xref: /linux/drivers/net/ethernet/intel/ice/ice_ddp.c (revision 569d7db70e5dcf13fbf072f10e9096577ac1e565)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2022, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice.h"
6 #include "ice_ddp.h"
7 #include "ice_sched.h"
8 
9 /* For supporting double VLAN mode, it is necessary to enable or disable certain
10  * boost tcam entries. The metadata labels names that match the following
11  * prefixes will be saved to allow enabling double VLAN mode.
12  */
13 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */
14 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */
15 
16 /* To support tunneling entries by PF, the package will append the PF number to
17  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
18  */
19 #define ICE_TNL_PRE "TNL_"
20 static const struct ice_tunnel_type_scan tnls[] = {
21 	{ TNL_VXLAN, "TNL_VXLAN_PF" },
22 	{ TNL_GENEVE, "TNL_GENEVE_PF" },
23 	{ TNL_LAST, "" }
24 };
25 
26 /**
27  * ice_verify_pkg - verify package
28  * @pkg: pointer to the package buffer
29  * @len: size of the package buffer
30  *
31  * Verifies various attributes of the package file, including length, format
32  * version, and the requirement of at least one segment.
33  */
34 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
35 {
36 	u32 seg_count;
37 	u32 i;
38 
39 	if (len < struct_size(pkg, seg_offset, 1))
40 		return ICE_DDP_PKG_INVALID_FILE;
41 
42 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
43 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
44 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
45 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
46 		return ICE_DDP_PKG_INVALID_FILE;
47 
48 	/* pkg must have at least one segment */
49 	seg_count = le32_to_cpu(pkg->seg_count);
50 	if (seg_count < 1)
51 		return ICE_DDP_PKG_INVALID_FILE;
52 
53 	/* make sure segment array fits in package length */
54 	if (len < struct_size(pkg, seg_offset, seg_count))
55 		return ICE_DDP_PKG_INVALID_FILE;
56 
57 	/* all segments must fit within length */
58 	for (i = 0; i < seg_count; i++) {
59 		u32 off = le32_to_cpu(pkg->seg_offset[i]);
60 		struct ice_generic_seg_hdr *seg;
61 
62 		/* segment header must fit */
63 		if (len < off + sizeof(*seg))
64 			return ICE_DDP_PKG_INVALID_FILE;
65 
66 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
67 
68 		/* segment body must fit */
69 		if (len < off + le32_to_cpu(seg->seg_size))
70 			return ICE_DDP_PKG_INVALID_FILE;
71 	}
72 
73 	return ICE_DDP_PKG_SUCCESS;
74 }
75 
76 /**
77  * ice_free_seg - free package segment pointer
78  * @hw: pointer to the hardware structure
79  *
80  * Frees the package segment pointer in the proper manner, depending on if the
81  * segment was allocated or just the passed in pointer was stored.
82  */
83 void ice_free_seg(struct ice_hw *hw)
84 {
85 	if (hw->pkg_copy) {
86 		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
87 		hw->pkg_copy = NULL;
88 		hw->pkg_size = 0;
89 	}
90 	hw->seg = NULL;
91 }
92 
93 /**
94  * ice_chk_pkg_version - check package version for compatibility with driver
95  * @pkg_ver: pointer to a version structure to check
96  *
97  * Check to make sure that the package about to be downloaded is compatible with
98  * the driver. To be compatible, the major and minor components of the package
99  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
100  * definitions.
101  */
102 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
103 {
104 	if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
105 	    (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
106 	     pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
107 		return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
108 	else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
109 		 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
110 		  pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
111 		return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
112 
113 	return ICE_DDP_PKG_SUCCESS;
114 }
115 
116 /**
117  * ice_pkg_val_buf
118  * @buf: pointer to the ice buffer
119  *
120  * This helper function validates a buffer's header.
121  */
122 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
123 {
124 	struct ice_buf_hdr *hdr;
125 	u16 section_count;
126 	u16 data_end;
127 
128 	hdr = (struct ice_buf_hdr *)buf->buf;
129 	/* verify data */
130 	section_count = le16_to_cpu(hdr->section_count);
131 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
132 		return NULL;
133 
134 	data_end = le16_to_cpu(hdr->data_end);
135 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
136 		return NULL;
137 
138 	return hdr;
139 }
140 
141 /**
142  * ice_find_buf_table
143  * @ice_seg: pointer to the ice segment
144  *
145  * Returns the address of the buffer table within the ice segment.
146  */
147 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
148 {
149 	struct ice_nvm_table *nvms = (struct ice_nvm_table *)
150 		(ice_seg->device_table + le32_to_cpu(ice_seg->device_table_count));
151 
152 	return (__force struct ice_buf_table *)(nvms->vers +
153 						le32_to_cpu(nvms->table_count));
154 }
155 
156 /**
157  * ice_pkg_enum_buf
158  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
159  * @state: pointer to the enum state
160  *
161  * This function will enumerate all the buffers in the ice segment. The first
162  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
163  * ice_seg is set to NULL which continues the enumeration. When the function
164  * returns a NULL pointer, then the end of the buffers has been reached, or an
165  * unexpected value has been detected (for example an invalid section count or
166  * an invalid buffer end value).
167  */
168 static struct ice_buf_hdr *ice_pkg_enum_buf(struct ice_seg *ice_seg,
169 					    struct ice_pkg_enum *state)
170 {
171 	if (ice_seg) {
172 		state->buf_table = ice_find_buf_table(ice_seg);
173 		if (!state->buf_table)
174 			return NULL;
175 
176 		state->buf_idx = 0;
177 		return ice_pkg_val_buf(state->buf_table->buf_array);
178 	}
179 
180 	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
181 		return ice_pkg_val_buf(state->buf_table->buf_array +
182 				       state->buf_idx);
183 	else
184 		return NULL;
185 }
186 
187 /**
188  * ice_pkg_advance_sect
189  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
190  * @state: pointer to the enum state
191  *
192  * This helper function will advance the section within the ice segment,
193  * also advancing the buffer if needed.
194  */
195 static bool ice_pkg_advance_sect(struct ice_seg *ice_seg,
196 				 struct ice_pkg_enum *state)
197 {
198 	if (!ice_seg && !state->buf)
199 		return false;
200 
201 	if (!ice_seg && state->buf)
202 		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
203 			return true;
204 
205 	state->buf = ice_pkg_enum_buf(ice_seg, state);
206 	if (!state->buf)
207 		return false;
208 
209 	/* start of new buffer, reset section index */
210 	state->sect_idx = 0;
211 	return true;
212 }
213 
214 /**
215  * ice_pkg_enum_section
216  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
217  * @state: pointer to the enum state
218  * @sect_type: section type to enumerate
219  *
220  * This function will enumerate all the sections of a particular type in the
221  * ice segment. The first call is made with the ice_seg parameter non-NULL;
222  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
223  * When the function returns a NULL pointer, then the end of the matching
224  * sections has been reached.
225  */
226 void *ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
227 			   u32 sect_type)
228 {
229 	u16 offset, size;
230 
231 	if (ice_seg)
232 		state->type = sect_type;
233 
234 	if (!ice_pkg_advance_sect(ice_seg, state))
235 		return NULL;
236 
237 	/* scan for next matching section */
238 	while (state->buf->section_entry[state->sect_idx].type !=
239 	       cpu_to_le32(state->type))
240 		if (!ice_pkg_advance_sect(NULL, state))
241 			return NULL;
242 
243 	/* validate section */
244 	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
245 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
246 		return NULL;
247 
248 	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
249 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
250 		return NULL;
251 
252 	/* make sure the section fits in the buffer */
253 	if (offset + size > ICE_PKG_BUF_SIZE)
254 		return NULL;
255 
256 	state->sect_type =
257 		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
258 
259 	/* calc pointer to this section */
260 	state->sect =
261 		((u8 *)state->buf) +
262 		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
263 
264 	return state->sect;
265 }
266 
267 /**
268  * ice_pkg_enum_entry
269  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
270  * @state: pointer to the enum state
271  * @sect_type: section type to enumerate
272  * @offset: pointer to variable that receives the offset in the table (optional)
273  * @handler: function that handles access to the entries into the section type
274  *
275  * This function will enumerate all the entries in particular section type in
276  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
277  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
278  * When the function returns a NULL pointer, then the end of the entries has
279  * been reached.
280  *
281  * Since each section may have a different header and entry size, the handler
282  * function is needed to determine the number and location entries in each
283  * section.
284  *
285  * The offset parameter is optional, but should be used for sections that
286  * contain an offset for each section table. For such cases, the section handler
287  * function must return the appropriate offset + index to give the absolution
288  * offset for each entry. For example, if the base for a section's header
289  * indicates a base offset of 10, and the index for the entry is 2, then
290  * section handler function should set the offset to 10 + 2 = 12.
291  */
292 static void *ice_pkg_enum_entry(struct ice_seg *ice_seg,
293 				struct ice_pkg_enum *state, u32 sect_type,
294 				u32 *offset,
295 				void *(*handler)(u32 sect_type, void *section,
296 						 u32 index, u32 *offset))
297 {
298 	void *entry;
299 
300 	if (ice_seg) {
301 		if (!handler)
302 			return NULL;
303 
304 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
305 			return NULL;
306 
307 		state->entry_idx = 0;
308 		state->handler = handler;
309 	} else {
310 		state->entry_idx++;
311 	}
312 
313 	if (!state->handler)
314 		return NULL;
315 
316 	/* get entry */
317 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
318 			       offset);
319 	if (!entry) {
320 		/* end of a section, look for another section of this type */
321 		if (!ice_pkg_enum_section(NULL, state, 0))
322 			return NULL;
323 
324 		state->entry_idx = 0;
325 		entry = state->handler(state->sect_type, state->sect,
326 				       state->entry_idx, offset);
327 	}
328 
329 	return entry;
330 }
331 
332 /**
333  * ice_sw_fv_handler
334  * @sect_type: section type
335  * @section: pointer to section
336  * @index: index of the field vector entry to be returned
337  * @offset: ptr to variable that receives the offset in the field vector table
338  *
339  * This is a callback function that can be passed to ice_pkg_enum_entry.
