exit: 1895 clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags); 1896 return ret; 1897 } 1898 1899 static int ice_get_sset_count(struct net_device *netdev, int sset) 1900 { 1901 switch (sset) { 1902 case ETH_SS_STATS: 1903 /* The number (and order) of strings reported *must* remain 1904 * constant for a given netdevice. This function must not 1905 * report a different number based on run time parameters 1906 * (such as the number of queues in use, or the setting of 1907 * a private ethtool flag). This is due to the nature of the 1908 * ethtool stats API. 1909 * 1910 * Userspace programs such as ethtool must make 3 separate 1911 * ioctl requests, one for size, one for the strings, and 1912 * finally one for the stats. Since these cross into 1913 * userspace, changes to the number or size could result in 1914 * undefined memory access or incorrect string<->value 1915 * correlations for statistics. 1916 * 1917 * Even if it appears to be safe, changes to the size or 1918 * order of strings will suffer from race conditions and are 1919 * not safe. 1920 */ 1921 return ICE_ALL_STATS_LEN(netdev); 1922 case ETH_SS_TEST: 1923 return ICE_TEST_LEN; 1924 case ETH_SS_PRIV_FLAGS: 1925 return ICE_PRIV_FLAG_ARRAY_SIZE; 1926 default: 1927 return -EOPNOTSUPP; 1928 } 1929 } 1930 1931 static void 1932 __ice_get_ethtool_stats(struct net_device *netdev, 1933 struct ethtool_stats __always_unused *stats, u64 *data, 1934 struct ice_vsi *vsi) 1935 { 1936 struct ice_pf *pf = vsi->back; 1937 struct ice_tx_ring *tx_ring; 1938 struct ice_rx_ring *rx_ring; 1939 unsigned int j; 1940 int i = 0; 1941 char *p; 1942 1943 ice_update_pf_stats(pf); 1944 ice_update_vsi_stats(vsi); 1945 1946 for (j = 0; j < ICE_VSI_STATS_LEN; j++) { 1947 p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset; 1948 data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat == 1949 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1950 } 1951 1952 if (ice_is_port_repr_netdev(netdev)) 1953 return; 1954 1955 /* populate per queue stats */ 1956 rcu_read_lock(); 1957 1958 ice_for_each_alloc_txq(vsi, j) { 1959 tx_ring = READ_ONCE(vsi->tx_rings[j]); 1960 if (tx_ring && tx_ring->ring_stats) { 1961 data[i++] = tx_ring->ring_stats->stats.pkts; 1962 data[i++] = tx_ring->ring_stats->stats.bytes; 1963 } else { 1964 data[i++] = 0; 1965 data[i++] = 0; 1966 } 1967 } 1968 1969 ice_for_each_alloc_rxq(vsi, j) { 1970 rx_ring = READ_ONCE(vsi->rx_rings[j]); 1971 if (rx_ring && rx_ring->ring_stats) { 1972 data[i++] = rx_ring->ring_stats->stats.pkts; 1973 data[i++] = rx_ring->ring_stats->stats.bytes; 1974 } else { 1975 data[i++] = 0; 1976 data[i++] = 0; 1977 } 1978 } 1979 1980 rcu_read_unlock(); 1981 1982 if (vsi->type != ICE_VSI_PF) 1983 return; 1984 1985 for (j = 0; j < ICE_PF_STATS_LEN; j++) { 1986 p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset; 1987 data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat == 1988 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1989 } 1990 1991 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 1992 data[i++] = pf->stats.priority_xon_tx[j]; 1993 data[i++] = pf->stats.priority_xoff_tx[j]; 1994 } 1995 1996 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) { 1997 data[i++] = pf->stats.priority_xon_rx[j]; 1998 data[i++] = pf->stats.priority_xoff_rx[j]; 1999 } 2000 } 2001 2002 static void 2003 ice_get_ethtool_stats(struct net_device *netdev, 2004 struct ethtool_stats __always_unused *stats, u64 *data) 2005 { 2006 struct ice_netdev_priv *np = netdev_priv(netdev); 2007 2008 __ice_get_ethtool_stats(netdev, stats, data, np->vsi); 2009 } 2010 2011 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G (ICE_PHY_TYPE_LOW_100BASE_TX | \ 2012 ICE_PHY_TYPE_LOW_100M_SGMII) 2013 2014 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G (ICE_PHY_TYPE_LOW_MASK_MIN_1G | \ 2015 ICE_PHY_TYPE_LOW_1000BASE_T | \ 2016 ICE_PHY_TYPE_LOW_1000BASE_SX | \ 2017 ICE_PHY_TYPE_LOW_1000BASE_LX | \ 2018 ICE_PHY_TYPE_LOW_1000BASE_KX | \ 2019 ICE_PHY_TYPE_LOW_1G_SGMII | \ 2020 ICE_PHY_TYPE_LOW_2500BASE_T | \ 2021 ICE_PHY_TYPE_LOW_2500BASE_X | \ 2022 ICE_PHY_TYPE_LOW_2500BASE_KX | \ 2023 ICE_PHY_TYPE_LOW_5GBASE_T | \ 2024 ICE_PHY_TYPE_LOW_5GBASE_KR | \ 2025 ICE_PHY_TYPE_LOW_10GBASE_T | \ 2026 ICE_PHY_TYPE_LOW_10G_SFI_DA | \ 2027 ICE_PHY_TYPE_LOW_10GBASE_SR | \ 2028 ICE_PHY_TYPE_LOW_10GBASE_LR | \ 2029 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \ 2030 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \ 2031 ICE_PHY_TYPE_LOW_10G_SFI_C2C) 2032 2033 #define ICE_PHY_TYPE_LOW_MASK_100G (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \ 2034 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \ 2035 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \ 2036 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \ 2037 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \ 2038 ICE_PHY_TYPE_LOW_100G_CAUI4 | \ 2039 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \ 2040 ICE_PHY_TYPE_LOW_100G_AUI4 | \ 2041 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \ 2042 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \ 2043 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \ 2044 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \ 2045 ICE_PHY_TYPE_LOW_100GBASE_DR) 2046 2047 #define ICE_PHY_TYPE_HIGH_MASK_100G (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \ 2048 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\ 2049 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \ 2050 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \ 2051 ICE_PHY_TYPE_HIGH_100G_AUI2) 2052 2053 #define ICE_PHY_TYPE_HIGH_MASK_200G (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \ 2054 ICE_PHY_TYPE_HIGH_200G_SR4 | \ 2055 ICE_PHY_TYPE_HIGH_200G_FR4 | \ 2056 ICE_PHY_TYPE_HIGH_200G_LR4 | \ 2057 ICE_PHY_TYPE_HIGH_200G_DR4 | \ 2058 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \ 2059 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \ 2060 ICE_PHY_TYPE_HIGH_200G_AUI4) 2061 2062 /** 2063 * ice_mask_min_supported_speeds 2064 * @hw: pointer to the HW structure 2065 * @phy_types_high: PHY type high 2066 * @phy_types_low: PHY type low to apply minimum supported speeds mask 2067 * 2068 * Apply minimum supported speeds mask to PHY type low. These are the speeds 2069 * for ethtool supported link mode. 2070 */ 2071 static void 2072 ice_mask_min_supported_speeds(struct ice_hw *hw, 2073 u64 phy_types_high, u64 *phy_types_low) 2074 { 2075 /* if QSFP connection with 100G speed, minimum supported speed is 25G */ 2076 if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) || 2077 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) || 2078 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G)) 2079 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G; 2080 else if (!ice_is_100m_speed_supported(hw)) 2081 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G; 2082 } 2083 2084 /** 2085 * ice_linkmode_set_bit - set link mode bit 2086 * @phy_to_ethtool: PHY type to ethtool link mode struct to set 2087 * @ks: ethtool link ksettings struct to fill out 2088 * @req_speeds: speed requested by user 2089 * @advert_phy_type: advertised PHY type 2090 * @phy_type: PHY type 2091 */ 2092 static void 2093 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool, 2094 struct ethtool_link_ksettings *ks, u32 req_speeds, 2095 u64 advert_phy_type, u32 phy_type) 2096 { 2097 linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported); 2098 2099 if (req_speeds & phy_to_ethtool->aq_link_speed || 2100 (!req_speeds && advert_phy_type & BIT(phy_type))) 2101 linkmode_set_bit(phy_to_ethtool->link_mode, 2102 ks->link_modes.advertising); 2103 } 2104 2105 /** 2106 * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes 2107 * @netdev: network interface device structure 2108 * @ks: ethtool link ksettings struct to fill out 2109 */ 2110 static void 2111 ice_phy_type_to_ethtool(struct net_device *netdev, 2112 struct ethtool_link_ksettings *ks) 2113 { 2114 struct ice_netdev_priv *np = netdev_priv(netdev); 2115 struct ice_vsi *vsi = np->vsi; 2116 struct ice_pf *pf = vsi->back; 2117 u64 advert_phy_type_lo = 0; 2118 u64 advert_phy_type_hi = 0; 2119 u64 phy_types_high = 0; 2120 u64 phy_types_low = 0; 2121 u32 req_speeds; 2122 u32 i; 2123 2124 req_speeds = vsi->port_info->phy.link_info.req_speeds; 2125 2126 /* Check if lenient mode is supported and enabled, or in strict mode. 2127 * 2128 * In lenient mode the Supported link modes are the PHY types without 2129 * media. The Advertising link mode is either 1. the user requested 2130 * speed, 2. the override PHY mask, or 3. the PHY types with media. 2131 * 2132 * In strict mode Supported link mode are the PHY type with media, 2133 * and Advertising link modes are the media PHY type or the speed 2134 * requested by user. 2135 */ 2136 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2137 phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo); 2138 phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi); 2139 2140 ice_mask_min_supported_speeds(&pf->hw, phy_types_high, 2141 &phy_types_low); 2142 /* determine advertised modes based on link override only 2143 * if it's supported and if the FW doesn't abstract the 2144 * driver from having to account for link overrides 2145 */ 2146 if (ice_fw_supports_link_override(&pf->hw) && 2147 !ice_fw_supports_report_dflt_cfg(&pf->hw)) { 2148 struct ice_link_default_override_tlv *ldo; 2149 2150 ldo = &pf->link_dflt_override; 2151 /* If override enabled and PHY mask set, then 2152 * Advertising link mode is the intersection of the PHY 2153 * types without media and the override PHY mask. 2154 */ 2155 if (ldo->options & ICE_LINK_OVERRIDE_EN && 2156 (ldo->phy_type_low || ldo->phy_type_high)) { 2157 advert_phy_type_lo = 2158 le64_to_cpu(pf->nvm_phy_type_lo) & 2159 ldo->phy_type_low; 2160 advert_phy_type_hi = 2161 le64_to_cpu(pf->nvm_phy_type_hi) & 2162 ldo->phy_type_high; 2163 } 2164 } 2165 } else { 2166 /* strict mode */ 2167 phy_types_low = vsi->port_info->phy.phy_type_low; 2168 phy_types_high = vsi->port_info->phy.phy_type_high; 2169 } 2170 2171 /* If Advertising link mode PHY type is not using override PHY type, 2172 * then use PHY type with media. 