xref: /linux/drivers/net/ethernet/intel/ice/ice_ddp.c (revision 3e7819886281e077e82006fe4804b0d6b0f5643b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2022, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice.h"
6 #include "ice_ddp.h"
7 #include "ice_sched.h"
8 
9 /* For supporting double VLAN mode, it is necessary to enable or disable certain
10  * boost tcam entries. The metadata labels names that match the following
11  * prefixes will be saved to allow enabling double VLAN mode.
12  */
13 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */
14 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */
15 
16 /* To support tunneling entries by PF, the package will append the PF number to
17  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
18  */
19 #define ICE_TNL_PRE "TNL_"
20 static const struct ice_tunnel_type_scan tnls[] = {
21 	{ TNL_VXLAN, "TNL_VXLAN_PF" },
22 	{ TNL_GENEVE, "TNL_GENEVE_PF" },
23 	{ TNL_LAST, "" }
24 };
25 
26 /**
27  * ice_verify_pkg - verify package
28  * @pkg: pointer to the package buffer
29  * @len: size of the package buffer
30  *
31  * Verifies various attributes of the package file, including length, format
32  * version, and the requirement of at least one segment.
33  */
34 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
35 {
36 	u32 seg_count;
37 	u32 i;
38 
39 	if (len < struct_size(pkg, seg_offset, 1))
40 		return ICE_DDP_PKG_INVALID_FILE;
41 
42 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
43 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
44 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
45 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
46 		return ICE_DDP_PKG_INVALID_FILE;
47 
48 	/* pkg must have at least one segment */
49 	seg_count = le32_to_cpu(pkg->seg_count);
50 	if (seg_count < 1)
51 		return ICE_DDP_PKG_INVALID_FILE;
52 
53 	/* make sure segment array fits in package length */
54 	if (len < struct_size(pkg, seg_offset, seg_count))
55 		return ICE_DDP_PKG_INVALID_FILE;
56 
57 	/* all segments must fit within length */
58 	for (i = 0; i < seg_count; i++) {
59 		u32 off = le32_to_cpu(pkg->seg_offset[i]);
60 		struct ice_generic_seg_hdr *seg;
61 
62 		/* segment header must fit */
63 		if (len < off + sizeof(*seg))
64 			return ICE_DDP_PKG_INVALID_FILE;
65 
66 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
67 
68 		/* segment body must fit */
69 		if (len < off + le32_to_cpu(seg->seg_size))
70 			return ICE_DDP_PKG_INVALID_FILE;
71 	}
72 
73 	return ICE_DDP_PKG_SUCCESS;
74 }
75 
76 /**
77  * ice_free_seg - free package segment pointer
78  * @hw: pointer to the hardware structure
79  *
80  * Frees the package segment pointer in the proper manner, depending on if the
81  * segment was allocated or just the passed in pointer was stored.
82  */
83 void ice_free_seg(struct ice_hw *hw)
84 {
85 	if (hw->pkg_copy) {
86 		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
87 		hw->pkg_copy = NULL;
88 		hw->pkg_size = 0;
89 	}
90 	hw->seg = NULL;
91 }
92 
93 /**
94  * ice_chk_pkg_version - check package version for compatibility with driver
95  * @pkg_ver: pointer to a version structure to check
96  *
97  * Check to make sure that the package about to be downloaded is compatible with
98  * the driver. To be compatible, the major and minor components of the package
99  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
100  * definitions.
101  */
102 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
103 {
104 	if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
105 	    (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
106 	     pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
107 		return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
108 	else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
109 		 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
110 		  pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
111 		return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
112 
113 	return ICE_DDP_PKG_SUCCESS;
114 }
115 
116 /**
117  * ice_pkg_val_buf
118  * @buf: pointer to the ice buffer
119  *
120  * This helper function validates a buffer's header.
121  */
122 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
123 {
124 	struct ice_buf_hdr *hdr;
125 	u16 section_count;
126 	u16 data_end;
127 
128 	hdr = (struct ice_buf_hdr *)buf->buf;
129 	/* verify data */
130 	section_count = le16_to_cpu(hdr->section_count);
131 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
132 		return NULL;
133 
134 	data_end = le16_to_cpu(hdr->data_end);
135 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
136 		return NULL;
137 
138 	return hdr;
139 }
140 
141 /**
142  * ice_find_buf_table
143  * @ice_seg: pointer to the ice segment
144  *
145  * Returns the address of the buffer table within the ice segment.
146  */
147 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
148 {
149 	struct ice_nvm_table *nvms = (struct ice_nvm_table *)
150 		(ice_seg->device_table + le32_to_cpu(ice_seg->device_table_count));
151 
152 	return (__force struct ice_buf_table *)(nvms->vers +
153 						le32_to_cpu(nvms->table_count));
154 }
155 
156 /**
157  * ice_pkg_enum_buf
158  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
159  * @state: pointer to the enum state
160  *
161  * This function will enumerate all the buffers in the ice segment. The first
162  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
163  * ice_seg is set to NULL which continues the enumeration. When the function
164  * returns a NULL pointer, then the end of the buffers has been reached, or an
165  * unexpected value has been detected (for example an invalid section count or
166  * an invalid buffer end value).
167  */
168 static struct ice_buf_hdr *ice_pkg_enum_buf(struct ice_seg *ice_seg,
169 					    struct ice_pkg_enum *state)
170 {
171 	if (ice_seg) {
172 		state->buf_table = ice_find_buf_table(ice_seg);
173 		if (!state->buf_table)
174 			return NULL;
175 
176 		state->buf_idx = 0;
177 		return ice_pkg_val_buf(state->buf_table->buf_array);
178 	}
179 
180 	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
181 		return ice_pkg_val_buf(state->buf_table->buf_array +
182 				       state->buf_idx);
183 	else
184 		return NULL;
185 }
186 
187 /**
188  * ice_pkg_advance_sect
189  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
190  * @state: pointer to the enum state
191  *
192  * This helper function will advance the section within the ice segment,
193  * also advancing the buffer if needed.
194  */
195 static bool ice_pkg_advance_sect(struct ice_seg *ice_seg,
196 				 struct ice_pkg_enum *state)
197 {
198 	if (!ice_seg && !state->buf)
199 		return false;
200 
201 	if (!ice_seg && state->buf)
202 		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
203 			return true;
204 
205 	state->buf = ice_pkg_enum_buf(ice_seg, state);
206 	if (!state->buf)
207 		return false;
208 
209 	/* start of new buffer, reset section index */
210 	state->sect_idx = 0;
211 	return true;
212 }
213 
214 /**
215  * ice_pkg_enum_section
216  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
217  * @state: pointer to the enum state
218  * @sect_type: section type to enumerate
219  *
220  * This function will enumerate all the sections of a particular type in the
221  * ice segment. The first call is made with the ice_seg parameter non-NULL;
222  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
223  * When the function returns a NULL pointer, then the end of the matching
224  * sections has been reached.
225  */
226 void *ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
227 			   u32 sect_type)
228 {
229 	u16 offset, size;
230 
231 	if (ice_seg)
232 		state->type = sect_type;
233 
234 	if (!ice_pkg_advance_sect(ice_seg, state))
235 		return NULL;
236 
237 	/* scan for next matching section */
238 	while (state->buf->section_entry[state->sect_idx].type !=
239 	       cpu_to_le32(state->type))
240 		if (!ice_pkg_advance_sect(NULL, state))
241 			return NULL;
242 
243 	/* validate section */
244 	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
245 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
246 		return NULL;
247 
248 	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
249 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
250 		return NULL;
251 
252 	/* make sure the section fits in the buffer */
253 	if (offset + size > ICE_PKG_BUF_SIZE)
254 		return NULL;
255 
256 	state->sect_type =
257 		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
258 
259 	/* calc pointer to this section */
260 	state->sect =
261 		((u8 *)state->buf) +
262 		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
263 
264 	return state->sect;
265 }
266 
267 /**
268  * ice_pkg_enum_entry
269  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
270  * @state: pointer to the enum state
271  * @sect_type: section type to enumerate
272  * @offset: pointer to variable that receives the offset in the table (optional)
273  * @handler: function that handles access to the entries into the section type
274  *
275  * This function will enumerate all the entries in particular section type in
276  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
277  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
278  * When the function returns a NULL pointer, then the end of the entries has
279  * been reached.
280  *
281  * Since each section may have a different header and entry size, the handler
282  * function is needed to determine the number and location entries in each
283  * section.
284  *
285  * The offset parameter is optional, but should be used for sections that
286  * contain an offset for each section table. For such cases, the section handler
287  * function must return the appropriate offset + index to give the absolution
288  * offset for each entry. For example, if the base for a section's header
289  * indicates a base offset of 10, and the index for the entry is 2, then
290  * section handler function should set the offset to 10 + 2 = 12.
291  */
292 static void *ice_pkg_enum_entry(struct ice_seg *ice_seg,
293 				struct ice_pkg_enum *state, u32 sect_type,
294 				u32 *offset,
295 				void *(*handler)(u32 sect_type, void *section,
296 						 u32 index, u32 *offset))
297 {
298 	void *entry;
299 
300 	if (ice_seg) {
301 		if (!handler)
302 			return NULL;
303 
304 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
305 			return NULL;
306 
307 		state->entry_idx = 0;
308 		state->handler = handler;
309 	} else {
310 		state->entry_idx++;
311 	}
312 
313 	if (!state->handler)
314 		return NULL;
315 
316 	/* get entry */
317 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
318 			       offset);
319 	if (!entry) {
320 		/* end of a section, look for another section of this type */
321 		if (!ice_pkg_enum_section(NULL, state, 0))
322 			return NULL;
323 
324 		state->entry_idx = 0;
325 		entry = state->handler(state->sect_type, state->sect,
326 				       state->entry_idx, offset);
327 	}
328 
329 	return entry;
330 }
331 
332 /**
333  * ice_sw_fv_handler
334  * @sect_type: section type
335  * @section: pointer to section
336  * @index: index of the field vector entry to be returned
337  * @offset: ptr to variable that receives the offset in the field vector table
338  *
339  * This is a callback function that can be passed to ice_pkg_enum_entry.
340  * This function treats the given section as of type ice_sw_fv_section and
341  * enumerates offset field. "offset" is an index into the field vector table.
