xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision fcc680a647ba77370480fe753664cc10d572b240)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10 
11 #define ICE_PF_RESET_WAIT_COUNT	300
12 #define ICE_MAX_NETLIST_SIZE	10
13 
14 static const char * const ice_link_mode_str_low[] = {
15 	[0] = "100BASE_TX",
16 	[1] = "100M_SGMII",
17 	[2] = "1000BASE_T",
18 	[3] = "1000BASE_SX",
19 	[4] = "1000BASE_LX",
20 	[5] = "1000BASE_KX",
21 	[6] = "1G_SGMII",
22 	[7] = "2500BASE_T",
23 	[8] = "2500BASE_X",
24 	[9] = "2500BASE_KX",
25 	[10] = "5GBASE_T",
26 	[11] = "5GBASE_KR",
27 	[12] = "10GBASE_T",
28 	[13] = "10G_SFI_DA",
29 	[14] = "10GBASE_SR",
30 	[15] = "10GBASE_LR",
31 	[16] = "10GBASE_KR_CR1",
32 	[17] = "10G_SFI_AOC_ACC",
33 	[18] = "10G_SFI_C2C",
34 	[19] = "25GBASE_T",
35 	[20] = "25GBASE_CR",
36 	[21] = "25GBASE_CR_S",
37 	[22] = "25GBASE_CR1",
38 	[23] = "25GBASE_SR",
39 	[24] = "25GBASE_LR",
40 	[25] = "25GBASE_KR",
41 	[26] = "25GBASE_KR_S",
42 	[27] = "25GBASE_KR1",
43 	[28] = "25G_AUI_AOC_ACC",
44 	[29] = "25G_AUI_C2C",
45 	[30] = "40GBASE_CR4",
46 	[31] = "40GBASE_SR4",
47 	[32] = "40GBASE_LR4",
48 	[33] = "40GBASE_KR4",
49 	[34] = "40G_XLAUI_AOC_ACC",
50 	[35] = "40G_XLAUI",
51 	[36] = "50GBASE_CR2",
52 	[37] = "50GBASE_SR2",
53 	[38] = "50GBASE_LR2",
54 	[39] = "50GBASE_KR2",
55 	[40] = "50G_LAUI2_AOC_ACC",
56 	[41] = "50G_LAUI2",
57 	[42] = "50G_AUI2_AOC_ACC",
58 	[43] = "50G_AUI2",
59 	[44] = "50GBASE_CP",
60 	[45] = "50GBASE_SR",
61 	[46] = "50GBASE_FR",
62 	[47] = "50GBASE_LR",
63 	[48] = "50GBASE_KR_PAM4",
64 	[49] = "50G_AUI1_AOC_ACC",
65 	[50] = "50G_AUI1",
66 	[51] = "100GBASE_CR4",
67 	[52] = "100GBASE_SR4",
68 	[53] = "100GBASE_LR4",
69 	[54] = "100GBASE_KR4",
70 	[55] = "100G_CAUI4_AOC_ACC",
71 	[56] = "100G_CAUI4",
72 	[57] = "100G_AUI4_AOC_ACC",
73 	[58] = "100G_AUI4",
74 	[59] = "100GBASE_CR_PAM4",
75 	[60] = "100GBASE_KR_PAM4",
76 	[61] = "100GBASE_CP2",
77 	[62] = "100GBASE_SR2",
78 	[63] = "100GBASE_DR",
79 };
80 
81 static const char * const ice_link_mode_str_high[] = {
82 	[0] = "100GBASE_KR2_PAM4",
83 	[1] = "100G_CAUI2_AOC_ACC",
84 	[2] = "100G_CAUI2",
85 	[3] = "100G_AUI2_AOC_ACC",
86 	[4] = "100G_AUI2",
87 };
88 
89 /**
90  * ice_dump_phy_type - helper function to dump phy_type
91  * @hw: pointer to the HW structure
92  * @low: 64 bit value for phy_type_low
93  * @high: 64 bit value for phy_type_high
94  * @prefix: prefix string to differentiate multiple dumps
95  */
96 static void
97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100 
101 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 		if (low & BIT_ULL(i))
103 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
104 				  prefix, i, ice_link_mode_str_low[i]);
105 	}
106 
107 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108 
109 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 		if (high & BIT_ULL(i))
111 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
112 				  prefix, i, ice_link_mode_str_high[i]);
113 	}
114 }
115 
116 /**
117  * ice_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the MAC type of the adapter based on the
121  * vendor ID and device ID stored in the HW structure.
122  */
123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 		return -ENODEV;
127 
128 	switch (hw->device_id) {
129 	case ICE_DEV_ID_E810C_BACKPLANE:
130 	case ICE_DEV_ID_E810C_QSFP:
131 	case ICE_DEV_ID_E810C_SFP:
132 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 	case ICE_DEV_ID_E810_XXV_QSFP:
134 	case ICE_DEV_ID_E810_XXV_SFP:
135 		hw->mac_type = ICE_MAC_E810;
136 		break;
137 	case ICE_DEV_ID_E823C_10G_BASE_T:
138 	case ICE_DEV_ID_E823C_BACKPLANE:
139 	case ICE_DEV_ID_E823C_QSFP:
140 	case ICE_DEV_ID_E823C_SFP:
141 	case ICE_DEV_ID_E823C_SGMII:
142 	case ICE_DEV_ID_E822C_10G_BASE_T:
143 	case ICE_DEV_ID_E822C_BACKPLANE:
144 	case ICE_DEV_ID_E822C_QSFP:
145 	case ICE_DEV_ID_E822C_SFP:
146 	case ICE_DEV_ID_E822C_SGMII:
147 	case ICE_DEV_ID_E822L_10G_BASE_T:
148 	case ICE_DEV_ID_E822L_BACKPLANE:
149 	case ICE_DEV_ID_E822L_SFP:
150 	case ICE_DEV_ID_E822L_SGMII:
151 	case ICE_DEV_ID_E823L_10G_BASE_T:
152 	case ICE_DEV_ID_E823L_1GBE:
153 	case ICE_DEV_ID_E823L_BACKPLANE:
154 	case ICE_DEV_ID_E823L_QSFP:
155 	case ICE_DEV_ID_E823L_SFP:
156 		hw->mac_type = ICE_MAC_GENERIC;
157 		break;
158 	case ICE_DEV_ID_E825C_BACKPLANE:
159 	case ICE_DEV_ID_E825C_QSFP:
160 	case ICE_DEV_ID_E825C_SFP:
161 	case ICE_DEV_ID_E825C_SGMII:
162 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 		break;
164 	case ICE_DEV_ID_E830CC_BACKPLANE:
165 	case ICE_DEV_ID_E830CC_QSFP56:
166 	case ICE_DEV_ID_E830CC_SFP:
167 	case ICE_DEV_ID_E830CC_SFP_DD:
168 	case ICE_DEV_ID_E830C_BACKPLANE:
169 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 	case ICE_DEV_ID_E830C_QSFP:
171 	case ICE_DEV_ID_E830_XXV_QSFP:
172 	case ICE_DEV_ID_E830C_SFP:
173 	case ICE_DEV_ID_E830_XXV_SFP:
174 		hw->mac_type = ICE_MAC_E830;
175 		break;
176 	default:
177 		hw->mac_type = ICE_MAC_UNKNOWN;
178 		break;
179 	}
180 
181 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
182 	return 0;
183 }
184 
185 /**
186  * ice_is_generic_mac - check if device's mac_type is generic
187  * @hw: pointer to the hardware structure
188  *
189  * Return: true if mac_type is generic (with SBQ support), false if not
190  */
191 bool ice_is_generic_mac(struct ice_hw *hw)
192 {
193 	return (hw->mac_type == ICE_MAC_GENERIC ||
194 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
195 }
196 
197 /**
198  * ice_is_e810
199  * @hw: pointer to the hardware structure
200  *
201  * returns true if the device is E810 based, false if not.
202  */
203 bool ice_is_e810(struct ice_hw *hw)
204 {
205 	return hw->mac_type == ICE_MAC_E810;
206 }
207 
208 /**
209  * ice_is_e810t
210  * @hw: pointer to the hardware structure
211  *
212  * returns true if the device is E810T based, false if not.
213  */
214 bool ice_is_e810t(struct ice_hw *hw)
215 {
216 	switch (hw->device_id) {
217 	case ICE_DEV_ID_E810C_SFP:
218 		switch (hw->subsystem_device_id) {
219 		case ICE_SUBDEV_ID_E810T:
220 		case ICE_SUBDEV_ID_E810T2:
221 		case ICE_SUBDEV_ID_E810T3:
222 		case ICE_SUBDEV_ID_E810T4:
223 		case ICE_SUBDEV_ID_E810T6:
224 		case ICE_SUBDEV_ID_E810T7:
225 			return true;
226 		}
227 		break;
228 	case ICE_DEV_ID_E810C_QSFP:
229 		switch (hw->subsystem_device_id) {
230 		case ICE_SUBDEV_ID_E810T2:
231 		case ICE_SUBDEV_ID_E810T3:
232 		case ICE_SUBDEV_ID_E810T5:
233 			return true;
234 		}
235 		break;
236 	default:
237 		break;
238 	}
239 
240 	return false;
241 }
242 
243 /**
244  * ice_is_e822 - Check if a device is E822 family device
245  * @hw: pointer to the hardware structure
246  *
247  * Return: true if the device is E822 based, false if not.
248  */
249 bool ice_is_e822(struct ice_hw *hw)
250 {
251 	switch (hw->device_id) {
252 	case ICE_DEV_ID_E822C_BACKPLANE:
253 	case ICE_DEV_ID_E822C_QSFP:
254 	case ICE_DEV_ID_E822C_SFP:
255 	case ICE_DEV_ID_E822C_10G_BASE_T:
256 	case ICE_DEV_ID_E822C_SGMII:
257 	case ICE_DEV_ID_E822L_BACKPLANE:
258 	case ICE_DEV_ID_E822L_SFP:
259 	case ICE_DEV_ID_E822L_10G_BASE_T:
260 	case ICE_DEV_ID_E822L_SGMII:
261 		return true;
262 	default:
263 		return false;
264 	}
265 }
266 
267 /**
268  * ice_is_e823
269  * @hw: pointer to the hardware structure
270  *
271  * returns true if the device is E823-L or E823-C based, false if not.
272  */
273 bool ice_is_e823(struct ice_hw *hw)
274 {
275 	switch (hw->device_id) {
276 	case ICE_DEV_ID_E823L_BACKPLANE:
277 	case ICE_DEV_ID_E823L_SFP:
278 	case ICE_DEV_ID_E823L_10G_BASE_T:
279 	case ICE_DEV_ID_E823L_1GBE:
280 	case ICE_DEV_ID_E823L_QSFP:
281 	case ICE_DEV_ID_E823C_BACKPLANE:
282 	case ICE_DEV_ID_E823C_QSFP:
283 	case ICE_DEV_ID_E823C_SFP:
284 	case ICE_DEV_ID_E823C_10G_BASE_T:
285 	case ICE_DEV_ID_E823C_SGMII:
286 		return true;
287 	default:
288 		return false;
289 	}
290 }
291 
292 /**
293  * ice_is_e825c - Check if a device is E825C family device
294  * @hw: pointer to the hardware structure
295  *
296  * Return: true if the device is E825-C based, false if not.
297  */
298 bool ice_is_e825c(struct ice_hw *hw)
299 {
300 	switch (hw->device_id) {
301 	case ICE_DEV_ID_E825C_BACKPLANE:
302 	case ICE_DEV_ID_E825C_QSFP:
303 	case ICE_DEV_ID_E825C_SFP:
304 	case ICE_DEV_ID_E825C_SGMII:
305 		return true;
306 	default:
307 		return false;
308 	}
309 }
310 
311 /**
312  * ice_clear_pf_cfg - Clear PF configuration
313  * @hw: pointer to the hardware structure
314  *
315  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
316  * configuration, flow director filters, etc.).
317  */
318 int ice_clear_pf_cfg(struct ice_hw *hw)
319 {
320 	struct ice_aq_desc desc;
321 
322 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
323 
324 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
325 }
326 
327 /**
328  * ice_aq_manage_mac_read - manage MAC address read command
329  * @hw: pointer to the HW struct
330  * @buf: a virtual buffer to hold the manage MAC read response
331  * @buf_size: Size of the virtual buffer
332  * @cd: pointer to command details structure or NULL
333  *
334  * This function is used to return per PF station MAC address (0x0107).
335  * NOTE: Upon successful completion of this command, MAC address information
336  * is returned in user specified buffer. Please interpret user specified
337  * buffer as "manage_mac_read" response.
338  * Response such as various MAC addresses are stored in HW struct (port.mac)
339  * ice_discover_dev_caps is expected to be called before this function is
340  * called.
341  */
342 static int
343 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
344 		       struct ice_sq_cd *cd)
345 {
346 	struct ice_aqc_manage_mac_read_resp *resp;
347 	struct ice_aqc_manage_mac_read *cmd;
348 	struct ice_aq_desc desc;
349 	int status;
350 	u16 flags;
351 	u8 i;
352 
353 	cmd = &desc.params.mac_read;
354 
355 	if (buf_size < sizeof(*resp))
356 		return -EINVAL;
357 
358 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
359 
360 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
361 	if (status)
362 		return status;
363 
364 	resp = buf;
365 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
366 
367 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
368 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
369 		return -EIO;
370 	}
371 
372 	/* A single port can report up to two (LAN and WoL) addresses */
373 	for (i = 0; i < cmd->num_addr; i++)
374 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
375 			ether_addr_copy(hw->port_info->mac.lan_addr,
376 					resp[i].mac_addr);
377 			ether_addr_copy(hw->port_info->mac.perm_addr,
378 					resp[i].mac_addr);
379 			break;
380 		}
381 
382 	return 0;
383 }
384 
385 /**
386  * ice_aq_get_phy_caps - returns PHY capabilities
387  * @pi: port information structure
388  * @qual_mods: report qualified modules
389  * @report_mode: report mode capabilities
390  * @pcaps: structure for PHY capabilities to be filled
391  * @cd: pointer to command details structure or NULL
392  *
393  * Returns the various PHY capabilities supported on the Port (0x0600)
394  */
395 int
396 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
397 		    struct ice_aqc_get_phy_caps_data *pcaps,
398 		    struct ice_sq_cd *cd)
399 {
400 	struct ice_aqc_get_phy_caps *cmd;
401 	u16 pcaps_size = sizeof(*pcaps);
402 	struct ice_aq_desc desc;
403 	const char *prefix;
404 	struct ice_hw *hw;
405 	int status;
406 
407 	cmd = &desc.params.get_phy;
408 
409 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
410 		return -EINVAL;
411 	hw = pi->hw;
412 
413 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
414 	    !ice_fw_supports_report_dflt_cfg(hw))
415 		return -EINVAL;
416 
417 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
418 
419 	if (qual_mods)
420 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
421 
422 	cmd->param0 |= cpu_to_le16(report_mode);
423 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
424 
425 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
426 
427 	switch (report_mode) {
428 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
429 		prefix = "phy_caps_media";
430 		break;
431 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
432 		prefix = "phy_caps_no_media";
433 		break;
434 	case ICE_AQC_REPORT_ACTIVE_CFG:
435 		prefix = "phy_caps_active";
436 		break;
437 	case ICE_AQC_REPORT_DFLT_CFG:
438 		prefix = "phy_caps_default";
439 		break;
440 	default:
441 		prefix = "phy_caps_invalid";
442 	}
443 
444 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
445 			  le64_to_cpu(pcaps->phy_type_high), prefix);
446 
447 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
448 		  prefix, report_mode);
449 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
450 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
451 		  pcaps->low_power_ctrl_an);
452 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
453 		  pcaps->eee_cap);
454 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
455 		  pcaps->eeer_value);
456 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
457 		  pcaps->link_fec_options);
458 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
459 		  prefix, pcaps->module_compliance_enforcement);
460 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
461 		  prefix, pcaps->extended_compliance_code);
462 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
463 		  pcaps->module_type[0]);
464 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
465 		  pcaps->module_type[1]);
466 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
467 		  pcaps->module_type[2]);
468 
469 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
470 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
471 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
472 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
473 		       sizeof(pi->phy.link_info.module_type));
474 	}
475 
476 	return status;
477 }
478 
479 /**
480  * ice_aq_get_link_topo_handle - get link topology node return status
481  * @pi: port information structure
482  * @node_type: requested node type
483  * @cd: pointer to command details structure or NULL
484  *
485  * Get link topology node return status for specified node type (0x06E0)
486  *
487  * Node type cage can be used to determine if cage is present. If AQC
488  * returns error (ENOENT), then no cage present. If no cage present, then
489  * connection type is backplane or BASE-T.
490  */
491 static int
492 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
493 			    struct ice_sq_cd *cd)
494 {
495 	struct ice_aqc_get_link_topo *cmd;
496 	struct ice_aq_desc desc;
497 
498 	cmd = &desc.params.get_link_topo;
499 
500 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
501 
502 	cmd->addr.topo_params.node_type_ctx =
503 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
504 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
505 
506 	/* set node type */
507 	cmd->addr.topo_params.node_type_ctx |=
508 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
509 
510 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
511 }
512 
513 /**
514  * ice_aq_get_netlist_node
515  * @hw: pointer to the hw struct
516  * @cmd: get_link_topo AQ structure
517  * @node_part_number: output node part number if node found
518  * @node_handle: output node handle parameter if node found
519  *
520  * Get netlist node handle.
521  */
522 int
523 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
524 			u8 *node_part_number, u16 *node_handle)
525 {
526 	struct ice_aq_desc desc;
527 
528 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
529 	desc.params.get_link_topo = *cmd;
530 
531 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
532 		return -EINTR;
533 
534 	if (node_handle)
535 		*node_handle =
536 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
537 	if (node_part_number)
538 		*node_part_number = desc.params.get_link_topo.node_part_num;
539 
540 	return 0;
541 }
542 
543 /**
544  * ice_find_netlist_node
545  * @hw: pointer to the hw struct
546  * @node_type: type of netlist node to look for
547  * @ctx: context of the search
548  * @node_part_number: node part number to look for
549  * @node_handle: output parameter if node found - optional
550  *
551  * Scan the netlist for a node handle of the given node type and part number.
552  *
553  * If node_handle is non-NULL it will be modified on function exit. It is only
554  * valid if the function returns zero, and should be ignored on any non-zero
555  * return value.
556  *
557  * Return:
558  * * 0 if the node is found,
559  * * -ENOENT if no handle was found,
560  * * negative error code on failure to access the AQ.
561  */
562 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
563 				 u8 node_part_number, u16 *node_handle)
564 {
565 	u8 idx;
566 
567 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
568 		struct ice_aqc_get_link_topo cmd = {};
569 		u8 rec_node_part_number;
570 		int status;
571 
572 		cmd.addr.topo_params.node_type_ctx =
573 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
574 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
575 		cmd.addr.topo_params.index = idx;
576 
577 		status = ice_aq_get_netlist_node(hw, &cmd,
578 						 &rec_node_part_number,
579 						 node_handle);
580 		if (status)
581 			return status;
582 
583 		if (rec_node_part_number == node_part_number)
584 			return 0;
585 	}
586 
587 	return -ENOENT;
588 }
589 
590 /**
591  * ice_is_media_cage_present
592  * @pi: port information structure
593  *
594  * Returns true if media cage is present, else false. If no cage, then
595  * media type is backplane or BASE-T.
596  */
597 static bool ice_is_media_cage_present(struct ice_port_info *pi)
598 {
599 	/* Node type cage can be used to determine if cage is present. If AQC
600 	 * returns error (ENOENT), then no cage present. If no cage present then
601 	 * connection type is backplane or BASE-T.
