1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_sched.h" 6 #include "ice_adminq_cmd.h" 7 #include "ice_flow.h" 8 #include "ice_ptp_hw.h" 9 10 #define ICE_PF_RESET_WAIT_COUNT 300 11 #define ICE_MAX_NETLIST_SIZE 10 12 13 static const char * const ice_link_mode_str_low[] = { 14 [0] = "100BASE_TX", 15 [1] = "100M_SGMII", 16 [2] = "1000BASE_T", 17 [3] = "1000BASE_SX", 18 [4] = "1000BASE_LX", 19 [5] = "1000BASE_KX", 20 [6] = "1G_SGMII", 21 [7] = "2500BASE_T", 22 [8] = "2500BASE_X", 23 [9] = "2500BASE_KX", 24 [10] = "5GBASE_T", 25 [11] = "5GBASE_KR", 26 [12] = "10GBASE_T", 27 [13] = "10G_SFI_DA", 28 [14] = "10GBASE_SR", 29 [15] = "10GBASE_LR", 30 [16] = "10GBASE_KR_CR1", 31 [17] = "10G_SFI_AOC_ACC", 32 [18] = "10G_SFI_C2C", 33 [19] = "25GBASE_T", 34 [20] = "25GBASE_CR", 35 [21] = "25GBASE_CR_S", 36 [22] = "25GBASE_CR1", 37 [23] = "25GBASE_SR", 38 [24] = "25GBASE_LR", 39 [25] = "25GBASE_KR", 40 [26] = "25GBASE_KR_S", 41 [27] = "25GBASE_KR1", 42 [28] = "25G_AUI_AOC_ACC", 43 [29] = "25G_AUI_C2C", 44 [30] = "40GBASE_CR4", 45 [31] = "40GBASE_SR4", 46 [32] = "40GBASE_LR4", 47 [33] = "40GBASE_KR4", 48 [34] = "40G_XLAUI_AOC_ACC", 49 [35] = "40G_XLAUI", 50 [36] = "50GBASE_CR2", 51 [37] = "50GBASE_SR2", 52 [38] = "50GBASE_LR2", 53 [39] = "50GBASE_KR2", 54 [40] = "50G_LAUI2_AOC_ACC", 55 [41] = "50G_LAUI2", 56 [42] = "50G_AUI2_AOC_ACC", 57 [43] = "50G_AUI2", 58 [44] = "50GBASE_CP", 59 [45] = "50GBASE_SR", 60 [46] = "50GBASE_FR", 61 [47] = "50GBASE_LR", 62 [48] = "50GBASE_KR_PAM4", 63 [49] = "50G_AUI1_AOC_ACC", 64 [50] = "50G_AUI1", 65 [51] = "100GBASE_CR4", 66 [52] = "100GBASE_SR4", 67 [53] = "100GBASE_LR4", 68 [54] = "100GBASE_KR4", 69 [55] = "100G_CAUI4_AOC_ACC", 70 [56] = "100G_CAUI4", 71 [57] = "100G_AUI4_AOC_ACC", 72 [58] = "100G_AUI4", 73 [59] = "100GBASE_CR_PAM4", 74 [60] = "100GBASE_KR_PAM4", 75 [61] = "100GBASE_CP2", 76 [62] = "100GBASE_SR2", 77 [63] = "100GBASE_DR", 78 }; 79 80 static const char * const ice_link_mode_str_high[] = { 81 [0] = "100GBASE_KR2_PAM4", 82 [1] = "100G_CAUI2_AOC_ACC", 83 [2] = "100G_CAUI2", 84 [3] = "100G_AUI2_AOC_ACC", 85 [4] = "100G_AUI2", 86 }; 87 88 /** 89 * ice_dump_phy_type - helper function to dump phy_type 90 * @hw: pointer to the HW structure 91 * @low: 64 bit value for phy_type_low 92 * @high: 64 bit value for phy_type_high 93 * @prefix: prefix string to differentiate multiple dumps 94 */ 95 static void 96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix) 97 { 98 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low); 99 100 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) { 101 if (low & BIT_ULL(i)) 102 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", 103 prefix, i, ice_link_mode_str_low[i]); 104 } 105 106 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high); 107 108 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) { 109 if (high & BIT_ULL(i)) 110 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", 111 prefix, i, ice_link_mode_str_high[i]); 112 } 113 } 114 115 /** 116 * ice_set_mac_type - Sets MAC type 117 * @hw: pointer to the HW structure 118 * 119 * This function sets the MAC type of the adapter based on the 120 * vendor ID and device ID stored in the HW structure. 121 */ 122 static int ice_set_mac_type(struct ice_hw *hw) 123 { 124 if (hw->vendor_id != PCI_VENDOR_ID_INTEL) 125 return -ENODEV; 126 127 switch (hw->device_id) { 128 case ICE_DEV_ID_E810C_BACKPLANE: 129 case ICE_DEV_ID_E810C_QSFP: 130 case ICE_DEV_ID_E810C_SFP: 131 case ICE_DEV_ID_E810_XXV_BACKPLANE: 132 case ICE_DEV_ID_E810_XXV_QSFP: 133 case ICE_DEV_ID_E810_XXV_SFP: 134 hw->mac_type = ICE_MAC_E810; 135 break; 136 case ICE_DEV_ID_E823C_10G_BASE_T: 137 case ICE_DEV_ID_E823C_BACKPLANE: 138 case ICE_DEV_ID_E823C_QSFP: 139 case ICE_DEV_ID_E823C_SFP: 140 case ICE_DEV_ID_E823C_SGMII: 141 case ICE_DEV_ID_E822C_10G_BASE_T: 142 case ICE_DEV_ID_E822C_BACKPLANE: 143 case ICE_DEV_ID_E822C_QSFP: 144 case ICE_DEV_ID_E822C_SFP: 145 case ICE_DEV_ID_E822C_SGMII: 146 case ICE_DEV_ID_E822L_10G_BASE_T: 147 case ICE_DEV_ID_E822L_BACKPLANE: 148 case ICE_DEV_ID_E822L_SFP: 149 case ICE_DEV_ID_E822L_SGMII: 150 case ICE_DEV_ID_E823L_10G_BASE_T: 151 case ICE_DEV_ID_E823L_1GBE: 152 case ICE_DEV_ID_E823L_BACKPLANE: 153 case ICE_DEV_ID_E823L_QSFP: 154 case ICE_DEV_ID_E823L_SFP: 155 hw->mac_type = ICE_MAC_GENERIC; 156 break; 157 case ICE_DEV_ID_E825C_BACKPLANE: 158 case ICE_DEV_ID_E825C_QSFP: 159 case ICE_DEV_ID_E825C_SFP: 160 case ICE_DEV_ID_E825C_SGMII: 161 hw->mac_type = ICE_MAC_GENERIC_3K_E825; 162 break; 163 case ICE_DEV_ID_E830CC_BACKPLANE: 164 case ICE_DEV_ID_E830CC_QSFP56: 165 case ICE_DEV_ID_E830CC_SFP: 166 case ICE_DEV_ID_E830CC_SFP_DD: 167 case ICE_DEV_ID_E830C_BACKPLANE: 168 case ICE_DEV_ID_E830_XXV_BACKPLANE: 169 case ICE_DEV_ID_E830C_QSFP: 170 case ICE_DEV_ID_E830_XXV_QSFP: 171 case ICE_DEV_ID_E830C_SFP: 172 case ICE_DEV_ID_E830_XXV_SFP: 173 hw->mac_type = ICE_MAC_E830; 174 break; 175 default: 176 hw->mac_type = ICE_MAC_UNKNOWN; 177 break; 178 } 179 180 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type); 181 return 0; 182 } 183 184 /** 185 * ice_is_generic_mac - check if device's mac_type is generic 186 * @hw: pointer to the hardware structure 187 * 188 * Return: true if mac_type is generic (with SBQ support), false if not 189 */ 190 bool ice_is_generic_mac(struct ice_hw *hw) 191 { 192 return (hw->mac_type == ICE_MAC_GENERIC || 193 hw->mac_type == ICE_MAC_GENERIC_3K_E825); 194 } 195 196 /** 197 * ice_is_e810 198 * @hw: pointer to the hardware structure 199 * 200 * returns true if the device is E810 based, false if not. 201 */ 202 bool ice_is_e810(struct ice_hw *hw) 203 { 204 return hw->mac_type == ICE_MAC_E810; 205 } 206 207 /** 208 * ice_is_e810t 209 * @hw: pointer to the hardware structure 210 * 211 * returns true if the device is E810T based, false if not. 212 */ 213 bool ice_is_e810t(struct ice_hw *hw) 214 { 215 switch (hw->device_id) { 216 case ICE_DEV_ID_E810C_SFP: 217 switch (hw->subsystem_device_id) { 218 case ICE_SUBDEV_ID_E810T: 219 case ICE_SUBDEV_ID_E810T2: 220 case ICE_SUBDEV_ID_E810T3: 221 case ICE_SUBDEV_ID_E810T4: 222 case ICE_SUBDEV_ID_E810T6: 223 case ICE_SUBDEV_ID_E810T7: 224 return true; 225 } 226 break; 227 case ICE_DEV_ID_E810C_QSFP: 228 switch (hw->subsystem_device_id) { 229 case ICE_SUBDEV_ID_E810T2: 230 case ICE_SUBDEV_ID_E810T3: 231 case ICE_SUBDEV_ID_E810T5: 232 return true; 233 } 234 break; 235 default: 236 break; 237 } 238 239 return false; 240 } 241 242 /** 243 * ice_is_e822 - Check if a device is E822 family device 244 * @hw: pointer to the hardware structure 245 * 246 * Return: true if the device is E822 based, false if not. 247 */ 248 bool ice_is_e822(struct ice_hw *hw) 249 { 250 switch (hw->device_id) { 251 case ICE_DEV_ID_E822C_BACKPLANE: 252 case ICE_DEV_ID_E822C_QSFP: 253 case ICE_DEV_ID_E822C_SFP: 254 case ICE_DEV_ID_E822C_10G_BASE_T: 255 case ICE_DEV_ID_E822C_SGMII: 256 case ICE_DEV_ID_E822L_BACKPLANE: 257 case ICE_DEV_ID_E822L_SFP: 258 case ICE_DEV_ID_E822L_10G_BASE_T: 259 case ICE_DEV_ID_E822L_SGMII: 260 return true; 261 default: 262 return false; 263 } 264 } 265 266 /** 267 * ice_is_e823 268 * @hw: pointer to the hardware structure 269 * 270 * returns true if the device is E823-L or E823-C based, false if not. 271 */ 272 bool ice_is_e823(struct ice_hw *hw) 273 { 274 switch (hw->device_id) { 275 case ICE_DEV_ID_E823L_BACKPLANE: 276 case ICE_DEV_ID_E823L_SFP: 277 case ICE_DEV_ID_E823L_10G_BASE_T: 278 case ICE_DEV_ID_E823L_1GBE: 279 case ICE_DEV_ID_E823L_QSFP: 280 case ICE_DEV_ID_E823C_BACKPLANE: 281 case ICE_DEV_ID_E823C_QSFP: 282 case ICE_DEV_ID_E823C_SFP: 283 case ICE_DEV_ID_E823C_10G_BASE_T: 284 case ICE_DEV_ID_E823C_SGMII: 285 return true; 286 default: 287 return false; 288 } 289 } 290 291 /** 292 * ice_is_e825c - Check if a device is E825C family device 293 * @hw: pointer to the hardware structure 294 * 295 * Return: true if the device is E825-C based, false if not. 296 */ 297 bool ice_is_e825c(struct ice_hw *hw) 298 { 299 switch (hw->device_id) { 300 case ICE_DEV_ID_E825C_BACKPLANE: 301 case ICE_DEV_ID_E825C_QSFP: 302 case ICE_DEV_ID_E825C_SFP: 303 case ICE_DEV_ID_E825C_SGMII: 304 return true; 305 default: 306 return false; 307 } 308 } 309 310 /** 311 * ice_clear_pf_cfg - Clear PF configuration 312 * @hw: pointer to the hardware structure 313 * 314 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port 315 * configuration, flow director filters, etc.). 316 */ 317 int ice_clear_pf_cfg(struct ice_hw *hw) 318 { 319 struct ice_aq_desc desc; 320 321 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); 322 323 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 324 } 325 326 /** 327 * ice_aq_manage_mac_read - manage MAC address read command 328 * @hw: pointer to the HW struct 329 * @buf: a virtual buffer to hold the manage MAC read response 330 * @buf_size: Size of the virtual buffer 331 * @cd: pointer to command details structure or NULL 332 * 333 * This function is used to return per PF station MAC address (0x0107). 334 * NOTE: Upon successful completion of this command, MAC address information 335 * is returned in user specified buffer. Please interpret user specified 336 * buffer as "manage_mac_read" response. 337 * Response such as various MAC addresses are stored in HW struct (port.mac) 338 * ice_discover_dev_caps is expected to be called before this function is 339 * called. 340 */ 341 static int 342 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, 343 struct ice_sq_cd *cd) 344 { 345 struct ice_aqc_manage_mac_read_resp *resp; 346 struct ice_aqc_manage_mac_read *cmd; 347 struct ice_aq_desc desc; 348 int status; 349 u16 flags; 350 u8 i; 351 352 cmd = &desc.params.mac_read; 353 354 if (buf_size < sizeof(*resp)) 355 return -EINVAL; 356 357 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); 358 359 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 360 if (status) 361 return status; 362 363 resp = buf; 364 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; 365 366 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { 367 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); 368 return -EIO; 369 } 370 371 /* A single port can report up to two (LAN and WoL) addresses */ 372 for (i = 0; i < cmd->num_addr; i++) 373 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { 374 ether_addr_copy(hw->port_info->mac.lan_addr, 375 resp[i].mac_addr); 376 ether_addr_copy(hw->port_info->mac.perm_addr, 377 resp[i].mac_addr); 378 break; 379 } 380 381 return 0; 382 } 383 384 /** 385 * ice_aq_get_phy_caps - returns PHY capabilities 386 * @pi: port information structure 387 * @qual_mods: report qualified modules 388 * @report_mode: report mode capabilities 389 * @pcaps: structure for PHY capabilities to be filled 390 * @cd: pointer to command details structure or NULL 391 * 392 * Returns the various PHY capabilities supported on the Port (0x0600) 393 */ 394 int 395 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, 396 struct ice_aqc_get_phy_caps_data *pcaps, 397 struct ice_sq_cd *cd) 398 { 399 struct ice_aqc_get_phy_caps *cmd; 400 u16 pcaps_size = sizeof(*pcaps); 401 struct ice_aq_desc desc; 402 const char *prefix; 403 struct ice_hw *hw; 404 int status; 405 406 cmd = &desc.params.get_phy; 407 408 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) 409 return -EINVAL; 410 hw = pi->hw; 411 412 if (report_mode == ICE_AQC_REPORT_DFLT_CFG && 413 !ice_fw_supports_report_dflt_cfg(hw)) 414 return -EINVAL; 415 416 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); 417 418 if (qual_mods) 419 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); 420 421 cmd->param0 |= cpu_to_le16(report_mode); 422 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd); 423 424 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n"); 425 426 switch (report_mode) { 427 case ICE_AQC_REPORT_TOPO_CAP_MEDIA: 428 prefix = "phy_caps_media"; 429 break; 430 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA: 431 prefix = "phy_caps_no_media"; 432 break; 433 case ICE_AQC_REPORT_ACTIVE_CFG: 434 prefix = "phy_caps_active"; 435 break; 436 case ICE_AQC_REPORT_DFLT_CFG: 437 prefix = "phy_caps_default"; 438 break; 439 default: 440 prefix = "phy_caps_invalid"; 441 } 442 443 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low), 444 le64_to_cpu(pcaps->phy_type_high), prefix); 445 446 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n", 447 prefix, report_mode); 448 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps); 449 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix, 450 pcaps->low_power_ctrl_an); 451 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix, 452 pcaps->eee_cap); 453 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix, 454 pcaps->eeer_value); 455 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix, 456 pcaps->link_fec_options); 457 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n", 458 prefix, pcaps->module_compliance_enforcement); 459 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n", 460 prefix, pcaps->extended_compliance_code); 461 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix, 462 pcaps->module_type[0]); 463 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix, 464 pcaps->module_type[1]); 465 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix, 466 pcaps->module_type[2]); 467 468 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) { 469 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 470 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 471 memcpy(pi->phy.link_info.module_type, &pcaps->module_type, 472 sizeof(pi->phy.link_info.module_type)); 473 } 474 475 return status; 476 } 477 478 /** 479 * ice_aq_get_link_topo_handle - get link topology node return status 480 * @pi: port information structure 481 * @node_type: requested node type 482 * @cd: pointer to command details structure or NULL 483 * 484 * Get link topology node return status for specified node type (0x06E0) 485 * 486 * Node type cage can be used to determine if cage is present. If AQC 487 * returns error (ENOENT), then no cage present. If no cage present, then 488 * connection type is backplane or BASE-T. 489 */ 490 static int 491 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type, 492 struct ice_sq_cd *cd) 493 { 494 struct ice_aqc_get_link_topo *cmd; 495 struct ice_aq_desc desc; 496 497 cmd = &desc.params.get_link_topo; 498 499 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 500 501 cmd->addr.topo_params.node_type_ctx = 502 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT << 503 ICE_AQC_LINK_TOPO_NODE_CTX_S); 504 505 /* set node type */ 506 cmd->addr.topo_params.node_type_ctx |= 507 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type); 508 509 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 510 } 511 512 /** 513 * ice_aq_get_netlist_node 514 * @hw: pointer to the hw struct 515 * @cmd: get_link_topo AQ structure 516 * @node_part_number: output node part number if node found 517 * @node_handle: output node handle parameter if node found 518 * 519 * Get netlist node handle. 520 */ 521 int 522 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd, 523 u8 *node_part_number, u16 *node_handle) 524 { 525 struct ice_aq_desc desc; 526 527 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 528 desc.params.get_link_topo = *cmd; 529 530 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL)) 531 return -EINTR; 532 533 if (node_handle) 534 *node_handle = 535 le16_to_cpu(desc.params.get_link_topo.addr.handle); 536 if (node_part_number) 537 *node_part_number = desc.params.get_link_topo.node_part_num; 538 539 return 0; 540 } 541 542 /** 543 * ice_find_netlist_node 544 * @hw: pointer to the hw struct 545 * @node_type_ctx: type of netlist node to look for 546 * @node_part_number: node part number to look for 547 * @node_handle: output parameter if node found - optional 548 * 549 * Scan the netlist for a node handle of the given node type and part number. 550 * 551 * If node_handle is non-NULL it will be modified on function exit. It is only 552 * valid if the function returns zero, and should be ignored on any non-zero 553 * return value. 554 * 555 * Returns: 0 if the node is found, -ENOENT if no handle was found, and 556 * a negative error code on failure to access the AQ. 557 */ 558 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx, 559 u8 node_part_number, u16 *node_handle) 560 { 561 u8 idx; 562 563 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) { 564 struct ice_aqc_get_link_topo cmd = {}; 565 u8 rec_node_part_number; 566 int status; 567 568 cmd.addr.topo_params.node_type_ctx = 569 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, 570 node_type_ctx); 571 cmd.addr.topo_params.index = idx; 572 573 status = ice_aq_get_netlist_node(hw, &cmd, 574 &rec_node_part_number, 575 node_handle); 576 if (status) 577 return status; 578 579 if (rec_node_part_number == node_part_number) 580 return 0; 581 } 582 583 return -ENOENT; 584 } 585 586 /** 587 * ice_is_media_cage_present 588 * @pi: port information structure 589 * 590 * Returns true if media cage is present, else false. If no cage, then 591 * media type is backplane or BASE-T. 592 */ 593 static bool ice_is_media_cage_present(struct ice_port_info *pi) 594 { 595 /* Node type cage can be used to determine if cage is present. If AQC 596 * returns error (ENOENT), then no cage present. If no cage present then 597 * connection type is backplane or BASE-T. 598 */ 599 return !ice_aq_get_link_topo_handle(pi, 600 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE, 601 NULL); 602 } 603 604 /** 605 * ice_get_media_type - Gets media type 606 * @pi: port information structure 607 */ 608 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) 609 { 610 struct ice_link_status *hw_link_info; 611 612 if (!pi) 613 return ICE_MEDIA_UNKNOWN; 614 615 hw_link_info = &pi->phy.link_info; 616 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 617 /* If more than one media type is selected, report unknown */ 618 return ICE_MEDIA_UNKNOWN; 619 620 if (hw_link_info->phy_type_low) { 621 /* 1G SGMII is a special case where some DA cable PHYs 622 * may show this as an option when it really shouldn't 623 * be since SGMII is meant to be between a MAC and a PHY 624 * in a backplane. Try to detect this case and handle it 625 */ 626 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII && 627 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 628 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || 629 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 630 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) 631 return ICE_MEDIA_DA; 632 633 switch (hw_link_info->phy_type_low) { 634 case ICE_PHY_TYPE_LOW_1000BASE_SX: 635 case ICE_PHY_TYPE_LOW_1000BASE_LX: 636 case ICE_PHY_TYPE_LOW_10GBASE_SR: 637 case ICE_PHY_TYPE_LOW_10GBASE_LR: 638 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 639 case ICE_PHY_TYPE_LOW_25GBASE_SR: 640 case ICE_PHY_TYPE_LOW_25GBASE_LR: 641 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 642 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 643 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 644 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 645 case ICE_PHY_TYPE_LOW_50GBASE_SR: 646 case ICE_PHY_TYPE_LOW_50GBASE_FR: 647 case ICE_PHY_TYPE_LOW_50GBASE_LR: 648 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 649 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 650 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 651 case ICE_PHY_TYPE_LOW_100GBASE_DR: 652 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 653 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 654 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 655 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 656 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 657 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 658 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 659 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 660 return ICE_MEDIA_FIBER; 661 case ICE_PHY_TYPE_LOW_100BASE_TX: 662 case ICE_PHY_TYPE_LOW_1000BASE_T: 663 case ICE_PHY_TYPE_LOW_2500BASE_T: 664 case ICE_PHY_TYPE_LOW_5GBASE_T: 665 case ICE_PHY_TYPE_LOW_10GBASE_T: 666 case ICE_PHY_TYPE_LOW_25GBASE_T: 667 return ICE_MEDIA_BASET; 668 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 669 case ICE_PHY_TYPE_LOW_25GBASE_CR: 670 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 671 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 672 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 673 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 674 case ICE_PHY_TYPE_LOW_50GBASE_CP: 675 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 676 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 677 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 678 return ICE_MEDIA_DA; 679 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 680 case ICE_PHY_TYPE_LOW_40G_XLAUI: 681 case ICE_PHY_TYPE_LOW_50G_LAUI2: 682 case ICE_PHY_TYPE_LOW_50G_AUI2: 683 case ICE_PHY_TYPE_LOW_50G_AUI1: 684 case ICE_PHY_TYPE_LOW_100G_AUI4: 685 case ICE_PHY_TYPE_LOW_100G_CAUI4: 686 if (ice_is_media_cage_present(pi)) 687 return ICE_MEDIA_DA; 688 fallthrough; 689 case ICE_PHY_TYPE_LOW_1000BASE_KX: 690 case ICE_PHY_TYPE_LOW_2500BASE_KX: 691 case ICE_PHY_TYPE_LOW_2500BASE_X: 692 case ICE_PHY_TYPE_LOW_5GBASE_KR: 693 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 694 case ICE_PHY_TYPE_LOW_25GBASE_KR: 695 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 696 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 697 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 698 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 699 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 700 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 701 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 702 return ICE_MEDIA_BACKPLANE; 703 } 704 } else { 705 switch (hw_link_info->phy_type_high) { 706 case ICE_PHY_TYPE_HIGH_100G_AUI2: 707 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 708 if (ice_is_media_cage_present(pi)) 709 return ICE_MEDIA_DA; 710 fallthrough; 711 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 712 return ICE_MEDIA_BACKPLANE; 713 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 714 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 715 return ICE_MEDIA_FIBER; 716 } 717 } 718 return ICE_MEDIA_UNKNOWN; 719 } 720 721 /** 722 * ice_get_link_status_datalen 723 * @hw: pointer to the HW struct 724 * 725 * Returns datalength for the Get Link Status AQ command, which is bigger for 726 * newer adapter families handled by ice driver. 