2173 */ 2174 if (!advert_phy_type_lo && !advert_phy_type_hi) { 2175 advert_phy_type_lo = vsi->port_info->phy.phy_type_low; 2176 advert_phy_type_hi = vsi->port_info->phy.phy_type_high; 2177 } 2178 2179 linkmode_zero(ks->link_modes.supported); 2180 linkmode_zero(ks->link_modes.advertising); 2181 2182 for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) { 2183 if (phy_types_low & BIT_ULL(i)) 2184 ice_linkmode_set_bit(&phy_type_low_lkup[i], ks, 2185 req_speeds, advert_phy_type_lo, 2186 i); 2187 } 2188 2189 for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) { 2190 if (phy_types_high & BIT_ULL(i)) 2191 ice_linkmode_set_bit(&phy_type_high_lkup[i], ks, 2192 req_speeds, advert_phy_type_hi, 2193 i); 2194 } 2195 } 2196 2197 #define TEST_SET_BITS_TIMEOUT 50 2198 #define TEST_SET_BITS_SLEEP_MAX 2000 2199 #define TEST_SET_BITS_SLEEP_MIN 1000 2200 2201 /** 2202 * ice_get_settings_link_up - Get Link settings for when link is up 2203 * @ks: ethtool ksettings to fill in 2204 * @netdev: network interface device structure 2205 */ 2206 static void 2207 ice_get_settings_link_up(struct ethtool_link_ksettings *ks, 2208 struct net_device *netdev) 2209 { 2210 struct ice_netdev_priv *np = netdev_priv(netdev); 2211 struct ice_port_info *pi = np->vsi->port_info; 2212 struct ice_link_status *link_info; 2213 struct ice_vsi *vsi = np->vsi; 2214 2215 link_info = &vsi->port_info->phy.link_info; 2216 2217 /* Get supported and advertised settings from PHY ability with media */ 2218 ice_phy_type_to_ethtool(netdev, ks); 2219 2220 switch (link_info->link_speed) { 2221 case ICE_AQ_LINK_SPEED_200GB: 2222 ks->base.speed = SPEED_200000; 2223 break; 2224 case ICE_AQ_LINK_SPEED_100GB: 2225 ks->base.speed = SPEED_100000; 2226 break; 2227 case ICE_AQ_LINK_SPEED_50GB: 2228 ks->base.speed = SPEED_50000; 2229 break; 2230 case ICE_AQ_LINK_SPEED_40GB: 2231 ks->base.speed = SPEED_40000; 2232 break; 2233 case ICE_AQ_LINK_SPEED_25GB: 2234 ks->base.speed = SPEED_25000; 2235 break; 2236 case ICE_AQ_LINK_SPEED_20GB: 2237 ks->base.speed = SPEED_20000; 2238 break; 2239 case ICE_AQ_LINK_SPEED_10GB: 2240 ks->base.speed = SPEED_10000; 2241 break; 2242 case ICE_AQ_LINK_SPEED_5GB: 2243 ks->base.speed = SPEED_5000; 2244 break; 2245 case ICE_AQ_LINK_SPEED_2500MB: 2246 ks->base.speed = SPEED_2500; 2247 break; 2248 case ICE_AQ_LINK_SPEED_1000MB: 2249 ks->base.speed = SPEED_1000; 2250 break; 2251 case ICE_AQ_LINK_SPEED_100MB: 2252 ks->base.speed = SPEED_100; 2253 break; 2254 default: 2255 netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n", 2256 link_info->link_speed); 2257 break; 2258 } 2259 ks->base.duplex = DUPLEX_FULL; 2260 2261 if (link_info->an_info & ICE_AQ_AN_COMPLETED) 2262 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2263 Autoneg); 2264 2265 /* Set flow control negotiated Rx/Tx pause */ 2266 switch (pi->fc.current_mode) { 2267 case ICE_FC_FULL: 2268 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2269 break; 2270 case ICE_FC_TX_PAUSE: 2271 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause); 2272 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2273 Asym_Pause); 2274 break; 2275 case ICE_FC_RX_PAUSE: 2276 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, 2277 Asym_Pause); 2278 break; 2279 case ICE_FC_PFC: 2280 default: 2281 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause); 2282 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, 2283 Asym_Pause); 2284 break; 2285 } 2286 } 2287 2288 /** 2289 * ice_get_settings_link_down - Get the Link settings when link is down 2290 * @ks: ethtool ksettings to fill in 2291 * @netdev: network interface device structure 2292 * 2293 * Reports link settings that can be determined when link is down 2294 */ 2295 static void 2296 ice_get_settings_link_down(struct ethtool_link_ksettings *ks, 2297 struct net_device *netdev) 2298 { 2299 /* link is down and the driver needs to fall back on 2300 * supported PHY types to figure out what info to display 2301 */ 2302 ice_phy_type_to_ethtool(netdev, ks); 2303 2304 /* With no link, speed and duplex are unknown */ 2305 ks->base.speed = SPEED_UNKNOWN; 2306 ks->base.duplex = DUPLEX_UNKNOWN; 2307 } 2308 2309 /** 2310 * ice_get_link_ksettings - Get Link Speed and Duplex settings 2311 * @netdev: network interface device structure 2312 * @ks: ethtool ksettings 2313 * 2314 * Reports speed/duplex settings based on media_type 2315 */ 2316 static int 2317 ice_get_link_ksettings(struct net_device *netdev, 2318 struct ethtool_link_ksettings *ks) 2319 { 2320 struct ice_netdev_priv *np = netdev_priv(netdev); 2321 struct ice_aqc_get_phy_caps_data *caps; 2322 struct ice_link_status *hw_link_info; 2323 struct ice_vsi *vsi = np->vsi; 2324 int err; 2325 2326 ethtool_link_ksettings_zero_link_mode(ks, supported); 2327 ethtool_link_ksettings_zero_link_mode(ks, advertising); 2328 ethtool_link_ksettings_zero_link_mode(ks, lp_advertising); 2329 hw_link_info = &vsi->port_info->phy.link_info; 2330 2331 /* set speed and duplex */ 2332 if (hw_link_info->link_info & ICE_AQ_LINK_UP) 2333 ice_get_settings_link_up(ks, netdev); 2334 else 2335 ice_get_settings_link_down(ks, netdev); 2336 2337 /* set autoneg settings */ 2338 ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ? 2339 AUTONEG_ENABLE : AUTONEG_DISABLE; 2340 2341 /* set media type settings */ 2342 switch (vsi->port_info->phy.media_type) { 2343 case ICE_MEDIA_FIBER: 2344 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2345 ks->base.port = PORT_FIBRE; 2346 break; 2347 case ICE_MEDIA_BASET: 2348 ethtool_link_ksettings_add_link_mode(ks, supported, TP); 2349 ethtool_link_ksettings_add_link_mode(ks, advertising, TP); 2350 ks->base.port = PORT_TP; 2351 break; 2352 case ICE_MEDIA_BACKPLANE: 2353 ethtool_link_ksettings_add_link_mode(ks, supported, Backplane); 2354 ethtool_link_ksettings_add_link_mode(ks, advertising, 2355 Backplane); 2356 ks->base.port = PORT_NONE; 2357 break; 2358 case ICE_MEDIA_DA: 2359 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE); 2360 ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE); 2361 ks->base.port = PORT_DA; 2362 break; 2363 default: 2364 ks->base.port = PORT_OTHER; 2365 break; 2366 } 2367 2368 /* flow control is symmetric and always supported */ 2369 ethtool_link_ksettings_add_link_mode(ks, supported, Pause); 2370 2371 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2372 if (!caps) 2373 return -ENOMEM; 2374 2375 err = ice_aq_get_phy_caps(vsi->port_info, false, 2376 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 2377 if (err) 2378 goto done; 2379 2380 /* Set the advertised flow control based on the PHY capability */ 2381 if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) && 2382 (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) { 2383 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2384 ethtool_link_ksettings_add_link_mode(ks, advertising, 2385 Asym_Pause); 2386 } else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) { 2387 ethtool_link_ksettings_add_link_mode(ks, advertising, 2388 Asym_Pause); 2389 } else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) { 2390 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause); 2391 ethtool_link_ksettings_add_link_mode(ks, advertising, 2392 Asym_Pause); 2393 } else { 2394 ethtool_link_ksettings_del_link_mode(ks, advertising, Pause); 2395 ethtool_link_ksettings_del_link_mode(ks, advertising, 2396 Asym_Pause); 2397 } 2398 2399 /* Set advertised FEC modes based on PHY capability */ 2400 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE); 2401 2402 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 2403 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 2404 ethtool_link_ksettings_add_link_mode(ks, advertising, 2405 FEC_BASER); 2406 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 2407 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 2408 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS); 2409 2410 err = ice_aq_get_phy_caps(vsi->port_info, false, 2411 ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL); 2412 if (err) 2413 goto done; 2414 2415 /* Set supported FEC modes based on PHY capability */ 2416 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE); 2417 2418 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN || 2419 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN) 2420 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER); 2421 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN) 2422 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS); 2423 2424 /* Set supported and advertised autoneg */ 2425 if (ice_is_phy_caps_an_enabled(caps)) { 2426 ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg); 2427 ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg); 2428 } 2429 2430 done: 2431 kfree(caps); 2432 return err; 2433 } 2434 2435 /** 2436 * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed 2437 * @speed: ethtool forced speed 2438 */ 2439 static u16 ice_speed_to_aq_link(int speed) 2440 { 2441 int aq_speed; 2442 2443 switch (speed) { 2444 case SPEED_10: 2445 aq_speed = ICE_AQ_LINK_SPEED_10MB; 2446 break; 2447 case SPEED_100: 2448 aq_speed = ICE_AQ_LINK_SPEED_100MB; 2449 break; 2450 case SPEED_1000: 2451 aq_speed = ICE_AQ_LINK_SPEED_1000MB; 2452 break; 2453 case SPEED_2500: 2454 aq_speed = ICE_AQ_LINK_SPEED_2500MB; 2455 break; 2456 case SPEED_5000: 2457 aq_speed = ICE_AQ_LINK_SPEED_5GB; 2458 break; 2459 case SPEED_10000: 2460 aq_speed = ICE_AQ_LINK_SPEED_10GB; 2461 break; 2462 case SPEED_20000: 2463 aq_speed = ICE_AQ_LINK_SPEED_20GB; 2464 break; 2465 case SPEED_25000: 2466 aq_speed = ICE_AQ_LINK_SPEED_25GB; 2467 break; 2468 case SPEED_40000: 2469 aq_speed = ICE_AQ_LINK_SPEED_40GB; 2470 break; 2471 case SPEED_50000: 2472 aq_speed = ICE_AQ_LINK_SPEED_50GB; 2473 break; 2474 case SPEED_100000: 2475 aq_speed = ICE_AQ_LINK_SPEED_100GB; 2476 break; 2477 default: 2478 aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN; 2479 break; 2480 } 2481 return aq_speed; 2482 } 2483 2484 /** 2485 * ice_ksettings_find_adv_link_speed - Find advertising link speed 2486 * @ks: ethtool ksettings 2487 */ 2488 static u16 2489 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks) 2490 { 2491 const struct ethtool_forced_speed_map *map; 2492 u16 adv_link_speed = 0; 2493 2494 for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) { 2495 map = ice_adv_lnk_speed_maps + i; 2496 if (linkmode_intersects(ks->link_modes.advertising, map->caps)) 2497 adv_link_speed |= ice_speed_to_aq_link(map->speed); 2498 } 2499 2500 return adv_link_speed; 2501 } 2502 2503 /** 2504 * ice_setup_autoneg 2505 * @p: port info 2506 * @ks: ethtool_link_ksettings 2507 * @config: configuration that will be sent down to FW 2508 * @autoneg_enabled: autonegotiation is enabled or not 2509 * @autoneg_changed: will there a change in autonegotiation 2510 * @netdev: network interface device structure 2511 * 2512 * Setup PHY autonegotiation feature 2513 */ 2514 static int 2515 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks, 2516 struct ice_aqc_set_phy_cfg_data *config, 2517 u8 autoneg_enabled, u8 *autoneg_changed, 2518 struct net_device *netdev) 2519 { 2520 int err = 0; 2521 2522 *autoneg_changed = 0; 2523 2524 /* Check autoneg */ 2525 if (autoneg_enabled == AUTONEG_ENABLE) { 2526 /* If autoneg was not already enabled */ 2527 if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) { 2528 /* If autoneg is not supported, return error */ 2529 if (!ethtool_link_ksettings_test_link_mode(ks, 2530 supported, 2531 Autoneg)) { 2532 netdev_info(netdev, "Autoneg not supported on this phy.\n"); 2533 err = -EINVAL; 2534 } else { 2535 /* Autoneg is allowed to change */ 2536 config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2537 *autoneg_changed = 1; 2538 } 2539 } 2540 } else { 2541 /* If autoneg is currently enabled */ 2542 if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) { 2543 /* If autoneg is supported 10GBASE_T is the only PHY 2544 * that can disable it, so otherwise return error 2545 */ 2546 if (ethtool_link_ksettings_test_link_mode(ks, 2547 supported, 2548 Autoneg)) { 2549 netdev_info(netdev, "Autoneg cannot be disabled on this phy\n"); 2550 err = -EINVAL; 2551 } else { 2552 /* Autoneg is allowed to change */ 2553 config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2554 *autoneg_changed = 1; 2555 } 2556 } 2557 } 2558 2559 return err; 2560 } 2561 2562 /** 2563 * ice_set_phy_type_from_speed - set phy_types based on speeds 2564 * and advertised modes 2565 * @ks: ethtool link ksettings struct 2566 * @phy_type_low: pointer to the lower part of phy_type 2567 * @phy_type_high: pointer to the higher part of phy_type 2568 * @adv_link_speed: targeted link speeds bitmap 2569 */ 2570 static void 2571 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks, 2572 u64 *phy_type_low, u64 *phy_type_high, 2573 u16 adv_link_speed) 2574 { 2575 /* Handle 1000M speed in a special way because ice_update_phy_type 2576 * enables all link modes, but having mixed copper and optical 2577 * standards is not supported. 