602 	 */
603 	return !ice_aq_get_link_topo_handle(pi,
604 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
605 					    NULL);
606 }
607 
608 /**
609  * ice_get_media_type - Gets media type
610  * @pi: port information structure
611  */
612 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
613 {
614 	struct ice_link_status *hw_link_info;
615 
616 	if (!pi)
617 		return ICE_MEDIA_UNKNOWN;
618 
619 	hw_link_info = &pi->phy.link_info;
620 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
621 		/* If more than one media type is selected, report unknown */
622 		return ICE_MEDIA_UNKNOWN;
623 
624 	if (hw_link_info->phy_type_low) {
625 		/* 1G SGMII is a special case where some DA cable PHYs
626 		 * may show this as an option when it really shouldn't
627 		 * be since SGMII is meant to be between a MAC and a PHY
628 		 * in a backplane. Try to detect this case and handle it
629 		 */
630 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
631 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
632 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
633 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
634 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
635 			return ICE_MEDIA_DA;
636 
637 		switch (hw_link_info->phy_type_low) {
638 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
639 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
640 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
641 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
642 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
643 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
644 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
645 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
646 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
647 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
648 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
649 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
650 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
651 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
652 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
653 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
654 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
655 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
656 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
657 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
658 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
659 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
660 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
661 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
662 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
663 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
664 			return ICE_MEDIA_FIBER;
665 		case ICE_PHY_TYPE_LOW_100BASE_TX:
666 		case ICE_PHY_TYPE_LOW_1000BASE_T:
667 		case ICE_PHY_TYPE_LOW_2500BASE_T:
668 		case ICE_PHY_TYPE_LOW_5GBASE_T:
669 		case ICE_PHY_TYPE_LOW_10GBASE_T:
670 		case ICE_PHY_TYPE_LOW_25GBASE_T:
671 			return ICE_MEDIA_BASET;
672 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
673 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
674 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
675 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
676 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
677 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
678 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
679 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
680 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
681 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
682 			return ICE_MEDIA_DA;
683 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
684 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
685 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
686 		case ICE_PHY_TYPE_LOW_50G_AUI2:
687 		case ICE_PHY_TYPE_LOW_50G_AUI1:
688 		case ICE_PHY_TYPE_LOW_100G_AUI4:
689 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
690 			if (ice_is_media_cage_present(pi))
691 				return ICE_MEDIA_DA;
692 			fallthrough;
693 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
694 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
695 		case ICE_PHY_TYPE_LOW_2500BASE_X:
696 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
697 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
698 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
699 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
700 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
701 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
702 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
703 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
704 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
705 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
706 			return ICE_MEDIA_BACKPLANE;
707 		}
708 	} else {
709 		switch (hw_link_info->phy_type_high) {
710 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
711 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
712 			if (ice_is_media_cage_present(pi))
713 				return ICE_MEDIA_DA;
714 			fallthrough;
715 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
716 			return ICE_MEDIA_BACKPLANE;
717 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
718 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
719 			return ICE_MEDIA_FIBER;
720 		}
721 	}
722 	return ICE_MEDIA_UNKNOWN;
723 }
724 
725 /**
726  * ice_get_link_status_datalen
727  * @hw: pointer to the HW struct
728  *
729  * Returns datalength for the Get Link Status AQ command, which is bigger for
730  * newer adapter families handled by ice driver.
731  */
732 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
733 {
734 	switch (hw->mac_type) {
735 	case ICE_MAC_E830:
736 		return ICE_AQC_LS_DATA_SIZE_V2;
737 	case ICE_MAC_E810:
738 	default:
739 		return ICE_AQC_LS_DATA_SIZE_V1;
740 	}
741 }
742 
743 /**
744  * ice_aq_get_link_info
745  * @pi: port information structure
746  * @ena_lse: enable/disable LinkStatusEvent reporting
747  * @link: pointer to link status structure - optional
748  * @cd: pointer to command details structure or NULL
749  *
750  * Get Link Status (0x607). Returns the link status of the adapter.
751  */
752 int
753 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
754 		     struct ice_link_status *link, struct ice_sq_cd *cd)
755 {
756 	struct ice_aqc_get_link_status_data link_data = { 0 };
757 	struct ice_aqc_get_link_status *resp;
758 	struct ice_link_status *li_old, *li;
759 	enum ice_media_type *hw_media_type;
760 	struct ice_fc_info *hw_fc_info;
761 	bool tx_pause, rx_pause;
762 	struct ice_aq_desc desc;
763 	struct ice_hw *hw;
764 	u16 cmd_flags;
765 	int status;
766 
767 	if (!pi)
768 		return -EINVAL;
769 	hw = pi->hw;
770 	li_old = &pi->phy.link_info_old;
771 	hw_media_type = &pi->phy.media_type;
772 	li = &pi->phy.link_info;
773 	hw_fc_info = &pi->fc;
774 
775 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
776 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
777 	resp = &desc.params.get_link_status;
778 	resp->cmd_flags = cpu_to_le16(cmd_flags);
779 	resp->lport_num = pi->lport;
780 
781 	status = ice_aq_send_cmd(hw, &desc, &link_data,
782 				 ice_get_link_status_datalen(hw), cd);
783 	if (status)
784 		return status;
785 
786 	/* save off old link status information */
787 	*li_old = *li;
788 
789 	/* update current link status information */
790 	li->link_speed = le16_to_cpu(link_data.link_speed);
791 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
792 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
793 	*hw_media_type = ice_get_media_type(pi);
794 	li->link_info = link_data.link_info;
795 	li->link_cfg_err = link_data.link_cfg_err;
796 	li->an_info = link_data.an_info;
797 	li->ext_info = link_data.ext_info;
798 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
799 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
800 	li->topo_media_conflict = link_data.topo_media_conflict;
801 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
802 				      ICE_AQ_CFG_PACING_TYPE_M);
803 
804 	/* update fc info */
805 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
806 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
807 	if (tx_pause && rx_pause)
808 		hw_fc_info->current_mode = ICE_FC_FULL;
809 	else if (tx_pause)
810 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
811 	else if (rx_pause)
812 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
813 	else
814 		hw_fc_info->current_mode = ICE_FC_NONE;
815 
816 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
817 
818 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
819 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
820 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
821 		  (unsigned long long)li->phy_type_low);
822 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
823 		  (unsigned long long)li->phy_type_high);
824 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
825 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
826 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
827 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
828 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
829 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
830 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
831 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
832 		  li->max_frame_size);
833 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
834 
835 	/* save link status information */
836 	if (link)
837 		*link = *li;
838 
839 	/* flag cleared so calling functions don't call AQ again */
840 	pi->phy.get_link_info = false;
841 
842 	return 0;
843 }
844 
845 /**
846  * ice_fill_tx_timer_and_fc_thresh
847  * @hw: pointer to the HW struct
848  * @cmd: pointer to MAC cfg structure
849  *
850  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
851  * descriptor
852  */
853 static void
854 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
855 				struct ice_aqc_set_mac_cfg *cmd)
856 {
857 	u32 val, fc_thres_m;
858 
859 	/* We read back the transmit timer and FC threshold value of
860 	 * LFC. Thus, we will use index =
861 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
862 	 *
863 	 * Also, because we are operating on transmit timer and FC
864 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
865 	 */
866 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
867 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
868 
869 	if (hw->mac_type == ICE_MAC_E830) {
870 		/* Retrieve the transmit timer */
871 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
872 		cmd->tx_tmr_value =
873 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
874 
875 		/* Retrieve the fc threshold */
876 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
877 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
878 	} else {
879 		/* Retrieve the transmit timer */
880 		val = rd32(hw,
881 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
882 		cmd->tx_tmr_value =
883 			le16_encode_bits(val,
884 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
885 
886 		/* Retrieve the fc threshold */
887 		val = rd32(hw,
888 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
889 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
890 	}
891 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
892 }
893 
894 /**
895  * ice_aq_set_mac_cfg
896  * @hw: pointer to the HW struct
897  * @max_frame_size: Maximum Frame Size to be supported
898  * @cd: pointer to command details structure or NULL
899  *
900  * Set MAC configuration (0x0603)
901  */
902 int
903 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
904 {
905 	struct ice_aqc_set_mac_cfg *cmd;
906 	struct ice_aq_desc desc;
907 
908 	cmd = &desc.params.set_mac_cfg;
909 
910 	if (max_frame_size == 0)
911 		return -EINVAL;
912 
913 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
914 
915 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
916 
917 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
918 
919 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
920 }
921 
922 /**
923  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
924  * @hw: pointer to the HW struct
925  */
926 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
927 {
928 	struct ice_switch_info *sw;
929 	int status;
930 
931 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
932 				       sizeof(*hw->switch_info), GFP_KERNEL);
933 	sw = hw->switch_info;
934 
935 	if (!sw)
936 		return -ENOMEM;
937 
938 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
939 	sw->prof_res_bm_init = 0;
940 
941 	/* Initialize recipe count with default recipes read from NVM */
942 	sw->recp_cnt = ICE_SW_LKUP_LAST;
943 
944 	status = ice_init_def_sw_recp(hw);
945 	if (status) {
946 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
947 		return status;
948 	}
949 	return 0;
950 }
951 
952 /**
953  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
954  * @hw: pointer to the HW struct
955  */
956 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
957 {
958 	struct ice_switch_info *sw = hw->switch_info;
959 	struct ice_vsi_list_map_info *v_pos_map;
960 	struct ice_vsi_list_map_info *v_tmp_map;
961 	struct ice_sw_recipe *recps;
962 	u8 i;
963 
964 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
965 				 list_entry) {
966 		list_del(&v_pos_map->list_entry);
967 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
968 	}
969 	recps = sw->recp_list;
970 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
971 		recps[i].root_rid = i;
972 
973 		if (recps[i].adv_rule) {
974 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
975 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
976 
977 			mutex_destroy(&recps[i].filt_rule_lock);
978 			list_for_each_entry_safe(lst_itr, tmp_entry,
979 						 &recps[i].filt_rules,
980 						 list_entry) {
981 				list_del(&lst_itr->list_entry);
982 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
983 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
984 			}
985 		} else {
986 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
987 
988 			mutex_destroy(&recps[i].filt_rule_lock);
989 			list_for_each_entry_safe(lst_itr, tmp_entry,
990 						 &recps[i].filt_rules,
991 						 list_entry) {
992 				list_del(&lst_itr->list_entry);
993 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
994 			}
995 		}
996 	}
997 	ice_rm_all_sw_replay_rule_info(hw);
998 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
999 	devm_kfree(ice_hw_to_dev(hw), sw);
1000 }
1001 
1002 /**
1003  * ice_get_itr_intrl_gran
1004  * @hw: pointer to the HW struct
1005  *
1006  * Determines the ITR/INTRL granularities based on the maximum aggregate
1007  * bandwidth according to the device's configuration during power-on.
1008  */
1009 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1010 {
1011 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1012 				  rd32(hw, GL_PWR_MODE_CTL));
1013 
1014 	switch (max_agg_bw) {
1015 	case ICE_MAX_AGG_BW_200G:
1016 	case ICE_MAX_AGG_BW_100G:
1017 	case ICE_MAX_AGG_BW_50G:
1018 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1019 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1020 		break;
1021 	case ICE_MAX_AGG_BW_25G:
1022 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1023 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1024 		break;
1025 	}
1026 }
1027 
1028 /**
1029  * ice_init_hw - main hardware initialization routine
1030  * @hw: pointer to the hardware structure
1031  */
1032 int ice_init_hw(struct ice_hw *hw)
1033 {
1034 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1035 	void *mac_buf __free(kfree) = NULL;
1036 	u16 mac_buf_len;
1037 	int status;
1038 
1039 	/* Set MAC type based on DeviceID */
1040 	status = ice_set_mac_type(hw);
1041 	if (status)
1042 		return status;
1043 
1044 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1045 
1046 	status = ice_reset(hw, ICE_RESET_PFR);
1047 	if (status)
1048 		return status;
1049 
1050 	ice_get_itr_intrl_gran(hw);
1051 
1052 	status = ice_create_all_ctrlq(hw);
1053 	if (status)
1054 		goto err_unroll_cqinit;
1055 
1056 	status = ice_fwlog_init(hw);
1057 	if (status)
1058 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1059 			  status);
1060 
1061 	status = ice_clear_pf_cfg(hw);
1062 	if (status)
1063 		goto err_unroll_cqinit;
1064 
1065 	/* Set bit to enable Flow Director filters */
1066 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1067 	INIT_LIST_HEAD(&hw->fdir_list_head);
1068 
1069 	ice_clear_pxe_mode(hw);
1070 
1071 	status = ice_init_nvm(hw);
1072 	if (status)
1073 		goto err_unroll_cqinit;
1074 
1075 	status = ice_get_caps(hw);
1076 	if (status)
1077 		goto err_unroll_cqinit;
1078 
1079 	if (!hw->port_info)
1080 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1081 					     sizeof(*hw->port_info),
1082 					     GFP_KERNEL);
1083 	if (!hw->port_info) {
1084 		status = -ENOMEM;
1085 		goto err_unroll_cqinit;
1086 	}
1087 
1088 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1089 	/* set the back pointer to HW */
1090 	hw->port_info->hw = hw;
1091 
1092 	/* Initialize port_info struct with switch configuration data */
1093 	status = ice_get_initial_sw_cfg(hw);
1094 	if (status)
1095 		goto err_unroll_alloc;
1096 
1097 	hw->evb_veb = true;
1098 
1099 	/* init xarray for identifying scheduling nodes uniquely */
1100 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1101 
1102 	/* Query the allocated resources for Tx scheduler */
1103 	status = ice_sched_query_res_alloc(hw);
1104 	if (status) {
1105 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1106 		goto err_unroll_alloc;
1107 	}
1108 	ice_sched_get_psm_clk_freq(hw);
1109 
1110 	/* Initialize port_info struct with scheduler data */
1111 	status = ice_sched_init_port(hw->port_info);
1112 	if (status)
1113 		goto err_unroll_sched;
1114 
1115 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1116 	if (!pcaps) {
1117 		status = -ENOMEM;
1118 		goto err_unroll_sched;
1119 	}
1120 
1121 	/* Initialize port_info struct with PHY capabilities */
1122 	status = ice_aq_get_phy_caps(hw->port_info, false,
1123 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1124 				     NULL);
1125 	if (status)
1126 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1127 			 status);
1128 
1129 	/* Initialize port_info struct with link information */
1130 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1131 	if (status)
1132 		goto err_unroll_sched;
1133 
1134 	/* need a valid SW entry point to build a Tx tree */
1135 	if (!hw->sw_entry_point_layer) {
1136 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1137 		status = -EIO;
1138 		goto err_unroll_sched;
1139 	}
1140 	INIT_LIST_HEAD(&hw->agg_list);
1141 	/* Initialize max burst size */
1142 	if (!hw->max_burst_size)
1143 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1144 
1145 	status = ice_init_fltr_mgmt_struct(hw);
1146 	if (status)
1147 		goto err_unroll_sched;
1148 
1149 	/* Get MAC information */
1150 	/* A single port can report up to two (LAN and WoL) addresses */
1151 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1152 			  GFP_KERNEL);
1153 	if (!mac_buf) {
1154 		status = -ENOMEM;
1155 		goto err_unroll_fltr_mgmt_struct;
1156 	}
1157 
1158 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1159 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1160 
1161 	if (status)
1162 		goto err_unroll_fltr_mgmt_struct;
1163 	/* enable jumbo frame support at MAC level */
1164 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1165 	if (status)
1166 		goto err_unroll_fltr_mgmt_struct;
1167 	/* Obtain counter base index which would be used by flow director */
1168 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1169 	if (status)
1170 		goto err_unroll_fltr_mgmt_struct;
1171 	status = ice_init_hw_tbls(hw);
1172 	if (status)
1173 		goto err_unroll_fltr_mgmt_struct;
1174 	mutex_init(&hw->tnl_lock);
1175 	ice_init_chk_recipe_reuse_support(hw);
1176 
1177 	return 0;
1178 
1179 err_unroll_fltr_mgmt_struct:
1180 	ice_cleanup_fltr_mgmt_struct(hw);
1181 err_unroll_sched:
1182 	ice_sched_cleanup_all(hw);
1183 err_unroll_alloc:
1184 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1185 err_unroll_cqinit:
1186 	ice_destroy_all_ctrlq(hw);
1187 	return status;
1188 }
1189 
1190 /**
1191  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1192  * @hw: pointer to the hardware structure
1193  *
1194  * This should be called only during nominal operation, not as a result of
1195  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1196  * applicable initializations if it fails for any reason.
1197  */
1198 void ice_deinit_hw(struct ice_hw *hw)
1199 {
1200 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1201 	ice_cleanup_fltr_mgmt_struct(hw);
1202 
1203 	ice_sched_cleanup_all(hw);
1204 	ice_sched_clear_agg(hw);
1205 	ice_free_seg(hw);
1206 	ice_free_hw_tbls(hw);
1207 	mutex_destroy(&hw->tnl_lock);
1208 
1209 	ice_fwlog_deinit(hw);
1210 	ice_destroy_all_ctrlq(hw);
1211 
1212 	/* Clear VSI contexts if not already cleared */
1213 	ice_clear_all_vsi_ctx(hw);
1214 }
1215 
1216 /**
1217  * ice_check_reset - Check to see if a global reset is complete
1218  * @hw: pointer to the hardware structure
1219  */
1220 int ice_check_reset(struct ice_hw *hw)
1221 {
1222 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1223 
1224 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1225 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1226 	 * Add 1sec for outstanding AQ commands that can take a long time.
1227 	 */
1228 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1229 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1230 
1231 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1232 		mdelay(100);
1233 		reg = rd32(hw, GLGEN_RSTAT);
1234 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1235 			break;
1236 	}
1237 
1238 	if (cnt == grst_timeout) {
1239 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1240 		return -EIO;
1241 	}
1242 
1243 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1244 				 GLNVM_ULD_PCIER_DONE_1_M |\
1245 				 GLNVM_ULD_CORER_DONE_M |\
1246 				 GLNVM_ULD_GLOBR_DONE_M |\
1247 				 GLNVM_ULD_POR_DONE_M |\
1248 				 GLNVM_ULD_POR_DONE_1_M |\
1249 				 GLNVM_ULD_PCIER_DONE_2_M)
1250 
1251 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1252 					  GLNVM_ULD_PE_DONE_M : 0);
1253 
1254 	/* Device is Active; check Global Reset processes are done */
1255 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1256 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1257 		if (reg == uld_mask) {
1258 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1259 			break;
1260 		}
1261 		mdelay(10);
1262 	}
1263 
1264 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1265 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1266 			  reg);
1267 		return -EIO;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * ice_pf_reset - Reset the PF
1275  * @hw: pointer to the hardware structure
1276  *
1277  * If a global reset has been triggered, this function checks
1278  * for its completion and then issues the PF reset
1279  */
1280 static int ice_pf_reset(struct ice_hw *hw)
1281 {
1282 	u32 cnt, reg;
1283 
1284 	/* If at function entry a global reset was already in progress, i.e.
1285 	 * state is not 'device active' or any of the reset done bits are not
1286 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1287 	 * global reset is done.
1288 	 */
1289 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1290 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1291 		/* poll on global reset currently in progress until done */
1292 		if (ice_check_reset(hw))
1293 			return -EIO;
1294 
1295 		return 0;
1296 	}
1297 
1298 	/* Reset the PF */
1299 	reg = rd32(hw, PFGEN_CTRL);
1300 
1301 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1302 
1303 	/* Wait for the PFR to complete. The wait time is the global config lock
1304 	 * timeout plus the PFR timeout which will account for a possible reset
1305 	 * that is occurring during a download package operation.
1306 	 */
1307 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1308 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1309 		reg = rd32(hw, PFGEN_CTRL);
1310 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1311 			break;
1312 
1313 		mdelay(1);
1314 	}
1315 
1316 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1317 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1318 		return -EIO;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * ice_reset - Perform different types of reset
1326  * @hw: pointer to the hardware structure
1327  * @req: reset request
1328  *
1329  * This function triggers a reset as specified by the req parameter.
1330  *
1331  * Note:
1332  * If anything other than a PF reset is triggered, PXE mode is restored.
1333  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1334  * interface has been restored in the rebuild flow.
1335  */
1336 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1337 {
1338 	u32 val = 0;
1339 
1340 	switch (req) {
1341 	case ICE_RESET_PFR:
1342 		return ice_pf_reset(hw);
1343 	case ICE_RESET_CORER:
1344 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1345 		val = GLGEN_RTRIG_CORER_M;
1346 		break;
1347 	case ICE_RESET_GLOBR:
1348 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1349 		val = GLGEN_RTRIG_GLOBR_M;
1350 		break;
1351 	default:
1352 		return -EINVAL;
1353 	}
1354 
1355 	val |= rd32(hw, GLGEN_RTRIG);
1356 	wr32(hw, GLGEN_RTRIG, val);
1357 	ice_flush(hw);
1358 
1359 	/* wait for the FW to be ready */
1360 	return ice_check_reset(hw);
1361 }
1362 
1363 /**
1364  * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1365  * @hw: pointer to the hardware structure
1366  * @rxq_ctx: pointer to the packed Rx queue context
1367  * @rxq_index: the index of the Rx queue
1368  */
1369 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1370 				   const ice_rxq_ctx_buf_t *rxq_ctx,
1371 				   u32 rxq_index)
1372 {
1373 	/* Copy each dword separately to HW */
1374 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1375 		u32 ctx = ((const u32 *)rxq_ctx)[i];
1376 
1377 		wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1378 
1379 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1380 	}
1381 }
1382 
1383 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1384 	PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1385 
1386 /* LAN Rx Queue Context */
1387 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1388 				 /* Field		Width	LSB */
1389 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1390 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1391 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1392 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1393 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1394 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1395 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1396 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1397 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1398 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1399 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1400 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1401 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1402 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1403 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1404 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1405 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1406 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1407 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1408 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1409 };
1410 
1411 /**
1412  * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1413  * @ctx: the Rx queue context to pack
1414  * @buf: the HW buffer to pack into
1415  *
1416  * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1417  * bit-packed HW layout.
1418  */
1419 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1420 			     ice_rxq_ctx_buf_t *buf)
1421 {
1422 	pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1423 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1424 }
1425 
1426 /**
1427  * ice_write_rxq_ctx - Write Rx Queue context to hardware
1428  * @hw: pointer to the hardware structure
1429  * @rlan_ctx: pointer to the unpacked Rx queue context
1430  * @rxq_index: the index of the Rx queue
1431  *
1432  * Pack the sparse Rx Queue context into dense hardware format and write it
1433  * into the HW register space.