340  * This function treats the given section as of type ice_sw_fv_section and
341  * enumerates offset field. "offset" is an index into the field vector table.
342  */
343 static void *ice_sw_fv_handler(u32 sect_type, void *section, u32 index,
344 			       u32 *offset)
345 {
346 	struct ice_sw_fv_section *fv_section = section;
347 
348 	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
349 		return NULL;
350 	if (index >= le16_to_cpu(fv_section->count))
351 		return NULL;
352 	if (offset)
353 		/* "index" passed in to this function is relative to a given
354 		 * 4k block. To get to the true index into the field vector
355 		 * table need to add the relative index to the base_offset
356 		 * field of this section
357 		 */
358 		*offset = le16_to_cpu(fv_section->base_offset) + index;
359 	return fv_section->fv + index;
360 }
361 
362 /**
363  * ice_get_prof_index_max - get the max profile index for used profile
364  * @hw: pointer to the HW struct
365  *
366  * Calling this function will get the max profile index for used profile
367  * and store the index number in struct ice_switch_info *switch_info
368  * in HW for following use.
369  */
370 static int ice_get_prof_index_max(struct ice_hw *hw)
371 {
372 	u16 prof_index = 0, j, max_prof_index = 0;
373 	struct ice_pkg_enum state;
374 	struct ice_seg *ice_seg;
375 	bool flag = false;
376 	struct ice_fv *fv;
377 	u32 offset;
378 
379 	memset(&state, 0, sizeof(state));
380 
381 	if (!hw->seg)
382 		return -EINVAL;
383 
384 	ice_seg = hw->seg;
385 
386 	do {
387 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
388 					&offset, ice_sw_fv_handler);
389 		if (!fv)
390 			break;
391 		ice_seg = NULL;
392 
393 		/* in the profile that not be used, the prot_id is set to 0xff
394 		 * and the off is set to 0x1ff for all the field vectors.
395 		 */
396 		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
397 			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
398 			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
399 				flag = true;
400 		if (flag && prof_index > max_prof_index)
401 			max_prof_index = prof_index;
402 
403 		prof_index++;
404 		flag = false;
405 	} while (fv);
406 
407 	hw->switch_info->max_used_prof_index = max_prof_index;
408 
409 	return 0;
410 }
411 
412 /**
413  * ice_get_ddp_pkg_state - get DDP pkg state after download
414  * @hw: pointer to the HW struct
415  * @already_loaded: indicates if pkg was already loaded onto the device
416  */
417 static enum ice_ddp_state ice_get_ddp_pkg_state(struct ice_hw *hw,
418 						bool already_loaded)
419 {
420 	if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
421 	    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
422 	    hw->pkg_ver.update == hw->active_pkg_ver.update &&
423 	    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
424 	    !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
425 		if (already_loaded)
426 			return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
427 		else
428 			return ICE_DDP_PKG_SUCCESS;
429 	} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
430 		   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
431 		return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
432 	} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
433 		   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
434 		return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
435 	} else {
436 		return ICE_DDP_PKG_ERR;
437 	}
438 }
439 
440 /**
441  * ice_init_pkg_regs - initialize additional package registers
442  * @hw: pointer to the hardware structure
443  */
444 static void ice_init_pkg_regs(struct ice_hw *hw)
445 {
446 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
447 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
448 #define ICE_SW_BLK_IDX 0
449 
450 	/* setup Switch block input mask, which is 48-bits in two parts */
451 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
452 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
453 }
454 
455 /**
456  * ice_marker_ptype_tcam_handler
457  * @sect_type: section type
458  * @section: pointer to section
459  * @index: index of the Marker PType TCAM entry to be returned
460  * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
461  *
462  * This is a callback function that can be passed to ice_pkg_enum_entry.
463  * Handles enumeration of individual Marker PType TCAM entries.
464  */
465 static void *ice_marker_ptype_tcam_handler(u32 sect_type, void *section,
466 					   u32 index, u32 *offset)
467 {
468 	struct ice_marker_ptype_tcam_section *marker_ptype;
469 
470 	if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
471 		return NULL;
472 
473 	if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
474 		return NULL;
475 
476 	if (offset)
477 		*offset = 0;
478 
479 	marker_ptype = section;
480 	if (index >= le16_to_cpu(marker_ptype->count))
481 		return NULL;
482 
483 	return marker_ptype->tcam + index;
484 }
485 
486 /**
487  * ice_add_dvm_hint
488  * @hw: pointer to the HW structure
489  * @val: value of the boost entry
490  * @enable: true if entry needs to be enabled, or false if needs to be disabled
491  */
492 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
493 {
494 	if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
495 		hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
496 		hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
497 		hw->dvm_upd.count++;
498 	}
499 }
500 
501 /**
502  * ice_add_tunnel_hint
503  * @hw: pointer to the HW structure
504  * @label_name: label text
505  * @val: value of the tunnel port boost entry
506  */
507 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
508 {
509 	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
510 		u16 i;
511 
512 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
513 			size_t len = strlen(tnls[i].label_prefix);
514 
515 			/* Look for matching label start, before continuing */
516 			if (strncmp(label_name, tnls[i].label_prefix, len))
517 				continue;
518 
519 			/* Make sure this label matches our PF. Note that the PF
520 			 * character ('0' - '7') will be located where our
521 			 * prefix string's null terminator is located.
522 			 */
523 			if ((label_name[len] - '0') == hw->pf_id) {
524 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
525 				hw->tnl.tbl[hw->tnl.count].valid = false;
526 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
527 				hw->tnl.tbl[hw->tnl.count].port = 0;
528 				hw->tnl.count++;
529 				break;
530 			}
531 		}
532 	}
533 }
534 
535 /**
536  * ice_label_enum_handler
537  * @sect_type: section type
538  * @section: pointer to section
539  * @index: index of the label entry to be returned
540  * @offset: pointer to receive absolute offset, always zero for label sections
541  *
542  * This is a callback function that can be passed to ice_pkg_enum_entry.
543  * Handles enumeration of individual label entries.
544  */
545 static void *ice_label_enum_handler(u32 __always_unused sect_type,
546 				    void *section, u32 index, u32 *offset)
547 {
548 	struct ice_label_section *labels;
549 
550 	if (!section)
551 		return NULL;
552 
553 	if (index > ICE_MAX_LABELS_IN_BUF)
554 		return NULL;
555 
556 	if (offset)
557 		*offset = 0;
558 
559 	labels = section;
560 	if (index >= le16_to_cpu(labels->count))
561 		return NULL;
562 
563 	return labels->label + index;
564 }
565 
566 /**
567  * ice_enum_labels
568  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
569  * @type: the section type that will contain the label (0 on subsequent calls)
570  * @state: ice_pkg_enum structure that will hold the state of the enumeration
571  * @value: pointer to a value that will return the label's value if found
572  *
573  * Enumerates a list of labels in the package. The caller will call
574  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
575  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
576  * the end of the list has been reached.
577  */
578 static char *ice_enum_labels(struct ice_seg *ice_seg, u32 type,
579 			     struct ice_pkg_enum *state, u16 *value)
580 {
581 	struct ice_label *label;
582 
583 	/* Check for valid label section on first call */
584 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
585 		return NULL;
586 
587 	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
588 				   ice_label_enum_handler);
589 	if (!label)
590 		return NULL;
591 
592 	*value = le16_to_cpu(label->value);
593 	return label->name;
594 }
595 
596 /**
597  * ice_boost_tcam_handler
598  * @sect_type: section type
599  * @section: pointer to section
600  * @index: index of the boost TCAM entry to be returned
601  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
602  *
603  * This is a callback function that can be passed to ice_pkg_enum_entry.
604  * Handles enumeration of individual boost TCAM entries.
605  */
606 static void *ice_boost_tcam_handler(u32 sect_type, void *section, u32 index,
607 				    u32 *offset)
608 {
609 	struct ice_boost_tcam_section *boost;
610 
611 	if (!section)
612 		return NULL;
613 
614 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
615 		return NULL;
616 
617 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
618 		return NULL;
619 
620 	if (offset)
621 		*offset = 0;
622 
623 	boost = section;
624 	if (index >= le16_to_cpu(boost->count))
625 		return NULL;
626 
627 	return boost->tcam + index;
628 }
629 
630 /**
631  * ice_find_boost_entry
632  * @ice_seg: pointer to the ice segment (non-NULL)
633  * @addr: Boost TCAM address of entry to search for
634  * @entry: returns pointer to the entry
635  *
636  * Finds a particular Boost TCAM entry and returns a pointer to that entry
637  * if it is found. The ice_seg parameter must not be NULL since the first call
638  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
639  */
640 static int ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
641 				struct ice_boost_tcam_entry **entry)
642 {
643 	struct ice_boost_tcam_entry *tcam;
644 	struct ice_pkg_enum state;
645 
646 	memset(&state, 0, sizeof(state));
647 
648 	if (!ice_seg)
649 		return -EINVAL;
650 
651 	do {
652 		tcam = ice_pkg_enum_entry(ice_seg, &state,
653 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
654 					  ice_boost_tcam_handler);
655 		if (tcam && le16_to_cpu(tcam->addr) == addr) {
656 			*entry = tcam;
657 			return 0;
658 		}
659 
660 		ice_seg = NULL;
661 	} while (tcam);
662 
663 	*entry = NULL;
664 	return -EIO;
665 }
666 
667 /**
668  * ice_is_init_pkg_successful - check if DDP init was successful
669  * @state: state of the DDP pkg after download
670  */
671 bool ice_is_init_pkg_successful(enum ice_ddp_state state)
672 {
673 	switch (state) {
674 	case ICE_DDP_PKG_SUCCESS:
675 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
676 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
677 		return true;
678 	default:
679 		return false;
680 	}
681 }
682 
683 /**
684  * ice_pkg_buf_alloc
685  * @hw: pointer to the HW structure
686  *
687  * Allocates a package buffer and returns a pointer to the buffer header.
688  * Note: all package contents must be in Little Endian form.