2578 */ 2579 adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB; 2580 2581 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2582 1000baseT_Full)) 2583 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T | 2584 ICE_PHY_TYPE_LOW_1G_SGMII; 2585 2586 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2587 1000baseKX_Full)) 2588 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX; 2589 2590 if (ethtool_link_ksettings_test_link_mode(ks, advertising, 2591 1000baseX_Full)) 2592 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX | 2593 ICE_PHY_TYPE_LOW_1000BASE_LX; 2594 2595 ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed); 2596 } 2597 2598 /** 2599 * ice_set_link_ksettings - Set Speed and Duplex 2600 * @netdev: network interface device structure 2601 * @ks: ethtool ksettings 2602 * 2603 * Set speed/duplex per media_types advertised/forced 2604 */ 2605 static int 2606 ice_set_link_ksettings(struct net_device *netdev, 2607 const struct ethtool_link_ksettings *ks) 2608 { 2609 struct ice_netdev_priv *np = netdev_priv(netdev); 2610 u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT; 2611 struct ethtool_link_ksettings copy_ks = *ks; 2612 struct ethtool_link_ksettings safe_ks = {}; 2613 struct ice_aqc_get_phy_caps_data *phy_caps; 2614 struct ice_aqc_set_phy_cfg_data config; 2615 u16 adv_link_speed, curr_link_speed; 2616 struct ice_pf *pf = np->vsi->back; 2617 struct ice_port_info *pi; 2618 u8 autoneg_changed = 0; 2619 u64 phy_type_high = 0; 2620 u64 phy_type_low = 0; 2621 bool linkup; 2622 int err; 2623 2624 pi = np->vsi->port_info; 2625 2626 if (!pi) 2627 return -EIO; 2628 2629 if (pi->phy.media_type != ICE_MEDIA_BASET && 2630 pi->phy.media_type != ICE_MEDIA_FIBER && 2631 pi->phy.media_type != ICE_MEDIA_BACKPLANE && 2632 pi->phy.media_type != ICE_MEDIA_DA && 2633 pi->phy.link_info.link_info & ICE_AQ_LINK_UP) 2634 return -EOPNOTSUPP; 2635 2636 phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL); 2637 if (!phy_caps) 2638 return -ENOMEM; 2639 2640 /* Get the PHY capabilities based on media */ 2641 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2642 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2643 phy_caps, NULL); 2644 else 2645 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2646 phy_caps, NULL); 2647 if (err) 2648 goto done; 2649 2650 /* save autoneg out of ksettings */ 2651 autoneg = copy_ks.base.autoneg; 2652 2653 /* Get link modes supported by hardware.*/ 2654 ice_phy_type_to_ethtool(netdev, &safe_ks); 2655 2656 /* and check against modes requested by user. 2657 * Return an error if unsupported mode was set. 2658 */ 2659 if (!bitmap_subset(copy_ks.link_modes.advertising, 2660 safe_ks.link_modes.supported, 2661 __ETHTOOL_LINK_MODE_MASK_NBITS)) { 2662 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) 2663 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2664 err = -EOPNOTSUPP; 2665 goto done; 2666 } 2667 2668 /* get our own copy of the bits to check against */ 2669 memset(&safe_ks, 0, sizeof(safe_ks)); 2670 safe_ks.base.cmd = copy_ks.base.cmd; 2671 safe_ks.base.link_mode_masks_nwords = 2672 copy_ks.base.link_mode_masks_nwords; 2673 ice_get_link_ksettings(netdev, &safe_ks); 2674 2675 /* set autoneg back to what it currently is */ 2676 copy_ks.base.autoneg = safe_ks.base.autoneg; 2677 /* we don't compare the speed */ 2678 copy_ks.base.speed = safe_ks.base.speed; 2679 2680 /* If copy_ks.base and safe_ks.base are not the same now, then they are 2681 * trying to set something that we do not support. 2682 */ 2683 if (memcmp(©_ks.base, &safe_ks.base, sizeof(copy_ks.base))) { 2684 err = -EOPNOTSUPP; 2685 goto done; 2686 } 2687 2688 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 2689 timeout--; 2690 if (!timeout) { 2691 err = -EBUSY; 2692 goto done; 2693 } 2694 usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX); 2695 } 2696 2697 /* Copy the current user PHY configuration. The current user PHY 2698 * configuration is initialized during probe from PHY capabilities 2699 * software mode, and updated on set PHY configuration. 2700 */ 2701 config = pi->phy.curr_user_phy_cfg; 2702 2703 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2704 2705 /* Check autoneg */ 2706 err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed, 2707 netdev); 2708 2709 if (err) 2710 goto done; 2711 2712 /* Call to get the current link speed */ 2713 pi->phy.get_link_info = true; 2714 err = ice_get_link_status(pi, &linkup); 2715 if (err) 2716 goto done; 2717 2718 curr_link_speed = pi->phy.curr_user_speed_req; 2719 adv_link_speed = ice_ksettings_find_adv_link_speed(ks); 2720 2721 /* If speed didn't get set, set it to what it currently is. 2722 * This is needed because if advertise is 0 (as it is when autoneg 2723 * is disabled) then speed won't get set. 2724 */ 2725 if (!adv_link_speed) 2726 adv_link_speed = curr_link_speed; 2727 2728 /* Convert the advertise link speeds to their corresponded PHY_TYPE */ 2729 ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high, 2730 adv_link_speed); 2731 2732 if (!autoneg_changed && adv_link_speed == curr_link_speed) { 2733 netdev_info(netdev, "Nothing changed, exiting without setting anything.\n"); 2734 goto done; 2735 } 2736 2737 /* save the requested speeds */ 2738 pi->phy.link_info.req_speeds = adv_link_speed; 2739 2740 /* set link and auto negotiation so changes take effect */ 2741 config.caps |= ICE_AQ_PHY_ENA_LINK; 2742 2743 /* check if there is a PHY type for the requested advertised speed */ 2744 if (!(phy_type_low || phy_type_high)) { 2745 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2746 err = -EOPNOTSUPP; 2747 goto done; 2748 } 2749 2750 /* intersect requested advertised speed PHY types with media PHY types 2751 * for set PHY configuration 2752 */ 2753 config.phy_type_high = cpu_to_le64(phy_type_high) & 2754 phy_caps->phy_type_high; 2755 config.phy_type_low = cpu_to_le64(phy_type_low) & 2756 phy_caps->phy_type_low; 2757 2758 if (!(config.phy_type_high || config.phy_type_low)) { 2759 /* If there is no intersection and lenient mode is enabled, then 2760 * intersect the requested advertised speed with NVM media type 2761 * PHY types. 2762 */ 2763 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) { 2764 config.phy_type_high = cpu_to_le64(phy_type_high) & 2765 pf->nvm_phy_type_hi; 2766 config.phy_type_low = cpu_to_le64(phy_type_low) & 2767 pf->nvm_phy_type_lo; 2768 } else { 2769 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n"); 2770 err = -EOPNOTSUPP; 2771 goto done; 2772 } 2773 } 2774 2775 /* If link is up put link down */ 2776 if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) { 2777 /* Tell the OS link is going down, the link will go 2778 * back up when fw says it is ready asynchronously 2779 */ 2780 ice_print_link_msg(np->vsi, false); 2781 netif_carrier_off(netdev); 2782 netif_tx_stop_all_queues(netdev); 2783 } 2784 2785 /* make the aq call */ 2786 err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL); 2787 if (err) { 2788 netdev_info(netdev, "Set phy config failed,\n"); 2789 goto done; 2790 } 2791 2792 /* Save speed request */ 2793 pi->phy.curr_user_speed_req = adv_link_speed; 2794 done: 2795 kfree(phy_caps); 2796 clear_bit(ICE_CFG_BUSY, pf->state); 2797 2798 return err; 2799 } 2800 2801 static u32 ice_parse_hdrs(const struct ethtool_rxfh_fields *nfc) 2802 { 2803 u32 hdrs = ICE_FLOW_SEG_HDR_NONE; 2804 2805 switch (nfc->flow_type) { 2806 case TCP_V4_FLOW: 2807 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4; 2808 break; 2809 case UDP_V4_FLOW: 2810 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4; 2811 break; 2812 case SCTP_V4_FLOW: 2813 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4; 2814 break; 2815 case GTPU_V4_FLOW: 2816 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4; 2817 break; 2818 case GTPC_V4_FLOW: 2819 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4; 2820 break; 2821 case GTPC_TEID_V4_FLOW: 2822 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4; 2823 break; 2824 case GTPU_EH_V4_FLOW: 2825 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4; 2826 break; 2827 case GTPU_UL_V4_FLOW: 2828 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4; 2829 break; 2830 case GTPU_DL_V4_FLOW: 2831 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4; 2832 break; 2833 case TCP_V6_FLOW: 2834 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6; 2835 break; 2836 case UDP_V6_FLOW: 2837 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6; 2838 break; 2839 case SCTP_V6_FLOW: 2840 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6; 2841 break; 2842 case GTPU_V6_FLOW: 2843 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6; 2844 break; 2845 case GTPC_V6_FLOW: 2846 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6; 2847 break; 2848 case GTPC_TEID_V6_FLOW: 2849 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6; 2850 break; 2851 case GTPU_EH_V6_FLOW: 2852 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6; 2853 break; 2854 case GTPU_UL_V6_FLOW: 2855 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6; 2856 break; 2857 case GTPU_DL_V6_FLOW: 2858 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6; 2859 break; 2860 default: 2861 break; 2862 } 2863 return hdrs; 2864 } 2865 2866 static u64 ice_parse_hash_flds(const struct ethtool_rxfh_fields *nfc, bool symm) 2867 { 2868 u64 hfld = ICE_HASH_INVALID; 2869 2870 if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) { 2871 switch (nfc->flow_type) { 2872 case TCP_V4_FLOW: 2873 case UDP_V4_FLOW: 2874 case SCTP_V4_FLOW: 2875 case GTPU_V4_FLOW: 2876 case GTPC_V4_FLOW: 2877 case GTPC_TEID_V4_FLOW: 2878 case GTPU_EH_V4_FLOW: 2879 case GTPU_UL_V4_FLOW: 2880 case GTPU_DL_V4_FLOW: 2881 if (nfc->data & RXH_IP_SRC) 2882 hfld |= ICE_FLOW_HASH_FLD_IPV4_SA; 2883 if (nfc->data & RXH_IP_DST) 2884 hfld |= ICE_FLOW_HASH_FLD_IPV4_DA; 2885 break; 2886 case TCP_V6_FLOW: 2887 case UDP_V6_FLOW: 2888 case SCTP_V6_FLOW: 2889 case GTPU_V6_FLOW: 2890 case GTPC_V6_FLOW: 2891 case GTPC_TEID_V6_FLOW: 2892 case GTPU_EH_V6_FLOW: 2893 case GTPU_UL_V6_FLOW: 2894 case GTPU_DL_V6_FLOW: 2895 if (nfc->data & RXH_IP_SRC) 2896 hfld |= ICE_FLOW_HASH_FLD_IPV6_SA; 2897 if (nfc->data & RXH_IP_DST) 2898 hfld |= ICE_FLOW_HASH_FLD_IPV6_DA; 2899 break; 2900 default: 2901 break; 2902 } 2903 } 2904 2905 if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) { 2906 switch (nfc->flow_type) { 2907 case TCP_V4_FLOW: 2908 case TCP_V6_FLOW: 2909 if (nfc->data & RXH_L4_B_0_1) 2910 hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT; 2911 if (nfc->data & RXH_L4_B_2_3) 2912 hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT; 2913 break; 2914 case UDP_V4_FLOW: 2915 case UDP_V6_FLOW: 2916 if (nfc->data & RXH_L4_B_0_1) 2917 hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT; 2918 if (nfc->data & RXH_L4_B_2_3) 2919 hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT; 2920 break; 2921 case SCTP_V4_FLOW: 2922 case SCTP_V6_FLOW: 2923 if (nfc->data & RXH_L4_B_0_1) 2924 hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT; 2925 if (nfc->data & RXH_L4_B_2_3) 2926 hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT; 2927 break; 2928 default: 2929 break; 2930 } 2931 } 2932 2933 if (nfc->data & RXH_GTP_TEID) { 2934 switch (nfc->flow_type) { 2935 case GTPC_TEID_V4_FLOW: 2936 case GTPC_TEID_V6_FLOW: 2937 hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID; 2938 break; 2939 case GTPU_V4_FLOW: 2940 case GTPU_V6_FLOW: 2941 hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID; 2942 break; 2943 case GTPU_EH_V4_FLOW: 2944 case GTPU_EH_V6_FLOW: 2945 hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID; 2946 break; 2947 