xref: /linux/drivers/net/ethernet/intel/ice/ice_controlq.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 
6 #define ICE_CQ_INIT_REGS(qinfo, prefix)				\
7 do {								\
8 	(qinfo)->sq.head = prefix##_ATQH;			\
9 	(qinfo)->sq.tail = prefix##_ATQT;			\
10 	(qinfo)->sq.len = prefix##_ATQLEN;			\
11 	(qinfo)->sq.bah = prefix##_ATQBAH;			\
12 	(qinfo)->sq.bal = prefix##_ATQBAL;			\
13 	(qinfo)->sq.len_mask = prefix##_ATQLEN_ATQLEN_M;	\
14 	(qinfo)->sq.len_ena_mask = prefix##_ATQLEN_ATQENABLE_M;	\
15 	(qinfo)->sq.len_crit_mask = prefix##_ATQLEN_ATQCRIT_M;	\
16 	(qinfo)->sq.head_mask = prefix##_ATQH_ATQH_M;		\
17 	(qinfo)->rq.head = prefix##_ARQH;			\
18 	(qinfo)->rq.tail = prefix##_ARQT;			\
19 	(qinfo)->rq.len = prefix##_ARQLEN;			\
20 	(qinfo)->rq.bah = prefix##_ARQBAH;			\
21 	(qinfo)->rq.bal = prefix##_ARQBAL;			\
22 	(qinfo)->rq.len_mask = prefix##_ARQLEN_ARQLEN_M;	\
23 	(qinfo)->rq.len_ena_mask = prefix##_ARQLEN_ARQENABLE_M;	\
24 	(qinfo)->rq.len_crit_mask = prefix##_ARQLEN_ARQCRIT_M;	\
25 	(qinfo)->rq.head_mask = prefix##_ARQH_ARQH_M;		\
26 } while (0)
27 
28 /**
29  * ice_adminq_init_regs - Initialize AdminQ registers
30  * @hw: pointer to the hardware structure
31  *
32  * This assumes the alloc_sq and alloc_rq functions have already been called
33  */
34 static void ice_adminq_init_regs(struct ice_hw *hw)
35 {
36 	struct ice_ctl_q_info *cq = &hw->adminq;
37 
38 	ICE_CQ_INIT_REGS(cq, PF_FW);
39 }
40 
41 /**
42  * ice_mailbox_init_regs - Initialize Mailbox registers
43  * @hw: pointer to the hardware structure
44  *
45  * This assumes the alloc_sq and alloc_rq functions have already been called
46  */
47 static void ice_mailbox_init_regs(struct ice_hw *hw)
48 {
49 	struct ice_ctl_q_info *cq = &hw->mailboxq;
50 
51 	ICE_CQ_INIT_REGS(cq, PF_MBX);
52 }
53 
54 /**
55  * ice_sb_init_regs - Initialize Sideband registers
56  * @hw: pointer to the hardware structure
57  *
58  * This assumes the alloc_sq and alloc_rq functions have already been called
59  */
60 static void ice_sb_init_regs(struct ice_hw *hw)
61 {
62 	struct ice_ctl_q_info *cq = &hw->sbq;
63 
64 	ICE_CQ_INIT_REGS(cq, PF_SB);
65 }
66 
67 /**
68  * ice_check_sq_alive
69  * @hw: pointer to the HW struct
70  * @cq: pointer to the specific Control queue
71  *
72  * Returns true if Queue is enabled else false.
73  */
74 bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq)
75 {
76 	/* check both queue-length and queue-enable fields */
77 	if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask)
78 		return (rd32(hw, cq->sq.len) & (cq->sq.len_mask |
79 						cq->sq.len_ena_mask)) ==
80 			(cq->num_sq_entries | cq->sq.len_ena_mask);
81 
82 	return false;
83 }
84 
85 /**
86  * ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings
87  * @hw: pointer to the hardware structure
88  * @cq: pointer to the specific Control queue
89  */
90 static int
91 ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
92 {
93 	size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc);
94 
95 	cq->sq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
96 						 &cq->sq.desc_buf.pa,
97 						 GFP_KERNEL | __GFP_ZERO);
98 	if (!cq->sq.desc_buf.va)
99 		return -ENOMEM;
100 	cq->sq.desc_buf.size = size;
101 
102 	return 0;
103 }
104 
105 /**
106  * ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings
107  * @hw: pointer to the hardware structure
108  * @cq: pointer to the specific Control queue
109  */
110 static int
111 ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
112 {
113 	size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc);
114 
115 	cq->rq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
116 						 &cq->rq.desc_buf.pa,
117 						 GFP_KERNEL | __GFP_ZERO);
118 	if (!cq->rq.desc_buf.va)
119 		return -ENOMEM;
120 	cq->rq.desc_buf.size = size;
121 	return 0;
122 }
123 
124 /**
125  * ice_free_cq_ring - Free control queue ring
126  * @hw: pointer to the hardware structure
127  * @ring: pointer to the specific control queue ring
128  *
129  * This assumes the posted buffers have already been cleaned
130  * and de-allocated
131  */
132 static void ice_free_cq_ring(struct ice_hw *hw, struct ice_ctl_q_ring *ring)
133 {
134 	dmam_free_coherent(ice_hw_to_dev(hw), ring->desc_buf.size,
135 			   ring->desc_buf.va, ring->desc_buf.pa);
136 	ring->desc_buf.va = NULL;
137 	ring->desc_buf.pa = 0;
138 	ring->desc_buf.size = 0;
139 }
140 
141 /**
142  * ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ
143  * @hw: pointer to the hardware structure
144  * @cq: pointer to the specific Control queue
145  */
146 static int
147 ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
148 {
149 	int i;
150 
151 	/* We'll be allocating the buffer info memory first, then we can
152 	 * allocate the mapped buffers for the event processing
153 	 */
154 	cq->rq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_rq_entries,
155 				       sizeof(cq->rq.desc_buf), GFP_KERNEL);
156 	if (!cq->rq.dma_head)
157 		return -ENOMEM;
158 	cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head;
159 
160 	/* allocate the mapped buffers */