689  */
690 struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
691 {
692 	struct ice_buf_build *bld;
693 	struct ice_buf_hdr *buf;
694 
695 	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
696 	if (!bld)
697 		return NULL;
698 
699 	buf = (struct ice_buf_hdr *)bld;
700 	buf->data_end =
701 		cpu_to_le16(offsetof(struct ice_buf_hdr, section_entry));
702 	return bld;
703 }
704 
705 static bool ice_is_gtp_u_profile(u16 prof_idx)
706 {
707 	return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
708 		prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
709 	       prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
710 }
711 
712 static bool ice_is_gtp_c_profile(u16 prof_idx)
713 {
714 	switch (prof_idx) {
715 	case ICE_PROFID_IPV4_GTPC_TEID:
716 	case ICE_PROFID_IPV4_GTPC_NO_TEID:
717 	case ICE_PROFID_IPV6_GTPC_TEID:
718 	case ICE_PROFID_IPV6_GTPC_NO_TEID:
719 		return true;
720 	default:
721 		return false;
722 	}
723 }
724 
725 static bool ice_is_pfcp_profile(u16 prof_idx)
726 {
727 	return prof_idx >= ICE_PROFID_IPV4_PFCP_NODE &&
728 	       prof_idx <= ICE_PROFID_IPV6_PFCP_SESSION;
729 }
730 
731 /**
732  * ice_get_sw_prof_type - determine switch profile type
733  * @hw: pointer to the HW structure
734  * @fv: pointer to the switch field vector
735  * @prof_idx: profile index to check
736  */
737 static enum ice_prof_type ice_get_sw_prof_type(struct ice_hw *hw,
738 					       struct ice_fv *fv, u32 prof_idx)
739 {
740 	u16 i;
741 
742 	if (ice_is_gtp_c_profile(prof_idx))
743 		return ICE_PROF_TUN_GTPC;
744 
745 	if (ice_is_gtp_u_profile(prof_idx))
746 		return ICE_PROF_TUN_GTPU;
747 
748 	if (ice_is_pfcp_profile(prof_idx))
749 		return ICE_PROF_TUN_PFCP;
750 
751 	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
752 		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
753 		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
754 		    fv->ew[i].off == ICE_VNI_OFFSET)
755 			return ICE_PROF_TUN_UDP;
756 
757 		/* GRE tunnel will have GRE protocol */
758 		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
759 			return ICE_PROF_TUN_GRE;
760 	}
761 
762 	return ICE_PROF_NON_TUN;
763 }
764 
765 /**
766  * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
767  * @hw: pointer to hardware structure
768  * @req_profs: type of profiles requested
769  * @bm: pointer to memory for returning the bitmap of field vectors
770  */
771 void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
772 			  unsigned long *bm)
773 {
774 	struct ice_pkg_enum state;
775 	struct ice_seg *ice_seg;
776 	struct ice_fv *fv;
777 
778 	if (req_profs == ICE_PROF_ALL) {
779 		bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
780 		return;
781 	}
782 
783 	memset(&state, 0, sizeof(state));
784 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
785 	ice_seg = hw->seg;
786 	do {
787 		enum ice_prof_type prof_type;
788 		u32 offset;
789 
790 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
791 					&offset, ice_sw_fv_handler);
792 		ice_seg = NULL;
793 
794 		if (fv) {
795 			/* Determine field vector type */
796 			prof_type = ice_get_sw_prof_type(hw, fv, offset);
797 
798 			if (req_profs & prof_type)
799 				set_bit((u16)offset, bm);
800 		}
801 	} while (fv);
802 }
803 
804 /**
805  * ice_get_sw_fv_list
806  * @hw: pointer to the HW structure
807  * @lkups: list of protocol types
808  * @bm: bitmap of field vectors to consider
809  * @fv_list: Head of a list
810  *
811  * Finds all the field vector entries from switch block that contain
812  * a given protocol ID and offset and returns a list of structures of type
813  * "ice_sw_fv_list_entry". Every structure in the list has a field vector
814  * definition and profile ID information
815  * NOTE: The caller of the function is responsible for freeing the memory
816  * allocated for every list entry.
817  */
818 int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
819 		       unsigned long *bm, struct list_head *fv_list)
820 {
821 	struct ice_sw_fv_list_entry *fvl;
822 	struct ice_sw_fv_list_entry *tmp;
823 	struct ice_pkg_enum state;
824 	struct ice_seg *ice_seg;
825 	struct ice_fv *fv;
826 	u32 offset;
827 
828 	memset(&state, 0, sizeof(state));
829 
830 	if (!lkups->n_val_words || !hw->seg)
831 		return -EINVAL;
832 
833 	ice_seg = hw->seg;
834 	do {
835 		u16 i;
836 
837 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
838 					&offset, ice_sw_fv_handler);
839 		if (!fv)
840 			break;
841 		ice_seg = NULL;
842 
843 		/* If field vector is not in the bitmap list, then skip this
844 		 * profile.
845 		 */
846 		if (!test_bit((u16)offset, bm))
847 			continue;
848 
849 		for (i = 0; i < lkups->n_val_words; i++) {
850 			int j;
851 
852 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
853 				if (fv->ew[j].prot_id ==
854 					    lkups->fv_words[i].prot_id &&
855 				    fv->ew[j].off == lkups->fv_words[i].off)
856 					break;
857 			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
858 				break;
859 			if (i + 1 == lkups->n_val_words) {
860 				fvl = devm_kzalloc(ice_hw_to_dev(hw),
861 						   sizeof(*fvl), GFP_KERNEL);
862 				if (!fvl)
863 					goto err;
864 				fvl->fv_ptr = fv;
865 				fvl->profile_id = offset;
866 				list_add(&fvl->list_entry, fv_list);
867 				break;
868 			}
869 		}
870 	} while (fv);
871 	if (list_empty(fv_list)) {
872 		dev_warn(ice_hw_to_dev(hw),
873 			 "Required profiles not found in currently loaded DDP package");
874 		return -EIO;
875 	}
876 
877 	return 0;
878 
879 err:
880 	list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
881 		list_del(&fvl->list_entry);
882 		devm_kfree(ice_hw_to_dev(hw), fvl);
883 	}
884 
885 	return -ENOMEM;
886 }
887 
888 /**
889  * ice_init_prof_result_bm - Initialize the profile result index bitmap
890  * @hw: pointer to hardware structure
891  */
892 void ice_init_prof_result_bm(struct ice_hw *hw)
893 {
894 	struct ice_pkg_enum state;
895 	struct ice_seg *ice_seg;
896 	struct ice_fv *fv;
897 
898 	memset(&state, 0, sizeof(state));
899 
900 	if (!hw->seg)
901 		return;
902 
903 	ice_seg = hw->seg;
904 	do {
905 		u32 off;
906 		u16 i;
907 
908 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
909 					&off, ice_sw_fv_handler);
910 		ice_seg = NULL;
911 		if (!fv)
912 			break;
913 
914 		bitmap_zero(hw->switch_info->prof_res_bm[off],
915 			    ICE_MAX_FV_WORDS);
916 
917 		/* Determine empty field vector indices, these can be
918 		 * used for recipe results. Skip index 0, since it is
919 		 * always used for Switch ID.
920 		 */
921 		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
922 			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
923 			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
924 				set_bit(i, hw->switch_info->prof_res_bm[off]);
925 	} while (fv);
926 }
927 
928 /**
929  * ice_pkg_buf_free
930  * @hw: pointer to the HW structure
931  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
932  *
933  * Frees a package buffer
934  */
935 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
936 {
937 	devm_kfree(ice_hw_to_dev(hw), bld);
938 }
939 
940 /**
941  * ice_pkg_buf_reserve_section
942  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
943  * @count: the number of sections to reserve
944  *
945  * Reserves one or more section table entries in a package buffer. This routine
946  * can be called multiple times as long as they are made before calling
947  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
948  * is called once, the number of sections that can be allocated will not be able
949  * to be increased; not using all reserved sections is fine, but this will
950  * result in some wasted space in the buffer.
951  * Note: all package contents must be in Little Endian form.
952  */
953 int ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
954 {
955 	struct ice_buf_hdr *buf;
956 	u16 section_count;
957 	u16 data_end;
958 
959 	if (!bld)
960 		return -EINVAL;
961 
962 	buf = (struct ice_buf_hdr *)&bld->buf;
963 
964 	/* already an active section, can't increase table size */
965 	section_count = le16_to_cpu(buf->section_count);
966 	if (section_count > 0)
967 		return -EIO;
968 
969 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
970 		return -EIO;
971 	bld->reserved_section_table_entries += count;
972 
973 	data_end = le16_to_cpu(buf->data_end) +
974 		   flex_array_size(buf, section_entry, count);
975 	buf->data_end = cpu_to_le16(data_end);
976 
977 	return 0;
978 }
979 
980 /**
981  * ice_pkg_buf_alloc_section
982  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
983  * @type: the section type value
984  * @size: the size of the section to reserve (in bytes)
985  *
986  * Reserves memory in the buffer for a section's content and updates the
987  * buffers' status accordingly. This routine returns a pointer to the first
988  * byte of the section start within the buffer, which is used to fill in the
989  * section contents.
990  * Note: all package contents must be in Little Endian form.
991  */
992 void *ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
993 {
994 	struct ice_buf_hdr *buf;
995 	u16 sect_count;
996 	u16 data_end;
997 
998 	if (!bld || !type || !size)
999 		return NULL;
1000 
1001 	buf = (struct ice_buf_hdr *)&bld->buf;
1002 
1003 	/* check for enough space left in buffer */
1004 	data_end = le16_to_cpu(buf->data_end);
1005 
1006 	/* section start must align on 4 byte boundary */
1007 	data_end = ALIGN(data_end, 4);
1008 
1009 	if ((data_end + size) > ICE_MAX_S_DATA_END)
1010 		return NULL;
1011 
1012 	/* check for more available section table entries */
1013 	sect_count = le16_to_cpu(buf->section_count);
1014 	if (sect_count < bld->reserved_section_table_entries) {
1015 		void *section_ptr = ((u8 *)buf) + data_end;
1016 
1017 		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1018 		buf->section_entry[sect_count].size = cpu_to_le16(size);
1019 		buf->section_entry[sect_count].type = cpu_to_le32(type);
1020 
1021 		data_end += size;
1022 		buf->data_end = cpu_to_le16(data_end);
1023 
1024 		buf->section_count = cpu_to_le16(sect_count + 1);
1025 		return section_ptr;
1026 	}
1027 
1028 	/* no free section table entries */
1029 	return NULL;
1030 }
1031 
1032 /**
1033  * ice_pkg_buf_alloc_single_section
1034  * @hw: pointer to the HW structure
1035  * @type: the section type value
1036  * @size: the size of the section to reserve (in bytes)
1037  * @section: returns pointer to the section
1038  *
1039  * Allocates a package buffer with a single section.