case GTPU_UL_V4_FLOW: 2948 case GTPU_UL_V6_FLOW: 2949 hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID; 2950 break; 2951 case GTPU_DL_V4_FLOW: 2952 case GTPU_DL_V6_FLOW: 2953 hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID; 2954 break; 2955 default: 2956 break; 2957 } 2958 } 2959 2960 return hfld; 2961 } 2962 2963 static int 2964 ice_set_rxfh_fields(struct net_device *netdev, 2965 const struct ethtool_rxfh_fields *nfc, 2966 struct netlink_ext_ack *extack) 2967 { 2968 struct ice_netdev_priv *np = netdev_priv(netdev); 2969 struct ice_vsi *vsi = np->vsi; 2970 struct ice_pf *pf = vsi->back; 2971 struct ice_rss_hash_cfg cfg; 2972 struct device *dev; 2973 u64 hashed_flds; 2974 int status; 2975 bool symm; 2976 u32 hdrs; 2977 2978 dev = ice_pf_to_dev(pf); 2979 if (ice_is_safe_mode(pf)) { 2980 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 2981 vsi->vsi_num); 2982 return -EINVAL; 2983 } 2984 2985 symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 2986 hashed_flds = ice_parse_hash_flds(nfc, symm); 2987 if (hashed_flds == ICE_HASH_INVALID) { 2988 dev_dbg(dev, "Invalid hash fields, vsi num = %d\n", 2989 vsi->vsi_num); 2990 return -EINVAL; 2991 } 2992 2993 hdrs = ice_parse_hdrs(nfc); 2994 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 2995 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 2996 vsi->vsi_num); 2997 return -EINVAL; 2998 } 2999 3000 cfg.hash_flds = hashed_flds; 3001 cfg.addl_hdrs = hdrs; 3002 cfg.hdr_type = ICE_RSS_ANY_HEADERS; 3003 cfg.symm = symm; 3004 3005 status = ice_add_rss_cfg(&pf->hw, vsi, &cfg); 3006 if (status) { 3007 dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n", 3008 vsi->vsi_num, status); 3009 return status; 3010 } 3011 3012 return 0; 3013 } 3014 3015 static int 3016 ice_get_rxfh_fields(struct net_device *netdev, struct ethtool_rxfh_fields *nfc) 3017 { 3018 struct ice_netdev_priv *np = netdev_priv(netdev); 3019 struct ice_vsi *vsi = np->vsi; 3020 struct ice_pf *pf = vsi->back; 3021 struct device *dev; 3022 u64 hash_flds; 3023 bool symm; 3024 u32 hdrs; 3025 3026 dev = ice_pf_to_dev(pf); 3027 3028 nfc->data = 0; 3029 if (ice_is_safe_mode(pf)) { 3030 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 3031 vsi->vsi_num); 3032 return 0; 3033 } 3034 3035 hdrs = ice_parse_hdrs(nfc); 3036 if (hdrs == ICE_FLOW_SEG_HDR_NONE) { 3037 dev_dbg(dev, "Header type is not valid, vsi num = %d\n", 3038 vsi->vsi_num); 3039 return 0; 3040 } 3041 3042 hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm); 3043 if (hash_flds == ICE_HASH_INVALID) { 3044 dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n", 3045 vsi->vsi_num); 3046 return 0; 3047 } 3048 3049 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA || 3050 hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA) 3051 nfc->data |= (u64)RXH_IP_SRC; 3052 3053 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA || 3054 hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA) 3055 nfc->data |= (u64)RXH_IP_DST; 3056 3057 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT || 3058 hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT || 3059 hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT) 3060 nfc->data |= (u64)RXH_L4_B_0_1; 3061 3062 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT || 3063 hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT || 3064 hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT) 3065 nfc->data |= (u64)RXH_L4_B_2_3; 3066 3067 if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID || 3068 hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID || 3069 hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID || 3070 hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID || 3071 hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID) 3072 nfc->data |= (u64)RXH_GTP_TEID; 3073 3074 return 0; 3075 } 3076 3077 /** 3078 * ice_set_rxnfc - command to set Rx flow rules. 3079 * @netdev: network interface device structure 3080 * @cmd: ethtool rxnfc command 3081 * 3082 * Returns 0 for success and negative values for errors 3083 */ 3084 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3085 { 3086 struct ice_netdev_priv *np = netdev_priv(netdev); 3087 struct ice_vsi *vsi = np->vsi; 3088 3089 switch (cmd->cmd) { 3090 case ETHTOOL_SRXCLSRLINS: 3091 return ice_add_fdir_ethtool(vsi, cmd); 3092 case ETHTOOL_SRXCLSRLDEL: 3093 return ice_del_fdir_ethtool(vsi, cmd); 3094 default: 3095 break; 3096 } 3097 return -EOPNOTSUPP; 3098 } 3099 3100 /** 3101 * ice_get_rxnfc - command to get Rx flow classification rules 3102 * @netdev: network interface device structure 3103 * @cmd: ethtool rxnfc command 3104 * @rule_locs: buffer to rturn Rx flow classification rules 3105 * 3106 * Returns Success if the command is supported. 3107 */ 3108 static int 3109 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3110 u32 __always_unused *rule_locs) 3111 { 3112 struct ice_netdev_priv *np = netdev_priv(netdev); 3113 struct ice_vsi *vsi = np->vsi; 3114 int ret = -EOPNOTSUPP; 3115 struct ice_hw *hw; 3116 3117 hw = &vsi->back->hw; 3118 3119 switch (cmd->cmd) { 3120 case ETHTOOL_GRXRINGS: 3121 cmd->data = vsi->rss_size; 3122 ret = 0; 3123 break; 3124 case ETHTOOL_GRXCLSRLCNT: 3125 cmd->rule_cnt = hw->fdir_active_fltr; 3126 /* report total rule count */ 3127 cmd->data = ice_get_fdir_cnt_all(hw); 3128 ret = 0; 3129 break; 3130 case ETHTOOL_GRXCLSRULE: 3131 ret = ice_get_ethtool_fdir_entry(hw, cmd); 3132 break; 3133 case ETHTOOL_GRXCLSRLALL: 3134 ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs); 3135 break; 3136 default: 3137 break; 3138 } 3139 3140 return ret; 3141 } 3142 3143 static void 3144 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3145 struct kernel_ethtool_ringparam *kernel_ring, 3146 struct netlink_ext_ack *extack) 3147 { 3148 struct ice_netdev_priv *np = netdev_priv(netdev); 3149 struct ice_vsi *vsi = np->vsi; 3150 struct ice_hw *hw; 3151 3152 hw = &vsi->back->hw; 3153 ring->rx_max_pending = ICE_MAX_NUM_DESC_BY_MAC(hw); 3154 ring->tx_max_pending = ICE_MAX_NUM_DESC_BY_MAC(hw); 3155 if (vsi->tx_rings && vsi->rx_rings) { 3156 ring->rx_pending = vsi->rx_rings[0]->count; 3157 ring->tx_pending = vsi->tx_rings[0]->count; 3158 } else { 3159 ring->rx_pending = 0; 3160 ring->tx_pending = 0; 3161 } 3162 3163 /* Rx mini and jumbo rings are not supported */ 3164 ring->rx_mini_max_pending = 0; 3165 ring->rx_jumbo_max_pending = 0; 3166 ring->rx_mini_pending = 0; 3167 ring->rx_jumbo_pending = 0; 3168 } 3169 3170 static int 3171 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, 3172 struct kernel_ethtool_ringparam *kernel_ring, 3173 struct netlink_ext_ack *extack) 3174 { 3175 struct ice_netdev_priv *np = netdev_priv(netdev); 3176 struct ice_tx_ring *xdp_rings = NULL; 3177 struct ice_tx_ring *tx_rings = NULL; 3178 struct ice_rx_ring *rx_rings = NULL; 3179 struct ice_vsi *vsi = np->vsi; 3180 struct ice_pf *pf = vsi->back; 3181 int i, timeout = 50, err = 0; 3182 struct ice_hw *hw = &pf->hw; 3183 u16 new_rx_cnt, new_tx_cnt; 3184 3185 if (ring->tx_pending > ICE_MAX_NUM_DESC_BY_MAC(hw) || 3186 ring->tx_pending < ICE_MIN_NUM_DESC || 3187 ring->rx_pending > ICE_MAX_NUM_DESC_BY_MAC(hw) || 3188 ring->rx_pending < ICE_MIN_NUM_DESC) { 3189 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n", 3190 ring->tx_pending, ring->rx_pending, 3191 ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC_BY_MAC(hw), 3192 ICE_REQ_DESC_MULTIPLE); 3193 return -EINVAL; 3194 } 3195 3196 /* Return if there is no rings (device is reloading) */ 3197 if (!vsi->tx_rings || !vsi->rx_rings) 3198 return -EBUSY; 3199 3200 new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE); 3201 if (new_tx_cnt != ring->tx_pending) 3202 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n", 3203 new_tx_cnt); 3204 new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE); 3205 if (new_rx_cnt != ring->rx_pending) 3206 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n", 3207 new_rx_cnt); 3208 3209 /* if nothing to do return success */ 3210 if (new_tx_cnt == vsi->tx_rings[0]->count && 3211 new_rx_cnt == vsi->rx_rings[0]->count) { 3212 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n"); 3213 return 0; 3214 } 3215 3216 /* If there is a AF_XDP UMEM attached to any of Rx rings, 3217 * disallow changing the number of descriptors -- regardless 3218 * if the netdev is running or not. 3219 */ 3220 if (ice_xsk_any_rx_ring_ena(vsi)) 3221 return -EBUSY; 3222 3223 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3224 timeout--; 3225 if (!timeout) 3226 return -EBUSY; 3227 usleep_range(1000, 2000); 3228 } 3229 3230 /* set for the next time the netdev is started */ 3231 if (!netif_running(vsi->netdev)) { 3232 ice_for_each_alloc_txq(vsi, i) 3233 vsi->tx_rings[i]->count = new_tx_cnt; 3234 ice_for_each_alloc_rxq(vsi, i) 3235 vsi->rx_rings[i]->count = new_rx_cnt; 3236 if (ice_is_xdp_ena_vsi(vsi)) 3237 ice_for_each_xdp_txq(vsi, i) 3238 vsi->xdp_rings[i]->count = new_tx_cnt; 3239 vsi->num_tx_desc = (u16)new_tx_cnt; 3240 vsi->num_rx_desc = (u16)new_rx_cnt; 3241 netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n"); 3242 goto done; 3243 } 3244 3245 if (new_tx_cnt == vsi->tx_rings[0]->count) 3246 goto process_rx; 3247 3248 /* alloc updated Tx resources */ 3249 netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n", 3250 vsi->tx_rings[0]->count, new_tx_cnt); 3251 3252 tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL); 3253 if (!tx_rings) { 3254 err = -ENOMEM; 3255 goto done; 3256 } 3257 3258 ice_for_each_txq(vsi, i) { 3259 /* clone ring and setup updated count */ 3260 tx_rings[i] = *vsi->tx_rings[i]; 3261 tx_rings[i].count = new_tx_cnt; 3262 tx_rings[i].desc = NULL; 3263 tx_rings[i].tx_buf = NULL; 3264 tx_rings[i].tstamp_ring = NULL; 3265 tx_rings[i].tx_tstamps = &pf->ptp.port.tx; 3266 err = ice_setup_tx_ring(&tx_rings[i]); 3267 if (err) { 3268 while (i--) 3269 ice_clean_tx_ring(&tx_rings[i]); 3270 kfree(tx_rings); 3271 goto done; 3272 } 3273 } 3274 3275 if (!ice_is_xdp_ena_vsi(vsi)) 3276 goto process_rx; 3277 3278 /* alloc updated XDP resources */ 3279 netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n", 3280 vsi->xdp_rings[0]->count, new_tx_cnt); 3281 3282 xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL); 3283 if (!xdp_rings) { 3284 err = -ENOMEM; 3285 goto free_tx; 3286 } 3287 3288 ice_for_each_xdp_txq(vsi, i) { 3289 /* clone ring and setup updated count */ 3290 xdp_rings[i] = *vsi->xdp_rings[i]; 3291 xdp_rings[i].count = new_tx_cnt; 3292 xdp_rings[i].desc = NULL; 3293 xdp_rings[i].tx_buf = NULL; 3294 err = ice_setup_tx_ring(&xdp_rings[i]); 3295 if (err) { 3296 while (i--) 3297 ice_clean_tx_ring(&xdp_rings[i]); 3298 kfree(xdp_rings); 3299 goto free_tx; 3300 } 3301 ice_set_ring_xdp(&xdp_rings[i]); 3302 } 3303 3304 process_rx: 3305 if (new_rx_cnt == vsi->rx_rings[0]->count) 3306 goto process_link; 3307 3308 /* alloc updated Rx resources */ 3309 netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n", 3310 vsi->rx_rings[0]->count, new_rx_cnt); 3311 3312 rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL); 3313 if (!rx_rings) { 3314 err = -ENOMEM; 3315 goto done; 3316 } 3317 3318 ice_for_each_rxq(vsi, i) { 3319 /* clone ring and setup updated count */ 3320 rx_rings[i] = *vsi->rx_rings[i]; 3321 rx_rings[i].count = new_rx_cnt; 3322 rx_rings[i].cached_phctime = pf->ptp.cached_phc_time; 3323 rx_rings[i].desc = NULL; 3324 rx_rings[i].rx_buf = NULL; 3325 /* this is to allow wr32 to have something to write to 3326 * during early allocation of Rx buffers 3327 */ 3328 rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS; 3329 3330 err = ice_setup_rx_ring(&rx_rings[i]); 