xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision fefe5dc4afeafe896c90d5b20b605f2759343c3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	default:
158 		hw->mac_type = ICE_MAC_UNKNOWN;
159 		break;
160 	}
161 
162 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
163 	return 0;
164 }
165 
166 /**
167  * ice_is_e810
168  * @hw: pointer to the hardware structure
169  *
170  * returns true if the device is E810 based, false if not.
171  */
172 bool ice_is_e810(struct ice_hw *hw)
173 {
174 	return hw->mac_type == ICE_MAC_E810;
175 }
176 
177 /**
178  * ice_is_e810t
179  * @hw: pointer to the hardware structure
180  *
181  * returns true if the device is E810T based, false if not.
182  */
183 bool ice_is_e810t(struct ice_hw *hw)
184 {
185 	switch (hw->device_id) {
186 	case ICE_DEV_ID_E810C_SFP:
187 		switch (hw->subsystem_device_id) {
188 		case ICE_SUBDEV_ID_E810T:
189 		case ICE_SUBDEV_ID_E810T2:
190 		case ICE_SUBDEV_ID_E810T3:
191 		case ICE_SUBDEV_ID_E810T4:
192 		case ICE_SUBDEV_ID_E810T6:
193 		case ICE_SUBDEV_ID_E810T7:
194 			return true;
195 		}
196 		break;
197 	case ICE_DEV_ID_E810C_QSFP:
198 		switch (hw->subsystem_device_id) {
199 		case ICE_SUBDEV_ID_E810T2:
200 		case ICE_SUBDEV_ID_E810T3:
201 		case ICE_SUBDEV_ID_E810T5:
202 			return true;
203 		}
204 		break;
205 	default:
206 		break;
207 	}
208 
209 	return false;
210 }
211 
212 /**
213  * ice_is_e823
214  * @hw: pointer to the hardware structure
215  *
216  * returns true if the device is E823-L or E823-C based, false if not.
217  */
218 bool ice_is_e823(struct ice_hw *hw)
219 {
220 	switch (hw->device_id) {
221 	case ICE_DEV_ID_E823L_BACKPLANE:
222 	case ICE_DEV_ID_E823L_SFP:
223 	case ICE_DEV_ID_E823L_10G_BASE_T:
224 	case ICE_DEV_ID_E823L_1GBE:
225 	case ICE_DEV_ID_E823L_QSFP:
226 	case ICE_DEV_ID_E823C_BACKPLANE:
227 	case ICE_DEV_ID_E823C_QSFP:
228 	case ICE_DEV_ID_E823C_SFP:
229 	case ICE_DEV_ID_E823C_10G_BASE_T:
230 	case ICE_DEV_ID_E823C_SGMII:
231 		return true;
232 	default:
233 		return false;
234 	}
235 }
236 
237 /**
238  * ice_clear_pf_cfg - Clear PF configuration
239  * @hw: pointer to the hardware structure
240  *
241  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
242  * configuration, flow director filters, etc.).
243  */
244 int ice_clear_pf_cfg(struct ice_hw *hw)
245 {
246 	struct ice_aq_desc desc;
247 
248 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
249 
250 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
251 }
252 
253 /**
254  * ice_aq_manage_mac_read - manage MAC address read command
255  * @hw: pointer to the HW struct
256  * @buf: a virtual buffer to hold the manage MAC read response
257  * @buf_size: Size of the virtual buffer
258  * @cd: pointer to command details structure or NULL
259  *
260  * This function is used to return per PF station MAC address (0x0107).
261  * NOTE: Upon successful completion of this command, MAC address information
262  * is returned in user specified buffer. Please interpret user specified
263  * buffer as "manage_mac_read" response.
264  * Response such as various MAC addresses are stored in HW struct (port.mac)
265  * ice_discover_dev_caps is expected to be called before this function is
266  * called.
267  */
268 static int
269 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
270 		       struct ice_sq_cd *cd)
271 {
272 	struct ice_aqc_manage_mac_read_resp *resp;
273 	struct ice_aqc_manage_mac_read *cmd;
274 	struct ice_aq_desc desc;
275 	int status;
276 	u16 flags;
277 	u8 i;
278 
279 	cmd = &desc.params.mac_read;
280 
281 	if (buf_size < sizeof(*resp))
282 		return -EINVAL;
283 
284 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
285 
286 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
287 	if (status)
288 		return status;
289 
290 	resp = buf;
291 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
292 
293 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
294 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
295 		return -EIO;
296 	}
297 
298 	/* A single port can report up to two (LAN and WoL) addresses */
299 	for (i = 0; i < cmd->num_addr; i++)
300 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
301 			ether_addr_copy(hw->port_info->mac.lan_addr,
302 					resp[i].mac_addr);
303 			ether_addr_copy(hw->port_info->mac.perm_addr,
304 					resp[i].mac_addr);
305 			break;
306 		}
307 
308 	return 0;
309 }
310 
311 /**
312  * ice_aq_get_phy_caps - returns PHY capabilities
313  * @pi: port information structure
314  * @qual_mods: report qualified modules
315  * @report_mode: report mode capabilities
316  * @pcaps: structure for PHY capabilities to be filled
317  * @cd: pointer to command details structure or NULL
318  *
319  * Returns the various PHY capabilities supported on the Port (0x0600)
320  */
321 int
322 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
323 		    struct ice_aqc_get_phy_caps_data *pcaps,
324 		    struct ice_sq_cd *cd)
325 {
326 	struct ice_aqc_get_phy_caps *cmd;
327 	u16 pcaps_size = sizeof(*pcaps);
328 	struct ice_aq_desc desc;
329 	const char *prefix;
330 	struct ice_hw *hw;
331 	int status;
332 
333 	cmd = &desc.params.get_phy;
334 
335 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
336 		return -EINVAL;
337 	hw = pi->hw;
338 
339 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
340 	    !ice_fw_supports_report_dflt_cfg(hw))
341 		return -EINVAL;
342 
343 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
344 
345 	if (qual_mods)
346 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
347 
348 	cmd->param0 |= cpu_to_le16(report_mode);
349 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
350 
351 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
352 
353 	switch (report_mode) {
354 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
355 		prefix = "phy_caps_media";
356 		break;
357 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
358 		prefix = "phy_caps_no_media";
359 		break;
360 	case ICE_AQC_REPORT_ACTIVE_CFG:
361 		prefix = "phy_caps_active";
362 		break;
363 	case ICE_AQC_REPORT_DFLT_CFG:
364 		prefix = "phy_caps_default";
365 		break;
366 	default:
367 		prefix = "phy_caps_invalid";
368 	}
369 
370 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
371 			  le64_to_cpu(pcaps->phy_type_high), prefix);
372 
373 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
374 		  prefix, report_mode);
375 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
376 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
377 		  pcaps->low_power_ctrl_an);
378 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
379 		  pcaps->eee_cap);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
381 		  pcaps->eeer_value);
382 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
383 		  pcaps->link_fec_options);
384 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
385 		  prefix, pcaps->module_compliance_enforcement);
386 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
387 		  prefix, pcaps->extended_compliance_code);
388 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
389 		  pcaps->module_type[0]);
390 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
391 		  pcaps->module_type[1]);
392 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
393 		  pcaps->module_type[2]);
394 
395 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
396 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
397 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
398 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
399 		       sizeof(pi->phy.link_info.module_type));
400 	}
401 
402 	return status;
403 }
404 
405 /**
406  * ice_aq_get_link_topo_handle - get link topology node return status
407  * @pi: port information structure
408  * @node_type: requested node type
409  * @cd: pointer to command details structure or NULL
410  *
411  * Get link topology node return status for specified node type (0x06E0)
412  *
413  * Node type cage can be used to determine if cage is present. If AQC
414  * returns error (ENOENT), then no cage present. If no cage present, then
415  * connection type is backplane or BASE-T.
416  */
417 static int
418 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
419 			    struct ice_sq_cd *cd)
420 {
421 	struct ice_aqc_get_link_topo *cmd;
422 	struct ice_aq_desc desc;
423 
424 	cmd = &desc.params.get_link_topo;
425 
426 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
427 
428 	cmd->addr.topo_params.node_type_ctx =
429 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
430 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
431 
432 	/* set node type */
433 	cmd->addr.topo_params.node_type_ctx |=
434 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
435 
436 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
437 }
438 
439 /**
440  * ice_aq_get_netlist_node
441  * @hw: pointer to the hw struct
442  * @cmd: get_link_topo AQ structure
443  * @node_part_number: output node part number if node found
444  * @node_handle: output node handle parameter if node found
445  *
446  * Get netlist node handle.
447  */
448 int
449 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
450 			u8 *node_part_number, u16 *node_handle)
451 {
452 	struct ice_aq_desc desc;
453 
454 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
455 	desc.params.get_link_topo = *cmd;
456 
457 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
458 		return -EINTR;
459 
460 	if (node_handle)
461 		*node_handle =
462 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
463 	if (node_part_number)
464 		*node_part_number = desc.params.get_link_topo.node_part_num;
465 
466 	return 0;
467 }
468 
469 /**
470  * ice_find_netlist_node
471  * @hw: pointer to the hw struct
472  * @node_type_ctx: type of netlist node to look for
473  * @node_part_number: node part number to look for
474  * @node_handle: output parameter if node found - optional
475  *
476  * Find and return the node handle for a given node type and part number in the
477  * netlist. When found ICE_SUCCESS is returned, ICE_ERR_DOES_NOT_EXIST
478  * otherwise. If node_handle provided, it would be set to found node handle.
479  */
480 int
481 ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, u8 node_part_number,
482 		      u16 *node_handle)
483 {
484 	struct ice_aqc_get_link_topo cmd;
485 	u8 rec_node_part_number;
486 	u16 rec_node_handle;
487 	u8 idx;
488 
489 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
490 		int status;
491 
492 		memset(&cmd, 0, sizeof(cmd));
493 
494 		cmd.addr.topo_params.node_type_ctx =
495 			(node_type_ctx << ICE_AQC_LINK_TOPO_NODE_TYPE_S);
496 		cmd.addr.topo_params.index = idx;
497 
498 		status = ice_aq_get_netlist_node(hw, &cmd,
499 						 &rec_node_part_number,
500 						 &rec_node_handle);
501 		if (status)
502 			return status;
503 
504 		if (rec_node_part_number == node_part_number) {
505 			if (node_handle)
506 				*node_handle = rec_node_handle;
507 			return 0;
508 		}
509 	}
510 
511 	return -ENOTBLK;
512 }
513 
514 /**
515  * ice_is_media_cage_present
516  * @pi: port information structure
517  *
518  * Returns true if media cage is present, else false. If no cage, then
519  * media type is backplane or BASE-T.
520  */
521 static bool ice_is_media_cage_present(struct ice_port_info *pi)
522 {
523 	/* Node type cage can be used to determine if cage is present. If AQC
524 	 * returns error (ENOENT), then no cage present. If no cage present then
525 	 * connection type is backplane or BASE-T.
526 	 */
527 	return !ice_aq_get_link_topo_handle(pi,
528 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
529 					    NULL);
530 }
531 
532 /**
533  * ice_get_media_type - Gets media type
534  * @pi: port information structure
535  */
536 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
537 {
538 	struct ice_link_status *hw_link_info;
539 
540 	if (!pi)
541 		return ICE_MEDIA_UNKNOWN;
542 
543 	hw_link_info = &pi->phy.link_info;
544 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
545 		/* If more than one media type is selected, report unknown */
546 		return ICE_MEDIA_UNKNOWN;
547 
548 	if (hw_link_info->phy_type_low) {
549 		/* 1G SGMII is a special case where some DA cable PHYs
550 		 * may show this as an option when it really shouldn't
551 		 * be since SGMII is meant to be between a MAC and a PHY
552 		 * in a backplane. Try to detect this case and handle it
553 		 */
554 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
555 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
556 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
557 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
558 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
559 			return ICE_MEDIA_DA;
560 
561 		switch (hw_link_info->phy_type_low) {
562 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
563 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
564 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
565 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
566 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
567 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
568 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
569 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
570 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
571 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
572 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
573 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
574 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
575 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
576 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
577 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
578 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
579 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
580 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
581 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
582 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
583 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
584 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
585 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
586 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
587 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
588 			return ICE_MEDIA_FIBER;
589 		case ICE_PHY_TYPE_LOW_100BASE_TX:
590 		case ICE_PHY_TYPE_LOW_1000BASE_T:
591 		case ICE_PHY_TYPE_LOW_2500BASE_T:
592 		case ICE_PHY_TYPE_LOW_5GBASE_T:
593 		case ICE_PHY_TYPE_LOW_10GBASE_T:
594 		case ICE_PHY_TYPE_LOW_25GBASE_T:
595 			return ICE_MEDIA_BASET;
596 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
597 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
598 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
599 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
600 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
601 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
602 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
603 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
604 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
605 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
606 			return ICE_MEDIA_DA;
607 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
608 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
609 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
610 		case ICE_PHY_TYPE_LOW_50G_AUI2:
611 		case ICE_PHY_TYPE_LOW_50G_AUI1:
612 		case ICE_PHY_TYPE_LOW_100G_AUI4:
613 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
614 			if (ice_is_media_cage_present(pi))
615 				return ICE_MEDIA_DA;
616 			fallthrough;
617 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
618 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
619 		case ICE_PHY_TYPE_LOW_2500BASE_X:
620 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
621 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
622 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
623 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
624 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
625 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
626 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
627 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
628 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
629 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
630 			return ICE_MEDIA_BACKPLANE;
631 		}
632 	} else {
633 		switch (hw_link_info->phy_type_high) {
634 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
635 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
636 			if (ice_is_media_cage_present(pi))
637 				return ICE_MEDIA_DA;
638 			fallthrough;
639 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
640 			return ICE_MEDIA_BACKPLANE;
641 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
642 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
643 			return ICE_MEDIA_FIBER;
644 		}
645 	}
646 	return ICE_MEDIA_UNKNOWN;
647 }
648 
649 /**
650  * ice_aq_get_link_info
651  * @pi: port information structure
652  * @ena_lse: enable/disable LinkStatusEvent reporting
653  * @link: pointer to link status structure - optional
654  * @cd: pointer to command details structure or NULL
655  *
656  * Get Link Status (0x607). Returns the link status of the adapter.
657  */
658 int
659 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
660 		     struct ice_link_status *link, struct ice_sq_cd *cd)
661 {
662 	struct ice_aqc_get_link_status_data link_data = { 0 };
663 	struct ice_aqc_get_link_status *resp;
664 	struct ice_link_status *li_old, *li;
665 	enum ice_media_type *hw_media_type;
666 	struct ice_fc_info *hw_fc_info;
667 	bool tx_pause, rx_pause;
668 	struct ice_aq_desc desc;
669 	struct ice_hw *hw;
670 	u16 cmd_flags;
671 	int status;
672 
673 	if (!pi)
674 		return -EINVAL;
675 	hw = pi->hw;
676 	li_old = &pi->phy.link_info_old;
677 	hw_media_type = &pi->phy.media_type;
678 	li = &pi->phy.link_info;
679 	hw_fc_info = &pi->fc;
680 
681 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
682 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
683 	resp = &desc.params.get_link_status;
684 	resp->cmd_flags = cpu_to_le16(cmd_flags);
685 	resp->lport_num = pi->lport;
686 
687 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
688 
689 	if (status)
690 		return status;
691 
692 	/* save off old link status information */
693 	*li_old = *li;
694 
695 	/* update current link status information */
696 	li->link_speed = le16_to_cpu(link_data.link_speed);
697 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
698 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
699 	*hw_media_type = ice_get_media_type(pi);
700 	li->link_info = link_data.link_info;
701 	li->link_cfg_err = link_data.link_cfg_err;
702 	li->an_info = link_data.an_info;
703 	li->ext_info = link_data.ext_info;
704 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
705 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
706 	li->topo_media_conflict = link_data.topo_media_conflict;
707 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
708 				      ICE_AQ_CFG_PACING_TYPE_M);
709 
710 	/* update fc info */
711 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
712 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
713 	if (tx_pause && rx_pause)
714 		hw_fc_info->current_mode = ICE_FC_FULL;
715 	else if (tx_pause)
716 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
717 	else if (rx_pause)
718 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
719 	else
720 		hw_fc_info->current_mode = ICE_FC_NONE;
721 
722 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
723 
724 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
725 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
726 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
727 		  (unsigned long long)li->phy_type_low);
728 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
729 		  (unsigned long long)li->phy_type_high);
730 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
731 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
732 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
733 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
734 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
735 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
736 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
737 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
738 		  li->max_frame_size);
739 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
740 
741 	/* save link status information */
742 	if (link)
743 		*link = *li;
744 
745 	/* flag cleared so calling functions don't call AQ again */
746 	pi->phy.get_link_info = false;
747 
748 	return 0;
749 }
750 
751 /**
752  * ice_fill_tx_timer_and_fc_thresh
753  * @hw: pointer to the HW struct
754  * @cmd: pointer to MAC cfg structure
755  *
756  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
757  * descriptor
758  */
759 static void
760 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
761 				struct ice_aqc_set_mac_cfg *cmd)
762 {
763 	u16 fc_thres_val, tx_timer_val;
764 	u32 val;
765 
766 	/* We read back the transmit timer and FC threshold value of
767 	 * LFC. Thus, we will use index =
768 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
769 	 *
770 	 * Also, because we are operating on transmit timer and FC
771 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
772 	 */
773 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
774 
775 	/* Retrieve the transmit timer */
776 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
777 	tx_timer_val = val &
778 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
779 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
780 
781 	/* Retrieve the FC threshold */
782 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
783 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
784 
785 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
786 }
787 
788 /**
789  * ice_aq_set_mac_cfg
790  * @hw: pointer to the HW struct
791  * @max_frame_size: Maximum Frame Size to be supported
792  * @cd: pointer to command details structure or NULL
793  *
794  * Set MAC configuration (0x0603)
795  */
796 int
797 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
798 {
799 	struct ice_aqc_set_mac_cfg *cmd;
800 	struct ice_aq_desc desc;
801 
802 	cmd = &desc.params.set_mac_cfg;
803 
804 	if (max_frame_size == 0)
805 		return -EINVAL;
806 
807 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
808 
809 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
810 
811 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
812 
813 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
814 }
815 
816 /**
817  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
818  * @hw: pointer to the HW struct
819  */
820 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
821 {
822 	struct ice_switch_info *sw;
823 	int status;
824 
825 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
826 				       sizeof(*hw->switch_info), GFP_KERNEL);
827 	sw = hw->switch_info;
828 
829 	if (!sw)
830 		return -ENOMEM;
831 
832 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
833 	sw->prof_res_bm_init = 0;
834 
835 	status = ice_init_def_sw_recp(hw);
836 	if (status) {
837 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
838 		return status;
839 	}
840 	return 0;
841 }
842 
843 /**
844  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
845  * @hw: pointer to the HW struct
846  */
847 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
848 {
849 	struct ice_switch_info *sw = hw->switch_info;
850 	struct ice_vsi_list_map_info *v_pos_map;
851 	struct ice_vsi_list_map_info *v_tmp_map;
852 	struct ice_sw_recipe *recps;
853 	u8 i;
854 
855 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
856 				 list_entry) {
857 		list_del(&v_pos_map->list_entry);
858 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
859 	}
860 	recps = sw->recp_list;
861 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
862 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
863 
864 		recps[i].root_rid = i;
865 		list_for_each_entry_safe(rg_entry, tmprg_entry,
866 					 &recps[i].rg_list, l_entry) {
867 			list_del(&rg_entry->l_entry);
868 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
869 		}
870 
871 		if (recps[i].adv_rule) {
872 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
873 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
874 
875 			mutex_destroy(&recps[i].filt_rule_lock);
876 			list_for_each_entry_safe(lst_itr, tmp_entry,
877 						 &recps[i].filt_rules,
878 						 list_entry) {
879 				list_del(&lst_itr->list_entry);
880 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
881 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
882 			}
883 		} else {
884 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
885 
886 			mutex_destroy(&recps[i].filt_rule_lock);
887 			list_for_each_entry_safe(lst_itr, tmp_entry,
888 						 &recps[i].filt_rules,
889 						 list_entry) {
890 				list_del(&lst_itr->list_entry);
891 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
892 			}
893 		}
894 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
895 	}
896 	ice_rm_all_sw_replay_rule_info(hw);
897 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
898 	devm_kfree(ice_hw_to_dev(hw), sw);
899 }
900 
901 /**
902  * ice_get_fw_log_cfg - get FW logging configuration
903  * @hw: pointer to the HW struct
904  */
905 static int ice_get_fw_log_cfg(struct ice_hw *hw)
906 {
907 	struct ice_aq_desc desc;
908 	__le16 *config;
909 	int status;
910 	u16 size;
911 
912 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
913 	config = kzalloc(size, GFP_KERNEL);
914 	if (!config)
915 		return -ENOMEM;
916 
917 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
918 
919 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
920 	if (!status) {
921 		u16 i;
922 
923 		/* Save FW logging information into the HW structure */
924 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
925 			u16 v, m, flgs;
926 
927 			v = le16_to_cpu(config[i]);
928 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
929 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
930 
931 			if (m < ICE_AQC_FW_LOG_ID_MAX)
932 				hw->fw_log.evnts[m].cur = flgs;
933 		}
934 	}
935 
936 	kfree(config);
937 
938 	return status;
939 }
940 
941 /**
942  * ice_cfg_fw_log - configure FW logging
943  * @hw: pointer to the HW struct
944  * @enable: enable certain FW logging events if true, disable all if false
945  *
946  * This function enables/disables the FW logging via Rx CQ events and a UART
947  * port based on predetermined configurations. FW logging via the Rx CQ can be
948  * enabled/disabled for individual PF's. However, FW logging via the UART can
949  * only be enabled/disabled for all PFs on the same device.