727 */ 728 static u16 ice_get_link_status_datalen(struct ice_hw *hw) 729 { 730 switch (hw->mac_type) { 731 case ICE_MAC_E830: 732 return ICE_AQC_LS_DATA_SIZE_V2; 733 case ICE_MAC_E810: 734 default: 735 return ICE_AQC_LS_DATA_SIZE_V1; 736 } 737 } 738 739 /** 740 * ice_aq_get_link_info 741 * @pi: port information structure 742 * @ena_lse: enable/disable LinkStatusEvent reporting 743 * @link: pointer to link status structure - optional 744 * @cd: pointer to command details structure or NULL 745 * 746 * Get Link Status (0x607). Returns the link status of the adapter. 747 */ 748 int 749 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, 750 struct ice_link_status *link, struct ice_sq_cd *cd) 751 { 752 struct ice_aqc_get_link_status_data link_data = { 0 }; 753 struct ice_aqc_get_link_status *resp; 754 struct ice_link_status *li_old, *li; 755 enum ice_media_type *hw_media_type; 756 struct ice_fc_info *hw_fc_info; 757 bool tx_pause, rx_pause; 758 struct ice_aq_desc desc; 759 struct ice_hw *hw; 760 u16 cmd_flags; 761 int status; 762 763 if (!pi) 764 return -EINVAL; 765 hw = pi->hw; 766 li_old = &pi->phy.link_info_old; 767 hw_media_type = &pi->phy.media_type; 768 li = &pi->phy.link_info; 769 hw_fc_info = &pi->fc; 770 771 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); 772 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; 773 resp = &desc.params.get_link_status; 774 resp->cmd_flags = cpu_to_le16(cmd_flags); 775 resp->lport_num = pi->lport; 776 777 status = ice_aq_send_cmd(hw, &desc, &link_data, 778 ice_get_link_status_datalen(hw), cd); 779 if (status) 780 return status; 781 782 /* save off old link status information */ 783 *li_old = *li; 784 785 /* update current link status information */ 786 li->link_speed = le16_to_cpu(link_data.link_speed); 787 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 788 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 789 *hw_media_type = ice_get_media_type(pi); 790 li->link_info = link_data.link_info; 791 li->link_cfg_err = link_data.link_cfg_err; 792 li->an_info = link_data.an_info; 793 li->ext_info = link_data.ext_info; 794 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 795 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK; 796 li->topo_media_conflict = link_data.topo_media_conflict; 797 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M | 798 ICE_AQ_CFG_PACING_TYPE_M); 799 800 /* update fc info */ 801 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); 802 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); 803 if (tx_pause && rx_pause) 804 hw_fc_info->current_mode = ICE_FC_FULL; 805 else if (tx_pause) 806 hw_fc_info->current_mode = ICE_FC_TX_PAUSE; 807 else if (rx_pause) 808 hw_fc_info->current_mode = ICE_FC_RX_PAUSE; 809 else 810 hw_fc_info->current_mode = ICE_FC_NONE; 811 812 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); 813 814 ice_debug(hw, ICE_DBG_LINK, "get link info\n"); 815 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed); 816 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 817 (unsigned long long)li->phy_type_low); 818 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 819 (unsigned long long)li->phy_type_high); 820 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type); 821 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info); 822 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err); 823 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info); 824 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info); 825 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info); 826 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena); 827 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n", 828 li->max_frame_size); 829 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing); 830 831 /* save link status information */ 832 if (link) 833 *link = *li; 834 835 /* flag cleared so calling functions don't call AQ again */ 836 pi->phy.get_link_info = false; 837 838 return 0; 839 } 840 841 /** 842 * ice_fill_tx_timer_and_fc_thresh 843 * @hw: pointer to the HW struct 844 * @cmd: pointer to MAC cfg structure 845 * 846 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command 847 * descriptor 848 */ 849 static void 850 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw, 851 struct ice_aqc_set_mac_cfg *cmd) 852 { 853 u32 val, fc_thres_m; 854 855 /* We read back the transmit timer and FC threshold value of 856 * LFC. Thus, we will use index = 857 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX. 858 * 859 * Also, because we are operating on transmit timer and FC 860 * threshold of LFC, we don't turn on any bit in tx_tmr_priority 861 */ 862 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX 863 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR 864 865 if (hw->mac_type == ICE_MAC_E830) { 866 /* Retrieve the transmit timer */ 867 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT); 868 cmd->tx_tmr_value = 869 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M); 870 871 /* Retrieve the fc threshold */ 872 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR); 873 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M; 874 } else { 875 /* Retrieve the transmit timer */ 876 val = rd32(hw, 877 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC)); 878 cmd->tx_tmr_value = 879 le16_encode_bits(val, 880 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M); 881 882 /* Retrieve the fc threshold */ 883 val = rd32(hw, 884 E800_REFRESH_TMR(E800_IDX_OF_LFC)); 885 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M; 886 } 887 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m); 888 } 889 890 /** 891 * ice_aq_set_mac_cfg 892 * @hw: pointer to the HW struct 893 * @max_frame_size: Maximum Frame Size to be supported 894 * @cd: pointer to command details structure or NULL 895 * 896 * Set MAC configuration (0x0603) 897 */ 898 int 899 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd) 900 { 901 struct ice_aqc_set_mac_cfg *cmd; 902 struct ice_aq_desc desc; 903 904 cmd = &desc.params.set_mac_cfg; 905 906 if (max_frame_size == 0) 907 return -EINVAL; 908 909 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg); 910 911 cmd->max_frame_size = cpu_to_le16(max_frame_size); 912 913 ice_fill_tx_timer_and_fc_thresh(hw, cmd); 914 915 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 916 } 917 918 /** 919 * ice_init_fltr_mgmt_struct - initializes filter management list and locks 920 * @hw: pointer to the HW struct 921 */ 922 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw) 923 { 924 struct ice_switch_info *sw; 925 int status; 926 927 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), 928 sizeof(*hw->switch_info), GFP_KERNEL); 929 sw = hw->switch_info; 930 931 if (!sw) 932 return -ENOMEM; 933 934 INIT_LIST_HEAD(&sw->vsi_list_map_head); 935 sw->prof_res_bm_init = 0; 936 937 /* Initialize recipe count with default recipes read from NVM */ 938 sw->recp_cnt = ICE_SW_LKUP_LAST; 939 940 status = ice_init_def_sw_recp(hw); 941 if (status) { 942 devm_kfree(ice_hw_to_dev(hw), hw->switch_info); 943 return status; 944 } 945 return 0; 946 } 947 948 /** 949 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks 950 * @hw: pointer to the HW struct 951 */ 952 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) 953 { 954 struct ice_switch_info *sw = hw->switch_info; 955 struct ice_vsi_list_map_info *v_pos_map; 956 struct ice_vsi_list_map_info *v_tmp_map; 957 struct ice_sw_recipe *recps; 958 u8 i; 959 960 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, 961 list_entry) { 962 list_del(&v_pos_map->list_entry); 963 devm_kfree(ice_hw_to_dev(hw), v_pos_map); 964 } 965 recps = sw->recp_list; 966 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 967 recps[i].root_rid = i; 968 969 if (recps[i].adv_rule) { 970 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 971 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 972 973 mutex_destroy(&recps[i].filt_rule_lock); 974 list_for_each_entry_safe(lst_itr, tmp_entry, 975 &recps[i].filt_rules, 976 list_entry) { 977 list_del(&lst_itr->list_entry); 978 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 979 devm_kfree(ice_hw_to_dev(hw), lst_itr); 980 } 981 } else { 982 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; 983 984 mutex_destroy(&recps[i].filt_rule_lock); 985 list_for_each_entry_safe(lst_itr, tmp_entry, 986 &recps[i].filt_rules, 987 list_entry) { 988 list_del(&lst_itr->list_entry); 989 devm_kfree(ice_hw_to_dev(hw), lst_itr); 990 } 991 } 992 } 993 ice_rm_all_sw_replay_rule_info(hw); 994 devm_kfree(ice_hw_to_dev(hw), sw->recp_list); 995 devm_kfree(ice_hw_to_dev(hw), sw); 996 } 997 998 /** 999 * ice_get_itr_intrl_gran 1000 * @hw: pointer to the HW struct 1001 * 1002 * Determines the ITR/INTRL granularities based on the maximum aggregate 1003 * bandwidth according to the device's configuration during power-on. 1004 */ 1005 static void ice_get_itr_intrl_gran(struct ice_hw *hw) 1006 { 1007 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M, 1008 rd32(hw, GL_PWR_MODE_CTL)); 1009 1010 switch (max_agg_bw) { 1011 case ICE_MAX_AGG_BW_200G: 1012 case ICE_MAX_AGG_BW_100G: 1013 case ICE_MAX_AGG_BW_50G: 1014 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; 1015 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; 1016 break; 1017 case ICE_MAX_AGG_BW_25G: 1018 hw->itr_gran = ICE_ITR_GRAN_MAX_25; 1019 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; 1020 break; 1021 } 1022 } 1023 1024 /** 1025 * ice_init_hw - main hardware initialization routine 1026 * @hw: pointer to the hardware structure 1027 */ 1028 int ice_init_hw(struct ice_hw *hw) 1029 { 1030 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 1031 void *mac_buf __free(kfree) = NULL; 1032 u16 mac_buf_len; 1033 int status; 1034 1035 /* Set MAC type based on DeviceID */ 1036 status = ice_set_mac_type(hw); 1037 if (status) 1038 return status; 1039 1040 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID)); 1041 1042 status = ice_reset(hw, ICE_RESET_PFR); 1043 if (status) 1044 return status; 1045 1046 ice_get_itr_intrl_gran(hw); 1047 1048 status = ice_create_all_ctrlq(hw); 1049 if (status) 1050 goto err_unroll_cqinit; 1051 1052 status = ice_fwlog_init(hw); 1053 if (status) 1054 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n", 1055 status); 1056 1057 status = ice_clear_pf_cfg(hw); 1058 if (status) 1059 goto err_unroll_cqinit; 1060 1061 /* Set bit to enable Flow Director filters */ 1062 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 1063 INIT_LIST_HEAD(&hw->fdir_list_head); 1064 1065 ice_clear_pxe_mode(hw); 1066 1067 status = ice_init_nvm(hw); 1068 if (status) 1069 goto err_unroll_cqinit; 1070 1071 status = ice_get_caps(hw); 1072 if (status) 1073 goto err_unroll_cqinit; 1074 1075 if (!hw->port_info) 1076 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), 1077 sizeof(*hw->port_info), 1078 GFP_KERNEL); 1079 if (!hw->port_info) { 1080 status = -ENOMEM; 1081 goto err_unroll_cqinit; 1082 } 1083 1084 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED; 1085 /* set the back pointer to HW */ 1086 hw->port_info->hw = hw; 1087 1088 /* Initialize port_info struct with switch configuration data */ 1089 status = ice_get_initial_sw_cfg(hw); 1090 if (status) 1091 goto err_unroll_alloc; 1092 1093 hw->evb_veb = true; 1094 1095 /* init xarray for identifying scheduling nodes uniquely */ 1096 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC); 1097 1098 /* Query the allocated resources for Tx scheduler */ 1099 status = ice_sched_query_res_alloc(hw); 1100 if (status) { 1101 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n"); 1102 goto err_unroll_alloc; 1103 } 1104 ice_sched_get_psm_clk_freq(hw); 1105 1106 /* Initialize port_info struct with scheduler data */ 1107 status = ice_sched_init_port(hw->port_info); 1108 if (status) 1109 goto err_unroll_sched; 1110 1111 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1112 if (!pcaps) { 1113 status = -ENOMEM; 1114 goto err_unroll_sched; 1115 } 1116 1117 /* Initialize port_info struct with PHY capabilities */ 1118 status = ice_aq_get_phy_caps(hw->port_info, false, 1119 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, 1120 NULL); 1121 if (status) 1122 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n", 1123 status); 1124 1125 /* Initialize port_info struct with link information */ 1126 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); 1127 if (status) 1128 goto err_unroll_sched; 1129 1130 /* need a valid SW entry point to build a Tx tree */ 1131 if (!hw->sw_entry_point_layer) { 1132 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); 1133 status = -EIO; 1134 goto err_unroll_sched; 1135 } 1136 INIT_LIST_HEAD(&hw->agg_list); 1137 /* Initialize max burst size */ 1138 if (!hw->max_burst_size) 1139 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE); 1140 1141 status = ice_init_fltr_mgmt_struct(hw); 1142 if (status) 1143 goto err_unroll_sched; 1144 1145 /* Get MAC information */ 1146 /* A single port can report up to two (LAN and WoL) addresses */ 1147 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp), 1148 GFP_KERNEL); 1149 if (!mac_buf) { 1150 status = -ENOMEM; 1151 goto err_unroll_fltr_mgmt_struct; 1152 } 1153 1154 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); 1155 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); 1156 1157 if (status) 1158 goto err_unroll_fltr_mgmt_struct; 1159 /* enable jumbo frame support at MAC level */ 1160 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 1161 if (status) 1162 goto err_unroll_fltr_mgmt_struct; 1163 /* Obtain counter base index which would be used by flow director */ 1164 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base); 1165 if (status) 1166 goto err_unroll_fltr_mgmt_struct; 1167 status = ice_init_hw_tbls(hw); 1168 if (status) 1169 goto err_unroll_fltr_mgmt_struct; 1170 mutex_init(&hw->tnl_lock); 1171 ice_init_chk_recipe_reuse_support(hw); 1172 1173 return 0; 1174 1175 err_unroll_fltr_mgmt_struct: 1176 ice_cleanup_fltr_mgmt_struct(hw); 1177 err_unroll_sched: 1178 ice_sched_cleanup_all(hw); 1179 err_unroll_alloc: 1180 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 1181 err_unroll_cqinit: 1182 ice_destroy_all_ctrlq(hw); 1183 return status; 1184 } 1185 1186 /** 1187 * ice_deinit_hw - unroll initialization operations done by ice_init_hw 1188 * @hw: pointer to the hardware structure 1189 * 1190 * This should be called only during nominal operation, not as a result of 1191 * ice_init_hw() failing since ice_init_hw() will take care of unrolling 1192 * applicable initializations if it fails for any reason. 1193 */ 1194 void ice_deinit_hw(struct ice_hw *hw) 1195 { 1196 ice_free_fd_res_cntr(hw, hw->fd_ctr_base); 1197 ice_cleanup_fltr_mgmt_struct(hw); 1198 1199 ice_sched_cleanup_all(hw); 1200 ice_sched_clear_agg(hw); 1201 ice_free_seg(hw); 1202 ice_free_hw_tbls(hw); 1203 mutex_destroy(&hw->tnl_lock); 1204 1205 ice_fwlog_deinit(hw); 1206 ice_destroy_all_ctrlq(hw); 1207 1208 /* Clear VSI contexts if not already cleared */ 1209 ice_clear_all_vsi_ctx(hw); 1210 } 1211 1212 /** 1213 * ice_check_reset - Check to see if a global reset is complete 1214 * @hw: pointer to the hardware structure 1215 */ 1216 int ice_check_reset(struct ice_hw *hw) 1217 { 1218 u32 cnt, reg = 0, grst_timeout, uld_mask; 1219 1220 /* Poll for Device Active state in case a recent CORER, GLOBR, 1221 * or EMPR has occurred. The grst delay value is in 100ms units. 1222 * Add 1sec for outstanding AQ commands that can take a long time. 1223 */ 1224 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M, 1225 rd32(hw, GLGEN_RSTCTL)) + 10; 1226 1227 for (cnt = 0; cnt < grst_timeout; cnt++) { 1228 mdelay(100); 1229 reg = rd32(hw, GLGEN_RSTAT); 1230 if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) 1231 break; 1232 } 1233 1234 if (cnt == grst_timeout) { 1235 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n"); 1236 return -EIO; 1237 } 1238 1239 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\ 1240 GLNVM_ULD_PCIER_DONE_1_M |\ 1241 GLNVM_ULD_CORER_DONE_M |\ 1242 GLNVM_ULD_GLOBR_DONE_M |\ 1243 GLNVM_ULD_POR_DONE_M |\ 1244 GLNVM_ULD_POR_DONE_1_M |\ 1245 GLNVM_ULD_PCIER_DONE_2_M) 1246 1247 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ? 1248 GLNVM_ULD_PE_DONE_M : 0); 1249 1250 /* Device is Active; check Global Reset processes are done */ 1251 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 1252 reg = rd32(hw, GLNVM_ULD) & uld_mask; 1253 if (reg == uld_mask) { 1254 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt); 1255 break; 1256 } 1257 mdelay(10); 1258 } 1259 1260 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1261 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", 1262 reg); 1263 return -EIO; 1264 } 1265 1266 return 0; 1267 } 1268 1269 /** 1270 * ice_pf_reset - Reset the PF 1271 * @hw: pointer to the hardware structure 1272 * 1273 * If a global reset has been triggered, this function checks 1274 * for its completion and then issues the PF reset 1275 */ 1276 static int ice_pf_reset(struct ice_hw *hw) 1277 { 1278 u32 cnt, reg; 1279 1280 /* If at function entry a global reset was already in progress, i.e. 1281 * state is not 'device active' or any of the reset done bits are not 1282 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the 1283 * global reset is done. 1284 */ 1285 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || 1286 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { 1287 /* poll on global reset currently in progress until done */ 1288 if (ice_check_reset(hw)) 1289 return -EIO; 1290 1291 return 0; 1292 } 1293 1294 /* Reset the PF */ 1295 reg = rd32(hw, PFGEN_CTRL); 1296 1297 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); 1298 1299 /* Wait for the PFR to complete. The wait time is the global config lock 1300 * timeout plus the PFR timeout which will account for a possible reset 1301 * that is occurring during a download package operation. 1302 */ 1303 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT + 1304 ICE_PF_RESET_WAIT_COUNT; cnt++) { 1305 reg = rd32(hw, PFGEN_CTRL); 1306 if (!(reg & PFGEN_CTRL_PFSWR_M)) 1307 break; 1308 1309 mdelay(1); 1310 } 1311 1312 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1313 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n"); 1314 return -EIO; 1315 } 1316 1317 return 0; 1318 } 1319 1320 /** 1321 * ice_reset - Perform different types of reset 1322 * @hw: pointer to the hardware structure 1323 * @req: reset request 1324 * 1325 * This function triggers a reset as specified by the req parameter. 1326 * 1327 * Note: 1328 * If anything other than a PF reset is triggered, PXE mode is restored. 