1434  *
1435  * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1436  */
1437 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1438 		      u32 rxq_index)
1439 {
1440 	ice_rxq_ctx_buf_t buf = {};
1441 
1442 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1443 		return -EINVAL;
1444 
1445 	ice_pack_rxq_ctx(rlan_ctx, &buf);
1446 	ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1447 
1448 	return 0;
1449 }
1450 
1451 /* LAN Tx Queue Context */
1452 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1453 				    /* Field			Width	LSB */
1454 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1455 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1456 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1457 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1458 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1459 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1460 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1461 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1462 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1463 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1464 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1465 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1466 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1467 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1468 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1469 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1470 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1471 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1472 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1473 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1474 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1475 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1476 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1477 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1478 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1479 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1480 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1481 };
1482 
1483 /**
1484  * ice_pack_txq_ctx - Pack Tx queue context into a HW buffer
1485  * @ctx: the Tx queue context to pack
1486  * @buf: the HW buffer to pack into
1487  *
1488  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1489  * bit-packed HW layout.
1490  */
1491 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1492 {
1493 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1494 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1495 }
1496 
1497 /* Sideband Queue command wrappers */
1498 
1499 /**
1500  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1501  * @hw: pointer to the HW struct
1502  * @desc: descriptor describing the command
1503  * @buf: buffer to use for indirect commands (NULL for direct commands)
1504  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1505  * @cd: pointer to command details structure
1506  */
1507 static int
1508 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1509 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1510 {
1511 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1512 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1513 }
1514 
1515 /**
1516  * ice_sbq_rw_reg - Fill Sideband Queue command
1517  * @hw: pointer to the HW struct
1518  * @in: message info to be filled in descriptor
1519  * @flags: control queue descriptor flags
1520  */
1521 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1522 {
1523 	struct ice_sbq_cmd_desc desc = {0};
1524 	struct ice_sbq_msg_req msg = {0};
1525 	u16 msg_len;
1526 	int status;
1527 
1528 	msg_len = sizeof(msg);
1529 
1530 	msg.dest_dev = in->dest_dev;
1531 	msg.opcode = in->opcode;
1532 	msg.flags = ICE_SBQ_MSG_FLAGS;
1533 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1534 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1535 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1536 
1537 	if (in->opcode)
1538 		msg.data = cpu_to_le32(in->data);
1539 	else
1540 		/* data read comes back in completion, so shorten the struct by
1541 		 * sizeof(msg.data)
1542 		 */
1543 		msg_len -= sizeof(msg.data);
1544 
1545 	desc.flags = cpu_to_le16(flags);
1546 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1547 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1548 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1549 	if (!status && !in->opcode)
1550 		in->data = le32_to_cpu
1551 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1552 	return status;
1553 }
1554 
1555 /* FW Admin Queue command wrappers */
1556 
1557 /* Software lock/mutex that is meant to be held while the Global Config Lock
1558  * in firmware is acquired by the software to prevent most (but not all) types
1559  * of AQ commands from being sent to FW
1560  */
1561 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1562 
1563 /**
1564  * ice_should_retry_sq_send_cmd
1565  * @opcode: AQ opcode
1566  *
1567  * Decide if we should retry the send command routine for the ATQ, depending
1568  * on the opcode.
1569  */
1570 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1571 {
1572 	switch (opcode) {
1573 	case ice_aqc_opc_get_link_topo:
1574 	case ice_aqc_opc_lldp_stop:
1575 	case ice_aqc_opc_lldp_start:
1576 	case ice_aqc_opc_lldp_filter_ctrl:
1577 		return true;
1578 	}
1579 
1580 	return false;
1581 }
1582 
1583 /**
1584  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1585  * @hw: pointer to the HW struct
1586  * @cq: pointer to the specific Control queue
1587  * @desc: prefilled descriptor describing the command
1588  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1589  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1590  * @cd: pointer to command details structure
1591  *
1592  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1593  * Queue if the EBUSY AQ error is returned.
1594  */
1595 static int
1596 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1597 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1598 		      struct ice_sq_cd *cd)
1599 {
1600 	struct ice_aq_desc desc_cpy;
1601 	bool is_cmd_for_retry;
1602 	u8 idx = 0;
1603 	u16 opcode;
1604 	int status;
1605 
1606 	opcode = le16_to_cpu(desc->opcode);
1607 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1608 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1609 
1610 	if (is_cmd_for_retry) {
1611 		/* All retryable cmds are direct, without buf. */
1612 		WARN_ON(buf);
1613 
1614 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1615 	}
1616 
1617 	do {
1618 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1619 
1620 		if (!is_cmd_for_retry || !status ||
1621 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1622 			break;
1623 
1624 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1625 
1626 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1627 
1628 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1629 
1630 	return status;
1631 }
1632 
1633 /**
1634  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1635  * @hw: pointer to the HW struct
1636  * @desc: descriptor describing the command
1637  * @buf: buffer to use for indirect commands (NULL for direct commands)
1638  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1639  * @cd: pointer to command details structure
1640  *
1641  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1642  */
1643 int
1644 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1645 		u16 buf_size, struct ice_sq_cd *cd)
1646 {
1647 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1648 	bool lock_acquired = false;
1649 	int status;
1650 
1651 	/* When a package download is in process (i.e. when the firmware's
1652 	 * Global Configuration Lock resource is held), only the Download
1653 	 * Package, Get Version, Get Package Info List, Upload Section,
1654 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1655 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1656 	 * Recipes to Profile Association, and Release Resource (with resource
1657 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1658 	 * must block until the package download completes and the Global Config
1659 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1660 	 */
1661 	switch (le16_to_cpu(desc->opcode)) {
1662 	case ice_aqc_opc_download_pkg:
1663 	case ice_aqc_opc_get_pkg_info_list:
1664 	case ice_aqc_opc_get_ver:
1665 	case ice_aqc_opc_upload_section:
1666 	case ice_aqc_opc_update_pkg:
1667 	case ice_aqc_opc_set_port_params:
1668 	case ice_aqc_opc_get_vlan_mode_parameters:
1669 	case ice_aqc_opc_set_vlan_mode_parameters:
1670 	case ice_aqc_opc_set_tx_topo:
1671 	case ice_aqc_opc_get_tx_topo:
1672 	case ice_aqc_opc_add_recipe:
1673 	case ice_aqc_opc_recipe_to_profile:
1674 	case ice_aqc_opc_get_recipe:
1675 	case ice_aqc_opc_get_recipe_to_profile:
1676 		break;
1677 	case ice_aqc_opc_release_res:
1678 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1679 			break;
1680 		fallthrough;
1681 	default:
1682 		mutex_lock(&ice_global_cfg_lock_sw);
1683 		lock_acquired = true;
1684 		break;
1685 	}
1686 
1687 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1688 	if (lock_acquired)
1689 		mutex_unlock(&ice_global_cfg_lock_sw);
1690 
1691 	return status;
1692 }
1693 
1694 /**
1695  * ice_aq_get_fw_ver
1696  * @hw: pointer to the HW struct
1697  * @cd: pointer to command details structure or NULL
1698  *
1699  * Get the firmware version (0x0001) from the admin queue commands
1700  */
1701 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1702 {
1703 	struct ice_aqc_get_ver *resp;
1704 	struct ice_aq_desc desc;
1705 	int status;
1706 
1707 	resp = &desc.params.get_ver;
1708 
1709 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1710 
1711 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1712 
1713 	if (!status) {
1714 		hw->fw_branch = resp->fw_branch;
1715 		hw->fw_maj_ver = resp->fw_major;
1716 		hw->fw_min_ver = resp->fw_minor;
1717 		hw->fw_patch = resp->fw_patch;
1718 		hw->fw_build = le32_to_cpu(resp->fw_build);
1719 		hw->api_branch = resp->api_branch;
1720 		hw->api_maj_ver = resp->api_major;
1721 		hw->api_min_ver = resp->api_minor;
1722 		hw->api_patch = resp->api_patch;
1723 	}
1724 
1725 	return status;
1726 }
1727 
1728 /**
1729  * ice_aq_send_driver_ver
1730  * @hw: pointer to the HW struct
1731  * @dv: driver's major, minor version
1732  * @cd: pointer to command details structure or NULL
1733  *
1734  * Send the driver version (0x0002) to the firmware
1735  */
1736 int
1737 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1738 		       struct ice_sq_cd *cd)
1739 {
1740 	struct ice_aqc_driver_ver *cmd;
1741 	struct ice_aq_desc desc;
1742 	u16 len;
1743 
1744 	cmd = &desc.params.driver_ver;
1745 
1746 	if (!dv)
1747 		return -EINVAL;
1748 
1749 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1750 
1751 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1752 	cmd->major_ver = dv->major_ver;
1753 	cmd->minor_ver = dv->minor_ver;
1754 	cmd->build_ver = dv->build_ver;
1755 	cmd->subbuild_ver = dv->subbuild_ver;
1756 
1757 	len = 0;
1758 	while (len < sizeof(dv->driver_string) &&
1759 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1760 		len++;
1761 
1762 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1763 }
1764 
1765 /**
1766  * ice_aq_q_shutdown
1767  * @hw: pointer to the HW struct
1768  * @unloading: is the driver unloading itself
1769  *
1770  * Tell the Firmware that we're shutting down the AdminQ and whether
1771  * or not the driver is unloading as well (0x0003).
1772  */
1773 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1774 {
1775 	struct ice_aqc_q_shutdown *cmd;
1776 	struct ice_aq_desc desc;
1777 
1778 	cmd = &desc.params.q_shutdown;
1779 
1780 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1781 
1782 	if (unloading)
1783 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1784 
1785 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1786 }
1787 
1788 /**
1789  * ice_aq_req_res
1790  * @hw: pointer to the HW struct
1791  * @res: resource ID
1792  * @access: access type
1793  * @sdp_number: resource number
1794  * @timeout: the maximum time in ms that the driver may hold the resource
1795  * @cd: pointer to command details structure or NULL
1796  *
1797  * Requests common resource using the admin queue commands (0x0008).
1798  * When attempting to acquire the Global Config Lock, the driver can
1799  * learn of three states:
1800  *  1) 0 -         acquired lock, and can perform download package
1801  *  2) -EIO -      did not get lock, driver should fail to load
1802  *  3) -EALREADY - did not get lock, but another driver has
1803  *                 successfully downloaded the package; the driver does
1804  *                 not have to download the package and can continue
1805  *                 loading
1806  *
1807  * Note that if the caller is in an acquire lock, perform action, release lock
1808  * phase of operation, it is possible that the FW may detect a timeout and issue
1809  * a CORER. In this case, the driver will receive a CORER interrupt and will
1810  * have to determine its cause. The calling thread that is handling this flow
1811  * will likely get an error propagated back to it indicating the Download
1812  * Package, Update Package or the Release Resource AQ commands timed out.
1813  */
1814 static int
1815 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1816 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1817 	       struct ice_sq_cd *cd)
1818 {
1819 	struct ice_aqc_req_res *cmd_resp;
1820 	struct ice_aq_desc desc;
1821 	int status;
1822 
1823 	cmd_resp = &desc.params.res_owner;
1824 
1825 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1826 
1827 	cmd_resp->res_id = cpu_to_le16(res);
1828 	cmd_resp->access_type = cpu_to_le16(access);
1829 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1830 	cmd_resp->timeout = cpu_to_le32(*timeout);
1831 	*timeout = 0;
1832 
1833 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1834 
1835 	/* The completion specifies the maximum time in ms that the driver
1836 	 * may hold the resource in the Timeout field.
1837 	 */
1838 
1839 	/* Global config lock response utilizes an additional status field.
1840 	 *
1841 	 * If the Global config lock resource is held by some other driver, the
1842 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1843 	 * and the timeout field indicates the maximum time the current owner
1844 	 * of the resource has to free it.
1845 	 */
1846 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1847 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1848 			*timeout = le32_to_cpu(cmd_resp->timeout);
1849 			return 0;
1850 		} else if (le16_to_cpu(cmd_resp->status) ==
1851 			   ICE_AQ_RES_GLBL_IN_PROG) {
1852 			*timeout = le32_to_cpu(cmd_resp->timeout);
1853 			return -EIO;
1854 		} else if (le16_to_cpu(cmd_resp->status) ==
1855 			   ICE_AQ_RES_GLBL_DONE) {
1856 			return -EALREADY;
1857 		}
1858 
1859 		/* invalid FW response, force a timeout immediately */
1860 		*timeout = 0;
1861 		return -EIO;
1862 	}
1863 
1864 	/* If the resource is held by some other driver, the command completes
1865 	 * with a busy return value and the timeout field indicates the maximum
1866 	 * time the current owner of the resource has to free it.
1867 	 */
1868 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1869 		*timeout = le32_to_cpu(cmd_resp->timeout);
1870 
1871 	return status;
1872 }
1873 
1874 /**
1875  * ice_aq_release_res
1876  * @hw: pointer to the HW struct
1877  * @res: resource ID
1878  * @sdp_number: resource number
1879  * @cd: pointer to command details structure or NULL
1880  *
1881  * release common resource using the admin queue commands (0x0009)
1882  */
1883 static int
1884 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1885 		   struct ice_sq_cd *cd)
1886 {
1887 	struct ice_aqc_req_res *cmd;
1888 	struct ice_aq_desc desc;
1889 
1890 	cmd = &desc.params.res_owner;
1891 
1892 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1893 
1894 	cmd->res_id = cpu_to_le16(res);
1895 	cmd->res_number = cpu_to_le32(sdp_number);
1896 
1897 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1898 }
1899 
1900 /**
1901  * ice_acquire_res
1902  * @hw: pointer to the HW structure
1903  * @res: resource ID
1904  * @access: access type (read or write)
1905  * @timeout: timeout in milliseconds
1906  *
1907  * This function will attempt to acquire the ownership of a resource.
1908  */
1909 int
1910 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1911 		enum ice_aq_res_access_type access, u32 timeout)
1912 {
1913 #define ICE_RES_POLLING_DELAY_MS	10
1914 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1915 	u32 time_left = timeout;
1916 	int status;
1917 
1918 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1919 
1920 	/* A return code of -EALREADY means that another driver has
1921 	 * previously acquired the resource and performed any necessary updates;
1922 	 * in this case the caller does not obtain the resource and has no
1923 	 * further work to do.
1924 	 */
1925 	if (status == -EALREADY)
1926 		goto ice_acquire_res_exit;
1927 
1928 	if (status)
1929 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1930 
1931 	/* If necessary, poll until the current lock owner timeouts */
1932 	timeout = time_left;
1933 	while (status && timeout && time_left) {
1934 		mdelay(delay);
1935 		timeout = (timeout > delay) ? timeout - delay : 0;
1936 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1937 
1938 		if (status == -EALREADY)
1939 			/* lock free, but no work to do */
1940 			break;
1941 
1942 		if (!status)
1943 			/* lock acquired */
1944 			break;
1945 	}
1946 	if (status && status != -EALREADY)
1947 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1948 
1949 ice_acquire_res_exit:
1950 	if (status == -EALREADY) {
1951 		if (access == ICE_RES_WRITE)
1952 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1953 		else
1954 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1955 	}
1956 	return status;
1957 }
1958 
1959 /**
1960  * ice_release_res
1961  * @hw: pointer to the HW structure
1962  * @res: resource ID
1963  *
1964  * This function will release a resource using the proper Admin Command.
1965  */
1966 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1967 {
1968 	unsigned long timeout;
1969 	int status;
1970 
1971 	/* there are some rare cases when trying to release the resource
1972 	 * results in an admin queue timeout, so handle them correctly
1973 	 */
1974 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1975 	do {
1976 		status = ice_aq_release_res(hw, res, 0, NULL);
1977 		if (status != -EIO)
1978 			break;
1979 		usleep_range(1000, 2000);
1980 	} while (time_before(jiffies, timeout));
1981 }
1982 
1983 /**
1984  * ice_aq_alloc_free_res - command to allocate/free resources
1985  * @hw: pointer to the HW struct
1986  * @buf: Indirect buffer to hold data parameters and response
1987  * @buf_size: size of buffer for indirect commands
1988  * @opc: pass in the command opcode
1989  *
1990  * Helper function to allocate/free resources using the admin queue commands
1991  */
1992 int ice_aq_alloc_free_res(struct ice_hw *hw,
1993 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1994 			  enum ice_adminq_opc opc)
1995 {
1996 	struct ice_aqc_alloc_free_res_cmd *cmd;
1997 	struct ice_aq_desc desc;
1998 
1999 	cmd = &desc.params.sw_res_ctrl;
2000 
2001 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2002 		return -EINVAL;
2003 
2004 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2005 
2006 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2007 
2008 	cmd->num_entries = cpu_to_le16(1);
2009 
2010 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2011 }
2012 
2013 /**
2014  * ice_alloc_hw_res - allocate resource
2015  * @hw: pointer to the HW struct
2016  * @type: type of resource
2017  * @num: number of resources to allocate
2018  * @btm: allocate from bottom
2019  * @res: pointer to array that will receive the resources
2020  */
2021 int
2022 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2023 {
2024 	struct ice_aqc_alloc_free_res_elem *buf;
2025 	u16 buf_len;
2026 	int status;
2027 
2028 	buf_len = struct_size(buf, elem, num);
2029 	buf = kzalloc(buf_len, GFP_KERNEL);
2030 	if (!buf)
2031 		return -ENOMEM;
2032 
2033 	/* Prepare buffer to allocate resource. */
2034 	buf->num_elems = cpu_to_le16(num);
2035 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2036 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2037 	if (btm)
2038 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2039 
2040 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2041 	if (status)
2042 		goto ice_alloc_res_exit;
2043 
2044 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2045 
2046 ice_alloc_res_exit:
2047 	kfree(buf);
2048 	return status;
2049 }
2050 
2051 /**
2052  * ice_free_hw_res - free allocated HW resource
2053  * @hw: pointer to the HW struct
2054  * @type: type of resource to free
2055  * @num: number of resources
2056  * @res: pointer to array that contains the resources to free
2057  */
2058 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2059 {
2060 	struct ice_aqc_alloc_free_res_elem *buf;
2061 	u16 buf_len;
2062 	int status;
2063 
2064 	buf_len = struct_size(buf, elem, num);
2065 	buf = kzalloc(buf_len, GFP_KERNEL);
2066 	if (!buf)
2067 		return -ENOMEM;
2068 
2069 	/* Prepare buffer to free resource. */
2070 	buf->num_elems = cpu_to_le16(num);
2071 	buf->res_type = cpu_to_le16(type);
2072 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2073 
2074 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2075 	if (status)
2076 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2077 
2078 	kfree(buf);
2079 	return status;
2080 }
2081 
2082 /**
2083  * ice_get_num_per_func - determine number of resources per PF
2084  * @hw: pointer to the HW structure
2085  * @max: value to be evenly split between each PF
2086  *
2087  * Determine the number of valid functions by going through the bitmap returned
2088  * from parsing capabilities and use this to calculate the number of resources
2089  * per PF based on the max value passed in.
2090  */
2091 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2092 {
2093 	u8 funcs;
2094 
2095 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2096 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2097 			 ICE_CAPS_VALID_FUNCS_M);
2098 
2099 	if (!funcs)
2100 		return 0;
2101 
2102 	return max / funcs;
2103 }
2104 
2105 /**
2106  * ice_parse_common_caps - parse common device/function capabilities
2107  * @hw: pointer to the HW struct
2108  * @caps: pointer to common capabilities structure
2109  * @elem: the capability element to parse
2110  * @prefix: message prefix for tracing capabilities
2111  *
2112  * Given a capability element, extract relevant details into the common
2113  * capability structure.
2114  *
2115  * Returns: true if the capability matches one of the common capability ids,
2116  * false otherwise.