3331 if (err) 3332 goto rx_unwind; 3333 3334 /* allocate Rx buffers */ 3335 err = ice_alloc_rx_bufs(&rx_rings[i], 3336 ICE_RX_DESC_UNUSED(&rx_rings[i])); 3337 rx_unwind: 3338 if (err) { 3339 while (i) { 3340 i--; 3341 ice_free_rx_ring(&rx_rings[i]); 3342 } 3343 kfree(rx_rings); 3344 err = -ENOMEM; 3345 goto free_tx; 3346 } 3347 } 3348 3349 process_link: 3350 /* Bring interface down, copy in the new ring info, then restore the 3351 * interface. if VSI is up, bring it down and then back up 3352 */ 3353 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3354 ice_down(vsi); 3355 3356 if (tx_rings) { 3357 ice_for_each_txq(vsi, i) { 3358 ice_free_tx_ring(vsi->tx_rings[i]); 3359 *vsi->tx_rings[i] = tx_rings[i]; 3360 } 3361 kfree(tx_rings); 3362 } 3363 3364 if (rx_rings) { 3365 ice_for_each_rxq(vsi, i) { 3366 ice_free_rx_ring(vsi->rx_rings[i]); 3367 /* copy the real tail offset */ 3368 rx_rings[i].tail = vsi->rx_rings[i]->tail; 3369 /* this is to fake out the allocation routine 3370 * into thinking it has to realloc everything 3371 * but the recycling logic will let us re-use 3372 * the buffers allocated above 3373 */ 3374 rx_rings[i].next_to_use = 0; 3375 rx_rings[i].next_to_clean = 0; 3376 rx_rings[i].next_to_alloc = 0; 3377 *vsi->rx_rings[i] = rx_rings[i]; 3378 } 3379 kfree(rx_rings); 3380 } 3381 3382 if (xdp_rings) { 3383 ice_for_each_xdp_txq(vsi, i) { 3384 ice_free_tx_ring(vsi->xdp_rings[i]); 3385 *vsi->xdp_rings[i] = xdp_rings[i]; 3386 } 3387 kfree(xdp_rings); 3388 } 3389 3390 vsi->num_tx_desc = new_tx_cnt; 3391 vsi->num_rx_desc = new_rx_cnt; 3392 ice_up(vsi); 3393 } 3394 goto done; 3395 3396 free_tx: 3397 /* error cleanup if the Rx allocations failed after getting Tx */ 3398 if (tx_rings) { 3399 ice_for_each_txq(vsi, i) 3400 ice_free_tx_ring(&tx_rings[i]); 3401 kfree(tx_rings); 3402 } 3403 3404 done: 3405 clear_bit(ICE_CFG_BUSY, pf->state); 3406 return err; 3407 } 3408 3409 /** 3410 * ice_get_pauseparam - Get Flow Control status 3411 * @netdev: network interface device structure 3412 * @pause: ethernet pause (flow control) parameters 3413 * 3414 * Get requested flow control status from PHY capability. 3415 * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which 3416 * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report 3417 * the negotiated Rx/Tx pause via lp_advertising. 3418 */ 3419 static void 3420 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3421 { 3422 struct ice_netdev_priv *np = netdev_priv(netdev); 3423 struct ice_port_info *pi = np->vsi->port_info; 3424 struct ice_aqc_get_phy_caps_data *pcaps; 3425 struct ice_dcbx_cfg *dcbx_cfg; 3426 int status; 3427 3428 /* Initialize pause params */ 3429 pause->rx_pause = 0; 3430 pause->tx_pause = 0; 3431 3432 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3433 3434 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3435 if (!pcaps) 3436 return; 3437 3438 /* Get current PHY config */ 3439 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3440 NULL); 3441 if (status) 3442 goto out; 3443 3444 pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3445 AUTONEG_DISABLE; 3446 3447 if (dcbx_cfg->pfc.pfcena) 3448 /* PFC enabled so report LFC as off */ 3449 goto out; 3450 3451 if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3452 pause->tx_pause = 1; 3453 if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3454 pause->rx_pause = 1; 3455 3456 out: 3457 kfree(pcaps); 3458 } 3459 3460 /** 3461 * ice_set_pauseparam - Set Flow Control parameter 3462 * @netdev: network interface device structure 3463 * @pause: return Tx/Rx flow control status 3464 */ 3465 static int 3466 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) 3467 { 3468 struct ice_netdev_priv *np = netdev_priv(netdev); 3469 struct ice_aqc_get_phy_caps_data *pcaps; 3470 struct ice_link_status *hw_link_info; 3471 struct ice_pf *pf = np->vsi->back; 3472 struct ice_dcbx_cfg *dcbx_cfg; 3473 struct ice_vsi *vsi = np->vsi; 3474 struct ice_hw *hw = &pf->hw; 3475 struct ice_port_info *pi; 3476 u8 aq_failures; 3477 bool link_up; 3478 u32 is_an; 3479 int err; 3480 3481 pi = vsi->port_info; 3482 hw_link_info = &pi->phy.link_info; 3483 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg; 3484 link_up = hw_link_info->link_info & ICE_AQ_LINK_UP; 3485 3486 /* Changing the port's flow control is not supported if this isn't the 3487 * PF VSI 3488 */ 3489 if (vsi->type != ICE_VSI_PF) { 3490 netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n"); 3491 return -EOPNOTSUPP; 3492 } 3493 3494 /* Get pause param reports configured and negotiated flow control pause 3495 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is 3496 * defined get pause param pause->autoneg reports SW configured setting, 3497 * so compare pause->autoneg with SW configured to prevent the user from 3498 * using set pause param to chance autoneg. 3499 */ 3500 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3501 if (!pcaps) 3502 return -ENOMEM; 3503 3504 /* Get current PHY config */ 3505 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 3506 NULL); 3507 if (err) { 3508 kfree(pcaps); 3509 return err; 3510 } 3511 3512 is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE : 3513 AUTONEG_DISABLE; 3514 3515 kfree(pcaps); 3516 3517 if (pause->autoneg != is_an) { 3518 netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 3519 return -EOPNOTSUPP; 3520 } 3521 3522 /* If we have link and don't have autoneg */ 3523 if (!test_bit(ICE_DOWN, pf->state) && 3524 !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) { 3525 /* Send message that it might not necessarily work*/ 3526 netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n"); 3527 } 3528 3529 if (dcbx_cfg->pfc.pfcena) { 3530 netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n"); 3531 return -EOPNOTSUPP; 3532 } 3533 if (pause->rx_pause && pause->tx_pause) 3534 pi->fc.req_mode = ICE_FC_FULL; 3535 else if (pause->rx_pause && !pause->tx_pause) 3536 pi->fc.req_mode = ICE_FC_RX_PAUSE; 3537 else if (!pause->rx_pause && pause->tx_pause) 3538 pi->fc.req_mode = ICE_FC_TX_PAUSE; 3539 else if (!pause->rx_pause && !pause->tx_pause) 3540 pi->fc.req_mode = ICE_FC_NONE; 3541 else 3542 return -EINVAL; 3543 3544 /* Set the FC mode and only restart AN if link is up */ 3545 err = ice_set_fc(pi, &aq_failures, link_up); 3546 3547 if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) { 3548 netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n", 3549 err, libie_aq_str(hw->adminq.sq_last_status)); 3550 err = -EAGAIN; 3551 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) { 3552 netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n", 3553 err, libie_aq_str(hw->adminq.sq_last_status)); 3554 err = -EAGAIN; 3555 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) { 3556 netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n", 3557 err, libie_aq_str(hw->adminq.sq_last_status)); 3558 err = -EAGAIN; 3559 } 3560 3561 return err; 3562 } 3563 3564 /** 3565 * ice_get_rxfh_key_size - get the RSS hash key size 3566 * @netdev: network interface device structure 3567 * 3568 * Returns the table size. 3569 */ 3570 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev) 3571 { 3572 return ICE_VSIQF_HKEY_ARRAY_SIZE; 3573 } 3574 3575 /** 3576 * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size 3577 * @netdev: network interface device structure 3578 * 3579 * Returns the table size. 3580 */ 3581 static u32 ice_get_rxfh_indir_size(struct net_device *netdev) 3582 { 3583 struct ice_netdev_priv *np = netdev_priv(netdev); 3584 3585 return np->vsi->rss_table_size; 3586 } 3587 3588 /** 3589 * ice_get_rxfh - get the Rx flow hash indirection table 3590 * @netdev: network interface device structure 3591 * @rxfh: pointer to param struct (indir, key, hfunc) 3592 * 3593 * Reads the indirection table directly from the hardware. 3594 */ 3595 static int 3596 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh) 3597 { 3598 struct ice_netdev_priv *np = netdev_priv(netdev); 3599 struct ice_vsi *vsi = np->vsi; 3600 struct ice_pf *pf = vsi->back; 3601 u16 qcount, offset; 3602 int err, i; 3603 u8 *lut; 3604 3605 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3606 netdev_warn(netdev, "RSS is not supported on this VSI!\n"); 3607 return -EOPNOTSUPP; 3608 } 3609 3610 qcount = vsi->mqprio_qopt.qopt.count[0]; 3611 offset = vsi->mqprio_qopt.qopt.offset[0]; 3612 3613 rxfh->hfunc = ETH_RSS_HASH_TOP; 3614 if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 3615 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR; 3616 3617 if (!rxfh->indir) 3618 return 0; 3619 3620 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3621 if (!lut) 3622 return -ENOMEM; 3623 3624 err = ice_get_rss_key(vsi, rxfh->key); 3625 if (err) 3626 goto out; 3627 3628 err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size); 3629 if (err) 3630 goto out; 3631 3632 if (ice_is_adq_active(pf)) { 3633 for (i = 0; i < vsi->rss_table_size; i++) 3634 rxfh->indir[i] = offset + lut[i] % qcount; 3635 goto out; 3636 } 3637 3638 for (i = 0; i < vsi->rss_table_size; i++) 3639 rxfh->indir[i] = lut[i]; 3640 3641 out: 3642 kfree(lut); 3643 return err; 3644 } 3645 3646 /** 3647 * ice_set_rxfh - set the Rx flow hash indirection table 3648 * @netdev: network interface device structure 3649 * @rxfh: pointer to param struct (indir, key, hfunc) 3650 * @extack: extended ACK from the Netlink message 3651 * 3652 * Returns -EINVAL if the table specifies an invalid queue ID, otherwise 3653 * returns 0 after programming the table. 3654 */ 3655 static int 3656 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh, 3657 struct netlink_ext_ack *extack) 3658 { 3659 struct ice_netdev_priv *np = netdev_priv(netdev); 3660 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 3661 struct ice_vsi *vsi = np->vsi; 3662 struct ice_pf *pf = vsi->back; 3663 struct device *dev; 3664 int err; 3665 3666 dev = ice_pf_to_dev(pf); 3667 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && 3668 rxfh->hfunc != ETH_RSS_HASH_TOP) 3669 return -EOPNOTSUPP; 3670 3671 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 3672 /* RSS not supported return error here */ 3673 netdev_warn(netdev, "RSS is not configured on this VSI!