342  */
343 static void *ice_sw_fv_handler(u32 sect_type, void *section, u32 index,
344 			       u32 *offset)
345 {
346 	struct ice_sw_fv_section *fv_section = section;
347 
348 	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
349 		return NULL;
350 	if (index >= le16_to_cpu(fv_section->count))
351 		return NULL;
352 	if (offset)
353 		/* "index" passed in to this function is relative to a given
354 		 * 4k block. To get to the true index into the field vector
355 		 * table need to add the relative index to the base_offset
356 		 * field of this section
357 		 */
358 		*offset = le16_to_cpu(fv_section->base_offset) + index;
359 	return fv_section->fv + index;
360 }
361 
362 /**
363  * ice_get_prof_index_max - get the max profile index for used profile
364  * @hw: pointer to the HW struct
365  *
366  * Calling this function will get the max profile index for used profile
367  * and store the index number in struct ice_switch_info *switch_info
368  * in HW for following use.
369  */
370 static int ice_get_prof_index_max(struct ice_hw *hw)
371 {
372 	u16 prof_index = 0, j, max_prof_index = 0;
373 	struct ice_pkg_enum state;
374 	struct ice_seg *ice_seg;
375 	bool flag = false;
376 	struct ice_fv *fv;
377 	u32 offset;
378 
379 	memset(&state, 0, sizeof(state));
380 
381 	if (!hw->seg)
382 		return -EINVAL;
383 
384 	ice_seg = hw->seg;
385 
386 	do {
387 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
388 					&offset, ice_sw_fv_handler);
389 		if (!fv)
390 			break;
391 		ice_seg = NULL;
392 
393 		/* in the profile that not be used, the prot_id is set to 0xff
394 		 * and the off is set to 0x1ff for all the field vectors.
395 		 */
396 		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
397 			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
398 			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
399 				flag = true;
400 		if (flag && prof_index > max_prof_index)
401 			max_prof_index = prof_index;
402 
403 		prof_index++;
404 		flag = false;
405 	} while (fv);
406 
407 	hw->switch_info->max_used_prof_index = max_prof_index;
408 
409 	return 0;
410 }
411 
412 /**
413  * ice_get_ddp_pkg_state - get DDP pkg state after download
414  * @hw: pointer to the HW struct
415  * @already_loaded: indicates if pkg was already loaded onto the device
416  */
417 static enum ice_ddp_state ice_get_ddp_pkg_state(struct ice_hw *hw,
418 						bool already_loaded)
419 {
420 	if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
421 	    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
422 	    hw->pkg_ver.update == hw->active_pkg_ver.update &&
423 	    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
424 	    !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
425 		if (already_loaded)
426 			return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
427 		else
428 			return ICE_DDP_PKG_SUCCESS;
429 	} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
430 		   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
431 		return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
432 	} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
433 		   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
434 		return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
435 	} else {
436 		return ICE_DDP_PKG_ERR;
437 	}
438 }
439 
440 /**
441  * ice_init_pkg_regs - initialize additional package registers
442  * @hw: pointer to the hardware structure
443  */
444 static void ice_init_pkg_regs(struct ice_hw *hw)
445 {
446 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
447 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
448 #define ICE_SW_BLK_IDX 0
449 
450 	/* setup Switch block input mask, which is 48-bits in two parts */
451 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
452 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
453 }
454 
455 /**
456  * ice_marker_ptype_tcam_handler
457  * @sect_type: section type
458  * @section: pointer to section
459  * @index: index of the Marker PType TCAM entry to be returned
460  * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
461  *
462  * This is a callback function that can be passed to ice_pkg_enum_entry.
463  * Handles enumeration of individual Marker PType TCAM entries.
464  */
465 static void *ice_marker_ptype_tcam_handler(u32 sect_type, void *section,
466 					   u32 index, u32 *offset)
467 {
468 	struct ice_marker_ptype_tcam_section *marker_ptype;
469 
470 	if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
471 		return NULL;
472 
473 	if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
474 		return NULL;
475 
476 	if (offset)
477 		*offset = 0;
478 
479 	marker_ptype = section;
480 	if (index >= le16_to_cpu(marker_ptype->count))
481 		return NULL;
482 
483 	return marker_ptype->tcam + index;
484 }
485 
486 /**
487  * ice_add_dvm_hint
488  * @hw: pointer to the HW structure
489  * @val: value of the boost entry
490  * @enable: true if entry needs to be enabled, or false if needs to be disabled
491  */
492 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
493 {
494 	if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
495 		hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
496 		hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
497 		hw->dvm_upd.count++;
498 	}
499 }
500 
501 /**
502  * ice_add_tunnel_hint
503  * @hw: pointer to the HW structure
504  * @label_name: label text
505  * @val: value of the tunnel port boost entry
506  */
507 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
508 {
509 	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
510 		u16 i;
511 
512 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
513 			size_t len = strlen(tnls[i].label_prefix);
514 
515 			/* Look for matching label start, before continuing */
516 			if (strncmp(label_name, tnls[i].label_prefix, len))
517 				continue;
518 
519 			/* Make sure this label matches our PF. Note that the PF
520 			 * character ('0' - '7') will be located where our
521 			 * prefix string's null terminator is located.
522 			 */
523 			if ((label_name[len] - '0') == hw->pf_id) {
524 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
525 				hw->tnl.tbl[hw->tnl.count].valid = false;
526 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
527 				hw->tnl.tbl[hw->tnl.count].port = 0;
528 				hw->tnl.count++;
529 				break;
530 			}
531 		}
532 	}
533 }
534 
535 /**
536  * ice_label_enum_handler
537  * @sect_type: section type
538  * @section: pointer to section
539  * @index: index of the label entry to be returned
540  * @offset: pointer to receive absolute offset, always zero for label sections
541  *
542  * This is a callback function that can be passed to ice_pkg_enum_entry.
543  * Handles enumeration of individual label entries.
544  */
545 static void *ice_label_enum_handler(u32 __always_unused sect_type,
546 				    void *section, u32 index, u32 *offset)
547 {
548 	struct ice_label_section *labels;
549 
550 	if (!section)
551 		return NULL;
552 
553 	if (index > ICE_MAX_LABELS_IN_BUF)
554 		return NULL;
555 
556 	if (offset)
557 		*offset = 0;
558 
559 	labels = section;
560 	if (index >= le16_to_cpu(labels->count))
561 		return NULL;
562 
563 	return labels->label + index;
564 }
565 
566 /**
567  * ice_enum_labels
568  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
569  * @type: the section type that will contain the label (0 on subsequent calls)
570  * @state: ice_pkg_enum structure that will hold the state of the enumeration
571  * @value: pointer to a value that will return the label's value if found
572  *
573  * Enumerates a list of labels in the package. The caller will call
574  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
575  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
576  * the end of the list has been reached.
577  */
578 static char *ice_enum_labels(struct ice_seg *ice_seg, u32 type,
579 			     struct ice_pkg_enum *state, u16 *value)
580 {
581 	struct ice_label *label;
582 
583 	/* Check for valid label section on first call */
584 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
585 		return NULL;
586 
587 	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
588 				   ice_label_enum_handler);
589 	if (!label)
590 		return NULL;
591 
592 	*value = le16_to_cpu(label->value);
593 	return label->name;
594 }
595 
596 /**
597  * ice_boost_tcam_handler
598  * @sect_type: section type
599  * @section: pointer to section
600  * @index: index of the boost TCAM entry to be returned
601  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
602  *
603  * This is a callback function that can be passed to ice_pkg_enum_entry.
604  * Handles enumeration of individual boost TCAM entries.
605  */
606 static void *ice_boost_tcam_handler(u32 sect_type, void *section, u32 index,
607 				    u32 *offset)
608 {
609 	struct ice_boost_tcam_section *boost;
610 
611 	if (!section)
612 		return NULL;
613 
614 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
615 		return NULL;
616 
617 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
618 		return NULL;
619 
620 	if (offset)
621 		*offset = 0;
622 
623 	boost = section;
624 	if (index >= le16_to_cpu(boost->count))
625 		return NULL;
626 
627 	return boost->tcam + index;
628 }
629 
630 /**
631  * ice_find_boost_entry
632  * @ice_seg: pointer to the ice segment (non-NULL)
633  * @addr: Boost TCAM address of entry to search for
634  * @entry: returns pointer to the entry
635  *
636  * Finds a particular Boost TCAM entry and returns a pointer to that entry
637  * if it is found. The ice_seg parameter must not be NULL since the first call
638  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
639  */
640 static int ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
641 				struct ice_boost_tcam_entry **entry)
642 {
643 	struct ice_boost_tcam_entry *tcam;
644 	struct ice_pkg_enum state;
645 
646 	memset(&state, 0, sizeof(state));
647 
648 	if (!ice_seg)
649 		return -EINVAL;
650 
651 	do {
652 		tcam = ice_pkg_enum_entry(ice_seg, &state,
653 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
654 					  ice_boost_tcam_handler);
655 		if (tcam && le16_to_cpu(tcam->addr) == addr) {
656 			*entry = tcam;
657 			return 0;
658 		}
659 
660 		ice_seg = NULL;
661 	} while (tcam);
662 
663 	*entry = NULL;
664 	return -EIO;
665 }
666 
667 /**
668  * ice_is_init_pkg_successful - check if DDP init was successful
669  * @state: state of the DDP pkg after download
670  */
671 bool ice_is_init_pkg_successful(enum ice_ddp_state state)
672 {
673 	switch (state) {
674 	case ICE_DDP_PKG_SUCCESS:
675 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
676 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
677 		return true;
678 	default:
679 		return false;
680 	}
681 }
682 
683 /**
684  * ice_pkg_buf_alloc
685  * @hw: pointer to the HW structure
686  *
687  * Allocates a package buffer and returns a pointer to the buffer header.
688  * Note: all package contents must be in Little Endian form.