2117  */
2118 static bool
2119 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2120 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2121 {
2122 	u32 logical_id = le32_to_cpu(elem->logical_id);
2123 	u32 phys_id = le32_to_cpu(elem->phys_id);
2124 	u32 number = le32_to_cpu(elem->number);
2125 	u16 cap = le16_to_cpu(elem->cap);
2126 	bool found = true;
2127 
2128 	switch (cap) {
2129 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2130 		caps->valid_functions = number;
2131 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2132 			  caps->valid_functions);
2133 		break;
2134 	case ICE_AQC_CAPS_SRIOV:
2135 		caps->sr_iov_1_1 = (number == 1);
2136 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2137 			  caps->sr_iov_1_1);
2138 		break;
2139 	case ICE_AQC_CAPS_DCB:
2140 		caps->dcb = (number == 1);
2141 		caps->active_tc_bitmap = logical_id;
2142 		caps->maxtc = phys_id;
2143 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2144 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2145 			  caps->active_tc_bitmap);
2146 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2147 		break;
2148 	case ICE_AQC_CAPS_RSS:
2149 		caps->rss_table_size = number;
2150 		caps->rss_table_entry_width = logical_id;
2151 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2152 			  caps->rss_table_size);
2153 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2154 			  caps->rss_table_entry_width);
2155 		break;
2156 	case ICE_AQC_CAPS_RXQS:
2157 		caps->num_rxq = number;
2158 		caps->rxq_first_id = phys_id;
2159 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2160 			  caps->num_rxq);
2161 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2162 			  caps->rxq_first_id);
2163 		break;
2164 	case ICE_AQC_CAPS_TXQS:
2165 		caps->num_txq = number;
2166 		caps->txq_first_id = phys_id;
2167 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2168 			  caps->num_txq);
2169 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2170 			  caps->txq_first_id);
2171 		break;
2172 	case ICE_AQC_CAPS_MSIX:
2173 		caps->num_msix_vectors = number;
2174 		caps->msix_vector_first_id = phys_id;
2175 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2176 			  caps->num_msix_vectors);
2177 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2178 			  caps->msix_vector_first_id);
2179 		break;
2180 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2181 		caps->nvm_update_pending_nvm = true;
2182 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2183 		break;
2184 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2185 		caps->nvm_update_pending_orom = true;
2186 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2187 		break;
2188 	case ICE_AQC_CAPS_PENDING_NET_VER:
2189 		caps->nvm_update_pending_netlist = true;
2190 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2191 		break;
2192 	case ICE_AQC_CAPS_NVM_MGMT:
2193 		caps->nvm_unified_update =
2194 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2195 			true : false;
2196 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2197 			  caps->nvm_unified_update);
2198 		break;
2199 	case ICE_AQC_CAPS_RDMA:
2200 		caps->rdma = (number == 1);
2201 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2202 		break;
2203 	case ICE_AQC_CAPS_MAX_MTU:
2204 		caps->max_mtu = number;
2205 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2206 			  prefix, caps->max_mtu);
2207 		break;
2208 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2209 		caps->pcie_reset_avoidance = (number > 0);
2210 		ice_debug(hw, ICE_DBG_INIT,
2211 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2212 			  caps->pcie_reset_avoidance);
2213 		break;
2214 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2215 		caps->reset_restrict_support = (number == 1);
2216 		ice_debug(hw, ICE_DBG_INIT,
2217 			  "%s: reset_restrict_support = %d\n", prefix,
2218 			  caps->reset_restrict_support);
2219 		break;
2220 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2221 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2222 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2223 			  prefix, caps->roce_lag);
2224 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2225 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2226 			  prefix, caps->sriov_lag);
2227 		break;
2228 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2229 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2230 		break;
2231 	default:
2232 		/* Not one of the recognized common capabilities */
2233 		found = false;
2234 	}
2235 
2236 	return found;
2237 }
2238 
2239 /**
2240  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2241  * @hw: pointer to the HW structure
2242  * @caps: pointer to capabilities structure to fix
2243  *
2244  * Re-calculate the capabilities that are dependent on the number of physical
2245  * ports; i.e. some features are not supported or function differently on
2246  * devices with more than 4 ports.
2247  */
2248 static void
2249 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2250 {
2251 	/* This assumes device capabilities are always scanned before function
2252 	 * capabilities during the initialization flow.
2253 	 */
2254 	if (hw->dev_caps.num_funcs > 4) {
2255 		/* Max 4 TCs per port */
2256 		caps->maxtc = 4;
2257 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2258 			  caps->maxtc);
2259 		if (caps->rdma) {
2260 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2261 			caps->rdma = 0;
2262 		}
2263 
2264 		/* print message only when processing device capabilities
2265 		 * during initialization.
2266 		 */
2267 		if (caps == &hw->dev_caps.common_cap)
2268 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2269 	}
2270 }
2271 
2272 /**
2273  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2274  * @hw: pointer to the HW struct
2275  * @func_p: pointer to function capabilities structure
2276  * @cap: pointer to the capability element to parse
2277  *
2278  * Extract function capabilities for ICE_AQC_CAPS_VF.
2279  */
2280 static void
2281 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2282 		       struct ice_aqc_list_caps_elem *cap)
2283 {
2284 	u32 logical_id = le32_to_cpu(cap->logical_id);
2285 	u32 number = le32_to_cpu(cap->number);
2286 
2287 	func_p->num_allocd_vfs = number;
2288 	func_p->vf_base_id = logical_id;
2289 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2290 		  func_p->num_allocd_vfs);
2291 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2292 		  func_p->vf_base_id);
2293 }
2294 
2295 /**
2296  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2297  * @hw: pointer to the HW struct
2298  * @func_p: pointer to function capabilities structure
2299  * @cap: pointer to the capability element to parse
2300  *
2301  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2302  */
2303 static void
2304 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2305 			struct ice_aqc_list_caps_elem *cap)
2306 {
2307 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2308 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2309 		  le32_to_cpu(cap->number));
2310 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2311 		  func_p->guar_num_vsi);
2312 }
2313 
2314 /**
2315  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2316  * @hw: pointer to the HW struct
2317  * @func_p: pointer to function capabilities structure
2318  * @cap: pointer to the capability element to parse
2319  *
2320  * Extract function capabilities for ICE_AQC_CAPS_1588.
2321  */
2322 static void
2323 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2324 			 struct ice_aqc_list_caps_elem *cap)
2325 {
2326 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2327 	u32 number = le32_to_cpu(cap->number);
2328 
2329 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2330 	func_p->common_cap.ieee_1588 = info->ena;
2331 
2332 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2333 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2334 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2335 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2336 
2337 	if (!ice_is_e825c(hw)) {
2338 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2339 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2340 	} else {
2341 		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2342 		info->clk_src = ICE_CLK_SRC_TCXO;
2343 	}
2344 
2345 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2346 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2347 	} else {
2348 		/* Unknown clock frequency, so assume a (probably incorrect)
2349 		 * default to avoid out-of-bounds look ups of frequency
2350 		 * related information.
2351 		 */
2352 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2353 			  info->clk_freq);
2354 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2355 	}
2356 
2357 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2358 		  func_p->common_cap.ieee_1588);
2359 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2360 		  info->src_tmr_owned);
2361 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2362 		  info->tmr_ena);
2363 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2364 		  info->tmr_index_owned);
2365 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2366 		  info->tmr_index_assoc);
2367 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2368 		  info->clk_freq);
2369 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2370 		  info->clk_src);
2371 }
2372 
2373 /**
2374  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2375  * @hw: pointer to the HW struct
2376  * @func_p: pointer to function capabilities structure
2377  *
2378  * Extract function capabilities for ICE_AQC_CAPS_FD.
2379  */
2380 static void
2381 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2382 {
2383 	u32 reg_val, gsize, bsize;
2384 
2385 	reg_val = rd32(hw, GLQF_FD_SIZE);
2386 	switch (hw->mac_type) {
2387 	case ICE_MAC_E830:
2388 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2389 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2390 		break;
2391 	case ICE_MAC_E810:
2392 	default:
2393 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2394 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2395 	}
2396 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2397 	func_p->fd_fltr_best_effort = bsize;
2398 
2399 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2400 		  func_p->fd_fltr_guar);
2401 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2402 		  func_p->fd_fltr_best_effort);
2403 }
2404 
2405 /**
2406  * ice_parse_func_caps - Parse function capabilities
2407  * @hw: pointer to the HW struct
2408  * @func_p: pointer to function capabilities structure
2409  * @buf: buffer containing the function capability records
2410  * @cap_count: the number of capabilities
2411  *
2412  * Helper function to parse function (0x000A) capabilities list. For
2413  * capabilities shared between device and function, this relies on
2414  * ice_parse_common_caps.
2415  *
2416  * Loop through the list of provided capabilities and extract the relevant
2417  * data into the function capabilities structured.
2418  */
2419 static void
2420 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2421 		    void *buf, u32 cap_count)
2422 {
2423 	struct ice_aqc_list_caps_elem *cap_resp;
2424 	u32 i;
2425 
2426 	cap_resp = buf;
2427 
2428 	memset(func_p, 0, sizeof(*func_p));
2429 
2430 	for (i = 0; i < cap_count; i++) {
2431 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2432 		bool found;
2433 
2434 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2435 					      &cap_resp[i], "func caps");
2436 
2437 		switch (cap) {
2438 		case ICE_AQC_CAPS_VF:
2439 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2440 			break;
2441 		case ICE_AQC_CAPS_VSI:
2442 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2443 			break;
2444 		case ICE_AQC_CAPS_1588:
2445 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2446 			break;
2447 		case ICE_AQC_CAPS_FD:
2448 			ice_parse_fdir_func_caps(hw, func_p);
2449 			break;
2450 		default:
2451 			/* Don't list common capabilities as unknown */
2452 			if (!found)
2453 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2454 					  i, cap);
2455 			break;
2456 		}
2457 	}
2458 
2459 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2460 }
2461 
2462 /**
2463  * ice_func_id_to_logical_id - map from function id to logical pf id
2464  * @active_function_bitmap: active function bitmap
2465  * @pf_id: function number of device
2466  *
2467  * Return: logical PF ID.
2468  */
2469 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2470 {
2471 	u8 logical_id = 0;
2472 	u8 i;
2473 
2474 	for (i = 0; i < pf_id; i++)
2475 		if (active_function_bitmap & BIT(i))
2476 			logical_id++;
2477 
2478 	return logical_id;
2479 }
2480 
2481 /**
2482  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2483  * @hw: pointer to the HW struct
2484  * @dev_p: pointer to device capabilities structure
2485  * @cap: capability element to parse
2486  *
2487  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2488  */
2489 static void
2490 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2491 			      struct ice_aqc_list_caps_elem *cap)
2492 {
2493 	u32 number = le32_to_cpu(cap->number);
2494 
2495 	dev_p->num_funcs = hweight32(number);
2496 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2497 		  dev_p->num_funcs);
2498 
2499 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2500 }
2501 
2502 /**
2503  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2504  * @hw: pointer to the HW struct
2505  * @dev_p: pointer to device capabilities structure
2506  * @cap: capability element to parse
2507  *
2508  * Parse ICE_AQC_CAPS_VF for device capabilities.
2509  */
2510 static void
2511 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2512 		      struct ice_aqc_list_caps_elem *cap)
2513 {
2514 	u32 number = le32_to_cpu(cap->number);
2515 
2516 	dev_p->num_vfs_exposed = number;
2517 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2518 		  dev_p->num_vfs_exposed);
2519 }
2520 
2521 /**
2522  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2523  * @hw: pointer to the HW struct
2524  * @dev_p: pointer to device capabilities structure
2525  * @cap: capability element to parse
2526  *
2527  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2528  */
2529 static void
2530 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2531 		       struct ice_aqc_list_caps_elem *cap)
2532 {
2533 	u32 number = le32_to_cpu(cap->number);
2534 
2535 	dev_p->num_vsi_allocd_to_host = number;
2536 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2537 		  dev_p->num_vsi_allocd_to_host);
2538 }
2539 
2540 /**
2541  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2542  * @hw: pointer to the HW struct
2543  * @dev_p: pointer to device capabilities structure
2544  * @cap: capability element to parse
2545  *
2546  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2547  */
2548 static void
2549 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2550 			struct ice_aqc_list_caps_elem *cap)
2551 {
2552 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2553 	u32 logical_id = le32_to_cpu(cap->logical_id);
2554 	u32 phys_id = le32_to_cpu(cap->phys_id);
2555 	u32 number = le32_to_cpu(cap->number);
2556 
2557 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2558 	dev_p->common_cap.ieee_1588 = info->ena;
2559 
2560 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2561 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2562 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2563 
2564 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2565 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2566 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2567 
2568 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2569 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2570 
2571 	info->ena_ports = logical_id;
2572 	info->tmr_own_map = phys_id;
2573 
2574 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2575 		  dev_p->common_cap.ieee_1588);
2576 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2577 		  info->tmr0_owner);
2578 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2579 		  info->tmr0_owned);
2580 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2581 		  info->tmr0_ena);
2582 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2583 		  info->tmr1_owner);
2584 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2585 		  info->tmr1_owned);
2586 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2587 		  info->tmr1_ena);
2588 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2589 		  info->ts_ll_read);
2590 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2591 		  info->ts_ll_int_read);
2592 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2593 		  info->ena_ports);
2594 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2595 		  info->tmr_own_map);
2596 }
2597 
2598 /**
2599  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2600  * @hw: pointer to the HW struct
2601  * @dev_p: pointer to device capabilities structure
2602  * @cap: capability element to parse
2603  *
2604  * Parse ICE_AQC_CAPS_FD for device capabilities.
2605  */
2606 static void
2607 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2608 			struct ice_aqc_list_caps_elem *cap)
2609 {
2610 	u32 number = le32_to_cpu(cap->number);
2611 
2612 	dev_p->num_flow_director_fltr = number;
2613 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2614 		  dev_p->num_flow_director_fltr);
2615 }
2616 
2617 /**
2618  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2619  * @hw: pointer to the HW struct
2620  * @dev_p: pointer to device capabilities structure
2621  * @cap: capability element to parse
2622  *
2623  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2624  * enabled sensors.
2625  */
2626 static void
2627 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2628 			     struct ice_aqc_list_caps_elem *cap)
2629 {
2630 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2631 
2632 	ice_debug(hw, ICE_DBG_INIT,
2633 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2634 		  dev_p->supported_sensors);
2635 }
2636 
2637 /**
2638  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2639  * @hw: pointer to the HW struct
2640  * @dev_p: pointer to device capabilities structure
2641  * @cap: capability element to parse
2642  *
2643  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2644  */
2645 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2646 					struct ice_hw_dev_caps *dev_p,
2647 					struct ice_aqc_list_caps_elem *cap)
2648 {
2649 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2650 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2651 
2652 	dev_info(ice_hw_to_dev(hw),
2653 		 "PF is configured in %s mode with IP instance ID %d\n",
2654 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2655 		 "primary" : "secondary", dev_p->nac_topo.id);
2656 
2657 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2658 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2659 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2660 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2661 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2662 		  dev_p->nac_topo.id);
2663 }
2664 
2665 /**
2666  * ice_parse_dev_caps - Parse device capabilities
2667  * @hw: pointer to the HW struct
2668  * @dev_p: pointer to device capabilities structure
2669  * @buf: buffer containing the device capability records
2670  * @cap_count: the number of capabilities
2671  *
2672  * Helper device to parse device (0x000B) capabilities list. For
2673  * capabilities shared between device and function, this relies on
2674  * ice_parse_common_caps.
2675  *
2676  * Loop through the list of provided capabilities and extract the relevant
2677  * data into the device capabilities structured.
2678  */
2679 static void
2680 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2681 		   void *buf, u32 cap_count)
2682 {
2683 	struct ice_aqc_list_caps_elem *cap_resp;
2684 	u32 i;
2685 
2686 	cap_resp = buf;
2687 
2688 	memset(dev_p, 0, sizeof(*dev_p));
2689 
2690 	for (i = 0; i < cap_count; i++) {
2691 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2692 		bool found;
2693 
2694 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2695 					      &cap_resp[i], "dev caps");
2696 
2697 		switch (cap) {
2698 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2699 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2700 			break;
2701 		case ICE_AQC_CAPS_VF:
2702 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2703 			break;
2704 		case ICE_AQC_CAPS_VSI:
2705 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2706 			break;
2707 		case ICE_AQC_CAPS_1588:
2708 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2709 			break;
2710 		case ICE_AQC_CAPS_FD:
2711 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2712 			break;
2713 		case ICE_AQC_CAPS_SENSOR_READING:
2714 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2715 			break;
2716 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2717 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2718 			break;
2719 		default:
2720 			/* Don't list common capabilities as unknown */
2721 			if (!found)
2722 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2723 					  i, cap);
2724 			break;
2725 		}
2726 	}
2727 
2728 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2729 }
2730 
2731 /**
2732  * ice_is_pf_c827 - check if pf contains c827 phy
2733  * @hw: pointer to the hw struct
2734  */
2735 bool ice_is_pf_c827(struct ice_hw *hw)
2736 {
2737 	struct ice_aqc_get_link_topo cmd = {};
2738 	u8 node_part_number;
2739 	u16 node_handle;
2740 	int status;
2741 
2742 	if (hw->mac_type != ICE_MAC_E810)
2743 		return false;
2744 
2745 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2746 		return true;
2747 
2748 	cmd.addr.topo_params.node_type_ctx =
2749 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2750 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2751 	cmd.addr.topo_params.index = 0;
2752 
2753 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2754 					 &node_handle);
2755 
2756 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2757 		return false;
2758 
2759 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2760 		return true;
2761 
2762 	return false;
2763 }
2764 
2765 /**
2766  * ice_is_phy_rclk_in_netlist
2767  * @hw: pointer to the hw struct
2768  *
2769  * Check if the PHY Recovered Clock device is present in the netlist
2770  */
2771 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2772 {
2773 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2774 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2775 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2776 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2777 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2778 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2779 		return false;
2780 
2781 	return true;
2782 }
2783 
2784 /**
2785  * ice_is_clock_mux_in_netlist
2786  * @hw: pointer to the hw struct
2787  *
2788  * Check if the Clock Multiplexer device is present in the netlist
2789  */
2790 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2791 {
2792 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2793 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2794 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2795 				  NULL))
2796 		return false;
2797 
2798 	return true;
2799 }
2800 
2801 /**
2802  * ice_is_cgu_in_netlist - check for CGU presence
2803  * @hw: pointer to the hw struct
2804  *
2805  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2806  * Save the CGU part number in the hw structure for later use.
2807  * Return:
2808  * * true - cgu is present
2809  * * false - cgu is not present
2810  */
2811 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2812 {
2813 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2814 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2815 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2816 				   NULL)) {
2817 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2818 		return true;
2819 	} else if (!ice_find_netlist_node(hw,
2820 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2821 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2822 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2823 					  NULL)) {
2824 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2825 		return true;
2826 	}
2827 
2828 	return false;
2829 }
2830 
2831 /**
2832  * ice_is_gps_in_netlist
2833  * @hw: pointer to the hw struct
2834  *
2835  * Check if the GPS generic device is present in the netlist
2836  */
2837 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2838 {
2839 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2840 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2841 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2842 		return false;
2843 
2844 	return true;
2845 }
2846 
2847 /**
2848  * ice_aq_list_caps - query function/device capabilities
2849  * @hw: pointer to the HW struct
2850  * @buf: a buffer to hold the capabilities
2851  * @buf_size: size of the buffer
2852  * @cap_count: if not NULL, set to the number of capabilities reported
2853  * @opc: capabilities type to discover, device or function
2854  * @cd: pointer to command details structure or NULL
2855  *
2856  * Get the function (0x000A) or device (0x000B) capabilities description from
2857  * firmware and store it in the buffer.
2858  *
2859  * If the cap_count pointer is not NULL, then it is set to the number of
2860  * capabilities firmware will report. Note that if the buffer size is too
2861  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2862  * cap_count will still be updated in this case. It is recommended that the
2863  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2864  * firmware could return) to avoid this.
2865  */
2866 int
2867 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2868 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2869 {
2870 	struct ice_aqc_list_caps *cmd;
2871 	struct ice_aq_desc desc;
2872 	int status;
2873 
2874 	cmd = &desc.params.get_cap;
2875 
2876 	if (opc != ice_aqc_opc_list_func_caps &&
2877 	    opc != ice_aqc_opc_list_dev_caps)
2878 		return -EINVAL;
2879 
2880 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2881 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2882 
2883 	if (cap_count)
2884 		*cap_count = le32_to_cpu(cmd->count);
2885 
2886 	return status;
2887 }
2888 
2889 /**
2890  * ice_discover_dev_caps - Read and extract device capabilities
2891  * @hw: pointer to the hardware structure
2892  * @dev_caps: pointer to device capabilities structure
2893  *
2894  * Read the device capabilities and extract them into the dev_caps structure
2895  * for later use.
2896  */
2897 int
2898 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2899 {
2900 	u32 cap_count = 0;
2901 	void *cbuf;
2902 	int status;
2903 
2904 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2905 	if (!cbuf)
2906 		return -ENOMEM;
2907 
2908 	/* Although the driver doesn't know the number of capabilities the
2909 	 * device will return, we can simply send a 4KB buffer, the maximum
2910 	 * possible size that firmware can return.
2911 	 */
2912 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2913 
2914 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2915 				  ice_aqc_opc_list_dev_caps, NULL);
2916 	if (!status)
2917 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2918 	kfree(cbuf);
2919 
2920 	return status;
2921 }
2922 
2923 /**
2924  * ice_discover_func_caps - Read and extract function capabilities
2925  * @hw: pointer to the hardware structure
2926  * @func_caps: pointer to function capabilities structure
2927  *
2928  * Read the function capabilities and extract them into the func_caps structure
2929  * for later use.
2930  */
2931 static int
2932 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2933 {
2934 	u32 cap_count = 0;
2935 	void *cbuf;
2936 	int status;
2937 
2938 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2939 	if (!cbuf)
2940 		return -ENOMEM;
2941 
2942 	/* Although the driver doesn't know the number of capabilities the
2943 	 * device will return, we can simply send a 4KB buffer, the maximum
2944 	 * possible size that firmware can return.