\n"); 3674 return -EIO; 3675 } 3676 3677 if (ice_is_adq_active(pf)) { 3678 netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n"); 3679 return -EOPNOTSUPP; 3680 } 3681 3682 /* Update the VSI's hash function */ 3683 if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR) 3684 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ; 3685 3686 err = ice_set_rss_hfunc(vsi, hfunc); 3687 if (err) 3688 return err; 3689 3690 if (rxfh->key) { 3691 if (!vsi->rss_hkey_user) { 3692 vsi->rss_hkey_user = 3693 devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE, 3694 GFP_KERNEL); 3695 if (!vsi->rss_hkey_user) 3696 return -ENOMEM; 3697 } 3698 memcpy(vsi->rss_hkey_user, rxfh->key, 3699 ICE_VSIQF_HKEY_ARRAY_SIZE); 3700 3701 err = ice_set_rss_key(vsi, vsi->rss_hkey_user); 3702 if (err) 3703 return err; 3704 } 3705 3706 if (!vsi->rss_lut_user) { 3707 vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size, 3708 GFP_KERNEL); 3709 if (!vsi->rss_lut_user) 3710 return -ENOMEM; 3711 } 3712 3713 /* Each 32 bits pointed by 'indir' is stored with a lut entry */ 3714 if (rxfh->indir) { 3715 int i; 3716 3717 for (i = 0; i < vsi->rss_table_size; i++) 3718 vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]); 3719 } else { 3720 ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size, 3721 vsi->rss_size); 3722 } 3723 3724 err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size); 3725 if (err) 3726 return err; 3727 3728 return 0; 3729 } 3730 3731 static int 3732 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) 3733 { 3734 struct ice_pf *pf = ice_netdev_to_pf(dev); 3735 3736 /* only report timestamping if PTP is enabled */ 3737 if (pf->ptp.state != ICE_PTP_READY) 3738 return ethtool_op_get_ts_info(dev, info); 3739 3740 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 3741 SOF_TIMESTAMPING_TX_HARDWARE | 3742 SOF_TIMESTAMPING_RX_HARDWARE | 3743 SOF_TIMESTAMPING_RAW_HARDWARE; 3744 3745 info->phc_index = ice_ptp_clock_index(pf); 3746 3747 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 3748 3749 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL); 3750 3751 return 0; 3752 } 3753 3754 /** 3755 * ice_get_max_txq - return the maximum number of Tx queues for in a PF 3756 * @pf: PF structure 3757 */ 3758 static int ice_get_max_txq(struct ice_pf *pf) 3759 { 3760 return min(num_online_cpus(), pf->hw.func_caps.common_cap.num_txq); 3761 } 3762 3763 /** 3764 * ice_get_max_rxq - return the maximum number of Rx queues for in a PF 3765 * @pf: PF structure 3766 */ 3767 static int ice_get_max_rxq(struct ice_pf *pf) 3768 { 3769 return min(num_online_cpus(), pf->hw.func_caps.common_cap.num_rxq); 3770 } 3771 3772 /** 3773 * ice_get_combined_cnt - return the current number of combined channels 3774 * @vsi: PF VSI pointer 3775 * 3776 * Go through all queue vectors and count ones that have both Rx and Tx ring 3777 * attached 3778 */ 3779 static u32 ice_get_combined_cnt(struct ice_vsi *vsi) 3780 { 3781 u32 combined = 0; 3782 int q_idx; 3783 3784 ice_for_each_q_vector(vsi, q_idx) { 3785 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3786 3787 combined += min(q_vector->num_ring_tx, q_vector->num_ring_rx); 3788 } 3789 3790 return combined; 3791 } 3792 3793 /** 3794 * ice_get_channels - get the current and max supported channels 3795 * @dev: network interface device structure 3796 * @ch: ethtool channel data structure 3797 */ 3798 static void 3799 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch) 3800 { 3801 struct ice_netdev_priv *np = netdev_priv(dev); 3802 struct ice_vsi *vsi = np->vsi; 3803 struct ice_pf *pf = vsi->back; 3804 3805 /* report maximum channels */ 3806 ch->max_rx = ice_get_max_rxq(pf); 3807 ch->max_tx = ice_get_max_txq(pf); 3808 ch->max_combined = min_t(int, ch->max_rx, ch->max_tx); 3809 3810 /* report current channels */ 3811 ch->combined_count = ice_get_combined_cnt(vsi); 3812 ch->rx_count = vsi->num_rxq - ch->combined_count; 3813 ch->tx_count = vsi->num_txq - ch->combined_count; 3814 3815 /* report other queues */ 3816 ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 3817 ch->max_other = ch->other_count; 3818 } 3819 3820 /** 3821 * ice_get_valid_rss_size - return valid number of RSS queues 3822 * @hw: pointer to the HW structure 3823 * @new_size: requested RSS queues 3824 */ 3825 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size) 3826 { 3827 struct ice_hw_common_caps *caps = &hw->func_caps.common_cap; 3828 3829 return min_t(int, new_size, BIT(caps->rss_table_entry_width)); 3830 } 3831 3832 /** 3833 * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size 3834 * @vsi: VSI to reconfigure RSS LUT on 3835 * @req_rss_size: requested range of queue numbers for hashing 3836 * 3837 * Set the VSI's RSS parameters, configure the RSS LUT based on these. 3838 */ 3839 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size) 3840 { 3841 struct ice_pf *pf = vsi->back; 3842 struct device *dev; 3843 struct ice_hw *hw; 3844 int err; 3845 u8 *lut; 3846 3847 dev = ice_pf_to_dev(pf); 3848 hw = &pf->hw; 3849 3850 if (!req_rss_size) 3851 return -EINVAL; 3852 3853 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 3854 if (!lut) 3855 return -ENOMEM; 3856 3857 /* set RSS LUT parameters */ 3858 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3859 vsi->rss_size = 1; 3860 else 3861 vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size); 3862 3863 /* create/set RSS LUT */ 3864 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 3865 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 3866 if (err) 3867 dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err, 3868 libie_aq_str(hw->adminq.sq_last_status)); 3869 3870 kfree(lut); 3871 return err; 3872 } 3873 3874 /** 3875 * ice_set_channels - set the number channels 3876 * @dev: network interface device structure 3877 * @ch: ethtool channel data structure 3878 */ 3879 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch) 3880 { 3881 struct ice_netdev_priv *np = netdev_priv(dev); 3882 struct ice_vsi *vsi = np->vsi; 3883 struct ice_pf *pf = vsi->back; 3884 int new_rx = 0, new_tx = 0; 3885 bool locked = false; 3886 int ret = 0; 3887 3888 /* do not support changing channels in Safe Mode */ 3889 if (ice_is_safe_mode(pf)) { 3890 netdev_err(dev, "Changing channel in Safe Mode is not supported\n"); 3891 return -EOPNOTSUPP; 3892 } 3893 /* do not support changing other_count */ 3894 if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U)) 3895 return -EINVAL; 3896 3897 if (ice_is_adq_active(pf)) { 3898 netdev_err(dev, "Cannot set channels with ADQ configured.\n"); 3899 return -EOPNOTSUPP; 3900 } 3901 3902 if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) { 3903 netdev_err(dev, "Cannot set channels when Flow Director filters are active\n"); 3904 return -EOPNOTSUPP; 3905 } 3906 3907 if (ch->rx_count && ch->tx_count) { 3908 netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n"); 3909 return -EINVAL; 3910 } 3911 3912 new_rx = ch->combined_count + ch->rx_count; 3913 new_tx = ch->combined_count + ch->tx_count; 3914 3915 if (new_rx < vsi->tc_cfg.numtc) { 3916 netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n", 3917 vsi->tc_cfg.numtc); 3918 return -EINVAL; 3919 } 3920 if (new_tx < vsi->tc_cfg.numtc) { 3921 netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n", 3922 vsi->tc_cfg.numtc); 3923 return -EINVAL; 3924 } 3925 if (new_rx > ice_get_max_rxq(pf)) { 3926 netdev_err(dev, "Maximum allowed Rx channels is %d\n", 3927 ice_get_max_rxq(pf)); 3928 return -EINVAL; 3929 } 3930 if (new_tx > ice_get_max_txq(pf)) { 3931 netdev_err(dev, "Maximum allowed Tx channels is %d\n", 3932 ice_get_max_txq(pf)); 3933 return -EINVAL; 3934 } 3935 3936 if (pf->cdev_info && pf->cdev_info->adev) { 3937 mutex_lock(&pf->adev_mutex); 3938 device_lock(&pf->cdev_info->adev->dev); 3939 locked = true; 3940 if (pf->cdev_info->adev->dev.driver) { 3941 netdev_err(dev, "Cannot change channels when RDMA is active\n"); 3942 ret = -EBUSY; 3943 goto adev_unlock; 3944 } 3945 } 3946 3947 ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked); 3948 3949 if (!netif_is_rxfh_configured(dev)) { 3950 ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx); 3951 goto adev_unlock; 3952 } 3953 3954 /* Update rss_size due to change in Rx queues */ 3955 vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx); 3956 3957 adev_unlock: 3958 if (locked) { 3959 device_unlock(&pf->cdev_info->adev->dev); 3960 mutex_unlock(&pf->adev_mutex); 3961 } 3962 return ret; 3963 } 3964 3965 /** 3966 * ice_get_wol - get current Wake on LAN configuration 3967 * @netdev: network interface device structure 3968 * @wol: Ethtool structure to retrieve WoL settings 3969 */ 3970 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3971 { 3972 struct ice_netdev_priv *np = netdev_priv(netdev); 3973 struct ice_pf *pf = np->vsi->back; 3974 3975 if (np->vsi->type != ICE_VSI_PF) 3976 netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n"); 3977 3978 /* Get WoL settings based on the HW capability */ 3979 if (ice_is_wol_supported(&pf->hw)) { 3980 wol->supported = WAKE_MAGIC; 3981 wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0; 3982 } else { 3983 wol->supported = 0; 3984 wol->wolopts = 0; 3985 } 3986 } 3987 3988 /** 3989 * ice_set_wol - set Wake on LAN on supported device 3990 * @netdev: network interface device structure 3991 * @wol: Ethtool structure to set WoL 3992 */ 3993 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3994 { 3995 struct ice_netdev_priv *np = netdev_priv(netdev); 3996 struct ice_vsi *vsi = np->vsi; 3997 struct ice_pf *pf = vsi->back; 3998 3999 if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw)) 4000 return -EOPNOTSUPP; 4001 4002 /* only magic packet is supported */ 4003 if (wol->wolopts && wol->wolopts != WAKE_MAGIC) 4004 return -EOPNOTSUPP; 4005 4006 /* Set WoL only if there is a new value */ 4007 if (pf->wol_ena != !!wol->wolopts) { 4008 pf->wol_ena = !!wol->wolopts; 4009 device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena); 4010 netdev_dbg(netdev, "WoL magic packet %sabled\n", 4011 pf->wol_ena ? "en" : "dis"); 4012 } 4013 4014 return 0; 4015 } 4016 4017 /** 4018 * ice_get_rc_coalesce - get ITR values for specific ring container 4019 * @ec: ethtool structure to fill with driver's coalesce settings 4020 * @rc: ring container that the ITR values will come from 4021 * 4022 * Query the device for ice_ring_container specific ITR values. This is 4023 * done per ice_ring_container because each q_vector can have 1 or more rings 4024 * and all of said ring(s) will have the same ITR values. 4025 * 4026 * Returns 0 on success, negative otherwise. 4027 */ 4028 static int 4029 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc) 4030 { 4031 if (!rc->rx_ring) 4032 return -EINVAL; 4033 4034 switch (rc->type) { 4035 case ICE_RX_CONTAINER: 4036 ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc); 4037 ec->rx_coalesce_usecs = rc->itr_setting; 4038 ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl; 4039 break; 4040 case ICE_TX_CONTAINER: 4041 ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc); 4042 ec->tx_coalesce_usecs = rc->itr_setting; 4043 break; 4044 default: 4045 dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type); 4046 return -EINVAL; 4047 } 4048 4049 return 0; 4050 } 4051 4052 /** 4053 * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings 4054 * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings 4055 * @ec: coalesce settings to program the device with 4056 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4057 * 4058 * Return 0 on success, and negative under the following conditions: 4059 * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed. 4060 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4061 */ 4062 static int 4063 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4064 { 4065 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4066 if (ice_get_rc_coalesce(ec, 4067 &vsi->rx_rings[q_num]->q_vector->rx)) 4068 return -EINVAL; 4069 if (ice_get_rc_coalesce(ec, 4070 &vsi->tx_rings[q_num]->q_vector->tx)) 4071 return -EINVAL; 4072 } else if (q_num < vsi->num_rxq) { 4073 if (ice_get_rc_coalesce(ec, 4074 &vsi->rx_rings[q_num]->q_vector->rx)) 4075 return -EINVAL; 4076 } else if (q_num < vsi->num_txq) { 4077 if (ice_get_rc_coalesce(ec, 4078 &vsi->tx_rings[q_num]->q_vector->tx)) 4079 return -EINVAL; 4080 } else { 4081 return -EINVAL; 4082 } 4083 4084 return 0; 4085 } 4086 4087 /** 4088 * __ice_get_coalesce - get ITR/INTRL values for the device 4089 * @netdev: pointer to the netdev associated with this query 4090 * @ec: ethtool structure to fill with driver's coalesce settings 4091 * @q_num: queue number to get the coalesce settings for 4092 * 4093 * If the caller passes in a negative q_num then we return coalesce settings 4094 * based on queue number 0, else use the actual q_num passed in. 4095 */ 4096 static int 4097 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4098 int q_num) 4099 { 4100 struct ice_netdev_priv *np = netdev_priv(netdev); 4101 struct ice_vsi *vsi = np->vsi; 4102 4103 if (q_num < 0) 4104 q_num = 0; 4105 4106 if (ice_get_q_coalesce(vsi, ec, q_num)) 4107 return -EINVAL; 4108 4109 return 0; 4110 } 4111 4112 static int ice_get_coalesce(struct net_device *netdev, 4113 struct ethtool_coalesce *ec, 4114 struct kernel_ethtool_coalesce *kernel_coal, 4115 struct netlink_ext_ack *extack) 4116 { 4117 return __ice_get_coalesce(netdev, ec, -1); 4118 } 4119 4120 static int 4121 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num, 4122 struct ethtool_coalesce *ec) 4123 { 4124 return __ice_get_coalesce(netdev, ec, q_num); 4125 } 4126 4127 /** 4128 * ice_set_rc_coalesce - set ITR values for specific ring container 4129 * @ec: ethtool structure from user to update ITR settings 4130 * @rc: ring container that the ITR values will come from 4131 * @vsi: VSI associated to the ring container 4132 * 4133 * Set specific ITR values. This is done per ice_ring_container because each 4134 * q_vector can have 1 or more rings and all of said ring(s) will have the same 4135 * ITR values. 