689  */
690 struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
691 {
692 	struct ice_buf_build *bld;
693 	struct ice_buf_hdr *buf;
694 
695 	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
696 	if (!bld)
697 		return NULL;
698 
699 	buf = (struct ice_buf_hdr *)bld;
700 	buf->data_end =
701 		cpu_to_le16(offsetof(struct ice_buf_hdr, section_entry));
702 	return bld;
703 }
704 
705 static bool ice_is_gtp_u_profile(u16 prof_idx)
706 {
707 	return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
708 		prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
709 	       prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
710 }
711 
712 static bool ice_is_gtp_c_profile(u16 prof_idx)
713 {
714 	switch (prof_idx) {
715 	case ICE_PROFID_IPV4_GTPC_TEID:
716 	case ICE_PROFID_IPV4_GTPC_NO_TEID:
717 	case ICE_PROFID_IPV6_GTPC_TEID:
718 	case ICE_PROFID_IPV6_GTPC_NO_TEID:
719 		return true;
720 	default:
721 		return false;
722 	}
723 }
724 
725 static bool ice_is_pfcp_profile(u16 prof_idx)
726 {
727 	return prof_idx >= ICE_PROFID_IPV4_PFCP_NODE &&
728 	       prof_idx <= ICE_PROFID_IPV6_PFCP_SESSION;
729 }
730 
731 /**
732  * ice_get_sw_prof_type - determine switch profile type
733  * @hw: pointer to the HW structure
734  * @fv: pointer to the switch field vector
735  * @prof_idx: profile index to check
736  */
737 static enum ice_prof_type ice_get_sw_prof_type(struct ice_hw *hw,
738 					       struct ice_fv *fv, u32 prof_idx)
739 {
740 	u16 i;
741 
742 	if (ice_is_gtp_c_profile(prof_idx))
743 		return ICE_PROF_TUN_GTPC;
744 
745 	if (ice_is_gtp_u_profile(prof_idx))
746 		return ICE_PROF_TUN_GTPU;
747 
748 	if (ice_is_pfcp_profile(prof_idx))
749 		return ICE_PROF_TUN_PFCP;
750 
751 	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
752 		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
753 		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
754 		    fv->ew[i].off == ICE_VNI_OFFSET)
755 			return ICE_PROF_TUN_UDP;
756 
757 		/* GRE tunnel will have GRE protocol */
758 		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
759 			return ICE_PROF_TUN_GRE;
760 	}
761 
762 	return ICE_PROF_NON_TUN;
763 }
764 
765 /**
766  * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
767  * @hw: pointer to hardware structure
768  * @req_profs: type of profiles requested
769  * @bm: pointer to memory for returning the bitmap of field vectors
770  */
771 void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
772 			  unsigned long *bm)
773 {
774 	struct ice_pkg_enum state;
775 	struct ice_seg *ice_seg;
776 	struct ice_fv *fv;
777 
778 	if (req_profs == ICE_PROF_ALL) {
779 		bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
780 		return;
781 	}
782 
783 	memset(&state, 0, sizeof(state));
784 	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
785 	ice_seg = hw->seg;
786 	do {
787 		enum ice_prof_type prof_type;
788 		u32 offset;
789 
790 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
791 					&offset, ice_sw_fv_handler);
792 		ice_seg = NULL;
793 
794 		if (fv) {
795 			/* Determine field vector type */
796 			prof_type = ice_get_sw_prof_type(hw, fv, offset);
797 
798 			if (req_profs & prof_type)
799 				set_bit((u16)offset, bm);
800 		}
801 	} while (fv);
802 }
803 
804 /**
805  * ice_get_sw_fv_list
806  * @hw: pointer to the HW structure
807  * @lkups: list of protocol types
808  * @bm: bitmap of field vectors to consider
809  * @fv_list: Head of a list
810  *
811  * Finds all the field vector entries from switch block that contain
812  * a given protocol ID and offset and returns a list of structures of type
813  * "ice_sw_fv_list_entry". Every structure in the list has a field vector
814  * definition and profile ID information
815  * NOTE: The caller of the function is responsible for freeing the memory
816  * allocated for every list entry.
817  */
818 int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
819 		       unsigned long *bm, struct list_head *fv_list)
820 {
821 	struct ice_sw_fv_list_entry *fvl;
822 	struct ice_sw_fv_list_entry *tmp;
823 	struct ice_pkg_enum state;
824 	struct ice_seg *ice_seg;
825 	struct ice_fv *fv;
826 	u32 offset;
827 
828 	memset(&state, 0, sizeof(state));
829 
830 	if (!lkups->n_val_words || !hw->seg)
831 		return -EINVAL;
832 
833 	ice_seg = hw->seg;
834 	do {
835 		u16 i;
836 
837 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
838 					&offset, ice_sw_fv_handler);
839 		if (!fv)
840 			break;
841 		ice_seg = NULL;
842 
843 		/* If field vector is not in the bitmap list, then skip this
844 		 * profile.
845 		 */
846 		if (!test_bit((u16)offset, bm))
847 			continue;
848 
849 		for (i = 0; i < lkups->n_val_words; i++) {
850 			int j;
851 
852 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
853 				if (fv->ew[j].prot_id ==
854 					    lkups->fv_words[i].prot_id &&
855 				    fv->ew[j].off == lkups->fv_words[i].off)
856 					break;
857 			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
858 				break;
859 			if (i + 1 == lkups->n_val_words) {
860 				fvl = devm_kzalloc(ice_hw_to_dev(hw),
861 						   sizeof(*fvl), GFP_KERNEL);
862 				if (!fvl)
863 					goto err;
864 				fvl->fv_ptr = fv;
865 				fvl->profile_id = offset;
866 				list_add(&fvl->list_entry, fv_list);
867 				break;
868 			}
869 		}
870 	} while (fv);
871 	if (list_empty(fv_list)) {
872 		dev_warn(ice_hw_to_dev(hw),
873 			 "Required profiles not found in currently loaded DDP package");
874 		return -EIO;
875 	}
876 
877 	return 0;
878 
879 err:
880 	list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
881 		list_del(&fvl->list_entry);
882 		devm_kfree(ice_hw_to_dev(hw), fvl);
883 	}
884 
885 	return -ENOMEM;
886 }
887 
888 /**
889  * ice_init_prof_result_bm - Initialize the profile result index bitmap
890  * @hw: pointer to hardware structure
891  */
892 void ice_init_prof_result_bm(struct ice_hw *hw)
893 {
894 	struct ice_pkg_enum state;
895 	struct ice_seg *ice_seg;
896 	struct ice_fv *fv;
897 
898 	memset(&state, 0, sizeof(state));
899 
900 	if (!hw->seg)
901 		return;
902 
903 	ice_seg = hw->seg;
904 	do {
905 		u32 off;
906 		u16 i;
907 
908 		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
909 					&off, ice_sw_fv_handler);
910 		ice_seg = NULL;
911 		if (!fv)
912 			break;
913 
914 		bitmap_zero(hw->switch_info->prof_res_bm[off],
915 			    ICE_MAX_FV_WORDS);
916 
917 		/* Determine empty field vector indices, these can be
918 		 * used for recipe results. Skip index 0, since it is
919 		 * always used for Switch ID.
920 		 */
921 		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
922 			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
923 			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
924 				set_bit(i, hw->switch_info->prof_res_bm[off]);
925 	} while (fv);
926 }
927 
928 /**
929  * ice_pkg_buf_free
930  * @hw: pointer to the HW structure
931  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
932  *
933  * Frees a package buffer
934  */
935 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
936 {
937 	devm_kfree(ice_hw_to_dev(hw), bld);
938 }
939 
940 /**
941  * ice_pkg_buf_reserve_section
942  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
943  * @count: the number of sections to reserve
944  *
945  * Reserves one or more section table entries in a package buffer. This routine
946  * can be called multiple times as long as they are made before calling
947  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
948  * is called once, the number of sections that can be allocated will not be able
949  * to be increased; not using all reserved sections is fine, but this will
950  * result in some wasted space in the buffer.
951  * Note: all package contents must be in Little Endian form.
952  */
953 int ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
954 {
955 	struct ice_buf_hdr *buf;
956 	u16 section_count;
957 	u16 data_end;
958 
959 	if (!bld)
960 		return -EINVAL;
961 
962 	buf = (struct ice_buf_hdr *)&bld->buf;
963 
964 	/* already an active section, can't increase table size */
965 	section_count = le16_to_cpu(buf->section_count);
966 	if (section_count > 0)
967 		return -EIO;
968 
969 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
970 		return -EIO;
971 	bld->reserved_section_table_entries += count;
972 
973 	data_end = le16_to_cpu(buf->data_end) +
974 		   flex_array_size(buf, section_entry, count);
975 	buf->data_end = cpu_to_le16(data_end);
976 
977 	return 0;
978 }
979 
980 /**
981  * ice_pkg_buf_alloc_section
982  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
983  * @type: the section type value
984  * @size: the size of the section to reserve (in bytes)
985  *
986  * Reserves memory in the buffer for a section's content and updates the
987  * buffers' status accordingly. This routine returns a pointer to the first
988  * byte of the section start within the buffer, which is used to fill in the
989  * section contents.
990  * Note: all package contents must be in Little Endian form.
991  */
992 void *ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
993 {
994 	struct ice_buf_hdr *buf;
995 	u16 sect_count;
996 	u16 data_end;
997 
998 	if (!bld || !type || !size)
999 		return NULL;
1000 
1001 	buf = (struct ice_buf_hdr *)&bld->buf;
1002 
1003 	/* check for enough space left in buffer */
1004 	data_end = le16_to_cpu(buf->data_end);
1005 
1006 	/* section start must align on 4 byte boundary */
1007 	data_end = ALIGN(data_end, 4);
1008 
1009 	if ((data_end + size) > ICE_MAX_S_DATA_END)
1010 		return NULL;
1011 
1012 	/* check for more available section table entries */
1013 	sect_count = le16_to_cpu(buf->section_count);
1014 	if (sect_count < bld->reserved_section_table_entries) {
1015 		void *section_ptr = ((u8 *)buf) + data_end;
1016 
1017 		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1018 		buf->section_entry[sect_count].size = cpu_to_le16(size);
1019 		buf->section_entry[sect_count].type = cpu_to_le32(type);
1020 
1021 		data_end += size;
1022 		buf->data_end = cpu_to_le16(data_end);
1023 
1024 		buf->section_count = cpu_to_le16(sect_count + 1);
1025 		return section_ptr;
1026 	}
1027 
1028 	/* no free section table entries */
1029 	return NULL;
1030 }
1031 
1032 /**
1033  * ice_pkg_buf_alloc_single_section
1034  * @hw: pointer to the HW structure
1035  * @type: the section type value
1036  * @size: the size of the section to reserve (in bytes)
1037  * @section: returns pointer to the section
1038  *
1039  * Allocates a package buffer with a single section.