1329 * This has to be cleared using ice_clear_pxe_mode again, once the AQ 1330 * interface has been restored in the rebuild flow. 1331 */ 1332 int ice_reset(struct ice_hw *hw, enum ice_reset_req req) 1333 { 1334 u32 val = 0; 1335 1336 switch (req) { 1337 case ICE_RESET_PFR: 1338 return ice_pf_reset(hw); 1339 case ICE_RESET_CORER: 1340 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); 1341 val = GLGEN_RTRIG_CORER_M; 1342 break; 1343 case ICE_RESET_GLOBR: 1344 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); 1345 val = GLGEN_RTRIG_GLOBR_M; 1346 break; 1347 default: 1348 return -EINVAL; 1349 } 1350 1351 val |= rd32(hw, GLGEN_RTRIG); 1352 wr32(hw, GLGEN_RTRIG, val); 1353 ice_flush(hw); 1354 1355 /* wait for the FW to be ready */ 1356 return ice_check_reset(hw); 1357 } 1358 1359 /** 1360 * ice_copy_rxq_ctx_to_hw 1361 * @hw: pointer to the hardware structure 1362 * @ice_rxq_ctx: pointer to the rxq context 1363 * @rxq_index: the index of the Rx queue 1364 * 1365 * Copies rxq context from dense structure to HW register space 1366 */ 1367 static int 1368 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) 1369 { 1370 u8 i; 1371 1372 if (!ice_rxq_ctx) 1373 return -EINVAL; 1374 1375 if (rxq_index > QRX_CTRL_MAX_INDEX) 1376 return -EINVAL; 1377 1378 /* Copy each dword separately to HW */ 1379 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { 1380 wr32(hw, QRX_CONTEXT(i, rxq_index), 1381 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1382 1383 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, 1384 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1385 } 1386 1387 return 0; 1388 } 1389 1390 /* LAN Rx Queue Context */ 1391 static const struct ice_ctx_ele ice_rlan_ctx_info[] = { 1392 /* Field Width LSB */ 1393 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), 1394 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), 1395 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), 1396 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), 1397 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), 1398 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), 1399 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), 1400 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), 1401 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), 1402 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), 1403 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), 1404 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), 1405 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), 1406 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), 1407 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), 1408 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), 1409 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), 1410 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), 1411 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), 1412 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201), 1413 { 0 } 1414 }; 1415 1416 /** 1417 * ice_write_rxq_ctx 1418 * @hw: pointer to the hardware structure 1419 * @rlan_ctx: pointer to the rxq context 1420 * @rxq_index: the index of the Rx queue 1421 * 1422 * Converts rxq context from sparse to dense structure and then writes 1423 * it to HW register space and enables the hardware to prefetch descriptors 1424 * instead of only fetching them on demand 1425 */ 1426 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, 1427 u32 rxq_index) 1428 { 1429 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; 1430 1431 if (!rlan_ctx) 1432 return -EINVAL; 1433 1434 rlan_ctx->prefena = 1; 1435 1436 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); 1437 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); 1438 } 1439 1440 /* LAN Tx Queue Context */ 1441 const struct ice_ctx_ele ice_tlan_ctx_info[] = { 1442 /* Field Width LSB */ 1443 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), 1444 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), 1445 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), 1446 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), 1447 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), 1448 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), 1449 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), 1450 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), 1451 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91), 1452 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), 1453 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), 1454 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), 1455 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), 1456 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), 1457 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), 1458 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), 1459 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), 1460 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), 1461 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), 1462 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), 1463 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), 1464 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), 1465 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), 1466 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), 1467 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), 1468 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), 1469 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), 1470 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171), 1471 { 0 } 1472 }; 1473 1474 /* Sideband Queue command wrappers */ 1475 1476 /** 1477 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue 1478 * @hw: pointer to the HW struct 1479 * @desc: descriptor describing the command 1480 * @buf: buffer to use for indirect commands (NULL for direct commands) 1481 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1482 * @cd: pointer to command details structure 1483 */ 1484 static int 1485 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc, 1486 void *buf, u16 buf_size, struct ice_sq_cd *cd) 1487 { 1488 return ice_sq_send_cmd(hw, ice_get_sbq(hw), 1489 (struct ice_aq_desc *)desc, buf, buf_size, cd); 1490 } 1491 1492 /** 1493 * ice_sbq_rw_reg - Fill Sideband Queue command 1494 * @hw: pointer to the HW struct 1495 * @in: message info to be filled in descriptor 1496 * @flags: control queue descriptor flags 1497 */ 1498 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags) 1499 { 1500 struct ice_sbq_cmd_desc desc = {0}; 1501 struct ice_sbq_msg_req msg = {0}; 1502 u16 msg_len; 1503 int status; 1504 1505 msg_len = sizeof(msg); 1506 1507 msg.dest_dev = in->dest_dev; 1508 msg.opcode = in->opcode; 1509 msg.flags = ICE_SBQ_MSG_FLAGS; 1510 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE; 1511 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low); 1512 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high); 1513 1514 if (in->opcode) 1515 msg.data = cpu_to_le32(in->data); 1516 else 1517 /* data read comes back in completion, so shorten the struct by 1518 * sizeof(msg.data) 1519 */ 1520 msg_len -= sizeof(msg.data); 1521 1522 desc.flags = cpu_to_le16(flags); 1523 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req); 1524 desc.param0.cmd_len = cpu_to_le16(msg_len); 1525 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL); 1526 if (!status && !in->opcode) 1527 in->data = le32_to_cpu 1528 (((struct ice_sbq_msg_cmpl *)&msg)->data); 1529 return status; 1530 } 1531 1532 /* FW Admin Queue command wrappers */ 1533 1534 /* Software lock/mutex that is meant to be held while the Global Config Lock 1535 * in firmware is acquired by the software to prevent most (but not all) types 1536 * of AQ commands from being sent to FW 1537 */ 1538 DEFINE_MUTEX(ice_global_cfg_lock_sw); 1539 1540 /** 1541 * ice_should_retry_sq_send_cmd 1542 * @opcode: AQ opcode 1543 * 1544 * Decide if we should retry the send command routine for the ATQ, depending 1545 * on the opcode. 1546 */ 1547 static bool ice_should_retry_sq_send_cmd(u16 opcode) 1548 { 1549 switch (opcode) { 1550 case ice_aqc_opc_get_link_topo: 1551 case ice_aqc_opc_lldp_stop: 1552 case ice_aqc_opc_lldp_start: 1553 case ice_aqc_opc_lldp_filter_ctrl: 1554 return true; 1555 } 1556 1557 return false; 1558 } 1559 1560 /** 1561 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ) 1562 * @hw: pointer to the HW struct 1563 * @cq: pointer to the specific Control queue 1564 * @desc: prefilled descriptor describing the command 1565 * @buf: buffer to use for indirect commands (or NULL for direct commands) 1566 * @buf_size: size of buffer for indirect commands (or 0 for direct commands) 1567 * @cd: pointer to command details structure 1568 * 1569 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin 1570 * Queue if the EBUSY AQ error is returned. 1571 */ 1572 static int 1573 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq, 1574 struct ice_aq_desc *desc, void *buf, u16 buf_size, 1575 struct ice_sq_cd *cd) 1576 { 1577 struct ice_aq_desc desc_cpy; 1578 bool is_cmd_for_retry; 1579 u8 idx = 0; 1580 u16 opcode; 1581 int status; 1582 1583 opcode = le16_to_cpu(desc->opcode); 1584 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode); 1585 memset(&desc_cpy, 0, sizeof(desc_cpy)); 1586 1587 if (is_cmd_for_retry) { 1588 /* All retryable cmds are direct, without buf. */ 1589 WARN_ON(buf); 1590 1591 memcpy(&desc_cpy, desc, sizeof(desc_cpy)); 1592 } 1593 1594 do { 1595 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd); 1596 1597 if (!is_cmd_for_retry || !status || 1598 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY) 1599 break; 1600 1601 memcpy(desc, &desc_cpy, sizeof(desc_cpy)); 1602 1603 msleep(ICE_SQ_SEND_DELAY_TIME_MS); 1604 1605 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE); 1606 1607 return status; 1608 } 1609 1610 /** 1611 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue 1612 * @hw: pointer to the HW struct 1613 * @desc: descriptor describing the command 1614 * @buf: buffer to use for indirect commands (NULL for direct commands) 1615 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1616 * @cd: pointer to command details structure 1617 * 1618 * Helper function to send FW Admin Queue commands to the FW Admin Queue. 1619 */ 1620 int 1621 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, 1622 u16 buf_size, struct ice_sq_cd *cd) 1623 { 1624 struct ice_aqc_req_res *cmd = &desc->params.res_owner; 1625 bool lock_acquired = false; 1626 int status; 1627 1628 /* When a package download is in process (i.e. when the firmware's 1629 * Global Configuration Lock resource is held), only the Download 1630 * Package, Get Version, Get Package Info List, Upload Section, 1631 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters, 1632 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get 1633 * Recipes to Profile Association, and Release Resource (with resource 1634 * ID set to Global Config Lock) AdminQ commands are allowed; all others 1635 * must block until the package download completes and the Global Config 1636 * Lock is released. See also ice_acquire_global_cfg_lock(). 1637 */ 1638 switch (le16_to_cpu(desc->opcode)) { 1639 case ice_aqc_opc_download_pkg: 1640 case ice_aqc_opc_get_pkg_info_list: 1641 case ice_aqc_opc_get_ver: 1642 case ice_aqc_opc_upload_section: 1643 case ice_aqc_opc_update_pkg: 1644 case ice_aqc_opc_set_port_params: 1645 case ice_aqc_opc_get_vlan_mode_parameters: 1646 case ice_aqc_opc_set_vlan_mode_parameters: 1647 case ice_aqc_opc_set_tx_topo: 1648 case ice_aqc_opc_get_tx_topo: 1649 case ice_aqc_opc_add_recipe: 1650 case ice_aqc_opc_recipe_to_profile: 1651 case ice_aqc_opc_get_recipe: 1652 case ice_aqc_opc_get_recipe_to_profile: 1653 break; 1654 case ice_aqc_opc_release_res: 1655 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK) 1656 break; 1657 fallthrough; 1658 default: 1659 mutex_lock(&ice_global_cfg_lock_sw); 1660 lock_acquired = true; 1661 break; 1662 } 1663 1664 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd); 1665 if (lock_acquired) 1666 mutex_unlock(&ice_global_cfg_lock_sw); 1667 1668 return status; 1669 } 1670 1671 /** 1672 * ice_aq_get_fw_ver 1673 * @hw: pointer to the HW struct 1674 * @cd: pointer to command details structure or NULL 1675 * 1676 * Get the firmware version (0x0001) from the admin queue commands 1677 */ 1678 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) 1679 { 1680 struct ice_aqc_get_ver *resp; 1681 struct ice_aq_desc desc; 1682 int status; 1683 1684 resp = &desc.params.get_ver; 1685 1686 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); 1687 1688 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1689 1690 if (!status) { 1691 hw->fw_branch = resp->fw_branch; 1692 hw->fw_maj_ver = resp->fw_major; 1693 hw->fw_min_ver = resp->fw_minor; 1694 hw->fw_patch = resp->fw_patch; 1695 hw->fw_build = le32_to_cpu(resp->fw_build); 1696 hw->api_branch = resp->api_branch; 1697 hw->api_maj_ver = resp->api_major; 1698 hw->api_min_ver = resp->api_minor; 1699 hw->api_patch = resp->api_patch; 1700 } 1701 1702 return status; 1703 } 1704 1705 /** 1706 * ice_aq_send_driver_ver 1707 * @hw: pointer to the HW struct 1708 * @dv: driver's major, minor version 1709 * @cd: pointer to command details structure or NULL 1710 * 1711 * Send the driver version (0x0002) to the firmware 1712 */ 1713 int 1714 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv, 1715 struct ice_sq_cd *cd) 1716 { 1717 struct ice_aqc_driver_ver *cmd; 1718 struct ice_aq_desc desc; 1719 u16 len; 1720 1721 cmd = &desc.params.driver_ver; 1722 1723 if (!dv) 1724 return -EINVAL; 1725 1726 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver); 1727 1728 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1729 cmd->major_ver = dv->major_ver; 1730 cmd->minor_ver = dv->minor_ver; 1731 cmd->build_ver = dv->build_ver; 1732 cmd->subbuild_ver = dv->subbuild_ver; 1733 1734 len = 0; 1735 while (len < sizeof(dv->driver_string) && 1736 isascii(dv->driver_string[len]) && dv->driver_string[len]) 1737 len++; 1738 1739 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd); 1740 } 1741 1742 /** 1743 * ice_aq_q_shutdown 1744 * @hw: pointer to the HW struct 1745 * @unloading: is the driver unloading itself 1746 * 1747 * Tell the Firmware that we're shutting down the AdminQ and whether 1748 * or not the driver is unloading as well (0x0003). 1749 */ 1750 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) 1751 { 1752 struct ice_aqc_q_shutdown *cmd; 1753 struct ice_aq_desc desc; 1754 1755 cmd = &desc.params.q_shutdown; 1756 1757 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); 1758 1759 if (unloading) 1760 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING; 1761 1762 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1763 } 1764 1765 /** 1766 * ice_aq_req_res 1767 * @hw: pointer to the HW struct 1768 * @res: resource ID 1769 * @access: access type 1770 * @sdp_number: resource number 1771 * @timeout: the maximum time in ms that the driver may hold the resource 1772 * @cd: pointer to command details structure or NULL 1773 * 1774 * Requests common resource using the admin queue commands (0x0008). 1775 * When attempting to acquire the Global Config Lock, the driver can 1776 * learn of three states: 1777 * 1) 0 - acquired lock, and can perform download package 1778 * 2) -EIO - did not get lock, driver should fail to load 1779 * 3) -EALREADY - did not get lock, but another driver has 1780 * successfully downloaded the package; the driver does 1781 * not have to download the package and can continue 1782 * loading 1783 * 1784 * Note that if the caller is in an acquire lock, perform action, release lock 1785 * phase of operation, it is possible that the FW may detect a timeout and issue 1786 * a CORER. In this case, the driver will receive a CORER interrupt and will 1787 * have to determine its cause. The calling thread that is handling this flow 1788 * will likely get an error propagated back to it indicating the Download 1789 * Package, Update Package or the Release Resource AQ commands timed out. 1790 */ 1791 static int 1792 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1793 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, 1794 struct ice_sq_cd *cd) 1795 { 1796 struct ice_aqc_req_res *cmd_resp; 1797 struct ice_aq_desc desc; 1798 int status; 1799 1800 cmd_resp = &desc.params.res_owner; 1801 1802 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); 1803 1804 cmd_resp->res_id = cpu_to_le16(res); 1805 cmd_resp->access_type = cpu_to_le16(access); 1806 cmd_resp->res_number = cpu_to_le32(sdp_number); 1807 cmd_resp->timeout = cpu_to_le32(*timeout); 1808 *timeout = 0; 1809 1810 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1811 1812 /* The completion specifies the maximum time in ms that the driver 1813 * may hold the resource in the Timeout field. 1814 */ 1815 1816 /* Global config lock response utilizes an additional status field. 1817 * 1818 * If the Global config lock resource is held by some other driver, the 1819 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field 1820 * and the timeout field indicates the maximum time the current owner 1821 * of the resource has to free it. 1822 */ 1823 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { 1824 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { 1825 *timeout = le32_to_cpu(cmd_resp->timeout); 1826 return 0; 1827 } else if (le16_to_cpu(cmd_resp->status) == 1828 ICE_AQ_RES_GLBL_IN_PROG) { 1829 *timeout = le32_to_cpu(cmd_resp->timeout); 1830 return -EIO; 1831 } else if (le16_to_cpu(cmd_resp->status) == 1832 ICE_AQ_RES_GLBL_DONE) { 1833 return -EALREADY; 1834 } 1835 1836 /* invalid FW response, force a timeout immediately */ 1837 *timeout = 0; 1838 return -EIO; 1839 } 1840 1841 /* If the resource is held by some other driver, the command completes 1842 * with a busy return value and the timeout field indicates the maximum 1843 * time the current owner of the resource has to free it. 1844 */ 1845 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) 1846 *timeout = le32_to_cpu(cmd_resp->timeout); 1847 1848 return status; 1849 } 1850 1851 /** 1852 * ice_aq_release_res 1853 * @hw: pointer to the HW struct 1854 * @res: resource ID 1855 * @sdp_number: resource number 1856 * @cd: pointer to command details structure or NULL 1857 * 1858 * release common resource using the admin queue commands (0x0009) 1859 */ 1860 static int 1861 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, 1862 struct ice_sq_cd *cd) 1863 { 1864 struct ice_aqc_req_res *cmd; 1865 struct ice_aq_desc desc; 1866 1867 cmd = &desc.params.res_owner; 1868 1869 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); 1870 1871 cmd->res_id = cpu_to_le16(res); 1872 cmd->res_number = cpu_to_le32(sdp_number); 1873 1874 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1875 } 1876 1877 /** 1878 * ice_acquire_res 1879 * @hw: pointer to the HW structure 1880 * @res: resource ID 1881 * @access: access type (read or write) 1882 * @timeout: timeout in milliseconds 1883 * 1884 * This function will attempt to acquire the ownership of a resource. 1885 */ 1886 int 1887 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1888 enum ice_aq_res_access_type access, u32 timeout) 1889 { 1890 #define ICE_RES_POLLING_DELAY_MS 10 1891 u32 delay = ICE_RES_POLLING_DELAY_MS; 1892 u32 time_left = timeout; 1893 int status; 1894 1895 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1896 1897 /* A return code of -EALREADY means that another driver has 1898 * previously acquired the resource and performed any necessary updates; 1899 * in this case the caller does not obtain the resource and has no 1900 * further work to do. 1901 */ 1902 if (status == -EALREADY) 1903 goto ice_acquire_res_exit; 1904 1905 if (status) 1906 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access); 1907 1908 /* If necessary, poll until the current lock owner timeouts */ 1909 timeout = time_left; 1910 while (status && timeout && time_left) { 1911 mdelay(delay); 1912 timeout = (timeout > delay) ? timeout - delay : 0; 1913 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1914 1915 if (status == -EALREADY) 1916 /* lock free, but no work to do */ 1917 break; 1918 1919 if (!status) 1920 /* lock acquired */ 1921 break; 1922 } 1923 if (status && status != -EALREADY) 1924 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); 1925 1926 ice_acquire_res_exit: 1927 if (status == -EALREADY) { 1928 if (access == ICE_RES_WRITE) 1929 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n"); 1930 else 1931 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n"); 1932 } 1933 return status; 1934 } 1935 1936 /** 1937 * ice_release_res 1938 * @hw: pointer to the HW structure 1939 * @res: resource ID 1940 * 1941 * This function will release a resource using the proper Admin Command. 