161 	for (i = 0; i < cq->num_rq_entries; i++) {
162 		struct ice_aq_desc *desc;
163 		struct ice_dma_mem *bi;
164 
165 		bi = &cq->rq.r.rq_bi[i];
166 		bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
167 					     cq->rq_buf_size, &bi->pa,
168 					     GFP_KERNEL | __GFP_ZERO);
169 		if (!bi->va)
170 			goto unwind_alloc_rq_bufs;
171 		bi->size = cq->rq_buf_size;
172 
173 		/* now configure the descriptors for use */
174 		desc = ICE_CTL_Q_DESC(cq->rq, i);
175 
176 		desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
177 		if (cq->rq_buf_size > ICE_AQ_LG_BUF)
178 			desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
179 		desc->opcode = 0;
180 		/* This is in accordance with control queue design, there is no
181 		 * register for buffer size configuration
182 		 */
183 		desc->datalen = cpu_to_le16(bi->size);
184 		desc->retval = 0;
185 		desc->cookie_high = 0;
186 		desc->cookie_low = 0;
187 		desc->params.generic.addr_high =
188 			cpu_to_le32(upper_32_bits(bi->pa));
189 		desc->params.generic.addr_low =
190 			cpu_to_le32(lower_32_bits(bi->pa));
191 		desc->params.generic.param0 = 0;
192 		desc->params.generic.param1 = 0;
193 	}
194 	return 0;
195 
196 unwind_alloc_rq_bufs:
197 	/* don't try to free the one that failed... */
198 	i--;
199 	for (; i >= 0; i--) {
200 		dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.r.rq_bi[i].size,
201 				   cq->rq.r.rq_bi[i].va, cq->rq.r.rq_bi[i].pa);
202 		cq->rq.r.rq_bi[i].va = NULL;
203 		cq->rq.r.rq_bi[i].pa = 0;
204 		cq->rq.r.rq_bi[i].size = 0;
205 	}
206 	cq->rq.r.rq_bi = NULL;
207 	devm_kfree(ice_hw_to_dev(hw), cq->rq.dma_head);
208 	cq->rq.dma_head = NULL;
209 
210 	return -ENOMEM;
211 }
212 
213 /**
214  * ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ
215  * @hw: pointer to the hardware structure
216  * @cq: pointer to the specific Control queue
217  */
218 static int
219 ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
220 {
221 	int i;
222 
223 	/* No mapped memory needed yet, just the buffer info structures */
224 	cq->sq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries,
225 				       sizeof(cq->sq.desc_buf), GFP_KERNEL);
226 	if (!cq->sq.dma_head)
227 		return -ENOMEM;
228 	cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head;
229 
230 	/* allocate the mapped buffers */
231 	for (i = 0; i < cq->num_sq_entries; i++) {
232 		struct ice_dma_mem *bi;
233 
234 		bi = &cq->sq.r.sq_bi[i];
235 		bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
236 					     cq->sq_buf_size, &bi->pa,
237 					     GFP_KERNEL | __GFP_ZERO);
238 		if (!bi->va)
239 			goto unwind_alloc_sq_bufs;
240 		bi->size = cq->sq_buf_size;
241 	}
242 	return 0;
243 
244 unwind_alloc_sq_bufs:
245 	/* don't try to free the one that failed... */
246 	i--;
247 	for (; i >= 0; i--) {
248 		dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.r.sq_bi[i].size,
249 				   cq->sq.r.sq_bi[i].va, cq->sq.r.sq_bi[i].pa);
250 		cq->sq.r.sq_bi[i].va = NULL;
251 		cq->sq.r.sq_bi[i].pa = 0;
252 		cq->sq.r.sq_bi[i].size = 0;
253 	}
254 	cq->sq.r.sq_bi = NULL;
255 	devm_kfree(ice_hw_to_dev(hw), cq->sq.dma_head);
256 	cq->sq.dma_head = NULL;
257 
258 	return -ENOMEM;
259 }
260 
261 static int
262 ice_cfg_cq_regs(struct ice_hw *hw, struct ice_ctl_q_ring *ring, u16 num_entries)
263 {
264 	/* Clear Head and Tail */
265 	wr32(hw, ring->head, 0);
266 	wr32(hw, ring->tail, 0);
267 
268 	/* set starting point */
269 	wr32(hw, ring->len, (num_entries | ring->len_ena_mask));
270 	wr32(hw, ring->bal, lower_32_bits(ring->desc_buf.pa));
271 	wr32(hw, ring->bah, upper_32_bits(ring->desc_buf.pa));
272 
273 	/* Check one register to verify that config was applied */
274 	if (rd32(hw, ring->bal) != lower_32_bits(ring->desc_buf.pa))
275 		return -EIO;
276 
277 	return 0;
278 }
279 
280 /**
281  * ice_cfg_sq_regs - configure Control ATQ registers
282  * @hw: pointer to the hardware structure
283  * @cq: pointer to the specific Control queue
284  *
285  * Configure base address and length registers for the transmit queue
286  */
287 static int ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
288 {
289 	return ice_cfg_cq_regs(hw, &cq->sq, cq->num_sq_entries);
290 }
291 
292 /**
293  * ice_cfg_rq_regs - configure Control ARQ register
294  * @hw: pointer to the hardware structure
295  * @cq: pointer to the specific Control queue
296  *
297  * Configure base address and length registers for the receive (event queue)
298  */
299 static int ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
300 {
301 	int status;
302 
303 	status = ice_cfg_cq_regs(hw, &cq->rq, cq->num_rq_entries);
304 	if (status)
305 		return status;
306 
307 	/* Update tail in the HW to post pre-allocated buffers */
308 	wr32(hw, cq->rq.tail, (u32)(cq->num_rq_entries - 1));
309 
310 	return 0;
311 }
312 
313 #define ICE_FREE_CQ_BUFS(hw, qi, ring)					\
314 do {									\
315 	/* free descriptors */						\
316 	if ((qi)->ring.r.ring##_bi) {					\
317 		int i;							\
318 									\
319 		for (i = 0; i < (qi)->num_##ring##_entries; i++)	\