950  *
951  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
952  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
953  * before initializing the device.
954  *
955  * When re/configuring FW logging, callers need to update the "cfg" elements of
956  * the hw->fw_log.evnts array with the desired logging event configurations for
957  * modules of interest. When disabling FW logging completely, the callers can
958  * just pass false in the "enable" parameter. On completion, the function will
959  * update the "cur" element of the hw->fw_log.evnts array with the resulting
960  * logging event configurations of the modules that are being re/configured. FW
961  * logging modules that are not part of a reconfiguration operation retain their
962  * previous states.
963  *
964  * Before resetting the device, it is recommended that the driver disables FW
965  * logging before shutting down the control queue. When disabling FW logging
966  * ("enable" = false), the latest configurations of FW logging events stored in
967  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
968  * a device reset.
969  *
970  * When enabling FW logging to emit log messages via the Rx CQ during the
971  * device's initialization phase, a mechanism alternative to interrupt handlers
972  * needs to be used to extract FW log messages from the Rx CQ periodically and
973  * to prevent the Rx CQ from being full and stalling other types of control
974  * messages from FW to SW. Interrupts are typically disabled during the device's
975  * initialization phase.
976  */
977 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
978 {
979 	struct ice_aqc_fw_logging *cmd;
980 	u16 i, chgs = 0, len = 0;
981 	struct ice_aq_desc desc;
982 	__le16 *data = NULL;
983 	u8 actv_evnts = 0;
984 	void *buf = NULL;
985 	int status = 0;
986 
987 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
988 		return 0;
989 
990 	/* Disable FW logging only when the control queue is still responsive */
991 	if (!enable &&
992 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
993 		return 0;
994 
995 	/* Get current FW log settings */
996 	status = ice_get_fw_log_cfg(hw);
997 	if (status)
998 		return status;
999 
1000 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
1001 	cmd = &desc.params.fw_logging;
1002 
1003 	/* Indicate which controls are valid */
1004 	if (hw->fw_log.cq_en)
1005 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
1006 
1007 	if (hw->fw_log.uart_en)
1008 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
1009 
1010 	if (enable) {
1011 		/* Fill in an array of entries with FW logging modules and
1012 		 * logging events being reconfigured.
1013 		 */
1014 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
1015 			u16 val;
1016 
1017 			/* Keep track of enabled event types */
1018 			actv_evnts |= hw->fw_log.evnts[i].cfg;
1019 
1020 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
1021 				continue;
1022 
1023 			if (!data) {
1024 				data = devm_kcalloc(ice_hw_to_dev(hw),
1025 						    ICE_AQC_FW_LOG_ID_MAX,
1026 						    sizeof(*data),
1027 						    GFP_KERNEL);
1028 				if (!data)
1029 					return -ENOMEM;
1030 			}
1031 
1032 			val = i << ICE_AQC_FW_LOG_ID_S;
1033 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
1034 			data[chgs++] = cpu_to_le16(val);
1035 		}
1036 
1037 		/* Only enable FW logging if at least one module is specified.
1038 		 * If FW logging is currently enabled but all modules are not
1039 		 * enabled to emit log messages, disable FW logging altogether.
1040 		 */
1041 		if (actv_evnts) {
1042 			/* Leave if there is effectively no change */
1043 			if (!chgs)
1044 				goto out;
1045 
1046 			if (hw->fw_log.cq_en)
1047 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
1048 
1049 			if (hw->fw_log.uart_en)
1050 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
1051 
1052 			buf = data;
1053 			len = sizeof(*data) * chgs;
1054 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1055 		}
1056 	}
1057 
1058 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
1059 	if (!status) {
1060 		/* Update the current configuration to reflect events enabled.
1061 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
1062 		 * logging mode is enabled for the device. They do not reflect
1063 		 * actual modules being enabled to emit log messages. So, their
1064 		 * values remain unchanged even when all modules are disabled.
1065 		 */
1066 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
1067 
1068 		hw->fw_log.actv_evnts = actv_evnts;
1069 		for (i = 0; i < cnt; i++) {
1070 			u16 v, m;
1071 
1072 			if (!enable) {
1073 				/* When disabling all FW logging events as part
1074 				 * of device's de-initialization, the original
1075 				 * configurations are retained, and can be used
1076 				 * to reconfigure FW logging later if the device
1077 				 * is re-initialized.
1078 				 */
1079 				hw->fw_log.evnts[i].cur = 0;
1080 				continue;
1081 			}
1082 
1083 			v = le16_to_cpu(data[i]);
1084 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
1085 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
1086 		}
1087 	}
1088 
1089 out:
1090 	devm_kfree(ice_hw_to_dev(hw), data);
1091 
1092 	return status;
1093 }
1094 
1095 /**
1096  * ice_output_fw_log
1097  * @hw: pointer to the HW struct
1098  * @desc: pointer to the AQ message descriptor
1099  * @buf: pointer to the buffer accompanying the AQ message
1100  *
1101  * Formats a FW Log message and outputs it via the standard driver logs.
1102  */
1103 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1104 {
1105 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1106 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1107 			le16_to_cpu(desc->datalen));
1108 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1109 }
1110 
1111 /**
1112  * ice_get_itr_intrl_gran
1113  * @hw: pointer to the HW struct
1114  *
1115  * Determines the ITR/INTRL granularities based on the maximum aggregate
1116  * bandwidth according to the device's configuration during power-on.
1117  */
1118 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1119 {
1120 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1121 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1122 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1123 
1124 	switch (max_agg_bw) {
1125 	case ICE_MAX_AGG_BW_200G:
1126 	case ICE_MAX_AGG_BW_100G:
1127 	case ICE_MAX_AGG_BW_50G:
1128 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1129 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1130 		break;
1131 	case ICE_MAX_AGG_BW_25G:
1132 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1133 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1134 		break;
1135 	}
1136 }
1137 
1138 /**
1139  * ice_init_hw - main hardware initialization routine
1140  * @hw: pointer to the hardware structure
1141  */
1142 int ice_init_hw(struct ice_hw *hw)
1143 {
1144 	struct ice_aqc_get_phy_caps_data *pcaps;
1145 	u16 mac_buf_len;
1146 	void *mac_buf;
1147 	int status;
1148 
1149 	/* Set MAC type based on DeviceID */
1150 	status = ice_set_mac_type(hw);
1151 	if (status)
1152 		return status;
1153 
1154 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1155 			 PF_FUNC_RID_FUNC_NUM_M) >>
1156 		PF_FUNC_RID_FUNC_NUM_S;
1157 
1158 	status = ice_reset(hw, ICE_RESET_PFR);
1159 	if (status)
1160 		return status;
1161 
1162 	ice_get_itr_intrl_gran(hw);
1163 
1164 	status = ice_create_all_ctrlq(hw);
1165 	if (status)
1166 		goto err_unroll_cqinit;
1167 
1168 	/* Enable FW logging. Not fatal if this fails. */
1169 	status = ice_cfg_fw_log(hw, true);
1170 	if (status)
1171 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1172 
1173 	status = ice_clear_pf_cfg(hw);
1174 	if (status)
1175 		goto err_unroll_cqinit;
1176 
1177 	/* Set bit to enable Flow Director filters */
1178 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1179 	INIT_LIST_HEAD(&hw->fdir_list_head);
1180 
1181 	ice_clear_pxe_mode(hw);
1182 
1183 	status = ice_init_nvm(hw);
1184 	if (status)
1185 		goto err_unroll_cqinit;
1186 
1187 	status = ice_get_caps(hw);
1188 	if (status)
1189 		goto err_unroll_cqinit;
1190 
1191 	if (!hw->port_info)
1192 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1193 					     sizeof(*hw->port_info),
1194 					     GFP_KERNEL);
1195 	if (!hw->port_info) {
1196 		status = -ENOMEM;
1197 		goto err_unroll_cqinit;
1198 	}
1199 
1200 	/* set the back pointer to HW */
1201 	hw->port_info->hw = hw;
1202 
1203 	/* Initialize port_info struct with switch configuration data */
1204 	status = ice_get_initial_sw_cfg(hw);
1205 	if (status)
1206 		goto err_unroll_alloc;
1207 
1208 	hw->evb_veb = true;
1209 
1210 	/* init xarray for identifying scheduling nodes uniquely */
1211 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1212 
1213 	/* Query the allocated resources for Tx scheduler */
1214 	status = ice_sched_query_res_alloc(hw);
1215 	if (status) {
1216 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1217 		goto err_unroll_alloc;
1218 	}
1219 	ice_sched_get_psm_clk_freq(hw);
1220 
1221 	/* Initialize port_info struct with scheduler data */
1222 	status = ice_sched_init_port(hw->port_info);
1223 	if (status)
1224 		goto err_unroll_sched;
1225 
1226 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1227 	if (!pcaps) {
1228 		status = -ENOMEM;
1229 		goto err_unroll_sched;
1230 	}
1231 
1232 	/* Initialize port_info struct with PHY capabilities */
1233 	status = ice_aq_get_phy_caps(hw->port_info, false,
1234 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1235 				     NULL);
1236 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1237 	if (status)
1238 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1239 			 status);
1240 
1241 	/* Initialize port_info struct with link information */
1242 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1243 	if (status)
1244 		goto err_unroll_sched;
1245 
1246 	/* need a valid SW entry point to build a Tx tree */
1247 	if (!hw->sw_entry_point_layer) {
1248 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1249 		status = -EIO;
1250 		goto err_unroll_sched;
1251 	}
1252 	INIT_LIST_HEAD(&hw->agg_list);
1253 	/* Initialize max burst size */
1254 	if (!hw->max_burst_size)
1255 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1256 
1257 	status = ice_init_fltr_mgmt_struct(hw);
1258 	if (status)
1259 		goto err_unroll_sched;
1260 
1261 	/* Get MAC information */
1262 	/* A single port can report up to two (LAN and WoL) addresses */
1263 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1264 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1265 			       GFP_KERNEL);
1266 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1267 
1268 	if (!mac_buf) {
1269 		status = -ENOMEM;
1270 		goto err_unroll_fltr_mgmt_struct;
1271 	}
1272 
1273 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1274 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1275 
1276 	if (status)
1277 		goto err_unroll_fltr_mgmt_struct;
1278 	/* enable jumbo frame support at MAC level */
1279 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1280 	if (status)
1281 		goto err_unroll_fltr_mgmt_struct;
1282 	/* Obtain counter base index which would be used by flow director */
1283 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1284 	if (status)
1285 		goto err_unroll_fltr_mgmt_struct;
1286 	status = ice_init_hw_tbls(hw);
1287 	if (status)
1288 		goto err_unroll_fltr_mgmt_struct;
1289 	mutex_init(&hw->tnl_lock);
1290 	return 0;
1291 
1292 err_unroll_fltr_mgmt_struct:
1293 	ice_cleanup_fltr_mgmt_struct(hw);
1294 err_unroll_sched:
1295 	ice_sched_cleanup_all(hw);
1296 err_unroll_alloc:
1297 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1298 err_unroll_cqinit:
1299 	ice_destroy_all_ctrlq(hw);
1300 	return status;
1301 }
1302 
1303 /**
1304  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1305  * @hw: pointer to the hardware structure
1306  *
1307  * This should be called only during nominal operation, not as a result of
1308  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1309  * applicable initializations if it fails for any reason.
1310  */
1311 void ice_deinit_hw(struct ice_hw *hw)
1312 {
1313 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1314 	ice_cleanup_fltr_mgmt_struct(hw);
1315 
1316 	ice_sched_cleanup_all(hw);
1317 	ice_sched_clear_agg(hw);
1318 	ice_free_seg(hw);
1319 	ice_free_hw_tbls(hw);
1320 	mutex_destroy(&hw->tnl_lock);
1321 
1322 	/* Attempt to disable FW logging before shutting down control queues */
1323 	ice_cfg_fw_log(hw, false);
1324 	ice_destroy_all_ctrlq(hw);
1325 
1326 	/* Clear VSI contexts if not already cleared */
1327 	ice_clear_all_vsi_ctx(hw);
1328 }
1329 
1330 /**
1331  * ice_check_reset - Check to see if a global reset is complete
1332  * @hw: pointer to the hardware structure
1333  */
1334 int ice_check_reset(struct ice_hw *hw)
1335 {
1336 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1337 
1338 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1339 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1340 	 * Add 1sec for outstanding AQ commands that can take a long time.
1341 	 */
1342 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1343 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1344 
1345 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1346 		mdelay(100);
1347 		reg = rd32(hw, GLGEN_RSTAT);
1348 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1349 			break;
1350 	}
1351 
1352 	if (cnt == grst_timeout) {
1353 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1354 		return -EIO;
1355 	}
1356 
1357 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1358 				 GLNVM_ULD_PCIER_DONE_1_M |\
1359 				 GLNVM_ULD_CORER_DONE_M |\
1360 				 GLNVM_ULD_GLOBR_DONE_M |\
1361 				 GLNVM_ULD_POR_DONE_M |\
1362 				 GLNVM_ULD_POR_DONE_1_M |\
1363 				 GLNVM_ULD_PCIER_DONE_2_M)
1364 
1365 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1366 					  GLNVM_ULD_PE_DONE_M : 0);
1367 
1368 	/* Device is Active; check Global Reset processes are done */
1369 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1370 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1371 		if (reg == uld_mask) {
1372 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1373 			break;
1374 		}
1375 		mdelay(10);
1376 	}
1377 
1378 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1379 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1380 			  reg);
1381 		return -EIO;
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  * ice_pf_reset - Reset the PF
1389  * @hw: pointer to the hardware structure
1390  *
1391  * If a global reset has been triggered, this function checks
1392  * for its completion and then issues the PF reset
1393  */
1394 static int ice_pf_reset(struct ice_hw *hw)
1395 {
1396 	u32 cnt, reg;
1397 
1398 	/* If at function entry a global reset was already in progress, i.e.
1399 	 * state is not 'device active' or any of the reset done bits are not
1400 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1401 	 * global reset is done.
1402 	 */
1403 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1404 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1405 		/* poll on global reset currently in progress until done */
1406 		if (ice_check_reset(hw))
1407 			return -EIO;
1408 
1409 		return 0;
1410 	}
1411 
1412 	/* Reset the PF */
1413 	reg = rd32(hw, PFGEN_CTRL);
1414 
1415 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1416 
1417 	/* Wait for the PFR to complete. The wait time is the global config lock
1418 	 * timeout plus the PFR timeout which will account for a possible reset
1419 	 * that is occurring during a download package operation.
1420 	 */
1421 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1422 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1423 		reg = rd32(hw, PFGEN_CTRL);
1424 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1425 			break;
1426 
1427 		mdelay(1);
1428 	}
1429 
1430 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1431 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1432 		return -EIO;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 /**
1439  * ice_reset - Perform different types of reset
1440  * @hw: pointer to the hardware structure
1441  * @req: reset request
1442  *
1443  * This function triggers a reset as specified by the req parameter.
1444  *
1445  * Note:
1446  * If anything other than a PF reset is triggered, PXE mode is restored.
1447  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1448  * interface has been restored in the rebuild flow.
1449  */
1450 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1451 {
1452 	u32 val = 0;
1453 
1454 	switch (req) {
1455 	case ICE_RESET_PFR:
1456 		return ice_pf_reset(hw);
1457 	case ICE_RESET_CORER:
1458 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1459 		val = GLGEN_RTRIG_CORER_M;
1460 		break;
1461 	case ICE_RESET_GLOBR:
1462 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1463 		val = GLGEN_RTRIG_GLOBR_M;
1464 		break;
1465 	default:
1466 		return -EINVAL;
1467 	}
1468 
1469 	val |= rd32(hw, GLGEN_RTRIG);
1470 	wr32(hw, GLGEN_RTRIG, val);
1471 	ice_flush(hw);
1472 
1473 	/* wait for the FW to be ready */
1474 	return ice_check_reset(hw);
1475 }
1476 
1477 /**
1478  * ice_copy_rxq_ctx_to_hw
1479  * @hw: pointer to the hardware structure
1480  * @ice_rxq_ctx: pointer to the rxq context
1481  * @rxq_index: the index of the Rx queue
1482  *
1483  * Copies rxq context from dense structure to HW register space
1484  */
1485 static int
1486 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1487 {
1488 	u8 i;
1489 
1490 	if (!ice_rxq_ctx)
1491 		return -EINVAL;
1492 
1493 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1494 		return -EINVAL;
1495 
1496 	/* Copy each dword separately to HW */
1497 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1498 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1499 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1500 
1501 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1502 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 /* LAN Rx Queue Context */
1509 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1510 	/* Field		Width	LSB */
1511 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1512 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1513 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1514 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1515 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1516 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1517 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1518 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1519 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1520 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1521 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1522 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1523 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1524 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1525 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1526 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1527 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1528 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1529 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1530 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1531 	{ 0 }
1532 };
1533 
1534 /**
1535  * ice_write_rxq_ctx
1536  * @hw: pointer to the hardware structure
1537  * @rlan_ctx: pointer to the rxq context
1538  * @rxq_index: the index of the Rx queue
1539  *
1540  * Converts rxq context from sparse to dense structure and then writes
1541  * it to HW register space and enables the hardware to prefetch descriptors
1542  * instead of only fetching them on demand
1543  */
1544 int
1545 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1546 		  u32 rxq_index)
1547 {
1548 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1549 
1550 	if (!rlan_ctx)
1551 		return -EINVAL;
1552 
1553 	rlan_ctx->prefena = 1;
1554 
1555 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1556 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1557 }
1558 
1559 /* LAN Tx Queue Context */
1560 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1561 				    /* Field			Width	LSB */
1562 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1563 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1564 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1565 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1566 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1567 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1568 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1569 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1570 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1571 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1572 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1573 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1574 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1575 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1576 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1577 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1578 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1579 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1580 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1581 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1582 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1583 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1584 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1585 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1586 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1587 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1588 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1589 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1590 	{ 0 }
1591 };
1592 
1593 /* Sideband Queue command wrappers */
1594 
1595 /**
1596  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1597  * @hw: pointer to the HW struct
1598  * @desc: descriptor describing the command
1599  * @buf: buffer to use for indirect commands (NULL for direct commands)
1600  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1601  * @cd: pointer to command details structure
1602  */
1603 static int
1604 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1605 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1606 {
1607 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1608 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1609 }
1610 
1611 /**
1612  * ice_sbq_rw_reg - Fill Sideband Queue command
1613  * @hw: pointer to the HW struct
1614  * @in: message info to be filled in descriptor
1615  */
1616 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1617 {
1618 	struct ice_sbq_cmd_desc desc = {0};
1619 	struct ice_sbq_msg_req msg = {0};
1620 	u16 msg_len;
1621 	int status;
1622 
1623 	msg_len = sizeof(msg);
1624 
1625 	msg.dest_dev = in->dest_dev;
1626 	msg.opcode = in->opcode;
1627 	msg.flags = ICE_SBQ_MSG_FLAGS;
1628 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1629 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1630 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1631 
1632 	if (in->opcode)
1633 		msg.data = cpu_to_le32(in->data);
1634 	else
1635 		/* data read comes back in completion, so shorten the struct by
1636 		 * sizeof(msg.data)
1637 		 */
1638 		msg_len -= sizeof(msg.data);
1639 
1640 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1641 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1642 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1643 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1644 	if (!status && !in->opcode)
1645 		in->data = le32_to_cpu
1646 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1647 	return status;
1648 }
1649 
1650 /* FW Admin Queue command wrappers */
1651 
1652 /* Software lock/mutex that is meant to be held while the Global Config Lock
1653  * in firmware is acquired by the software to prevent most (but not all) types
1654  * of AQ commands from being sent to FW
1655  */
1656 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1657 
1658 /**
1659  * ice_should_retry_sq_send_cmd
1660  * @opcode: AQ opcode
1661  *
1662  * Decide if we should retry the send command routine for the ATQ, depending
1663  * on the opcode.