1942 */ 1943 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) 1944 { 1945 unsigned long timeout; 1946 int status; 1947 1948 /* there are some rare cases when trying to release the resource 1949 * results in an admin queue timeout, so handle them correctly 1950 */ 1951 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT; 1952 do { 1953 status = ice_aq_release_res(hw, res, 0, NULL); 1954 if (status != -EIO) 1955 break; 1956 usleep_range(1000, 2000); 1957 } while (time_before(jiffies, timeout)); 1958 } 1959 1960 /** 1961 * ice_aq_alloc_free_res - command to allocate/free resources 1962 * @hw: pointer to the HW struct 1963 * @buf: Indirect buffer to hold data parameters and response 1964 * @buf_size: size of buffer for indirect commands 1965 * @opc: pass in the command opcode 1966 * 1967 * Helper function to allocate/free resources using the admin queue commands 1968 */ 1969 int ice_aq_alloc_free_res(struct ice_hw *hw, 1970 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 1971 enum ice_adminq_opc opc) 1972 { 1973 struct ice_aqc_alloc_free_res_cmd *cmd; 1974 struct ice_aq_desc desc; 1975 1976 cmd = &desc.params.sw_res_ctrl; 1977 1978 if (!buf || buf_size < flex_array_size(buf, elem, 1)) 1979 return -EINVAL; 1980 1981 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1982 1983 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1984 1985 cmd->num_entries = cpu_to_le16(1); 1986 1987 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL); 1988 } 1989 1990 /** 1991 * ice_alloc_hw_res - allocate resource 1992 * @hw: pointer to the HW struct 1993 * @type: type of resource 1994 * @num: number of resources to allocate 1995 * @btm: allocate from bottom 1996 * @res: pointer to array that will receive the resources 1997 */ 1998 int 1999 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res) 2000 { 2001 struct ice_aqc_alloc_free_res_elem *buf; 2002 u16 buf_len; 2003 int status; 2004 2005 buf_len = struct_size(buf, elem, num); 2006 buf = kzalloc(buf_len, GFP_KERNEL); 2007 if (!buf) 2008 return -ENOMEM; 2009 2010 /* Prepare buffer to allocate resource. */ 2011 buf->num_elems = cpu_to_le16(num); 2012 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED | 2013 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX); 2014 if (btm) 2015 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM); 2016 2017 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 2018 if (status) 2019 goto ice_alloc_res_exit; 2020 2021 memcpy(res, buf->elem, sizeof(*buf->elem) * num); 2022 2023 ice_alloc_res_exit: 2024 kfree(buf); 2025 return status; 2026 } 2027 2028 /** 2029 * ice_free_hw_res - free allocated HW resource 2030 * @hw: pointer to the HW struct 2031 * @type: type of resource to free 2032 * @num: number of resources 2033 * @res: pointer to array that contains the resources to free 2034 */ 2035 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res) 2036 { 2037 struct ice_aqc_alloc_free_res_elem *buf; 2038 u16 buf_len; 2039 int status; 2040 2041 buf_len = struct_size(buf, elem, num); 2042 buf = kzalloc(buf_len, GFP_KERNEL); 2043 if (!buf) 2044 return -ENOMEM; 2045 2046 /* Prepare buffer to free resource. */ 2047 buf->num_elems = cpu_to_le16(num); 2048 buf->res_type = cpu_to_le16(type); 2049 memcpy(buf->elem, res, sizeof(*buf->elem) * num); 2050 2051 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 2052 if (status) 2053 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); 2054 2055 kfree(buf); 2056 return status; 2057 } 2058 2059 /** 2060 * ice_get_num_per_func - determine number of resources per PF 2061 * @hw: pointer to the HW structure 2062 * @max: value to be evenly split between each PF 2063 * 2064 * Determine the number of valid functions by going through the bitmap returned 2065 * from parsing capabilities and use this to calculate the number of resources 2066 * per PF based on the max value passed in. 2067 */ 2068 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) 2069 { 2070 u8 funcs; 2071 2072 #define ICE_CAPS_VALID_FUNCS_M 0xFF 2073 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 2074 ICE_CAPS_VALID_FUNCS_M); 2075 2076 if (!funcs) 2077 return 0; 2078 2079 return max / funcs; 2080 } 2081 2082 /** 2083 * ice_parse_common_caps - parse common device/function capabilities 2084 * @hw: pointer to the HW struct 2085 * @caps: pointer to common capabilities structure 2086 * @elem: the capability element to parse 2087 * @prefix: message prefix for tracing capabilities 2088 * 2089 * Given a capability element, extract relevant details into the common 2090 * capability structure. 2091 * 2092 * Returns: true if the capability matches one of the common capability ids, 2093 * false otherwise. 2094 */ 2095 static bool 2096 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps, 2097 struct ice_aqc_list_caps_elem *elem, const char *prefix) 2098 { 2099 u32 logical_id = le32_to_cpu(elem->logical_id); 2100 u32 phys_id = le32_to_cpu(elem->phys_id); 2101 u32 number = le32_to_cpu(elem->number); 2102 u16 cap = le16_to_cpu(elem->cap); 2103 bool found = true; 2104 2105 switch (cap) { 2106 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2107 caps->valid_functions = number; 2108 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix, 2109 caps->valid_functions); 2110 break; 2111 case ICE_AQC_CAPS_SRIOV: 2112 caps->sr_iov_1_1 = (number == 1); 2113 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix, 2114 caps->sr_iov_1_1); 2115 break; 2116 case ICE_AQC_CAPS_DCB: 2117 caps->dcb = (number == 1); 2118 caps->active_tc_bitmap = logical_id; 2119 caps->maxtc = phys_id; 2120 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb); 2121 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix, 2122 caps->active_tc_bitmap); 2123 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc); 2124 break; 2125 case ICE_AQC_CAPS_RSS: 2126 caps->rss_table_size = number; 2127 caps->rss_table_entry_width = logical_id; 2128 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix, 2129 caps->rss_table_size); 2130 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix, 2131 caps->rss_table_entry_width); 2132 break; 2133 case ICE_AQC_CAPS_RXQS: 2134 caps->num_rxq = number; 2135 caps->rxq_first_id = phys_id; 2136 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix, 2137 caps->num_rxq); 2138 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix, 2139 caps->rxq_first_id); 2140 break; 2141 case ICE_AQC_CAPS_TXQS: 2142 caps->num_txq = number; 2143 caps->txq_first_id = phys_id; 2144 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix, 2145 caps->num_txq); 2146 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix, 2147 caps->txq_first_id); 2148 break; 2149 case ICE_AQC_CAPS_MSIX: 2150 caps->num_msix_vectors = number; 2151 caps->msix_vector_first_id = phys_id; 2152 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix, 2153 caps->num_msix_vectors); 2154 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix, 2155 caps->msix_vector_first_id); 2156 break; 2157 case ICE_AQC_CAPS_PENDING_NVM_VER: 2158 caps->nvm_update_pending_nvm = true; 2159 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix); 2160 break; 2161 case ICE_AQC_CAPS_PENDING_OROM_VER: 2162 caps->nvm_update_pending_orom = true; 2163 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix); 2164 break; 2165 case ICE_AQC_CAPS_PENDING_NET_VER: 2166 caps->nvm_update_pending_netlist = true; 2167 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix); 2168 break; 2169 case ICE_AQC_CAPS_NVM_MGMT: 2170 caps->nvm_unified_update = 2171 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ? 2172 true : false; 2173 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix, 2174 caps->nvm_unified_update); 2175 break; 2176 case ICE_AQC_CAPS_RDMA: 2177 caps->rdma = (number == 1); 2178 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma); 2179 break; 2180 case ICE_AQC_CAPS_MAX_MTU: 2181 caps->max_mtu = number; 2182 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n", 2183 prefix, caps->max_mtu); 2184 break; 2185 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE: 2186 caps->pcie_reset_avoidance = (number > 0); 2187 ice_debug(hw, ICE_DBG_INIT, 2188 "%s: pcie_reset_avoidance = %d\n", prefix, 2189 caps->pcie_reset_avoidance); 2190 break; 2191 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT: 2192 caps->reset_restrict_support = (number == 1); 2193 ice_debug(hw, ICE_DBG_INIT, 2194 "%s: reset_restrict_support = %d\n", prefix, 2195 caps->reset_restrict_support); 2196 break; 2197 case ICE_AQC_CAPS_FW_LAG_SUPPORT: 2198 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG); 2199 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n", 2200 prefix, caps->roce_lag); 2201 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG); 2202 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n", 2203 prefix, caps->sriov_lag); 2204 break; 2205 case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE: 2206 caps->tx_sched_topo_comp_mode_en = (number == 1); 2207 break; 2208 default: 2209 /* Not one of the recognized common capabilities */ 2210 found = false; 2211 } 2212 2213 return found; 2214 } 2215 2216 /** 2217 * ice_recalc_port_limited_caps - Recalculate port limited capabilities 2218 * @hw: pointer to the HW structure 2219 * @caps: pointer to capabilities structure to fix 2220 * 2221 * Re-calculate the capabilities that are dependent on the number of physical 2222 * ports; i.e. some features are not supported or function differently on 2223 * devices with more than 4 ports. 2224 */ 2225 static void 2226 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps) 2227 { 2228 /* This assumes device capabilities are always scanned before function 2229 * capabilities during the initialization flow. 2230 */ 2231 if (hw->dev_caps.num_funcs > 4) { 2232 /* Max 4 TCs per port */ 2233 caps->maxtc = 4; 2234 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n", 2235 caps->maxtc); 2236 if (caps->rdma) { 2237 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n"); 2238 caps->rdma = 0; 2239 } 2240 2241 /* print message only when processing device capabilities 2242 * during initialization. 2243 */ 2244 if (caps == &hw->dev_caps.common_cap) 2245 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n"); 2246 } 2247 } 2248 2249 /** 2250 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps 2251 * @hw: pointer to the HW struct 2252 * @func_p: pointer to function capabilities structure 2253 * @cap: pointer to the capability element to parse 2254 * 2255 * Extract function capabilities for ICE_AQC_CAPS_VF. 2256 */ 2257 static void 2258 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2259 struct ice_aqc_list_caps_elem *cap) 2260 { 2261 u32 logical_id = le32_to_cpu(cap->logical_id); 2262 u32 number = le32_to_cpu(cap->number); 2263 2264 func_p->num_allocd_vfs = number; 2265 func_p->vf_base_id = logical_id; 2266 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n", 2267 func_p->num_allocd_vfs); 2268 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n", 2269 func_p->vf_base_id); 2270 } 2271 2272 /** 2273 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps 2274 * @hw: pointer to the HW struct 2275 * @func_p: pointer to function capabilities structure 2276 * @cap: pointer to the capability element to parse 2277 * 2278 * Extract function capabilities for ICE_AQC_CAPS_VSI. 2279 */ 2280 static void 2281 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2282 struct ice_aqc_list_caps_elem *cap) 2283 { 2284 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI); 2285 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n", 2286 le32_to_cpu(cap->number)); 2287 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n", 2288 func_p->guar_num_vsi); 2289 } 2290 2291 /** 2292 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps 2293 * @hw: pointer to the HW struct 2294 * @func_p: pointer to function capabilities structure 2295 * @cap: pointer to the capability element to parse 2296 * 2297 * Extract function capabilities for ICE_AQC_CAPS_1588. 2298 */ 2299 static void 2300 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2301 struct ice_aqc_list_caps_elem *cap) 2302 { 2303 struct ice_ts_func_info *info = &func_p->ts_func_info; 2304 u32 number = le32_to_cpu(cap->number); 2305 2306 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0); 2307 func_p->common_cap.ieee_1588 = info->ena; 2308 2309 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0); 2310 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0); 2311 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0); 2312 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0); 2313 2314 if (!ice_is_e825c(hw)) { 2315 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number); 2316 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0); 2317 } else { 2318 info->clk_freq = ICE_TIME_REF_FREQ_156_250; 2319 info->clk_src = ICE_CLK_SRC_TCXO; 2320 } 2321 2322 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) { 2323 info->time_ref = (enum ice_time_ref_freq)info->clk_freq; 2324 } else { 2325 /* Unknown clock frequency, so assume a (probably incorrect) 2326 * default to avoid out-of-bounds look ups of frequency 2327 * related information. 2328 */ 2329 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n", 2330 info->clk_freq); 2331 info->time_ref = ICE_TIME_REF_FREQ_25_000; 2332 } 2333 2334 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n", 2335 func_p->common_cap.ieee_1588); 2336 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n", 2337 info->src_tmr_owned); 2338 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n", 2339 info->tmr_ena); 2340 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n", 2341 info->tmr_index_owned); 2342 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n", 2343 info->tmr_index_assoc); 2344 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n", 2345 info->clk_freq); 2346 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n", 2347 info->clk_src); 2348 } 2349 2350 /** 2351 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps 2352 * @hw: pointer to the HW struct 2353 * @func_p: pointer to function capabilities structure 2354 * 2355 * Extract function capabilities for ICE_AQC_CAPS_FD. 2356 */ 2357 static void 2358 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p) 2359 { 2360 u32 reg_val, gsize, bsize; 2361 2362 reg_val = rd32(hw, GLQF_FD_SIZE); 2363 switch (hw->mac_type) { 2364 case ICE_MAC_E830: 2365 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val); 2366 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val); 2367 break; 2368 case ICE_MAC_E810: 2369 default: 2370 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val); 2371 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val); 2372 } 2373 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize); 2374 func_p->fd_fltr_best_effort = bsize; 2375 2376 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n", 2377 func_p->fd_fltr_guar); 2378 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n", 2379 func_p->fd_fltr_best_effort); 2380 } 2381 2382 /** 2383 * ice_parse_func_caps - Parse function capabilities 2384 * @hw: pointer to the HW struct 2385 * @func_p: pointer to function capabilities structure 2386 * @buf: buffer containing the function capability records 2387 * @cap_count: the number of capabilities 2388 * 2389 * Helper function to parse function (0x000A) capabilities list. For 2390 * capabilities shared between device and function, this relies on 2391 * ice_parse_common_caps. 2392 * 2393 * Loop through the list of provided capabilities and extract the relevant 2394 * data into the function capabilities structured. 2395 */ 2396 static void 2397 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2398 void *buf, u32 cap_count) 2399 { 2400 struct ice_aqc_list_caps_elem *cap_resp; 2401 u32 i; 2402 2403 cap_resp = buf; 2404 2405 memset(func_p, 0, sizeof(*func_p)); 2406 2407 for (i = 0; i < cap_count; i++) { 2408 u16 cap = le16_to_cpu(cap_resp[i].cap); 2409 bool found; 2410 2411 found = ice_parse_common_caps(hw, &func_p->common_cap, 2412 &cap_resp[i], "func caps"); 2413 2414 switch (cap) { 2415 case ICE_AQC_CAPS_VF: 2416 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]); 2417 break; 2418 case ICE_AQC_CAPS_VSI: 2419 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); 2420 break; 2421 case ICE_AQC_CAPS_1588: 2422 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]); 2423 break; 2424 case ICE_AQC_CAPS_FD: 2425 ice_parse_fdir_func_caps(hw, func_p); 2426 break; 2427 default: 2428 /* Don't list common capabilities as unknown */ 2429 if (!found) 2430 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n", 2431 i, cap); 2432 break; 2433 } 2434 } 2435 2436 ice_recalc_port_limited_caps(hw, &func_p->common_cap); 2437 } 2438 2439 /** 2440 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps 2441 * @hw: pointer to the HW struct 2442 * @dev_p: pointer to device capabilities structure 2443 * @cap: capability element to parse 2444 * 2445 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities. 2446 */ 2447 static void 2448 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2449 struct ice_aqc_list_caps_elem *cap) 2450 { 2451 u32 number = le32_to_cpu(cap->number); 2452 2453 dev_p->num_funcs = hweight32(number); 2454 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n", 2455 dev_p->num_funcs); 2456 } 2457 2458 /** 2459 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps 2460 * @hw: pointer to the HW struct 2461 * @dev_p: pointer to device capabilities structure 2462 * @cap: capability element to parse 2463 * 2464 * Parse ICE_AQC_CAPS_VF for device capabilities. 2465 */ 2466 static void 2467 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2468 struct ice_aqc_list_caps_elem *cap) 2469 { 2470 u32 number = le32_to_cpu(cap->number); 2471 2472 dev_p->num_vfs_exposed = number; 2473 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n", 2474 dev_p->num_vfs_exposed); 2475 } 2476 2477 /** 2478 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps 2479 * @hw: pointer to the HW struct 2480 * @dev_p: pointer to device capabilities structure 2481 * @cap: capability element to parse 2482 * 2483 * Parse ICE_AQC_CAPS_VSI for device capabilities. 2484 */ 2485 static void 2486 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2487 struct ice_aqc_list_caps_elem *cap) 2488 { 2489 u32 number = le32_to_cpu(cap->number); 2490 2491 dev_p->num_vsi_allocd_to_host = number; 2492 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n", 2493 dev_p->num_vsi_allocd_to_host); 2494 } 2495 2496 /** 2497 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps 2498 * @hw: pointer to the HW struct 2499 * @dev_p: pointer to device capabilities structure 2500 * @cap: capability element to parse 2501 * 2502 * Parse ICE_AQC_CAPS_1588 for device capabilities. 2503 */ 2504 static void 2505 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2506 struct ice_aqc_list_caps_elem *cap) 2507 { 2508 struct ice_ts_dev_info *info = &dev_p->ts_dev_info; 2509 u32 logical_id = le32_to_cpu(cap->logical_id); 2510 u32 phys_id = le32_to_cpu(cap->phys_id); 2511 u32 number = le32_to_cpu(cap->number); 2512 2513 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0); 2514 dev_p->common_cap.ieee_1588 = info->ena; 2515 2516 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M; 2517 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0); 2518 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0); 2519 2520 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number); 2521 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0); 2522 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0); 2523 2524 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0); 2525 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0); 2526 2527 info->ena_ports = logical_id; 2528 info->tmr_own_map = phys_id; 2529 2530 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n", 2531 dev_p->common_cap.ieee_1588); 2532 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n", 2533 info->tmr0_owner); 2534 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n", 2535 info->tmr0_owned); 2536 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n", 2537 info->tmr0_ena); 2538 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n", 2539 info->tmr1_owner); 2540 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n", 2541 info->tmr1_owned); 2542 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n", 2543 info->tmr1_ena); 2544 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n", 2545 info->ts_ll_read); 2546 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n", 2547 info->ts_ll_int_read); 2548 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n", 2549 info->ena_ports); 2550 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n", 2551 info->tmr_own_map); 2552 } 2553 2554 /** 2555 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps 2556 * @hw: pointer to the HW struct 2557 * @dev_p: pointer to device capabilities structure 2558 * @cap: capability element to parse 2559 * 2560 * Parse ICE_AQC_CAPS_FD for device capabilities. 2561 */ 2562 static void 2563 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2564 struct ice_aqc_list_caps_elem *cap) 2565 { 2566 u32 number = le32_to_cpu(cap->number); 2567 2568 dev_p->num_flow_director_fltr = number; 2569 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n", 2570 dev_p->num_flow_director_fltr); 2571 } 2572 2573 /** 2574 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap 2575 * @hw: pointer to the HW struct 2576 * @dev_p: pointer to device capabilities structure 2577 * @cap: capability element to parse 2578 * 2579 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading 2580 * enabled sensors. 2581 */ 2582 static void 2583 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2584 struct ice_aqc_list_caps_elem *cap) 2585 { 2586 dev_p->supported_sensors = le32_to_cpu(cap->number); 2587 2588 ice_debug(hw, ICE_DBG_INIT, 2589 "dev caps: supported sensors (bitmap) = 0x%x\n", 2590 dev_p->supported_sensors); 2591 } 2592 2593 /** 2594 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap 2595 * @hw: pointer to the HW struct 2596 * @dev_p: pointer to device capabilities structure 2597 * @cap: capability element to parse 2598 * 2599 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities. 