320 			if ((qi)->ring.r.ring##_bi[i].pa) {		\
321 				dmam_free_coherent(ice_hw_to_dev(hw),	\
322 					(qi)->ring.r.ring##_bi[i].size,	\
323 					(qi)->ring.r.ring##_bi[i].va,	\
324 					(qi)->ring.r.ring##_bi[i].pa);	\
325 					(qi)->ring.r.ring##_bi[i].va = NULL;\
326 					(qi)->ring.r.ring##_bi[i].pa = 0;\
327 					(qi)->ring.r.ring##_bi[i].size = 0;\
328 		}							\
329 	}								\
330 	/* free DMA head */						\
331 	devm_kfree(ice_hw_to_dev(hw), (qi)->ring.dma_head);		\
332 } while (0)
333 
334 /**
335  * ice_init_sq - main initialization routine for Control ATQ
336  * @hw: pointer to the hardware structure
337  * @cq: pointer to the specific Control queue
338  *
339  * This is the main initialization routine for the Control Send Queue
340  * Prior to calling this function, the driver *MUST* set the following fields
341  * in the cq->structure:
342  *     - cq->num_sq_entries
343  *     - cq->sq_buf_size
344  *
345  * Do *NOT* hold the lock when calling this as the memory allocation routines
346  * called are not going to be atomic context safe
347  */
348 static int ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
349 {
350 	int ret_code;
351 
352 	if (cq->sq.count > 0) {
353 		/* queue already initialized */
354 		ret_code = -EBUSY;
355 		goto init_ctrlq_exit;
356 	}
357 
358 	/* verify input for valid configuration */
359 	if (!cq->num_sq_entries || !cq->sq_buf_size) {
360 		ret_code = -EIO;
361 		goto init_ctrlq_exit;
362 	}
363 
364 	cq->sq.next_to_use = 0;
365 	cq->sq.next_to_clean = 0;
366 
367 	/* allocate the ring memory */
368 	ret_code = ice_alloc_ctrlq_sq_ring(hw, cq);
369 	if (ret_code)
370 		goto init_ctrlq_exit;
371 
372 	/* allocate buffers in the rings */
373 	ret_code = ice_alloc_sq_bufs(hw, cq);
374 	if (ret_code)
375 		goto init_ctrlq_free_rings;
376 
377 	/* initialize base registers */
378 	ret_code = ice_cfg_sq_regs(hw, cq);
379 	if (ret_code)
380 		goto init_ctrlq_free_rings;
381 
382 	/* success! */
383 	cq->sq.count = cq->num_sq_entries;
384 	goto init_ctrlq_exit;
385 
386 init_ctrlq_free_rings:
387 	ICE_FREE_CQ_BUFS(hw, cq, sq);
388 	ice_free_cq_ring(hw, &cq->sq);
389 
390 init_ctrlq_exit:
391 	return ret_code;
392 }
393 
394 /**
395  * ice_init_rq - initialize receive side of a control queue
396  * @hw: pointer to the hardware structure
397  * @cq: pointer to the specific Control queue
398  *
399  * The main initialization routine for Receive side of a control queue.
400  * Prior to calling this function, the driver *MUST* set the following fields
401  * in the cq->structure:
402  *     - cq->num_rq_entries
403  *     - cq->rq_buf_size
404  *
405  * Do *NOT* hold the lock when calling this as the memory allocation routines
406  * called are not going to be atomic context safe
407  */
408 static int ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
409 {
410 	int ret_code;
411 
412 	if (cq->rq.count > 0) {
413 		/* queue already initialized */
414 		ret_code = -EBUSY;
415 		goto init_ctrlq_exit;
416 	}
417 
418 	/* verify input for valid configuration */
419 	if (!cq->num_rq_entries || !cq->rq_buf_size) {
420 		ret_code = -EIO;
421 		goto init_ctrlq_exit;
422 	}
423 
424 	cq->rq.next_to_use = 0;
425 	cq->rq.next_to_clean = 0;
426 
427 	/* allocate the ring memory */
428 	ret_code = ice_alloc_ctrlq_rq_ring(hw, cq);
429 	if (ret_code)
430 		goto init_ctrlq_exit;
431 
432 	/* allocate buffers in the rings */
433 	ret_code = ice_alloc_rq_bufs(hw, cq);
434 	if (ret_code)
435 		goto init_ctrlq_free_rings;
436 
437 	/* initialize base registers */
438 	ret_code = ice_cfg_rq_regs(hw, cq);
439 	if (ret_code)
440 		goto init_ctrlq_free_rings;
441 
442 	/* success! */
443 	cq->rq.count = cq->num_rq_entries;
444 	goto init_ctrlq_exit;
445 
446 init_ctrlq_free_rings:
447 	ICE_FREE_CQ_BUFS(hw, cq, rq);
448 	ice_free_cq_ring(hw, &cq->rq);
449 
450 init_ctrlq_exit:
451 	return ret_code;
452 }
453 
454 /**
455  * ice_shutdown_sq - shutdown the transmit side of a control queue
456  * @hw: pointer to the hardware structure
457  * @cq: pointer to the specific Control queue
458  *
459  * The main shutdown routine for the Control Transmit Queue
460  */
461 static int ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
462 {
463 	int ret_code = 0;
464 
465 	mutex_lock(&cq->sq_lock);
466 
467 	if (!cq->sq.count) {
468 		ret_code = -EBUSY;
469 		goto shutdown_sq_out;
470 	}
471 
472 	/* Stop processing of the control queue */
473 	wr32(hw, cq->sq.head, 0);
474 	wr32(hw, cq->sq.tail, 0);
475 	wr32(hw, cq->sq.len, 0);
476 	wr32(hw, cq->sq.bal, 0);
477 	wr32(hw, cq->sq.bah, 0);
478 
479 	cq->sq.count = 0;	/* to indicate uninitialized queue */
480 
481 	/* free ring buffers and the ring itself */
482 	ICE_FREE_CQ_BUFS(hw, cq, sq);
483 	ice_free_cq_ring(hw, &cq->sq);
484 
485 shutdown_sq_out:
486 	mutex_unlock(&cq->sq_lock);
487 	return ret_code;
488 }
489 
490 /**
491  * ice_aq_ver_check - Check the reported AQ API version
492  * @hw: pointer to the hardware structure
493  *
494  * Checks if the driver should load on a given AQ API version.