1040  * Note: all package contents must be in Little Endian form.
1041  */
1042 struct ice_buf_build *ice_pkg_buf_alloc_single_section(struct ice_hw *hw,
1043 						       u32 type, u16 size,
1044 						       void **section)
1045 {
1046 	struct ice_buf_build *buf;
1047 
1048 	if (!section)
1049 		return NULL;
1050 
1051 	buf = ice_pkg_buf_alloc(hw);
1052 	if (!buf)
1053 		return NULL;
1054 
1055 	if (ice_pkg_buf_reserve_section(buf, 1))
1056 		goto ice_pkg_buf_alloc_single_section_err;
1057 
1058 	*section = ice_pkg_buf_alloc_section(buf, type, size);
1059 	if (!*section)
1060 		goto ice_pkg_buf_alloc_single_section_err;
1061 
1062 	return buf;
1063 
1064 ice_pkg_buf_alloc_single_section_err:
1065 	ice_pkg_buf_free(hw, buf);
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * ice_pkg_buf_get_active_sections
1071  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1072  *
1073  * Returns the number of active sections. Before using the package buffer
1074  * in an update package command, the caller should make sure that there is at
1075  * least one active section - otherwise, the buffer is not legal and should
1076  * not be used.
1077  * Note: all package contents must be in Little Endian form.
1078  */
1079 u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1080 {
1081 	struct ice_buf_hdr *buf;
1082 
1083 	if (!bld)
1084 		return 0;
1085 
1086 	buf = (struct ice_buf_hdr *)&bld->buf;
1087 	return le16_to_cpu(buf->section_count);
1088 }
1089 
1090 /**
1091  * ice_pkg_buf
1092  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1093  *
1094  * Return a pointer to the buffer's header
1095  */
1096 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1097 {
1098 	if (!bld)
1099 		return NULL;
1100 
1101 	return &bld->buf;
1102 }
1103 
1104 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1105 {
1106 	switch (aq_err) {
1107 	case ICE_AQ_RC_ENOSEC:
1108 	case ICE_AQ_RC_EBADSIG:
1109 		return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1110 	case ICE_AQ_RC_ESVN:
1111 		return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1112 	case ICE_AQ_RC_EBADMAN:
1113 	case ICE_AQ_RC_EBADBUF:
1114 		return ICE_DDP_PKG_LOAD_ERROR;
1115 	default:
1116 		return ICE_DDP_PKG_ERR;
1117 	}
1118 }
1119 
1120 /**
1121  * ice_acquire_global_cfg_lock
1122  * @hw: pointer to the HW structure
1123  * @access: access type (read or write)
1124  *
1125  * This function will request ownership of the global config lock for reading
1126  * or writing of the package. When attempting to obtain write access, the
1127  * caller must check for the following two return values:
1128  *
1129  * 0         -  Means the caller has acquired the global config lock
1130  *              and can perform writing of the package.
1131  * -EALREADY - Indicates another driver has already written the
1132  *             package or has found that no update was necessary; in
1133  *             this case, the caller can just skip performing any
1134  *             update of the package.
1135  */
1136 static int ice_acquire_global_cfg_lock(struct ice_hw *hw,
1137 				       enum ice_aq_res_access_type access)
1138 {
1139 	int status;
1140 
1141 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
1142 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
1143 
1144 	if (!status)
1145 		mutex_lock(&ice_global_cfg_lock_sw);
1146 	else if (status == -EALREADY)
1147 		ice_debug(hw, ICE_DBG_PKG,
1148 			  "Global config lock: No work to do\n");
1149 
1150 	return status;
1151 }
1152 
1153 /**
1154  * ice_release_global_cfg_lock
1155  * @hw: pointer to the HW structure
1156  *
1157  * This function will release the global config lock.
1158  */
1159 static void ice_release_global_cfg_lock(struct ice_hw *hw)
1160 {
1161 	mutex_unlock(&ice_global_cfg_lock_sw);
1162 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
1163 }
1164 
1165 /**
1166  * ice_aq_download_pkg
1167  * @hw: pointer to the hardware structure
1168  * @pkg_buf: the package buffer to transfer
1169  * @buf_size: the size of the package buffer
1170  * @last_buf: last buffer indicator
1171  * @error_offset: returns error offset
1172  * @error_info: returns error information
1173  * @cd: pointer to command details structure or NULL
1174  *
1175  * Download Package (0x0C40)
1176  */
1177 static int
1178 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
1179 		    u16 buf_size, bool last_buf, u32 *error_offset,
1180 		    u32 *error_info, struct ice_sq_cd *cd)
1181 {
1182 	struct ice_aqc_download_pkg *cmd;
1183 	struct ice_aq_desc desc;
1184 	int status;
1185 
1186 	if (error_offset)
1187 		*error_offset = 0;
1188 	if (error_info)
1189 		*error_info = 0;
1190 
1191 	cmd = &desc.params.download_pkg;
1192 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
1193 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1194 
1195 	if (last_buf)
1196 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
1197 
1198 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
1199 	if (status == -EIO) {
1200 		/* Read error from buffer only when the FW returned an error */
1201 		struct ice_aqc_download_pkg_resp *resp;
1202 
1203 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
1204 		if (error_offset)
1205 			*error_offset = le32_to_cpu(resp->error_offset);
1206 		if (error_info)
1207 			*error_info = le32_to_cpu(resp->error_info);
1208 	}
1209 
1210 	return status;
1211 }
1212 
1213 /**
1214  * ice_get_pkg_seg_by_idx
1215  * @pkg_hdr: pointer to the package header to be searched
1216  * @idx: index of segment
1217  */
1218 static struct ice_generic_seg_hdr *
1219 ice_get_pkg_seg_by_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx)
1220 {
1221 	if (idx < le32_to_cpu(pkg_hdr->seg_count))
1222 		return (struct ice_generic_seg_hdr *)
1223 			((u8 *)pkg_hdr +
1224 			 le32_to_cpu(pkg_hdr->seg_offset[idx]));
1225 
1226 	return NULL;
1227 }
1228 
1229 /**
1230  * ice_is_signing_seg_at_idx - determine if segment is a signing segment
1231  * @pkg_hdr: pointer to package header
1232  * @idx: segment index
1233  */
1234 static bool ice_is_signing_seg_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx)
1235 {
1236 	struct ice_generic_seg_hdr *seg;
1237 
1238 	seg = ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1239 	if (!seg)
1240 		return false;
1241 
1242 	return le32_to_cpu(seg->seg_type) == SEGMENT_TYPE_SIGNING;
1243 }
1244 
1245 /**
1246  * ice_is_signing_seg_type_at_idx
1247  * @pkg_hdr: pointer to package header
1248  * @idx: segment index
1249  * @seg_id: segment id that is expected
1250  * @sign_type: signing type
1251  *
1252  * Determine if a segment is a signing segment of the correct type
1253  */
1254 static bool
1255 ice_is_signing_seg_type_at_idx(struct ice_pkg_hdr *pkg_hdr, u32 idx,
1256 			       u32 seg_id, u32 sign_type)
1257 {
1258 	struct ice_sign_seg *seg;
1259 
1260 	if (!ice_is_signing_seg_at_idx(pkg_hdr, idx))
1261 		return false;
1262 
1263 	seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1264 
1265 	if (seg && le32_to_cpu(seg->seg_id) == seg_id &&
1266 	    le32_to_cpu(seg->sign_type) == sign_type)
1267 		return true;
1268 
1269 	return false;
1270 }
1271 
1272 /**
1273  * ice_is_buffer_metadata - determine if package buffer is a metadata buffer
1274  * @buf: pointer to buffer header
1275  */
1276 static bool ice_is_buffer_metadata(struct ice_buf_hdr *buf)
1277 {
1278 	if (le32_to_cpu(buf->section_entry[0].type) & ICE_METADATA_BUF)
1279 		return true;
1280 
1281 	return false;
1282 }
1283 
1284 /**
1285  * ice_is_last_download_buffer
1286  * @buf: pointer to current buffer header
1287  * @idx: index of the buffer in the current sequence
1288  * @count: the buffer count in the current sequence
1289  *
1290  * Note: this routine should only be called if the buffer is not the last buffer
1291  */
1292 static bool
1293 ice_is_last_download_buffer(struct ice_buf_hdr *buf, u32 idx, u32 count)
1294 {
1295 	struct ice_buf *next_buf;
1296 
1297 	if ((idx + 1) == count)
1298 		return true;
1299 
1300 	/* A set metadata flag in the next buffer will signal that the current
1301 	 * buffer will be the last buffer downloaded
1302 	 */
1303 	next_buf = ((struct ice_buf *)buf) + 1;
1304 
1305 	return ice_is_buffer_metadata((struct ice_buf_hdr *)next_buf);
1306 }
1307 
1308 /**
1309  * ice_dwnld_cfg_bufs_no_lock
1310  * @hw: pointer to the hardware structure
1311  * @bufs: pointer to an array of buffers
1312  * @start: buffer index of first buffer to download
1313  * @count: the number of buffers to download
1314  * @indicate_last: if true, then set last buffer flag on last buffer download
1315  *
1316  * Downloads package configuration buffers to the firmware. Metadata buffers
1317  * are skipped, and the first metadata buffer found indicates that the rest
1318  * of the buffers are all metadata buffers.
1319  */
1320 static enum ice_ddp_state
1321 ice_dwnld_cfg_bufs_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 start,
1322 			   u32 count, bool indicate_last)
1323 {
1324 	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1325 	struct ice_buf_hdr *bh;
1326 	enum ice_aq_err err;
1327 	u32 offset, info, i;
1328 
1329 	if (!bufs || !count)
1330 		return ICE_DDP_PKG_ERR;
1331 
1332 	/* If the first buffer's first section has its metadata bit set
1333 	 * then there are no buffers to be downloaded, and the operation is
1334 	 * considered a success.