1040  * Note: all package contents must be in Little Endian form.
1041  */
1042 struct ice_buf_build *ice_pkg_buf_alloc_single_section(struct ice_hw *hw,
1043 						       u32 type, u16 size,
1044 						       void **section)
1045 {
1046 	struct ice_buf_build *buf;
1047 
1048 	if (!section)
1049 		return NULL;
1050 
1051 	buf = ice_pkg_buf_alloc(hw);
1052 	if (!buf)
1053 		return NULL;
1054 
1055 	if (ice_pkg_buf_reserve_section(buf, 1))
1056 		goto ice_pkg_buf_alloc_single_section_err;
1057 
1058 	*section = ice_pkg_buf_alloc_section(buf, type, size);
1059 	if (!*section)
1060 		goto ice_pkg_buf_alloc_single_section_err;
1061 
1062 	return buf;
1063 
1064 ice_pkg_buf_alloc_single_section_err:
1065 	ice_pkg_buf_free(hw, buf);
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * ice_pkg_buf_get_active_sections
1071  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1072  *
1073  * Returns the number of active sections. Before using the package buffer
1074  * in an update package command, the caller should make sure that there is at
1075  * least one active section - otherwise, the buffer is not legal and should
1076  * not be used.
1077  * Note: all package contents must be in Little Endian form.
1078  */
1079 u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1080 {
1081 	struct ice_buf_hdr *buf;
1082 
1083 	if (!bld)
1084 		return 0;
1085 
1086 	buf = (struct ice_buf_hdr *)&bld->buf;
1087 	return le16_to_cpu(buf->section_count);
1088 }
1089 
1090 /**
1091  * ice_pkg_buf
1092  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1093  *
1094  * Return a pointer to the buffer's header
1095  */
1096 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1097 {
1098 	if (!bld)
1099 		return NULL;
1100 
1101 	return &bld->buf;
1102 }
1103 
1104 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1105 {
1106 	switch (aq_err) {
1107 	case ICE_AQ_RC_ENOSEC:
1108 	case ICE_AQ_RC_EBADSIG:
1109 		return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1110 	case ICE_AQ_RC_ESVN:
1111 		return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1112 	case ICE_AQ_RC_EBADMAN:
1113 	case ICE_AQ_RC_EBADBUF:
1114 		return ICE_DDP_PKG_LOAD_ERROR;
1115 	default:
1116 		return ICE_DDP_PKG_ERR;
1117 	}
1118 }
1119 
1120 /**
1121  * ice_acquire_global_cfg_lock
1122  * @hw: pointer to the HW structure
1123  * @access: access type (read or write)
1124  *
1125  * This function will request ownership of the global config lock for reading
1126  * or writing of the package. When attempting to obtain write access, the
1127  * caller must check for the following two return values:
1128  *
1129  * 0         -  Means the caller has acquired the global config lock
1130  *              and can perform writing of the package.
1131  * -EALREADY - Indicates another driver has already written the
1132  *             package or has found that no update was necessary; in
1133  *             this case, the caller can just skip performing any
1134  *             update of the package.
1135  */
1136 static int ice_acquire_global_cfg_lock(struct ice_hw *hw,
1137 				       enum ice_aq_res_access_type access)
1138 {
1139 	int status;
1140 
1141 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
1142 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
1143 
1144 	if (!status)
1145 		mutex_lock(&ice_global_cfg_lock_sw);
1146 	else if (status == -EALREADY)
1147 		ice_debug(hw, ICE_DBG_PKG,
1148 			  "Global config lock: No work to do\n");
1149 
1150 	return status;
1151 }
1152 
1153 /**
1154  * ice_release_global_cfg_lock
1155  * @hw: pointer to the HW structure
1156  *
1157  * This function will release the global config lock.
1158  */
1159 static void ice_release_global_cfg_lock(struct ice_hw *hw)
1160 {
1161 	mutex_unlock(&ice_global_cfg_lock_sw);
1162 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
1163 }
1164 
1165 /**
1166  * ice_aq_download_pkg
1167  * @hw: pointer to the hardware structure
1168  * @pkg_buf: the package buffer to transfer
1169  * @buf_size: the size of the package buffer
1170  * @last_buf: last buffer indicator
1171  * @error_offset: returns error offset
1172  * @error_info: returns error information
1173  * @cd: pointer to command details structure or NULL
1174  *
1175  * Download Package (0x0C40)
1176  */
1177 static int
1178 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
1179 		    u16 buf_size, bool last_buf, u32 *error_offset,
1180 		    u32 *error_info, struct ice_sq_cd *cd)
1181 {
1182 	struct ice_aqc_download_pkg *cmd;
1183 	struct ice_aq_desc desc;
1184 	int status;
1185 
1186 	if (error_offset)
1187 		*error_offset = 0;
1188 	if (error_info)
1189 		*error_info = 0;
1190 
1191 	cmd = &desc.params.download_pkg;
1192 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
1193 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1194 
1195 	if (last_buf)
1196 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
1197 
1198 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
1199 	if (status == -EIO) {
1200 		/* Read error from buffer only when the FW returned an error */
1201 		struct ice_aqc_download_pkg_resp *resp;
1202 
1203 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
1204 		if (error_offset)
1205 			*error_offset = le32_to_cpu(resp->error_offset);
1206 		if (error_info)
1207 			*error_info = le32_to_cpu(resp->error_info);
1208 	}
1209 
1210 	return status;
1211 }
1212 
1213 /**
1214  * ice_get_pkg_seg_by_idx
1215  * @pkg_hdr: pointer to the package header to be searched
1216  * @idx: index of segment
1217  */
1218 static struct ice_generic_seg_hdr *
1219 ice_get_pkg_seg_by_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx)
1220 {
1221 	if (idx < le32_to_cpu(pkg_hdr->seg_count))
1222 		return (struct ice_generic_seg_hdr *)
1223 			((u8 *)pkg_hdr +
1224 			 le32_to_cpu(pkg_hdr->seg_offset[idx]));
1225 
1226 	return NULL;
1227 }
1228 
1229 /**
1230  * ice_is_signing_seg_at_idx - determine if segment is a signing segment
1231  * @pkg_hdr: pointer to package header
1232  * @idx: segment index
1233  */
1234 static bool ice_is_signing_seg_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx)
1235 {
1236 	struct ice_generic_seg_hdr *seg;
1237 
1238 	seg = ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1239 	if (!seg)
1240 		return false;
1241 
1242 	return le32_to_cpu(seg->seg_type) == SEGMENT_TYPE_SIGNING;
1243 }
1244 
1245 /**
1246  * ice_is_signing_seg_type_at_idx
1247  * @pkg_hdr: pointer to package header
1248  * @idx: segment index
1249  * @seg_id: segment id that is expected
1250  * @sign_type: signing type
1251  *
1252  * Determine if a segment is a signing segment of the correct type
1253  */
1254 static bool
1255 ice_is_signing_seg_type_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx,
1256 			       u32 seg_id, u32 sign_type)
1257 {
1258 	struct ice_sign_seg *seg;
1259 
1260 	if (!ice_is_signing_seg_at_idx(pkg_hdr, idx))
1261 		return false;
1262 
1263 	seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1264 
1265 	if (seg && le32_to_cpu(seg->seg_id) == seg_id &&
1266 	    le32_to_cpu(seg->sign_type) == sign_type)
1267 		return true;
1268 
1269 	return false;
1270 }
1271 
1272 /**
1273  * ice_is_buffer_metadata - determine if package buffer is a metadata buffer
1274  * @buf: pointer to buffer header
1275  */
1276 static bool ice_is_buffer_metadata(struct ice_buf_hdr *buf)
1277 {
1278 	if (le32_to_cpu(buf->section_entry[0].type) & ICE_METADATA_BUF)
1279 		return true;
1280 
1281 	return false;
1282 }
1283 
1284 /**
1285  * ice_is_last_download_buffer
1286  * @buf: pointer to current buffer header
1287  * @idx: index of the buffer in the current sequence
1288  * @count: the buffer count in the current sequence
1289  *
1290  * Note: this routine should only be called if the buffer is not the last buffer
1291  */
1292 static bool
1293 ice_is_last_download_buffer(struct ice_buf_hdr *buf, u32 idx, u32 count)
1294 {
1295 	struct ice_buf *next_buf;
1296 
1297 	if ((idx + 1) == count)
1298 		return true;
1299 
1300 	/* A set metadata flag in the next buffer will signal that the current
1301 	 * buffer will be the last buffer downloaded
1302 	 */
1303 	next_buf = ((struct ice_buf *)buf) + 1;
1304 
1305 	return ice_is_buffer_metadata((struct ice_buf_hdr *)next_buf);
1306 }
1307 
1308 /**
1309  * ice_dwnld_cfg_bufs_no_lock
1310  * @hw: pointer to the hardware structure
1311  * @bufs: pointer to an array of buffers
1312  * @start: buffer index of first buffer to download
1313  * @count: the number of buffers to download
1314  * @indicate_last: if true, then set last buffer flag on last buffer download
1315  *
1316  * Downloads package configuration buffers to the firmware. Metadata buffers
1317  * are skipped, and the first metadata buffer found indicates that the rest
1318  * of the buffers are all metadata buffers.
1319  */
1320 static enum ice_ddp_state
1321 ice_dwnld_cfg_bufs_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 start,
1322 			   u32 count, bool indicate_last)
1323 {
1324 	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1325 	struct ice_buf_hdr *bh;
1326 	enum ice_aq_err err;
1327 	u32 offset, info, i;
1328 
1329 	if (!bufs || !count)
1330 		return ICE_DDP_PKG_ERR;
1331 
1332 	/* If the first buffer's first section has its metadata bit set
1333 	 * then there are no buffers to be downloaded, and the operation is
1334 	 * considered a success.