2945 	 */
2946 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2947 
2948 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2949 				  ice_aqc_opc_list_func_caps, NULL);
2950 	if (!status)
2951 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2952 	kfree(cbuf);
2953 
2954 	return status;
2955 }
2956 
2957 /**
2958  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2959  * @hw: pointer to the hardware structure
2960  */
2961 void ice_set_safe_mode_caps(struct ice_hw *hw)
2962 {
2963 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2964 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2965 	struct ice_hw_common_caps cached_caps;
2966 	u32 num_funcs;
2967 
2968 	/* cache some func_caps values that should be restored after memset */
2969 	cached_caps = func_caps->common_cap;
2970 
2971 	/* unset func capabilities */
2972 	memset(func_caps, 0, sizeof(*func_caps));
2973 
2974 #define ICE_RESTORE_FUNC_CAP(name) \
2975 	func_caps->common_cap.name = cached_caps.name
2976 
2977 	/* restore cached values */
2978 	ICE_RESTORE_FUNC_CAP(valid_functions);
2979 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2980 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2981 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2982 	ICE_RESTORE_FUNC_CAP(max_mtu);
2983 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2984 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2985 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2986 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2987 
2988 	/* one Tx and one Rx queue in safe mode */
2989 	func_caps->common_cap.num_rxq = 1;
2990 	func_caps->common_cap.num_txq = 1;
2991 
2992 	/* two MSIX vectors, one for traffic and one for misc causes */
2993 	func_caps->common_cap.num_msix_vectors = 2;
2994 	func_caps->guar_num_vsi = 1;
2995 
2996 	/* cache some dev_caps values that should be restored after memset */
2997 	cached_caps = dev_caps->common_cap;
2998 	num_funcs = dev_caps->num_funcs;
2999 
3000 	/* unset dev capabilities */
3001 	memset(dev_caps, 0, sizeof(*dev_caps));
3002 
3003 #define ICE_RESTORE_DEV_CAP(name) \
3004 	dev_caps->common_cap.name = cached_caps.name
3005 
3006 	/* restore cached values */
3007 	ICE_RESTORE_DEV_CAP(valid_functions);
3008 	ICE_RESTORE_DEV_CAP(txq_first_id);
3009 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3010 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3011 	ICE_RESTORE_DEV_CAP(max_mtu);
3012 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3013 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3014 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3015 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3016 	dev_caps->num_funcs = num_funcs;
3017 
3018 	/* one Tx and one Rx queue per function in safe mode */
3019 	dev_caps->common_cap.num_rxq = num_funcs;
3020 	dev_caps->common_cap.num_txq = num_funcs;
3021 
3022 	/* two MSIX vectors per function */
3023 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3024 }
3025 
3026 /**
3027  * ice_get_caps - get info about the HW
3028  * @hw: pointer to the hardware structure
3029  */
3030 int ice_get_caps(struct ice_hw *hw)
3031 {
3032 	int status;
3033 
3034 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3035 	if (status)
3036 		return status;
3037 
3038 	return ice_discover_func_caps(hw, &hw->func_caps);
3039 }
3040 
3041 /**
3042  * ice_aq_manage_mac_write - manage MAC address write command
3043  * @hw: pointer to the HW struct
3044  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3045  * @flags: flags to control write behavior
3046  * @cd: pointer to command details structure or NULL
3047  *
3048  * This function is used to write MAC address to the NVM (0x0108).
3049  */
3050 int
3051 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3052 			struct ice_sq_cd *cd)
3053 {
3054 	struct ice_aqc_manage_mac_write *cmd;
3055 	struct ice_aq_desc desc;
3056 
3057 	cmd = &desc.params.mac_write;
3058 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3059 
3060 	cmd->flags = flags;
3061 	ether_addr_copy(cmd->mac_addr, mac_addr);
3062 
3063 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3064 }
3065 
3066 /**
3067  * ice_aq_clear_pxe_mode
3068  * @hw: pointer to the HW struct
3069  *
3070  * Tell the firmware that the driver is taking over from PXE (0x0110).
3071  */
3072 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3073 {
3074 	struct ice_aq_desc desc;
3075 
3076 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3077 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3078 
3079 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3080 }
3081 
3082 /**
3083  * ice_clear_pxe_mode - clear pxe operations mode
3084  * @hw: pointer to the HW struct
3085  *
3086  * Make sure all PXE mode settings are cleared, including things
3087  * like descriptor fetch/write-back mode.
3088  */
3089 void ice_clear_pxe_mode(struct ice_hw *hw)
3090 {
3091 	if (ice_check_sq_alive(hw, &hw->adminq))
3092 		ice_aq_clear_pxe_mode(hw);
3093 }
3094 
3095 /**
3096  * ice_aq_set_port_params - set physical port parameters.
3097  * @pi: pointer to the port info struct
3098  * @double_vlan: if set double VLAN is enabled
3099  * @cd: pointer to command details structure or NULL
3100  *
3101  * Set Physical port parameters (0x0203)
3102  */
3103 int
3104 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3105 		       struct ice_sq_cd *cd)
3106 
3107 {
3108 	struct ice_aqc_set_port_params *cmd;
3109 	struct ice_hw *hw = pi->hw;
3110 	struct ice_aq_desc desc;
3111 	u16 cmd_flags = 0;
3112 
3113 	cmd = &desc.params.set_port_params;
3114 
3115 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3116 	if (double_vlan)
3117 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3118 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3119 
3120 	cmd->local_fwd_mode = pi->local_fwd_mode |
3121 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3122 
3123 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3124 }
3125 
3126 /**
3127  * ice_is_100m_speed_supported
3128  * @hw: pointer to the HW struct
3129  *
3130  * returns true if 100M speeds are supported by the device,
3131  * false otherwise.
3132  */
3133 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3134 {
3135 	switch (hw->device_id) {
3136 	case ICE_DEV_ID_E822C_SGMII:
3137 	case ICE_DEV_ID_E822L_SGMII:
3138 	case ICE_DEV_ID_E823L_1GBE:
3139 	case ICE_DEV_ID_E823C_SGMII:
3140 		return true;
3141 	default:
3142 		return false;
3143 	}
3144 }
3145 
3146 /**
3147  * ice_get_link_speed_based_on_phy_type - returns link speed
3148  * @phy_type_low: lower part of phy_type
3149  * @phy_type_high: higher part of phy_type
3150  *
3151  * This helper function will convert an entry in PHY type structure
3152  * [phy_type_low, phy_type_high] to its corresponding link speed.
3153  * Note: In the structure of [phy_type_low, phy_type_high], there should
3154  * be one bit set, as this function will convert one PHY type to its
3155  * speed.
3156  *
3157  * Return:
3158  * * PHY speed for recognized PHY type
3159  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3160  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3161  */
3162 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3163 {
3164 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3165 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3166 
3167 	switch (phy_type_low) {
3168 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3169 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3170 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3171 		break;
3172 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3173 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3174 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3175 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3176 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3177 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3178 		break;
3179 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3180 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3181 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3182 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3183 		break;
3184 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3185 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3186 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3187 		break;
3188 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3189 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3190 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3191 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3192 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3193 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3194 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3195 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3196 		break;
3197 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3198 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3199 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3200 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3201 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3202 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3203 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3204 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3205 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3206 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3207 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3208 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3209 		break;
3210 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3211 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3212 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3213 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3214 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3215 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3216 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3217 		break;
3218 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3219 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3220 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3221 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3222 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3223 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3224 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3225 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3226 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3227 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3228 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3229 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3230 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3231 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3232 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3233 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3234 		break;
3235 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3236 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3237 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3238 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3239 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3240 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3241 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3242 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3243 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3244 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3245 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3246 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3247 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3248 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3249 		break;
3250 	default:
3251 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3252 		break;
3253 	}
3254 
3255 	switch (phy_type_high) {
3256 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3257 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3258 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3259 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3260 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3261 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3262 		break;
3263 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3264 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3265 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3266 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3267 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3268 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3269 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3270 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3271 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3272 		break;
3273 	default:
3274 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3275 		break;
3276 	}
3277 
3278 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3279 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3280 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3281 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3282 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3283 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3284 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3285 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3286 		return speed_phy_type_low;
3287 	else
3288 		return speed_phy_type_high;
3289 }
3290 
3291 /**
3292  * ice_update_phy_type
3293  * @phy_type_low: pointer to the lower part of phy_type
3294  * @phy_type_high: pointer to the higher part of phy_type
3295  * @link_speeds_bitmap: targeted link speeds bitmap
3296  *
3297  * Note: For the link_speeds_bitmap structure, you can check it at
3298  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3299  * link_speeds_bitmap include multiple speeds.
3300  *
3301  * Each entry in this [phy_type_low, phy_type_high] structure will
3302  * present a certain link speed. This helper function will turn on bits
3303  * in [phy_type_low, phy_type_high] structure based on the value of
3304  * link_speeds_bitmap input parameter.
3305  */
3306 void
3307 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3308 		    u16 link_speeds_bitmap)
3309 {
3310 	u64 pt_high;
3311 	u64 pt_low;
3312 	int index;
3313 	u16 speed;
3314 
3315 	/* We first check with low part of phy_type */
3316 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3317 		pt_low = BIT_ULL(index);
3318 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3319 
3320 		if (link_speeds_bitmap & speed)
3321 			*phy_type_low |= BIT_ULL(index);
3322 	}
3323 
3324 	/* We then check with high part of phy_type */
3325 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3326 		pt_high = BIT_ULL(index);
3327 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3328 
3329 		if (link_speeds_bitmap & speed)
3330 			*phy_type_high |= BIT_ULL(index);
3331 	}
3332 }
3333 
3334 /**
3335  * ice_aq_set_phy_cfg
3336  * @hw: pointer to the HW struct
3337  * @pi: port info structure of the interested logical port
3338  * @cfg: structure with PHY configuration data to be set
3339  * @cd: pointer to command details structure or NULL
3340  *
3341  * Set the various PHY configuration parameters supported on the Port.
3342  * One or more of the Set PHY config parameters may be ignored in an MFP
3343  * mode as the PF may not have the privilege to set some of the PHY Config
3344  * parameters. This status will be indicated by the command response (0x0601).
3345  */
3346 int
3347 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3348 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3349 {
3350 	struct ice_aq_desc desc;
3351 	int status;
3352 
3353 	if (!cfg)
3354 		return -EINVAL;
3355 
3356 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3357 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3358 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3359 			  cfg->caps);
3360 
3361 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3362 	}
3363 
3364 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3365 	desc.params.set_phy.lport_num = pi->lport;
3366 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3367 
3368 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3369 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3370 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3371 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3372 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3373 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3374 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3375 		  cfg->low_power_ctrl_an);
3376 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3377 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3378 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3379 		  cfg->link_fec_opt);
3380 
3381 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3382 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3383 		status = 0;
3384 
3385 	if (!status)
3386 		pi->phy.curr_user_phy_cfg = *cfg;
3387 
3388 	return status;
3389 }
3390 
3391 /**
3392  * ice_update_link_info - update status of the HW network link
3393  * @pi: port info structure of the interested logical port
3394  */
3395 int ice_update_link_info(struct ice_port_info *pi)
3396 {
3397 	struct ice_link_status *li;
3398 	int status;
3399 
3400 	if (!pi)
3401 		return -EINVAL;
3402 
3403 	li = &pi->phy.link_info;
3404 
3405 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3406 	if (status)
3407 		return status;
3408 
3409 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3410 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3411 
3412 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3413 		if (!pcaps)
3414 			return -ENOMEM;
3415 
3416 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3417 					     pcaps, NULL);
3418 	}
3419 
3420 	return status;
3421 }
3422 
3423 /**
3424  * ice_aq_get_phy_equalization - function to read serdes equaliser
3425  * value from firmware using admin queue command.
3426  * @hw: pointer to the HW struct
3427  * @data_in: represents the serdes equalization parameter requested
3428  * @op_code: represents the serdes number and flag to represent tx or rx
3429  * @serdes_num: represents the serdes number
3430  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3431  *
3432  * Return: non-zero status on error and 0 on success.
3433  */
3434 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3435 				u8 serdes_num, int *output)
3436 {
3437 	struct ice_aqc_dnl_call_command *cmd;
3438 	struct ice_aqc_dnl_call buf = {};
3439 	struct ice_aq_desc desc;
3440 	int err;
3441 
3442 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3443 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3444 		cpu_to_le16(op_code | (serdes_num & 0xF));
3445 	cmd = &desc.params.dnl_call;
3446 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3447 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3448 				  ICE_AQ_FLAG_RD |
3449 				  ICE_AQ_FLAG_SI);
3450 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3451 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3452 
3453 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3454 			      NULL);
3455 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3456 
3457 	return err;
3458 }
3459 
3460 #define FEC_REG_PORT(port) {	\
3461 	FEC_CORR_LOW_REG_PORT##port,		\
3462 	FEC_CORR_HIGH_REG_PORT##port,	\
3463 	FEC_UNCORR_LOW_REG_PORT##port,	\
3464 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3465 }
3466 
3467 static const u32 fec_reg[][ICE_FEC_MAX] = {
3468 	FEC_REG_PORT(0),
3469 	FEC_REG_PORT(1),
3470 	FEC_REG_PORT(2),
3471 	FEC_REG_PORT(3)
3472 };
3473 
3474 /**
3475  * ice_aq_get_fec_stats - reads fec stats from phy
3476  * @hw: pointer to the HW struct
3477  * @pcs_quad: represents pcsquad of user input serdes
3478  * @pcs_port: represents the pcs port number part of above pcs quad
3479  * @fec_type: represents FEC stats type
3480  * @output: pointer to the caller-supplied buffer to return requested fec stats
3481  *
3482  * Return: non-zero status on error and 0 on success.
3483  */
3484 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3485 			 enum ice_fec_stats_types fec_type, u32 *output)
3486 {
3487 	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3488 	struct ice_sbq_msg_input msg = {};
3489 	u32 receiver_id, reg_offset;
3490 	int err;
3491 
3492 	if (pcs_port > 3)
3493 		return -EINVAL;
3494 
3495 	reg_offset = fec_reg[pcs_port][fec_type];
3496 
3497 	if (pcs_quad == 0)
3498 		receiver_id = FEC_RECEIVER_ID_PCS0;
3499 	else if (pcs_quad == 1)
3500 		receiver_id = FEC_RECEIVER_ID_PCS1;
3501 	else
3502 		return -EINVAL;
3503 
3504 	msg.msg_addr_low = lower_16_bits(reg_offset);
3505 	msg.msg_addr_high = receiver_id;
3506 	msg.opcode = ice_sbq_msg_rd;
3507 	msg.dest_dev = rmn_0;
3508 
3509 	err = ice_sbq_rw_reg(hw, &msg, flag);
3510 	if (err)
3511 		return err;
3512 
3513 	*output = msg.data;
3514 	return 0;
3515 }
3516 
3517 /**
3518  * ice_cache_phy_user_req
3519  * @pi: port information structure
3520  * @cache_data: PHY logging data
3521  * @cache_mode: PHY logging mode
3522  *
3523  * Log the user request on (FC, FEC, SPEED) for later use.
3524  */
3525 static void
3526 ice_cache_phy_user_req(struct ice_port_info *pi,
3527 		       struct ice_phy_cache_mode_data cache_data,
3528 		       enum ice_phy_cache_mode cache_mode)
3529 {
3530 	if (!pi)
3531 		return;
3532 
3533 	switch (cache_mode) {
3534 	case ICE_FC_MODE:
3535 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3536 		break;
3537 	case ICE_SPEED_MODE:
3538 		pi->phy.curr_user_speed_req =
3539 			cache_data.data.curr_user_speed_req;
3540 		break;
3541 	case ICE_FEC_MODE:
3542 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3543 		break;
3544 	default:
3545 		break;
3546 	}
3547 }
3548 
3549 /**
3550  * ice_caps_to_fc_mode
3551  * @caps: PHY capabilities
3552  *
3553  * Convert PHY FC capabilities to ice FC mode
3554  */
3555 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3556 {
3557 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3558 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3559 		return ICE_FC_FULL;
3560 
3561 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3562 		return ICE_FC_TX_PAUSE;
3563 
3564 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3565 		return ICE_FC_RX_PAUSE;
3566 
3567 	return ICE_FC_NONE;
3568 }
3569 
3570 /**
3571  * ice_caps_to_fec_mode
3572  * @caps: PHY capabilities
3573  * @fec_options: Link FEC options
3574  *
3575  * Convert PHY FEC capabilities to ice FEC mode
3576  */
3577 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3578 {
3579 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3580 		return ICE_FEC_AUTO;
3581 
3582 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3583 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3584 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3585 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3586 		return ICE_FEC_BASER;
3587 
3588 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3589 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3590 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3591 		return ICE_FEC_RS;
3592 
3593 	return ICE_FEC_NONE;
3594 }
3595 
3596 /**
3597  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3598  * @pi: port information structure
3599  * @cfg: PHY configuration data to set FC mode
3600  * @req_mode: FC mode to configure
3601  */
3602 int
3603 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3604 	       enum ice_fc_mode req_mode)
3605 {
3606 	struct ice_phy_cache_mode_data cache_data;
3607 	u8 pause_mask = 0x0;
3608 
3609 	if (!pi || !cfg)
3610 		return -EINVAL;
3611 
3612 	switch (req_mode) {
3613 	case ICE_FC_FULL:
3614 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3615 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3616 		break;
3617 	case ICE_FC_RX_PAUSE:
3618 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3619 		break;
3620 	case ICE_FC_TX_PAUSE:
3621 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3622 		break;
3623 	default:
3624 		break;
3625 	}
3626 
3627 	/* clear the old pause settings */
3628 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3629 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3630 
3631 	/* set the new capabilities */
3632 	cfg->caps |= pause_mask;
3633 
3634 	/* Cache user FC request */
3635 	cache_data.data.curr_user_fc_req = req_mode;
3636 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3637 
3638 	return 0;
3639 }
3640 
3641 /**
3642  * ice_set_fc
3643  * @pi: port information structure
3644  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3645  * @ena_auto_link_update: enable automatic link update
3646  *
3647  * Set the requested flow control mode.
3648  */
3649 int
3650 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3651 {
3652 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3653 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3654 	struct ice_hw *hw;
3655 	int status;
3656 
3657 	if (!pi || !aq_failures)
3658 		return -EINVAL;
3659 
3660 	*aq_failures = 0;
3661 	hw = pi->hw;
3662 
3663 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3664 	if (!pcaps)
3665 		return -ENOMEM;
3666 
3667 	/* Get the current PHY config */
3668 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3669 				     pcaps, NULL);
3670 	if (status) {
3671 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3672 		goto out;
3673 	}
3674 
3675 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3676 
3677 	/* Configure the set PHY data */
3678 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3679 	if (status)
3680 		goto out;
3681 
3682 	/* If the capabilities have changed, then set the new config */
3683 	if (cfg.caps != pcaps->caps) {
3684 		int retry_count, retry_max = 10;
3685 
3686 		/* Auto restart link so settings take effect */
3687 		if (ena_auto_link_update)
3688 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3689 
3690 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3691 		if (status) {
3692 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3693 			goto out;
3694 		}
3695 
3696 		/* Update the link info
3697 		 * It sometimes takes a really long time for link to
3698 		 * come back from the atomic reset. Thus, we wait a
3699 		 * little bit.
3700 		 */
3701 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3702 			status = ice_update_link_info(pi);
3703 
3704 			if (!status)
3705 				break;
3706 
3707 			mdelay(100);
3708 		}
3709 
3710 		if (status)
3711 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3712 	}
3713 
3714 out:
3715 	return status;
3716 }
3717 
3718 /**
3719  * ice_phy_caps_equals_cfg
3720  * @phy_caps: PHY capabilities
3721  * @phy_cfg: PHY configuration
3722  *
3723  * Helper function to determine if PHY capabilities matches PHY
3724  * configuration
3725  */
3726 bool
3727 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3728 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3729 {
3730 	u8 caps_mask, cfg_mask;
3731 
3732 	if (!phy_caps || !phy_cfg)
3733 		return false;
3734 
3735 	/* These bits are not common between capabilities and configuration.
3736 	 * Do not use them to determine equality.