1335 	 */
1336 	bh = (struct ice_buf_hdr *)(bufs + start);
1337 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1338 		return ICE_DDP_PKG_SUCCESS;
1339 
1340 	for (i = 0; i < count; i++) {
1341 		bool last = false;
1342 		int try_cnt = 0;
1343 		int status;
1344 
1345 		bh = (struct ice_buf_hdr *)(bufs + start + i);
1346 
1347 		if (indicate_last)
1348 			last = ice_is_last_download_buffer(bh, i, count);
1349 
1350 		while (1) {
1351 			status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE,
1352 						     last, &offset, &info,
1353 						     NULL);
1354 			if (hw->adminq.sq_last_status != ICE_AQ_RC_ENOSEC &&
1355 			    hw->adminq.sq_last_status != ICE_AQ_RC_EBADSIG)
1356 				break;
1357 
1358 			try_cnt++;
1359 
1360 			if (try_cnt == 5)
1361 				break;
1362 
1363 			msleep(20);
1364 		}
1365 
1366 		if (try_cnt)
1367 			dev_dbg(ice_hw_to_dev(hw),
1368 				"ice_aq_download_pkg number of retries: %d\n",
1369 				try_cnt);
1370 
1371 		/* Save AQ status from download package */
1372 		if (status) {
1373 			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1374 				  status, offset, info);
1375 			err = hw->adminq.sq_last_status;
1376 			state = ice_map_aq_err_to_ddp_state(err);
1377 			break;
1378 		}
1379 
1380 		if (last)
1381 			break;
1382 	}
1383 
1384 	return state;
1385 }
1386 
1387 /**
1388  * ice_download_pkg_sig_seg - download a signature segment
1389  * @hw: pointer to the hardware structure
1390  * @seg: pointer to signature segment
1391  */
1392 static enum ice_ddp_state
1393 ice_download_pkg_sig_seg(struct ice_hw *hw, struct ice_sign_seg *seg)
1394 {
1395 	return  ice_dwnld_cfg_bufs_no_lock(hw, seg->buf_tbl.buf_array, 0,
1396 					   le32_to_cpu(seg->buf_tbl.buf_count),
1397 					   false);
1398 }
1399 
1400 /**
1401  * ice_download_pkg_config_seg - download a config segment
1402  * @hw: pointer to the hardware structure
1403  * @pkg_hdr: pointer to package header
1404  * @idx: segment index
1405  * @start: starting buffer
1406  * @count: buffer count
1407  *
1408  * Note: idx must reference a ICE segment
1409  */
1410 static enum ice_ddp_state
1411 ice_download_pkg_config_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
1412 			    u32 idx, u32 start, u32 count)
1413 {
1414 	struct ice_buf_table *bufs;
1415 	struct ice_seg *seg;
1416 	u32 buf_count;
1417 
1418 	seg = (struct ice_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1419 	if (!seg)
1420 		return ICE_DDP_PKG_ERR;
1421 
1422 	bufs = ice_find_buf_table(seg);
1423 	buf_count = le32_to_cpu(bufs->buf_count);
1424 
1425 	if (start >= buf_count || start + count > buf_count)
1426 		return ICE_DDP_PKG_ERR;
1427 
1428 	return  ice_dwnld_cfg_bufs_no_lock(hw, bufs->buf_array, start, count,
1429 					   true);
1430 }
1431 
1432 /**
1433  * ice_dwnld_sign_and_cfg_segs - download a signing segment and config segment
1434  * @hw: pointer to the hardware structure
1435  * @pkg_hdr: pointer to package header
1436  * @idx: segment index (must be a signature segment)
1437  *
1438  * Note: idx must reference a signature segment
1439  */
1440 static enum ice_ddp_state
1441 ice_dwnld_sign_and_cfg_segs(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
1442 			    u32 idx)
1443 {
1444 	enum ice_ddp_state state;
1445 	struct ice_sign_seg *seg;
1446 	u32 conf_idx;
1447 	u32 start;
1448 	u32 count;
1449 
1450 	seg = (struct ice_sign_seg *)ice_get_pkg_seg_by_idx(pkg_hdr, idx);
1451 	if (!seg) {
1452 		state = ICE_DDP_PKG_ERR;
1453 		goto exit;
1454 	}
1455 
1456 	count = le32_to_cpu(seg->signed_buf_count);
1457 	state = ice_download_pkg_sig_seg(hw, seg);
1458 	if (state || !count)
1459 		goto exit;
1460 
1461 	conf_idx = le32_to_cpu(seg->signed_seg_idx);
1462 	start = le32_to_cpu(seg->signed_buf_start);
1463 
1464 	state = ice_download_pkg_config_seg(hw, pkg_hdr, conf_idx, start,
1465 					    count);
1466 
1467 exit:
1468 	return state;
1469 }
1470 
1471 /**
1472  * ice_match_signing_seg - determine if a matching signing segment exists
1473  * @pkg_hdr: pointer to package header
1474  * @seg_id: segment id that is expected
1475  * @sign_type: signing type
1476  */
1477 static bool
1478 ice_match_signing_seg(struct ice_pkg_hdr *pkg_hdr, u32 seg_id, u32 sign_type)
1479 {
1480 	u32 i;
1481 
1482 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1483 		if (ice_is_signing_seg_type_at_idx(pkg_hdr, i, seg_id,
1484 						   sign_type))
1485 			return true;
1486 	}
1487 
1488 	return false;
1489 }
1490 
1491 /**
1492  * ice_post_dwnld_pkg_actions - perform post download package actions
1493  * @hw: pointer to the hardware structure
1494  */
1495 static enum ice_ddp_state
1496 ice_post_dwnld_pkg_actions(struct ice_hw *hw)
1497 {
1498 	int status;
1499 
1500 	status = ice_set_vlan_mode(hw);
1501 	if (status) {
1502 		ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1503 			  status);
1504 		return ICE_DDP_PKG_ERR;
1505 	}
1506 
1507 	return ICE_DDP_PKG_SUCCESS;
1508 }
1509 
1510 /**
1511  * ice_download_pkg_with_sig_seg
1512  * @hw: pointer to the hardware structure
1513  * @pkg_hdr: pointer to package header
1514  *
1515  * Handles the download of a complete package.
1516  */
1517 static enum ice_ddp_state
1518 ice_download_pkg_with_sig_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1519 {
1520 	enum ice_aq_err aq_err = hw->adminq.sq_last_status;
1521 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
1522 	int status;
1523 	u32 i;
1524 
1525 	ice_debug(hw, ICE_DBG_INIT, "Segment ID %d\n", hw->pkg_seg_id);
1526 	ice_debug(hw, ICE_DBG_INIT, "Signature type %d\n", hw->pkg_sign_type);
1527 
1528 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1529 	if (status) {
1530 		if (status == -EALREADY)
1531 			state = ICE_DDP_PKG_ALREADY_LOADED;
1532 		else
1533 			state = ice_map_aq_err_to_ddp_state(aq_err);
1534 		return state;
1535 	}
1536 
1537 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1538 		if (!ice_is_signing_seg_type_at_idx(pkg_hdr, i, hw->pkg_seg_id,
1539 						    hw->pkg_sign_type))
1540 			continue;
1541 
1542 		state = ice_dwnld_sign_and_cfg_segs(hw, pkg_hdr, i);
1543 		if (state)
1544 			break;
1545 	}
1546 
1547 	if (!state)
1548 		state = ice_post_dwnld_pkg_actions(hw);
1549 
1550 	ice_release_global_cfg_lock(hw);
1551 
1552 	return state;
1553 }
1554 
1555 /**
1556  * ice_dwnld_cfg_bufs
1557  * @hw: pointer to the hardware structure
1558  * @bufs: pointer to an array of buffers
1559  * @count: the number of buffers in the array
1560  *
1561  * Obtains global config lock and downloads the package configuration buffers
1562  * to the firmware.
1563  */
1564 static enum ice_ddp_state
1565 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1566 {
1567 	enum ice_ddp_state state;
1568 	struct ice_buf_hdr *bh;
1569 	int status;
1570 
1571 	if (!bufs || !count)
1572 		return ICE_DDP_PKG_ERR;
1573 
1574 	/* If the first buffer's first section has its metadata bit set
1575 	 * then there are no buffers to be downloaded, and the operation is
1576 	 * considered a success.
1577 	 */
1578 	bh = (struct ice_buf_hdr *)bufs;
1579 	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1580 		return ICE_DDP_PKG_SUCCESS;
1581 
1582 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1583 	if (status) {
1584 		if (status == -EALREADY)
1585 			return ICE_DDP_PKG_ALREADY_LOADED;
1586 		return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
1587 	}
1588 
1589 	state = ice_dwnld_cfg_bufs_no_lock(hw, bufs, 0, count, true);
1590 	if (!state)
1591 		state = ice_post_dwnld_pkg_actions(hw);
1592 
1593 	ice_release_global_cfg_lock(hw);
1594 
1595 	return state;
1596 }
1597 
1598 /**
1599  * ice_download_pkg_without_sig_seg
1600  * @hw: pointer to the hardware structure
1601  * @ice_seg: pointer to the segment of the package to be downloaded
1602  *
1603  * Handles the download of a complete package without signature segment.
1604  */
1605 static enum ice_ddp_state
1606 ice_download_pkg_without_sig_seg(struct ice_hw *hw, struct ice_seg *ice_seg)
1607 {
1608 	struct ice_buf_table *ice_buf_tbl;
1609 
1610 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1611 		  ice_seg->hdr.seg_format_ver.major,
1612 		  ice_seg->hdr.seg_format_ver.minor,
1613 		  ice_seg->hdr.seg_format_ver.update,
1614 		  ice_seg->hdr.seg_format_ver.draft);
1615 
1616 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1617 		  le32_to_cpu(ice_seg->hdr.seg_type),
1618 		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1619 
1620 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1621 
1622 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1623 		  le32_to_cpu(ice_buf_tbl->buf_count));
1624 
1625 	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1626 				  le32_to_cpu(ice_buf_tbl->buf_count));
1627 }
1628 
1629 /**
1630  * ice_download_pkg
1631  * @hw: pointer to the hardware structure
1632  * @pkg_hdr: pointer to package header
1633  * @ice_seg: pointer to the segment of the package to be downloaded
1634  *
1635  * Handles the download of a complete package.