495  *
496  * Return: 'true' iff the driver should attempt to load. 'false' otherwise.
497  */
498 static bool ice_aq_ver_check(struct ice_hw *hw)
499 {
500 	u8 exp_fw_api_ver_major = EXP_FW_API_VER_MAJOR_BY_MAC(hw);
501 	u8 exp_fw_api_ver_minor = EXP_FW_API_VER_MINOR_BY_MAC(hw);
502 
503 	if (hw->api_maj_ver > exp_fw_api_ver_major) {
504 		/* Major API version is newer than expected, don't load */
505 		dev_warn(ice_hw_to_dev(hw),
506 			 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n");
507 		return false;
508 	} else if (hw->api_maj_ver == exp_fw_api_ver_major) {
509 		if (hw->api_min_ver > (exp_fw_api_ver_minor + 2))
510 			dev_info(ice_hw_to_dev(hw),
511 				 "The driver for the device detected a newer version (%u.%u) of the NVM image than expected (%u.%u). Please install the most recent version of the network driver.\n",
512 				 hw->api_maj_ver, hw->api_min_ver,
513 				 exp_fw_api_ver_major, exp_fw_api_ver_minor);
514 		else if ((hw->api_min_ver + 2) < exp_fw_api_ver_minor)
515 			dev_info(ice_hw_to_dev(hw),
516 				 "The driver for the device detected an older version (%u.%u) of the NVM image than expected (%u.%u). Please update the NVM image.\n",
517 				 hw->api_maj_ver, hw->api_min_ver,
518 				 exp_fw_api_ver_major, exp_fw_api_ver_minor);
519 	} else {
520 		/* Major API version is older than expected, log a warning */
521 		dev_info(ice_hw_to_dev(hw),
522 			 "The driver for the device detected an older version (%u.%u) of the NVM image than expected (%u.%u). Please update the NVM image.\n",
523 			 hw->api_maj_ver, hw->api_min_ver,
524 			 exp_fw_api_ver_major, exp_fw_api_ver_minor);
525 	}
526 	return true;
527 }
528 
529 /**
530  * ice_shutdown_rq - shutdown Control ARQ
531  * @hw: pointer to the hardware structure
532  * @cq: pointer to the specific Control queue
533  *
534  * The main shutdown routine for the Control Receive Queue
535  */
536 static int ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
537 {
538 	int ret_code = 0;
539 
540 	mutex_lock(&cq->rq_lock);
541 
542 	if (!cq->rq.count) {
543 		ret_code = -EBUSY;
544 		goto shutdown_rq_out;
545 	}
546 
547 	/* Stop Control Queue processing */
548 	wr32(hw, cq->rq.head, 0);
549 	wr32(hw, cq->rq.tail, 0);
550 	wr32(hw, cq->rq.len, 0);
551 	wr32(hw, cq->rq.bal, 0);
552 	wr32(hw, cq->rq.bah, 0);
553 
554 	/* set rq.count to 0 to indicate uninitialized queue */
555 	cq->rq.count = 0;
556 
557 	/* free ring buffers and the ring itself */
558 	ICE_FREE_CQ_BUFS(hw, cq, rq);
559 	ice_free_cq_ring(hw, &cq->rq);
560 
561 shutdown_rq_out:
562 	mutex_unlock(&cq->rq_lock);
563 	return ret_code;
564 }
565 
566 /**
567  * ice_init_check_adminq - Check version for Admin Queue to know if its alive
568  * @hw: pointer to the hardware structure
569  */
570 static int ice_init_check_adminq(struct ice_hw *hw)
571 {
572 	struct ice_ctl_q_info *cq = &hw->adminq;
573 	int status;
574 
575 	status = ice_aq_get_fw_ver(hw, NULL);
576 	if (status)
577 		goto init_ctrlq_free_rq;
578 
579 	if (!ice_aq_ver_check(hw)) {
580 		status = -EIO;
581 		goto init_ctrlq_free_rq;
582 	}
583 
584 	return 0;
585 
586 init_ctrlq_free_rq:
587 	ice_shutdown_rq(hw, cq);
588 	ice_shutdown_sq(hw, cq);
589 	return status;
590 }
591 
592 /**
593  * ice_init_ctrlq - main initialization routine for any control Queue
594  * @hw: pointer to the hardware structure
595  * @q_type: specific Control queue type
596  *
597  * Prior to calling this function, the driver *MUST* set the following fields
598  * in the cq->structure:
599  *     - cq->num_sq_entries
600  *     - cq->num_rq_entries
601  *     - cq->rq_buf_size
602  *     - cq->sq_buf_size
603  *
604  * NOTE: this function does not initialize the controlq locks
605  */
606 static int ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
607 {
608 	struct ice_ctl_q_info *cq;
609 	int ret_code;
610 
611 	switch (q_type) {
612 	case ICE_CTL_Q_ADMIN:
613 		ice_adminq_init_regs(hw);
614 		cq = &hw->adminq;
615 		break;
616 	case ICE_CTL_Q_SB:
617 		ice_sb_init_regs(hw);
618 		cq = &hw->sbq;
619 		break;
620 	case ICE_CTL_Q_MAILBOX:
621 		ice_mailbox_init_regs(hw);
622 		cq = &hw->mailboxq;
623 		break;
624 	default:
625 		return -EINVAL;
626 	}
627 	cq->qtype = q_type;
628 
629 	/* verify input for valid configuration */
630 	if (!cq->num_rq_entries || !cq->num_sq_entries ||
631 	    !cq->rq_buf_size || !cq->sq_buf_size) {
632 		return -EIO;
633 	}
634 
635 	/* allocate the ATQ */
636 	ret_code = ice_init_sq(hw, cq);
637 	if (ret_code)
638 		return ret_code;
639 
640 	/* allocate the ARQ */
641 	ret_code = ice_init_rq(hw, cq);
642 	if (ret_code)
643 		goto init_ctrlq_free_sq;
644 
645 	/* success! */
646 	return 0;
647 
648 init_ctrlq_free_sq:
649 	ice_shutdown_sq(hw, cq);
650 	return ret_code;
651 }
652 
653 /**
654  * ice_is_sbq_supported - is the sideband queue supported
655  * @hw: pointer to the hardware structure
656  *
657  * Returns true if the sideband control queue interface is
658  * supported for the device, false otherwise
659  */
660 bool ice_is_sbq_supported(struct ice_hw *hw)
661 {
662 	/* The device sideband queue is only supported on devices with the
663 	 * generic MAC type.