1664  */
1665 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1666 {
1667 	switch (opcode) {
1668 	case ice_aqc_opc_get_link_topo:
1669 	case ice_aqc_opc_lldp_stop:
1670 	case ice_aqc_opc_lldp_start:
1671 	case ice_aqc_opc_lldp_filter_ctrl:
1672 		return true;
1673 	}
1674 
1675 	return false;
1676 }
1677 
1678 /**
1679  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1680  * @hw: pointer to the HW struct
1681  * @cq: pointer to the specific Control queue
1682  * @desc: prefilled descriptor describing the command
1683  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1684  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1685  * @cd: pointer to command details structure
1686  *
1687  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1688  * Queue if the EBUSY AQ error is returned.
1689  */
1690 static int
1691 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1692 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1693 		      struct ice_sq_cd *cd)
1694 {
1695 	struct ice_aq_desc desc_cpy;
1696 	bool is_cmd_for_retry;
1697 	u8 idx = 0;
1698 	u16 opcode;
1699 	int status;
1700 
1701 	opcode = le16_to_cpu(desc->opcode);
1702 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1703 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1704 
1705 	if (is_cmd_for_retry) {
1706 		/* All retryable cmds are direct, without buf. */
1707 		WARN_ON(buf);
1708 
1709 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1710 	}
1711 
1712 	do {
1713 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1714 
1715 		if (!is_cmd_for_retry || !status ||
1716 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1717 			break;
1718 
1719 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1720 
1721 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1722 
1723 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1724 
1725 	return status;
1726 }
1727 
1728 /**
1729  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1730  * @hw: pointer to the HW struct
1731  * @desc: descriptor describing the command
1732  * @buf: buffer to use for indirect commands (NULL for direct commands)
1733  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1734  * @cd: pointer to command details structure
1735  *
1736  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1737  */
1738 int
1739 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1740 		u16 buf_size, struct ice_sq_cd *cd)
1741 {
1742 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1743 	bool lock_acquired = false;
1744 	int status;
1745 
1746 	/* When a package download is in process (i.e. when the firmware's
1747 	 * Global Configuration Lock resource is held), only the Download
1748 	 * Package, Get Version, Get Package Info List, Upload Section,
1749 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1750 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1751 	 * Recipes to Profile Association, and Release Resource (with resource
1752 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1753 	 * must block until the package download completes and the Global Config
1754 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1755 	 */
1756 	switch (le16_to_cpu(desc->opcode)) {
1757 	case ice_aqc_opc_download_pkg:
1758 	case ice_aqc_opc_get_pkg_info_list:
1759 	case ice_aqc_opc_get_ver:
1760 	case ice_aqc_opc_upload_section:
1761 	case ice_aqc_opc_update_pkg:
1762 	case ice_aqc_opc_set_port_params:
1763 	case ice_aqc_opc_get_vlan_mode_parameters:
1764 	case ice_aqc_opc_set_vlan_mode_parameters:
1765 	case ice_aqc_opc_add_recipe:
1766 	case ice_aqc_opc_recipe_to_profile:
1767 	case ice_aqc_opc_get_recipe:
1768 	case ice_aqc_opc_get_recipe_to_profile:
1769 		break;
1770 	case ice_aqc_opc_release_res:
1771 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1772 			break;
1773 		fallthrough;
1774 	default:
1775 		mutex_lock(&ice_global_cfg_lock_sw);
1776 		lock_acquired = true;
1777 		break;
1778 	}
1779 
1780 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1781 	if (lock_acquired)
1782 		mutex_unlock(&ice_global_cfg_lock_sw);
1783 
1784 	return status;
1785 }
1786 
1787 /**
1788  * ice_aq_get_fw_ver
1789  * @hw: pointer to the HW struct
1790  * @cd: pointer to command details structure or NULL
1791  *
1792  * Get the firmware version (0x0001) from the admin queue commands
1793  */
1794 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1795 {
1796 	struct ice_aqc_get_ver *resp;
1797 	struct ice_aq_desc desc;
1798 	int status;
1799 
1800 	resp = &desc.params.get_ver;
1801 
1802 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1803 
1804 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1805 
1806 	if (!status) {
1807 		hw->fw_branch = resp->fw_branch;
1808 		hw->fw_maj_ver = resp->fw_major;
1809 		hw->fw_min_ver = resp->fw_minor;
1810 		hw->fw_patch = resp->fw_patch;
1811 		hw->fw_build = le32_to_cpu(resp->fw_build);
1812 		hw->api_branch = resp->api_branch;
1813 		hw->api_maj_ver = resp->api_major;
1814 		hw->api_min_ver = resp->api_minor;
1815 		hw->api_patch = resp->api_patch;
1816 	}
1817 
1818 	return status;
1819 }
1820 
1821 /**
1822  * ice_aq_send_driver_ver
1823  * @hw: pointer to the HW struct
1824  * @dv: driver's major, minor version
1825  * @cd: pointer to command details structure or NULL
1826  *
1827  * Send the driver version (0x0002) to the firmware
1828  */
1829 int
1830 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1831 		       struct ice_sq_cd *cd)
1832 {
1833 	struct ice_aqc_driver_ver *cmd;
1834 	struct ice_aq_desc desc;
1835 	u16 len;
1836 
1837 	cmd = &desc.params.driver_ver;
1838 
1839 	if (!dv)
1840 		return -EINVAL;
1841 
1842 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1843 
1844 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1845 	cmd->major_ver = dv->major_ver;
1846 	cmd->minor_ver = dv->minor_ver;
1847 	cmd->build_ver = dv->build_ver;
1848 	cmd->subbuild_ver = dv->subbuild_ver;
1849 
1850 	len = 0;
1851 	while (len < sizeof(dv->driver_string) &&
1852 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1853 		len++;
1854 
1855 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1856 }
1857 
1858 /**
1859  * ice_aq_q_shutdown
1860  * @hw: pointer to the HW struct
1861  * @unloading: is the driver unloading itself
1862  *
1863  * Tell the Firmware that we're shutting down the AdminQ and whether
1864  * or not the driver is unloading as well (0x0003).
1865  */
1866 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1867 {
1868 	struct ice_aqc_q_shutdown *cmd;
1869 	struct ice_aq_desc desc;
1870 
1871 	cmd = &desc.params.q_shutdown;
1872 
1873 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1874 
1875 	if (unloading)
1876 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1877 
1878 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1879 }
1880 
1881 /**
1882  * ice_aq_req_res
1883  * @hw: pointer to the HW struct
1884  * @res: resource ID
1885  * @access: access type
1886  * @sdp_number: resource number
1887  * @timeout: the maximum time in ms that the driver may hold the resource
1888  * @cd: pointer to command details structure or NULL
1889  *
1890  * Requests common resource using the admin queue commands (0x0008).
1891  * When attempting to acquire the Global Config Lock, the driver can
1892  * learn of three states:
1893  *  1) 0 -         acquired lock, and can perform download package
1894  *  2) -EIO -      did not get lock, driver should fail to load
1895  *  3) -EALREADY - did not get lock, but another driver has
1896  *                 successfully downloaded the package; the driver does
1897  *                 not have to download the package and can continue
1898  *                 loading
1899  *
1900  * Note that if the caller is in an acquire lock, perform action, release lock
1901  * phase of operation, it is possible that the FW may detect a timeout and issue
1902  * a CORER. In this case, the driver will receive a CORER interrupt and will
1903  * have to determine its cause. The calling thread that is handling this flow
1904  * will likely get an error propagated back to it indicating the Download
1905  * Package, Update Package or the Release Resource AQ commands timed out.
1906  */
1907 static int
1908 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1909 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1910 	       struct ice_sq_cd *cd)
1911 {
1912 	struct ice_aqc_req_res *cmd_resp;
1913 	struct ice_aq_desc desc;
1914 	int status;
1915 
1916 	cmd_resp = &desc.params.res_owner;
1917 
1918 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1919 
1920 	cmd_resp->res_id = cpu_to_le16(res);
1921 	cmd_resp->access_type = cpu_to_le16(access);
1922 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1923 	cmd_resp->timeout = cpu_to_le32(*timeout);
1924 	*timeout = 0;
1925 
1926 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1927 
1928 	/* The completion specifies the maximum time in ms that the driver
1929 	 * may hold the resource in the Timeout field.
1930 	 */
1931 
1932 	/* Global config lock response utilizes an additional status field.
1933 	 *
1934 	 * If the Global config lock resource is held by some other driver, the
1935 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1936 	 * and the timeout field indicates the maximum time the current owner
1937 	 * of the resource has to free it.
1938 	 */
1939 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1940 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1941 			*timeout = le32_to_cpu(cmd_resp->timeout);
1942 			return 0;
1943 		} else if (le16_to_cpu(cmd_resp->status) ==
1944 			   ICE_AQ_RES_GLBL_IN_PROG) {
1945 			*timeout = le32_to_cpu(cmd_resp->timeout);
1946 			return -EIO;
1947 		} else if (le16_to_cpu(cmd_resp->status) ==
1948 			   ICE_AQ_RES_GLBL_DONE) {
1949 			return -EALREADY;
1950 		}
1951 
1952 		/* invalid FW response, force a timeout immediately */
1953 		*timeout = 0;
1954 		return -EIO;
1955 	}
1956 
1957 	/* If the resource is held by some other driver, the command completes
1958 	 * with a busy return value and the timeout field indicates the maximum
1959 	 * time the current owner of the resource has to free it.
1960 	 */
1961 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1962 		*timeout = le32_to_cpu(cmd_resp->timeout);
1963 
1964 	return status;
1965 }
1966 
1967 /**
1968  * ice_aq_release_res
1969  * @hw: pointer to the HW struct
1970  * @res: resource ID
1971  * @sdp_number: resource number
1972  * @cd: pointer to command details structure or NULL
1973  *
1974  * release common resource using the admin queue commands (0x0009)
1975  */
1976 static int
1977 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1978 		   struct ice_sq_cd *cd)
1979 {
1980 	struct ice_aqc_req_res *cmd;
1981 	struct ice_aq_desc desc;
1982 
1983 	cmd = &desc.params.res_owner;
1984 
1985 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1986 
1987 	cmd->res_id = cpu_to_le16(res);
1988 	cmd->res_number = cpu_to_le32(sdp_number);
1989 
1990 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1991 }
1992 
1993 /**
1994  * ice_acquire_res
1995  * @hw: pointer to the HW structure
1996  * @res: resource ID
1997  * @access: access type (read or write)
1998  * @timeout: timeout in milliseconds
1999  *
2000  * This function will attempt to acquire the ownership of a resource.
2001  */
2002 int
2003 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2004 		enum ice_aq_res_access_type access, u32 timeout)
2005 {
2006 #define ICE_RES_POLLING_DELAY_MS	10
2007 	u32 delay = ICE_RES_POLLING_DELAY_MS;
2008 	u32 time_left = timeout;
2009 	int status;
2010 
2011 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2012 
2013 	/* A return code of -EALREADY means that another driver has
2014 	 * previously acquired the resource and performed any necessary updates;
2015 	 * in this case the caller does not obtain the resource and has no
2016 	 * further work to do.
2017 	 */
2018 	if (status == -EALREADY)
2019 		goto ice_acquire_res_exit;
2020 
2021 	if (status)
2022 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2023 
2024 	/* If necessary, poll until the current lock owner timeouts */
2025 	timeout = time_left;
2026 	while (status && timeout && time_left) {
2027 		mdelay(delay);
2028 		timeout = (timeout > delay) ? timeout - delay : 0;
2029 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2030 
2031 		if (status == -EALREADY)
2032 			/* lock free, but no work to do */
2033 			break;
2034 
2035 		if (!status)
2036 			/* lock acquired */
2037 			break;
2038 	}
2039 	if (status && status != -EALREADY)
2040 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2041 
2042 ice_acquire_res_exit:
2043 	if (status == -EALREADY) {
2044 		if (access == ICE_RES_WRITE)
2045 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2046 		else
2047 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2048 	}
2049 	return status;
2050 }
2051 
2052 /**
2053  * ice_release_res
2054  * @hw: pointer to the HW structure
2055  * @res: resource ID
2056  *
2057  * This function will release a resource using the proper Admin Command.
2058  */
2059 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2060 {
2061 	unsigned long timeout;
2062 	int status;
2063 
2064 	/* there are some rare cases when trying to release the resource
2065 	 * results in an admin queue timeout, so handle them correctly
2066 	 */
2067 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2068 	do {
2069 		status = ice_aq_release_res(hw, res, 0, NULL);
2070 		if (status != -EIO)
2071 			break;
2072 		usleep_range(1000, 2000);
2073 	} while (time_before(jiffies, timeout));
2074 }
2075 
2076 /**
2077  * ice_aq_alloc_free_res - command to allocate/free resources
2078  * @hw: pointer to the HW struct
2079  * @buf: Indirect buffer to hold data parameters and response
2080  * @buf_size: size of buffer for indirect commands
2081  * @opc: pass in the command opcode
2082  *
2083  * Helper function to allocate/free resources using the admin queue commands
2084  */
2085 int ice_aq_alloc_free_res(struct ice_hw *hw,
2086 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2087 			  enum ice_adminq_opc opc)
2088 {
2089 	struct ice_aqc_alloc_free_res_cmd *cmd;
2090 	struct ice_aq_desc desc;
2091 
2092 	cmd = &desc.params.sw_res_ctrl;
2093 
2094 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2095 		return -EINVAL;
2096 
2097 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2098 
2099 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2100 
2101 	cmd->num_entries = cpu_to_le16(1);
2102 
2103 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2104 }
2105 
2106 /**
2107  * ice_alloc_hw_res - allocate resource
2108  * @hw: pointer to the HW struct
2109  * @type: type of resource
2110  * @num: number of resources to allocate
2111  * @btm: allocate from bottom
2112  * @res: pointer to array that will receive the resources
2113  */
2114 int
2115 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2116 {
2117 	struct ice_aqc_alloc_free_res_elem *buf;
2118 	u16 buf_len;
2119 	int status;
2120 
2121 	buf_len = struct_size(buf, elem, num);
2122 	buf = kzalloc(buf_len, GFP_KERNEL);
2123 	if (!buf)
2124 		return -ENOMEM;
2125 
2126 	/* Prepare buffer to allocate resource. */
2127 	buf->num_elems = cpu_to_le16(num);
2128 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2129 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2130 	if (btm)
2131 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2132 
2133 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2134 	if (status)
2135 		goto ice_alloc_res_exit;
2136 
2137 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2138 
2139 ice_alloc_res_exit:
2140 	kfree(buf);
2141 	return status;
2142 }
2143 
2144 /**
2145  * ice_free_hw_res - free allocated HW resource
2146  * @hw: pointer to the HW struct
2147  * @type: type of resource to free
2148  * @num: number of resources
2149  * @res: pointer to array that contains the resources to free
2150  */
2151 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2152 {
2153 	struct ice_aqc_alloc_free_res_elem *buf;
2154 	u16 buf_len;
2155 	int status;
2156 
2157 	buf_len = struct_size(buf, elem, num);
2158 	buf = kzalloc(buf_len, GFP_KERNEL);
2159 	if (!buf)
2160 		return -ENOMEM;
2161 
2162 	/* Prepare buffer to free resource. */
2163 	buf->num_elems = cpu_to_le16(num);
2164 	buf->res_type = cpu_to_le16(type);
2165 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2166 
2167 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2168 	if (status)
2169 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2170 
2171 	kfree(buf);
2172 	return status;
2173 }
2174 
2175 /**
2176  * ice_get_num_per_func - determine number of resources per PF
2177  * @hw: pointer to the HW structure
2178  * @max: value to be evenly split between each PF
2179  *
2180  * Determine the number of valid functions by going through the bitmap returned
2181  * from parsing capabilities and use this to calculate the number of resources
2182  * per PF based on the max value passed in.
2183  */
2184 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2185 {
2186 	u8 funcs;
2187 
2188 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2189 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2190 			 ICE_CAPS_VALID_FUNCS_M);
2191 
2192 	if (!funcs)
2193 		return 0;
2194 
2195 	return max / funcs;
2196 }
2197 
2198 /**
2199  * ice_parse_common_caps - parse common device/function capabilities
2200  * @hw: pointer to the HW struct
2201  * @caps: pointer to common capabilities structure
2202  * @elem: the capability element to parse
2203  * @prefix: message prefix for tracing capabilities
2204  *
2205  * Given a capability element, extract relevant details into the common
2206  * capability structure.
2207  *
2208  * Returns: true if the capability matches one of the common capability ids,
2209  * false otherwise.
2210  */
2211 static bool
2212 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2213 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2214 {
2215 	u32 logical_id = le32_to_cpu(elem->logical_id);
2216 	u32 phys_id = le32_to_cpu(elem->phys_id);
2217 	u32 number = le32_to_cpu(elem->number);
2218 	u16 cap = le16_to_cpu(elem->cap);
2219 	bool found = true;
2220 
2221 	switch (cap) {
2222 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2223 		caps->valid_functions = number;
2224 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2225 			  caps->valid_functions);
2226 		break;
2227 	case ICE_AQC_CAPS_SRIOV:
2228 		caps->sr_iov_1_1 = (number == 1);
2229 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2230 			  caps->sr_iov_1_1);
2231 		break;
2232 	case ICE_AQC_CAPS_DCB:
2233 		caps->dcb = (number == 1);
2234 		caps->active_tc_bitmap = logical_id;
2235 		caps->maxtc = phys_id;
2236 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2237 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2238 			  caps->active_tc_bitmap);
2239 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2240 		break;
2241 	case ICE_AQC_CAPS_RSS:
2242 		caps->rss_table_size = number;
2243 		caps->rss_table_entry_width = logical_id;
2244 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2245 			  caps->rss_table_size);
2246 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2247 			  caps->rss_table_entry_width);
2248 		break;
2249 	case ICE_AQC_CAPS_RXQS:
2250 		caps->num_rxq = number;
2251 		caps->rxq_first_id = phys_id;
2252 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2253 			  caps->num_rxq);
2254 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2255 			  caps->rxq_first_id);
2256 		break;
2257 	case ICE_AQC_CAPS_TXQS:
2258 		caps->num_txq = number;
2259 		caps->txq_first_id = phys_id;
2260 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2261 			  caps->num_txq);
2262 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2263 			  caps->txq_first_id);
2264 		break;
2265 	case ICE_AQC_CAPS_MSIX:
2266 		caps->num_msix_vectors = number;
2267 		caps->msix_vector_first_id = phys_id;
2268 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2269 			  caps->num_msix_vectors);
2270 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2271 			  caps->msix_vector_first_id);
2272 		break;
2273 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2274 		caps->nvm_update_pending_nvm = true;
2275 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2276 		break;
2277 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2278 		caps->nvm_update_pending_orom = true;
2279 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2280 		break;
2281 	case ICE_AQC_CAPS_PENDING_NET_VER:
2282 		caps->nvm_update_pending_netlist = true;
2283 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2284 		break;
2285 	case ICE_AQC_CAPS_NVM_MGMT:
2286 		caps->nvm_unified_update =
2287 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2288 			true : false;
2289 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2290 			  caps->nvm_unified_update);
2291 		break;
2292 	case ICE_AQC_CAPS_RDMA:
2293 		caps->rdma = (number == 1);
2294 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2295 		break;
2296 	case ICE_AQC_CAPS_MAX_MTU:
2297 		caps->max_mtu = number;
2298 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2299 			  prefix, caps->max_mtu);
2300 		break;
2301 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2302 		caps->pcie_reset_avoidance = (number > 0);
2303 		ice_debug(hw, ICE_DBG_INIT,
2304 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2305 			  caps->pcie_reset_avoidance);
2306 		break;
2307 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2308 		caps->reset_restrict_support = (number == 1);
2309 		ice_debug(hw, ICE_DBG_INIT,
2310 			  "%s: reset_restrict_support = %d\n", prefix,
2311 			  caps->reset_restrict_support);
2312 		break;
2313 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2314 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2315 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2316 			  prefix, caps->roce_lag);
2317 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2318 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2319 			  prefix, caps->sriov_lag);
2320 		break;
2321 	default:
2322 		/* Not one of the recognized common capabilities */
2323 		found = false;
2324 	}
2325 
2326 	return found;
2327 }
2328 
2329 /**
2330  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2331  * @hw: pointer to the HW structure
2332  * @caps: pointer to capabilities structure to fix
2333  *
2334  * Re-calculate the capabilities that are dependent on the number of physical
2335  * ports; i.e. some features are not supported or function differently on
2336  * devices with more than 4 ports.