2600 */ 2601 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw, 2602 struct ice_hw_dev_caps *dev_p, 2603 struct ice_aqc_list_caps_elem *cap) 2604 { 2605 dev_p->nac_topo.mode = le32_to_cpu(cap->number); 2606 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M; 2607 2608 dev_info(ice_hw_to_dev(hw), 2609 "PF is configured in %s mode with IP instance ID %d\n", 2610 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ? 2611 "primary" : "secondary", dev_p->nac_topo.id); 2612 2613 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n", 2614 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M)); 2615 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n", 2616 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M)); 2617 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n", 2618 dev_p->nac_topo.id); 2619 } 2620 2621 /** 2622 * ice_parse_dev_caps - Parse device capabilities 2623 * @hw: pointer to the HW struct 2624 * @dev_p: pointer to device capabilities structure 2625 * @buf: buffer containing the device capability records 2626 * @cap_count: the number of capabilities 2627 * 2628 * Helper device to parse device (0x000B) capabilities list. For 2629 * capabilities shared between device and function, this relies on 2630 * ice_parse_common_caps. 2631 * 2632 * Loop through the list of provided capabilities and extract the relevant 2633 * data into the device capabilities structured. 2634 */ 2635 static void 2636 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2637 void *buf, u32 cap_count) 2638 { 2639 struct ice_aqc_list_caps_elem *cap_resp; 2640 u32 i; 2641 2642 cap_resp = buf; 2643 2644 memset(dev_p, 0, sizeof(*dev_p)); 2645 2646 for (i = 0; i < cap_count; i++) { 2647 u16 cap = le16_to_cpu(cap_resp[i].cap); 2648 bool found; 2649 2650 found = ice_parse_common_caps(hw, &dev_p->common_cap, 2651 &cap_resp[i], "dev caps"); 2652 2653 switch (cap) { 2654 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2655 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]); 2656 break; 2657 case ICE_AQC_CAPS_VF: 2658 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); 2659 break; 2660 case ICE_AQC_CAPS_VSI: 2661 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); 2662 break; 2663 case ICE_AQC_CAPS_1588: 2664 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]); 2665 break; 2666 case ICE_AQC_CAPS_FD: 2667 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); 2668 break; 2669 case ICE_AQC_CAPS_SENSOR_READING: 2670 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]); 2671 break; 2672 case ICE_AQC_CAPS_NAC_TOPOLOGY: 2673 ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]); 2674 break; 2675 default: 2676 /* Don't list common capabilities as unknown */ 2677 if (!found) 2678 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n", 2679 i, cap); 2680 break; 2681 } 2682 } 2683 2684 ice_recalc_port_limited_caps(hw, &dev_p->common_cap); 2685 } 2686 2687 /** 2688 * ice_is_pf_c827 - check if pf contains c827 phy 2689 * @hw: pointer to the hw struct 2690 */ 2691 bool ice_is_pf_c827(struct ice_hw *hw) 2692 { 2693 struct ice_aqc_get_link_topo cmd = {}; 2694 u8 node_part_number; 2695 u16 node_handle; 2696 int status; 2697 2698 if (hw->mac_type != ICE_MAC_E810) 2699 return false; 2700 2701 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) 2702 return true; 2703 2704 cmd.addr.topo_params.node_type_ctx = 2705 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) | 2706 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT); 2707 cmd.addr.topo_params.index = 0; 2708 2709 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number, 2710 &node_handle); 2711 2712 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827) 2713 return false; 2714 2715 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE) 2716 return true; 2717 2718 return false; 2719 } 2720 2721 /** 2722 * ice_is_phy_rclk_in_netlist 2723 * @hw: pointer to the hw struct 2724 * 2725 * Check if the PHY Recovered Clock device is present in the netlist 2726 */ 2727 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw) 2728 { 2729 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL, 2730 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) && 2731 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL, 2732 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL)) 2733 return false; 2734 2735 return true; 2736 } 2737 2738 /** 2739 * ice_is_clock_mux_in_netlist 2740 * @hw: pointer to the hw struct 2741 * 2742 * Check if the Clock Multiplexer device is present in the netlist 2743 */ 2744 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw) 2745 { 2746 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX, 2747 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX, 2748 NULL)) 2749 return false; 2750 2751 return true; 2752 } 2753 2754 /** 2755 * ice_is_cgu_in_netlist - check for CGU presence 2756 * @hw: pointer to the hw struct 2757 * 2758 * Check if the Clock Generation Unit (CGU) device is present in the netlist. 2759 * Save the CGU part number in the hw structure for later use. 2760 * Return: 2761 * * true - cgu is present 2762 * * false - cgu is not present 2763 */ 2764 bool ice_is_cgu_in_netlist(struct ice_hw *hw) 2765 { 2766 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL, 2767 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032, 2768 NULL)) { 2769 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032; 2770 return true; 2771 } else if (!ice_find_netlist_node(hw, 2772 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL, 2773 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384, 2774 NULL)) { 2775 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384; 2776 return true; 2777 } 2778 2779 return false; 2780 } 2781 2782 /** 2783 * ice_is_gps_in_netlist 2784 * @hw: pointer to the hw struct 2785 * 2786 * Check if the GPS generic device is present in the netlist 2787 */ 2788 bool ice_is_gps_in_netlist(struct ice_hw *hw) 2789 { 2790 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS, 2791 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL)) 2792 return false; 2793 2794 return true; 2795 } 2796 2797 /** 2798 * ice_aq_list_caps - query function/device capabilities 2799 * @hw: pointer to the HW struct 2800 * @buf: a buffer to hold the capabilities 2801 * @buf_size: size of the buffer 2802 * @cap_count: if not NULL, set to the number of capabilities reported 2803 * @opc: capabilities type to discover, device or function 2804 * @cd: pointer to command details structure or NULL 2805 * 2806 * Get the function (0x000A) or device (0x000B) capabilities description from 2807 * firmware and store it in the buffer. 2808 * 2809 * If the cap_count pointer is not NULL, then it is set to the number of 2810 * capabilities firmware will report. Note that if the buffer size is too 2811 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The 2812 * cap_count will still be updated in this case. It is recommended that the 2813 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that 2814 * firmware could return) to avoid this. 2815 */ 2816 int 2817 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, 2818 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 2819 { 2820 struct ice_aqc_list_caps *cmd; 2821 struct ice_aq_desc desc; 2822 int status; 2823 2824 cmd = &desc.params.get_cap; 2825 2826 if (opc != ice_aqc_opc_list_func_caps && 2827 opc != ice_aqc_opc_list_dev_caps) 2828 return -EINVAL; 2829 2830 ice_fill_dflt_direct_cmd_desc(&desc, opc); 2831 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 2832 2833 if (cap_count) 2834 *cap_count = le32_to_cpu(cmd->count); 2835 2836 return status; 2837 } 2838 2839 /** 2840 * ice_discover_dev_caps - Read and extract device capabilities 2841 * @hw: pointer to the hardware structure 2842 * @dev_caps: pointer to device capabilities structure 2843 * 2844 * Read the device capabilities and extract them into the dev_caps structure 2845 * for later use. 2846 */ 2847 int 2848 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps) 2849 { 2850 u32 cap_count = 0; 2851 void *cbuf; 2852 int status; 2853 2854 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2855 if (!cbuf) 2856 return -ENOMEM; 2857 2858 /* Although the driver doesn't know the number of capabilities the 2859 * device will return, we can simply send a 4KB buffer, the maximum 2860 * possible size that firmware can return. 2861 */ 2862 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2863 2864 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2865 ice_aqc_opc_list_dev_caps, NULL); 2866 if (!status) 2867 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count); 2868 kfree(cbuf); 2869 2870 return status; 2871 } 2872 2873 /** 2874 * ice_discover_func_caps - Read and extract function capabilities 2875 * @hw: pointer to the hardware structure 2876 * @func_caps: pointer to function capabilities structure 2877 * 2878 * Read the function capabilities and extract them into the func_caps structure 2879 * for later use. 2880 */ 2881 static int 2882 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps) 2883 { 2884 u32 cap_count = 0; 2885 void *cbuf; 2886 int status; 2887 2888 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2889 if (!cbuf) 2890 return -ENOMEM; 2891 2892 /* Although the driver doesn't know the number of capabilities the 2893 * device will return, we can simply send a 4KB buffer, the maximum 2894 * possible size that firmware can return. 2895 */ 2896 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2897 2898 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2899 ice_aqc_opc_list_func_caps, NULL); 2900 if (!status) 2901 ice_parse_func_caps(hw, func_caps, cbuf, cap_count); 2902 kfree(cbuf); 2903 2904 return status; 2905 } 2906 2907 /** 2908 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode 2909 * @hw: pointer to the hardware structure 2910 */ 2911 void ice_set_safe_mode_caps(struct ice_hw *hw) 2912 { 2913 struct ice_hw_func_caps *func_caps = &hw->func_caps; 2914 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps; 2915 struct ice_hw_common_caps cached_caps; 2916 u32 num_funcs; 2917 2918 /* cache some func_caps values that should be restored after memset */ 2919 cached_caps = func_caps->common_cap; 2920 2921 /* unset func capabilities */ 2922 memset(func_caps, 0, sizeof(*func_caps)); 2923 2924 #define ICE_RESTORE_FUNC_CAP(name) \ 2925 func_caps->common_cap.name = cached_caps.name 2926 2927 /* restore cached values */ 2928 ICE_RESTORE_FUNC_CAP(valid_functions); 2929 ICE_RESTORE_FUNC_CAP(txq_first_id); 2930 ICE_RESTORE_FUNC_CAP(rxq_first_id); 2931 ICE_RESTORE_FUNC_CAP(msix_vector_first_id); 2932 ICE_RESTORE_FUNC_CAP(max_mtu); 2933 ICE_RESTORE_FUNC_CAP(nvm_unified_update); 2934 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm); 2935 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom); 2936 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist); 2937 2938 /* one Tx and one Rx queue in safe mode */ 2939 func_caps->common_cap.num_rxq = 1; 2940 func_caps->common_cap.num_txq = 1; 2941 2942 /* two MSIX vectors, one for traffic and one for misc causes */ 2943 func_caps->common_cap.num_msix_vectors = 2; 2944 func_caps->guar_num_vsi = 1; 2945 2946 /* cache some dev_caps values that should be restored after memset */ 2947 cached_caps = dev_caps->common_cap; 2948 num_funcs = dev_caps->num_funcs; 2949 2950 /* unset dev capabilities */ 2951 memset(dev_caps, 0, sizeof(*dev_caps)); 2952 2953 #define ICE_RESTORE_DEV_CAP(name) \ 2954 dev_caps->common_cap.name = cached_caps.name 2955 2956 /* restore cached values */ 2957 ICE_RESTORE_DEV_CAP(valid_functions); 2958 ICE_RESTORE_DEV_CAP(txq_first_id); 2959 ICE_RESTORE_DEV_CAP(rxq_first_id); 2960 ICE_RESTORE_DEV_CAP(msix_vector_first_id); 2961 ICE_RESTORE_DEV_CAP(max_mtu); 2962 ICE_RESTORE_DEV_CAP(nvm_unified_update); 2963 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm); 2964 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom); 2965 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist); 2966 dev_caps->num_funcs = num_funcs; 2967 2968 /* one Tx and one Rx queue per function in safe mode */ 2969 dev_caps->common_cap.num_rxq = num_funcs; 2970 dev_caps->common_cap.num_txq = num_funcs; 2971 2972 /* two MSIX vectors per function */ 2973 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs; 2974 } 2975 2976 /** 2977 * ice_get_caps - get info about the HW 2978 * @hw: pointer to the hardware structure 2979 */ 2980 int ice_get_caps(struct ice_hw *hw) 2981 { 2982 int status; 2983 2984 status = ice_discover_dev_caps(hw, &hw->dev_caps); 2985 if (status) 2986 return status; 2987 2988 return ice_discover_func_caps(hw, &hw->func_caps); 2989 } 2990 2991 /** 2992 * ice_aq_manage_mac_write - manage MAC address write command 2993 * @hw: pointer to the HW struct 2994 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address 2995 * @flags: flags to control write behavior 2996 * @cd: pointer to command details structure or NULL 2997 * 2998 * This function is used to write MAC address to the NVM (0x0108). 2999 */ 3000 int 3001 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, 3002 struct ice_sq_cd *cd) 3003 { 3004 struct ice_aqc_manage_mac_write *cmd; 3005 struct ice_aq_desc desc; 3006 3007 cmd = &desc.params.mac_write; 3008 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); 3009 3010 cmd->flags = flags; 3011 ether_addr_copy(cmd->mac_addr, mac_addr); 3012 3013 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3014 } 3015 3016 /** 3017 * ice_aq_clear_pxe_mode 3018 * @hw: pointer to the HW struct 3019 * 3020 * Tell the firmware that the driver is taking over from PXE (0x0110). 3021 */ 3022 static int ice_aq_clear_pxe_mode(struct ice_hw *hw) 3023 { 3024 struct ice_aq_desc desc; 3025 3026 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); 3027 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; 3028 3029 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 3030 } 3031 3032 /** 3033 * ice_clear_pxe_mode - clear pxe operations mode 3034 * @hw: pointer to the HW struct 3035 * 3036 * Make sure all PXE mode settings are cleared, including things 3037 * like descriptor fetch/write-back mode. 3038 */ 3039 void ice_clear_pxe_mode(struct ice_hw *hw) 3040 { 3041 if (ice_check_sq_alive(hw, &hw->adminq)) 3042 ice_aq_clear_pxe_mode(hw); 3043 } 3044 3045 /** 3046 * ice_aq_set_port_params - set physical port parameters. 3047 * @pi: pointer to the port info struct 3048 * @double_vlan: if set double VLAN is enabled 3049 * @cd: pointer to command details structure or NULL 3050 * 3051 * Set Physical port parameters (0x0203) 3052 */ 3053 int 3054 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan, 3055 struct ice_sq_cd *cd) 3056 3057 { 3058 struct ice_aqc_set_port_params *cmd; 3059 struct ice_hw *hw = pi->hw; 3060 struct ice_aq_desc desc; 3061 u16 cmd_flags = 0; 3062 3063 cmd = &desc.params.set_port_params; 3064 3065 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params); 3066 if (double_vlan) 3067 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA; 3068 cmd->cmd_flags = cpu_to_le16(cmd_flags); 3069 3070 cmd->local_fwd_mode = pi->local_fwd_mode | 3071 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID; 3072 3073 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3074 } 3075 3076 /** 3077 * ice_is_100m_speed_supported 3078 * @hw: pointer to the HW struct 3079 * 3080 * returns true if 100M speeds are supported by the device, 3081 * false otherwise. 3082 */ 3083 bool ice_is_100m_speed_supported(struct ice_hw *hw) 3084 { 3085 switch (hw->device_id) { 3086 case ICE_DEV_ID_E822C_SGMII: 3087 case ICE_DEV_ID_E822L_SGMII: 3088 case ICE_DEV_ID_E823L_1GBE: 3089 case ICE_DEV_ID_E823C_SGMII: 3090 return true; 3091 default: 3092 return false; 3093 } 3094 } 3095 3096 /** 3097 * ice_get_link_speed_based_on_phy_type - returns link speed 3098 * @phy_type_low: lower part of phy_type 3099 * @phy_type_high: higher part of phy_type 3100 * 3101 * This helper function will convert an entry in PHY type structure 3102 * [phy_type_low, phy_type_high] to its corresponding link speed. 3103 * Note: In the structure of [phy_type_low, phy_type_high], there should 3104 * be one bit set, as this function will convert one PHY type to its 3105 * speed. 3106 * 3107 * Return: 3108 * * PHY speed for recognized PHY type 3109 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned 3110 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned 3111 */ 3112 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) 3113 { 3114 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 3115 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 3116 3117 switch (phy_type_low) { 3118 case ICE_PHY_TYPE_LOW_100BASE_TX: 3119 case ICE_PHY_TYPE_LOW_100M_SGMII: 3120 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; 3121 break; 3122 case ICE_PHY_TYPE_LOW_1000BASE_T: 3123 case ICE_PHY_TYPE_LOW_1000BASE_SX: 3124 case ICE_PHY_TYPE_LOW_1000BASE_LX: 3125 case ICE_PHY_TYPE_LOW_1000BASE_KX: 3126 case ICE_PHY_TYPE_LOW_1G_SGMII: 3127 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; 3128 break; 3129 case ICE_PHY_TYPE_LOW_2500BASE_T: 3130 case ICE_PHY_TYPE_LOW_2500BASE_X: 3131 case ICE_PHY_TYPE_LOW_2500BASE_KX: 3132 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; 3133 break; 3134 case ICE_PHY_TYPE_LOW_5GBASE_T: 3135 case ICE_PHY_TYPE_LOW_5GBASE_KR: 3136 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; 3137 break; 3138 case ICE_PHY_TYPE_LOW_10GBASE_T: 3139 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 3140 case ICE_PHY_TYPE_LOW_10GBASE_SR: 3141 case ICE_PHY_TYPE_LOW_10GBASE_LR: 3142 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 3143 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 3144 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 3145 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; 3146 break; 3147 case ICE_PHY_TYPE_LOW_25GBASE_T: 3148 case ICE_PHY_TYPE_LOW_25GBASE_CR: 3149 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 3150 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 3151 case ICE_PHY_TYPE_LOW_25GBASE_SR: 3152 case ICE_PHY_TYPE_LOW_25GBASE_LR: 3153 case ICE_PHY_TYPE_LOW_25GBASE_KR: 3154 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 3155 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 3156 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 3157 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 3158 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; 3159 break; 3160 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 3161 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 3162 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 3163 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 3164 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 3165 case ICE_PHY_TYPE_LOW_40G_XLAUI: 3166 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; 3167 break; 3168 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 3169 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 3170 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 3171 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 3172 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 3173 case ICE_PHY_TYPE_LOW_50G_LAUI2: 3174 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 3175 case ICE_PHY_TYPE_LOW_50G_AUI2: 3176 case ICE_PHY_TYPE_LOW_50GBASE_CP: 3177 case ICE_PHY_TYPE_LOW_50GBASE_SR: 3178 case ICE_PHY_TYPE_LOW_50GBASE_FR: 3179 case ICE_PHY_TYPE_LOW_50GBASE_LR: 3180 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 3181 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 3182 case ICE_PHY_TYPE_LOW_50G_AUI1: 3183 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; 3184 break; 3185 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 3186 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 3187 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 3188 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 3189 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 3190 case ICE_PHY_TYPE_LOW_100G_CAUI4: 3191 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 3192 case ICE_PHY_TYPE_LOW_100G_AUI4: 3193 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 3194 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 3195 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 3196 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 3197 case ICE_PHY_TYPE_LOW_100GBASE_DR: 3198 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; 3199 break; 3200 default: 3201 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 3202 break; 3203 } 3204 3205 switch (phy_type_high) { 3206 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 3207 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 3208 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 3209 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 3210 case ICE_PHY_TYPE_HIGH_100G_AUI2: 3211 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; 3212 break; 3213 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4: 3214 case ICE_PHY_TYPE_HIGH_200G_SR4: 3215 case ICE_PHY_TYPE_HIGH_200G_FR4: 3216 case ICE_PHY_TYPE_HIGH_200G_LR4: 3217 case ICE_PHY_TYPE_HIGH_200G_DR4: 3218 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4: 3219 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC: 3220 case ICE_PHY_TYPE_HIGH_200G_AUI4: 3221 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB; 3222 break; 3223 default: 3224 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 3225 break; 3226 } 3227 3228 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && 3229 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 3230 return ICE_AQ_LINK_SPEED_UNKNOWN; 3231 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 3232 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) 3233 return ICE_AQ_LINK_SPEED_UNKNOWN; 3234 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 3235 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 3236 return speed_phy_type_low; 3237 else 3238 return speed_phy_type_high; 3239 } 3240 3241 /** 3242 * ice_update_phy_type 3243 * @phy_type_low: pointer to the lower part of phy_type 3244 * @phy_type_high: pointer to the higher part of phy_type 3245 * @link_speeds_bitmap: targeted link speeds bitmap 3246 * 3247 * Note: For the link_speeds_bitmap structure, you can check it at 3248 * [ice_aqc_get_link_status->link_speed]. Caller can pass in 3249 * link_speeds_bitmap include multiple speeds. 