664 	 */
665 	return ice_is_generic_mac(hw);
666 }
667 
668 /**
669  * ice_get_sbq - returns the right control queue to use for sideband
670  * @hw: pointer to the hardware structure
671  */
672 struct ice_ctl_q_info *ice_get_sbq(struct ice_hw *hw)
673 {
674 	if (ice_is_sbq_supported(hw))
675 		return &hw->sbq;
676 	return &hw->adminq;
677 }
678 
679 /**
680  * ice_shutdown_ctrlq - shutdown routine for any control queue
681  * @hw: pointer to the hardware structure
682  * @q_type: specific Control queue type
683  * @unloading: is the driver unloading itself
684  *
685  * NOTE: this function does not destroy the control queue locks.
686  */
687 static void ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type,
688 			       bool unloading)
689 {
690 	struct ice_ctl_q_info *cq;
691 
692 	switch (q_type) {
693 	case ICE_CTL_Q_ADMIN:
694 		cq = &hw->adminq;
695 		if (ice_check_sq_alive(hw, cq))
696 			ice_aq_q_shutdown(hw, unloading);
697 		break;
698 	case ICE_CTL_Q_SB:
699 		cq = &hw->sbq;
700 		break;
701 	case ICE_CTL_Q_MAILBOX:
702 		cq = &hw->mailboxq;
703 		break;
704 	default:
705 		return;
706 	}
707 
708 	ice_shutdown_sq(hw, cq);
709 	ice_shutdown_rq(hw, cq);
710 }
711 
712 /**
713  * ice_shutdown_all_ctrlq - shutdown routine for all control queues
714  * @hw: pointer to the hardware structure
715  * @unloading: is the driver unloading itself
716  *
717  * NOTE: this function does not destroy the control queue locks. The driver
718  * may call this at runtime to shutdown and later restart control queues, such
719  * as in response to a reset event.
720  */
721 void ice_shutdown_all_ctrlq(struct ice_hw *hw, bool unloading)
722 {
723 	/* Shutdown FW admin queue */
724 	ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, unloading);
725 	/* Shutdown PHY Sideband */
726 	if (ice_is_sbq_supported(hw))
727 		ice_shutdown_ctrlq(hw, ICE_CTL_Q_SB, unloading);
728 	/* Shutdown PF-VF Mailbox */
729 	ice_shutdown_ctrlq(hw, ICE_CTL_Q_MAILBOX, unloading);
730 }
731 
732 /**
733  * ice_init_all_ctrlq - main initialization routine for all control queues
734  * @hw: pointer to the hardware structure
735  *
736  * Prior to calling this function, the driver MUST* set the following fields
737  * in the cq->structure for all control queues:
738  *     - cq->num_sq_entries
739  *     - cq->num_rq_entries
740  *     - cq->rq_buf_size
741  *     - cq->sq_buf_size
742  *
743  * NOTE: this function does not initialize the controlq locks.
744  */
745 int ice_init_all_ctrlq(struct ice_hw *hw)
746 {
747 	u32 retry = 0;
748 	int status;
749 
750 	/* Init FW admin queue */
751 	do {
752 		status = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN);
753 		if (status)
754 			return status;
755 
756 		status = ice_init_check_adminq(hw);
757 		if (status != -EIO)
758 			break;
759 
760 		ice_debug(hw, ICE_DBG_AQ_MSG, "Retry Admin Queue init due to FW critical error\n");
761 		ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, true);
762 		msleep(ICE_CTL_Q_ADMIN_INIT_MSEC);
763 	} while (retry++ < ICE_CTL_Q_ADMIN_INIT_TIMEOUT);
764 
765 	if (status)
766 		return status;
767 	/* sideband control queue (SBQ) interface is not supported on some
768 	 * devices. Initialize if supported, else fallback to the admin queue
769 	 * interface
770 	 */
771 	if (ice_is_sbq_supported(hw)) {
772 		status = ice_init_ctrlq(hw, ICE_CTL_Q_SB);
773 		if (status)
774 			return status;
775 	}
776 	/* Init Mailbox queue */
777 	return ice_init_ctrlq(hw, ICE_CTL_Q_MAILBOX);
778 }
779 
780 /**
781  * ice_init_ctrlq_locks - Initialize locks for a control queue
782  * @cq: pointer to the control queue
783  *
784  * Initializes the send and receive queue locks for a given control queue.
785  */
786 static void ice_init_ctrlq_locks(struct ice_ctl_q_info *cq)
787 {
788 	mutex_init(&cq->sq_lock);
789 	mutex_init(&cq->rq_lock);
790 }
791 
792 /**
793  * ice_create_all_ctrlq - main initialization routine for all control queues
794  * @hw: pointer to the hardware structure
795  *
796  * Prior to calling this function, the driver *MUST* set the following fields
797  * in the cq->structure for all control queues:
798  *     - cq->num_sq_entries
799  *     - cq->num_rq_entries
800  *     - cq->rq_buf_size
801  *     - cq->sq_buf_size
802  *
803  * This function creates all the control queue locks and then calls
804  * ice_init_all_ctrlq. It should be called once during driver load. If the
805  * driver needs to re-initialize control queues at run time it should call
806  * ice_init_all_ctrlq instead.
807  */
808 int ice_create_all_ctrlq(struct ice_hw *hw)
809 {
810 	ice_init_ctrlq_locks(&hw->adminq);
811 	if (ice_is_sbq_supported(hw))
812 		ice_init_ctrlq_locks(&hw->sbq);
813 	ice_init_ctrlq_locks(&hw->mailboxq);
814 
815 	return ice_init_all_ctrlq(hw);
816 }
817 
818 /**
819  * ice_destroy_ctrlq_locks - Destroy locks for a control queue
820  * @cq: pointer to the control queue
821  *
822  * Destroys the send and receive queue locks for a given control queue.