2337  */
2338 static void
2339 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2340 {
2341 	/* This assumes device capabilities are always scanned before function
2342 	 * capabilities during the initialization flow.
2343 	 */
2344 	if (hw->dev_caps.num_funcs > 4) {
2345 		/* Max 4 TCs per port */
2346 		caps->maxtc = 4;
2347 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2348 			  caps->maxtc);
2349 		if (caps->rdma) {
2350 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2351 			caps->rdma = 0;
2352 		}
2353 
2354 		/* print message only when processing device capabilities
2355 		 * during initialization.
2356 		 */
2357 		if (caps == &hw->dev_caps.common_cap)
2358 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2359 	}
2360 }
2361 
2362 /**
2363  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2364  * @hw: pointer to the HW struct
2365  * @func_p: pointer to function capabilities structure
2366  * @cap: pointer to the capability element to parse
2367  *
2368  * Extract function capabilities for ICE_AQC_CAPS_VF.
2369  */
2370 static void
2371 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2372 		       struct ice_aqc_list_caps_elem *cap)
2373 {
2374 	u32 logical_id = le32_to_cpu(cap->logical_id);
2375 	u32 number = le32_to_cpu(cap->number);
2376 
2377 	func_p->num_allocd_vfs = number;
2378 	func_p->vf_base_id = logical_id;
2379 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2380 		  func_p->num_allocd_vfs);
2381 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2382 		  func_p->vf_base_id);
2383 }
2384 
2385 /**
2386  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2387  * @hw: pointer to the HW struct
2388  * @func_p: pointer to function capabilities structure
2389  * @cap: pointer to the capability element to parse
2390  *
2391  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2392  */
2393 static void
2394 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2395 			struct ice_aqc_list_caps_elem *cap)
2396 {
2397 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2398 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2399 		  le32_to_cpu(cap->number));
2400 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2401 		  func_p->guar_num_vsi);
2402 }
2403 
2404 /**
2405  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2406  * @hw: pointer to the HW struct
2407  * @func_p: pointer to function capabilities structure
2408  * @cap: pointer to the capability element to parse
2409  *
2410  * Extract function capabilities for ICE_AQC_CAPS_1588.
2411  */
2412 static void
2413 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2414 			 struct ice_aqc_list_caps_elem *cap)
2415 {
2416 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2417 	u32 number = le32_to_cpu(cap->number);
2418 
2419 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2420 	func_p->common_cap.ieee_1588 = info->ena;
2421 
2422 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2423 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2424 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2425 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2426 
2427 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2428 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2429 
2430 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2431 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2432 	} else {
2433 		/* Unknown clock frequency, so assume a (probably incorrect)
2434 		 * default to avoid out-of-bounds look ups of frequency
2435 		 * related information.
2436 		 */
2437 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2438 			  info->clk_freq);
2439 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2440 	}
2441 
2442 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2443 		  func_p->common_cap.ieee_1588);
2444 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2445 		  info->src_tmr_owned);
2446 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2447 		  info->tmr_ena);
2448 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2449 		  info->tmr_index_owned);
2450 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2451 		  info->tmr_index_assoc);
2452 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2453 		  info->clk_freq);
2454 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2455 		  info->clk_src);
2456 }
2457 
2458 /**
2459  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2460  * @hw: pointer to the HW struct
2461  * @func_p: pointer to function capabilities structure
2462  *
2463  * Extract function capabilities for ICE_AQC_CAPS_FD.
2464  */
2465 static void
2466 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2467 {
2468 	u32 reg_val, val;
2469 
2470 	reg_val = rd32(hw, GLQF_FD_SIZE);
2471 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2472 		GLQF_FD_SIZE_FD_GSIZE_S;
2473 	func_p->fd_fltr_guar =
2474 		ice_get_num_per_func(hw, val);
2475 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2476 		GLQF_FD_SIZE_FD_BSIZE_S;
2477 	func_p->fd_fltr_best_effort = val;
2478 
2479 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2480 		  func_p->fd_fltr_guar);
2481 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2482 		  func_p->fd_fltr_best_effort);
2483 }
2484 
2485 /**
2486  * ice_parse_func_caps - Parse function capabilities
2487  * @hw: pointer to the HW struct
2488  * @func_p: pointer to function capabilities structure
2489  * @buf: buffer containing the function capability records
2490  * @cap_count: the number of capabilities
2491  *
2492  * Helper function to parse function (0x000A) capabilities list. For
2493  * capabilities shared between device and function, this relies on
2494  * ice_parse_common_caps.
2495  *
2496  * Loop through the list of provided capabilities and extract the relevant
2497  * data into the function capabilities structured.
2498  */
2499 static void
2500 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2501 		    void *buf, u32 cap_count)
2502 {
2503 	struct ice_aqc_list_caps_elem *cap_resp;
2504 	u32 i;
2505 
2506 	cap_resp = buf;
2507 
2508 	memset(func_p, 0, sizeof(*func_p));
2509 
2510 	for (i = 0; i < cap_count; i++) {
2511 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2512 		bool found;
2513 
2514 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2515 					      &cap_resp[i], "func caps");
2516 
2517 		switch (cap) {
2518 		case ICE_AQC_CAPS_VF:
2519 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2520 			break;
2521 		case ICE_AQC_CAPS_VSI:
2522 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2523 			break;
2524 		case ICE_AQC_CAPS_1588:
2525 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2526 			break;
2527 		case ICE_AQC_CAPS_FD:
2528 			ice_parse_fdir_func_caps(hw, func_p);
2529 			break;
2530 		default:
2531 			/* Don't list common capabilities as unknown */
2532 			if (!found)
2533 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2534 					  i, cap);
2535 			break;
2536 		}
2537 	}
2538 
2539 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2540 }
2541 
2542 /**
2543  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2544  * @hw: pointer to the HW struct
2545  * @dev_p: pointer to device capabilities structure
2546  * @cap: capability element to parse
2547  *
2548  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2549  */
2550 static void
2551 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2552 			      struct ice_aqc_list_caps_elem *cap)
2553 {
2554 	u32 number = le32_to_cpu(cap->number);
2555 
2556 	dev_p->num_funcs = hweight32(number);
2557 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2558 		  dev_p->num_funcs);
2559 }
2560 
2561 /**
2562  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2563  * @hw: pointer to the HW struct
2564  * @dev_p: pointer to device capabilities structure
2565  * @cap: capability element to parse
2566  *
2567  * Parse ICE_AQC_CAPS_VF for device capabilities.
2568  */
2569 static void
2570 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2571 		      struct ice_aqc_list_caps_elem *cap)
2572 {
2573 	u32 number = le32_to_cpu(cap->number);
2574 
2575 	dev_p->num_vfs_exposed = number;
2576 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2577 		  dev_p->num_vfs_exposed);
2578 }
2579 
2580 /**
2581  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2582  * @hw: pointer to the HW struct
2583  * @dev_p: pointer to device capabilities structure
2584  * @cap: capability element to parse
2585  *
2586  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2587  */
2588 static void
2589 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2590 		       struct ice_aqc_list_caps_elem *cap)
2591 {
2592 	u32 number = le32_to_cpu(cap->number);
2593 
2594 	dev_p->num_vsi_allocd_to_host = number;
2595 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2596 		  dev_p->num_vsi_allocd_to_host);
2597 }
2598 
2599 /**
2600  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2601  * @hw: pointer to the HW struct
2602  * @dev_p: pointer to device capabilities structure
2603  * @cap: capability element to parse
2604  *
2605  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2606  */
2607 static void
2608 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2609 			struct ice_aqc_list_caps_elem *cap)
2610 {
2611 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2612 	u32 logical_id = le32_to_cpu(cap->logical_id);
2613 	u32 phys_id = le32_to_cpu(cap->phys_id);
2614 	u32 number = le32_to_cpu(cap->number);
2615 
2616 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2617 	dev_p->common_cap.ieee_1588 = info->ena;
2618 
2619 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2620 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2621 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2622 
2623 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2624 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2625 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2626 
2627 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2628 
2629 	info->ena_ports = logical_id;
2630 	info->tmr_own_map = phys_id;
2631 
2632 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2633 		  dev_p->common_cap.ieee_1588);
2634 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2635 		  info->tmr0_owner);
2636 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2637 		  info->tmr0_owned);
2638 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2639 		  info->tmr0_ena);
2640 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2641 		  info->tmr1_owner);
2642 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2643 		  info->tmr1_owned);
2644 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2645 		  info->tmr1_ena);
2646 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2647 		  info->ts_ll_read);
2648 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2649 		  info->ena_ports);
2650 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2651 		  info->tmr_own_map);
2652 }
2653 
2654 /**
2655  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2656  * @hw: pointer to the HW struct
2657  * @dev_p: pointer to device capabilities structure
2658  * @cap: capability element to parse
2659  *
2660  * Parse ICE_AQC_CAPS_FD for device capabilities.
2661  */
2662 static void
2663 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2664 			struct ice_aqc_list_caps_elem *cap)
2665 {
2666 	u32 number = le32_to_cpu(cap->number);
2667 
2668 	dev_p->num_flow_director_fltr = number;
2669 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2670 		  dev_p->num_flow_director_fltr);
2671 }
2672 
2673 /**
2674  * ice_parse_dev_caps - Parse device capabilities
2675  * @hw: pointer to the HW struct
2676  * @dev_p: pointer to device capabilities structure
2677  * @buf: buffer containing the device capability records
2678  * @cap_count: the number of capabilities
2679  *
2680  * Helper device to parse device (0x000B) capabilities list. For
2681  * capabilities shared between device and function, this relies on
2682  * ice_parse_common_caps.
2683  *
2684  * Loop through the list of provided capabilities and extract the relevant
2685  * data into the device capabilities structured.
2686  */
2687 static void
2688 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2689 		   void *buf, u32 cap_count)
2690 {
2691 	struct ice_aqc_list_caps_elem *cap_resp;
2692 	u32 i;
2693 
2694 	cap_resp = buf;
2695 
2696 	memset(dev_p, 0, sizeof(*dev_p));
2697 
2698 	for (i = 0; i < cap_count; i++) {
2699 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2700 		bool found;
2701 
2702 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2703 					      &cap_resp[i], "dev caps");
2704 
2705 		switch (cap) {
2706 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2707 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2708 			break;
2709 		case ICE_AQC_CAPS_VF:
2710 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2711 			break;
2712 		case ICE_AQC_CAPS_VSI:
2713 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2714 			break;
2715 		case ICE_AQC_CAPS_1588:
2716 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2717 			break;
2718 		case  ICE_AQC_CAPS_FD:
2719 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2720 			break;
2721 		default:
2722 			/* Don't list common capabilities as unknown */
2723 			if (!found)
2724 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2725 					  i, cap);
2726 			break;
2727 		}
2728 	}
2729 
2730 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2731 }
2732 
2733 /**
2734  * ice_is_pf_c827 - check if pf contains c827 phy
2735  * @hw: pointer to the hw struct
2736  */
2737 bool ice_is_pf_c827(struct ice_hw *hw)
2738 {
2739 	struct ice_aqc_get_link_topo cmd = {};
2740 	u8 node_part_number;
2741 	u16 node_handle;
2742 	int status;
2743 
2744 	if (hw->mac_type != ICE_MAC_E810)
2745 		return false;
2746 
2747 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2748 		return true;
2749 
2750 	cmd.addr.topo_params.node_type_ctx =
2751 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2752 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2753 	cmd.addr.topo_params.index = 0;
2754 
2755 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2756 					 &node_handle);
2757 
2758 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2759 		return false;
2760 
2761 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2762 		return true;
2763 
2764 	return false;
2765 }
2766 
2767 /**
2768  * ice_is_gps_in_netlist
2769  * @hw: pointer to the hw struct
2770  *
2771  * Check if the GPS generic device is present in the netlist
2772  */
2773 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2774 {
2775 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2776 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2777 		return false;
2778 
2779 	return true;
2780 }
2781 
2782 /**
2783  * ice_aq_list_caps - query function/device capabilities
2784  * @hw: pointer to the HW struct
2785  * @buf: a buffer to hold the capabilities
2786  * @buf_size: size of the buffer
2787  * @cap_count: if not NULL, set to the number of capabilities reported
2788  * @opc: capabilities type to discover, device or function
2789  * @cd: pointer to command details structure or NULL
2790  *
2791  * Get the function (0x000A) or device (0x000B) capabilities description from
2792  * firmware and store it in the buffer.
2793  *
2794  * If the cap_count pointer is not NULL, then it is set to the number of
2795  * capabilities firmware will report. Note that if the buffer size is too
2796  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2797  * cap_count will still be updated in this case. It is recommended that the
2798  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2799  * firmware could return) to avoid this.
2800  */
2801 int
2802 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2803 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2804 {
2805 	struct ice_aqc_list_caps *cmd;
2806 	struct ice_aq_desc desc;
2807 	int status;
2808 
2809 	cmd = &desc.params.get_cap;
2810 
2811 	if (opc != ice_aqc_opc_list_func_caps &&
2812 	    opc != ice_aqc_opc_list_dev_caps)
2813 		return -EINVAL;
2814 
2815 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2816 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2817 
2818 	if (cap_count)
2819 		*cap_count = le32_to_cpu(cmd->count);
2820 
2821 	return status;
2822 }
2823 
2824 /**
2825  * ice_discover_dev_caps - Read and extract device capabilities
2826  * @hw: pointer to the hardware structure
2827  * @dev_caps: pointer to device capabilities structure
2828  *
2829  * Read the device capabilities and extract them into the dev_caps structure
2830  * for later use.
2831  */
2832 int
2833 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2834 {
2835 	u32 cap_count = 0;
2836 	void *cbuf;
2837 	int status;
2838 
2839 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2840 	if (!cbuf)
2841 		return -ENOMEM;
2842 
2843 	/* Although the driver doesn't know the number of capabilities the
2844 	 * device will return, we can simply send a 4KB buffer, the maximum
2845 	 * possible size that firmware can return.
2846 	 */
2847 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2848 
2849 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2850 				  ice_aqc_opc_list_dev_caps, NULL);
2851 	if (!status)
2852 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2853 	kfree(cbuf);
2854 
2855 	return status;
2856 }
2857 
2858 /**
2859  * ice_discover_func_caps - Read and extract function capabilities
2860  * @hw: pointer to the hardware structure
2861  * @func_caps: pointer to function capabilities structure
2862  *
2863  * Read the function capabilities and extract them into the func_caps structure
2864  * for later use.
2865  */
2866 static int
2867 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2868 {
2869 	u32 cap_count = 0;
2870 	void *cbuf;
2871 	int status;
2872 
2873 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2874 	if (!cbuf)
2875 		return -ENOMEM;
2876 
2877 	/* Although the driver doesn't know the number of capabilities the
2878 	 * device will return, we can simply send a 4KB buffer, the maximum
2879 	 * possible size that firmware can return.
2880 	 */
2881 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2882 
2883 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2884 				  ice_aqc_opc_list_func_caps, NULL);
2885 	if (!status)
2886 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2887 	kfree(cbuf);
2888 
2889 	return status;
2890 }
2891 
2892 /**
2893  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2894  * @hw: pointer to the hardware structure
2895  */
2896 void ice_set_safe_mode_caps(struct ice_hw *hw)
2897 {
2898 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2899 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2900 	struct ice_hw_common_caps cached_caps;
2901 	u32 num_funcs;
2902 
2903 	/* cache some func_caps values that should be restored after memset */
2904 	cached_caps = func_caps->common_cap;
2905 
2906 	/* unset func capabilities */
2907 	memset(func_caps, 0, sizeof(*func_caps));
2908 
2909 #define ICE_RESTORE_FUNC_CAP(name) \
2910 	func_caps->common_cap.name = cached_caps.name
2911 
2912 	/* restore cached values */
2913 	ICE_RESTORE_FUNC_CAP(valid_functions);
2914 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2915 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2916 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2917 	ICE_RESTORE_FUNC_CAP(max_mtu);
2918 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2919 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2920 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2921 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2922 
2923 	/* one Tx and one Rx queue in safe mode */
2924 	func_caps->common_cap.num_rxq = 1;
2925 	func_caps->common_cap.num_txq = 1;
2926 
2927 	/* two MSIX vectors, one for traffic and one for misc causes */
2928 	func_caps->common_cap.num_msix_vectors = 2;
2929 	func_caps->guar_num_vsi = 1;
2930 
2931 	/* cache some dev_caps values that should be restored after memset */
2932 	cached_caps = dev_caps->common_cap;
2933 	num_funcs = dev_caps->num_funcs;
2934 
2935 	/* unset dev capabilities */
2936 	memset(dev_caps, 0, sizeof(*dev_caps));
2937 
2938 #define ICE_RESTORE_DEV_CAP(name) \
2939 	dev_caps->common_cap.name = cached_caps.name
2940 
2941 	/* restore cached values */
2942 	ICE_RESTORE_DEV_CAP(valid_functions);
2943 	ICE_RESTORE_DEV_CAP(txq_first_id);
2944 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2945 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2946 	ICE_RESTORE_DEV_CAP(max_mtu);
2947 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2948 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2949 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2950 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2951 	dev_caps->num_funcs = num_funcs;
2952 
2953 	/* one Tx and one Rx queue per function in safe mode */
2954 	dev_caps->common_cap.num_rxq = num_funcs;
2955 	dev_caps->common_cap.num_txq = num_funcs;
2956 
2957 	/* two MSIX vectors per function */
2958 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2959 }
2960 
2961 /**
2962  * ice_get_caps - get info about the HW
2963  * @hw: pointer to the hardware structure
2964  */
2965 int ice_get_caps(struct ice_hw *hw)
2966 {
2967 	int status;
2968 
2969 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2970 	if (status)
2971 		return status;
2972 
2973 	return ice_discover_func_caps(hw, &hw->func_caps);
2974 }
2975 
2976 /**
2977  * ice_aq_manage_mac_write - manage MAC address write command
2978  * @hw: pointer to the HW struct
2979  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2980  * @flags: flags to control write behavior
2981  * @cd: pointer to command details structure or NULL
2982  *
2983  * This function is used to write MAC address to the NVM (0x0108).
2984  */
2985 int
2986 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2987 			struct ice_sq_cd *cd)
2988 {
2989 	struct ice_aqc_manage_mac_write *cmd;
2990 	struct ice_aq_desc desc;
2991 
2992 	cmd = &desc.params.mac_write;
2993 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2994 
2995 	cmd->flags = flags;
2996 	ether_addr_copy(cmd->mac_addr, mac_addr);
2997 
2998 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2999 }
3000 
3001 /**
3002  * ice_aq_clear_pxe_mode
3003  * @hw: pointer to the HW struct
3004  *
3005  * Tell the firmware that the driver is taking over from PXE (0x0110).
3006  */
3007 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3008 {
3009 	struct ice_aq_desc desc;
3010 
3011 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3012 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3013 
3014 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3015 }
3016 
3017 /**
3018  * ice_clear_pxe_mode - clear pxe operations mode
3019  * @hw: pointer to the HW struct
3020  *
3021  * Make sure all PXE mode settings are cleared, including things
3022  * like descriptor fetch/write-back mode.
3023  */
3024 void ice_clear_pxe_mode(struct ice_hw *hw)
3025 {
3026 	if (ice_check_sq_alive(hw, &hw->adminq))
3027 		ice_aq_clear_pxe_mode(hw);
3028 }
3029 
3030 /**
3031  * ice_aq_set_port_params - set physical port parameters.
3032  * @pi: pointer to the port info struct
3033  * @double_vlan: if set double VLAN is enabled
3034  * @cd: pointer to command details structure or NULL
3035  *
3036  * Set Physical port parameters (0x0203)
3037  */
3038 int
3039 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3040 		       struct ice_sq_cd *cd)
3041 
3042 {
3043 	struct ice_aqc_set_port_params *cmd;
3044 	struct ice_hw *hw = pi->hw;
3045 	struct ice_aq_desc desc;
3046 	u16 cmd_flags = 0;
3047 
3048 	cmd = &desc.params.set_port_params;
3049 
3050 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3051 	if (double_vlan)
3052 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3053 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3054 
3055 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3056 }
3057 
3058 /**
3059  * ice_is_100m_speed_supported
3060  * @hw: pointer to the HW struct
3061  *
3062  * returns true if 100M speeds are supported by the device,
3063  * false otherwise.