3250 * 3251 * Each entry in this [phy_type_low, phy_type_high] structure will 3252 * present a certain link speed. This helper function will turn on bits 3253 * in [phy_type_low, phy_type_high] structure based on the value of 3254 * link_speeds_bitmap input parameter. 3255 */ 3256 void 3257 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, 3258 u16 link_speeds_bitmap) 3259 { 3260 u64 pt_high; 3261 u64 pt_low; 3262 int index; 3263 u16 speed; 3264 3265 /* We first check with low part of phy_type */ 3266 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { 3267 pt_low = BIT_ULL(index); 3268 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); 3269 3270 if (link_speeds_bitmap & speed) 3271 *phy_type_low |= BIT_ULL(index); 3272 } 3273 3274 /* We then check with high part of phy_type */ 3275 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { 3276 pt_high = BIT_ULL(index); 3277 speed = ice_get_link_speed_based_on_phy_type(0, pt_high); 3278 3279 if (link_speeds_bitmap & speed) 3280 *phy_type_high |= BIT_ULL(index); 3281 } 3282 } 3283 3284 /** 3285 * ice_aq_set_phy_cfg 3286 * @hw: pointer to the HW struct 3287 * @pi: port info structure of the interested logical port 3288 * @cfg: structure with PHY configuration data to be set 3289 * @cd: pointer to command details structure or NULL 3290 * 3291 * Set the various PHY configuration parameters supported on the Port. 3292 * One or more of the Set PHY config parameters may be ignored in an MFP 3293 * mode as the PF may not have the privilege to set some of the PHY Config 3294 * parameters. This status will be indicated by the command response (0x0601). 3295 */ 3296 int 3297 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi, 3298 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) 3299 { 3300 struct ice_aq_desc desc; 3301 int status; 3302 3303 if (!cfg) 3304 return -EINVAL; 3305 3306 /* Ensure that only valid bits of cfg->caps can be turned on. */ 3307 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { 3308 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", 3309 cfg->caps); 3310 3311 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; 3312 } 3313 3314 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); 3315 desc.params.set_phy.lport_num = pi->lport; 3316 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3317 3318 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n"); 3319 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 3320 (unsigned long long)le64_to_cpu(cfg->phy_type_low)); 3321 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 3322 (unsigned long long)le64_to_cpu(cfg->phy_type_high)); 3323 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps); 3324 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", 3325 cfg->low_power_ctrl_an); 3326 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap); 3327 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value); 3328 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n", 3329 cfg->link_fec_opt); 3330 3331 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); 3332 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3333 status = 0; 3334 3335 if (!status) 3336 pi->phy.curr_user_phy_cfg = *cfg; 3337 3338 return status; 3339 } 3340 3341 /** 3342 * ice_update_link_info - update status of the HW network link 3343 * @pi: port info structure of the interested logical port 3344 */ 3345 int ice_update_link_info(struct ice_port_info *pi) 3346 { 3347 struct ice_link_status *li; 3348 int status; 3349 3350 if (!pi) 3351 return -EINVAL; 3352 3353 li = &pi->phy.link_info; 3354 3355 status = ice_aq_get_link_info(pi, true, NULL, NULL); 3356 if (status) 3357 return status; 3358 3359 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) { 3360 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 3361 3362 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3363 if (!pcaps) 3364 return -ENOMEM; 3365 3366 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 3367 pcaps, NULL); 3368 } 3369 3370 return status; 3371 } 3372 3373 /** 3374 * ice_aq_get_phy_equalization - function to read serdes equaliser 3375 * value from firmware using admin queue command. 3376 * @hw: pointer to the HW struct 3377 * @data_in: represents the serdes equalization parameter requested 3378 * @op_code: represents the serdes number and flag to represent tx or rx 3379 * @serdes_num: represents the serdes number 3380 * @output: pointer to the caller-supplied buffer to return serdes equaliser 3381 * 3382 * Return: non-zero status on error and 0 on success. 3383 */ 3384 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code, 3385 u8 serdes_num, int *output) 3386 { 3387 struct ice_aqc_dnl_call_command *cmd; 3388 struct ice_aqc_dnl_call buf = {}; 3389 struct ice_aq_desc desc; 3390 int err; 3391 3392 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in); 3393 buf.sto.txrx_equa_reqs.op_code_serdes_sel = 3394 cpu_to_le16(op_code | (serdes_num & 0xF)); 3395 cmd = &desc.params.dnl_call; 3396 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call); 3397 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF | 3398 ICE_AQ_FLAG_RD | 3399 ICE_AQ_FLAG_SI); 3400 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call)); 3401 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL); 3402 3403 err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call), 3404 NULL); 3405 *output = err ? 0 : buf.sto.txrx_equa_resp.val; 3406 3407 return err; 3408 } 3409 3410 #define FEC_REG_PORT(port) { \ 3411 FEC_CORR_LOW_REG_PORT##port, \ 3412 FEC_CORR_HIGH_REG_PORT##port, \ 3413 FEC_UNCORR_LOW_REG_PORT##port, \ 3414 FEC_UNCORR_HIGH_REG_PORT##port, \ 3415 } 3416 3417 static const u32 fec_reg[][ICE_FEC_MAX] = { 3418 FEC_REG_PORT(0), 3419 FEC_REG_PORT(1), 3420 FEC_REG_PORT(2), 3421 FEC_REG_PORT(3) 3422 }; 3423 3424 /** 3425 * ice_aq_get_fec_stats - reads fec stats from phy 3426 * @hw: pointer to the HW struct 3427 * @pcs_quad: represents pcsquad of user input serdes 3428 * @pcs_port: represents the pcs port number part of above pcs quad 3429 * @fec_type: represents FEC stats type 3430 * @output: pointer to the caller-supplied buffer to return requested fec stats 3431 * 3432 * Return: non-zero status on error and 0 on success. 3433 */ 3434 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port, 3435 enum ice_fec_stats_types fec_type, u32 *output) 3436 { 3437 u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI); 3438 struct ice_sbq_msg_input msg = {}; 3439 u32 receiver_id, reg_offset; 3440 int err; 3441 3442 if (pcs_port > 3) 3443 return -EINVAL; 3444 3445 reg_offset = fec_reg[pcs_port][fec_type]; 3446 3447 if (pcs_quad == 0) 3448 receiver_id = FEC_RECEIVER_ID_PCS0; 3449 else if (pcs_quad == 1) 3450 receiver_id = FEC_RECEIVER_ID_PCS1; 3451 else 3452 return -EINVAL; 3453 3454 msg.msg_addr_low = lower_16_bits(reg_offset); 3455 msg.msg_addr_high = receiver_id; 3456 msg.opcode = ice_sbq_msg_rd; 3457 msg.dest_dev = rmn_0; 3458 3459 err = ice_sbq_rw_reg(hw, &msg, flag); 3460 if (err) 3461 return err; 3462 3463 *output = msg.data; 3464 return 0; 3465 } 3466 3467 /** 3468 * ice_cache_phy_user_req 3469 * @pi: port information structure 3470 * @cache_data: PHY logging data 3471 * @cache_mode: PHY logging mode 3472 * 3473 * Log the user request on (FC, FEC, SPEED) for later use. 3474 */ 3475 static void 3476 ice_cache_phy_user_req(struct ice_port_info *pi, 3477 struct ice_phy_cache_mode_data cache_data, 3478 enum ice_phy_cache_mode cache_mode) 3479 { 3480 if (!pi) 3481 return; 3482 3483 switch (cache_mode) { 3484 case ICE_FC_MODE: 3485 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req; 3486 break; 3487 case ICE_SPEED_MODE: 3488 pi->phy.curr_user_speed_req = 3489 cache_data.data.curr_user_speed_req; 3490 break; 3491 case ICE_FEC_MODE: 3492 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req; 3493 break; 3494 default: 3495 break; 3496 } 3497 } 3498 3499 /** 3500 * ice_caps_to_fc_mode 3501 * @caps: PHY capabilities 3502 * 3503 * Convert PHY FC capabilities to ice FC mode 3504 */ 3505 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps) 3506 { 3507 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE && 3508 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3509 return ICE_FC_FULL; 3510 3511 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3512 return ICE_FC_TX_PAUSE; 3513 3514 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3515 return ICE_FC_RX_PAUSE; 3516 3517 return ICE_FC_NONE; 3518 } 3519 3520 /** 3521 * ice_caps_to_fec_mode 3522 * @caps: PHY capabilities 3523 * @fec_options: Link FEC options 3524 * 3525 * Convert PHY FEC capabilities to ice FEC mode 3526 */ 3527 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options) 3528 { 3529 if (caps & ICE_AQC_PHY_EN_AUTO_FEC) 3530 return ICE_FEC_AUTO; 3531 3532 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3533 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3534 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN | 3535 ICE_AQC_PHY_FEC_25G_KR_REQ)) 3536 return ICE_FEC_BASER; 3537 3538 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3539 ICE_AQC_PHY_FEC_25G_RS_544_REQ | 3540 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)) 3541 return ICE_FEC_RS; 3542 3543 return ICE_FEC_NONE; 3544 } 3545 3546 /** 3547 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode 3548 * @pi: port information structure 3549 * @cfg: PHY configuration data to set FC mode 3550 * @req_mode: FC mode to configure 3551 */ 3552 int 3553 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3554 enum ice_fc_mode req_mode) 3555 { 3556 struct ice_phy_cache_mode_data cache_data; 3557 u8 pause_mask = 0x0; 3558 3559 if (!pi || !cfg) 3560 return -EINVAL; 3561 3562 switch (req_mode) { 3563 case ICE_FC_FULL: 3564 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3565 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3566 break; 3567 case ICE_FC_RX_PAUSE: 3568 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3569 break; 3570 case ICE_FC_TX_PAUSE: 3571 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3572 break; 3573 default: 3574 break; 3575 } 3576 3577 /* clear the old pause settings */ 3578 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | 3579 ICE_AQC_PHY_EN_RX_LINK_PAUSE); 3580 3581 /* set the new capabilities */ 3582 cfg->caps |= pause_mask; 3583 3584 /* Cache user FC request */ 3585 cache_data.data.curr_user_fc_req = req_mode; 3586 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE); 3587 3588 return 0; 3589 } 3590 3591 /** 3592 * ice_set_fc 3593 * @pi: port information structure 3594 * @aq_failures: pointer to status code, specific to ice_set_fc routine 3595 * @ena_auto_link_update: enable automatic link update 3596 * 3597 * Set the requested flow control mode. 3598 */ 3599 int 3600 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) 3601 { 3602 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 3603 struct ice_aqc_set_phy_cfg_data cfg = { 0 }; 3604 struct ice_hw *hw; 3605 int status; 3606 3607 if (!pi || !aq_failures) 3608 return -EINVAL; 3609 3610 *aq_failures = 0; 3611 hw = pi->hw; 3612 3613 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3614 if (!pcaps) 3615 return -ENOMEM; 3616 3617 /* Get the current PHY config */ 3618 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, 3619 pcaps, NULL); 3620 if (status) { 3621 *aq_failures = ICE_SET_FC_AQ_FAIL_GET; 3622 goto out; 3623 } 3624 3625 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg); 3626 3627 /* Configure the set PHY data */ 3628 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode); 3629 if (status) 3630 goto out; 3631 3632 /* If the capabilities have changed, then set the new config */ 3633 if (cfg.caps != pcaps->caps) { 3634 int retry_count, retry_max = 10; 3635 3636 /* Auto restart link so settings take effect */ 3637 if (ena_auto_link_update) 3638 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3639 3640 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL); 3641 if (status) { 3642 *aq_failures = ICE_SET_FC_AQ_FAIL_SET; 3643 goto out; 3644 } 3645 3646 /* Update the link info 3647 * It sometimes takes a really long time for link to 3648 * come back from the atomic reset. Thus, we wait a 3649 * little bit. 3650 */ 3651 for (retry_count = 0; retry_count < retry_max; retry_count++) { 3652 status = ice_update_link_info(pi); 3653 3654 if (!status) 3655 break; 3656 3657 mdelay(100); 3658 } 3659 3660 if (status) 3661 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; 3662 } 3663 3664 out: 3665 return status; 3666 } 3667 3668 /** 3669 * ice_phy_caps_equals_cfg 3670 * @phy_caps: PHY capabilities 3671 * @phy_cfg: PHY configuration 3672 * 3673 * Helper function to determine if PHY capabilities matches PHY 3674 * configuration 3675 */ 3676 bool 3677 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps, 3678 struct ice_aqc_set_phy_cfg_data *phy_cfg) 3679 { 3680 u8 caps_mask, cfg_mask; 3681 3682 if (!phy_caps || !phy_cfg) 3683 return false; 3684 3685 /* These bits are not common between capabilities and configuration. 3686 * Do not use them to determine equality. 3687 */ 3688 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE | 3689 ICE_AQC_GET_PHY_EN_MOD_QUAL); 3690 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3691 3692 if (phy_caps->phy_type_low != phy_cfg->phy_type_low || 3693 phy_caps->phy_type_high != phy_cfg->phy_type_high || 3694 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) || 3695 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an || 3696 phy_caps->eee_cap != phy_cfg->eee_cap || 3697 phy_caps->eeer_value != phy_cfg->eeer_value || 3698 phy_caps->link_fec_options != phy_cfg->link_fec_opt) 3699 return false; 3700 3701 return true; 3702 } 3703 3704 /** 3705 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 3706 * @pi: port information structure 3707 * @caps: PHY ability structure to copy date from 3708 * @cfg: PHY configuration structure to copy data to 3709 * 3710 * Helper function to copy AQC PHY get ability data to PHY set configuration 3711 * data structure 3712 */ 3713 void 3714 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi, 3715 struct ice_aqc_get_phy_caps_data *caps, 3716 struct ice_aqc_set_phy_cfg_data *cfg) 3717 { 3718 if (!pi || !caps || !cfg) 3719 return; 3720 3721 memset(cfg, 0, sizeof(*cfg)); 3722 cfg->phy_type_low = caps->phy_type_low; 3723 cfg->phy_type_high = caps->phy_type_high; 3724 cfg->caps = caps->caps; 3725 cfg->low_power_ctrl_an = caps->low_power_ctrl_an; 3726 cfg->eee_cap = caps->eee_cap; 3727 cfg->eeer_value = caps->eeer_value; 3728 cfg->link_fec_opt = caps->link_fec_options; 3729 cfg->module_compliance_enforcement = 3730 caps->module_compliance_enforcement; 3731 } 3732 3733 /** 3734 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode 3735 * @pi: port information structure 3736 * @cfg: PHY configuration data to set FEC mode 3737 * @fec: FEC mode to configure 3738 */ 3739 int 3740 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3741 enum ice_fec_mode fec) 3742 { 3743 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 3744 struct ice_hw *hw; 3745 int status; 3746 3747 if (!pi || !cfg) 3748 return -EINVAL; 3749 3750 hw = pi->hw; 3751 3752 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3753 if (!pcaps) 3754 return -ENOMEM; 3755 3756 status = ice_aq_get_phy_caps(pi, false, 3757 (ice_fw_supports_report_dflt_cfg(hw) ? 3758 ICE_AQC_REPORT_DFLT_CFG : 3759 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL); 3760 if (status) 3761 goto out; 3762 3763 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 3764 cfg->link_fec_opt = pcaps->link_fec_options; 3765 3766 switch (fec) { 3767 case ICE_FEC_BASER: 3768 /* Clear RS bits, and AND BASE-R ability 3769 * bits and OR request bits. 3770 */ 3771 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3772 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN; 3773 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3774 ICE_AQC_PHY_FEC_25G_KR_REQ; 3775 break; 3776 case ICE_FEC_RS: 3777 /* Clear BASE-R bits, and AND RS ability 3778 * bits and OR request bits. 3779 */ 3780 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN; 3781 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3782 ICE_AQC_PHY_FEC_25G_RS_544_REQ; 3783 break; 3784 case ICE_FEC_NONE: 3785 /* Clear all FEC option bits. */ 3786 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK; 3787 break; 3788 case ICE_FEC_AUTO: 3789 /* AND auto FEC bit, and all caps bits. */ 3790 cfg->caps &= ICE_AQC_PHY_CAPS_MASK; 3791 cfg->link_fec_opt |= pcaps->link_fec_options; 3792 break; 3793 default: 3794 status = -EINVAL; 3795 break; 3796 } 3797 3798 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) && 3799 !ice_fw_supports_report_dflt_cfg(hw)) { 3800 struct ice_link_default_override_tlv tlv = { 0 }; 3801 3802 status = ice_get_link_default_override(&tlv, pi); 3803 if (status) 3804 goto out; 3805 3806 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) && 3807 (tlv.options & ICE_LINK_OVERRIDE_EN)) 3808 cfg->link_fec_opt = tlv.fec_options; 3809 } 3810 3811 out: 3812 return status; 3813 } 3814 3815 /** 3816 * ice_get_link_status - get status of the HW network link 3817 * @pi: port information structure 3818 * @link_up: pointer to bool (true/false = linkup/linkdown) 3819 * 3820 * Variable link_up is true if link is up, false if link is down. 3821 * The variable link_up is invalid if status is non zero. As a 3822 * result of this call, link status reporting becomes enabled 3823 */ 3824 int ice_get_link_status(struct ice_port_info *pi, bool *link_up) 3825 { 3826 struct ice_phy_info *phy_info; 3827 int status = 0; 3828 3829 if (!pi || !link_up) 3830 return -EINVAL; 3831 3832 phy_info = &pi->phy; 3833 3834 if (phy_info->get_link_info) { 3835 status = ice_update_link_info(pi); 3836 3837 if (status) 3838 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n", 3839 status); 3840 } 3841 3842 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; 3843 3844 return status; 3845 } 3846 3847 /** 3848 * ice_aq_set_link_restart_an 3849 * @pi: pointer to the port information structure 3850 * @ena_link: if true: enable link, if false: disable link 3851 * @cd: pointer to command details structure or NULL 3852 * 3853 * Sets up the link and restarts the Auto-Negotiation over the link. 3854 */ 3855 int 3856 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, 3857 struct ice_sq_cd *cd) 3858 { 3859 struct ice_aqc_restart_an *cmd; 3860 struct ice_aq_desc desc; 3861 3862 cmd = &desc.params.restart_an; 3863 3864 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); 3865 3866 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; 3867 cmd->lport_num = pi->lport; 3868 if (ena_link) 3869 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; 3870 else 3871 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; 3872 3873 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 3874 } 3875 3876 /** 3877 * ice_aq_set_event_mask 3878 * @hw: pointer to the HW struct 3879 * @port_num: port number of the physical function 3880 * @mask: event mask to be set 3881 * @cd: pointer to command details structure or NULL 3882 * 3883 * Set event mask (0x0613) 3884 */ 3885 int 3886 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, 3887 struct ice_sq_cd *cd) 3888 { 3889 struct ice_aqc_set_event_mask *cmd; 3890 struct ice_aq_desc desc; 3891 3892 cmd = &desc.params.set_event_mask; 3893 3894 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); 3895 3896 cmd->lport_num = port_num; 3897 3898 cmd->event_mask = cpu_to_le16(mask); 3899 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3900 } 3901 3902 /** 3903 * ice_aq_set_mac_loopback 3904 * @hw: pointer to the HW struct 3905 * @ena_lpbk: Enable or Disable loopback 3906 * @cd: pointer to command details structure or NULL 3907 * 3908 * Enable/disable loopback on a given port 3909 */ 3910 int 3911 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd) 3912 { 3913 struct ice_aqc_set_mac_lb *cmd; 3914 struct ice_aq_desc desc; 3915 3916 cmd = &desc.params.set_mac_lb; 3917 3918 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb); 3919 if (ena_lpbk) 3920 cmd->lb_mode = ICE_AQ_MAC_LB_EN; 3921 3922 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3923 } 3924 3925 /** 3926 * ice_aq_set_port_id_led 3927 * @pi: pointer to the port information 3928 * @is_orig_mode: is this LED set to original mode (by the net-list) 3929 * @cd: pointer to command details structure or NULL 3930 * 3931 * Set LED value for the given port (0x06e9) 3932 */ 3933 int 3934 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, 3935 struct ice_sq_cd *cd) 3936 { 3937 struct ice_aqc_set_port_id_led *cmd; 3938 struct ice_hw *hw = pi->hw; 3939 struct ice_aq_desc desc; 3940 3941 cmd = &desc.params.set_port_id_led; 3942 3943 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); 3944 3945 if (is_orig_mode) 3946 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; 3947 else 3948 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; 3949 3950 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3951 } 3952 3953 /** 3954 * ice_aq_get_port_options 3955 * @hw: pointer to the HW struct 3956 * @options: buffer for the resultant port options 3957 * @option_count: input - size of the buffer in port options structures, 3958 * output - number of returned port options 3959 * @lport: logical port to call the command with (optional) 3960 * @lport_valid: when false, FW uses port owned by the PF instead of lport, 3961 * when PF owns more than 1 port it must be true 3962 * @active_option_idx: index of active port option in returned buffer 3963 * @active_option_valid: active option in returned buffer is valid 3964 * @pending_option_idx: index of pending port option in returned buffer 3965 * @pending_option_valid: pending option in returned buffer is valid 3966 * 3967 * Calls Get Port Options AQC (0x06ea) and verifies result. 