1335 	 */
1336 	bh = (struct ice_buf_hdr *)(bufs + start);
1337 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1338 		return ICE_DDP_PKG_SUCCESS;
1339 
1340 	for (i = 0; i < count; i++) {
1341 		bool last = false;
1342 		int status;
1343 
1344 		bh = (struct ice_buf_hdr *)(bufs + start + i);
1345 
1346 		if (indicate_last)
1347 			last = ice_is_last_download_buffer(bh, i, count);
1348 
1349 		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1350 					     &offset, &info, NULL);
1351 
1352 		/* Save AQ status from download package */
1353 		if (status) {
1354 			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1355 				  status, offset, info);
1356 			err = hw->adminq.sq_last_status;
1357 			state = ice_map_aq_err_to_ddp_state(err);
1358 			break;
1359 		}
1360 
1361 		if (last)
1362 			break;
1363 	}
1364 
1365 	return state;
1366 }
1367 
1368 /**
1369  * ice_download_pkg_sig_seg - download a signature segment
1370  * @hw: pointer to the hardware structure
1371  * @seg: pointer to signature segment
1372  */
1373 static enum ice_ddp_state
1374 ice_download_pkg_sig_seg(struct ice_hw *hw, struct ice_sign_seg *seg)
1375 {
1376 	return  ice_dwnld_cfg_bufs_no_lock(hw, seg->buf_tbl.buf_array, 0,
1377 					   le32_to_cpu(seg->buf_tbl.buf_count),
1378 					   false);
1379 }
1380 
1381 /**
1382  * ice_download_pkg_config_seg - download a config segment
1383  * @hw: pointer to the hardware structure
1384  * @pkg_hdr: pointer to package header
1385  * @idx: segment index
1386  * @start: starting buffer
1387  * @count: buffer count
1388  *
1389  * Note: idx must reference a ICE segment
1390  */
1391 static enum ice_ddp_state
1392 ice_download_pkg_config_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
1393 			    u32 idx, u32 start, u32 count)
1394 {
1395 	struct ice_buf_table *bufs;
1396 	struct ice_seg *seg;
1397 	u32 buf_count;
1398 
1399 	seg = (struct ice_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1400 	if (!seg)
1401 		return ICE_DDP_PKG_ERR;
1402 
1403 	bufs = ice_find_buf_table(seg);
1404 	buf_count = le32_to_cpu(bufs->buf_count);
1405 
1406 	if (start >= buf_count || start + count > buf_count)
1407 		return ICE_DDP_PKG_ERR;
1408 
1409 	return  ice_dwnld_cfg_bufs_no_lock(hw, bufs->buf_array, start, count,
1410 					   true);
1411 }
1412 
1413 /**
1414  * ice_dwnld_sign_and_cfg_segs - download a signing segment and config segment
1415  * @hw: pointer to the hardware structure
1416  * @pkg_hdr: pointer to package header
1417  * @idx: segment index (must be a signature segment)
1418  *
1419  * Note: idx must reference a signature segment
1420  */
1421 static enum ice_ddp_state
1422 ice_dwnld_sign_and_cfg_segs(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
1423 			    u32 idx)
1424 {
1425 	enum ice_ddp_state state;
1426 	struct ice_sign_seg *seg;
1427 	u32 conf_idx;
1428 	u32 start;
1429 	u32 count;
1430 
1431 	seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1432 	if (!seg) {
1433 		state = ICE_DDP_PKG_ERR;
1434 		goto exit;
1435 	}
1436 
1437 	count = le32_to_cpu(seg->signed_buf_count);
1438 	state = ice_download_pkg_sig_seg(hw, seg);
1439 	if (state || !count)
1440 		goto exit;
1441 
1442 	conf_idx = le32_to_cpu(seg->signed_seg_idx);
1443 	start = le32_to_cpu(seg->signed_buf_start);
1444 
1445 	state = ice_download_pkg_config_seg(hw, pkg_hdr, conf_idx, start,
1446 					    count);
1447 
1448 exit:
1449 	return state;
1450 }
1451 
1452 /**
1453  * ice_match_signing_seg - determine if a matching signing segment exists
1454  * @pkg_hdr: pointer to package header
1455  * @seg_id: segment id that is expected
1456  * @sign_type: signing type
1457  */
1458 static bool
1459 ice_match_signing_seg(struct ice_pkg_hdr *pkg_hdr, u32 seg_id, u32 sign_type)
1460 {
1461 	u32 i;
1462 
1463 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1464 		if (ice_is_signing_seg_type_at_idx(pkg_hdr, i, seg_id,
1465 						   sign_type))
1466 			return true;
1467 	}
1468 
1469 	return false;
1470 }
1471 
1472 /**
1473  * ice_post_dwnld_pkg_actions - perform post download package actions
1474  * @hw: pointer to the hardware structure
1475  */
1476 static enum ice_ddp_state
1477 ice_post_dwnld_pkg_actions(struct ice_hw *hw)
1478 {
1479 	int status;
1480 
1481 	status = ice_set_vlan_mode(hw);
1482 	if (status) {
1483 		ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1484 			  status);
1485 		return ICE_DDP_PKG_ERR;
1486 	}
1487 
1488 	return ICE_DDP_PKG_SUCCESS;
1489 }
1490 
1491 /**
1492  * ice_download_pkg_with_sig_seg
1493  * @hw: pointer to the hardware structure
1494  * @pkg_hdr: pointer to package header
1495  *
1496  * Handles the download of a complete package.
1497  */
1498 static enum ice_ddp_state
1499 ice_download_pkg_with_sig_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1500 {
1501 	enum ice_aq_err aq_err = hw->adminq.sq_last_status;
1502 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
1503 	int status;
1504 	u32 i;
1505 
1506 	ice_debug(hw, ICE_DBG_INIT, "Segment ID %d\n", hw->pkg_seg_id);
1507 	ice_debug(hw, ICE_DBG_INIT, "Signature type %d\n", hw->pkg_sign_type);
1508 
1509 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1510 	if (status) {
1511 		if (status == -EALREADY)
1512 			state = ICE_DDP_PKG_ALREADY_LOADED;
1513 		else
1514 			state = ice_map_aq_err_to_ddp_state(aq_err);
1515 		return state;
1516 	}
1517 
1518 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1519 		if (!ice_is_signing_seg_type_at_idx(pkg_hdr, i, hw->pkg_seg_id,
1520 						    hw->pkg_sign_type))
1521 			continue;
1522 
1523 		state = ice_dwnld_sign_and_cfg_segs(hw, pkg_hdr, i);
1524 		if (state)
1525 			break;
1526 	}
1527 
1528 	if (!state)
1529 		state = ice_post_dwnld_pkg_actions(hw);
1530 
1531 	ice_release_global_cfg_lock(hw);
1532 
1533 	return state;
1534 }
1535 
1536 /**
1537  * ice_dwnld_cfg_bufs
1538  * @hw: pointer to the hardware structure
1539  * @bufs: pointer to an array of buffers
1540  * @count: the number of buffers in the array
1541  *
1542  * Obtains global config lock and downloads the package configuration buffers
1543  * to the firmware.
1544  */
1545 static enum ice_ddp_state
1546 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1547 {
1548 	enum ice_ddp_state state;
1549 	struct ice_buf_hdr *bh;
1550 	int status;
1551 
1552 	if (!bufs || !count)
1553 		return ICE_DDP_PKG_ERR;
1554 
1555 	/* If the first buffer's first section has its metadata bit set
1556 	 * then there are no buffers to be downloaded, and the operation is
1557 	 * considered a success.
1558 	 */
1559 	bh = (struct ice_buf_hdr *)bufs;
1560 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1561 		return ICE_DDP_PKG_SUCCESS;
1562 
1563 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1564 	if (status) {
1565 		if (status == -EALREADY)
1566 			return ICE_DDP_PKG_ALREADY_LOADED;
1567 		return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
1568 	}
1569 
1570 	state = ice_dwnld_cfg_bufs_no_lock(hw, bufs, 0, count, true);
1571 	if (!state)
1572 		state = ice_post_dwnld_pkg_actions(hw);
1573 
1574 	ice_release_global_cfg_lock(hw);
1575 
1576 	return state;
1577 }
1578 
1579 /**
1580  * ice_download_pkg_without_sig_seg
1581  * @hw: pointer to the hardware structure
1582  * @ice_seg: pointer to the segment of the package to be downloaded
1583  *
1584  * Handles the download of a complete package without signature segment.
1585  */
1586 static enum ice_ddp_state
1587 ice_download_pkg_without_sig_seg(struct ice_hw *hw, struct ice_seg *ice_seg)
1588 {
1589 	struct ice_buf_table *ice_buf_tbl;
1590 
1591 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1592 		  ice_seg->hdr.seg_format_ver.major,
1593 		  ice_seg->hdr.seg_format_ver.minor,
1594 		  ice_seg->hdr.seg_format_ver.update,
1595 		  ice_seg->hdr.seg_format_ver.draft);
1596 
1597 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1598 		  le32_to_cpu(ice_seg->hdr.seg_type),
1599 		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1600 
1601 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1602 
1603 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1604 		  le32_to_cpu(ice_buf_tbl->buf_count));
1605 
1606 	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1607 				  le32_to_cpu(ice_buf_tbl->buf_count));
1608 }
1609 
1610 /**
1611  * ice_download_pkg
1612  * @hw: pointer to the hardware structure
1613  * @pkg_hdr: pointer to package header
1614  * @ice_seg: pointer to the segment of the package to be downloaded
1615  *
1616  * Handles the download of a complete package.