3064  */
3065 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3066 {
3067 	switch (hw->device_id) {
3068 	case ICE_DEV_ID_E822C_SGMII:
3069 	case ICE_DEV_ID_E822L_SGMII:
3070 	case ICE_DEV_ID_E823L_1GBE:
3071 	case ICE_DEV_ID_E823C_SGMII:
3072 		return true;
3073 	default:
3074 		return false;
3075 	}
3076 }
3077 
3078 /**
3079  * ice_get_link_speed_based_on_phy_type - returns link speed
3080  * @phy_type_low: lower part of phy_type
3081  * @phy_type_high: higher part of phy_type
3082  *
3083  * This helper function will convert an entry in PHY type structure
3084  * [phy_type_low, phy_type_high] to its corresponding link speed.
3085  * Note: In the structure of [phy_type_low, phy_type_high], there should
3086  * be one bit set, as this function will convert one PHY type to its
3087  * speed.
3088  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3089  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3090  */
3091 static u16
3092 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3093 {
3094 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3095 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3096 
3097 	switch (phy_type_low) {
3098 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3099 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3100 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3101 		break;
3102 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3103 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3104 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3105 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3106 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3107 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3108 		break;
3109 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3110 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3111 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3112 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3113 		break;
3114 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3115 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3116 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3117 		break;
3118 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3119 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3120 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3121 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3122 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3123 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3124 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3125 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3126 		break;
3127 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3128 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3129 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3130 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3131 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3132 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3133 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3134 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3135 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3136 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3137 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3138 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3139 		break;
3140 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3141 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3142 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3143 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3144 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3145 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3146 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3147 		break;
3148 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3149 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3150 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3151 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3152 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3153 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3154 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3155 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3156 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3157 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3158 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3159 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3160 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3161 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3162 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3163 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3164 		break;
3165 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3166 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3167 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3168 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3169 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3170 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3171 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3172 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3173 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3174 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3175 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3176 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3177 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3178 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3179 		break;
3180 	default:
3181 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3182 		break;
3183 	}
3184 
3185 	switch (phy_type_high) {
3186 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3187 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3188 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3189 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3190 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3191 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3192 		break;
3193 	default:
3194 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3195 		break;
3196 	}
3197 
3198 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3199 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3200 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3201 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3202 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3203 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3204 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3205 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3206 		return speed_phy_type_low;
3207 	else
3208 		return speed_phy_type_high;
3209 }
3210 
3211 /**
3212  * ice_update_phy_type
3213  * @phy_type_low: pointer to the lower part of phy_type
3214  * @phy_type_high: pointer to the higher part of phy_type
3215  * @link_speeds_bitmap: targeted link speeds bitmap
3216  *
3217  * Note: For the link_speeds_bitmap structure, you can check it at
3218  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3219  * link_speeds_bitmap include multiple speeds.
3220  *
3221  * Each entry in this [phy_type_low, phy_type_high] structure will
3222  * present a certain link speed. This helper function will turn on bits
3223  * in [phy_type_low, phy_type_high] structure based on the value of
3224  * link_speeds_bitmap input parameter.
3225  */
3226 void
3227 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3228 		    u16 link_speeds_bitmap)
3229 {
3230 	u64 pt_high;
3231 	u64 pt_low;
3232 	int index;
3233 	u16 speed;
3234 
3235 	/* We first check with low part of phy_type */
3236 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3237 		pt_low = BIT_ULL(index);
3238 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3239 
3240 		if (link_speeds_bitmap & speed)
3241 			*phy_type_low |= BIT_ULL(index);
3242 	}
3243 
3244 	/* We then check with high part of phy_type */
3245 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3246 		pt_high = BIT_ULL(index);
3247 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3248 
3249 		if (link_speeds_bitmap & speed)
3250 			*phy_type_high |= BIT_ULL(index);
3251 	}
3252 }
3253 
3254 /**
3255  * ice_aq_set_phy_cfg
3256  * @hw: pointer to the HW struct
3257  * @pi: port info structure of the interested logical port
3258  * @cfg: structure with PHY configuration data to be set
3259  * @cd: pointer to command details structure or NULL
3260  *
3261  * Set the various PHY configuration parameters supported on the Port.
3262  * One or more of the Set PHY config parameters may be ignored in an MFP
3263  * mode as the PF may not have the privilege to set some of the PHY Config
3264  * parameters. This status will be indicated by the command response (0x0601).
3265  */
3266 int
3267 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3268 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3269 {
3270 	struct ice_aq_desc desc;
3271 	int status;
3272 
3273 	if (!cfg)
3274 		return -EINVAL;
3275 
3276 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3277 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3278 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3279 			  cfg->caps);
3280 
3281 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3282 	}
3283 
3284 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3285 	desc.params.set_phy.lport_num = pi->lport;
3286 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3287 
3288 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3289 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3290 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3291 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3292 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3293 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3294 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3295 		  cfg->low_power_ctrl_an);
3296 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3297 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3298 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3299 		  cfg->link_fec_opt);
3300 
3301 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3302 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3303 		status = 0;
3304 
3305 	if (!status)
3306 		pi->phy.curr_user_phy_cfg = *cfg;
3307 
3308 	return status;
3309 }
3310 
3311 /**
3312  * ice_update_link_info - update status of the HW network link
3313  * @pi: port info structure of the interested logical port
3314  */
3315 int ice_update_link_info(struct ice_port_info *pi)
3316 {
3317 	struct ice_link_status *li;
3318 	int status;
3319 
3320 	if (!pi)
3321 		return -EINVAL;
3322 
3323 	li = &pi->phy.link_info;
3324 
3325 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3326 	if (status)
3327 		return status;
3328 
3329 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3330 		struct ice_aqc_get_phy_caps_data *pcaps;
3331 		struct ice_hw *hw;
3332 
3333 		hw = pi->hw;
3334 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3335 				     GFP_KERNEL);
3336 		if (!pcaps)
3337 			return -ENOMEM;
3338 
3339 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3340 					     pcaps, NULL);
3341 
3342 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3343 	}
3344 
3345 	return status;
3346 }
3347 
3348 /**
3349  * ice_cache_phy_user_req
3350  * @pi: port information structure
3351  * @cache_data: PHY logging data
3352  * @cache_mode: PHY logging mode
3353  *
3354  * Log the user request on (FC, FEC, SPEED) for later use.
3355  */
3356 static void
3357 ice_cache_phy_user_req(struct ice_port_info *pi,
3358 		       struct ice_phy_cache_mode_data cache_data,
3359 		       enum ice_phy_cache_mode cache_mode)
3360 {
3361 	if (!pi)
3362 		return;
3363 
3364 	switch (cache_mode) {
3365 	case ICE_FC_MODE:
3366 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3367 		break;
3368 	case ICE_SPEED_MODE:
3369 		pi->phy.curr_user_speed_req =
3370 			cache_data.data.curr_user_speed_req;
3371 		break;
3372 	case ICE_FEC_MODE:
3373 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3374 		break;
3375 	default:
3376 		break;
3377 	}
3378 }
3379 
3380 /**
3381  * ice_caps_to_fc_mode
3382  * @caps: PHY capabilities
3383  *
3384  * Convert PHY FC capabilities to ice FC mode
3385  */
3386 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3387 {
3388 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3389 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3390 		return ICE_FC_FULL;
3391 
3392 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3393 		return ICE_FC_TX_PAUSE;
3394 
3395 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3396 		return ICE_FC_RX_PAUSE;
3397 
3398 	return ICE_FC_NONE;
3399 }
3400 
3401 /**
3402  * ice_caps_to_fec_mode
3403  * @caps: PHY capabilities
3404  * @fec_options: Link FEC options
3405  *
3406  * Convert PHY FEC capabilities to ice FEC mode
3407  */
3408 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3409 {
3410 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3411 		return ICE_FEC_AUTO;
3412 
3413 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3414 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3415 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3416 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3417 		return ICE_FEC_BASER;
3418 
3419 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3420 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3421 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3422 		return ICE_FEC_RS;
3423 
3424 	return ICE_FEC_NONE;
3425 }
3426 
3427 /**
3428  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3429  * @pi: port information structure
3430  * @cfg: PHY configuration data to set FC mode
3431  * @req_mode: FC mode to configure
3432  */
3433 int
3434 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3435 	       enum ice_fc_mode req_mode)
3436 {
3437 	struct ice_phy_cache_mode_data cache_data;
3438 	u8 pause_mask = 0x0;
3439 
3440 	if (!pi || !cfg)
3441 		return -EINVAL;
3442 
3443 	switch (req_mode) {
3444 	case ICE_FC_FULL:
3445 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3446 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3447 		break;
3448 	case ICE_FC_RX_PAUSE:
3449 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3450 		break;
3451 	case ICE_FC_TX_PAUSE:
3452 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3453 		break;
3454 	default:
3455 		break;
3456 	}
3457 
3458 	/* clear the old pause settings */
3459 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3460 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3461 
3462 	/* set the new capabilities */
3463 	cfg->caps |= pause_mask;
3464 
3465 	/* Cache user FC request */
3466 	cache_data.data.curr_user_fc_req = req_mode;
3467 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3468 
3469 	return 0;
3470 }
3471 
3472 /**
3473  * ice_set_fc
3474  * @pi: port information structure
3475  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3476  * @ena_auto_link_update: enable automatic link update
3477  *
3478  * Set the requested flow control mode.
3479  */
3480 int
3481 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3482 {
3483 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3484 	struct ice_aqc_get_phy_caps_data *pcaps;
3485 	struct ice_hw *hw;
3486 	int status;
3487 
3488 	if (!pi || !aq_failures)
3489 		return -EINVAL;
3490 
3491 	*aq_failures = 0;
3492 	hw = pi->hw;
3493 
3494 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3495 	if (!pcaps)
3496 		return -ENOMEM;
3497 
3498 	/* Get the current PHY config */
3499 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3500 				     pcaps, NULL);
3501 	if (status) {
3502 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3503 		goto out;
3504 	}
3505 
3506 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3507 
3508 	/* Configure the set PHY data */
3509 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3510 	if (status)
3511 		goto out;
3512 
3513 	/* If the capabilities have changed, then set the new config */
3514 	if (cfg.caps != pcaps->caps) {
3515 		int retry_count, retry_max = 10;
3516 
3517 		/* Auto restart link so settings take effect */
3518 		if (ena_auto_link_update)
3519 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3520 
3521 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3522 		if (status) {
3523 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3524 			goto out;
3525 		}
3526 
3527 		/* Update the link info
3528 		 * It sometimes takes a really long time for link to
3529 		 * come back from the atomic reset. Thus, we wait a
3530 		 * little bit.
3531 		 */
3532 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3533 			status = ice_update_link_info(pi);
3534 
3535 			if (!status)
3536 				break;
3537 
3538 			mdelay(100);
3539 		}
3540 
3541 		if (status)
3542 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3543 	}
3544 
3545 out:
3546 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3547 	return status;
3548 }
3549 
3550 /**
3551  * ice_phy_caps_equals_cfg
3552  * @phy_caps: PHY capabilities
3553  * @phy_cfg: PHY configuration
3554  *
3555  * Helper function to determine if PHY capabilities matches PHY
3556  * configuration
3557  */
3558 bool
3559 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3560 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3561 {
3562 	u8 caps_mask, cfg_mask;
3563 
3564 	if (!phy_caps || !phy_cfg)
3565 		return false;
3566 
3567 	/* These bits are not common between capabilities and configuration.
3568 	 * Do not use them to determine equality.
3569 	 */
3570 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3571 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3572 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3573 
3574 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3575 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3576 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3577 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3578 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3579 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3580 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3581 		return false;
3582 
3583 	return true;
3584 }
3585 
3586 /**
3587  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3588  * @pi: port information structure
3589  * @caps: PHY ability structure to copy date from
3590  * @cfg: PHY configuration structure to copy data to
3591  *
3592  * Helper function to copy AQC PHY get ability data to PHY set configuration
3593  * data structure
3594  */
3595 void
3596 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3597 			 struct ice_aqc_get_phy_caps_data *caps,
3598 			 struct ice_aqc_set_phy_cfg_data *cfg)
3599 {
3600 	if (!pi || !caps || !cfg)
3601 		return;
3602 
3603 	memset(cfg, 0, sizeof(*cfg));
3604 	cfg->phy_type_low = caps->phy_type_low;
3605 	cfg->phy_type_high = caps->phy_type_high;
3606 	cfg->caps = caps->caps;
3607 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3608 	cfg->eee_cap = caps->eee_cap;
3609 	cfg->eeer_value = caps->eeer_value;
3610 	cfg->link_fec_opt = caps->link_fec_options;
3611 	cfg->module_compliance_enforcement =
3612 		caps->module_compliance_enforcement;
3613 }
3614 
3615 /**
3616  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3617  * @pi: port information structure
3618  * @cfg: PHY configuration data to set FEC mode
3619  * @fec: FEC mode to configure
3620  */
3621 int
3622 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3623 		enum ice_fec_mode fec)
3624 {
3625 	struct ice_aqc_get_phy_caps_data *pcaps;
3626 	struct ice_hw *hw;
3627 	int status;
3628 
3629 	if (!pi || !cfg)
3630 		return -EINVAL;
3631 
3632 	hw = pi->hw;
3633 
3634 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3635 	if (!pcaps)
3636 		return -ENOMEM;
3637 
3638 	status = ice_aq_get_phy_caps(pi, false,
3639 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3640 				      ICE_AQC_REPORT_DFLT_CFG :
3641 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3642 	if (status)
3643 		goto out;
3644 
3645 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3646 	cfg->link_fec_opt = pcaps->link_fec_options;
3647 
3648 	switch (fec) {
3649 	case ICE_FEC_BASER:
3650 		/* Clear RS bits, and AND BASE-R ability
3651 		 * bits and OR request bits.
3652 		 */
3653 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3654 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3655 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3656 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3657 		break;
3658 	case ICE_FEC_RS:
3659 		/* Clear BASE-R bits, and AND RS ability
3660 		 * bits and OR request bits.
3661 		 */
3662 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3663 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3664 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3665 		break;
3666 	case ICE_FEC_NONE:
3667 		/* Clear all FEC option bits. */
3668 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3669 		break;
3670 	case ICE_FEC_AUTO:
3671 		/* AND auto FEC bit, and all caps bits. */
3672 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3673 		cfg->link_fec_opt |= pcaps->link_fec_options;
3674 		break;
3675 	default:
3676 		status = -EINVAL;
3677 		break;
3678 	}
3679 
3680 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3681 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3682 		struct ice_link_default_override_tlv tlv = { 0 };
3683 
3684 		status = ice_get_link_default_override(&tlv, pi);
3685 		if (status)
3686 			goto out;
3687 
3688 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3689 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3690 			cfg->link_fec_opt = tlv.fec_options;
3691 	}
3692 
3693 out:
3694 	kfree(pcaps);
3695 
3696 	return status;
3697 }
3698 
3699 /**
3700  * ice_get_link_status - get status of the HW network link
3701  * @pi: port information structure
3702  * @link_up: pointer to bool (true/false = linkup/linkdown)
3703  *
3704  * Variable link_up is true if link is up, false if link is down.
3705  * The variable link_up is invalid if status is non zero. As a
3706  * result of this call, link status reporting becomes enabled
3707  */
3708 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3709 {
3710 	struct ice_phy_info *phy_info;
3711 	int status = 0;
3712 
3713 	if (!pi || !link_up)
3714 		return -EINVAL;
3715 
3716 	phy_info = &pi->phy;
3717 
3718 	if (phy_info->get_link_info) {
3719 		status = ice_update_link_info(pi);
3720 
3721 		if (status)
3722 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3723 				  status);
3724 	}
3725 
3726 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3727 
3728 	return status;
3729 }
3730 
3731 /**
3732  * ice_aq_set_link_restart_an
3733  * @pi: pointer to the port information structure
3734  * @ena_link: if true: enable link, if false: disable link
3735  * @cd: pointer to command details structure or NULL
3736  *
3737  * Sets up the link and restarts the Auto-Negotiation over the link.
3738  */
3739 int
3740 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3741 			   struct ice_sq_cd *cd)
3742 {
3743 	struct ice_aqc_restart_an *cmd;
3744 	struct ice_aq_desc desc;
3745 
3746 	cmd = &desc.params.restart_an;
3747 
3748 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3749 
3750 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3751 	cmd->lport_num = pi->lport;
3752 	if (ena_link)
3753 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3754 	else
3755 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3756 
3757 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3758 }
3759 
3760 /**
3761  * ice_aq_set_event_mask
3762  * @hw: pointer to the HW struct
3763  * @port_num: port number of the physical function
3764  * @mask: event mask to be set
3765  * @cd: pointer to command details structure or NULL
3766  *
3767  * Set event mask (0x0613)
3768  */
3769 int
3770 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3771 		      struct ice_sq_cd *cd)
3772 {
3773 	struct ice_aqc_set_event_mask *cmd;
3774 	struct ice_aq_desc desc;
3775 
3776 	cmd = &desc.params.set_event_mask;
3777 
3778 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3779 
3780 	cmd->lport_num = port_num;
3781 
3782 	cmd->event_mask = cpu_to_le16(mask);
3783 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3784 }
3785 
3786 /**
3787  * ice_aq_set_mac_loopback
3788  * @hw: pointer to the HW struct
3789  * @ena_lpbk: Enable or Disable loopback
3790  * @cd: pointer to command details structure or NULL
3791  *
3792  * Enable/disable loopback on a given port
3793  */
3794 int
3795 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3796 {
3797 	struct ice_aqc_set_mac_lb *cmd;
3798 	struct ice_aq_desc desc;
3799 
3800 	cmd = &desc.params.set_mac_lb;
3801 
3802 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3803 	if (ena_lpbk)
3804 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3805 
3806 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3807 }
3808 
3809 /**
3810  * ice_aq_set_port_id_led
3811  * @pi: pointer to the port information
3812  * @is_orig_mode: is this LED set to original mode (by the net-list)
3813  * @cd: pointer to command details structure or NULL
3814  *
3815  * Set LED value for the given port (0x06e9)
3816  */
3817 int
3818 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3819 		       struct ice_sq_cd *cd)
3820 {
3821 	struct ice_aqc_set_port_id_led *cmd;
3822 	struct ice_hw *hw = pi->hw;
3823 	struct ice_aq_desc desc;
3824 
3825 	cmd = &desc.params.set_port_id_led;
3826 
3827 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3828 
3829 	if (is_orig_mode)
3830 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3831 	else
3832 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3833 
3834 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3835 }
3836 
3837 /**
3838  * ice_aq_get_port_options
3839  * @hw: pointer to the HW struct
3840  * @options: buffer for the resultant port options
3841  * @option_count: input - size of the buffer in port options structures,
3842  *                output - number of returned port options
3843  * @lport: logical port to call the command with (optional)
3844  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3845  *               when PF owns more than 1 port it must be true
3846  * @active_option_idx: index of active port option in returned buffer
3847  * @active_option_valid: active option in returned buffer is valid
3848  * @pending_option_idx: index of pending port option in returned buffer
3849  * @pending_option_valid: pending option in returned buffer is valid
3850  *
3851  * Calls Get Port Options AQC (0x06ea) and verifies result.
3852  */
3853 int
3854 ice_aq_get_port_options(struct ice_hw *hw,
3855 			struct ice_aqc_get_port_options_elem *options,
3856 			u8 *option_count, u8 lport, bool lport_valid,
3857 			u8 *active_option_idx, bool *active_option_valid,
3858 			u8 *pending_option_idx, bool *pending_option_valid)
3859 {
3860 	struct ice_aqc_get_port_options *cmd;
3861 	struct ice_aq_desc desc;
3862 	int status;
3863 	u8 i;
3864 
3865 	/* options buffer shall be able to hold max returned options */
3866 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3867 		return -EINVAL;
3868 
3869 	cmd = &desc.params.get_port_options;
3870 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3871 
3872 	if (lport_valid)
3873 		cmd->lport_num = lport;
3874 	cmd->lport_num_valid = lport_valid;
3875 
3876 	status = ice_aq_send_cmd(hw, &desc, options,
3877 				 *option_count * sizeof(*options), NULL);
3878 	if (status)
3879 		return status;
3880 
3881 	/* verify direct FW response & set output parameters */
3882 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3883 				  cmd->port_options_count);
3884 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3885 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3886 					 cmd->port_options);
3887 	if (*active_option_valid) {
3888 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3889 					       cmd->port_options);
3890 		if (*active_option_idx > (*option_count - 1))
3891 			return -EIO;
3892 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3893 			  *active_option_idx);
3894 	}
3895 
3896 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3897 					  cmd->pending_port_option_status);
3898 	if (*pending_option_valid) {
3899 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3900 						cmd->pending_port_option_status);
3901 		if (*pending_option_idx > (*option_count - 1))
3902 			return -EIO;
3903 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3904 			  *pending_option_idx);
3905 	}
3906 
3907 	/* mask output options fields */
3908 	for (i = 0; i < *option_count; i++) {
3909 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3910 					   options[i].pmd);
3911 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3912 						      options[i].max_lane_speed);
3913 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3914 			  options[i].pmd, options[i].max_lane_speed);
3915 	}
3916 
3917 	return 0;
3918 }
3919 
3920 /**
3921  * ice_aq_set_port_option
3922  * @hw: pointer to the HW struct
3923  * @lport: logical port to call the command with
3924  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3925  *               when PF owns more than 1 port it must be true
3926  * @new_option: new port option to be written
3927  *
3928  * Calls Set Port Options AQC (0x06eb).