3968 */ 3969 int 3970 ice_aq_get_port_options(struct ice_hw *hw, 3971 struct ice_aqc_get_port_options_elem *options, 3972 u8 *option_count, u8 lport, bool lport_valid, 3973 u8 *active_option_idx, bool *active_option_valid, 3974 u8 *pending_option_idx, bool *pending_option_valid) 3975 { 3976 struct ice_aqc_get_port_options *cmd; 3977 struct ice_aq_desc desc; 3978 int status; 3979 u8 i; 3980 3981 /* options buffer shall be able to hold max returned options */ 3982 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M) 3983 return -EINVAL; 3984 3985 cmd = &desc.params.get_port_options; 3986 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options); 3987 3988 if (lport_valid) 3989 cmd->lport_num = lport; 3990 cmd->lport_num_valid = lport_valid; 3991 3992 status = ice_aq_send_cmd(hw, &desc, options, 3993 *option_count * sizeof(*options), NULL); 3994 if (status) 3995 return status; 3996 3997 /* verify direct FW response & set output parameters */ 3998 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M, 3999 cmd->port_options_count); 4000 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count); 4001 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID, 4002 cmd->port_options); 4003 if (*active_option_valid) { 4004 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M, 4005 cmd->port_options); 4006 if (*active_option_idx > (*option_count - 1)) 4007 return -EIO; 4008 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n", 4009 *active_option_idx); 4010 } 4011 4012 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID, 4013 cmd->pending_port_option_status); 4014 if (*pending_option_valid) { 4015 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M, 4016 cmd->pending_port_option_status); 4017 if (*pending_option_idx > (*option_count - 1)) 4018 return -EIO; 4019 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n", 4020 *pending_option_idx); 4021 } 4022 4023 /* mask output options fields */ 4024 for (i = 0; i < *option_count; i++) { 4025 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M, 4026 options[i].pmd); 4027 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M, 4028 options[i].max_lane_speed); 4029 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n", 4030 options[i].pmd, options[i].max_lane_speed); 4031 } 4032 4033 return 0; 4034 } 4035 4036 /** 4037 * ice_aq_set_port_option 4038 * @hw: pointer to the HW struct 4039 * @lport: logical port to call the command with 4040 * @lport_valid: when false, FW uses port owned by the PF instead of lport, 4041 * when PF owns more than 1 port it must be true 4042 * @new_option: new port option to be written 4043 * 4044 * Calls Set Port Options AQC (0x06eb). 4045 */ 4046 int 4047 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid, 4048 u8 new_option) 4049 { 4050 struct ice_aqc_set_port_option *cmd; 4051 struct ice_aq_desc desc; 4052 4053 if (new_option > ICE_AQC_PORT_OPT_COUNT_M) 4054 return -EINVAL; 4055 4056 cmd = &desc.params.set_port_option; 4057 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option); 4058 4059 if (lport_valid) 4060 cmd->lport_num = lport; 4061 4062 cmd->lport_num_valid = lport_valid; 4063 cmd->selected_port_option = new_option; 4064 4065 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 4066 } 4067 4068 /** 4069 * ice_aq_sff_eeprom 4070 * @hw: pointer to the HW struct 4071 * @lport: bits [7:0] = logical port, bit [8] = logical port valid 4072 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default) 4073 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding. 4074 * @page: QSFP page 4075 * @set_page: set or ignore the page 4076 * @data: pointer to data buffer to be read/written to the I2C device. 4077 * @length: 1-16 for read, 1 for write. 4078 * @write: 0 read, 1 for write. 4079 * @cd: pointer to command details structure or NULL 4080 * 4081 * Read/Write SFF EEPROM (0x06EE) 4082 */ 4083 int 4084 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr, 4085 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length, 4086 bool write, struct ice_sq_cd *cd) 4087 { 4088 struct ice_aqc_sff_eeprom *cmd; 4089 struct ice_aq_desc desc; 4090 u16 i2c_bus_addr; 4091 int status; 4092 4093 if (!data || (mem_addr & 0xff00)) 4094 return -EINVAL; 4095 4096 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom); 4097 cmd = &desc.params.read_write_sff_param; 4098 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD); 4099 cmd->lport_num = (u8)(lport & 0xff); 4100 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01); 4101 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) | 4102 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page); 4103 if (write) 4104 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE; 4105 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr); 4106 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff); 4107 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M); 4108 4109 status = ice_aq_send_cmd(hw, &desc, data, length, cd); 4110 return status; 4111 } 4112 4113 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type) 4114 { 4115 switch (type) { 4116 case ICE_LUT_VSI: 4117 return ICE_LUT_VSI_SIZE; 4118 case ICE_LUT_GLOBAL: 4119 return ICE_LUT_GLOBAL_SIZE; 4120 case ICE_LUT_PF: 4121 return ICE_LUT_PF_SIZE; 4122 } 4123 WARN_ONCE(1, "incorrect type passed"); 4124 return ICE_LUT_VSI_SIZE; 4125 } 4126 4127 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size) 4128 { 4129 switch (size) { 4130 case ICE_LUT_VSI_SIZE: 4131 return ICE_AQC_LUT_SIZE_SMALL; 4132 case ICE_LUT_GLOBAL_SIZE: 4133 return ICE_AQC_LUT_SIZE_512; 4134 case ICE_LUT_PF_SIZE: 4135 return ICE_AQC_LUT_SIZE_2K; 4136 } 4137 WARN_ONCE(1, "incorrect size passed"); 4138 return 0; 4139 } 4140 4141 /** 4142 * __ice_aq_get_set_rss_lut 4143 * @hw: pointer to the hardware structure 4144 * @params: RSS LUT parameters 4145 * @set: set true to set the table, false to get the table 4146 * 4147 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table 4148 */ 4149 static int 4150 __ice_aq_get_set_rss_lut(struct ice_hw *hw, 4151 struct ice_aq_get_set_rss_lut_params *params, bool set) 4152 { 4153 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0; 4154 enum ice_lut_type lut_type = params->lut_type; 4155 struct ice_aqc_get_set_rss_lut *desc_params; 4156 enum ice_aqc_lut_flags flags; 4157 enum ice_lut_size lut_size; 4158 struct ice_aq_desc desc; 4159 u8 *lut = params->lut; 4160 4161 4162 if (!lut || !ice_is_vsi_valid(hw, vsi_handle)) 4163 return -EINVAL; 4164 4165 lut_size = ice_lut_type_to_size(lut_type); 4166 if (lut_size > params->lut_size) 4167 return -EINVAL; 4168 else if (set && lut_size != params->lut_size) 4169 return -EINVAL; 4170 4171 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut; 4172 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 4173 if (set) 4174 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4175 4176 desc_params = &desc.params.get_set_rss_lut; 4177 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4178 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID); 4179 4180 if (lut_type == ICE_LUT_GLOBAL) 4181 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX, 4182 params->global_lut_id); 4183 4184 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size); 4185 desc_params->flags = cpu_to_le16(flags); 4186 4187 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); 4188 } 4189 4190 /** 4191 * ice_aq_get_rss_lut 4192 * @hw: pointer to the hardware structure 4193 * @get_params: RSS LUT parameters used to specify which RSS LUT to get 4194 * 4195 * get the RSS lookup table, PF or VSI type 4196 */ 4197 int 4198 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params) 4199 { 4200 return __ice_aq_get_set_rss_lut(hw, get_params, false); 4201 } 4202 4203 /** 4204 * ice_aq_set_rss_lut 4205 * @hw: pointer to the hardware structure 4206 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT 4207 * 4208 * set the RSS lookup table, PF or VSI type 4209 */ 4210 int 4211 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params) 4212 { 4213 return __ice_aq_get_set_rss_lut(hw, set_params, true); 4214 } 4215 4216 /** 4217 * __ice_aq_get_set_rss_key 4218 * @hw: pointer to the HW struct 4219 * @vsi_id: VSI FW index 4220 * @key: pointer to key info struct 4221 * @set: set true to set the key, false to get the key 4222 * 4223 * get (0x0B04) or set (0x0B02) the RSS key per VSI 4224 */ 4225 static int 4226 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, 4227 struct ice_aqc_get_set_rss_keys *key, bool set) 4228 { 4229 struct ice_aqc_get_set_rss_key *desc_params; 4230 u16 key_size = sizeof(*key); 4231 struct ice_aq_desc desc; 4232 4233 if (set) { 4234 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); 4235 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4236 } else { 4237 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); 4238 } 4239 4240 desc_params = &desc.params.get_set_rss_key; 4241 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID); 4242 4243 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); 4244 } 4245 4246 /** 4247 * ice_aq_get_rss_key 4248 * @hw: pointer to the HW struct 4249 * @vsi_handle: software VSI handle 4250 * @key: pointer to key info struct 4251 * 4252 * get the RSS key per VSI 4253 */ 4254 int 4255 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, 4256 struct ice_aqc_get_set_rss_keys *key) 4257 { 4258 if (!ice_is_vsi_valid(hw, vsi_handle) || !key) 4259 return -EINVAL; 4260 4261 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 4262 key, false); 4263 } 4264 4265 /** 4266 * ice_aq_set_rss_key 4267 * @hw: pointer to the HW struct 4268 * @vsi_handle: software VSI handle 4269 * @keys: pointer to key info struct 4270 * 4271 * set the RSS key per VSI 4272 */ 4273 int 4274 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, 4275 struct ice_aqc_get_set_rss_keys *keys) 4276 { 4277 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) 4278 return -EINVAL; 4279 4280 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 4281 keys, true); 4282 } 4283 4284 /** 4285 * ice_aq_add_lan_txq 4286 * @hw: pointer to the hardware structure 4287 * @num_qgrps: Number of added queue groups 4288 * @qg_list: list of queue groups to be added 4289 * @buf_size: size of buffer for indirect command 4290 * @cd: pointer to command details structure or NULL 4291 * 4292 * Add Tx LAN queue (0x0C30) 4293 * 4294 * NOTE: 4295 * Prior to calling add Tx LAN queue: 4296 * Initialize the following as part of the Tx queue context: 4297 * Completion queue ID if the queue uses Completion queue, Quanta profile, 4298 * Cache profile and Packet shaper profile. 4299 * 4300 * After add Tx LAN queue AQ command is completed: 4301 * Interrupts should be associated with specific queues, 4302 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue 4303 * flow. 4304 */ 4305 static int 4306 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, 4307 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, 4308 struct ice_sq_cd *cd) 4309 { 4310 struct ice_aqc_add_tx_qgrp *list; 4311 struct ice_aqc_add_txqs *cmd; 4312 struct ice_aq_desc desc; 4313 u16 i, sum_size = 0; 4314 4315 cmd = &desc.params.add_txqs; 4316 4317 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); 4318 4319 if (!qg_list) 4320 return -EINVAL; 4321 4322 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 4323 return -EINVAL; 4324 4325 for (i = 0, list = qg_list; i < num_qgrps; i++) { 4326 sum_size += struct_size(list, txqs, list->num_txqs); 4327 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs + 4328 list->num_txqs); 4329 } 4330 4331 if (buf_size != sum_size) 4332 return -EINVAL; 4333 4334 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4335 4336 cmd->num_qgrps = num_qgrps; 4337 4338 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 4339 } 4340 4341 /** 4342 * ice_aq_dis_lan_txq 4343 * @hw: pointer to the hardware structure 4344 * @num_qgrps: number of groups in the list 4345 * @qg_list: the list of groups to disable 4346 * @buf_size: the total size of the qg_list buffer in bytes 4347 * @rst_src: if called due to reset, specifies the reset source 4348 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4349 * @cd: pointer to command details structure or NULL 4350 * 4351 * Disable LAN Tx queue (0x0C31) 4352 */ 4353 static int 4354 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, 4355 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, 4356 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4357 struct ice_sq_cd *cd) 4358 { 4359 struct ice_aqc_dis_txq_item *item; 4360 struct ice_aqc_dis_txqs *cmd; 4361 struct ice_aq_desc desc; 4362 u16 vmvf_and_timeout; 4363 u16 i, sz = 0; 4364 int status; 4365 4366 cmd = &desc.params.dis_txqs; 4367 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); 4368 4369 /* qg_list can be NULL only in VM/VF reset flow */ 4370 if (!qg_list && !rst_src) 4371 return -EINVAL; 4372 4373 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 4374 return -EINVAL; 4375 4376 cmd->num_entries = num_qgrps; 4377 4378 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5); 4379 4380 switch (rst_src) { 4381 case ICE_VM_RESET: 4382 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; 4383 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M; 4384 break; 4385 case ICE_VF_RESET: 4386 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; 4387 /* In this case, FW expects vmvf_num to be absolute VF ID */ 4388 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) & 4389 ICE_AQC_Q_DIS_VMVF_NUM_M; 4390 break; 4391 case ICE_NO_RESET: 4392 default: 4393 break; 4394 } 4395 4396 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout); 4397 4398 /* flush pipe on time out */ 4399 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; 4400 /* If no queue group info, we are in a reset flow. Issue the AQ */ 4401 if (!qg_list) 4402 goto do_aq; 4403 4404 /* set RD bit to indicate that command buffer is provided by the driver 4405 * and it needs to be read by the firmware 4406 */ 4407 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4408 4409 for (i = 0, item = qg_list; i < num_qgrps; i++) { 4410 u16 item_size = struct_size(item, q_id, item->num_qs); 4411 4412 /* If the num of queues is even, add 2 bytes of padding */ 4413 if ((item->num_qs % 2) == 0) 4414 item_size += 2; 4415 4416 sz += item_size; 4417 4418 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size); 4419 } 4420 4421 if (buf_size != sz) 4422 return -EINVAL; 4423 4424 do_aq: 4425 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 4426 if (status) { 4427 if (!qg_list) 4428 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", 4429 vmvf_num, hw->adminq.sq_last_status); 4430 else 4431 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n", 4432 le16_to_cpu(qg_list[0].q_id[0]), 4433 hw->adminq.sq_last_status); 4434 } 4435 return status; 4436 } 4437 4438 /** 4439 * ice_aq_cfg_lan_txq 4440 * @hw: pointer to the hardware structure 4441 * @buf: buffer for command 4442 * @buf_size: size of buffer in bytes 4443 * @num_qs: number of queues being configured 4444 * @oldport: origination lport 4445 * @newport: destination lport 4446 * @cd: pointer to command details structure or NULL 4447 * 4448 * Move/Configure LAN Tx queue (0x0C32) 4449 * 4450 * There is a better AQ command to use for moving nodes, so only coding 4451 * this one for configuring the node. 4452 */ 4453 int 4454 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf, 4455 u16 buf_size, u16 num_qs, u8 oldport, u8 newport, 4456 struct ice_sq_cd *cd) 4457 { 4458 struct ice_aqc_cfg_txqs *cmd; 4459 struct ice_aq_desc desc; 4460 int status; 4461 4462 cmd = &desc.params.cfg_txqs; 4463 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs); 4464 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4465 4466 if (!buf) 4467 return -EINVAL; 4468 4469 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG; 4470 cmd->num_qs = num_qs; 4471 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M); 4472 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport); 4473 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5); 4474 cmd->blocked_cgds = 0; 4475 4476 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 4477 if (status) 4478 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n", 4479 hw->adminq.sq_last_status); 4480 return status; 4481 } 4482 4483 /** 4484 * ice_aq_add_rdma_qsets 4485 * @hw: pointer to the hardware structure 4486 * @num_qset_grps: Number of RDMA Qset groups 4487 * @qset_list: list of Qset groups to be added 4488 * @buf_size: size of buffer for indirect command 4489 * @cd: pointer to command details structure or NULL 4490 * 4491 * Add Tx RDMA Qsets (0x0C33) 4492 */ 4493 static int 4494 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps, 4495 struct ice_aqc_add_rdma_qset_data *qset_list, 4496 u16 buf_size, struct ice_sq_cd *cd) 4497 { 4498 struct ice_aqc_add_rdma_qset_data *list; 4499 struct ice_aqc_add_rdma_qset *cmd; 4500 struct ice_aq_desc desc; 4501 u16 i, sum_size = 0; 4502 4503 cmd = &desc.params.add_rdma_qset; 4504 4505 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset); 4506 4507 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS) 4508 return -EINVAL; 4509 4510 for (i = 0, list = qset_list; i < num_qset_grps; i++) { 4511 u16 num_qsets = le16_to_cpu(list->num_qsets); 4512 4513 sum_size += struct_size(list, rdma_qsets, num_qsets); 4514 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets + 4515 num_qsets); 4516 } 4517 4518 if (buf_size != sum_size) 4519 return -EINVAL; 4520 4521 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4522 4523 cmd->num_qset_grps = num_qset_grps; 4524 4525 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd); 4526 } 4527 4528 /* End of FW Admin Queue command wrappers */ 4529 4530 /** 4531 * ice_pack_ctx_byte - write a byte to a packed context structure 4532 * @src_ctx: unpacked source context structure 4533 * @dest_ctx: packed destination context data 4534 * @ce_info: context element description 4535 */ 4536 static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx, 4537 const struct ice_ctx_ele *ce_info) 4538 { 4539 u8 src_byte, dest_byte, mask; 4540 u8 *from, *dest; 4541 u16 shift_width; 4542 4543 /* copy from the next struct field */ 4544 from = src_ctx + ce_info->offset; 4545 4546 /* prepare the bits and mask */ 4547 shift_width = ce_info->lsb % 8; 4548 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width); 4549 4550 src_byte = *from; 4551 src_byte <<= shift_width; 4552 src_byte &= mask; 4553 4554 /* get the current bits from the target bit string */ 4555 dest = dest_ctx + (ce_info->lsb / 8); 4556 4557 memcpy(&dest_byte, dest, sizeof(dest_byte)); 4558 4559 dest_byte &= ~mask; /* get the bits not changing */ 4560 dest_byte |= src_byte; /* add in the new bits */ 4561 4562 /* put it all back */ 4563 