823  */
824 static void ice_destroy_ctrlq_locks(struct ice_ctl_q_info *cq)
825 {
826 	mutex_destroy(&cq->sq_lock);
827 	mutex_destroy(&cq->rq_lock);
828 }
829 
830 /**
831  * ice_destroy_all_ctrlq - exit routine for all control queues
832  * @hw: pointer to the hardware structure
833  *
834  * This function shuts down all the control queues and then destroys the
835  * control queue locks. It should be called once during driver unload. The
836  * driver should call ice_shutdown_all_ctrlq if it needs to shut down and
837  * reinitialize control queues, such as in response to a reset event.
838  */
839 void ice_destroy_all_ctrlq(struct ice_hw *hw)
840 {
841 	/* shut down all the control queues first */
842 	ice_shutdown_all_ctrlq(hw, true);
843 
844 	ice_destroy_ctrlq_locks(&hw->adminq);
845 	if (ice_is_sbq_supported(hw))
846 		ice_destroy_ctrlq_locks(&hw->sbq);
847 	ice_destroy_ctrlq_locks(&hw->mailboxq);
848 }
849 
850 /**
851  * ice_clean_sq - cleans send side of a control queue
852  * @hw: pointer to the hardware structure
853  * @cq: pointer to the specific Control queue
854  *
855  * returns the number of free desc
856  */
857 static u16 ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
858 {
859 	struct ice_ctl_q_ring *sq = &cq->sq;
860 	u16 ntc = sq->next_to_clean;
861 	struct ice_aq_desc *desc;
862 
863 	desc = ICE_CTL_Q_DESC(*sq, ntc);
864 
865 	while (rd32(hw, cq->sq.head) != ntc) {
866 		ice_debug(hw, ICE_DBG_AQ_MSG, "ntc %d head %d.\n", ntc, rd32(hw, cq->sq.head));
867 		memset(desc, 0, sizeof(*desc));
868 		ntc++;
869 		if (ntc == sq->count)
870 			ntc = 0;
871 		desc = ICE_CTL_Q_DESC(*sq, ntc);
872 	}
873 
874 	sq->next_to_clean = ntc;
875 
876 	return ICE_CTL_Q_DESC_UNUSED(sq);
877 }
878 
879 /**
880  * ice_ctl_q_str - Convert control queue type to string
881  * @qtype: the control queue type
882  *
883  * Return: A string name for the given control queue type.
884  */
885 static const char *ice_ctl_q_str(enum ice_ctl_q qtype)
886 {
887 	switch (qtype) {
888 	case ICE_CTL_Q_UNKNOWN:
889 		return "Unknown CQ";
890 	case ICE_CTL_Q_ADMIN:
891 		return "AQ";
892 	case ICE_CTL_Q_MAILBOX:
893 		return "MBXQ";
894 	case ICE_CTL_Q_SB:
895 		return "SBQ";
896 	default:
897 		return "Unrecognized CQ";
898 	}
899 }
900 
901 /**
902  * ice_debug_cq
903  * @hw: pointer to the hardware structure
904  * @cq: pointer to the specific Control queue
905  * @desc: pointer to control queue descriptor
906  * @buf: pointer to command buffer
907  * @buf_len: max length of buf
908  * @response: true if this is the writeback response
909  *
910  * Dumps debug log about control command with descriptor contents.
911  */
912 static void ice_debug_cq(struct ice_hw *hw, struct ice_ctl_q_info *cq,
913 			 void *desc, void *buf, u16 buf_len, bool response)
914 {
915 	struct ice_aq_desc *cq_desc = desc;
916 	u16 datalen, flags;
917 
918 	if (!IS_ENABLED(CONFIG_DYNAMIC_DEBUG) &&
919 	    !((ICE_DBG_AQ_DESC | ICE_DBG_AQ_DESC_BUF) & hw->debug_mask))
920 		return;
921 
922 	if (!desc)
923 		return;
924 
925 	datalen = le16_to_cpu(cq_desc->datalen);
926 	flags = le16_to_cpu(cq_desc->flags);
927 
928 	ice_debug(hw, ICE_DBG_AQ_DESC, "%s %s: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n\tcookie (h,l) 0x%08X 0x%08X\n\tparam (0,1)  0x%08X 0x%08X\n\taddr (h,l)   0x%08X 0x%08X\n",
929 		  ice_ctl_q_str(cq->qtype), response ? "Response" : "Command",
930 		  le16_to_cpu(cq_desc->opcode), flags, datalen,
931 		  le16_to_cpu(cq_desc->retval),
932 		  le32_to_cpu(cq_desc->cookie_high),
933 		  le32_to_cpu(cq_desc->cookie_low),
934 		  le32_to_cpu(cq_desc->params.generic.param0),
935 		  le32_to_cpu(cq_desc->params.generic.param1),
936 		  le32_to_cpu(cq_desc->params.generic.addr_high),
937 		  le32_to_cpu(cq_desc->params.generic.addr_low));
938 	/* Dump buffer iff 1) one exists and 2) is either a response indicated
939 	 * by the DD and/or CMP flag set or a command with the RD flag set.
940 	 */
941 	if (buf && cq_desc->datalen &&
942 	    (flags & (ICE_AQ_FLAG_DD | ICE_AQ_FLAG_CMP | ICE_AQ_FLAG_RD))) {
943 		char prefix[] = KBUILD_MODNAME " 0x12341234 0x12341234 ";
944 
945 		sprintf(prefix, KBUILD_MODNAME " 0x%08X 0x%08X ",
946 			le32_to_cpu(cq_desc->params.generic.addr_high),
947 			le32_to_cpu(cq_desc->params.generic.addr_low));
948 		ice_debug_array_w_prefix(hw, ICE_DBG_AQ_DESC_BUF, prefix,
949 					 buf,
950 					 min_t(u16, buf_len, datalen));
951 	}
952 }
953 
954 /**
955  * ice_sq_done - poll until the last send on a control queue has completed
956  * @hw: pointer to the HW struct
957  * @cq: pointer to the specific Control queue
958  *
959  * Use read_poll_timeout to poll the control queue head, checking until it
960  * matches next_to_use. According to the control queue designers, this has
961  * better timing reliability than the DD bit.