3929  */
3930 int
3931 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3932 		       u8 new_option)
3933 {
3934 	struct ice_aqc_set_port_option *cmd;
3935 	struct ice_aq_desc desc;
3936 
3937 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3938 		return -EINVAL;
3939 
3940 	cmd = &desc.params.set_port_option;
3941 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3942 
3943 	if (lport_valid)
3944 		cmd->lport_num = lport;
3945 
3946 	cmd->lport_num_valid = lport_valid;
3947 	cmd->selected_port_option = new_option;
3948 
3949 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3950 }
3951 
3952 /**
3953  * ice_aq_sff_eeprom
3954  * @hw: pointer to the HW struct
3955  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3956  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3957  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3958  * @page: QSFP page
3959  * @set_page: set or ignore the page
3960  * @data: pointer to data buffer to be read/written to the I2C device.
3961  * @length: 1-16 for read, 1 for write.
3962  * @write: 0 read, 1 for write.
3963  * @cd: pointer to command details structure or NULL
3964  *
3965  * Read/Write SFF EEPROM (0x06EE)
3966  */
3967 int
3968 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3969 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3970 		  bool write, struct ice_sq_cd *cd)
3971 {
3972 	struct ice_aqc_sff_eeprom *cmd;
3973 	struct ice_aq_desc desc;
3974 	int status;
3975 
3976 	if (!data || (mem_addr & 0xff00))
3977 		return -EINVAL;
3978 
3979 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3980 	cmd = &desc.params.read_write_sff_param;
3981 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3982 	cmd->lport_num = (u8)(lport & 0xff);
3983 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3984 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3985 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3986 					((set_page <<
3987 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3988 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3989 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3990 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3991 	if (write)
3992 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3993 
3994 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3995 	return status;
3996 }
3997 
3998 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3999 {
4000 	switch (type) {
4001 	case ICE_LUT_VSI:
4002 		return ICE_LUT_VSI_SIZE;
4003 	case ICE_LUT_GLOBAL:
4004 		return ICE_LUT_GLOBAL_SIZE;
4005 	case ICE_LUT_PF:
4006 		return ICE_LUT_PF_SIZE;
4007 	}
4008 	WARN_ONCE(1, "incorrect type passed");
4009 	return ICE_LUT_VSI_SIZE;
4010 }
4011 
4012 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4013 {
4014 	switch (size) {
4015 	case ICE_LUT_VSI_SIZE:
4016 		return ICE_AQC_LUT_SIZE_SMALL;
4017 	case ICE_LUT_GLOBAL_SIZE:
4018 		return ICE_AQC_LUT_SIZE_512;
4019 	case ICE_LUT_PF_SIZE:
4020 		return ICE_AQC_LUT_SIZE_2K;
4021 	}
4022 	WARN_ONCE(1, "incorrect size passed");
4023 	return 0;
4024 }
4025 
4026 /**
4027  * __ice_aq_get_set_rss_lut
4028  * @hw: pointer to the hardware structure
4029  * @params: RSS LUT parameters
4030  * @set: set true to set the table, false to get the table
4031  *
4032  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4033  */
4034 static int
4035 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4036 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4037 {
4038 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4039 	enum ice_lut_type lut_type = params->lut_type;
4040 	struct ice_aqc_get_set_rss_lut *desc_params;
4041 	enum ice_aqc_lut_flags flags;
4042 	enum ice_lut_size lut_size;
4043 	struct ice_aq_desc desc;
4044 	u8 *lut = params->lut;
4045 
4046 
4047 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4048 		return -EINVAL;
4049 
4050 	lut_size = ice_lut_type_to_size(lut_type);
4051 	if (lut_size > params->lut_size)
4052 		return -EINVAL;
4053 	else if (set && lut_size != params->lut_size)
4054 		return -EINVAL;
4055 
4056 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4057 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4058 	if (set)
4059 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4060 
4061 	desc_params = &desc.params.get_set_rss_lut;
4062 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4063 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4064 
4065 	if (lut_type == ICE_LUT_GLOBAL)
4066 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4067 					  params->global_lut_id);
4068 
4069 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4070 	desc_params->flags = cpu_to_le16(flags);
4071 
4072 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4073 }
4074 
4075 /**
4076  * ice_aq_get_rss_lut
4077  * @hw: pointer to the hardware structure
4078  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4079  *
4080  * get the RSS lookup table, PF or VSI type
4081  */
4082 int
4083 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4084 {
4085 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4086 }
4087 
4088 /**
4089  * ice_aq_set_rss_lut
4090  * @hw: pointer to the hardware structure
4091  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4092  *
4093  * set the RSS lookup table, PF or VSI type
4094  */
4095 int
4096 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4097 {
4098 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4099 }
4100 
4101 /**
4102  * __ice_aq_get_set_rss_key
4103  * @hw: pointer to the HW struct
4104  * @vsi_id: VSI FW index
4105  * @key: pointer to key info struct
4106  * @set: set true to set the key, false to get the key
4107  *
4108  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4109  */
4110 static int
4111 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4112 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4113 {
4114 	struct ice_aqc_get_set_rss_key *desc_params;
4115 	u16 key_size = sizeof(*key);
4116 	struct ice_aq_desc desc;
4117 
4118 	if (set) {
4119 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4120 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4121 	} else {
4122 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4123 	}
4124 
4125 	desc_params = &desc.params.get_set_rss_key;
4126 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4127 
4128 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4129 }
4130 
4131 /**
4132  * ice_aq_get_rss_key
4133  * @hw: pointer to the HW struct
4134  * @vsi_handle: software VSI handle
4135  * @key: pointer to key info struct
4136  *
4137  * get the RSS key per VSI
4138  */
4139 int
4140 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4141 		   struct ice_aqc_get_set_rss_keys *key)
4142 {
4143 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4144 		return -EINVAL;
4145 
4146 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4147 					key, false);
4148 }
4149 
4150 /**
4151  * ice_aq_set_rss_key
4152  * @hw: pointer to the HW struct
4153  * @vsi_handle: software VSI handle
4154  * @keys: pointer to key info struct
4155  *
4156  * set the RSS key per VSI
4157  */
4158 int
4159 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4160 		   struct ice_aqc_get_set_rss_keys *keys)
4161 {
4162 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4163 		return -EINVAL;
4164 
4165 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4166 					keys, true);
4167 }
4168 
4169 /**
4170  * ice_aq_add_lan_txq
4171  * @hw: pointer to the hardware structure
4172  * @num_qgrps: Number of added queue groups
4173  * @qg_list: list of queue groups to be added
4174  * @buf_size: size of buffer for indirect command
4175  * @cd: pointer to command details structure or NULL
4176  *
4177  * Add Tx LAN queue (0x0C30)
4178  *
4179  * NOTE:
4180  * Prior to calling add Tx LAN queue:
4181  * Initialize the following as part of the Tx queue context:
4182  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4183  * Cache profile and Packet shaper profile.
4184  *
4185  * After add Tx LAN queue AQ command is completed:
4186  * Interrupts should be associated with specific queues,
4187  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4188  * flow.
4189  */
4190 static int
4191 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4192 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4193 		   struct ice_sq_cd *cd)
4194 {
4195 	struct ice_aqc_add_tx_qgrp *list;
4196 	struct ice_aqc_add_txqs *cmd;
4197 	struct ice_aq_desc desc;
4198 	u16 i, sum_size = 0;
4199 
4200 	cmd = &desc.params.add_txqs;
4201 
4202 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4203 
4204 	if (!qg_list)
4205 		return -EINVAL;
4206 
4207 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4208 		return -EINVAL;
4209 
4210 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4211 		sum_size += struct_size(list, txqs, list->num_txqs);
4212 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4213 						      list->num_txqs);
4214 	}
4215 
4216 	if (buf_size != sum_size)
4217 		return -EINVAL;
4218 
4219 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4220 
4221 	cmd->num_qgrps = num_qgrps;
4222 
4223 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4224 }
4225 
4226 /**
4227  * ice_aq_dis_lan_txq
4228  * @hw: pointer to the hardware structure
4229  * @num_qgrps: number of groups in the list
4230  * @qg_list: the list of groups to disable
4231  * @buf_size: the total size of the qg_list buffer in bytes
4232  * @rst_src: if called due to reset, specifies the reset source
4233  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4234  * @cd: pointer to command details structure or NULL
4235  *
4236  * Disable LAN Tx queue (0x0C31)
4237  */
4238 static int
4239 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4240 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4241 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4242 		   struct ice_sq_cd *cd)
4243 {
4244 	struct ice_aqc_dis_txq_item *item;
4245 	struct ice_aqc_dis_txqs *cmd;
4246 	struct ice_aq_desc desc;
4247 	u16 i, sz = 0;
4248 	int status;
4249 
4250 	cmd = &desc.params.dis_txqs;
4251 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4252 
4253 	/* qg_list can be NULL only in VM/VF reset flow */
4254 	if (!qg_list && !rst_src)
4255 		return -EINVAL;
4256 
4257 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4258 		return -EINVAL;
4259 
4260 	cmd->num_entries = num_qgrps;
4261 
4262 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4263 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4264 
4265 	switch (rst_src) {
4266 	case ICE_VM_RESET:
4267 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4268 		cmd->vmvf_and_timeout |=
4269 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4270 		break;
4271 	case ICE_VF_RESET:
4272 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4273 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4274 		cmd->vmvf_and_timeout |=
4275 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4276 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4277 		break;
4278 	case ICE_NO_RESET:
4279 	default:
4280 		break;
4281 	}
4282 
4283 	/* flush pipe on time out */
4284 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4285 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4286 	if (!qg_list)
4287 		goto do_aq;
4288 
4289 	/* set RD bit to indicate that command buffer is provided by the driver
4290 	 * and it needs to be read by the firmware
4291 	 */
4292 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4293 
4294 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4295 		u16 item_size = struct_size(item, q_id, item->num_qs);
4296 
4297 		/* If the num of queues is even, add 2 bytes of padding */
4298 		if ((item->num_qs % 2) == 0)
4299 			item_size += 2;
4300 
4301 		sz += item_size;
4302 
4303 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4304 	}
4305 
4306 	if (buf_size != sz)
4307 		return -EINVAL;
4308 
4309 do_aq:
4310 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4311 	if (status) {
4312 		if (!qg_list)
4313 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4314 				  vmvf_num, hw->adminq.sq_last_status);
4315 		else
4316 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4317 				  le16_to_cpu(qg_list[0].q_id[0]),
4318 				  hw->adminq.sq_last_status);
4319 	}
4320 	return status;
4321 }
4322 
4323 /**
4324  * ice_aq_cfg_lan_txq
4325  * @hw: pointer to the hardware structure
4326  * @buf: buffer for command
4327  * @buf_size: size of buffer in bytes
4328  * @num_qs: number of queues being configured
4329  * @oldport: origination lport
4330  * @newport: destination lport
4331  * @cd: pointer to command details structure or NULL
4332  *
4333  * Move/Configure LAN Tx queue (0x0C32)
4334  *
4335  * There is a better AQ command to use for moving nodes, so only coding
4336  * this one for configuring the node.
4337  */
4338 int
4339 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4340 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4341 		   struct ice_sq_cd *cd)
4342 {
4343 	struct ice_aqc_cfg_txqs *cmd;
4344 	struct ice_aq_desc desc;
4345 	int status;
4346 
4347 	cmd = &desc.params.cfg_txqs;
4348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4349 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4350 
4351 	if (!buf)
4352 		return -EINVAL;
4353 
4354 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4355 	cmd->num_qs = num_qs;
4356 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4357 	cmd->port_num_chng |= (newport << ICE_AQC_Q_CFG_DST_PRT_S) &
4358 			      ICE_AQC_Q_CFG_DST_PRT_M;
4359 	cmd->time_out = (5 << ICE_AQC_Q_CFG_TIMEOUT_S) &
4360 			ICE_AQC_Q_CFG_TIMEOUT_M;
4361 	cmd->blocked_cgds = 0;
4362 
4363 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4364 	if (status)
4365 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4366 			  hw->adminq.sq_last_status);
4367 	return status;
4368 }
4369 
4370 /**
4371  * ice_aq_add_rdma_qsets
4372  * @hw: pointer to the hardware structure
4373  * @num_qset_grps: Number of RDMA Qset groups
4374  * @qset_list: list of Qset groups to be added
4375  * @buf_size: size of buffer for indirect command
4376  * @cd: pointer to command details structure or NULL
4377  *
4378  * Add Tx RDMA Qsets (0x0C33)
4379  */
4380 static int
4381 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4382 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4383 		      u16 buf_size, struct ice_sq_cd *cd)
4384 {
4385 	struct ice_aqc_add_rdma_qset_data *list;
4386 	struct ice_aqc_add_rdma_qset *cmd;
4387 	struct ice_aq_desc desc;
4388 	u16 i, sum_size = 0;
4389 
4390 	cmd = &desc.params.add_rdma_qset;
4391 
4392 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4393 
4394 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4395 		return -EINVAL;
4396 
4397 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4398 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4399 
4400 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4401 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4402 							     num_qsets);
4403 	}
4404 
4405 	if (buf_size != sum_size)
4406 		return -EINVAL;
4407 
4408 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4409 
4410 	cmd->num_qset_grps = num_qset_grps;
4411 
4412 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4413 }
4414 
4415 /* End of FW Admin Queue command wrappers */
4416 
4417 /**
4418  * ice_write_byte - write a byte to a packed context structure
4419  * @src_ctx:  the context structure to read from
4420  * @dest_ctx: the context to be written to
4421  * @ce_info:  a description of the struct to be filled
4422  */
4423 static void
4424 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4425 {
4426 	u8 src_byte, dest_byte, mask;
4427 	u8 *from, *dest;
4428 	u16 shift_width;
4429 
4430 	/* copy from the next struct field */
4431 	from = src_ctx + ce_info->offset;
4432 
4433 	/* prepare the bits and mask */
4434 	shift_width = ce_info->lsb % 8;
4435 	mask = (u8)(BIT(ce_info->width) - 1);
4436 
4437 	src_byte = *from;
4438 	src_byte &= mask;
4439 
4440 	/* shift to correct alignment */
4441 	mask <<= shift_width;
4442 	src_byte <<= shift_width;
4443 
4444 	/* get the current bits from the target bit string */
4445 	dest = dest_ctx + (ce_info->lsb / 8);
4446 
4447 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4448 
4449 	dest_byte &= ~mask;	/* get the bits not changing */
4450 	dest_byte |= src_byte;	/* add in the new bits */
4451 
4452 	/* put it all back */
4453 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4454 }
4455 
4456 /**
4457  * ice_write_word - write a word to a packed context structure
4458  * @src_ctx:  the context structure to read from
4459  * @dest_ctx: the context to be written to
4460  * @ce_info:  a description of the struct to be filled
4461  */
4462 static void
4463 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4464 {
4465 	u16 src_word, mask;
4466 	__le16 dest_word;
4467 	u8 *from, *dest;
4468 	u16 shift_width;
4469 
4470 	/* copy from the next struct field */
4471 	from = src_ctx + ce_info->offset;
4472 
4473 	/* prepare the bits and mask */
4474 	shift_width = ce_info->lsb % 8;
4475 	mask = BIT(ce_info->width) - 1;
4476 
4477 	/* don't swizzle the bits until after the mask because the mask bits
4478 	 * will be in a different bit position on big endian machines
4479 	 */
4480 	src_word = *(u16 *)from;
4481 	src_word &= mask;
4482 
4483 	/* shift to correct alignment */
4484 	mask <<= shift_width;
4485 	src_word <<= shift_width;
4486 
4487 	/* get the current bits from the target bit string */
4488 	dest = dest_ctx + (ce_info->lsb / 8);
4489 
4490 	memcpy(&dest_word, dest, sizeof(dest_word));
4491 
4492 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4493 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4494 
4495 	/* put it all back */
4496 	memcpy(dest, &dest_word, sizeof(dest_word));
4497 }
4498 
4499 /**
4500  * ice_write_dword - write a dword to a packed context structure
4501  * @src_ctx:  the context structure to read from
4502  * @dest_ctx: the context to be written to
4503  * @ce_info:  a description of the struct to be filled
4504  */
4505 static void
4506 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4507 {
4508 	u32 src_dword, mask;
4509 	__le32 dest_dword;
4510 	u8 *from, *dest;
4511 	u16 shift_width;
4512 
4513 	/* copy from the next struct field */
4514 	from = src_ctx + ce_info->offset;
4515 
4516 	/* prepare the bits and mask */
4517 	shift_width = ce_info->lsb % 8;
4518 
4519 	/* if the field width is exactly 32 on an x86 machine, then the shift
4520 	 * operation will not work because the SHL instructions count is masked
4521 	 * to 5 bits so the shift will do nothing
4522 	 */
4523 	if (ce_info->width < 32)
4524 		mask = BIT(ce_info->width) - 1;
4525 	else
4526 		mask = (u32)~0;
4527 
4528 	/* don't swizzle the bits until after the mask because the mask bits
4529 	 * will be in a different bit position on big endian machines
4530 	 */
4531 	src_dword = *(u32 *)from;
4532 	src_dword &= mask;
4533 
4534 	/* shift to correct alignment */
4535 	mask <<= shift_width;
4536 	src_dword <<= shift_width;
4537 
4538 	/* get the current bits from the target bit string */
4539 	dest = dest_ctx + (ce_info->lsb / 8);
4540 
4541 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4542 
4543 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4544 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4545 
4546 	/* put it all back */
4547 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4548 }
4549 
4550 /**
4551  * ice_write_qword - write a qword to a packed context structure
4552  * @src_ctx:  the context structure to read from
4553  * @dest_ctx: the context to be written to
4554  * @ce_info:  a description of the struct to be filled
4555  */
4556 static void
4557 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4558 {
4559 	u64 src_qword, mask;
4560 	__le64 dest_qword;
4561 	u8 *from, *dest;
4562 	u16 shift_width;
4563 
4564 	/* copy from the next struct field */
4565 	from = src_ctx + ce_info->offset;
4566 
4567 	/* prepare the bits and mask */
4568 	shift_width = ce_info->lsb % 8;
4569 
4570 	/* if the field width is exactly 64 on an x86 machine, then the shift
4571 	 * operation will not work because the SHL instructions count is masked
4572 	 * to 6 bits so the shift will do nothing
4573 	 */
4574 	if (ce_info->width < 64)
4575 		mask = BIT_ULL(ce_info->width) - 1;
4576 	else
4577 		mask = (u64)~0;
4578 
4579 	/* don't swizzle the bits until after the mask because the mask bits
4580 	 * will be in a different bit position on big endian machines
4581 	 */
4582 	src_qword = *(u64 *)from;
4583 	src_qword &= mask;
4584 
4585 	/* shift to correct alignment */
4586 	mask <<= shift_width;
4587 	src_qword <<= shift_width;
4588 
4589 	/* get the current bits from the target bit string */
4590 	dest = dest_ctx + (ce_info->lsb / 8);
4591 
4592 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4593 
4594 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4595 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4596 
4597 	/* put it all back */
4598 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4599 }
4600 
4601 /**
4602  * ice_set_ctx - set context bits in packed structure
4603  * @hw: pointer to the hardware structure
4604  * @src_ctx:  pointer to a generic non-packed context structure
4605  * @dest_ctx: pointer to memory for the packed structure
4606  * @ce_info:  a description of the structure to be transformed
4607  */
4608 int
4609 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4610 	    const struct ice_ctx_ele *ce_info)
4611 {
4612 	int f;
4613 
4614 	for (f = 0; ce_info[f].width; f++) {
4615 		/* We have to deal with each element of the FW response
4616 		 * using the correct size so that we are correct regardless
4617 		 * of the endianness of the machine.