1617  */
1618 static enum ice_ddp_state
1619 ice_download_pkg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
1620 		 struct ice_seg *ice_seg)
1621 {
1622 	enum ice_ddp_state state;
1623 
1624 	if (hw->pkg_has_signing_seg)
1625 		state = ice_download_pkg_with_sig_seg(hw, pkg_hdr);
1626 	else
1627 		state = ice_download_pkg_without_sig_seg(hw, ice_seg);
1628 
1629 	ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1630 
1631 	return state;
1632 }
1633 
1634 /**
1635  * ice_aq_get_pkg_info_list
1636  * @hw: pointer to the hardware structure
1637  * @pkg_info: the buffer which will receive the information list
1638  * @buf_size: the size of the pkg_info information buffer
1639  * @cd: pointer to command details structure or NULL
1640  *
1641  * Get Package Info List (0x0C43)
1642  */
1643 static int ice_aq_get_pkg_info_list(struct ice_hw *hw,
1644 				    struct ice_aqc_get_pkg_info_resp *pkg_info,
1645 				    u16 buf_size, struct ice_sq_cd *cd)
1646 {
1647 	struct ice_aq_desc desc;
1648 
1649 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1650 
1651 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1652 }
1653 
1654 /**
1655  * ice_aq_update_pkg
1656  * @hw: pointer to the hardware structure
1657  * @pkg_buf: the package cmd buffer
1658  * @buf_size: the size of the package cmd buffer
1659  * @last_buf: last buffer indicator
1660  * @error_offset: returns error offset
1661  * @error_info: returns error information
1662  * @cd: pointer to command details structure or NULL
1663  *
1664  * Update Package (0x0C42)
1665  */
1666 static int ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
1667 			     u16 buf_size, bool last_buf, u32 *error_offset,
1668 			     u32 *error_info, struct ice_sq_cd *cd)
1669 {
1670 	struct ice_aqc_download_pkg *cmd;
1671 	struct ice_aq_desc desc;
1672 	int status;
1673 
1674 	if (error_offset)
1675 		*error_offset = 0;
1676 	if (error_info)
1677 		*error_info = 0;
1678 
1679 	cmd = &desc.params.download_pkg;
1680 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
1681 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1682 
1683 	if (last_buf)
1684 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
1685 
1686 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
1687 	if (status == -EIO) {
1688 		/* Read error from buffer only when the FW returned an error */
1689 		struct ice_aqc_download_pkg_resp *resp;
1690 
1691 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
1692 		if (error_offset)
1693 			*error_offset = le32_to_cpu(resp->error_offset);
1694 		if (error_info)
1695 			*error_info = le32_to_cpu(resp->error_info);
1696 	}
1697 
1698 	return status;
1699 }
1700 
1701 /**
1702  * ice_aq_upload_section
1703  * @hw: pointer to the hardware structure
1704  * @pkg_buf: the package buffer which will receive the section
1705  * @buf_size: the size of the package buffer
1706  * @cd: pointer to command details structure or NULL
1707  *
1708  * Upload Section (0x0C41)
1709  */
1710 int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
1711 			  u16 buf_size, struct ice_sq_cd *cd)
1712 {
1713 	struct ice_aq_desc desc;
1714 
1715 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
1716 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1717 
1718 	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
1719 }
1720 
1721 /**
1722  * ice_update_pkg_no_lock
1723  * @hw: pointer to the hardware structure
1724  * @bufs: pointer to an array of buffers
1725  * @count: the number of buffers in the array
1726  */
1727 int ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1728 {
1729 	int status = 0;
1730 	u32 i;
1731 
1732 	for (i = 0; i < count; i++) {
1733 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1734 		bool last = ((i + 1) == count);
1735 		u32 offset, info;
1736 
1737 		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1738 					   last, &offset, &info, NULL);
1739 
1740 		if (status) {
1741 			ice_debug(hw, ICE_DBG_PKG,
1742 				  "Update pkg failed: err %d off %d inf %d\n",
1743 				  status, offset, info);
1744 			break;
1745 		}
1746 	}
1747 
1748 	return status;
1749 }
1750 
1751 /**
1752  * ice_update_pkg
1753  * @hw: pointer to the hardware structure
1754  * @bufs: pointer to an array of buffers
1755  * @count: the number of buffers in the array
1756  *
1757  * Obtains change lock and updates package.
1758  */
1759 int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1760 {
1761 	int status;
1762 
1763 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1764 	if (status)
1765 		return status;
1766 
1767 	status = ice_update_pkg_no_lock(hw, bufs, count);
1768 
1769 	ice_release_change_lock(hw);
1770 
1771 	return status;
1772 }
1773 
1774 /**
1775  * ice_find_seg_in_pkg
1776  * @hw: pointer to the hardware structure
1777  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1778  * @pkg_hdr: pointer to the package header to be searched
1779  *
1780  * This function searches a package file for a particular segment type. On
1781  * success it returns a pointer to the segment header, otherwise it will
1782  * return NULL.
1783  */
1784 static struct ice_generic_seg_hdr *
1785 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1786 		    struct ice_pkg_hdr *pkg_hdr)
1787 {
1788 	u32 i;
1789 
1790 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1791 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1792 		  pkg_hdr->pkg_format_ver.update,
1793 		  pkg_hdr->pkg_format_ver.draft);
1794 
1795 	/* Search all package segments for the requested segment type */
1796 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1797 		struct ice_generic_seg_hdr *seg;
1798 
1799 		seg = (struct ice_generic_seg_hdr
1800 			       *)((u8 *)pkg_hdr +
1801 				  le32_to_cpu(pkg_hdr->seg_offset[i]));
1802 
1803 		if (le32_to_cpu(seg->seg_type) == seg_type)
1804 			return seg;
1805 	}
1806 
1807 	return NULL;
1808 }
1809 
1810 /**
1811  * ice_has_signing_seg - determine if package has a signing segment
1812  * @hw: pointer to the hardware structure
1813  * @pkg_hdr: pointer to the driver's package hdr
1814  */
1815 static bool ice_has_signing_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1816 {
1817 	struct ice_generic_seg_hdr *seg_hdr;
1818 
1819 	seg_hdr = (struct ice_generic_seg_hdr *)
1820 		ice_find_seg_in_pkg(hw, SEGMENT_TYPE_SIGNING, pkg_hdr);
1821 
1822 	return seg_hdr ? true : false;
1823 }
1824 
1825 /**
1826  * ice_get_pkg_segment_id - get correct package segment id, based on device
1827  * @mac_type: MAC type of the device
1828  */
1829 static u32 ice_get_pkg_segment_id(enum ice_mac_type mac_type)
1830 {
1831 	u32 seg_id;
1832 
1833 	switch (mac_type) {
1834 	case ICE_MAC_E830:
1835 		seg_id = SEGMENT_TYPE_ICE_E830;
1836 		break;
1837 	case ICE_MAC_GENERIC:
1838 	case ICE_MAC_GENERIC_3K_E825:
1839 	default:
1840 		seg_id = SEGMENT_TYPE_ICE_E810;
1841 		break;
1842 	}
1843 
1844 	return seg_id;
1845 }
1846 
1847 /**
1848  * ice_get_pkg_sign_type - get package segment sign type, based on device
1849  * @mac_type: MAC type of the device
1850  */
1851 static u32 ice_get_pkg_sign_type(enum ice_mac_type mac_type)
1852 {
1853 	u32 sign_type;
1854 
1855 	switch (mac_type) {
1856 	case ICE_MAC_E830:
1857 		sign_type = SEGMENT_SIGN_TYPE_RSA3K_SBB;
1858 		break;
1859 	case ICE_MAC_GENERIC_3K_E825:
1860 		sign_type = SEGMENT_SIGN_TYPE_RSA3K_E825;
1861 		break;
1862 	case ICE_MAC_GENERIC:
1863 	default:
1864 		sign_type = SEGMENT_SIGN_TYPE_RSA2K;
1865 		break;
1866 	}
1867 
1868 	return sign_type;
1869 }
1870 
1871 /**
1872  * ice_get_signing_req - get correct package requirements, based on device
1873  * @hw: pointer to the hardware structure
1874  */
1875 static void ice_get_signing_req(struct ice_hw *hw)
1876 {
1877 	hw->pkg_seg_id = ice_get_pkg_segment_id(hw->mac_type);
1878 	hw->pkg_sign_type = ice_get_pkg_sign_type(hw->mac_type);
1879 }
1880 
1881 /**
1882  * ice_init_pkg_info
1883  * @hw: pointer to the hardware structure
1884  * @pkg_hdr: pointer to the driver's package hdr
1885  *
1886  * Saves off the package details into the HW structure.
1887  */
1888 static enum ice_ddp_state ice_init_pkg_info(struct ice_hw *hw,
1889 					    struct ice_pkg_hdr *pkg_hdr)
1890 {
1891 	struct ice_generic_seg_hdr *seg_hdr;
1892 
1893 	if (!pkg_hdr)
1894 		return ICE_DDP_PKG_ERR;
1895 
1896 	hw->pkg_has_signing_seg = ice_has_signing_seg(hw, pkg_hdr);
1897 	ice_get_signing_req(hw);
1898 
1899 	ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n",
1900 		  hw->pkg_seg_id);
1901 
1902 	seg_hdr = (struct ice_generic_seg_hdr *)
1903 		ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr);
1904 	if (seg_hdr) {
1905 		struct ice_meta_sect *meta;
1906 		struct ice_pkg_enum state;
1907 
1908 		memset(&state, 0, sizeof(state));
1909 
1910 		/* Get package information from the Metadata Section */
1911 		meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1912 					    ICE_SID_METADATA);
1913 		if (!meta) {
1914 			ice_debug(hw, ICE_DBG_INIT,
1915 				  "Did not find ice metadata section in package\n");
1916 			return ICE_DDP_PKG_INVALID_FILE;
1917 		}
1918 
1919 		hw->pkg_ver = meta->ver;
1920 		memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1921 
1922 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1923 			  meta->ver.major, meta->ver.minor, meta->ver.update,
1924 			  meta->ver.draft, meta->name);
1925 
1926 		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1927 		memcpy(hw->ice_seg_id, seg_hdr->seg_id, sizeof(hw->ice_seg_id));
1928 
1929 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1930 			  seg_hdr->seg_format_ver.major,
1931 			  seg_hdr->seg_format_ver.minor,
1932 			  seg_hdr->seg_format_ver.update,
1933 			  seg_hdr->seg_format_ver.draft, seg_hdr->seg_id);
1934 	} else {
1935 		ice_debug(hw, ICE_DBG_INIT,
1936 			  "Did not find ice segment in driver package\n");
1937 		return ICE_DDP_PKG_INVALID_FILE;
1938 	}
1939 
1940 	return ICE_DDP_PKG_SUCCESS;
1941 }
1942 
1943 /**
1944  * ice_get_pkg_info
1945  * @hw: pointer to the hardware structure
1946  *
1947  * Store details of the package currently loaded in HW into the HW structure.