3737 	 */
3738 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3739 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3740 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3741 
3742 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3743 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3744 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3745 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3746 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3747 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3748 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3749 		return false;
3750 
3751 	return true;
3752 }
3753 
3754 /**
3755  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3756  * @pi: port information structure
3757  * @caps: PHY ability structure to copy date from
3758  * @cfg: PHY configuration structure to copy data to
3759  *
3760  * Helper function to copy AQC PHY get ability data to PHY set configuration
3761  * data structure
3762  */
3763 void
3764 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3765 			 struct ice_aqc_get_phy_caps_data *caps,
3766 			 struct ice_aqc_set_phy_cfg_data *cfg)
3767 {
3768 	if (!pi || !caps || !cfg)
3769 		return;
3770 
3771 	memset(cfg, 0, sizeof(*cfg));
3772 	cfg->phy_type_low = caps->phy_type_low;
3773 	cfg->phy_type_high = caps->phy_type_high;
3774 	cfg->caps = caps->caps;
3775 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3776 	cfg->eee_cap = caps->eee_cap;
3777 	cfg->eeer_value = caps->eeer_value;
3778 	cfg->link_fec_opt = caps->link_fec_options;
3779 	cfg->module_compliance_enforcement =
3780 		caps->module_compliance_enforcement;
3781 }
3782 
3783 /**
3784  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3785  * @pi: port information structure
3786  * @cfg: PHY configuration data to set FEC mode
3787  * @fec: FEC mode to configure
3788  */
3789 int
3790 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3791 		enum ice_fec_mode fec)
3792 {
3793 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3794 	struct ice_hw *hw;
3795 	int status;
3796 
3797 	if (!pi || !cfg)
3798 		return -EINVAL;
3799 
3800 	hw = pi->hw;
3801 
3802 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3803 	if (!pcaps)
3804 		return -ENOMEM;
3805 
3806 	status = ice_aq_get_phy_caps(pi, false,
3807 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3808 				      ICE_AQC_REPORT_DFLT_CFG :
3809 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3810 	if (status)
3811 		goto out;
3812 
3813 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3814 	cfg->link_fec_opt = pcaps->link_fec_options;
3815 
3816 	switch (fec) {
3817 	case ICE_FEC_BASER:
3818 		/* Clear RS bits, and AND BASE-R ability
3819 		 * bits and OR request bits.
3820 		 */
3821 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3822 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3823 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3824 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3825 		break;
3826 	case ICE_FEC_RS:
3827 		/* Clear BASE-R bits, and AND RS ability
3828 		 * bits and OR request bits.
3829 		 */
3830 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3831 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3832 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3833 		break;
3834 	case ICE_FEC_NONE:
3835 		/* Clear all FEC option bits. */
3836 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3837 		break;
3838 	case ICE_FEC_AUTO:
3839 		/* AND auto FEC bit, and all caps bits. */
3840 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3841 		cfg->link_fec_opt |= pcaps->link_fec_options;
3842 		break;
3843 	default:
3844 		status = -EINVAL;
3845 		break;
3846 	}
3847 
3848 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3849 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3850 		struct ice_link_default_override_tlv tlv = { 0 };
3851 
3852 		status = ice_get_link_default_override(&tlv, pi);
3853 		if (status)
3854 			goto out;
3855 
3856 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3857 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3858 			cfg->link_fec_opt = tlv.fec_options;
3859 	}
3860 
3861 out:
3862 	return status;
3863 }
3864 
3865 /**
3866  * ice_get_link_status - get status of the HW network link
3867  * @pi: port information structure
3868  * @link_up: pointer to bool (true/false = linkup/linkdown)
3869  *
3870  * Variable link_up is true if link is up, false if link is down.
3871  * The variable link_up is invalid if status is non zero. As a
3872  * result of this call, link status reporting becomes enabled
3873  */
3874 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3875 {
3876 	struct ice_phy_info *phy_info;
3877 	int status = 0;
3878 
3879 	if (!pi || !link_up)
3880 		return -EINVAL;
3881 
3882 	phy_info = &pi->phy;
3883 
3884 	if (phy_info->get_link_info) {
3885 		status = ice_update_link_info(pi);
3886 
3887 		if (status)
3888 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3889 				  status);
3890 	}
3891 
3892 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3893 
3894 	return status;
3895 }
3896 
3897 /**
3898  * ice_aq_set_link_restart_an
3899  * @pi: pointer to the port information structure
3900  * @ena_link: if true: enable link, if false: disable link
3901  * @cd: pointer to command details structure or NULL
3902  *
3903  * Sets up the link and restarts the Auto-Negotiation over the link.
3904  */
3905 int
3906 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3907 			   struct ice_sq_cd *cd)
3908 {
3909 	struct ice_aqc_restart_an *cmd;
3910 	struct ice_aq_desc desc;
3911 
3912 	cmd = &desc.params.restart_an;
3913 
3914 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3915 
3916 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3917 	cmd->lport_num = pi->lport;
3918 	if (ena_link)
3919 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3920 	else
3921 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3922 
3923 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3924 }
3925 
3926 /**
3927  * ice_aq_set_event_mask
3928  * @hw: pointer to the HW struct
3929  * @port_num: port number of the physical function
3930  * @mask: event mask to be set
3931  * @cd: pointer to command details structure or NULL
3932  *
3933  * Set event mask (0x0613)
3934  */
3935 int
3936 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3937 		      struct ice_sq_cd *cd)
3938 {
3939 	struct ice_aqc_set_event_mask *cmd;
3940 	struct ice_aq_desc desc;
3941 
3942 	cmd = &desc.params.set_event_mask;
3943 
3944 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3945 
3946 	cmd->lport_num = port_num;
3947 
3948 	cmd->event_mask = cpu_to_le16(mask);
3949 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3950 }
3951 
3952 /**
3953  * ice_aq_set_mac_loopback
3954  * @hw: pointer to the HW struct
3955  * @ena_lpbk: Enable or Disable loopback
3956  * @cd: pointer to command details structure or NULL
3957  *
3958  * Enable/disable loopback on a given port
3959  */
3960 int
3961 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3962 {
3963 	struct ice_aqc_set_mac_lb *cmd;
3964 	struct ice_aq_desc desc;
3965 
3966 	cmd = &desc.params.set_mac_lb;
3967 
3968 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3969 	if (ena_lpbk)
3970 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3971 
3972 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3973 }
3974 
3975 /**
3976  * ice_aq_set_port_id_led
3977  * @pi: pointer to the port information
3978  * @is_orig_mode: is this LED set to original mode (by the net-list)
3979  * @cd: pointer to command details structure or NULL
3980  *
3981  * Set LED value for the given port (0x06e9)
3982  */
3983 int
3984 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3985 		       struct ice_sq_cd *cd)
3986 {
3987 	struct ice_aqc_set_port_id_led *cmd;
3988 	struct ice_hw *hw = pi->hw;
3989 	struct ice_aq_desc desc;
3990 
3991 	cmd = &desc.params.set_port_id_led;
3992 
3993 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3994 
3995 	if (is_orig_mode)
3996 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3997 	else
3998 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3999 
4000 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4001 }
4002 
4003 /**
4004  * ice_aq_get_port_options
4005  * @hw: pointer to the HW struct
4006  * @options: buffer for the resultant port options
4007  * @option_count: input - size of the buffer in port options structures,
4008  *                output - number of returned port options
4009  * @lport: logical port to call the command with (optional)
4010  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4011  *               when PF owns more than 1 port it must be true
4012  * @active_option_idx: index of active port option in returned buffer
4013  * @active_option_valid: active option in returned buffer is valid
4014  * @pending_option_idx: index of pending port option in returned buffer
4015  * @pending_option_valid: pending option in returned buffer is valid
4016  *
4017  * Calls Get Port Options AQC (0x06ea) and verifies result.
4018  */
4019 int
4020 ice_aq_get_port_options(struct ice_hw *hw,
4021 			struct ice_aqc_get_port_options_elem *options,
4022 			u8 *option_count, u8 lport, bool lport_valid,
4023 			u8 *active_option_idx, bool *active_option_valid,
4024 			u8 *pending_option_idx, bool *pending_option_valid)
4025 {
4026 	struct ice_aqc_get_port_options *cmd;
4027 	struct ice_aq_desc desc;
4028 	int status;
4029 	u8 i;
4030 
4031 	/* options buffer shall be able to hold max returned options */
4032 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4033 		return -EINVAL;
4034 
4035 	cmd = &desc.params.get_port_options;
4036 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4037 
4038 	if (lport_valid)
4039 		cmd->lport_num = lport;
4040 	cmd->lport_num_valid = lport_valid;
4041 
4042 	status = ice_aq_send_cmd(hw, &desc, options,
4043 				 *option_count * sizeof(*options), NULL);
4044 	if (status)
4045 		return status;
4046 
4047 	/* verify direct FW response & set output parameters */
4048 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4049 				  cmd->port_options_count);
4050 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4051 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4052 					 cmd->port_options);
4053 	if (*active_option_valid) {
4054 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4055 					       cmd->port_options);
4056 		if (*active_option_idx > (*option_count - 1))
4057 			return -EIO;
4058 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4059 			  *active_option_idx);
4060 	}
4061 
4062 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4063 					  cmd->pending_port_option_status);
4064 	if (*pending_option_valid) {
4065 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4066 						cmd->pending_port_option_status);
4067 		if (*pending_option_idx > (*option_count - 1))
4068 			return -EIO;
4069 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4070 			  *pending_option_idx);
4071 	}
4072 
4073 	/* mask output options fields */
4074 	for (i = 0; i < *option_count; i++) {
4075 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4076 					   options[i].pmd);
4077 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4078 						      options[i].max_lane_speed);
4079 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4080 			  options[i].pmd, options[i].max_lane_speed);
4081 	}
4082 
4083 	return 0;
4084 }
4085 
4086 /**
4087  * ice_aq_set_port_option
4088  * @hw: pointer to the HW struct
4089  * @lport: logical port to call the command with
4090  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4091  *               when PF owns more than 1 port it must be true
4092  * @new_option: new port option to be written
4093  *
4094  * Calls Set Port Options AQC (0x06eb).
4095  */
4096 int
4097 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4098 		       u8 new_option)
4099 {
4100 	struct ice_aqc_set_port_option *cmd;
4101 	struct ice_aq_desc desc;
4102 
4103 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4104 		return -EINVAL;
4105 
4106 	cmd = &desc.params.set_port_option;
4107 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4108 
4109 	if (lport_valid)
4110 		cmd->lport_num = lport;
4111 
4112 	cmd->lport_num_valid = lport_valid;
4113 	cmd->selected_port_option = new_option;
4114 
4115 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4116 }
4117 
4118 /**
4119  * ice_aq_sff_eeprom
4120  * @hw: pointer to the HW struct
4121  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4122  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4123  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4124  * @page: QSFP page
4125  * @set_page: set or ignore the page
4126  * @data: pointer to data buffer to be read/written to the I2C device.
4127  * @length: 1-16 for read, 1 for write.
4128  * @write: 0 read, 1 for write.
4129  * @cd: pointer to command details structure or NULL
4130  *
4131  * Read/Write SFF EEPROM (0x06EE)
4132  */
4133 int
4134 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4135 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4136 		  bool write, struct ice_sq_cd *cd)
4137 {
4138 	struct ice_aqc_sff_eeprom *cmd;
4139 	struct ice_aq_desc desc;
4140 	u16 i2c_bus_addr;
4141 	int status;
4142 
4143 	if (!data || (mem_addr & 0xff00))
4144 		return -EINVAL;
4145 
4146 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4147 	cmd = &desc.params.read_write_sff_param;
4148 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4149 	cmd->lport_num = (u8)(lport & 0xff);
4150 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4151 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4152 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4153 	if (write)
4154 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4155 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4156 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4157 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4158 
4159 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4160 	return status;
4161 }
4162 
4163 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4164 {
4165 	switch (type) {
4166 	case ICE_LUT_VSI:
4167 		return ICE_LUT_VSI_SIZE;
4168 	case ICE_LUT_GLOBAL:
4169 		return ICE_LUT_GLOBAL_SIZE;
4170 	case ICE_LUT_PF:
4171 		return ICE_LUT_PF_SIZE;
4172 	}
4173 	WARN_ONCE(1, "incorrect type passed");
4174 	return ICE_LUT_VSI_SIZE;
4175 }
4176 
4177 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4178 {
4179 	switch (size) {
4180 	case ICE_LUT_VSI_SIZE:
4181 		return ICE_AQC_LUT_SIZE_SMALL;
4182 	case ICE_LUT_GLOBAL_SIZE:
4183 		return ICE_AQC_LUT_SIZE_512;
4184 	case ICE_LUT_PF_SIZE:
4185 		return ICE_AQC_LUT_SIZE_2K;
4186 	}
4187 	WARN_ONCE(1, "incorrect size passed");
4188 	return 0;
4189 }
4190 
4191 /**
4192  * __ice_aq_get_set_rss_lut
4193  * @hw: pointer to the hardware structure
4194  * @params: RSS LUT parameters
4195  * @set: set true to set the table, false to get the table
4196  *
4197  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4198  */
4199 static int
4200 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4201 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4202 {
4203 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4204 	enum ice_lut_type lut_type = params->lut_type;
4205 	struct ice_aqc_get_set_rss_lut *desc_params;
4206 	enum ice_aqc_lut_flags flags;
4207 	enum ice_lut_size lut_size;
4208 	struct ice_aq_desc desc;
4209 	u8 *lut = params->lut;
4210 
4211 
4212 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4213 		return -EINVAL;
4214 
4215 	lut_size = ice_lut_type_to_size(lut_type);
4216 	if (lut_size > params->lut_size)
4217 		return -EINVAL;
4218 	else if (set && lut_size != params->lut_size)
4219 		return -EINVAL;
4220 
4221 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4222 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4223 	if (set)
4224 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4225 
4226 	desc_params = &desc.params.get_set_rss_lut;
4227 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4228 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4229 
4230 	if (lut_type == ICE_LUT_GLOBAL)
4231 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4232 					  params->global_lut_id);
4233 
4234 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4235 	desc_params->flags = cpu_to_le16(flags);
4236 
4237 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4238 }
4239 
4240 /**
4241  * ice_aq_get_rss_lut
4242  * @hw: pointer to the hardware structure
4243  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4244  *
4245  * get the RSS lookup table, PF or VSI type
4246  */
4247 int
4248 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4249 {
4250 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4251 }
4252 
4253 /**
4254  * ice_aq_set_rss_lut
4255  * @hw: pointer to the hardware structure
4256  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4257  *
4258  * set the RSS lookup table, PF or VSI type
4259  */
4260 int
4261 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4262 {
4263 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4264 }
4265 
4266 /**
4267  * __ice_aq_get_set_rss_key
4268  * @hw: pointer to the HW struct
4269  * @vsi_id: VSI FW index
4270  * @key: pointer to key info struct
4271  * @set: set true to set the key, false to get the key
4272  *
4273  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4274  */
4275 static int
4276 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4277 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4278 {
4279 	struct ice_aqc_get_set_rss_key *desc_params;
4280 	u16 key_size = sizeof(*key);
4281 	struct ice_aq_desc desc;
4282 
4283 	if (set) {
4284 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4285 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4286 	} else {
4287 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4288 	}
4289 
4290 	desc_params = &desc.params.get_set_rss_key;
4291 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4292 
4293 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4294 }
4295 
4296 /**
4297  * ice_aq_get_rss_key
4298  * @hw: pointer to the HW struct
4299  * @vsi_handle: software VSI handle
4300  * @key: pointer to key info struct
4301  *
4302  * get the RSS key per VSI
4303  */
4304 int
4305 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4306 		   struct ice_aqc_get_set_rss_keys *key)
4307 {
4308 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4309 		return -EINVAL;
4310 
4311 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4312 					key, false);
4313 }
4314 
4315 /**
4316  * ice_aq_set_rss_key
4317  * @hw: pointer to the HW struct
4318  * @vsi_handle: software VSI handle
4319  * @keys: pointer to key info struct
4320  *
4321  * set the RSS key per VSI
4322  */
4323 int
4324 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4325 		   struct ice_aqc_get_set_rss_keys *keys)
4326 {
4327 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4328 		return -EINVAL;
4329 
4330 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4331 					keys, true);
4332 }
4333 
4334 /**
4335  * ice_aq_add_lan_txq
4336  * @hw: pointer to the hardware structure
4337  * @num_qgrps: Number of added queue groups
4338  * @qg_list: list of queue groups to be added
4339  * @buf_size: size of buffer for indirect command
4340  * @cd: pointer to command details structure or NULL
4341  *
4342  * Add Tx LAN queue (0x0C30)
4343  *
4344  * NOTE:
4345  * Prior to calling add Tx LAN queue:
4346  * Initialize the following as part of the Tx queue context:
4347  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4348  * Cache profile and Packet shaper profile.
4349  *
4350  * After add Tx LAN queue AQ command is completed:
4351  * Interrupts should be associated with specific queues,
4352  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4353  * flow.
4354  */
4355 static int
4356 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4357 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4358 		   struct ice_sq_cd *cd)
4359 {
4360 	struct ice_aqc_add_tx_qgrp *list;
4361 	struct ice_aqc_add_txqs *cmd;
4362 	struct ice_aq_desc desc;
4363 	u16 i, sum_size = 0;
4364 
4365 	cmd = &desc.params.add_txqs;
4366 
4367 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4368 
4369 	if (!qg_list)
4370 		return -EINVAL;
4371 
4372 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4373 		return -EINVAL;
4374 
4375 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4376 		sum_size += struct_size(list, txqs, list->num_txqs);
4377 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4378 						      list->num_txqs);
4379 	}
4380 
4381 	if (buf_size != sum_size)
4382 		return -EINVAL;
4383 
4384 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4385 
4386 	cmd->num_qgrps = num_qgrps;
4387 
4388 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4389 }
4390 
4391 /**
4392  * ice_aq_dis_lan_txq
4393  * @hw: pointer to the hardware structure
4394  * @num_qgrps: number of groups in the list
4395  * @qg_list: the list of groups to disable
4396  * @buf_size: the total size of the qg_list buffer in bytes
4397  * @rst_src: if called due to reset, specifies the reset source
4398  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4399  * @cd: pointer to command details structure or NULL
4400  *
4401  * Disable LAN Tx queue (0x0C31)
4402  */
4403 static int
4404 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4405 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4406 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4407 		   struct ice_sq_cd *cd)
4408 {
4409 	struct ice_aqc_dis_txq_item *item;
4410 	struct ice_aqc_dis_txqs *cmd;
4411 	struct ice_aq_desc desc;
4412 	u16 vmvf_and_timeout;
4413 	u16 i, sz = 0;
4414 	int status;
4415 
4416 	cmd = &desc.params.dis_txqs;
4417 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4418 
4419 	/* qg_list can be NULL only in VM/VF reset flow */
4420 	if (!qg_list && !rst_src)
4421 		return -EINVAL;
4422 
4423 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4424 		return -EINVAL;
4425 
4426 	cmd->num_entries = num_qgrps;
4427 
4428 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4429 
4430 	switch (rst_src) {
4431 	case ICE_VM_RESET:
4432 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4433 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4434 		break;
4435 	case ICE_VF_RESET:
4436 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4437 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4438 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4439 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4440 		break;
4441 	case ICE_NO_RESET:
4442 	default:
4443 		break;
4444 	}
4445 
4446 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4447 
4448 	/* flush pipe on time out */
4449 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4450 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4451 	if (!qg_list)
4452 		goto do_aq;
4453 
4454 	/* set RD bit to indicate that command buffer is provided by the driver
4455 	 * and it needs to be read by the firmware
4456 	 */
4457 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4458 
4459 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4460 		u16 item_size = struct_size(item, q_id, item->num_qs);
4461 
4462 		/* If the num of queues is even, add 2 bytes of padding */
4463 		if ((item->num_qs % 2) == 0)
4464 			item_size += 2;
4465 
4466 		sz += item_size;
4467 
4468 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4469 	}
4470 
4471 	if (buf_size != sz)
4472 		return -EINVAL;
4473 
4474 do_aq:
4475 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4476 	if (status) {
4477 		if (!qg_list)
4478 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4479 				  vmvf_num, hw->adminq.sq_last_status);
4480 		else
4481 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4482 				  le16_to_cpu(qg_list[0].q_id[0]),
4483 				  hw->adminq.sq_last_status);
4484 	}
4485 	return status;
4486 }
4487 
4488 /**
4489  * ice_aq_cfg_lan_txq
4490  * @hw: pointer to the hardware structure
4491  * @buf: buffer for command
4492  * @buf_size: size of buffer in bytes
4493  * @num_qs: number of queues being configured
4494  * @oldport: origination lport
4495  * @newport: destination lport
4496  * @cd: pointer to command details structure or NULL
4497  *
4498  * Move/Configure LAN Tx queue (0x0C32)
4499  *
4500  * There is a better AQ command to use for moving nodes, so only coding
4501  * this one for configuring the node.