1636  */
1637 static enum ice_ddp_state
1638 ice_download_pkg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr,
1639 		 struct ice_seg *ice_seg)
1640 {
1641 	enum ice_ddp_state state;
1642 
1643 	if (hw->pkg_has_signing_seg)
1644 		state = ice_download_pkg_with_sig_seg(hw, pkg_hdr);
1645 	else
1646 		state = ice_download_pkg_without_sig_seg(hw, ice_seg);
1647 
1648 	ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1649 
1650 	return state;
1651 }
1652 
1653 /**
1654  * ice_aq_get_pkg_info_list
1655  * @hw: pointer to the hardware structure
1656  * @pkg_info: the buffer which will receive the information list
1657  * @buf_size: the size of the pkg_info information buffer
1658  * @cd: pointer to command details structure or NULL
1659  *
1660  * Get Package Info List (0x0C43)
1661  */
1662 static int ice_aq_get_pkg_info_list(struct ice_hw *hw,
1663 				    struct ice_aqc_get_pkg_info_resp *pkg_info,
1664 				    u16 buf_size, struct ice_sq_cd *cd)
1665 {
1666 	struct ice_aq_desc desc;
1667 
1668 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1669 
1670 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1671 }
1672 
1673 /**
1674  * ice_aq_update_pkg
1675  * @hw: pointer to the hardware structure
1676  * @pkg_buf: the package cmd buffer
1677  * @buf_size: the size of the package cmd buffer
1678  * @last_buf: last buffer indicator
1679  * @error_offset: returns error offset
1680  * @error_info: returns error information
1681  * @cd: pointer to command details structure or NULL
1682  *
1683  * Update Package (0x0C42)
1684  */
1685 static int ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
1686 			     u16 buf_size, bool last_buf, u32 *error_offset,
1687 			     u32 *error_info, struct ice_sq_cd *cd)
1688 {
1689 	struct ice_aqc_download_pkg *cmd;
1690 	struct ice_aq_desc desc;
1691 	int status;
1692 
1693 	if (error_offset)
1694 		*error_offset = 0;
1695 	if (error_info)
1696 		*error_info = 0;
1697 
1698 	cmd = &desc.params.download_pkg;
1699 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
1700 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1701 
1702 	if (last_buf)
1703 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
1704 
1705 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
1706 	if (status == -EIO) {
1707 		/* Read error from buffer only when the FW returned an error */
1708 		struct ice_aqc_download_pkg_resp *resp;
1709 
1710 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
1711 		if (error_offset)
1712 			*error_offset = le32_to_cpu(resp->error_offset);
1713 		if (error_info)
1714 			*error_info = le32_to_cpu(resp->error_info);
1715 	}
1716 
1717 	return status;
1718 }
1719 
1720 /**
1721  * ice_aq_upload_section
1722  * @hw: pointer to the hardware structure
1723  * @pkg_buf: the package buffer which will receive the section
1724  * @buf_size: the size of the package buffer
1725  * @cd: pointer to command details structure or NULL
1726  *
1727  * Upload Section (0x0C41)
1728  */
1729 int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
1730 			  u16 buf_size, struct ice_sq_cd *cd)
1731 {
1732 	struct ice_aq_desc desc;
1733 
1734 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
1735 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1736 
1737 	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
1738 }
1739 
1740 /**
1741  * ice_update_pkg_no_lock
1742  * @hw: pointer to the hardware structure
1743  * @bufs: pointer to an array of buffers
1744  * @count: the number of buffers in the array
1745  */
1746 int ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1747 {
1748 	int status = 0;
1749 	u32 i;
1750 
1751 	for (i = 0; i < count; i++) {
1752 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1753 		bool last = ((i + 1) == count);
1754 		u32 offset, info;
1755 
1756 		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1757 					   last, &offset, &info, NULL);
1758 
1759 		if (status) {
1760 			ice_debug(hw, ICE_DBG_PKG,
1761 				  "Update pkg failed: err %d off %d inf %d\n",
1762 				  status, offset, info);
1763 			break;
1764 		}
1765 	}
1766 
1767 	return status;
1768 }
1769 
1770 /**
1771  * ice_update_pkg
1772  * @hw: pointer to the hardware structure
1773  * @bufs: pointer to an array of buffers
1774  * @count: the number of buffers in the array
1775  *
1776  * Obtains change lock and updates package.
1777  */
1778 int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1779 {
1780 	int status;
1781 
1782 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1783 	if (status)
1784 		return status;
1785 
1786 	status = ice_update_pkg_no_lock(hw, bufs, count);
1787 
1788 	ice_release_change_lock(hw);
1789 
1790 	return status;
1791 }
1792 
1793 /**
1794  * ice_find_seg_in_pkg
1795  * @hw: pointer to the hardware structure
1796  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1797  * @pkg_hdr: pointer to the package header to be searched
1798  *
1799  * This function searches a package file for a particular segment type. On
1800  * success it returns a pointer to the segment header, otherwise it will
1801  * return NULL.
1802  */
1803 static struct ice_generic_seg_hdr *
1804 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1805 		    struct ice_pkg_hdr *pkg_hdr)
1806 {
1807 	u32 i;
1808 
1809 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1810 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1811 		  pkg_hdr->pkg_format_ver.update,
1812 		  pkg_hdr->pkg_format_ver.draft);
1813 
1814 	/* Search all package segments for the requested segment type */
1815 	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1816 		struct ice_generic_seg_hdr *seg;
1817 
1818 		seg = (struct ice_generic_seg_hdr
1819 			       *)((u8 *)pkg_hdr +
1820 				  le32_to_cpu(pkg_hdr->seg_offset[i]));
1821 
1822 		if (le32_to_cpu(seg->seg_type) == seg_type)
1823 			return seg;
1824 	}
1825 
1826 	return NULL;
1827 }
1828 
1829 /**
1830  * ice_has_signing_seg - determine if package has a signing segment
1831  * @hw: pointer to the hardware structure
1832  * @pkg_hdr: pointer to the driver's package hdr
1833  */
1834 static bool ice_has_signing_seg(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1835 {
1836 	struct ice_generic_seg_hdr *seg_hdr;
1837 
1838 	seg_hdr = (struct ice_generic_seg_hdr *)
1839 		ice_find_seg_in_pkg(hw, SEGMENT_TYPE_SIGNING, pkg_hdr);
1840 
1841 	return seg_hdr ? true : false;
1842 }
1843 
1844 /**
1845  * ice_get_pkg_segment_id - get correct package segment id, based on device
1846  * @mac_type: MAC type of the device
1847  */
1848 static u32 ice_get_pkg_segment_id(enum ice_mac_type mac_type)
1849 {
1850 	u32 seg_id;
1851 
1852 	switch (mac_type) {
1853 	case ICE_MAC_E830:
1854 		seg_id = SEGMENT_TYPE_ICE_E830;
1855 		break;
1856 	case ICE_MAC_GENERIC:
1857 	case ICE_MAC_GENERIC_3K_E825:
1858 	default:
1859 		seg_id = SEGMENT_TYPE_ICE_E810;
1860 		break;
1861 	}
1862 
1863 	return seg_id;
1864 }
1865 
1866 /**
1867  * ice_get_pkg_sign_type - get package segment sign type, based on device
1868  * @mac_type: MAC type of the device
1869  */
1870 static u32 ice_get_pkg_sign_type(enum ice_mac_type mac_type)
1871 {
1872 	u32 sign_type;
1873 
1874 	switch (mac_type) {
1875 	case ICE_MAC_E830:
1876 		sign_type = SEGMENT_SIGN_TYPE_RSA3K_SBB;
1877 		break;
1878 	case ICE_MAC_GENERIC_3K_E825:
1879 		sign_type = SEGMENT_SIGN_TYPE_RSA3K_E825;
1880 		break;
1881 	case ICE_MAC_GENERIC:
1882 	default:
1883 		sign_type = SEGMENT_SIGN_TYPE_RSA2K;
1884 		break;
1885 	}
1886 
1887 	return sign_type;
1888 }
1889 
1890 /**
1891  * ice_get_signing_req - get correct package requirements, based on device
1892  * @hw: pointer to the hardware structure
1893  */
1894 static void ice_get_signing_req(struct ice_hw *hw)
1895 {
1896 	hw->pkg_seg_id = ice_get_pkg_segment_id(hw->mac_type);
1897 	hw->pkg_sign_type = ice_get_pkg_sign_type(hw->mac_type);
1898 }
1899 
1900 /**
1901  * ice_init_pkg_info
1902  * @hw: pointer to the hardware structure
1903  * @pkg_hdr: pointer to the driver's package hdr
1904  *
1905  * Saves off the package details into the HW structure.
1906  */
1907 static enum ice_ddp_state ice_init_pkg_info(struct ice_hw *hw,
1908 					    struct ice_pkg_hdr *pkg_hdr)
1909 {
1910 	struct ice_generic_seg_hdr *seg_hdr;
1911 
1912 	if (!pkg_hdr)
1913 		return ICE_DDP_PKG_ERR;
1914 
1915 	hw->pkg_has_signing_seg = ice_has_signing_seg(hw, pkg_hdr);
1916 	ice_get_signing_req(hw);
1917 
1918 	ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n",
1919 		  hw->pkg_seg_id);
1920 
1921 	seg_hdr = (struct ice_generic_seg_hdr *)
1922 		ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr);
1923 	if (seg_hdr) {
1924 		struct ice_meta_sect *meta;
1925 		struct ice_pkg_enum state;
1926 
1927 		memset(&state, 0, sizeof(state));
1928 
1929 		/* Get package information from the Metadata Section */
1930 		meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1931 					    ICE_SID_METADATA);
1932 		if (!meta) {
1933 			ice_debug(hw, ICE_DBG_INIT,
1934 				  "Did not find ice metadata section in package\n");
1935 			return ICE_DDP_PKG_INVALID_FILE;
1936 		}
1937 
1938 		hw->pkg_ver = meta->ver;
1939 		memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1940 
1941 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1942 			  meta->ver.major, meta->ver.minor, meta->ver.update,
1943 			  meta->ver.draft, meta->name);
1944 
1945 		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1946 		memcpy(hw->ice_seg_id, seg_hdr->seg_id, sizeof(hw->ice_seg_id));
1947 
1948 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1949 			  seg_hdr->seg_format_ver.major,
1950 			  seg_hdr->seg_format_ver.minor,
1951 			  seg_hdr->seg_format_ver.update,
1952 			  seg_hdr->seg_format_ver.draft, seg_hdr->seg_id);
1953 	} else {
1954 		ice_debug(hw, ICE_DBG_INIT,
1955 			  "Did not find ice segment in driver package\n");
1956 		return ICE_DDP_PKG_INVALID_FILE;
1957 	}
1958 
1959 	return ICE_DDP_PKG_SUCCESS;
1960 }
1961 
1962 /**
1963  * ice_get_pkg_info
1964  * @hw: pointer to the hardware structure
1965  *
1966  * Store details of the package currently loaded in HW into the HW structure.