962  *
963  * Return: true if all the descriptors on the send side of a control queue
964  *         are finished processing, false otherwise.
965  */
966 static bool ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq)
967 {
968 	u32 head;
969 
970 	/* Wait a short time before the initial check, to allow hardware time
971 	 * for completion.
972 	 */
973 	udelay(5);
974 
975 	return !rd32_poll_timeout(hw, cq->sq.head,
976 				  head, head == cq->sq.next_to_use,
977 				  20, ICE_CTL_Q_SQ_CMD_TIMEOUT);
978 }
979 
980 /**
981  * ice_sq_send_cmd - send command to a control queue
982  * @hw: pointer to the HW struct
983  * @cq: pointer to the specific Control queue
984  * @desc: prefilled descriptor describing the command
985  * @buf: buffer to use for indirect commands (or NULL for direct commands)
986  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
987  * @cd: pointer to command details structure
988  *
989  * Main command for the transmit side of a control queue. It puts the command
990  * on the queue, bumps the tail, waits for processing of the command, captures
991  * command status and results, etc.
992  */
993 int
994 ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq,
995 		struct ice_aq_desc *desc, void *buf, u16 buf_size,
996 		struct ice_sq_cd *cd)
997 {
998 	struct ice_dma_mem *dma_buf = NULL;
999 	struct ice_aq_desc *desc_on_ring;
1000 	bool cmd_completed = false;
1001 	int status = 0;
1002 	u16 retval = 0;
1003 	u32 val = 0;
1004 
1005 	/* if reset is in progress return a soft error */
1006 	if (hw->reset_ongoing)
1007 		return -EBUSY;
1008 	mutex_lock(&cq->sq_lock);
1009 
1010 	cq->sq_last_status = ICE_AQ_RC_OK;
1011 
1012 	if (!cq->sq.count) {
1013 		ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send queue not initialized.\n");
1014 		status = -EIO;
1015 		goto sq_send_command_error;
1016 	}
1017 
1018 	if ((buf && !buf_size) || (!buf && buf_size)) {
1019 		status = -EINVAL;
1020 		goto sq_send_command_error;
1021 	}
1022 
1023 	if (buf) {
1024 		if (buf_size > cq->sq_buf_size) {
1025 			ice_debug(hw, ICE_DBG_AQ_MSG, "Invalid buffer size for Control Send queue: %d.\n",
1026 				  buf_size);
1027 			status = -EINVAL;
1028 			goto sq_send_command_error;
1029 		}
1030 
1031 		desc->flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
1032 		if (buf_size > ICE_AQ_LG_BUF)
1033 			desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
1034 	}
1035 
1036 	val = rd32(hw, cq->sq.head);
1037 	if (val >= cq->num_sq_entries) {
1038 		ice_debug(hw, ICE_DBG_AQ_MSG, "head overrun at %d in the Control Send Queue ring\n",
1039 			  val);
1040 		status = -EIO;
1041 		goto sq_send_command_error;
1042 	}
1043 
1044 	/* Call clean and check queue available function to reclaim the
1045 	 * descriptors that were processed by FW/MBX; the function returns the
1046 	 * number of desc available. The clean function called here could be
1047 	 * called in a separate thread in case of asynchronous completions.
1048 	 */
1049 	if (ice_clean_sq(hw, cq) == 0) {
1050 		ice_debug(hw, ICE_DBG_AQ_MSG, "Error: Control Send Queue is full.\n");
1051 		status = -ENOSPC;
1052 		goto sq_send_command_error;
1053 	}
1054 
1055 	/* initialize the temp desc pointer with the right desc */
1056 	desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use);
1057 
1058 	/* if the desc is available copy the temp desc to the right place */
1059 	memcpy(desc_on_ring, desc, sizeof(*desc_on_ring));
1060 
1061 	/* if buf is not NULL assume indirect command */
1062 	if (buf) {
1063 		dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use];
1064 		/* copy the user buf into the respective DMA buf */
1065 		memcpy(dma_buf->va, buf, buf_size);
1066 		desc_on_ring->datalen = cpu_to_le16(buf_size);
1067 
1068 		/* Update the address values in the desc with the pa value
1069 		 * for respective buffer
1070 		 */
1071 		desc_on_ring->params.generic.addr_high =
1072 			cpu_to_le32(upper_32_bits(dma_buf->pa));
1073 		desc_on_ring->params.generic.addr_low =
1074 			cpu_to_le32(lower_32_bits(dma_buf->pa));
1075 	}
1076 
1077 	/* Debug desc and buffer */
1078 	ice_debug(hw, ICE_DBG_AQ_DESC, "ATQ: Control Send queue desc and buffer:\n");
1079 
1080 	ice_debug_cq(hw, cq, (void *)desc_on_ring, buf, buf_size, false);
1081 
1082 	(cq->sq.next_to_use)++;
1083 	if (cq->sq.next_to_use == cq->sq.count)
1084 		cq->sq.next_to_use = 0;
1085 	wr32(hw, cq->sq.tail, cq->sq.next_to_use);
1086 	ice_flush(hw);
1087 
1088 	/* Wait for the command to complete. If it finishes within the
1089 	 * timeout, copy the descriptor back to temp.