4502  */
4503 int
4504 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4505 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4506 		   struct ice_sq_cd *cd)
4507 {
4508 	struct ice_aqc_cfg_txqs *cmd;
4509 	struct ice_aq_desc desc;
4510 	int status;
4511 
4512 	cmd = &desc.params.cfg_txqs;
4513 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4514 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4515 
4516 	if (!buf)
4517 		return -EINVAL;
4518 
4519 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4520 	cmd->num_qs = num_qs;
4521 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4522 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4523 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4524 	cmd->blocked_cgds = 0;
4525 
4526 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4527 	if (status)
4528 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4529 			  hw->adminq.sq_last_status);
4530 	return status;
4531 }
4532 
4533 /**
4534  * ice_aq_add_rdma_qsets
4535  * @hw: pointer to the hardware structure
4536  * @num_qset_grps: Number of RDMA Qset groups
4537  * @qset_list: list of Qset groups to be added
4538  * @buf_size: size of buffer for indirect command
4539  * @cd: pointer to command details structure or NULL
4540  *
4541  * Add Tx RDMA Qsets (0x0C33)
4542  */
4543 static int
4544 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4545 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4546 		      u16 buf_size, struct ice_sq_cd *cd)
4547 {
4548 	struct ice_aqc_add_rdma_qset_data *list;
4549 	struct ice_aqc_add_rdma_qset *cmd;
4550 	struct ice_aq_desc desc;
4551 	u16 i, sum_size = 0;
4552 
4553 	cmd = &desc.params.add_rdma_qset;
4554 
4555 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4556 
4557 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4558 		return -EINVAL;
4559 
4560 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4561 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4562 
4563 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4564 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4565 							     num_qsets);
4566 	}
4567 
4568 	if (buf_size != sum_size)
4569 		return -EINVAL;
4570 
4571 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4572 
4573 	cmd->num_qset_grps = num_qset_grps;
4574 
4575 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4576 }
4577 
4578 /* End of FW Admin Queue command wrappers */
4579 
4580 /**
4581  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4582  * @hw: pointer to the HW struct
4583  * @vsi_handle: software VSI handle
4584  * @tc: TC number
4585  * @q_handle: software queue handle
4586  */
4587 struct ice_q_ctx *
4588 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4589 {
4590 	struct ice_vsi_ctx *vsi;
4591 	struct ice_q_ctx *q_ctx;
4592 
4593 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4594 	if (!vsi)
4595 		return NULL;
4596 	if (q_handle >= vsi->num_lan_q_entries[tc])
4597 		return NULL;
4598 	if (!vsi->lan_q_ctx[tc])
4599 		return NULL;
4600 	q_ctx = vsi->lan_q_ctx[tc];
4601 	return &q_ctx[q_handle];
4602 }
4603 
4604 /**
4605  * ice_ena_vsi_txq
4606  * @pi: port information structure
4607  * @vsi_handle: software VSI handle
4608  * @tc: TC number
4609  * @q_handle: software queue handle
4610  * @num_qgrps: Number of added queue groups
4611  * @buf: list of queue groups to be added
4612  * @buf_size: size of buffer for indirect command
4613  * @cd: pointer to command details structure or NULL
4614  *
4615  * This function adds one LAN queue
4616  */
4617 int
4618 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4619 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4620 		struct ice_sq_cd *cd)
4621 {
4622 	struct ice_aqc_txsched_elem_data node = { 0 };
4623 	struct ice_sched_node *parent;
4624 	struct ice_q_ctx *q_ctx;
4625 	struct ice_hw *hw;
4626 	int status;
4627 
4628 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4629 		return -EIO;
4630 
4631 	if (num_qgrps > 1 || buf->num_txqs > 1)
4632 		return -ENOSPC;
4633 
4634 	hw = pi->hw;
4635 
4636 	if (!ice_is_vsi_valid(hw, vsi_handle))
4637 		return -EINVAL;
4638 
4639 	mutex_lock(&pi->sched_lock);
4640 
4641 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4642 	if (!q_ctx) {
4643 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4644 			  q_handle);
4645 		status = -EINVAL;
4646 		goto ena_txq_exit;
4647 	}
4648 
4649 	/* find a parent node */
4650 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4651 					    ICE_SCHED_NODE_OWNER_LAN);
4652 	if (!parent) {
4653 		status = -EINVAL;
4654 		goto ena_txq_exit;
4655 	}
4656 
4657 	buf->parent_teid = parent->info.node_teid;
4658 	node.parent_teid = parent->info.node_teid;
4659 	/* Mark that the values in the "generic" section as valid. The default
4660 	 * value in the "generic" section is zero. This means that :
4661 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4662 	 * - 0 priority among siblings, indicated by Bit 1-3.
4663 	 * - WFQ, indicated by Bit 4.
4664 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4665 	 * Bit 5-6.
4666 	 * - Bit 7 is reserved.
4667 	 * Without setting the generic section as valid in valid_sections, the
4668 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4669 	 */
4670 	buf->txqs[0].info.valid_sections =
4671 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4672 		ICE_AQC_ELEM_VALID_EIR;
4673 	buf->txqs[0].info.generic = 0;
4674 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4675 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4676 	buf->txqs[0].info.cir_bw.bw_alloc =
4677 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4678 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4679 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4680 	buf->txqs[0].info.eir_bw.bw_alloc =
4681 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4682 
4683 	/* add the LAN queue */
4684 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4685 	if (status) {
4686 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4687 			  le16_to_cpu(buf->txqs[0].txq_id),
4688 			  hw->adminq.sq_last_status);
4689 		goto ena_txq_exit;
4690 	}
4691 
4692 	node.node_teid = buf->txqs[0].q_teid;
4693 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4694 	q_ctx->q_handle = q_handle;
4695 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4696 
4697 	/* add a leaf node into scheduler tree queue layer */
4698 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4699 	if (!status)
4700 		status = ice_sched_replay_q_bw(pi, q_ctx);
4701 
4702 ena_txq_exit:
4703 	mutex_unlock(&pi->sched_lock);
4704 	return status;
4705 }
4706 
4707 /**
4708  * ice_dis_vsi_txq
4709  * @pi: port information structure
4710  * @vsi_handle: software VSI handle
4711  * @tc: TC number
4712  * @num_queues: number of queues
4713  * @q_handles: pointer to software queue handle array
4714  * @q_ids: pointer to the q_id array
4715  * @q_teids: pointer to queue node teids
4716  * @rst_src: if called due to reset, specifies the reset source
4717  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4718  * @cd: pointer to command details structure or NULL
4719  *
4720  * This function removes queues and their corresponding nodes in SW DB
4721  */
4722 int
4723 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4724 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4725 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4726 		struct ice_sq_cd *cd)
4727 {
4728 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4729 	u16 i, buf_size = __struct_size(qg_list);
4730 	struct ice_q_ctx *q_ctx;
4731 	int status = -ENOENT;
4732 	struct ice_hw *hw;
4733 
4734 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4735 		return -EIO;
4736 
4737 	hw = pi->hw;
4738 
4739 	if (!num_queues) {
4740 		/* if queue is disabled already yet the disable queue command
4741 		 * has to be sent to complete the VF reset, then call
4742 		 * ice_aq_dis_lan_txq without any queue information
4743 		 */
4744 		if (rst_src)
4745 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4746 						  vmvf_num, NULL);
4747 		return -EIO;
4748 	}
4749 
4750 	mutex_lock(&pi->sched_lock);
4751 
4752 	for (i = 0; i < num_queues; i++) {
4753 		struct ice_sched_node *node;
4754 
4755 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4756 		if (!node)
4757 			continue;
4758 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4759 		if (!q_ctx) {
4760 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4761 				  q_handles[i]);
4762 			continue;
4763 		}
4764 		if (q_ctx->q_handle != q_handles[i]) {
4765 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4766 				  q_ctx->q_handle, q_handles[i]);
4767 			continue;
4768 		}
4769 		qg_list->parent_teid = node->info.parent_teid;
4770 		qg_list->num_qs = 1;
4771 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4772 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4773 					    vmvf_num, cd);
4774 
4775 		if (status)
4776 			break;
4777 		ice_free_sched_node(pi, node);
4778 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4779 		q_ctx->q_teid = ICE_INVAL_TEID;
4780 	}
4781 	mutex_unlock(&pi->sched_lock);
4782 	return status;
4783 }
4784 
4785 /**
4786  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4787  * @pi: port information structure
4788  * @vsi_handle: software VSI handle
4789  * @tc_bitmap: TC bitmap
4790  * @maxqs: max queues array per TC
4791  * @owner: LAN or RDMA
4792  *
4793  * This function adds/updates the VSI queues per TC.
4794  */
4795 static int
4796 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4797 	       u16 *maxqs, u8 owner)
4798 {
4799 	int status = 0;
4800 	u8 i;
4801 
4802 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4803 		return -EIO;
4804 
4805 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4806 		return -EINVAL;
4807 
4808 	mutex_lock(&pi->sched_lock);
4809 
4810 	ice_for_each_traffic_class(i) {
4811 		/* configuration is possible only if TC node is present */
4812 		if (!ice_sched_get_tc_node(pi, i))
4813 			continue;
4814 
4815 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4816 					   ice_is_tc_ena(tc_bitmap, i));
4817 		if (status)
4818 			break;
4819 	}
4820 
4821 	mutex_unlock(&pi->sched_lock);
4822 	return status;
4823 }
4824 
4825 /**
4826  * ice_cfg_vsi_lan - configure VSI LAN queues
4827  * @pi: port information structure
4828  * @vsi_handle: software VSI handle
4829  * @tc_bitmap: TC bitmap
4830  * @max_lanqs: max LAN queues array per TC
4831  *
4832  * This function adds/updates the VSI LAN queues per TC.
4833  */
4834 int
4835 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4836 		u16 *max_lanqs)
4837 {
4838 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4839 			      ICE_SCHED_NODE_OWNER_LAN);
4840 }
4841 
4842 /**
4843  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4844  * @pi: port information structure
4845  * @vsi_handle: software VSI handle
4846  * @tc_bitmap: TC bitmap
4847  * @max_rdmaqs: max RDMA queues array per TC
4848  *
4849  * This function adds/updates the VSI RDMA queues per TC.
4850  */
4851 int
4852 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4853 		 u16 *max_rdmaqs)
4854 {
4855 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4856 			      ICE_SCHED_NODE_OWNER_RDMA);
4857 }
4858 
4859 /**
4860  * ice_ena_vsi_rdma_qset
4861  * @pi: port information structure
4862  * @vsi_handle: software VSI handle
4863  * @tc: TC number
4864  * @rdma_qset: pointer to RDMA Qset
4865  * @num_qsets: number of RDMA Qsets
4866  * @qset_teid: pointer to Qset node TEIDs
4867  *
4868  * This function adds RDMA Qset
4869  */
4870 int
4871 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4872 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4873 {
4874 	struct ice_aqc_txsched_elem_data node = { 0 };
4875 	struct ice_aqc_add_rdma_qset_data *buf;
4876 	struct ice_sched_node *parent;
4877 	struct ice_hw *hw;
4878 	u16 i, buf_size;
4879 	int ret;
4880 
4881 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4882 		return -EIO;
4883 	hw = pi->hw;
4884 
4885 	if (!ice_is_vsi_valid(hw, vsi_handle))
4886 		return -EINVAL;
4887 
4888 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4889 	buf = kzalloc(buf_size, GFP_KERNEL);
4890 	if (!buf)
4891 		return -ENOMEM;
4892 	mutex_lock(&pi->sched_lock);
4893 
4894 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4895 					    ICE_SCHED_NODE_OWNER_RDMA);
4896 	if (!parent) {
4897 		ret = -EINVAL;
4898 		goto rdma_error_exit;
4899 	}
4900 	buf->parent_teid = parent->info.node_teid;
4901 	node.parent_teid = parent->info.node_teid;
4902 
4903 	buf->num_qsets = cpu_to_le16(num_qsets);
4904 	for (i = 0; i < num_qsets; i++) {
4905 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4906 		buf->rdma_qsets[i].info.valid_sections =
4907 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4908 			ICE_AQC_ELEM_VALID_EIR;
4909 		buf->rdma_qsets[i].info.generic = 0;
4910 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4911 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4912 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4913 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4914 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4915 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4916 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4917 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4918 	}
4919 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4920 	if (ret) {
4921 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4922 		goto rdma_error_exit;
4923 	}
4924 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4925 	for (i = 0; i < num_qsets; i++) {
4926 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4927 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4928 					 &node, NULL);
4929 		if (ret)
4930 			break;
4931 		qset_teid[i] = le32_to_cpu(node.node_teid);
4932 	}
4933 rdma_error_exit:
4934 	mutex_unlock(&pi->sched_lock);
4935 	kfree(buf);
4936 	return ret;
4937 }
4938 
4939 /**
4940  * ice_dis_vsi_rdma_qset - free RDMA resources
4941  * @pi: port_info struct
4942  * @count: number of RDMA Qsets to free
4943  * @qset_teid: TEID of Qset node
4944  * @q_id: list of queue IDs being disabled
4945  */
4946 int
4947 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4948 		      u16 *q_id)
4949 {
4950 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4951 	u16 qg_size = __struct_size(qg_list);
4952 	struct ice_hw *hw;
4953 	int status = 0;
4954 	int i;
4955 
4956 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4957 		return -EIO;
4958 
4959 	hw = pi->hw;
4960 
4961 	mutex_lock(&pi->sched_lock);
4962 
4963 	for (i = 0; i < count; i++) {
4964 		struct ice_sched_node *node;
4965 
4966 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4967 		if (!node)
4968 			continue;
4969 
4970 		qg_list->parent_teid = node->info.parent_teid;
4971 		qg_list->num_qs = 1;
4972 		qg_list->q_id[0] =
4973 			cpu_to_le16(q_id[i] |
4974 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4975 
4976 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4977 					    ICE_NO_RESET, 0, NULL);
4978 		if (status)
4979 			break;
4980 
4981 		ice_free_sched_node(pi, node);
4982 	}
4983 
4984 	mutex_unlock(&pi->sched_lock);
4985 	return status;
4986 }
4987 
4988 /**
4989  * ice_aq_get_cgu_abilities - get cgu abilities
4990  * @hw: pointer to the HW struct
4991  * @abilities: CGU abilities
4992  *
4993  * Get CGU abilities (0x0C61)
4994  * Return: 0 on success or negative value on failure.
4995  */
4996 int
4997 ice_aq_get_cgu_abilities(struct ice_hw *hw,
4998 			 struct ice_aqc_get_cgu_abilities *abilities)
4999 {
5000 	struct ice_aq_desc desc;
5001 
5002 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5003 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5004 }
5005 
5006 /**
5007  * ice_aq_set_input_pin_cfg - set input pin config
5008  * @hw: pointer to the HW struct
5009  * @input_idx: Input index
5010  * @flags1: Input flags
5011  * @flags2: Input flags
5012  * @freq: Frequency in Hz
5013  * @phase_delay: Delay in ps
5014  *
5015  * Set CGU input config (0x0C62)
5016  * Return: 0 on success or negative value on failure.
5017  */
5018 int
5019 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5020 			 u32 freq, s32 phase_delay)
5021 {
5022 	struct ice_aqc_set_cgu_input_config *cmd;
5023 	struct ice_aq_desc desc;
5024 
5025 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5026 	cmd = &desc.params.set_cgu_input_config;
5027 	cmd->input_idx = input_idx;
5028 	cmd->flags1 = flags1;
5029 	cmd->flags2 = flags2;
5030 	cmd->freq = cpu_to_le32(freq);
5031 	cmd->phase_delay = cpu_to_le32(phase_delay);
5032 
5033 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5034 }
5035 
5036 /**
5037  * ice_aq_get_input_pin_cfg - get input pin config
5038  * @hw: pointer to the HW struct
5039  * @input_idx: Input index
5040  * @status: Pin status
5041  * @type: Pin type
5042  * @flags1: Input flags
5043  * @flags2: Input flags
5044  * @freq: Frequency in Hz
5045  * @phase_delay: Delay in ps
5046  *
5047  * Get CGU input config (0x0C63)
5048  * Return: 0 on success or negative value on failure.
5049  */
5050 int
5051 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5052 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5053 {
5054 	struct ice_aqc_get_cgu_input_config *cmd;
5055 	struct ice_aq_desc desc;
5056 	int ret;
5057 
5058 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5059 	cmd = &desc.params.get_cgu_input_config;
5060 	cmd->input_idx = input_idx;
5061 
5062 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5063 	if (!ret) {
5064 		if (status)
5065 			*status = cmd->status;
5066 		if (type)
5067 			*type = cmd->type;
5068 		if (flags1)
5069 			*flags1 = cmd->flags1;
5070 		if (flags2)
5071 			*flags2 = cmd->flags2;
5072 		if (freq)
5073 			*freq = le32_to_cpu(cmd->freq);
5074 		if (phase_delay)
5075 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5076 	}
5077 
5078 	return ret;
5079 }
5080 
5081 /**
5082  * ice_aq_set_output_pin_cfg - set output pin config
5083  * @hw: pointer to the HW struct
5084  * @output_idx: Output index
5085  * @flags: Output flags
5086  * @src_sel: Index of DPLL block
5087  * @freq: Output frequency
5088  * @phase_delay: Output phase compensation
5089  *
5090  * Set CGU output config (0x0C64)
5091  * Return: 0 on success or negative value on failure.
5092  */
5093 int
5094 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5095 			  u8 src_sel, u32 freq, s32 phase_delay)
5096 {
5097 	struct ice_aqc_set_cgu_output_config *cmd;
5098 	struct ice_aq_desc desc;
5099 
5100 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5101 	cmd = &desc.params.set_cgu_output_config;
5102 	cmd->output_idx = output_idx;
5103 	cmd->flags = flags;
5104 	cmd->src_sel = src_sel;
5105 	cmd->freq = cpu_to_le32(freq);
5106 	cmd->phase_delay = cpu_to_le32(phase_delay);
5107 
5108 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5109 }
5110 
5111 /**
5112  * ice_aq_get_output_pin_cfg - get output pin config
5113  * @hw: pointer to the HW struct
5114  * @output_idx: Output index
5115  * @flags: Output flags
5116  * @src_sel: Internal DPLL source
5117  * @freq: Output frequency
5118  * @src_freq: Source frequency
5119  *
5120  * Get CGU output config (0x0C65)
5121  * Return: 0 on success or negative value on failure.
5122  */
5123 int
5124 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5125 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5126 {
5127 	struct ice_aqc_get_cgu_output_config *cmd;
5128 	struct ice_aq_desc desc;
5129 	int ret;
5130 
5131 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5132 	cmd = &desc.params.get_cgu_output_config;
5133 	cmd->output_idx = output_idx;
5134 
5135 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5136 	if (!ret) {
5137 		if (flags)
5138 			*flags = cmd->flags;
5139 		if (src_sel)
5140 			*src_sel = cmd->src_sel;
5141 		if (freq)
5142 			*freq = le32_to_cpu(cmd->freq);
5143 		if (src_freq)
5144 			*src_freq = le32_to_cpu(cmd->src_freq);
5145 	}
5146 
5147 	return ret;
5148 }
5149 
5150 /**
5151  * ice_aq_get_cgu_dpll_status - get dpll status
5152  * @hw: pointer to the HW struct
5153  * @dpll_num: DPLL index
5154  * @ref_state: Reference clock state
5155  * @config: current DPLL config
5156  * @dpll_state: current DPLL state
5157  * @phase_offset: Phase offset in ns
5158  * @eec_mode: EEC_mode
5159  *
5160  * Get CGU DPLL status (0x0C66)
5161  * Return: 0 on success or negative value on failure.
5162  */
5163 int
5164 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5165 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5166 			   u8 *eec_mode)
5167 {
5168 	struct ice_aqc_get_cgu_dpll_status *cmd;
5169 	struct ice_aq_desc desc;
5170 	int status;
5171 
5172 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5173 	cmd = &desc.params.get_cgu_dpll_status;
5174 	cmd->dpll_num = dpll_num;
5175 
5176 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5177 	if (!status) {
5178 		*ref_state = cmd->ref_state;
5179 		*dpll_state = cmd->dpll_state;
5180 		*config = cmd->config;
5181 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5182 		*phase_offset <<= 32;
5183 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5184 		*phase_offset = sign_extend64(*phase_offset, 47);
5185 		*eec_mode = cmd->eec_mode;
5186 	}
5187 
5188 	return status;
5189 }
5190 
5191 /**
5192  * ice_aq_set_cgu_dpll_config - set dpll config
5193  * @hw: pointer to the HW struct
5194  * @dpll_num: DPLL index
5195  * @ref_state: Reference clock state
5196  * @config: DPLL config
5197  * @eec_mode: EEC mode
5198  *
5199  * Set CGU DPLL config (0x0C67)
5200  * Return: 0 on success or negative value on failure.
5201  */
5202 int
5203 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5204 			   u8 config, u8 eec_mode)
5205 {
5206 	struct ice_aqc_set_cgu_dpll_config *cmd;
5207 	struct ice_aq_desc desc;
5208 
5209 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5210 	cmd = &desc.params.set_cgu_dpll_config;
5211 	cmd->dpll_num = dpll_num;
5212 	cmd->ref_state = ref_state;
5213 	cmd->config = config;
5214 	cmd->eec_mode = eec_mode;
5215 
5216 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5217 }
5218 
5219 /**
5220  * ice_aq_set_cgu_ref_prio - set input reference priority
5221  * @hw: pointer to the HW struct
5222  * @dpll_num: DPLL index
5223  * @ref_idx: Reference pin index
5224  * @ref_priority: Reference input priority
5225  *
5226  * Set CGU reference priority (0x0C68)
5227  * Return: 0 on success or negative value on failure.