4618 		 */
4619 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4620 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4621 				  f, ce_info[f].width, ce_info[f].size_of);
4622 			continue;
4623 		}
4624 		switch (ce_info[f].size_of) {
4625 		case sizeof(u8):
4626 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4627 			break;
4628 		case sizeof(u16):
4629 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4630 			break;
4631 		case sizeof(u32):
4632 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4633 			break;
4634 		case sizeof(u64):
4635 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4636 			break;
4637 		default:
4638 			return -EINVAL;
4639 		}
4640 	}
4641 
4642 	return 0;
4643 }
4644 
4645 /**
4646  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4647  * @hw: pointer to the HW struct
4648  * @vsi_handle: software VSI handle
4649  * @tc: TC number
4650  * @q_handle: software queue handle
4651  */
4652 struct ice_q_ctx *
4653 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4654 {
4655 	struct ice_vsi_ctx *vsi;
4656 	struct ice_q_ctx *q_ctx;
4657 
4658 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4659 	if (!vsi)
4660 		return NULL;
4661 	if (q_handle >= vsi->num_lan_q_entries[tc])
4662 		return NULL;
4663 	if (!vsi->lan_q_ctx[tc])
4664 		return NULL;
4665 	q_ctx = vsi->lan_q_ctx[tc];
4666 	return &q_ctx[q_handle];
4667 }
4668 
4669 /**
4670  * ice_ena_vsi_txq
4671  * @pi: port information structure
4672  * @vsi_handle: software VSI handle
4673  * @tc: TC number
4674  * @q_handle: software queue handle
4675  * @num_qgrps: Number of added queue groups
4676  * @buf: list of queue groups to be added
4677  * @buf_size: size of buffer for indirect command
4678  * @cd: pointer to command details structure or NULL
4679  *
4680  * This function adds one LAN queue
4681  */
4682 int
4683 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4684 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4685 		struct ice_sq_cd *cd)
4686 {
4687 	struct ice_aqc_txsched_elem_data node = { 0 };
4688 	struct ice_sched_node *parent;
4689 	struct ice_q_ctx *q_ctx;
4690 	struct ice_hw *hw;
4691 	int status;
4692 
4693 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4694 		return -EIO;
4695 
4696 	if (num_qgrps > 1 || buf->num_txqs > 1)
4697 		return -ENOSPC;
4698 
4699 	hw = pi->hw;
4700 
4701 	if (!ice_is_vsi_valid(hw, vsi_handle))
4702 		return -EINVAL;
4703 
4704 	mutex_lock(&pi->sched_lock);
4705 
4706 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4707 	if (!q_ctx) {
4708 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4709 			  q_handle);
4710 		status = -EINVAL;
4711 		goto ena_txq_exit;
4712 	}
4713 
4714 	/* find a parent node */
4715 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4716 					    ICE_SCHED_NODE_OWNER_LAN);
4717 	if (!parent) {
4718 		status = -EINVAL;
4719 		goto ena_txq_exit;
4720 	}
4721 
4722 	buf->parent_teid = parent->info.node_teid;
4723 	node.parent_teid = parent->info.node_teid;
4724 	/* Mark that the values in the "generic" section as valid. The default
4725 	 * value in the "generic" section is zero. This means that :
4726 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4727 	 * - 0 priority among siblings, indicated by Bit 1-3.
4728 	 * - WFQ, indicated by Bit 4.
4729 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4730 	 * Bit 5-6.
4731 	 * - Bit 7 is reserved.
4732 	 * Without setting the generic section as valid in valid_sections, the
4733 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4734 	 */
4735 	buf->txqs[0].info.valid_sections =
4736 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4737 		ICE_AQC_ELEM_VALID_EIR;
4738 	buf->txqs[0].info.generic = 0;
4739 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4740 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4741 	buf->txqs[0].info.cir_bw.bw_alloc =
4742 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4743 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4744 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4745 	buf->txqs[0].info.eir_bw.bw_alloc =
4746 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4747 
4748 	/* add the LAN queue */
4749 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4750 	if (status) {
4751 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4752 			  le16_to_cpu(buf->txqs[0].txq_id),
4753 			  hw->adminq.sq_last_status);
4754 		goto ena_txq_exit;
4755 	}
4756 
4757 	node.node_teid = buf->txqs[0].q_teid;
4758 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4759 	q_ctx->q_handle = q_handle;
4760 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4761 
4762 	/* add a leaf node into scheduler tree queue layer */
4763 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4764 	if (!status)
4765 		status = ice_sched_replay_q_bw(pi, q_ctx);
4766 
4767 ena_txq_exit:
4768 	mutex_unlock(&pi->sched_lock);
4769 	return status;
4770 }
4771 
4772 /**
4773  * ice_dis_vsi_txq
4774  * @pi: port information structure
4775  * @vsi_handle: software VSI handle
4776  * @tc: TC number
4777  * @num_queues: number of queues
4778  * @q_handles: pointer to software queue handle array
4779  * @q_ids: pointer to the q_id array
4780  * @q_teids: pointer to queue node teids
4781  * @rst_src: if called due to reset, specifies the reset source
4782  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4783  * @cd: pointer to command details structure or NULL
4784  *
4785  * This function removes queues and their corresponding nodes in SW DB
4786  */
4787 int
4788 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4789 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4790 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4791 		struct ice_sq_cd *cd)
4792 {
4793 	struct ice_aqc_dis_txq_item *qg_list;
4794 	struct ice_q_ctx *q_ctx;
4795 	int status = -ENOENT;
4796 	struct ice_hw *hw;
4797 	u16 i, buf_size;
4798 
4799 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4800 		return -EIO;
4801 
4802 	hw = pi->hw;
4803 
4804 	if (!num_queues) {
4805 		/* if queue is disabled already yet the disable queue command
4806 		 * has to be sent to complete the VF reset, then call
4807 		 * ice_aq_dis_lan_txq without any queue information
4808 		 */
4809 		if (rst_src)
4810 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4811 						  vmvf_num, NULL);
4812 		return -EIO;
4813 	}
4814 
4815 	buf_size = struct_size(qg_list, q_id, 1);
4816 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4817 	if (!qg_list)
4818 		return -ENOMEM;
4819 
4820 	mutex_lock(&pi->sched_lock);
4821 
4822 	for (i = 0; i < num_queues; i++) {
4823 		struct ice_sched_node *node;
4824 
4825 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4826 		if (!node)
4827 			continue;
4828 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4829 		if (!q_ctx) {
4830 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4831 				  q_handles[i]);
4832 			continue;
4833 		}
4834 		if (q_ctx->q_handle != q_handles[i]) {
4835 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4836 				  q_ctx->q_handle, q_handles[i]);
4837 			continue;
4838 		}
4839 		qg_list->parent_teid = node->info.parent_teid;
4840 		qg_list->num_qs = 1;
4841 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4842 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4843 					    vmvf_num, cd);
4844 
4845 		if (status)
4846 			break;
4847 		ice_free_sched_node(pi, node);
4848 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4849 		q_ctx->q_teid = ICE_INVAL_TEID;
4850 	}
4851 	mutex_unlock(&pi->sched_lock);
4852 	kfree(qg_list);
4853 	return status;
4854 }
4855 
4856 /**
4857  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4858  * @pi: port information structure
4859  * @vsi_handle: software VSI handle
4860  * @tc_bitmap: TC bitmap
4861  * @maxqs: max queues array per TC
4862  * @owner: LAN or RDMA
4863  *
4864  * This function adds/updates the VSI queues per TC.
4865  */
4866 static int
4867 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4868 	       u16 *maxqs, u8 owner)
4869 {
4870 	int status = 0;
4871 	u8 i;
4872 
4873 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4874 		return -EIO;
4875 
4876 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4877 		return -EINVAL;
4878 
4879 	mutex_lock(&pi->sched_lock);
4880 
4881 	ice_for_each_traffic_class(i) {
4882 		/* configuration is possible only if TC node is present */
4883 		if (!ice_sched_get_tc_node(pi, i))
4884 			continue;
4885 
4886 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4887 					   ice_is_tc_ena(tc_bitmap, i));
4888 		if (status)
4889 			break;
4890 	}
4891 
4892 	mutex_unlock(&pi->sched_lock);
4893 	return status;
4894 }
4895 
4896 /**
4897  * ice_cfg_vsi_lan - configure VSI LAN queues
4898  * @pi: port information structure
4899  * @vsi_handle: software VSI handle
4900  * @tc_bitmap: TC bitmap
4901  * @max_lanqs: max LAN queues array per TC
4902  *
4903  * This function adds/updates the VSI LAN queues per TC.
4904  */
4905 int
4906 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4907 		u16 *max_lanqs)
4908 {
4909 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4910 			      ICE_SCHED_NODE_OWNER_LAN);
4911 }
4912 
4913 /**
4914  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4915  * @pi: port information structure
4916  * @vsi_handle: software VSI handle
4917  * @tc_bitmap: TC bitmap
4918  * @max_rdmaqs: max RDMA queues array per TC
4919  *
4920  * This function adds/updates the VSI RDMA queues per TC.
4921  */
4922 int
4923 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4924 		 u16 *max_rdmaqs)
4925 {
4926 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4927 			      ICE_SCHED_NODE_OWNER_RDMA);
4928 }
4929 
4930 /**
4931  * ice_ena_vsi_rdma_qset
4932  * @pi: port information structure
4933  * @vsi_handle: software VSI handle
4934  * @tc: TC number
4935  * @rdma_qset: pointer to RDMA Qset
4936  * @num_qsets: number of RDMA Qsets
4937  * @qset_teid: pointer to Qset node TEIDs
4938  *
4939  * This function adds RDMA Qset
4940  */
4941 int
4942 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4943 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4944 {
4945 	struct ice_aqc_txsched_elem_data node = { 0 };
4946 	struct ice_aqc_add_rdma_qset_data *buf;
4947 	struct ice_sched_node *parent;
4948 	struct ice_hw *hw;
4949 	u16 i, buf_size;
4950 	int ret;
4951 
4952 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4953 		return -EIO;
4954 	hw = pi->hw;
4955 
4956 	if (!ice_is_vsi_valid(hw, vsi_handle))
4957 		return -EINVAL;
4958 
4959 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4960 	buf = kzalloc(buf_size, GFP_KERNEL);
4961 	if (!buf)
4962 		return -ENOMEM;
4963 	mutex_lock(&pi->sched_lock);
4964 
4965 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4966 					    ICE_SCHED_NODE_OWNER_RDMA);
4967 	if (!parent) {
4968 		ret = -EINVAL;
4969 		goto rdma_error_exit;
4970 	}
4971 	buf->parent_teid = parent->info.node_teid;
4972 	node.parent_teid = parent->info.node_teid;
4973 
4974 	buf->num_qsets = cpu_to_le16(num_qsets);
4975 	for (i = 0; i < num_qsets; i++) {
4976 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4977 		buf->rdma_qsets[i].info.valid_sections =
4978 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4979 			ICE_AQC_ELEM_VALID_EIR;
4980 		buf->rdma_qsets[i].info.generic = 0;
4981 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4982 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4983 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4984 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4985 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4986 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4987 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4988 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4989 	}
4990 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4991 	if (ret) {
4992 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4993 		goto rdma_error_exit;
4994 	}
4995 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4996 	for (i = 0; i < num_qsets; i++) {
4997 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4998 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4999 					 &node, NULL);
5000 		if (ret)
5001 			break;
5002 		qset_teid[i] = le32_to_cpu(node.node_teid);
5003 	}
5004 rdma_error_exit:
5005 	mutex_unlock(&pi->sched_lock);
5006 	kfree(buf);
5007 	return ret;
5008 }
5009 
5010 /**
5011  * ice_dis_vsi_rdma_qset - free RDMA resources
5012  * @pi: port_info struct
5013  * @count: number of RDMA Qsets to free
5014  * @qset_teid: TEID of Qset node
5015  * @q_id: list of queue IDs being disabled
5016  */
5017 int
5018 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5019 		      u16 *q_id)
5020 {
5021 	struct ice_aqc_dis_txq_item *qg_list;
5022 	struct ice_hw *hw;
5023 	int status = 0;
5024 	u16 qg_size;
5025 	int i;
5026 
5027 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5028 		return -EIO;
5029 
5030 	hw = pi->hw;
5031 
5032 	qg_size = struct_size(qg_list, q_id, 1);
5033 	qg_list = kzalloc(qg_size, GFP_KERNEL);
5034 	if (!qg_list)
5035 		return -ENOMEM;
5036 
5037 	mutex_lock(&pi->sched_lock);
5038 
5039 	for (i = 0; i < count; i++) {
5040 		struct ice_sched_node *node;
5041 
5042 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5043 		if (!node)
5044 			continue;
5045 
5046 		qg_list->parent_teid = node->info.parent_teid;
5047 		qg_list->num_qs = 1;
5048 		qg_list->q_id[0] =
5049 			cpu_to_le16(q_id[i] |
5050 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5051 
5052 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5053 					    ICE_NO_RESET, 0, NULL);
5054 		if (status)
5055 			break;
5056 
5057 		ice_free_sched_node(pi, node);
5058 	}
5059 
5060 	mutex_unlock(&pi->sched_lock);
5061 	kfree(qg_list);
5062 	return status;
5063 }
5064 
5065 /**
5066  * ice_aq_get_cgu_abilities - get cgu abilities
5067  * @hw: pointer to the HW struct
5068  * @abilities: CGU abilities
5069  *
5070  * Get CGU abilities (0x0C61)
5071  * Return: 0 on success or negative value on failure.
5072  */
5073 int
5074 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5075 			 struct ice_aqc_get_cgu_abilities *abilities)
5076 {
5077 	struct ice_aq_desc desc;
5078 
5079 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5080 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5081 }
5082 
5083 /**
5084  * ice_aq_set_input_pin_cfg - set input pin config
5085  * @hw: pointer to the HW struct
5086  * @input_idx: Input index
5087  * @flags1: Input flags
5088  * @flags2: Input flags
5089  * @freq: Frequency in Hz
5090  * @phase_delay: Delay in ps
5091  *
5092  * Set CGU input config (0x0C62)
5093  * Return: 0 on success or negative value on failure.
5094  */
5095 int
5096 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5097 			 u32 freq, s32 phase_delay)
5098 {
5099 	struct ice_aqc_set_cgu_input_config *cmd;
5100 	struct ice_aq_desc desc;
5101 
5102 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5103 	cmd = &desc.params.set_cgu_input_config;
5104 	cmd->input_idx = input_idx;
5105 	cmd->flags1 = flags1;
5106 	cmd->flags2 = flags2;
5107 	cmd->freq = cpu_to_le32(freq);
5108 	cmd->phase_delay = cpu_to_le32(phase_delay);
5109 
5110 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5111 }
5112 
5113 /**
5114  * ice_aq_get_input_pin_cfg - get input pin config
5115  * @hw: pointer to the HW struct
5116  * @input_idx: Input index
5117  * @status: Pin status
5118  * @type: Pin type
5119  * @flags1: Input flags
5120  * @flags2: Input flags
5121  * @freq: Frequency in Hz
5122  * @phase_delay: Delay in ps
5123  *
5124  * Get CGU input config (0x0C63)
5125  * Return: 0 on success or negative value on failure.
5126  */
5127 int
5128 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5129 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5130 {
5131 	struct ice_aqc_get_cgu_input_config *cmd;
5132 	struct ice_aq_desc desc;
5133 	int ret;
5134 
5135 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5136 	cmd = &desc.params.get_cgu_input_config;
5137 	cmd->input_idx = input_idx;
5138 
5139 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5140 	if (!ret) {
5141 		if (status)
5142 			*status = cmd->status;
5143 		if (type)
5144 			*type = cmd->type;
5145 		if (flags1)
5146 			*flags1 = cmd->flags1;
5147 		if (flags2)
5148 			*flags2 = cmd->flags2;
5149 		if (freq)
5150 			*freq = le32_to_cpu(cmd->freq);
5151 		if (phase_delay)
5152 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5153 	}
5154 
5155 	return ret;
5156 }
5157 
5158 /**
5159  * ice_aq_set_output_pin_cfg - set output pin config
5160  * @hw: pointer to the HW struct
5161  * @output_idx: Output index
5162  * @flags: Output flags
5163  * @src_sel: Index of DPLL block
5164  * @freq: Output frequency
5165  * @phase_delay: Output phase compensation
5166  *
5167  * Set CGU output config (0x0C64)
5168  * Return: 0 on success or negative value on failure.
5169  */
5170 int
5171 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5172 			  u8 src_sel, u32 freq, s32 phase_delay)
5173 {
5174 	struct ice_aqc_set_cgu_output_config *cmd;
5175 	struct ice_aq_desc desc;
5176 
5177 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5178 	cmd = &desc.params.set_cgu_output_config;
5179 	cmd->output_idx = output_idx;
5180 	cmd->flags = flags;
5181 	cmd->src_sel = src_sel;
5182 	cmd->freq = cpu_to_le32(freq);
5183 	cmd->phase_delay = cpu_to_le32(phase_delay);
5184 
5185 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5186 }
5187 
5188 /**
5189  * ice_aq_get_output_pin_cfg - get output pin config
5190  * @hw: pointer to the HW struct
5191  * @output_idx: Output index
5192  * @flags: Output flags
5193  * @src_sel: Internal DPLL source
5194  * @freq: Output frequency
5195  * @src_freq: Source frequency
5196  *
5197  * Get CGU output config (0x0C65)
5198  * Return: 0 on success or negative value on failure.
5199  */
5200 int
5201 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5202 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5203 {
5204 	struct ice_aqc_get_cgu_output_config *cmd;
5205 	struct ice_aq_desc desc;
5206 	int ret;
5207 
5208 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5209 	cmd = &desc.params.get_cgu_output_config;
5210 	cmd->output_idx = output_idx;
5211 
5212 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5213 	if (!ret) {
5214 		if (flags)
5215 			*flags = cmd->flags;
5216 		if (src_sel)
5217 			*src_sel = cmd->src_sel;
5218 		if (freq)
5219 			*freq = le32_to_cpu(cmd->freq);
5220 		if (src_freq)
5221 			*src_freq = le32_to_cpu(cmd->src_freq);
5222 	}
5223 
5224 	return ret;
5225 }
5226 
5227 /**
5228  * ice_aq_get_cgu_dpll_status - get dpll status
5229  * @hw: pointer to the HW struct
5230  * @dpll_num: DPLL index
5231  * @ref_state: Reference clock state
5232  * @config: current DPLL config
5233  * @dpll_state: current DPLL state
5234  * @phase_offset: Phase offset in ns
5235  * @eec_mode: EEC_mode
5236  *
5237  * Get CGU DPLL status (0x0C66)
5238  * Return: 0 on success or negative value on failure.
5239  */
5240 int
5241 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5242 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5243 			   u8 *eec_mode)
5244 {
5245 	struct ice_aqc_get_cgu_dpll_status *cmd;
5246 	const s64 nsec_per_psec = 1000LL;
5247 	struct ice_aq_desc desc;
5248 	int status;
5249 
5250 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5251 	cmd = &desc.params.get_cgu_dpll_status;
5252 	cmd->dpll_num = dpll_num;
5253 
5254 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5255 	if (!status) {
5256 		*ref_state = cmd->ref_state;
5257 		*dpll_state = cmd->dpll_state;
5258 		*config = cmd->config;
5259 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5260 		*phase_offset <<= 32;
5261 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5262 		*phase_offset = div64_s64(sign_extend64(*phase_offset, 47),
5263 					  nsec_per_psec);
5264 		*eec_mode = cmd->eec_mode;
5265 	}
5266 
5267 	return status;
5268 }
5269 
5270 /**
5271  * ice_aq_set_cgu_dpll_config - set dpll config
5272  * @hw: pointer to the HW struct
5273  * @dpll_num: DPLL index
5274  * @ref_state: Reference clock state
5275  * @config: DPLL config
5276  * @eec_mode: EEC mode
5277  *
5278  * Set CGU DPLL config (0x0C67)
5279  * Return: 0 on success or negative value on failure.
5280  */
5281 int
5282 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5283 			   u8 config, u8 eec_mode)
5284 {
5285 	struct ice_aqc_set_cgu_dpll_config *cmd;
5286 	struct ice_aq_desc desc;
5287 
5288 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5289 	cmd = &desc.params.set_cgu_dpll_config;
5290 	cmd->dpll_num = dpll_num;
5291 	cmd->ref_state = ref_state;
5292 	cmd->config = config;
5293 	cmd->eec_mode = eec_mode;
5294 
5295 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5296 }
5297 
5298 /**
5299  * ice_aq_set_cgu_ref_prio - set input reference priority
5300  * @hw: pointer to the HW struct
5301  * @dpll_num: DPLL index
5302  * @ref_idx: Reference pin index
5303  * @ref_priority: Reference input priority
5304  *
5305  * Set CGU reference priority (0x0C68)
5306  * Return: 0 on success or negative value on failure.