4136 * 4137 * Returns 0 on success, negative otherwise. 4138 */ 4139 static int 4140 ice_set_rc_coalesce(struct ethtool_coalesce *ec, 4141 struct ice_ring_container *rc, struct ice_vsi *vsi) 4142 { 4143 const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx"; 4144 u32 use_adaptive_coalesce, coalesce_usecs; 4145 struct ice_pf *pf = vsi->back; 4146 u16 itr_setting; 4147 4148 if (!rc->rx_ring) 4149 return -EINVAL; 4150 4151 switch (rc->type) { 4152 case ICE_RX_CONTAINER: 4153 { 4154 struct ice_q_vector *q_vector = rc->rx_ring->q_vector; 4155 4156 if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL || 4157 (ec->rx_coalesce_usecs_high && 4158 ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) { 4159 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n", 4160 c_type_str, pf->hw.intrl_gran, 4161 ICE_MAX_INTRL); 4162 return -EINVAL; 4163 } 4164 if (ec->rx_coalesce_usecs_high != q_vector->intrl && 4165 (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) { 4166 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n", 4167 c_type_str); 4168 return -EINVAL; 4169 } 4170 if (ec->rx_coalesce_usecs_high != q_vector->intrl) 4171 q_vector->intrl = ec->rx_coalesce_usecs_high; 4172 4173 use_adaptive_coalesce = ec->use_adaptive_rx_coalesce; 4174 coalesce_usecs = ec->rx_coalesce_usecs; 4175 4176 break; 4177 } 4178 case ICE_TX_CONTAINER: 4179 use_adaptive_coalesce = ec->use_adaptive_tx_coalesce; 4180 coalesce_usecs = ec->tx_coalesce_usecs; 4181 4182 break; 4183 default: 4184 dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n", 4185 rc->type); 4186 return -EINVAL; 4187 } 4188 4189 itr_setting = rc->itr_setting; 4190 if (coalesce_usecs != itr_setting && use_adaptive_coalesce) { 4191 netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n", 4192 c_type_str, c_type_str); 4193 return -EINVAL; 4194 } 4195 4196 if (coalesce_usecs > ICE_ITR_MAX) { 4197 netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n", 4198 c_type_str, ICE_ITR_MAX); 4199 return -EINVAL; 4200 } 4201 4202 if (use_adaptive_coalesce) { 4203 rc->itr_mode = ITR_DYNAMIC; 4204 } else { 4205 rc->itr_mode = ITR_STATIC; 4206 /* store user facing value how it was set */ 4207 rc->itr_setting = coalesce_usecs; 4208 /* write the change to the register */ 4209 ice_write_itr(rc, coalesce_usecs); 4210 /* force writes to take effect immediately, the flush shouldn't 4211 * be done in the functions above because the intent is for 4212 * them to do lazy writes. 4213 */ 4214 ice_flush(&pf->hw); 4215 } 4216 4217 return 0; 4218 } 4219 4220 /** 4221 * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings 4222 * @vsi: VSI associated to the queue that need updating 4223 * @ec: coalesce settings to program the device with 4224 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index 4225 * 4226 * Return 0 on success, and negative under the following conditions: 4227 * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed. 4228 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings. 4229 */ 4230 static int 4231 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num) 4232 { 4233 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) { 4234 if (ice_set_rc_coalesce(ec, 4235 &vsi->rx_rings[q_num]->q_vector->rx, 4236 vsi)) 4237 return -EINVAL; 4238 4239 if (ice_set_rc_coalesce(ec, 4240 &vsi->tx_rings[q_num]->q_vector->tx, 4241 vsi)) 4242 return -EINVAL; 4243 } else if (q_num < vsi->num_rxq) { 4244 if (ice_set_rc_coalesce(ec, 4245 &vsi->rx_rings[q_num]->q_vector->rx, 4246 vsi)) 4247 return -EINVAL; 4248 } else if (q_num < vsi->num_txq) { 4249 if (ice_set_rc_coalesce(ec, 4250 &vsi->tx_rings[q_num]->q_vector->tx, 4251 vsi)) 4252 return -EINVAL; 4253 } else { 4254 return -EINVAL; 4255 } 4256 4257 return 0; 4258 } 4259 4260 /** 4261 * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs 4262 * @netdev: netdev used for print 4263 * @itr_setting: previous user setting 4264 * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled 4265 * @coalesce_usecs: requested value of [tx|rx]-usecs 4266 * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs 4267 */ 4268 static void 4269 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting, 4270 u32 use_adaptive_coalesce, u32 coalesce_usecs, 4271 const char *c_type_str) 4272 { 4273 if (use_adaptive_coalesce) 4274 return; 4275 4276 if (itr_setting != coalesce_usecs && (coalesce_usecs % 2)) 4277 netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n", 4278 c_type_str, coalesce_usecs, c_type_str, 4279 ITR_REG_ALIGN(coalesce_usecs)); 4280 } 4281 4282 /** 4283 * __ice_set_coalesce - set ITR/INTRL values for the device 4284 * @netdev: pointer to the netdev associated with this query 4285 * @ec: ethtool structure to fill with driver's coalesce settings 4286 * @q_num: queue number to get the coalesce settings for 4287 * 4288 * If the caller passes in a negative q_num then we set the coalesce settings 4289 * for all Tx/Rx queues, else use the actual q_num passed in. 4290 */ 4291 static int 4292 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec, 4293 int q_num) 4294 { 4295 struct ice_netdev_priv *np = netdev_priv(netdev); 4296 struct ice_vsi *vsi = np->vsi; 4297 4298 if (q_num < 0) { 4299 struct ice_q_vector *q_vector = vsi->q_vectors[0]; 4300 int v_idx; 4301 4302 if (q_vector) { 4303 ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting, 4304 ec->use_adaptive_rx_coalesce, 4305 ec->rx_coalesce_usecs, "rx"); 4306 4307 ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting, 4308 ec->use_adaptive_tx_coalesce, 4309 ec->tx_coalesce_usecs, "tx"); 4310 } 4311 4312 ice_for_each_q_vector(vsi, v_idx) { 4313 /* In some cases if DCB is configured the num_[rx|tx]q 4314 * can be less than vsi->num_q_vectors. This check 4315 * accounts for that so we don't report a false failure 4316 */ 4317 if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq) 4318 goto set_complete; 4319 4320 if (ice_set_q_coalesce(vsi, ec, v_idx)) 4321 return -EINVAL; 4322 4323 ice_set_q_vector_intrl(vsi->q_vectors[v_idx]); 4324 } 4325 goto set_complete; 4326 } 4327 4328 if (ice_set_q_coalesce(vsi, ec, q_num)) 4329 return -EINVAL; 4330 4331 ice_set_q_vector_intrl(vsi->q_vectors[q_num]); 4332 4333 set_complete: 4334 return 0; 4335 } 4336 4337 static int ice_set_coalesce(struct net_device *netdev, 4338 struct ethtool_coalesce *ec, 4339 struct kernel_ethtool_coalesce *kernel_coal, 4340 struct netlink_ext_ack *extack) 4341 { 4342 return __ice_set_coalesce(netdev, ec, -1); 4343 } 4344 4345 static int 4346 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num, 4347 struct ethtool_coalesce *ec) 4348 { 4349 return __ice_set_coalesce(netdev, ec, q_num); 4350 } 4351 4352 static void 4353 ice_repr_get_drvinfo(struct net_device *netdev, 4354 struct ethtool_drvinfo *drvinfo) 4355 { 4356 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4357 4358 if (repr->ops.ready(repr)) 4359 return; 4360 4361 __ice_get_drvinfo(netdev, drvinfo, repr->src_vsi); 4362 } 4363 4364 static void 4365 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 4366 { 4367 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4368 4369 /* for port representors only ETH_SS_STATS is supported */ 4370 if (repr->ops.ready(repr) || stringset != ETH_SS_STATS) 4371 return; 4372 4373 __ice_get_strings(netdev, stringset, data, repr->src_vsi); 4374 } 4375 4376 static void 4377 ice_repr_get_ethtool_stats(struct net_device *netdev, 4378 struct ethtool_stats __always_unused *stats, 4379 u64 *data) 4380 { 4381 struct ice_repr *repr = ice_netdev_to_repr(netdev); 4382 4383 if (repr->ops.ready(repr)) 4384 return; 4385 4386 __ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi); 4387 } 4388 4389 static int ice_repr_get_sset_count(struct net_device *netdev, int sset) 4390 { 4391 switch (sset) { 4392 case ETH_SS_STATS: 4393 return ICE_VSI_STATS_LEN; 4394 default: 4395 return -EOPNOTSUPP; 4396 } 4397 } 4398 4399 #define ICE_I2C_EEPROM_DEV_ADDR 0xA0 4400 #define ICE_I2C_EEPROM_DEV_ADDR2 0xA2 4401 #define ICE_MODULE_TYPE_SFP 0x03 4402 #define ICE_MODULE_TYPE_QSFP_PLUS 0x0D 4403 #define ICE_MODULE_TYPE_QSFP28 0x11 4404 #define ICE_MODULE_SFF_ADDR_MODE 0x04 4405 #define ICE_MODULE_SFF_DIAG_CAPAB 0x40 4406 #define ICE_MODULE_REVISION_ADDR 0x01 4407 #define ICE_MODULE_SFF_8472_COMP 0x5E 4408 #define ICE_MODULE_SFF_8472_SWAP 0x5C 4409 #define ICE_MODULE_QSFP_MAX_LEN 640 4410 4411 /** 4412 * ice_get_module_info - get SFF module type and revision information 4413 * @netdev: network interface device structure 4414 * @modinfo: module EEPROM size and layout information structure 4415 */ 4416 static int 4417 ice_get_module_info(struct net_device *netdev, 4418 struct ethtool_modinfo *modinfo) 4419 { 4420 struct ice_netdev_priv *np = netdev_priv(netdev); 4421 struct ice_vsi *vsi = np->vsi; 4422 struct ice_pf *pf = vsi->back; 4423 struct ice_hw *hw = &pf->hw; 4424 u8 sff8472_comp = 0; 4425 u8 sff8472_swap = 0; 4426 u8 sff8636_rev = 0; 4427 u8 value = 0; 4428 int status; 4429 4430 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00, 4431 0, &value, 1, 0, NULL); 4432 if (status) 4433 return status; 4434 4435 switch (value) { 4436 case ICE_MODULE_TYPE_SFP: 4437 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4438 ICE_MODULE_SFF_8472_COMP, 0x00, 0, 4439 &sff8472_comp, 1, 0, NULL); 4440 if (status) 4441 return status; 4442 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4443 ICE_MODULE_SFF_8472_SWAP, 0x00, 0, 4444 &sff8472_swap, 1, 0, NULL); 4445 if (status) 4446 return status; 4447 4448 if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) { 4449 modinfo->type = ETH_MODULE_SFF_8079; 4450 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4451 } else if (sff8472_comp && 4452 (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) { 4453 modinfo->type = ETH_MODULE_SFF_8472; 4454 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 4455 } else { 4456 modinfo->type = ETH_MODULE_SFF_8079; 4457 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 4458 } 4459 break; 4460 case ICE_MODULE_TYPE_QSFP_PLUS: 4461 case ICE_MODULE_TYPE_QSFP28: 4462 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 4463 ICE_MODULE_REVISION_ADDR, 0x00, 0, 4464 &sff8636_rev, 1, 0, NULL); 4465 if (status) 4466 return status; 4467 /* Check revision compliance */ 4468 if (sff8636_rev > 0x02) { 4469 /* Module is SFF-8636 compliant */ 4470 modinfo->type = ETH_MODULE_SFF_8636; 4471 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4472 } else { 4473 modinfo->type = ETH_MODULE_SFF_8436; 4474 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN; 4475 } 4476 break; 4477 default: 4478 netdev_warn(netdev, "SFF Module Type not recognized.