1090 	 */
1091 	if (ice_sq_done(hw, cq)) {
1092 		memcpy(desc, desc_on_ring, sizeof(*desc));
1093 		if (buf) {
1094 			/* get returned length to copy */
1095 			u16 copy_size = le16_to_cpu(desc->datalen);
1096 
1097 			if (copy_size > buf_size) {
1098 				ice_debug(hw, ICE_DBG_AQ_MSG, "Return len %d > than buf len %d\n",
1099 					  copy_size, buf_size);
1100 				status = -EIO;
1101 			} else {
1102 				memcpy(buf, dma_buf->va, copy_size);
1103 			}
1104 		}
1105 		retval = le16_to_cpu(desc->retval);
1106 		if (retval) {
1107 			ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue command 0x%04X completed with error 0x%X\n",
1108 				  le16_to_cpu(desc->opcode),
1109 				  retval);
1110 
1111 			/* strip off FW internal code */
1112 			retval &= 0xff;
1113 		}
1114 		cmd_completed = true;
1115 		if (!status && retval != ICE_AQ_RC_OK)
1116 			status = -EIO;
1117 		cq->sq_last_status = (enum ice_aq_err)retval;
1118 	}
1119 
1120 	ice_debug(hw, ICE_DBG_AQ_MSG, "ATQ: desc and buffer writeback:\n");
1121 
1122 	ice_debug_cq(hw, cq, (void *)desc, buf, buf_size, true);
1123 
1124 	/* save writeback AQ if requested */
1125 	if (cd && cd->wb_desc)
1126 		memcpy(cd->wb_desc, desc_on_ring, sizeof(*cd->wb_desc));
1127 
1128 	/* update the error if time out occurred */
1129 	if (!cmd_completed) {
1130 		if (rd32(hw, cq->rq.len) & cq->rq.len_crit_mask ||
1131 		    rd32(hw, cq->sq.len) & cq->sq.len_crit_mask) {
1132 			ice_debug(hw, ICE_DBG_AQ_MSG, "Critical FW error.\n");
1133 			status = -EIO;
1134 		} else {
1135 			ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue Writeback timeout.\n");
1136 			status = -EIO;
1137 		}
1138 	}
1139 
1140 sq_send_command_error:
1141 	mutex_unlock(&cq->sq_lock);
1142 	return status;
1143 }
1144 
1145 /**
1146  * ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function
1147  * @desc: pointer to the temp descriptor (non DMA mem)
1148  * @opcode: the opcode can be used to decide which flags to turn off or on
1149  *
1150  * Fill the desc with default values
1151  */
1152 void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode)
1153 {
1154 	/* zero out the desc */
1155 	memset(desc, 0, sizeof(*desc));
1156 	desc->opcode = cpu_to_le16(opcode);
1157 	desc->flags = cpu_to_le16(ICE_AQ_FLAG_SI);
1158 }
1159 
1160 /**
1161  * ice_clean_rq_elem
1162  * @hw: pointer to the HW struct
1163  * @cq: pointer to the specific Control queue
1164  * @e: event info from the receive descriptor, includes any buffers
1165  * @pending: number of events that could be left to process
1166  *
1167  * Clean one element from the receive side of a control queue. On return 'e'
1168  * contains contents of the message, and 'pending' contains the number of
1169  * events left to process.
1170  */
1171 int
1172 ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1173 		  struct ice_rq_event_info *e, u16 *pending)
1174 {
1175 	u16 ntc = cq->rq.next_to_clean;
1176 	enum ice_aq_err rq_last_status;
1177 	struct ice_aq_desc *desc;
1178 	struct ice_dma_mem *bi;
1179 	int ret_code = 0;
1180 	u16 desc_idx;
1181 	u16 datalen;
1182 	u16 flags;
1183 	u16 ntu;
1184 
1185 	/* pre-clean the event info */
1186 	memset(&e->desc, 0, sizeof(e->desc));
1187 
1188 	/* take the lock before we start messing with the ring */
1189 	mutex_lock(&cq->rq_lock);
1190 
1191 	if (!cq->rq.count) {
1192 		ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive queue not initialized.\n");
1193 		ret_code = -EIO;
1194 		goto clean_rq_elem_err;
1195 	}
1196 
1197 	/* set next_to_use to head */
1198 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1199 
1200 	if (ntu == ntc) {
1201 		/* nothing to do - shouldn't need to update ring's values */
1202 		ret_code = -EALREADY;
1203 		goto clean_rq_elem_out;
1204 	}
1205 
1206 	/* now clean the next descriptor */
1207 	desc = ICE_CTL_Q_DESC(cq->rq, ntc);
1208 	desc_idx = ntc;
1209 
1210 	rq_last_status = (enum ice_aq_err)le16_to_cpu(desc->retval);
1211 	flags = le16_to_cpu(desc->flags);
1212 	if (flags & ICE_AQ_FLAG_ERR) {
1213 		ret_code = -EIO;
1214 		ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive Queue Event 0x%04X received with error 0x%X\n",
1215 			  le16_to_cpu(desc->opcode), rq_last_status);
1216 	}
1217 	memcpy(&e->desc, desc, sizeof(e->desc));
1218 	datalen = le16_to_cpu(desc->datalen);
1219 	e->msg_len = min_t(u16, datalen, e->buf_len);
1220 	if (e->msg_buf && e->msg_len)
1221 		memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len);
1222 
1223 	ice_debug(hw, ICE_DBG_AQ_DESC, "ARQ: desc and buffer:\n");
1224 
1225 	ice_debug_cq(hw, cq, (void *)desc, e->msg_buf, cq->rq_buf_size, true);
1226 
1227 	/* Restore the original datalen and buffer address in the desc,
1228 	 * FW updates datalen to indicate the event message size
1229 	 */
1230 	bi = &cq->rq.r.rq_bi[ntc];
1231 	memset(desc, 0, sizeof(*desc));
1232 
1233 	desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
1234 	if (cq->rq_buf_size > ICE_AQ_LG_BUF)
1235 		desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
1236 	desc->datalen = cpu_to_le16(bi->size);
1237 	desc->params.generic.addr_high = cpu_to_le32(upper_32_bits(bi->pa));
1238 	desc->params.generic.addr_low = cpu_to_le32(lower_32_bits(bi->pa));
1239 
1240 	/* set tail = the last cleaned desc index. */
1241 	wr32(hw, cq->rq.tail, ntc);
1242 	/* ntc is updated to tail + 1 */
1243 	ntc++;
1244 	if (ntc == cq->num_rq_entries)
1245 		ntc = 0;
1246 	cq->rq.next_to_clean = ntc;
1247 	cq->rq.next_to_use = ntu;
1248 
1249 clean_rq_elem_out:
1250 	/* Set pending if needed, unlock and return */
1251 	if (pending) {
1252 		/* re-read HW head to calculate actual pending messages */
1253 		ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1254 		*pending = (u16)((ntc > ntu ? cq->rq.count : 0) + (ntu - ntc));
1255 	}
1256 clean_rq_elem_err:
1257 	mutex_unlock(&cq->rq_lock);
1258 
1259 	return ret_code;
1260 }
1261