5228  */
5229 int
5230 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5231 			u8 ref_priority)
5232 {
5233 	struct ice_aqc_set_cgu_ref_prio *cmd;
5234 	struct ice_aq_desc desc;
5235 
5236 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5237 	cmd = &desc.params.set_cgu_ref_prio;
5238 	cmd->dpll_num = dpll_num;
5239 	cmd->ref_idx = ref_idx;
5240 	cmd->ref_priority = ref_priority;
5241 
5242 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5243 }
5244 
5245 /**
5246  * ice_aq_get_cgu_ref_prio - get input reference priority
5247  * @hw: pointer to the HW struct
5248  * @dpll_num: DPLL index
5249  * @ref_idx: Reference pin index
5250  * @ref_prio: Reference input priority
5251  *
5252  * Get CGU reference priority (0x0C69)
5253  * Return: 0 on success or negative value on failure.
5254  */
5255 int
5256 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5257 			u8 *ref_prio)
5258 {
5259 	struct ice_aqc_get_cgu_ref_prio *cmd;
5260 	struct ice_aq_desc desc;
5261 	int status;
5262 
5263 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5264 	cmd = &desc.params.get_cgu_ref_prio;
5265 	cmd->dpll_num = dpll_num;
5266 	cmd->ref_idx = ref_idx;
5267 
5268 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5269 	if (!status)
5270 		*ref_prio = cmd->ref_priority;
5271 
5272 	return status;
5273 }
5274 
5275 /**
5276  * ice_aq_get_cgu_info - get cgu info
5277  * @hw: pointer to the HW struct
5278  * @cgu_id: CGU ID
5279  * @cgu_cfg_ver: CGU config version
5280  * @cgu_fw_ver: CGU firmware version
5281  *
5282  * Get CGU info (0x0C6A)
5283  * Return: 0 on success or negative value on failure.
5284  */
5285 int
5286 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5287 		    u32 *cgu_fw_ver)
5288 {
5289 	struct ice_aqc_get_cgu_info *cmd;
5290 	struct ice_aq_desc desc;
5291 	int status;
5292 
5293 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5294 	cmd = &desc.params.get_cgu_info;
5295 
5296 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5297 	if (!status) {
5298 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5299 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5300 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5301 	}
5302 
5303 	return status;
5304 }
5305 
5306 /**
5307  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5308  * @hw: pointer to the HW struct
5309  * @phy_output: PHY reference clock output pin
5310  * @enable: GPIO state to be applied
5311  * @freq: PHY output frequency
5312  *
5313  * Set phy recovered clock as reference (0x0630)
5314  * Return: 0 on success or negative value on failure.
5315  */
5316 int
5317 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5318 			   u32 *freq)
5319 {
5320 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5321 	struct ice_aq_desc desc;
5322 	int status;
5323 
5324 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5325 	cmd = &desc.params.set_phy_rec_clk_out;
5326 	cmd->phy_output = phy_output;
5327 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5328 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5329 	cmd->freq = cpu_to_le32(*freq);
5330 
5331 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5332 	if (!status)
5333 		*freq = le32_to_cpu(cmd->freq);
5334 
5335 	return status;
5336 }
5337 
5338 /**
5339  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5340  * @hw: pointer to the HW struct
5341  * @phy_output: PHY reference clock output pin
5342  * @port_num: Port number
5343  * @flags: PHY flags
5344  * @node_handle: PHY output frequency
5345  *
5346  * Get PHY recovered clock output info (0x0631)
5347  * Return: 0 on success or negative value on failure.
5348  */
5349 int
5350 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5351 			   u8 *flags, u16 *node_handle)
5352 {
5353 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5354 	struct ice_aq_desc desc;
5355 	int status;
5356 
5357 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5358 	cmd = &desc.params.get_phy_rec_clk_out;
5359 	cmd->phy_output = *phy_output;
5360 
5361 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5362 	if (!status) {
5363 		*phy_output = cmd->phy_output;
5364 		if (port_num)
5365 			*port_num = cmd->port_num;
5366 		if (flags)
5367 			*flags = cmd->flags;
5368 		if (node_handle)
5369 			*node_handle = le16_to_cpu(cmd->node_handle);
5370 	}
5371 
5372 	return status;
5373 }
5374 
5375 /**
5376  * ice_aq_get_sensor_reading
5377  * @hw: pointer to the HW struct
5378  * @data: pointer to data to be read from the sensor
5379  *
5380  * Get sensor reading (0x0632)
5381  */
5382 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5383 			      struct ice_aqc_get_sensor_reading_resp *data)
5384 {
5385 	struct ice_aqc_get_sensor_reading *cmd;
5386 	struct ice_aq_desc desc;
5387 	int status;
5388 
5389 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5390 	cmd = &desc.params.get_sensor_reading;
5391 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5392 #define ICE_INTERNAL_TEMP_SENSOR	0
5393 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5394 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5395 
5396 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5397 	if (!status)
5398 		memcpy(data, &desc.params.get_sensor_reading_resp,
5399 		       sizeof(*data));
5400 
5401 	return status;
5402 }
5403 
5404 /**
5405  * ice_replay_pre_init - replay pre initialization
5406  * @hw: pointer to the HW struct
5407  *
5408  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5409  */
5410 static int ice_replay_pre_init(struct ice_hw *hw)
5411 {
5412 	struct ice_switch_info *sw = hw->switch_info;
5413 	u8 i;
5414 
5415 	/* Delete old entries from replay filter list head if there is any */
5416 	ice_rm_all_sw_replay_rule_info(hw);
5417 	/* In start of replay, move entries into replay_rules list, it
5418 	 * will allow adding rules entries back to filt_rules list,
5419 	 * which is operational list.
5420 	 */
5421 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5422 		list_replace_init(&sw->recp_list[i].filt_rules,
5423 				  &sw->recp_list[i].filt_replay_rules);
5424 	ice_sched_replay_agg_vsi_preinit(hw);
5425 
5426 	return 0;
5427 }
5428 
5429 /**
5430  * ice_replay_vsi - replay VSI configuration
5431  * @hw: pointer to the HW struct
5432  * @vsi_handle: driver VSI handle
5433  *
5434  * Restore all VSI configuration after reset. It is required to call this
5435  * function with main VSI first.
5436  */
5437 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5438 {
5439 	int status;
5440 
5441 	if (!ice_is_vsi_valid(hw, vsi_handle))
5442 		return -EINVAL;
5443 
5444 	/* Replay pre-initialization if there is any */
5445 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5446 		status = ice_replay_pre_init(hw);
5447 		if (status)
5448 			return status;
5449 	}
5450 	/* Replay per VSI all RSS configurations */
5451 	status = ice_replay_rss_cfg(hw, vsi_handle);
5452 	if (status)
5453 		return status;
5454 	/* Replay per VSI all filters */
5455 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5456 	if (!status)
5457 		status = ice_replay_vsi_agg(hw, vsi_handle);
5458 	return status;
5459 }
5460 
5461 /**
5462  * ice_replay_post - post replay configuration cleanup
5463  * @hw: pointer to the HW struct
5464  *
5465  * Post replay cleanup.
5466  */
5467 void ice_replay_post(struct ice_hw *hw)
5468 {
5469 	/* Delete old entries from replay filter list head */
5470 	ice_rm_all_sw_replay_rule_info(hw);
5471 	ice_sched_replay_agg(hw);
5472 }
5473 
5474 /**
5475  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5476  * @hw: ptr to the hardware info
5477  * @reg: offset of 64 bit HW register to read from
5478  * @prev_stat_loaded: bool to specify if previous stats are loaded
5479  * @prev_stat: ptr to previous loaded stat value
5480  * @cur_stat: ptr to current stat value
5481  */
5482 void
5483 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5484 		  u64 *prev_stat, u64 *cur_stat)
5485 {
5486 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5487 
5488 	/* device stats are not reset at PFR, they likely will not be zeroed
5489 	 * when the driver starts. Thus, save the value from the first read
5490 	 * without adding to the statistic value so that we report stats which
5491 	 * count up from zero.
5492 	 */
5493 	if (!prev_stat_loaded) {
5494 		*prev_stat = new_data;
5495 		return;
5496 	}
5497 
5498 	/* Calculate the difference between the new and old values, and then
5499 	 * add it to the software stat value.
5500 	 */
5501 	if (new_data >= *prev_stat)
5502 		*cur_stat += new_data - *prev_stat;
5503 	else
5504 		/* to manage the potential roll-over */
5505 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5506 
5507 	/* Update the previously stored value to prepare for next read */
5508 	*prev_stat = new_data;
5509 }
5510 
5511 /**
5512  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5513  * @hw: ptr to the hardware info
5514  * @reg: offset of HW register to read from
5515  * @prev_stat_loaded: bool to specify if previous stats are loaded
5516  * @prev_stat: ptr to previous loaded stat value
5517  * @cur_stat: ptr to current stat value
5518  */
5519 void
5520 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5521 		  u64 *prev_stat, u64 *cur_stat)
5522 {
5523 	u32 new_data;
5524 
5525 	new_data = rd32(hw, reg);
5526 
5527 	/* device stats are not reset at PFR, they likely will not be zeroed
5528 	 * when the driver starts. Thus, save the value from the first read
5529 	 * without adding to the statistic value so that we report stats which
5530 	 * count up from zero.
5531 	 */
5532 	if (!prev_stat_loaded) {
5533 		*prev_stat = new_data;
5534 		return;
5535 	}
5536 
5537 	/* Calculate the difference between the new and old values, and then
5538 	 * add it to the software stat value.
5539 	 */
5540 	if (new_data >= *prev_stat)
5541 		*cur_stat += new_data - *prev_stat;
5542 	else
5543 		/* to manage the potential roll-over */
5544 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5545 
5546 	/* Update the previously stored value to prepare for next read */
5547 	*prev_stat = new_data;
5548 }
5549 
5550 /**
5551  * ice_sched_query_elem - query element information from HW
5552  * @hw: pointer to the HW struct
5553  * @node_teid: node TEID to be queried
5554  * @buf: buffer to element information
5555  *
5556  * This function queries HW element information
5557  */
5558 int
5559 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5560 		     struct ice_aqc_txsched_elem_data *buf)
5561 {
5562 	u16 buf_size, num_elem_ret = 0;
5563 	int status;
5564 
5565 	buf_size = sizeof(*buf);
5566 	memset(buf, 0, buf_size);
5567 	buf->node_teid = cpu_to_le32(node_teid);
5568 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5569 					  NULL);
5570 	if (status || num_elem_ret != 1)
5571 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5572 	return status;
5573 }
5574 
5575 /**
5576  * ice_aq_read_i2c
5577  * @hw: pointer to the hw struct
5578  * @topo_addr: topology address for a device to communicate with
5579  * @bus_addr: 7-bit I2C bus address
5580  * @addr: I2C memory address (I2C offset) with up to 16 bits
5581  * @params: I2C parameters: bit [7] - Repeated start,
5582  *			    bits [6:5] data offset size,
5583  *			    bit [4] - I2C address type,
5584  *			    bits [3:0] - data size to read (0-16 bytes)
5585  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5586  * @cd: pointer to command details structure or NULL
5587  *
5588  * Read I2C (0x06E2)
5589  */
5590 int
5591 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5592 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5593 		struct ice_sq_cd *cd)
5594 {
5595 	struct ice_aq_desc desc = { 0 };
5596 	struct ice_aqc_i2c *cmd;
5597 	u8 data_size;
5598 	int status;
5599 
5600 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5601 	cmd = &desc.params.read_write_i2c;
5602 
5603 	if (!data)
5604 		return -EINVAL;
5605 
5606 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5607 
5608 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5609 	cmd->topo_addr = topo_addr;
5610 	cmd->i2c_params = params;
5611 	cmd->i2c_addr = addr;
5612 
5613 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5614 	if (!status) {
5615 		struct ice_aqc_read_i2c_resp *resp;
5616 		u8 i;
5617 
5618 		resp = &desc.params.read_i2c_resp;
5619 		for (i = 0; i < data_size; i++) {
5620 			*data = resp->i2c_data[i];
5621 			data++;
5622 		}
5623 	}
5624 
5625 	return status;
5626 }
5627 
5628 /**
5629  * ice_aq_write_i2c
5630  * @hw: pointer to the hw struct
5631  * @topo_addr: topology address for a device to communicate with
5632  * @bus_addr: 7-bit I2C bus address
5633  * @addr: I2C memory address (I2C offset) with up to 16 bits
5634  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5635  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5636  * @cd: pointer to command details structure or NULL
5637  *
5638  * Write I2C (0x06E3)
5639  *
5640  * * Return:
5641  * * 0             - Successful write to the i2c device
5642  * * -EINVAL       - Data size greater than 4 bytes
5643  * * -EIO          - FW error
5644  */
5645 int
5646 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5647 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5648 		 struct ice_sq_cd *cd)
5649 {
5650 	struct ice_aq_desc desc = { 0 };
5651 	struct ice_aqc_i2c *cmd;
5652 	u8 data_size;
5653 
5654 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5655 	cmd = &desc.params.read_write_i2c;
5656 
5657 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5658 
5659 	/* data_size limited to 4 */
5660 	if (data_size > 4)
5661 		return -EINVAL;
5662 
5663 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5664 	cmd->topo_addr = topo_addr;
5665 	cmd->i2c_params = params;
5666 	cmd->i2c_addr = addr;
5667 
5668 	memcpy(cmd->i2c_data, data, data_size);
5669 
5670 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5671 }
5672 
5673 /**
5674  * ice_aq_set_gpio
5675  * @hw: pointer to the hw struct
5676  * @gpio_ctrl_handle: GPIO controller node handle
5677  * @pin_idx: IO Number of the GPIO that needs to be set
5678  * @value: SW provide IO value to set in the LSB
5679  * @cd: pointer to command details structure or NULL
5680  *
5681  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5682  */
5683 int
5684 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5685 		struct ice_sq_cd *cd)
5686 {
5687 	struct ice_aqc_gpio *cmd;
5688 	struct ice_aq_desc desc;
5689 
5690 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5691 	cmd = &desc.params.read_write_gpio;
5692 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5693 	cmd->gpio_num = pin_idx;
5694 	cmd->gpio_val = value ? 1 : 0;
5695 
5696 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5697 }
5698 
5699 /**
5700  * ice_aq_get_gpio
5701  * @hw: pointer to the hw struct
5702  * @gpio_ctrl_handle: GPIO controller node handle
5703  * @pin_idx: IO Number of the GPIO that needs to be set
5704  * @value: IO value read
5705  * @cd: pointer to command details structure or NULL
5706  *
5707  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5708  * the topology
5709  */
5710 int
5711 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5712 		bool *value, struct ice_sq_cd *cd)
5713 {
5714 	struct ice_aqc_gpio *cmd;
5715 	struct ice_aq_desc desc;
5716 	int status;
5717 
5718 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5719 	cmd = &desc.params.read_write_gpio;
5720 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5721 	cmd->gpio_num = pin_idx;
5722 
5723 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5724 	if (status)
5725 		return status;
5726 
5727 	*value = !!cmd->gpio_val;
5728 	return 0;
5729 }
5730 
5731 /**
5732  * ice_is_fw_api_min_ver
5733  * @hw: pointer to the hardware structure
5734  * @maj: major version
5735  * @min: minor version
5736  * @patch: patch version
5737  *
5738  * Checks if the firmware API is minimum version
5739  */
5740 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5741 {
5742 	if (hw->api_maj_ver == maj) {
5743 		if (hw->api_min_ver > min)
5744 			return true;
5745 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5746 			return true;
5747 	} else if (hw->api_maj_ver > maj) {
5748 		return true;
5749 	}
5750 
5751 	return false;
5752 }
5753 
5754 /**
5755  * ice_fw_supports_link_override
5756  * @hw: pointer to the hardware structure
5757  *
5758  * Checks if the firmware supports link override
5759  */
5760 bool ice_fw_supports_link_override(struct ice_hw *hw)
5761 {
5762 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5763 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5764 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5765 }
5766 
5767 /**
5768  * ice_get_link_default_override
5769  * @ldo: pointer to the link default override struct
5770  * @pi: pointer to the port info struct
5771  *
5772  * Gets the link default override for a port
5773  */
5774 int
5775 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5776 			      struct ice_port_info *pi)
5777 {
5778 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5779 	struct ice_hw *hw = pi->hw;
5780 	int status;
5781 
5782 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5783 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5784 	if (status) {
5785 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5786 		return status;
5787 	}
5788 
5789 	/* Each port has its own config; calculate for our port */
5790 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5791 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5792 
5793 	/* link options first */
5794 	status = ice_read_sr_word(hw, tlv_start, &buf);
5795 	if (status) {
5796 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5797 		return status;
5798 	}
5799 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5800 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5801 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5802 
5803 	/* link PHY config */
5804 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5805 	status = ice_read_sr_word(hw, offset, &buf);
5806 	if (status) {
5807 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5808 		return status;
5809 	}
5810 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5811 
5812 	/* PHY types low */
5813 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5814 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5815 		status = ice_read_sr_word(hw, (offset + i), &buf);
5816 		if (status) {
5817 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5818 			return status;
5819 		}
5820 		/* shift 16 bits at a time to fill 64 bits */
5821 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5822 	}
5823 
5824 	/* PHY types high */
5825 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5826 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5827 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5828 		status = ice_read_sr_word(hw, (offset + i), &buf);
5829 		if (status) {
5830 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5831 			return status;
5832 		}
5833 		/* shift 16 bits at a time to fill 64 bits */
5834 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5835 	}
5836 
5837 	return status;
5838 }
5839 
5840 /**
5841  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5842  * @caps: get PHY capability data
5843  */
5844 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5845 {
5846 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5847 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5848 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5849 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5850 		return true;
5851 
5852 	return false;
5853 }
5854 
5855 /**
5856  * ice_aq_set_lldp_mib - Set the LLDP MIB
5857  * @hw: pointer to the HW struct
5858  * @mib_type: Local, Remote or both Local and Remote MIBs
5859  * @buf: pointer to the caller-supplied buffer to store the MIB block
5860  * @buf_size: size of the buffer (in bytes)
5861  * @cd: pointer to command details structure or NULL
5862  *
5863  * Set the LLDP MIB. (0x0A08)
5864  */
5865 int
5866 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5867 		    struct ice_sq_cd *cd)
5868 {
5869 	struct ice_aqc_lldp_set_local_mib *cmd;
5870 	struct ice_aq_desc desc;
5871 
5872 	cmd = &desc.params.lldp_set_mib;
5873 
5874 	if (buf_size == 0 || !buf)
5875 		return -EINVAL;
5876 
5877 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5878 
5879 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5880 	desc.datalen = cpu_to_le16(buf_size);
5881 
5882 	cmd->type = mib_type;
5883 	cmd->length = cpu_to_le16(buf_size);
5884 
5885 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5886 }
5887 
5888 /**
5889  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5890  * @hw: pointer to HW struct
5891  */
5892 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5893 {
5894 	if (hw->mac_type != ICE_MAC_E810)
5895 		return false;
5896 
5897 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5898 				     ICE_FW_API_LLDP_FLTR_MIN,
5899 				     ICE_FW_API_LLDP_FLTR_PATCH);
5900 }
5901 
5902 /**
5903  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5904  * @hw: pointer to HW struct
5905  * @vsi_num: absolute HW index for VSI
5906  * @add: boolean for if adding or removing a filter
5907  */
5908 int
5909 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5910 {
5911 	struct ice_aqc_lldp_filter_ctrl *cmd;
5912 	struct ice_aq_desc desc;
5913 
5914 	cmd = &desc.params.lldp_filter_ctrl;
5915 
5916 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5917 
5918 	if (add)
5919 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5920 	else
5921 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5922 
5923 	cmd->vsi_num = cpu_to_le16(vsi_num);
5924 
5925 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5926 }
5927 
5928 /**
5929  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5930  * @hw: pointer to HW struct
5931  */
5932 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5933 {
5934 	struct ice_aq_desc desc;
5935 
5936 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5937 
5938 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5939 }
5940 
5941 /**
5942  * ice_fw_supports_report_dflt_cfg
5943  * @hw: pointer to the hardware structure
5944  *
5945  * Checks if the firmware supports report default configuration
5946  */
5947 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5948 {
5949 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5950 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5951 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5952 }
5953 
5954 /* each of the indexes into the following array match the speed of a return
5955  * value from the list of AQ returned speeds like the range:
5956  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5957  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5958  * array. The array is defined as 15 elements long because the link_speed
5959  * returned by the firmware is a 16 bit * value, but is indexed
5960  * by [fls(speed) - 1]
5961  */
5962 static const u32 ice_aq_to_link_speed[] = {
5963 	SPEED_10,	/* BIT(0) */
5964 	SPEED_100,
5965 	SPEED_1000,
5966 	SPEED_2500,
5967 	SPEED_5000,
5968 	SPEED_10000,
5969 	SPEED_20000,
5970 	SPEED_25000,
5971 	SPEED_40000,
5972 	SPEED_50000,
5973 	SPEED_100000,	/* BIT(10) */
5974 	SPEED_200000,
5975 };
5976 
5977 /**
5978  * ice_get_link_speed - get integer speed from table
5979  * @index: array index from fls(aq speed) - 1
5980  *
5981  * Returns: u32 value containing integer speed
5982  */
5983 u32 ice_get_link_speed(u16 index)
5984 {
5985 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5986 		return 0;
5987 
5988 	return ice_aq_to_link_speed[index];
5989 }
5990