1967  */
1968 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1969 {
1970 	DEFINE_RAW_FLEX(struct ice_aqc_get_pkg_info_resp, pkg_info, pkg_info,
1971 			ICE_PKG_CNT);
1972 	u16 size = __struct_size(pkg_info);
1973 	u32 i;
1974 
1975 	if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL))
1976 		return ICE_DDP_PKG_ERR;
1977 
1978 	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1979 #define ICE_PKG_FLAG_COUNT 4
1980 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1981 		u8 place = 0;
1982 
1983 		if (pkg_info->pkg_info[i].is_active) {
1984 			flags[place++] = 'A';
1985 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1986 			hw->active_track_id =
1987 				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1988 			memcpy(hw->active_pkg_name, pkg_info->pkg_info[i].name,
1989 			       sizeof(pkg_info->pkg_info[i].name));
1990 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1991 		}
1992 		if (pkg_info->pkg_info[i].is_active_at_boot)
1993 			flags[place++] = 'B';
1994 		if (pkg_info->pkg_info[i].is_modified)
1995 			flags[place++] = 'M';
1996 		if (pkg_info->pkg_info[i].is_in_nvm)
1997 			flags[place++] = 'N';
1998 
1999 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", i,
2000 			  pkg_info->pkg_info[i].ver.major,
2001 			  pkg_info->pkg_info[i].ver.minor,
2002 			  pkg_info->pkg_info[i].ver.update,
2003 			  pkg_info->pkg_info[i].ver.draft,
2004 			  pkg_info->pkg_info[i].name, flags);
2005 	}
2006 
2007 	return ICE_DDP_PKG_SUCCESS;
2008 }
2009 
2010 /**
2011  * ice_chk_pkg_compat
2012  * @hw: pointer to the hardware structure
2013  * @ospkg: pointer to the package hdr
2014  * @seg: pointer to the package segment hdr
2015  *
2016  * This function checks the package version compatibility with driver and NVM
2017  */
2018 static enum ice_ddp_state ice_chk_pkg_compat(struct ice_hw *hw,
2019 					     struct ice_pkg_hdr *ospkg,
2020 					     struct ice_seg **seg)
2021 {
2022 	DEFINE_RAW_FLEX(struct ice_aqc_get_pkg_info_resp, pkg, pkg_info,
2023 			ICE_PKG_CNT);
2024 	u16 size = __struct_size(pkg);
2025 	enum ice_ddp_state state;
2026 	u32 i;
2027 
2028 	/* Check package version compatibility */
2029 	state = ice_chk_pkg_version(&hw->pkg_ver);
2030 	if (state) {
2031 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
2032 		return state;
2033 	}
2034 
2035 	/* find ICE segment in given package */
2036 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id,
2037 						     ospkg);
2038 	if (!*seg) {
2039 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
2040 		return ICE_DDP_PKG_INVALID_FILE;
2041 	}
2042 
2043 	/* Check if FW is compatible with the OS package */
2044 	if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL))
2045 		return ICE_DDP_PKG_LOAD_ERROR;
2046 
2047 	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
2048 		/* loop till we find the NVM package */
2049 		if (!pkg->pkg_info[i].is_in_nvm)
2050 			continue;
2051 		if ((*seg)->hdr.seg_format_ver.major !=
2052 			    pkg->pkg_info[i].ver.major ||
2053 		    (*seg)->hdr.seg_format_ver.minor >
2054 			    pkg->pkg_info[i].ver.minor) {
2055 			state = ICE_DDP_PKG_FW_MISMATCH;
2056 			ice_debug(hw, ICE_DBG_INIT,
2057 				  "OS package is not compatible with NVM.\n");
2058 		}
2059 		/* done processing NVM package so break */
2060 		break;
2061 	}
2062 
2063 	return state;
2064 }
2065 
2066 /**
2067  * ice_init_pkg_hints
2068  * @hw: pointer to the HW structure
2069  * @ice_seg: pointer to the segment of the package scan (non-NULL)
2070  *
2071  * This function will scan the package and save off relevant information
2072  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
2073  * since the first call to ice_enum_labels requires a pointer to an actual
2074  * ice_seg structure.
2075  */
2076 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
2077 {
2078 	struct ice_pkg_enum state;
2079 	char *label_name;
2080 	u16 val;
2081 	int i;
2082 
2083 	memset(&hw->tnl, 0, sizeof(hw->tnl));
2084 	memset(&state, 0, sizeof(state));
2085 
2086 	if (!ice_seg)
2087 		return;
2088 
2089 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
2090 				     &val);
2091 
2092 	while (label_name) {
2093 		if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
2094 			/* check for a tunnel entry */
2095 			ice_add_tunnel_hint(hw, label_name, val);
2096 
2097 		/* check for a dvm mode entry */
2098 		else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
2099 			ice_add_dvm_hint(hw, val, true);
2100 
2101 		/* check for a svm mode entry */
2102 		else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
2103 			ice_add_dvm_hint(hw, val, false);
2104 
2105 		label_name = ice_enum_labels(NULL, 0, &state, &val);
2106 	}
2107 
2108 	/* Cache the appropriate boost TCAM entry pointers for tunnels */
2109 	for (i = 0; i < hw->tnl.count; i++) {
2110 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
2111 				     &hw->tnl.tbl[i].boost_entry);
2112 		if (hw->tnl.tbl[i].boost_entry) {
2113 			hw->tnl.tbl[i].valid = true;
2114 			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
2115 				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
2116 		}
2117 	}
2118 
2119 	/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
2120 	for (i = 0; i < hw->dvm_upd.count; i++)
2121 		ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
2122 				     &hw->dvm_upd.tbl[i].boost_entry);
2123 }
2124 
2125 /**
2126  * ice_fill_hw_ptype - fill the enabled PTYPE bit information
2127  * @hw: pointer to the HW structure
2128  */
2129 static void ice_fill_hw_ptype(struct ice_hw *hw)
2130 {
2131 	struct ice_marker_ptype_tcam_entry *tcam;
2132 	struct ice_seg *seg = hw->seg;
2133 	struct ice_pkg_enum state;
2134 
2135 	bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
2136 	if (!seg)
2137 		return;
2138 
2139 	memset(&state, 0, sizeof(state));
2140 
2141 	do {
2142 		tcam = ice_pkg_enum_entry(seg, &state,
2143 					  ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
2144 					  ice_marker_ptype_tcam_handler);
2145 		if (tcam &&
2146 		    le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
2147 		    le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
2148 			set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
2149 
2150 		seg = NULL;
2151 	} while (tcam);
2152 }
2153 
2154 /**
2155  * ice_init_pkg - initialize/download package
2156  * @hw: pointer to the hardware structure
2157  * @buf: pointer to the package buffer
2158  * @len: size of the package buffer
2159  *
2160  * This function initializes a package. The package contains HW tables
2161  * required to do packet processing. First, the function extracts package
2162  * information such as version. Then it finds the ice configuration segment
2163  * within the package; this function then saves a copy of the segment pointer
2164  * within the supplied package buffer. Next, the function will cache any hints
2165  * from the package, followed by downloading the package itself. Note, that if
2166  * a previous PF driver has already downloaded the package successfully, then
2167  * the current driver will not have to download the package again.
2168  *
2169  * The local package contents will be used to query default behavior and to
2170  * update specific sections of the HW's version of the package (e.g. to update
2171  * the parse graph to understand new protocols).
2172  *
2173  * This function stores a pointer to the package buffer memory, and it is
2174  * expected that the supplied buffer will not be freed immediately. If the
2175  * package buffer needs to be freed, such as when read from a file, use
2176  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
2177  * case.
2178  */
2179 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
2180 {
2181 	bool already_loaded = false;
2182 	enum ice_ddp_state state;
2183 	struct ice_pkg_hdr *pkg;
2184 	struct ice_seg *seg;
2185 
2186 	if (!buf || !len)
2187 		return ICE_DDP_PKG_ERR;
2188 
2189 	pkg = (struct ice_pkg_hdr *)buf;
2190 	state = ice_verify_pkg(pkg, len);
2191 	if (state) {
2192 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
2193 			  state);
2194 		return state;
2195 	}
2196 
2197 	/* initialize package info */
2198 	state = ice_init_pkg_info(hw, pkg);
2199 	if (state)
2200 		return state;
2201 
2202 	/* must be a matching segment */
2203 	if (hw->pkg_has_signing_seg &&
2204 	    !ice_match_signing_seg(pkg, hw->pkg_seg_id, hw->pkg_sign_type))
2205 		return ICE_DDP_PKG_ERR;
2206 
2207 	/* before downloading the package, check package version for
2208 	 * compatibility with driver
2209 	 */
2210 	state = ice_chk_pkg_compat(hw, pkg, &seg);
2211 	if (state)
2212 		return state;
2213 
2214 	/* initialize package hints and then download package */
2215 	ice_init_pkg_hints(hw, seg);
2216 	state = ice_download_pkg(hw, pkg, seg);
2217 	if (state == ICE_DDP_PKG_ALREADY_LOADED) {
2218 		ice_debug(hw, ICE_DBG_INIT,
2219 			  "package previously loaded - no work.\n");
2220 		already_loaded = true;
2221 	}
2222 
2223 	/* Get information on the package currently loaded in HW, then make sure
2224 	 * the driver is compatible with this version.
2225 	 */
2226 	if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
2227 		state = ice_get_pkg_info(hw);
2228 		if (!state)
2229 			state = ice_get_ddp_pkg_state(hw, already_loaded);
2230 	}
2231 
2232 	if (ice_is_init_pkg_successful(state)) {
2233 		hw->seg = seg;
2234 		/* on successful package download update other required
2235 		 * registers to support the package and fill HW tables
2236 		 * with package content.