\n"); 4479 return -EINVAL; 4480 } 4481 return 0; 4482 } 4483 4484 /** 4485 * ice_get_module_eeprom - fill buffer with SFF EEPROM contents 4486 * @netdev: network interface device structure 4487 * @ee: EEPROM dump request structure 4488 * @data: buffer to be filled with EEPROM contents 4489 */ 4490 static int 4491 ice_get_module_eeprom(struct net_device *netdev, 4492 struct ethtool_eeprom *ee, u8 *data) 4493 { 4494 struct ice_netdev_priv *np = netdev_priv(netdev); 4495 #define SFF_READ_BLOCK_SIZE 8 4496 u8 value[SFF_READ_BLOCK_SIZE] = { 0 }; 4497 u8 addr = ICE_I2C_EEPROM_DEV_ADDR; 4498 struct ice_vsi *vsi = np->vsi; 4499 struct ice_pf *pf = vsi->back; 4500 struct ice_hw *hw = &pf->hw; 4501 bool is_sfp = false; 4502 unsigned int i, j; 4503 u16 offset = 0; 4504 u8 page = 0; 4505 int status; 4506 4507 if (!ee || !ee->len || !data) 4508 return -EINVAL; 4509 4510 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0, 4511 NULL); 4512 if (status) 4513 return status; 4514 4515 if (value[0] == ICE_MODULE_TYPE_SFP) 4516 is_sfp = true; 4517 4518 memset(data, 0, ee->len); 4519 for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) { 4520 offset = i + ee->offset; 4521 page = 0; 4522 4523 /* Check if we need to access the other memory page */ 4524 if (is_sfp) { 4525 if (offset >= ETH_MODULE_SFF_8079_LEN) { 4526 offset -= ETH_MODULE_SFF_8079_LEN; 4527 addr = ICE_I2C_EEPROM_DEV_ADDR2; 4528 } 4529 } else { 4530 while (offset >= ETH_MODULE_SFF_8436_LEN) { 4531 /* Compute memory page number and offset. */ 4532 offset -= ETH_MODULE_SFF_8436_LEN / 2; 4533 page++; 4534 } 4535 } 4536 4537 /* Bit 2 of EEPROM address 0x02 declares upper 4538 * pages are disabled on QSFP modules. 4539 * SFP modules only ever use page 0. 4540 */ 4541 if (page == 0 || !(data[0x2] & 0x4)) { 4542 u32 copy_len; 4543 4544 /* If i2c bus is busy due to slow page change or 4545 * link management access, call can fail. This is normal. 4546 * So we retry this a few times. 4547 */ 4548 for (j = 0; j < 4; j++) { 4549 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 4550 !is_sfp, value, 4551 SFF_READ_BLOCK_SIZE, 4552 0, NULL); 4553 netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n", 4554 addr, offset, page, is_sfp, 4555 value[0], value[1], value[2], value[3], 4556 value[4], value[5], value[6], value[7], 4557 status); 4558 if (status) { 4559 usleep_range(1500, 2500); 4560 memset(value, 0, SFF_READ_BLOCK_SIZE); 4561 continue; 4562 } 4563 break; 4564 } 4565 4566 /* Make sure we have enough room for the new block */ 4567 copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i); 4568 memcpy(data + i, value, copy_len); 4569 } 4570 } 4571 return 0; 4572 } 4573 4574 /** 4575 * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per 4576 * pcsquad, pcsport 4577 * @hw: pointer to the HW struct 4578 * @pcs_quad: pcsquad for input port 4579 * @pcs_port: pcsport for input port 4580 * @fec_stats: buffer to hold FEC statistics for given port 4581 * 4582 * Return: 0 on success, negative on failure. 4583 */ 4584 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port, 4585 struct ethtool_fec_stats *fec_stats) 4586 { 4587 u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0; 4588 u32 fec_corr_low_val = 0, fec_corr_high_val = 0; 4589 int err; 4590 4591 if (pcs_quad > 1 || pcs_port > 3) 4592 return -EINVAL; 4593 4594 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW, 4595 &fec_corr_low_val); 4596 if (err) 4597 return err; 4598 4599 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH, 4600 &fec_corr_high_val); 4601 if (err) 4602 return err; 4603 4604 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4605 ICE_FEC_UNCORR_LOW, 4606 &fec_uncorr_low_val); 4607 if (err) 4608 return err; 4609 4610 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, 4611 ICE_FEC_UNCORR_HIGH, 4612 &fec_uncorr_high_val); 4613 if (err) 4614 return err; 4615 4616 fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) + 4617 fec_corr_low_val; 4618 fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) + 4619 fec_uncorr_low_val; 4620 return 0; 4621 } 4622 4623 /** 4624 * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev 4625 * @netdev: network interface device structure 4626 * @fec_stats: buffer to hold FEC statistics for given port 4627 * @hist: buffer to put FEC histogram statistics for given port 4628 * 4629 */ 4630 static void ice_get_fec_stats(struct net_device *netdev, 4631 struct ethtool_fec_stats *fec_stats, 4632 struct ethtool_fec_hist *hist) 4633 { 4634 struct ice_netdev_priv *np = netdev_priv(netdev); 4635 struct ice_port_topology port_topology; 4636 struct ice_port_info *pi; 4637 struct ice_pf *pf; 4638 struct ice_hw *hw; 4639 int err; 4640 4641 pf = np->vsi->back; 4642 hw = &pf->hw; 4643 pi = np->vsi->port_info; 4644 4645 /* Serdes parameters are not supported if not the PF VSI */ 4646 if (np->vsi->type != ICE_VSI_PF || !pi) 4647 return; 4648 4649 err = ice_get_port_topology(hw, pi->lport, &port_topology); 4650 if (err) { 4651 netdev_info(netdev, "Extended register dump failed Lport %d\n", 4652 pi->lport); 4653 return; 4654 } 4655 4656 /* Get FEC correctable, uncorrectable counter */ 4657 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select, 4658 port_topology.pcs_port, fec_stats); 4659 if (err) 4660 netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n", 4661 pi->lport, err); 4662 } 4663 4664 #define ICE_ETHTOOL_PFR (ETH_RESET_IRQ | ETH_RESET_DMA | \ 4665 ETH_RESET_FILTER | ETH_RESET_OFFLOAD) 4666 4667 #define ICE_ETHTOOL_CORER ((ICE_ETHTOOL_PFR | ETH_RESET_RAM) << \ 4668 ETH_RESET_SHARED_SHIFT) 4669 4670 #define ICE_ETHTOOL_GLOBR (ICE_ETHTOOL_CORER | \ 4671 (ETH_RESET_MAC << ETH_RESET_SHARED_SHIFT) | \ 4672 (ETH_RESET_PHY << ETH_RESET_SHARED_SHIFT)) 4673 4674 #define ICE_ETHTOOL_VFR ICE_ETHTOOL_PFR 4675 4676 /** 4677 * ice_ethtool_reset - triggers a given type of reset 4678 * @dev: network interface device structure 4679 * @flags: set of reset flags 4680 * 4681 * Return: 0 on success, -EOPNOTSUPP when using unsupported set of flags. 4682 */ 4683 static int ice_ethtool_reset(struct net_device *dev, u32 *flags) 4684 { 4685 struct ice_netdev_priv *np = netdev_priv(dev); 4686 struct ice_pf *pf = np->vsi->back; 4687 enum ice_reset_req reset; 4688 4689 switch (*flags) { 4690 case ICE_ETHTOOL_CORER: 4691 reset = ICE_RESET_CORER; 4692 break; 4693 case ICE_ETHTOOL_GLOBR: 4694 reset = ICE_RESET_GLOBR; 4695 break; 4696 case ICE_ETHTOOL_PFR: 4697 reset = ICE_RESET_PFR; 4698 break; 4699 default: 4700 netdev_info(dev, "Unsupported set of ethtool flags"); 4701 return -EOPNOTSUPP; 4702 } 4703 4704 ice_schedule_reset(pf, reset); 4705 4706 *flags = 0; 4707 4708 return 0; 4709 } 4710 4711 /** 4712 * ice_repr_ethtool_reset - triggers a VF reset 4713 * @dev: network interface device structure 4714 * @flags: set of reset flags 4715 * 4716 * Return: 0 on success, 4717 * -EOPNOTSUPP when using unsupported set of flags 4718 * -EBUSY when VF is not ready for reset. 4719 */ 4720 static int ice_repr_ethtool_reset(struct net_device *dev, u32 *flags) 4721 { 4722 struct ice_repr *repr = ice_netdev_to_repr(dev); 4723 struct ice_vf *vf; 4724 4725 if (repr->type != ICE_REPR_TYPE_VF || 4726 *flags != ICE_ETHTOOL_VFR) 4727 return -EOPNOTSUPP; 4728 4729 vf = repr->vf; 4730 4731 if (ice_check_vf_ready_for_cfg(vf)) 4732 return -EBUSY; 4733 4734 *flags = 0; 4735 4736 return ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); 4737 } 4738 4739 static const struct ethtool_ops ice_ethtool_ops = { 4740 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 4741 ETHTOOL_COALESCE_USE_ADAPTIVE | 4742 ETHTOOL_COALESCE_RX_USECS_HIGH, 4743 .supported_input_xfrm = RXH_XFRM_SYM_XOR, 4744 .get_link_ksettings = ice_get_link_ksettings, 4745 .set_link_ksettings = ice_set_link_ksettings, 4746 .get_fec_stats = ice_get_fec_stats, 4747 .get_drvinfo = ice_get_drvinfo, 4748 .get_regs_len = ice_get_regs_len, 4749 .get_regs = ice_get_regs, 4750 .get_wol = ice_get_wol, 4751 .set_wol = ice_set_wol, 4752 .get_msglevel = ice_get_msglevel, 4753 .set_msglevel = ice_set_msglevel, 4754 .self_test = ice_self_test, 4755 .get_link = ethtool_op_get_link, 4756 .get_link_ext_stats = ice_get_link_ext_stats, 4757 .get_eeprom_len = ice_get_eeprom_len, 4758 .get_eeprom = ice_get_eeprom, 4759 .get_coalesce = ice_get_coalesce, 4760 .set_coalesce = ice_set_coalesce, 4761 .get_strings = ice_get_strings, 4762 .set_phys_id = ice_set_phys_id, 4763 .get_ethtool_stats = ice_get_ethtool_stats, 4764 .get_priv_flags = ice_get_priv_flags, 4765 .set_priv_flags = ice_set_priv_flags, 4766 .get_sset_count = ice_get_sset_count, 4767 .get_rxnfc = ice_get_rxnfc, 4768 .set_rxnfc = ice_set_rxnfc, 4769 .get_ringparam = ice_get_ringparam, 4770 .set_ringparam = ice_set_ringparam, 4771 .nway_reset = ice_nway_reset, 4772 .get_pauseparam = ice_get_pauseparam, 4773 .set_pauseparam = ice_set_pauseparam, 4774 .reset = ice_ethtool_reset, 4775 .get_rxfh_key_size = ice_get_rxfh_key_size, 4776 .get_rxfh_indir_size = ice_get_rxfh_indir_size, 4777 .get_rxfh = ice_get_rxfh, 4778 .set_rxfh = ice_set_rxfh, 4779 .get_rxfh_fields = ice_get_rxfh_fields, 4780 .set_rxfh_fields = ice_set_rxfh_fields, 4781 .get_channels = ice_get_channels, 4782 .set_channels = ice_set_channels, 4783 .get_ts_info = ice_get_ts_info, 4784 .get_per_queue_coalesce = ice_get_per_q_coalesce, 4785 .set_per_queue_coalesce = ice_set_per_q_coalesce, 4786 .get_fecparam = ice_get_fecparam, 4787 .set_fecparam = ice_set_fecparam, 4788 .get_module_info = ice_get_module_info, 4789 .get_module_eeprom = ice_get_module_eeprom, 4790 }; 4791 4792 static const struct ethtool_ops ice_ethtool_safe_mode_ops = { 4793 .get_link_ksettings = ice_get_link_ksettings, 4794 .set_link_ksettings = ice_set_link_ksettings, 4795 .get_drvinfo = ice_get_drvinfo, 4796 .get_regs_len = ice_get_regs_len, 4797 .get_regs = ice_get_regs, 4798 .get_wol = ice_get_wol, 4799 .set_wol = ice_set_wol, 4800 .get_msglevel = ice_get_msglevel, 4801 .set_msglevel = ice_set_msglevel, 4802 .get_link = ethtool_op_get_link, 4803 .get_eeprom_len = ice_get_eeprom_len, 4804 .get_eeprom = ice_get_eeprom, 4805 .get_strings = ice_get_strings, 4806 .get_ethtool_stats = ice_get_ethtool_stats, 4807 .get_sset_count = ice_get_sset_count, 4808 .get_ringparam = ice_get_ringparam, 4809 .set_ringparam = ice_set_ringparam, 4810 .nway_reset = ice_nway_reset, 4811 .get_channels = ice_get_channels, 4812 }; 4813 4814 /** 4815 * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops 4816 * @netdev: network interface device structure 4817 */ 4818 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev) 4819 { 4820 netdev->ethtool_ops = &ice_ethtool_safe_mode_ops; 4821 } 4822 4823 static const struct ethtool_ops ice_ethtool_repr_ops = { 4824 .get_drvinfo = ice_repr_get_drvinfo, 4825 .get_link = ethtool_op_get_link, 4826 .get_strings = ice_repr_get_strings, 4827 .get_ethtool_stats = ice_repr_get_ethtool_stats, 4828 .get_sset_count = ice_repr_get_sset_count, 4829 .reset = ice_repr_ethtool_reset, 4830 }; 4831 4832 /** 4833 * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops 4834 * @netdev: network interface device structure 4835 */ 4836 void ice_set_ethtool_repr_ops(struct net_device *netdev) 4837 { 4838 netdev->ethtool_ops = &ice_ethtool_repr_ops; 4839 } 4840 4841 /** 4842 * ice_set_ethtool_ops - setup netdev ethtool ops 4843 * @netdev: network interface device structure 4844 * 4845 * setup netdev ethtool ops with ice specific ops 4846 */ 4847 void ice_set_ethtool_ops(struct net_device *netdev) 4848 { 4849 netdev->ethtool_ops = &ice_ethtool_ops; 4850 } 4851