1948  */
1949 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1950 {
1951 	DEFINE_RAW_FLEX(struct ice_aqc_get_pkg_info_resp, pkg_info, pkg_info,
1952 			ICE_PKG_CNT);
1953 	u16 size = __struct_size(pkg_info);
1954 	u32 i;
1955 
1956 	if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL))
1957 		return ICE_DDP_PKG_ERR;
1958 
1959 	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1960 #define ICE_PKG_FLAG_COUNT 4
1961 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1962 		u8 place = 0;
1963 
1964 		if (pkg_info->pkg_info[i].is_active) {
1965 			flags[place++] = 'A';
1966 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1967 			hw->active_track_id =
1968 				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1969 			memcpy(hw->active_pkg_name, pkg_info->pkg_info[i].name,
1970 			       sizeof(pkg_info->pkg_info[i].name));
1971 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1972 		}
1973 		if (pkg_info->pkg_info[i].is_active_at_boot)
1974 			flags[place++] = 'B';
1975 		if (pkg_info->pkg_info[i].is_modified)
1976 			flags[place++] = 'M';
1977 		if (pkg_info->pkg_info[i].is_in_nvm)
1978 			flags[place++] = 'N';
1979 
1980 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", i,
1981 			  pkg_info->pkg_info[i].ver.major,
1982 			  pkg_info->pkg_info[i].ver.minor,
1983 			  pkg_info->pkg_info[i].ver.update,
1984 			  pkg_info->pkg_info[i].ver.draft,
1985 			  pkg_info->pkg_info[i].name, flags);
1986 	}
1987 
1988 	return ICE_DDP_PKG_SUCCESS;
1989 }
1990 
1991 /**
1992  * ice_chk_pkg_compat
1993  * @hw: pointer to the hardware structure
1994  * @ospkg: pointer to the package hdr
1995  * @seg: pointer to the package segment hdr
1996  *
1997  * This function checks the package version compatibility with driver and NVM
1998  */
1999 static enum ice_ddp_state ice_chk_pkg_compat(struct ice_hw *hw,
2000 					     struct ice_pkg_hdr *ospkg,
2001 					     struct ice_seg **seg)
2002 {
2003 	DEFINE_RAW_FLEX(struct ice_aqc_get_pkg_info_resp, pkg, pkg_info,
2004 			ICE_PKG_CNT);
2005 	u16 size = __struct_size(pkg);
2006 	enum ice_ddp_state state;
2007 	u32 i;
2008 
2009 	/* Check package version compatibility */
2010 	state = ice_chk_pkg_version(&hw->pkg_ver);
2011 	if (state) {
2012 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
2013 		return state;
2014 	}
2015 
2016 	/* find ICE segment in given package */
2017 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id,
2018 						     ospkg);
2019 	if (!*seg) {
2020 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
2021 		return ICE_DDP_PKG_INVALID_FILE;
2022 	}
2023 
2024 	/* Check if FW is compatible with the OS package */
2025 	if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL))
2026 		return ICE_DDP_PKG_LOAD_ERROR;
2027 
2028 	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
2029 		/* loop till we find the NVM package */
2030 		if (!pkg->pkg_info[i].is_in_nvm)
2031 			continue;
2032 		if ((*seg)->hdr.seg_format_ver.major !=
2033 			    pkg->pkg_info[i].ver.major ||
2034 		    (*seg)->hdr.seg_format_ver.minor >
2035 			    pkg->pkg_info[i].ver.minor) {
2036 			state = ICE_DDP_PKG_FW_MISMATCH;
2037 			ice_debug(hw, ICE_DBG_INIT,
2038 				  "OS package is not compatible with NVM.\n");
2039 		}
2040 		/* done processing NVM package so break */
2041 		break;
2042 	}
2043 
2044 	return state;
2045 }
2046 
2047 /**
2048  * ice_init_pkg_hints
2049  * @hw: pointer to the HW structure
2050  * @ice_seg: pointer to the segment of the package scan (non-NULL)
2051  *
2052  * This function will scan the package and save off relevant information
2053  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
2054  * since the first call to ice_enum_labels requires a pointer to an actual
2055  * ice_seg structure.
2056  */
2057 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
2058 {
2059 	struct ice_pkg_enum state;
2060 	char *label_name;
2061 	u16 val;
2062 	int i;
2063 
2064 	memset(&hw->tnl, 0, sizeof(hw->tnl));
2065 	memset(&state, 0, sizeof(state));
2066 
2067 	if (!ice_seg)
2068 		return;
2069 
2070 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
2071 				     &val);
2072 
2073 	while (label_name) {
2074 		if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
2075 			/* check for a tunnel entry */
2076 			ice_add_tunnel_hint(hw, label_name, val);
2077 
2078 		/* check for a dvm mode entry */
2079 		else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
2080 			ice_add_dvm_hint(hw, val, true);
2081 
2082 		/* check for a svm mode entry */
2083 		else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
2084 			ice_add_dvm_hint(hw, val, false);
2085 
2086 		label_name = ice_enum_labels(NULL, 0, &state, &val);
2087 	}
2088 
2089 	/* Cache the appropriate boost TCAM entry pointers for tunnels */
2090 	for (i = 0; i < hw->tnl.count; i++) {
2091 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
2092 				     &hw->tnl.tbl[i].boost_entry);
2093 		if (hw->tnl.tbl[i].boost_entry) {
2094 			hw->tnl.tbl[i].valid = true;
2095 			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
2096 				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
2097 		}
2098 	}
2099 
2100 	/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
2101 	for (i = 0; i < hw->dvm_upd.count; i++)
2102 		ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
2103 				     &hw->dvm_upd.tbl[i].boost_entry);
2104 }
2105 
2106 /**
2107  * ice_fill_hw_ptype - fill the enabled PTYPE bit information
2108  * @hw: pointer to the HW structure
2109  */
2110 static void ice_fill_hw_ptype(struct ice_hw *hw)
2111 {
2112 	struct ice_marker_ptype_tcam_entry *tcam;
2113 	struct ice_seg *seg = hw->seg;
2114 	struct ice_pkg_enum state;
2115 
2116 	bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
2117 	if (!seg)
2118 		return;
2119 
2120 	memset(&state, 0, sizeof(state));
2121 
2122 	do {
2123 		tcam = ice_pkg_enum_entry(seg, &state,
2124 					  ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
2125 					  ice_marker_ptype_tcam_handler);
2126 		if (tcam &&
2127 		    le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
2128 		    le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
2129 			set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
2130 
2131 		seg = NULL;
2132 	} while (tcam);
2133 }
2134 
2135 /**
2136  * ice_init_pkg - initialize/download package
2137  * @hw: pointer to the hardware structure
2138  * @buf: pointer to the package buffer
2139  * @len: size of the package buffer
2140  *
2141  * This function initializes a package. The package contains HW tables
2142  * required to do packet processing. First, the function extracts package
2143  * information such as version. Then it finds the ice configuration segment
2144  * within the package; this function then saves a copy of the segment pointer
2145  * within the supplied package buffer. Next, the function will cache any hints
2146  * from the package, followed by downloading the package itself. Note, that if
2147  * a previous PF driver has already downloaded the package successfully, then
2148  * the current driver will not have to download the package again.
2149  *
2150  * The local package contents will be used to query default behavior and to
2151  * update specific sections of the HW's version of the package (e.g. to update
2152  * the parse graph to understand new protocols).
2153  *
2154  * This function stores a pointer to the package buffer memory, and it is
2155  * expected that the supplied buffer will not be freed immediately. If the
2156  * package buffer needs to be freed, such as when read from a file, use
2157  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
2158  * case.
2159  */
2160 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
2161 {
2162 	bool already_loaded = false;
2163 	enum ice_ddp_state state;
2164 	struct ice_pkg_hdr *pkg;
2165 	struct ice_seg *seg;
2166 
2167 	if (!buf || !len)
2168 		return ICE_DDP_PKG_ERR;
2169 
2170 	pkg = (struct ice_pkg_hdr *)buf;
2171 	state = ice_verify_pkg(pkg, len);
2172 	if (state) {
2173 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
2174 			  state);
2175 		return state;
2176 	}
2177 
2178 	/* initialize package info */
2179 	state = ice_init_pkg_info(hw, pkg);
2180 	if (state)
2181 		return state;
2182 
2183 	/* must be a matching segment */
2184 	if (hw->pkg_has_signing_seg &&
2185 	    !ice_match_signing_seg(pkg, hw->pkg_seg_id, hw->pkg_sign_type))
2186 		return ICE_DDP_PKG_ERR;
2187 
2188 	/* before downloading the package, check package version for
2189 	 * compatibility with driver
2190 	 */
2191 	state = ice_chk_pkg_compat(hw, pkg, &seg);
2192 	if (state)
2193 		return state;
2194 
2195 	/* initialize package hints and then download package */
2196 	ice_init_pkg_hints(hw, seg);
2197 	state = ice_download_pkg(hw, pkg, seg);
2198 	if (state == ICE_DDP_PKG_ALREADY_LOADED) {
2199 		ice_debug(hw, ICE_DBG_INIT,
2200 			  "package previously loaded - no work.\n");
2201 		already_loaded = true;
2202 	}
2203 
2204 	/* Get information on the package currently loaded in HW, then make sure
2205 	 * the driver is compatible with this version.
2206 	 */
2207 	if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
2208 		state = ice_get_pkg_info(hw);
2209 		if (!state)
2210 			state = ice_get_ddp_pkg_state(hw, already_loaded);
2211 	}
2212 
2213 	if (ice_is_init_pkg_successful(state)) {
2214 		hw->seg = seg;
2215 		/* on successful package download update other required
2216 		 * registers to support the package and fill HW tables
2217 		 * with package content.