2237 		 */
2238 		ice_init_pkg_regs(hw);
2239 		ice_fill_blk_tbls(hw);
2240 		ice_fill_hw_ptype(hw);
2241 		ice_get_prof_index_max(hw);
2242 	} else {
2243 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", state);
2244 	}
2245 
2246 	return state;
2247 }
2248 
2249 /**
2250  * ice_copy_and_init_pkg - initialize/download a copy of the package
2251  * @hw: pointer to the hardware structure
2252  * @buf: pointer to the package buffer
2253  * @len: size of the package buffer
2254  *
2255  * This function copies the package buffer, and then calls ice_init_pkg() to
2256  * initialize the copied package contents.
2257  *
2258  * The copying is necessary if the package buffer supplied is constant, or if
2259  * the memory may disappear shortly after calling this function.
2260  *
2261  * If the package buffer resides in the data segment and can be modified, the
2262  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
2263  *
2264  * However, if the package buffer needs to be copied first, such as when being
2265  * read from a file, the caller should use ice_copy_and_init_pkg().
2266  *
2267  * This function will first copy the package buffer, before calling
2268  * ice_init_pkg(). The caller is free to immediately destroy the original
2269  * package buffer, as the new copy will be managed by this function and
2270  * related routines.
2271  */
2272 enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf,
2273 					 u32 len)
2274 {
2275 	enum ice_ddp_state state;
2276 	u8 *buf_copy;
2277 
2278 	if (!buf || !len)
2279 		return ICE_DDP_PKG_ERR;
2280 
2281 	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
2282 
2283 	state = ice_init_pkg(hw, buf_copy, len);
2284 	if (!ice_is_init_pkg_successful(state)) {
2285 		/* Free the copy, since we failed to initialize the package */
2286 		devm_kfree(ice_hw_to_dev(hw), buf_copy);
2287 	} else {
2288 		/* Track the copied pkg so we can free it later */
2289 		hw->pkg_copy = buf_copy;
2290 		hw->pkg_size = len;
2291 	}
2292 
2293 	return state;
2294 }
2295 
2296 /**
2297  * ice_get_set_tx_topo - get or set Tx topology
2298  * @hw: pointer to the HW struct
2299  * @buf: pointer to Tx topology buffer
2300  * @buf_size: buffer size
2301  * @cd: pointer to command details structure or NULL
2302  * @flags: pointer to descriptor flags
2303  * @set: 0-get, 1-set topology
2304  *
2305  * The function will get or set Tx topology
2306  *
2307  * Return: zero when set was successful, negative values otherwise.
2308  */
2309 static int
2310 ice_get_set_tx_topo(struct ice_hw *hw, u8 *buf, u16 buf_size,
2311 		    struct ice_sq_cd *cd, u8 *flags, bool set)
2312 {
2313 	struct ice_aqc_get_set_tx_topo *cmd;
2314 	struct ice_aq_desc desc;
2315 	int status;
2316 
2317 	cmd = &desc.params.get_set_tx_topo;
2318 	if (set) {
2319 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_tx_topo);
2320 		cmd->set_flags = ICE_AQC_TX_TOPO_FLAGS_ISSUED;
2321 		/* requested to update a new topology, not a default topology */
2322 		if (buf)
2323 			cmd->set_flags |= ICE_AQC_TX_TOPO_FLAGS_SRC_RAM |
2324 					  ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW;
2325 
2326 		if (ice_is_e825c(hw))
2327 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2328 	} else {
2329 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_tx_topo);
2330 		cmd->get_flags = ICE_AQC_TX_TOPO_GET_RAM;
2331 	}
2332 
2333 	if (!ice_is_e825c(hw))
2334 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2335 
2336 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2337 	if (status)
2338 		return status;
2339 	/* read the return flag values (first byte) for get operation */
2340 	if (!set && flags)
2341 		*flags = desc.params.get_set_tx_topo.set_flags;
2342 
2343 	return 0;
2344 }
2345 
2346 /**
2347  * ice_cfg_tx_topo - Initialize new Tx topology if available
2348  * @hw: pointer to the HW struct
2349  * @buf: pointer to Tx topology buffer
2350  * @len: buffer size
2351  *
2352  * The function will apply the new Tx topology from the package buffer
2353  * if available.
2354  *
2355  * Return: zero when update was successful, negative values otherwise.
2356  */
2357 int ice_cfg_tx_topo(struct ice_hw *hw, u8 *buf, u32 len)
2358 {
2359 	u8 *current_topo, *new_topo = NULL;
2360 	struct ice_run_time_cfg_seg *seg;
2361 	struct ice_buf_hdr *section;
2362 	struct ice_pkg_hdr *pkg_hdr;
2363 	enum ice_ddp_state state;
2364 	u16 offset, size = 0;
2365 	u32 reg = 0;
2366 	int status;
2367 	u8 flags;
2368 
2369 	if (!buf || !len)
2370 		return -EINVAL;
2371 
2372 	/* Does FW support new Tx topology mode ? */
2373 	if (!hw->func_caps.common_cap.tx_sched_topo_comp_mode_en) {
2374 		ice_debug(hw, ICE_DBG_INIT, "FW doesn't support compatibility mode\n");
2375 		return -EOPNOTSUPP;
2376 	}
2377 
2378 	current_topo = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2379 	if (!current_topo)
2380 		return -ENOMEM;
2381 
2382 	/* Get the current Tx topology */
2383 	status = ice_get_set_tx_topo(hw, current_topo, ICE_AQ_MAX_BUF_LEN, NULL,
2384 				     &flags, false);
2385 
2386 	kfree(current_topo);
2387 
2388 	if (status) {
2389 		ice_debug(hw, ICE_DBG_INIT, "Get current topology is failed\n");
2390 		return status;
2391 	}
2392 
2393 	/* Is default topology already applied ? */
2394 	if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
2395 	    hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS) {
2396 		ice_debug(hw, ICE_DBG_INIT, "Default topology already applied\n");
2397 		return -EEXIST;
2398 	}
2399 
2400 	/* Is new topology already applied ? */
2401 	if ((flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
2402 	    hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS) {
2403 		ice_debug(hw, ICE_DBG_INIT, "New topology already applied\n");
2404 		return -EEXIST;
2405 	}
2406 
2407 	/* Setting topology already issued? */
2408 	if (flags & ICE_AQC_TX_TOPO_FLAGS_ISSUED) {
2409 		ice_debug(hw, ICE_DBG_INIT, "Update Tx topology was done by another PF\n");
2410 		/* Add a small delay before exiting */
2411 		msleep(2000);
2412 		return -EEXIST;
2413 	}
2414 
2415 	/* Change the topology from new to default (5 to 9) */
2416 	if (!(flags & ICE_AQC_TX_TOPO_FLAGS_LOAD_NEW) &&
2417 	    hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS) {
2418 		ice_debug(hw, ICE_DBG_INIT, "Change topology from 5 to 9 layers\n");
2419 		goto update_topo;
2420 	}
2421 
2422 	pkg_hdr = (struct ice_pkg_hdr *)buf;
2423 	state = ice_verify_pkg(pkg_hdr, len);
2424 	if (state) {
2425 		ice_debug(hw, ICE_DBG_INIT, "Failed to verify pkg (err: %d)\n",
2426 			  state);
2427 		return -EIO;
2428 	}
2429 
2430 	/* Find runtime configuration segment */
2431 	seg = (struct ice_run_time_cfg_seg *)
2432 	      ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE_RUN_TIME_CFG, pkg_hdr);
2433 	if (!seg) {
2434 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment is missing\n");
2435 		return -EIO;
2436 	}
2437 
2438 	if (le32_to_cpu(seg->buf_table.buf_count) < ICE_MIN_S_COUNT) {
2439 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology segment count(%d) is wrong\n",
2440 			  seg->buf_table.buf_count);
2441 		return -EIO;
2442 	}
2443 
2444 	section = ice_pkg_val_buf(seg->buf_table.buf_array);
2445 	if (!section || le32_to_cpu(section->section_entry[0].type) !=
2446 		ICE_SID_TX_5_LAYER_TOPO) {
2447 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology section type is wrong\n");
2448 		return -EIO;
2449 	}
2450 
2451 	size = le16_to_cpu(section->section_entry[0].size);
2452 	offset = le16_to_cpu(section->section_entry[0].offset);
2453 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) {
2454 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology section size is wrong\n");
2455 		return -EIO;
2456 	}
2457 
2458 	/* Make sure the section fits in the buffer */
2459 	if (offset + size > ICE_PKG_BUF_SIZE) {
2460 		ice_debug(hw, ICE_DBG_INIT, "5 layer topology buffer > 4K\n");
2461 		return -EIO;
2462 	}
2463 
2464 	/* Get the new topology buffer */
2465 	new_topo = ((u8 *)section) + offset;
2466 
2467 update_topo:
2468 	/* Acquire global lock to make sure that set topology issued
2469 	 * by one PF.
2470 	 */
2471 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, ICE_RES_WRITE,
2472 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
2473 	if (status) {
2474 		ice_debug(hw, ICE_DBG_INIT, "Failed to acquire global lock\n");
2475 		return status;
2476 	}
2477 
2478 	/* Check if reset was triggered already. */
2479 	reg = rd32(hw, GLGEN_RSTAT);
2480 	if (reg & GLGEN_RSTAT_DEVSTATE_M) {
2481 		/* Reset is in progress, re-init the HW again */
2482 		ice_debug(hw, ICE_DBG_INIT, "Reset is in progress. Layer topology might be applied already\n");
2483 		ice_check_reset(hw);
2484 		return 0;
2485 	}
2486 
2487 	/* Set new topology */
2488 	status = ice_get_set_tx_topo(hw, new_topo, size, NULL, NULL, true);
2489 	if (status) {
2490 		ice_debug(hw, ICE_DBG_INIT, "Failed setting Tx topology\n");
2491 		return status;
2492 	}
2493 
2494 	/* New topology is updated, delay 1 second before issuing the CORER */
2495 	msleep(1000);
2496 	ice_reset(hw, ICE_RESET_CORER);
2497 	/* CORER will clear the global lock, so no explicit call
2498 	 * required for release.
2499 	 */
2500 
2501 	return 0;
2502 }
2503