5307  */
5308 int
5309 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5310 			u8 ref_priority)
5311 {
5312 	struct ice_aqc_set_cgu_ref_prio *cmd;
5313 	struct ice_aq_desc desc;
5314 
5315 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5316 	cmd = &desc.params.set_cgu_ref_prio;
5317 	cmd->dpll_num = dpll_num;
5318 	cmd->ref_idx = ref_idx;
5319 	cmd->ref_priority = ref_priority;
5320 
5321 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5322 }
5323 
5324 /**
5325  * ice_aq_get_cgu_ref_prio - get input reference priority
5326  * @hw: pointer to the HW struct
5327  * @dpll_num: DPLL index
5328  * @ref_idx: Reference pin index
5329  * @ref_prio: Reference input priority
5330  *
5331  * Get CGU reference priority (0x0C69)
5332  * Return: 0 on success or negative value on failure.
5333  */
5334 int
5335 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5336 			u8 *ref_prio)
5337 {
5338 	struct ice_aqc_get_cgu_ref_prio *cmd;
5339 	struct ice_aq_desc desc;
5340 	int status;
5341 
5342 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5343 	cmd = &desc.params.get_cgu_ref_prio;
5344 	cmd->dpll_num = dpll_num;
5345 	cmd->ref_idx = ref_idx;
5346 
5347 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5348 	if (!status)
5349 		*ref_prio = cmd->ref_priority;
5350 
5351 	return status;
5352 }
5353 
5354 /**
5355  * ice_aq_get_cgu_info - get cgu info
5356  * @hw: pointer to the HW struct
5357  * @cgu_id: CGU ID
5358  * @cgu_cfg_ver: CGU config version
5359  * @cgu_fw_ver: CGU firmware version
5360  *
5361  * Get CGU info (0x0C6A)
5362  * Return: 0 on success or negative value on failure.
5363  */
5364 int
5365 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5366 		    u32 *cgu_fw_ver)
5367 {
5368 	struct ice_aqc_get_cgu_info *cmd;
5369 	struct ice_aq_desc desc;
5370 	int status;
5371 
5372 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5373 	cmd = &desc.params.get_cgu_info;
5374 
5375 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5376 	if (!status) {
5377 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5378 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5379 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5380 	}
5381 
5382 	return status;
5383 }
5384 
5385 /**
5386  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5387  * @hw: pointer to the HW struct
5388  * @phy_output: PHY reference clock output pin
5389  * @enable: GPIO state to be applied
5390  * @freq: PHY output frequency
5391  *
5392  * Set phy recovered clock as reference (0x0630)
5393  * Return: 0 on success or negative value on failure.
5394  */
5395 int
5396 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5397 			   u32 *freq)
5398 {
5399 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5400 	struct ice_aq_desc desc;
5401 	int status;
5402 
5403 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5404 	cmd = &desc.params.set_phy_rec_clk_out;
5405 	cmd->phy_output = phy_output;
5406 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5407 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5408 	cmd->freq = cpu_to_le32(*freq);
5409 
5410 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5411 	if (!status)
5412 		*freq = le32_to_cpu(cmd->freq);
5413 
5414 	return status;
5415 }
5416 
5417 /**
5418  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5419  * @hw: pointer to the HW struct
5420  * @phy_output: PHY reference clock output pin
5421  * @port_num: Port number
5422  * @flags: PHY flags
5423  * @node_handle: PHY output frequency
5424  *
5425  * Get PHY recovered clock output info (0x0631)
5426  * Return: 0 on success or negative value on failure.
5427  */
5428 int
5429 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5430 			   u8 *flags, u16 *node_handle)
5431 {
5432 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5433 	struct ice_aq_desc desc;
5434 	int status;
5435 
5436 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5437 	cmd = &desc.params.get_phy_rec_clk_out;
5438 	cmd->phy_output = *phy_output;
5439 
5440 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5441 	if (!status) {
5442 		*phy_output = cmd->phy_output;
5443 		if (port_num)
5444 			*port_num = cmd->port_num;
5445 		if (flags)
5446 			*flags = cmd->flags;
5447 		if (node_handle)
5448 			*node_handle = le16_to_cpu(cmd->node_handle);
5449 	}
5450 
5451 	return status;
5452 }
5453 
5454 /**
5455  * ice_replay_pre_init - replay pre initialization
5456  * @hw: pointer to the HW struct
5457  *
5458  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5459  */
5460 static int ice_replay_pre_init(struct ice_hw *hw)
5461 {
5462 	struct ice_switch_info *sw = hw->switch_info;
5463 	u8 i;
5464 
5465 	/* Delete old entries from replay filter list head if there is any */
5466 	ice_rm_all_sw_replay_rule_info(hw);
5467 	/* In start of replay, move entries into replay_rules list, it
5468 	 * will allow adding rules entries back to filt_rules list,
5469 	 * which is operational list.
5470 	 */
5471 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5472 		list_replace_init(&sw->recp_list[i].filt_rules,
5473 				  &sw->recp_list[i].filt_replay_rules);
5474 	ice_sched_replay_agg_vsi_preinit(hw);
5475 
5476 	return 0;
5477 }
5478 
5479 /**
5480  * ice_replay_vsi - replay VSI configuration
5481  * @hw: pointer to the HW struct
5482  * @vsi_handle: driver VSI handle
5483  *
5484  * Restore all VSI configuration after reset. It is required to call this
5485  * function with main VSI first.
5486  */
5487 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5488 {
5489 	int status;
5490 
5491 	if (!ice_is_vsi_valid(hw, vsi_handle))
5492 		return -EINVAL;
5493 
5494 	/* Replay pre-initialization if there is any */
5495 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5496 		status = ice_replay_pre_init(hw);
5497 		if (status)
5498 			return status;
5499 	}
5500 	/* Replay per VSI all RSS configurations */
5501 	status = ice_replay_rss_cfg(hw, vsi_handle);
5502 	if (status)
5503 		return status;
5504 	/* Replay per VSI all filters */
5505 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5506 	if (!status)
5507 		status = ice_replay_vsi_agg(hw, vsi_handle);
5508 	return status;
5509 }
5510 
5511 /**
5512  * ice_replay_post - post replay configuration cleanup
5513  * @hw: pointer to the HW struct
5514  *
5515  * Post replay cleanup.
5516  */
5517 void ice_replay_post(struct ice_hw *hw)
5518 {
5519 	/* Delete old entries from replay filter list head */
5520 	ice_rm_all_sw_replay_rule_info(hw);
5521 	ice_sched_replay_agg(hw);
5522 }
5523 
5524 /**
5525  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5526  * @hw: ptr to the hardware info
5527  * @reg: offset of 64 bit HW register to read from
5528  * @prev_stat_loaded: bool to specify if previous stats are loaded
5529  * @prev_stat: ptr to previous loaded stat value
5530  * @cur_stat: ptr to current stat value
5531  */
5532 void
5533 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5534 		  u64 *prev_stat, u64 *cur_stat)
5535 {
5536 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5537 
5538 	/* device stats are not reset at PFR, they likely will not be zeroed
5539 	 * when the driver starts. Thus, save the value from the first read
5540 	 * without adding to the statistic value so that we report stats which
5541 	 * count up from zero.
5542 	 */
5543 	if (!prev_stat_loaded) {
5544 		*prev_stat = new_data;
5545 		return;
5546 	}
5547 
5548 	/* Calculate the difference between the new and old values, and then
5549 	 * add it to the software stat value.
5550 	 */
5551 	if (new_data >= *prev_stat)
5552 		*cur_stat += new_data - *prev_stat;
5553 	else
5554 		/* to manage the potential roll-over */
5555 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5556 
5557 	/* Update the previously stored value to prepare for next read */
5558 	*prev_stat = new_data;
5559 }
5560 
5561 /**
5562  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5563  * @hw: ptr to the hardware info
5564  * @reg: offset of HW register to read from
5565  * @prev_stat_loaded: bool to specify if previous stats are loaded
5566  * @prev_stat: ptr to previous loaded stat value
5567  * @cur_stat: ptr to current stat value
5568  */
5569 void
5570 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5571 		  u64 *prev_stat, u64 *cur_stat)
5572 {
5573 	u32 new_data;
5574 
5575 	new_data = rd32(hw, reg);
5576 
5577 	/* device stats are not reset at PFR, they likely will not be zeroed
5578 	 * when the driver starts. Thus, save the value from the first read
5579 	 * without adding to the statistic value so that we report stats which
5580 	 * count up from zero.
5581 	 */
5582 	if (!prev_stat_loaded) {
5583 		*prev_stat = new_data;
5584 		return;
5585 	}
5586 
5587 	/* Calculate the difference between the new and old values, and then
5588 	 * add it to the software stat value.
5589 	 */
5590 	if (new_data >= *prev_stat)
5591 		*cur_stat += new_data - *prev_stat;
5592 	else
5593 		/* to manage the potential roll-over */
5594 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5595 
5596 	/* Update the previously stored value to prepare for next read */
5597 	*prev_stat = new_data;
5598 }
5599 
5600 /**
5601  * ice_sched_query_elem - query element information from HW
5602  * @hw: pointer to the HW struct
5603  * @node_teid: node TEID to be queried
5604  * @buf: buffer to element information
5605  *
5606  * This function queries HW element information
5607  */
5608 int
5609 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5610 		     struct ice_aqc_txsched_elem_data *buf)
5611 {
5612 	u16 buf_size, num_elem_ret = 0;
5613 	int status;
5614 
5615 	buf_size = sizeof(*buf);
5616 	memset(buf, 0, buf_size);
5617 	buf->node_teid = cpu_to_le32(node_teid);
5618 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5619 					  NULL);
5620 	if (status || num_elem_ret != 1)
5621 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5622 	return status;
5623 }
5624 
5625 /**
5626  * ice_aq_read_i2c
5627  * @hw: pointer to the hw struct
5628  * @topo_addr: topology address for a device to communicate with
5629  * @bus_addr: 7-bit I2C bus address
5630  * @addr: I2C memory address (I2C offset) with up to 16 bits
5631  * @params: I2C parameters: bit [7] - Repeated start,
5632  *			    bits [6:5] data offset size,
5633  *			    bit [4] - I2C address type,
5634  *			    bits [3:0] - data size to read (0-16 bytes)
5635  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5636  * @cd: pointer to command details structure or NULL
5637  *
5638  * Read I2C (0x06E2)
5639  */
5640 int
5641 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5642 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5643 		struct ice_sq_cd *cd)
5644 {
5645 	struct ice_aq_desc desc = { 0 };
5646 	struct ice_aqc_i2c *cmd;
5647 	u8 data_size;
5648 	int status;
5649 
5650 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5651 	cmd = &desc.params.read_write_i2c;
5652 
5653 	if (!data)
5654 		return -EINVAL;
5655 
5656 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5657 
5658 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5659 	cmd->topo_addr = topo_addr;
5660 	cmd->i2c_params = params;
5661 	cmd->i2c_addr = addr;
5662 
5663 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5664 	if (!status) {
5665 		struct ice_aqc_read_i2c_resp *resp;
5666 		u8 i;
5667 
5668 		resp = &desc.params.read_i2c_resp;
5669 		for (i = 0; i < data_size; i++) {
5670 			*data = resp->i2c_data[i];
5671 			data++;
5672 		}
5673 	}
5674 
5675 	return status;
5676 }
5677 
5678 /**
5679  * ice_aq_write_i2c
5680  * @hw: pointer to the hw struct
5681  * @topo_addr: topology address for a device to communicate with
5682  * @bus_addr: 7-bit I2C bus address
5683  * @addr: I2C memory address (I2C offset) with up to 16 bits
5684  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5685  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5686  * @cd: pointer to command details structure or NULL
5687  *
5688  * Write I2C (0x06E3)
5689  *
5690  * * Return:
5691  * * 0             - Successful write to the i2c device
5692  * * -EINVAL       - Data size greater than 4 bytes
5693  * * -EIO          - FW error
5694  */
5695 int
5696 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5697 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5698 		 struct ice_sq_cd *cd)
5699 {
5700 	struct ice_aq_desc desc = { 0 };
5701 	struct ice_aqc_i2c *cmd;
5702 	u8 data_size;
5703 
5704 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5705 	cmd = &desc.params.read_write_i2c;
5706 
5707 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5708 
5709 	/* data_size limited to 4 */
5710 	if (data_size > 4)
5711 		return -EINVAL;
5712 
5713 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5714 	cmd->topo_addr = topo_addr;
5715 	cmd->i2c_params = params;
5716 	cmd->i2c_addr = addr;
5717 
5718 	memcpy(cmd->i2c_data, data, data_size);
5719 
5720 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5721 }
5722 
5723 /**
5724  * ice_aq_set_gpio
5725  * @hw: pointer to the hw struct
5726  * @gpio_ctrl_handle: GPIO controller node handle
5727  * @pin_idx: IO Number of the GPIO that needs to be set
5728  * @value: SW provide IO value to set in the LSB
5729  * @cd: pointer to command details structure or NULL
5730  *
5731  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5732  */
5733 int
5734 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5735 		struct ice_sq_cd *cd)
5736 {
5737 	struct ice_aqc_gpio *cmd;
5738 	struct ice_aq_desc desc;
5739 
5740 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5741 	cmd = &desc.params.read_write_gpio;
5742 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5743 	cmd->gpio_num = pin_idx;
5744 	cmd->gpio_val = value ? 1 : 0;
5745 
5746 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5747 }
5748 
5749 /**
5750  * ice_aq_get_gpio
5751  * @hw: pointer to the hw struct
5752  * @gpio_ctrl_handle: GPIO controller node handle
5753  * @pin_idx: IO Number of the GPIO that needs to be set
5754  * @value: IO value read
5755  * @cd: pointer to command details structure or NULL
5756  *
5757  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5758  * the topology
5759  */
5760 int
5761 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5762 		bool *value, struct ice_sq_cd *cd)
5763 {
5764 	struct ice_aqc_gpio *cmd;
5765 	struct ice_aq_desc desc;
5766 	int status;
5767 
5768 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5769 	cmd = &desc.params.read_write_gpio;
5770 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5771 	cmd->gpio_num = pin_idx;
5772 
5773 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5774 	if (status)
5775 		return status;
5776 
5777 	*value = !!cmd->gpio_val;
5778 	return 0;
5779 }
5780 
5781 /**
5782  * ice_is_fw_api_min_ver
5783  * @hw: pointer to the hardware structure
5784  * @maj: major version
5785  * @min: minor version
5786  * @patch: patch version
5787  *
5788  * Checks if the firmware API is minimum version
5789  */
5790 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5791 {
5792 	if (hw->api_maj_ver == maj) {
5793 		if (hw->api_min_ver > min)
5794 			return true;
5795 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5796 			return true;
5797 	} else if (hw->api_maj_ver > maj) {
5798 		return true;
5799 	}
5800 
5801 	return false;
5802 }
5803 
5804 /**
5805  * ice_fw_supports_link_override
5806  * @hw: pointer to the hardware structure
5807  *
5808  * Checks if the firmware supports link override
5809  */
5810 bool ice_fw_supports_link_override(struct ice_hw *hw)
5811 {
5812 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5813 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5814 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5815 }
5816 
5817 /**
5818  * ice_get_link_default_override
5819  * @ldo: pointer to the link default override struct
5820  * @pi: pointer to the port info struct
5821  *
5822  * Gets the link default override for a port
5823  */
5824 int
5825 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5826 			      struct ice_port_info *pi)
5827 {
5828 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5829 	struct ice_hw *hw = pi->hw;
5830 	int status;
5831 
5832 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5833 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5834 	if (status) {
5835 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5836 		return status;
5837 	}
5838 
5839 	/* Each port has its own config; calculate for our port */
5840 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5841 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5842 
5843 	/* link options first */
5844 	status = ice_read_sr_word(hw, tlv_start, &buf);
5845 	if (status) {
5846 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5847 		return status;
5848 	}
5849 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5850 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5851 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5852 
5853 	/* link PHY config */
5854 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5855 	status = ice_read_sr_word(hw, offset, &buf);
5856 	if (status) {
5857 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5858 		return status;
5859 	}
5860 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5861 
5862 	/* PHY types low */
5863 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5864 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5865 		status = ice_read_sr_word(hw, (offset + i), &buf);
5866 		if (status) {
5867 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5868 			return status;
5869 		}
5870 		/* shift 16 bits at a time to fill 64 bits */
5871 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5872 	}
5873 
5874 	/* PHY types high */
5875 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5876 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5877 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5878 		status = ice_read_sr_word(hw, (offset + i), &buf);
5879 		if (status) {
5880 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5881 			return status;
5882 		}
5883 		/* shift 16 bits at a time to fill 64 bits */
5884 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5885 	}
5886 
5887 	return status;
5888 }
5889 
5890 /**
5891  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5892  * @caps: get PHY capability data
5893  */
5894 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5895 {
5896 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5897 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5898 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5899 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5900 		return true;
5901 
5902 	return false;
5903 }
5904 
5905 /**
5906  * ice_aq_set_lldp_mib - Set the LLDP MIB
5907  * @hw: pointer to the HW struct
5908  * @mib_type: Local, Remote or both Local and Remote MIBs
5909  * @buf: pointer to the caller-supplied buffer to store the MIB block
5910  * @buf_size: size of the buffer (in bytes)
5911  * @cd: pointer to command details structure or NULL
5912  *
5913  * Set the LLDP MIB. (0x0A08)
5914  */
5915 int
5916 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5917 		    struct ice_sq_cd *cd)
5918 {
5919 	struct ice_aqc_lldp_set_local_mib *cmd;
5920 	struct ice_aq_desc desc;
5921 
5922 	cmd = &desc.params.lldp_set_mib;
5923 
5924 	if (buf_size == 0 || !buf)
5925 		return -EINVAL;
5926 
5927 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5928 
5929 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5930 	desc.datalen = cpu_to_le16(buf_size);
5931 
5932 	cmd->type = mib_type;
5933 	cmd->length = cpu_to_le16(buf_size);
5934 
5935 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5936 }
5937 
5938 /**
5939  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5940  * @hw: pointer to HW struct
5941  */
5942 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5943 {
5944 	if (hw->mac_type != ICE_MAC_E810)
5945 		return false;
5946 
5947 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5948 				     ICE_FW_API_LLDP_FLTR_MIN,
5949 				     ICE_FW_API_LLDP_FLTR_PATCH);
5950 }
5951 
5952 /**
5953  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5954  * @hw: pointer to HW struct
5955  * @vsi_num: absolute HW index for VSI
5956  * @add: boolean for if adding or removing a filter
5957  */
5958 int
5959 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5960 {
5961 	struct ice_aqc_lldp_filter_ctrl *cmd;
5962 	struct ice_aq_desc desc;
5963 
5964 	cmd = &desc.params.lldp_filter_ctrl;
5965 
5966 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5967 
5968 	if (add)
5969 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5970 	else
5971 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5972 
5973 	cmd->vsi_num = cpu_to_le16(vsi_num);
5974 
5975 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5976 }
5977 
5978 /**
5979  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5980  * @hw: pointer to HW struct
5981  */
5982 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5983 {
5984 	struct ice_aq_desc desc;
5985 
5986 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5987 
5988 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5989 }
5990 
5991 /**
5992  * ice_fw_supports_report_dflt_cfg
5993  * @hw: pointer to the hardware structure
5994  *
5995  * Checks if the firmware supports report default configuration
5996  */
5997 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5998 {
5999 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6000 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6001 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6002 }
6003 
6004 /* each of the indexes into the following array match the speed of a return
6005  * value from the list of AQ returned speeds like the range:
6006  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6007  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6008  * array. The array is defined as 15 elements long because the link_speed
6009  * returned by the firmware is a 16 bit * value, but is indexed
6010  * by [fls(speed) - 1]
6011  */
6012 static const u32 ice_aq_to_link_speed[] = {
6013 	SPEED_10,	/* BIT(0) */
6014 	SPEED_100,
6015 	SPEED_1000,
6016 	SPEED_2500,
6017 	SPEED_5000,
6018 	SPEED_10000,
6019 	SPEED_20000,
6020 	SPEED_25000,
6021 	SPEED_40000,
6022 	SPEED_50000,
6023 	SPEED_100000,	/* BIT(10) */
6024 };
6025 
6026 /**
6027  * ice_get_link_speed - get integer speed from table
6028  * @index: array index from fls(aq speed) - 1
6029  *
6030  * Returns: u32 value containing integer speed
6031  */
6032 u32 ice_get_link_speed(u16 index)
6033 {
6034 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6035 		return 0;
6036 
6037 	return ice_aq_to_link_speed[index];
6038 }
6039