2218 		 */
2219 		ice_init_pkg_regs(hw);
2220 		ice_fill_blk_tbls(hw);
2221 		ice_fill_hw_ptype(hw);
2222 		ice_get_prof_index_max(hw);
2223 	} else {
2224 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", state);
2225 	}
2226 
2227 	return state;
2228 }
2229 
2230 /**
2231  * ice_copy_and_init_pkg - initialize/download a copy of the package
2232  * @hw: pointer to the hardware structure
2233  * @buf: pointer to the package buffer
2234  * @len: size of the package buffer
2235  *
2236  * This function copies the package buffer, and then calls ice_init_pkg() to
2237  * initialize the copied package contents.
2238  *
2239  * The copying is necessary if the package buffer supplied is constant, or if
2240  * the memory may disappear shortly after calling this function.
2241  *
2242  * If the package buffer resides in the data segment and can be modified, the
2243  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
2244  *
2245  * However, if the package buffer needs to be copied first, such as when being
2246  * read from a file, the caller should use ice_copy_and_init_pkg().
2247  *
2248  * This function will first copy the package buffer, before calling
2249  * ice_init_pkg(). The caller is free to immediately destroy the original
2250  * package buffer, as the new copy will be managed by this function and
2251  * related routines.
2252  */
2253 enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf,
2254 					 u32 len)
2255 {
2256 	enum ice_ddp_state state;
2257 	u8 *buf_copy;
2258 
2259 	if (!buf || !len)
2260 		return ICE_DDP_PKG_ERR;
2261 
2262 	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
2263 
2264 	state = ice_init_pkg(hw, buf_copy, len);
2265 	if (!ice_is_init_pkg_successful(state)) {
2266 		/* Free the copy, since we failed to initialize the package */
2267 		devm_kfree(ice_hw_to_dev(hw), buf_copy);
2268 	} else {
2269 		/* Track the copied pkg so we can free it later */
2270 		hw->pkg_copy = buf_copy;
2271 		hw->pkg_size = len;
2272 	}
2273 
2274 	return state;
2275 }
2276 
2277 /**
2278  * ice_get_set_tx_topo - get or set Tx topology
2279  * @hw: pointer to the HW struct
2280  * @buf: pointer to Tx topology buffer
2281  * @buf_size: buffer size
2282  * @cd: pointer to command details structure or NULL
2283  * @flags: pointer to descriptor flags
2284  * @set: 0-get, 1-set topology
2285  *
2286  * The function will get or set Tx topology
2287  *
2288  * Return: zero when set was successful, negative values otherwise.
2289  */
2290 static int
2291 ice_get_set_tx_topo(struct ice_hw *hw, u8 *buf, u16 buf_size,
2292 		    struct ice_sq_cd *cd, u8 *flags, bool set)
2293 {
2294 	struct ice_aqc_get_set_tx_topo *cmd;
2295 	struct ice_aq_desc desc;
2296 	int status;
2297 
2298 	cmd = &desc.params.get_set_tx_topo;
2299 	if (set) {
2300 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_tx_topo);
2301 		cmd->set_flags = ICE_AQC_TX_TOPO_FLAGS_ISSUED;
2302 		/* requested to update a new topology, not a default topology */
2303 		if (buf)
2304 			cmd->set_flags |= ICE_AQC_TX_TOPO_FLAGS_SRC_RAM |
2305 					  ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW;
2306 
2307 		if (ice_is_e825c(hw))
2308 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2309 	} else {
2310 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_tx_topo);
2311 		cmd->get_flags = ICE_AQC_TX_TOPO_GET_RAM;
2312 	}
2313 
2314 	if (!ice_is_e825c(hw))
2315 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2316 
2317 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2318 	if (status)
2319 		return status;
2320 	/* read the return flag values (first byte) for get operation */
2321 	if (!set && flags)
2322 		*flags = desc.params.get_set_tx_topo.set_flags;
2323 
2324 	return 0;
2325 }
2326 
2327 /**
2328  * ice_cfg_tx_topo - Initialize new Tx topology if available
2329  * @hw: pointer to the HW struct
2330  * @buf: pointer to Tx topology buffer
2331  * @len: buffer size
2332  *
2333  * The function will apply the new Tx topology from the package buffer
2334  * if available.
2335  *
2336  * Return: zero when update was successful, negative values otherwise.
2337  */
2338 int ice_cfg_tx_topo(struct ice_hw *hw, u8 *buf, u32 len)
2339 {
2340 	u8 *current_topo, *new_topo = NULL;
2341 	struct ice_run_time_cfg_seg *seg;
2342 	struct ice_buf_hdr *section;
2343 	struct ice_pkg_hdr *pkg_hdr;
2344 	enum ice_ddp_state state;
2345 	u16 offset, size = 0;
2346 	u32 reg = 0;
2347 	int status;
2348 	u8 flags;
2349 
2350 	if (!buf || !len)
2351 		return -EINVAL;
2352 
2353 	/* Does FW support new Tx topology mode ? */
2354 	if (!hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) {
2355 		ice_debug(hw, ICE_DBG_INIT, "FW doesn't support compatibility mode\n");
2356 		return -EOPNOTSUPP;
2357 	}
2358 
2359 	current_topo = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2360 	if (!current_topo)
2361 		return -ENOMEM;
2362 
2363 	/* Get the current Tx topology */
2364 	status = ice_get_set_tx_topo(hw, current_topo, ICE_AQ_MAX_BUF_LEN, NULL,
2365 				     &flags, false);
2366 
2367 	kfree(current_topo);
2368 
2369 	if (status) {
2370 		ice_debug(hw, ICE_DBG_INIT, "Get current topology is failed\n");
2371 		return status;
2372 	}
2373 
2374 	/* Is default topology already applied ? */
2375 	if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
2376 	    hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS) {
2377 		ice_debug(hw, ICE_DBG_INIT, "Default topology already applied\n");
2378 		return -EEXIST;
2379 	}
2380 
2381 	/* Is new topology already applied ? */
2382 	if ((flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
2383 	    hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS) {
2384 		ice_debug(hw, ICE_DBG_INIT, "New topology already applied\n");
2385 		return -EEXIST;
2386 	}
2387 
2388 	/* Setting topology already issued? */
2389 	if (flags & ICE_AQC_TX_TOPO_FLAGS_ISSUED) {
2390 		ice_debug(hw, ICE_DBG_INIT, "Update Tx topology was done by another PF\n");
2391 		/* Add a small delay before exiting */
2392 		msleep(2000);
2393 		return -EEXIST;
2394 	}
2395 
2396 	/* Change the topology from new to default (5 to 9) */
2397 	if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
2398 	    hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS) {
2399 		ice_debug(hw, ICE_DBG_INIT, "Change topology from 5 to 9 layers\n");
2400 		goto update_topo;
2401 	}
2402 
2403 	pkg_hdr = (struct ice_pkg_hdr *)buf;
2404 	state = ice_verify_pkg(pkg_hdr, len);
2405 	if (state) {
2406 		ice_debug(hw, ICE_DBG_INIT, "Failed to verify pkg (err: %d)\n",
2407 			  state);
2408 		return -EIO;
2409 	}
2410 
2411 	/* Find runtime configuration segment */
2412 	seg = (struct ice_run_time_cfg_seg *)
2413 	      ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE_RUN_TIME_CFG, pkg_hdr);
2414 	if (!seg) {
2415 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment is missing\n");
2416 		return -EIO;
2417 	}
2418 
2419 	if (le32_to_cpu(seg->buf_table.buf_count) < ICE_MIN_S_COUNT) {
2420 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment count(%d) is wrong\n",
2421 			  seg->buf_table.buf_count);
2422 		return -EIO;
2423 	}
2424 
2425 	section = ice_pkg_val_buf(seg->buf_table.buf_array);
2426 	if (!section || le32_to_cpu(section->section_entry[0].type) !=
2427 		ICE_SID_TX_5_LAYER_TOPO) {
2428 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology section type is wrong\n");
2429 		return -EIO;
2430 	}
2431 
2432 	size = le16_to_cpu(section->section_entry[0].size);
2433 	offset = le16_to_cpu(section->section_entry[0].offset);
2434 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) {
2435 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology section size is wrong\n");
2436 		return -EIO;
2437 	}
2438 
2439 	/* Make sure the section fits in the buffer */
2440 	if (offset + size > ICE_PKG_BUF_SIZE) {
2441 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology buffer > 4K\n");
2442 		return -EIO;
2443 	}
2444 
2445 	/* Get the new topology buffer */
2446 	new_topo = ((u8 *)section) + offset;
2447 
2448 update_topo:
2449 	/* Acquire global lock to make sure that set topology issued
2450 	 * by one PF.
2451 	 */
2452 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, ICE_RES_WRITE,
2453 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
2454 	if (status) {
2455 		ice_debug(hw, ICE_DBG_INIT, "Failed to acquire global lock\n");
2456 		return status;
2457 	}
2458 
2459 	/* Check if reset was triggered already. */
2460 	reg = rd32(hw, GLGEN_RSTAT);
2461 	if (reg & GLGEN_RSTAT_DEVSTATE_M) {
2462 		/* Reset is in progress, re-init the HW again */
2463 		ice_debug(hw, ICE_DBG_INIT, "Reset is in progress. Layer topology might be applied already\n");
2464 		ice_check_reset(hw);
2465 		return 0;
2466 	}
2467 
2468 	/* Set new topology */
2469 	status = ice_get_set_tx_topo(hw, new_topo, size, NULL, NULL, true);
2470 	if (status) {
2471 		ice_debug(hw, ICE_DBG_INIT, "Failed setting Tx topology\n");
2472 		return status;
2473 	}
2474 
2475 	/* New topology is updated, delay 1 second before issuing the CORER */
2476 	msleep(1000);
2477 	ice_reset(hw, ICE_RESET_CORER);
2478 	/* CORER will clear the global lock, so no explicit call
2479 	 * required for release.
2480 	 */
2481 
2482 	return 0;
2483 }
2484