memcpy(dest, &dest_byte, sizeof(dest_byte)); 4564 } 4565 4566 /** 4567 * ice_pack_ctx_word - write a word to a packed context structure 4568 * @src_ctx: unpacked source context structure 4569 * @dest_ctx: packed destination context data 4570 * @ce_info: context element description 4571 */ 4572 static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx, 4573 const struct ice_ctx_ele *ce_info) 4574 { 4575 u16 src_word, mask; 4576 __le16 dest_word; 4577 u8 *from, *dest; 4578 u16 shift_width; 4579 4580 /* copy from the next struct field */ 4581 from = src_ctx + ce_info->offset; 4582 4583 /* prepare the bits and mask */ 4584 shift_width = ce_info->lsb % 8; 4585 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width); 4586 4587 /* don't swizzle the bits until after the mask because the mask bits 4588 * will be in a different bit position on big endian machines 4589 */ 4590 src_word = *(u16 *)from; 4591 src_word <<= shift_width; 4592 src_word &= mask; 4593 4594 /* get the current bits from the target bit string */ 4595 dest = dest_ctx + (ce_info->lsb / 8); 4596 4597 memcpy(&dest_word, dest, sizeof(dest_word)); 4598 4599 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ 4600 dest_word |= cpu_to_le16(src_word); /* add in the new bits */ 4601 4602 /* put it all back */ 4603 memcpy(dest, &dest_word, sizeof(dest_word)); 4604 } 4605 4606 /** 4607 * ice_pack_ctx_dword - write a dword to a packed context structure 4608 * @src_ctx: unpacked source context structure 4609 * @dest_ctx: packed destination context data 4610 * @ce_info: context element description 4611 */ 4612 static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx, 4613 const struct ice_ctx_ele *ce_info) 4614 { 4615 u32 src_dword, mask; 4616 __le32 dest_dword; 4617 u8 *from, *dest; 4618 u16 shift_width; 4619 4620 /* copy from the next struct field */ 4621 from = src_ctx + ce_info->offset; 4622 4623 /* prepare the bits and mask */ 4624 shift_width = ce_info->lsb % 8; 4625 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width); 4626 4627 /* don't swizzle the bits until after the mask because the mask bits 4628 * will be in a different bit position on big endian machines 4629 */ 4630 src_dword = *(u32 *)from; 4631 src_dword <<= shift_width; 4632 src_dword &= mask; 4633 4634 /* get the current bits from the target bit string */ 4635 dest = dest_ctx + (ce_info->lsb / 8); 4636 4637 memcpy(&dest_dword, dest, sizeof(dest_dword)); 4638 4639 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ 4640 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ 4641 4642 /* put it all back */ 4643 memcpy(dest, &dest_dword, sizeof(dest_dword)); 4644 } 4645 4646 /** 4647 * ice_pack_ctx_qword - write a qword to a packed context structure 4648 * @src_ctx: unpacked source context structure 4649 * @dest_ctx: packed destination context data 4650 * @ce_info: context element description 4651 */ 4652 static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx, 4653 const struct ice_ctx_ele *ce_info) 4654 { 4655 u64 src_qword, mask; 4656 __le64 dest_qword; 4657 u8 *from, *dest; 4658 u16 shift_width; 4659 4660 /* copy from the next struct field */ 4661 from = src_ctx + ce_info->offset; 4662 4663 /* prepare the bits and mask */ 4664 shift_width = ce_info->lsb % 8; 4665 mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width); 4666 4667 /* don't swizzle the bits until after the mask because the mask bits 4668 * will be in a different bit position on big endian machines 4669 */ 4670 src_qword = *(u64 *)from; 4671 src_qword <<= shift_width; 4672 src_qword &= mask; 4673 4674 /* get the current bits from the target bit string */ 4675 dest = dest_ctx + (ce_info->lsb / 8); 4676 4677 memcpy(&dest_qword, dest, sizeof(dest_qword)); 4678 4679 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ 4680 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ 4681 4682 /* put it all back */ 4683 memcpy(dest, &dest_qword, sizeof(dest_qword)); 4684 } 4685 4686 /** 4687 * ice_set_ctx - set context bits in packed structure 4688 * @hw: pointer to the hardware structure 4689 * @src_ctx: pointer to a generic non-packed context structure 4690 * @dest_ctx: pointer to memory for the packed structure 4691 * @ce_info: List of Rx context elements 4692 */ 4693 int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx, 4694 const struct ice_ctx_ele *ce_info) 4695 { 4696 int f; 4697 4698 for (f = 0; ce_info[f].width; f++) { 4699 /* We have to deal with each element of the FW response 4700 * using the correct size so that we are correct regardless 4701 * of the endianness of the machine. 4702 */ 4703 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) { 4704 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n", 4705 f, ce_info[f].width, ce_info[f].size_of); 4706 continue; 4707 } 4708 switch (ce_info[f].size_of) { 4709 case sizeof(u8): 4710 ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]); 4711 break; 4712 case sizeof(u16): 4713 ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]); 4714 break; 4715 case sizeof(u32): 4716 ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]); 4717 break; 4718 case sizeof(u64): 4719 ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]); 4720 break; 4721 default: 4722 return -EINVAL; 4723 } 4724 } 4725 4726 return 0; 4727 } 4728 4729 /** 4730 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC 4731 * @hw: pointer to the HW struct 4732 * @vsi_handle: software VSI handle 4733 * @tc: TC number 4734 * @q_handle: software queue handle 4735 */ 4736 struct ice_q_ctx * 4737 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) 4738 { 4739 struct ice_vsi_ctx *vsi; 4740 struct ice_q_ctx *q_ctx; 4741 4742 vsi = ice_get_vsi_ctx(hw, vsi_handle); 4743 if (!vsi) 4744 return NULL; 4745 if (q_handle >= vsi->num_lan_q_entries[tc]) 4746 return NULL; 4747 if (!vsi->lan_q_ctx[tc]) 4748 return NULL; 4749 q_ctx = vsi->lan_q_ctx[tc]; 4750 return &q_ctx[q_handle]; 4751 } 4752 4753 /** 4754 * ice_ena_vsi_txq 4755 * @pi: port information structure 4756 * @vsi_handle: software VSI handle 4757 * @tc: TC number 4758 * @q_handle: software queue handle 4759 * @num_qgrps: Number of added queue groups 4760 * @buf: list of queue groups to be added 4761 * @buf_size: size of buffer for indirect command 4762 * @cd: pointer to command details structure or NULL 4763 * 4764 * This function adds one LAN queue 4765 */ 4766 int 4767 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, 4768 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, 4769 struct ice_sq_cd *cd) 4770 { 4771 struct ice_aqc_txsched_elem_data node = { 0 }; 4772 struct ice_sched_node *parent; 4773 struct ice_q_ctx *q_ctx; 4774 struct ice_hw *hw; 4775 int status; 4776 4777 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4778 return -EIO; 4779 4780 if (num_qgrps > 1 || buf->num_txqs > 1) 4781 return -ENOSPC; 4782 4783 hw = pi->hw; 4784 4785 if (!ice_is_vsi_valid(hw, vsi_handle)) 4786 return -EINVAL; 4787 4788 mutex_lock(&pi->sched_lock); 4789 4790 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); 4791 if (!q_ctx) { 4792 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", 4793 q_handle); 4794 status = -EINVAL; 4795 goto ena_txq_exit; 4796 } 4797 4798 /* find a parent node */ 4799 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4800 ICE_SCHED_NODE_OWNER_LAN); 4801 if (!parent) { 4802 status = -EINVAL; 4803 goto ena_txq_exit; 4804 } 4805 4806 buf->parent_teid = parent->info.node_teid; 4807 node.parent_teid = parent->info.node_teid; 4808 /* Mark that the values in the "generic" section as valid. The default 4809 * value in the "generic" section is zero. This means that : 4810 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. 4811 * - 0 priority among siblings, indicated by Bit 1-3. 4812 * - WFQ, indicated by Bit 4. 4813 * - 0 Adjustment value is used in PSM credit update flow, indicated by 4814 * Bit 5-6. 4815 * - Bit 7 is reserved. 4816 * Without setting the generic section as valid in valid_sections, the 4817 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. 4818 */ 4819 buf->txqs[0].info.valid_sections = 4820 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4821 ICE_AQC_ELEM_VALID_EIR; 4822 buf->txqs[0].info.generic = 0; 4823 buf->txqs[0].info.cir_bw.bw_profile_idx = 4824 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4825 buf->txqs[0].info.cir_bw.bw_alloc = 4826 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4827 buf->txqs[0].info.eir_bw.bw_profile_idx = 4828 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4829 buf->txqs[0].info.eir_bw.bw_alloc = 4830 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4831 4832 /* add the LAN queue */ 4833 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); 4834 if (status) { 4835 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", 4836 le16_to_cpu(buf->txqs[0].txq_id), 4837 hw->adminq.sq_last_status); 4838 goto ena_txq_exit; 4839 } 4840 4841 node.node_teid = buf->txqs[0].q_teid; 4842 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4843 q_ctx->q_handle = q_handle; 4844 q_ctx->q_teid = le32_to_cpu(node.node_teid); 4845 4846 /* add a leaf node into scheduler tree queue layer */ 4847 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL); 4848 if (!status) 4849 status = ice_sched_replay_q_bw(pi, q_ctx); 4850 4851 ena_txq_exit: 4852 mutex_unlock(&pi->sched_lock); 4853 return status; 4854 } 4855 4856 /** 4857 * ice_dis_vsi_txq 4858 * @pi: port information structure 4859 * @vsi_handle: software VSI handle 4860 * @tc: TC number 4861 * @num_queues: number of queues 4862 * @q_handles: pointer to software queue handle array 4863 * @q_ids: pointer to the q_id array 4864 * @q_teids: pointer to queue node teids 4865 * @rst_src: if called due to reset, specifies the reset source 4866 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4867 * @cd: pointer to command details structure or NULL 4868 * 4869 * This function removes queues and their corresponding nodes in SW DB 4870 */ 4871 int 4872 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, 4873 u16 *q_handles, u16 *q_ids, u32 *q_teids, 4874 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4875 struct ice_sq_cd *cd) 4876 { 4877 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1); 4878 u16 i, buf_size = __struct_size(qg_list); 4879 struct ice_q_ctx *q_ctx; 4880 int status = -ENOENT; 4881 struct ice_hw *hw; 4882 4883 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4884 return -EIO; 4885 4886 hw = pi->hw; 4887 4888 if (!num_queues) { 4889 /* if queue is disabled already yet the disable queue command 4890 * has to be sent to complete the VF reset, then call 4891 * ice_aq_dis_lan_txq without any queue information 4892 */ 4893 if (rst_src) 4894 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src, 4895 vmvf_num, NULL); 4896 return -EIO; 4897 } 4898 4899 mutex_lock(&pi->sched_lock); 4900 4901 for (i = 0; i < num_queues; i++) { 4902 struct ice_sched_node *node; 4903 4904 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); 4905 if (!node) 4906 continue; 4907 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]); 4908 if (!q_ctx) { 4909 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n", 4910 q_handles[i]); 4911 continue; 4912 } 4913 if (q_ctx->q_handle != q_handles[i]) { 4914 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n", 4915 q_ctx->q_handle, q_handles[i]); 4916 continue; 4917 } 4918 qg_list->parent_teid = node->info.parent_teid; 4919 qg_list->num_qs = 1; 4920 qg_list->q_id[0] = cpu_to_le16(q_ids[i]); 4921 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src, 4922 vmvf_num, cd); 4923 4924 if (status) 4925 break; 4926 ice_free_sched_node(pi, node); 4927 q_ctx->q_handle = ICE_INVAL_Q_HANDLE; 4928 q_ctx->q_teid = ICE_INVAL_TEID; 4929 } 4930 mutex_unlock(&pi->sched_lock); 4931 return status; 4932 } 4933 4934 /** 4935 * ice_cfg_vsi_qs - configure the new/existing VSI queues 4936 * @pi: port information structure 4937 * @vsi_handle: software VSI handle 4938 * @tc_bitmap: TC bitmap 4939 * @maxqs: max queues array per TC 4940 * @owner: LAN or RDMA 4941 * 4942 * This function adds/updates the VSI queues per TC. 4943 */ 4944 static int 4945 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4946 u16 *maxqs, u8 owner) 4947 { 4948 int status = 0; 4949 u8 i; 4950 4951 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4952 return -EIO; 4953 4954 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 4955 return -EINVAL; 4956 4957 mutex_lock(&pi->sched_lock); 4958 4959 ice_for_each_traffic_class(i) { 4960 /* configuration is possible only if TC node is present */ 4961 if (!ice_sched_get_tc_node(pi, i)) 4962 continue; 4963 4964 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, 4965 ice_is_tc_ena(tc_bitmap, i)); 4966 if (status) 4967 break; 4968 } 4969 4970 mutex_unlock(&pi->sched_lock); 4971 return status; 4972 } 4973 4974 /** 4975 * ice_cfg_vsi_lan - configure VSI LAN queues 4976 * @pi: port information structure 4977 * @vsi_handle: software VSI handle 4978 * @tc_bitmap: TC bitmap 4979 * @max_lanqs: max LAN queues array per TC 4980 * 4981 * This function adds/updates the VSI LAN queues per TC. 4982 */ 4983 int 4984 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4985 u16 *max_lanqs) 4986 { 4987 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, 4988 ICE_SCHED_NODE_OWNER_LAN); 4989 } 4990 4991 /** 4992 * ice_cfg_vsi_rdma - configure the VSI RDMA queues 4993 * @pi: port information structure 4994 * @vsi_handle: software VSI handle 4995 * @tc_bitmap: TC bitmap 4996 * @max_rdmaqs: max RDMA queues array per TC 4997 * 4998 * This function adds/updates the VSI RDMA queues per TC. 4999 */ 5000 int 5001 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap, 5002 u16 *max_rdmaqs) 5003 { 5004 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs, 5005 ICE_SCHED_NODE_OWNER_RDMA); 5006 } 5007 5008 /** 5009 * ice_ena_vsi_rdma_qset 5010 * @pi: port information structure 5011 * @vsi_handle: software VSI handle 5012 * @tc: TC number 5013 * @rdma_qset: pointer to RDMA Qset 5014 * @num_qsets: number of RDMA Qsets 5015 * @qset_teid: pointer to Qset node TEIDs 5016 * 5017 * This function adds RDMA Qset 5018 */ 5019 int 5020 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 5021 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid) 5022 { 5023 struct ice_aqc_txsched_elem_data node = { 0 }; 5024 struct ice_aqc_add_rdma_qset_data *buf; 5025 struct ice_sched_node *parent; 5026 struct ice_hw *hw; 5027 u16 i, buf_size; 5028 int ret; 5029 5030 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 5031 return -EIO; 5032 hw = pi->hw; 5033 5034 if (!ice_is_vsi_valid(hw, vsi_handle)) 5035 return -EINVAL; 5036 5037 buf_size = struct_size(buf, rdma_qsets, num_qsets); 5038 buf = kzalloc(buf_size, GFP_KERNEL); 5039 if (!buf) 5040 return -ENOMEM; 5041 mutex_lock(&pi->sched_lock); 5042 5043 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 5044 ICE_SCHED_NODE_OWNER_RDMA); 5045 if (!parent) { 5046 ret = -EINVAL; 5047 goto rdma_error_exit; 5048 } 5049 buf->parent_teid = parent->info.node_teid; 5050 node.parent_teid = parent->info.node_teid; 5051 5052 buf->num_qsets = cpu_to_le16(num_qsets); 5053 for (i = 0; i < num_qsets; i++) { 5054 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]); 5055 buf->rdma_qsets[i].info.valid_sections = 5056 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 5057 ICE_AQC_ELEM_VALID_EIR; 5058 buf->rdma_qsets[i].info.generic = 0; 5059 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx = 5060 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 5061 buf->rdma_qsets[i].info.cir_bw.bw_alloc = 5062 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 5063 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx = 5064 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 5065 buf->rdma_qsets[i].info.eir_bw.bw_alloc = 5066 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 5067 } 5068 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL); 5069 if (ret) { 5070 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n"); 5071 goto rdma_error_exit; 5072 } 5073 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 5074 for (i = 0; i < num_qsets; i++) { 5075 node.node_teid = buf->rdma_qsets[i].qset_teid; 5076 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, 5077 &node, NULL); 5078 if (ret) 5079 break; 5080 qset_teid[i] = le32_to_cpu(node.node_teid); 5081 } 5082 rdma_error_exit: 5083 mutex_unlock(&pi->sched_lock); 5084 kfree(buf); 5085 return ret; 5086 } 5087 5088 /** 5089 * ice_dis_vsi_rdma_qset - free RDMA resources 5090 * @pi: port_info struct 5091 * @count: number of RDMA Qsets to free 5092 * @qset_teid: TEID of Qset node 5093 * @q_id: list of queue IDs being disabled 5094 */ 5095 int 5096 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid, 5097 u16 *q_id) 5098 { 5099 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1); 5100 u16 qg_size = __struct_size(qg_list); 5101 struct ice_hw *hw; 5102 int status = 0; 5103 int i; 5104 5105 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 5106 return -EIO; 5107 5108 hw = pi->hw; 5109 5110 mutex_lock(&pi->sched_lock); 5111 5112 for (i = 0; i < count; i++) { 5113 struct ice_sched_node *node; 5114 5115 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]); 5116 if (!node) 5117 continue; 5118 5119 qg_list->parent_teid = node->info.parent_teid; 5120 qg_list->num_qs = 1; 5121 qg_list->q_id[0] = 5122 cpu_to_le16(q_id[i] | 5123 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET); 5124 5125 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size, 5126 ICE_NO_RESET, 0, NULL); 5127 if (status) 5128 break; 5129 5130 ice_free_sched_node(pi, node); 5131 } 5132 5133 mutex_unlock(&pi->sched_lock); 5134 return status; 5135 } 5136 5137 /** 5138 * ice_aq_get_cgu_abilities - get cgu abilities 5139 * @hw: pointer to the HW struct 5140 * @abilities: CGU abilities 5141 * 5142 * Get CGU abilities (0x0C61) 5143 * Return: 0 on success or negative value on failure. 5144 */ 5145 int 5146 ice_aq_get_cgu_abilities(struct ice_hw *hw, 5147 struct ice_aqc_get_cgu_abilities *abilities) 5148 { 5149 struct ice_aq_desc desc; 5150 5151 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities); 5152 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL); 5153 } 5154 5155 /** 5156 * ice_aq_set_input_pin_cfg - set input pin config 5157 * @hw: pointer to the HW struct 5158 * @input_idx: Input index 5159 * @flags1: Input flags 5160 * @flags2: Input flags 5161 * @freq: Frequency in Hz 5162 * @phase_delay: Delay in ps 5163 * 5164 * Set CGU input config (0x0C62) 5165 * Return: 0 on success or negative value on failure. 5166 */ 5167 int 5168 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2, 5169 u32 freq, s32 phase_delay) 5170 { 5171 struct ice_aqc_set_cgu_input_config *cmd; 5172 struct ice_aq_desc desc; 5173 5174 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config); 5175 cmd = &desc.params.set_cgu_input_config; 5176 cmd->input_idx = input_idx; 5177 cmd->flags1 = flags1; 5178 cmd->flags2 = flags2; 5179 cmd->freq = cpu_to_le32(freq); 5180 cmd->phase_delay = cpu_to_le32(phase_delay); 5181 5182 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5183 } 5184 5185 /** 5186 * ice_aq_get_input_pin_cfg - get input pin config 5187 * @hw: pointer to the HW struct 5188 * @input_idx: Input index 5189 * @status: Pin status 5190 * @type: Pin type 5191 * @flags1: Input flags 5192 * @flags2: Input flags 5193 * @freq: Frequency in Hz 5194 * @phase_delay: Delay in ps 5195 * 5196 * Get CGU input config (0x0C63) 5197 * Return: 0 on success or negative value on failure. 5198 */ 5199 int 5200 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type, 5201 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay) 5202 { 5203 struct ice_aqc_get_cgu_input_config *cmd; 5204 struct ice_aq_desc desc; 5205 int ret; 5206 5207 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config); 5208 cmd = &desc.params.get_cgu_input_config; 5209 cmd->input_idx = input_idx; 5210 5211 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5212 if (!ret) { 5213 if (status) 5214 *status = cmd->status; 5215 if (type) 5216 *type = cmd->type; 5217 if (flags1) 5218 *flags1 = cmd->flags1; 5219 if (flags2) 5220 *flags2 = cmd->flags2; 5221 if (freq) 5222 *freq = le32_to_cpu(cmd->freq); 5223 if (phase_delay) 5224 *phase_delay = le32_to_cpu(cmd->phase_delay); 5225 } 5226 5227 return ret; 5228 } 5229 5230 /** 5231 * ice_aq_set_output_pin_cfg - set output pin config 5232 * @hw: pointer to the HW struct 5233 * @output_idx: Output index 5234 * @flags: Output flags 5235 * @src_sel: Index of DPLL block 5236 * @freq: Output frequency 5237 * @phase_delay: Output phase compensation 5238 * 5239 * Set CGU output config (0x0C64) 5240 * Return: 0 on success or negative value on failure. 5241 */ 5242 int 5243 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags, 5244 u8 src_sel, u32 freq, s32 phase_delay) 5245 { 5246 struct ice_aqc_set_cgu_output_config *cmd; 5247 struct ice_aq_desc desc; 5248 5249 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config); 5250 cmd = &desc.params.set_cgu_output_config; 5251 cmd->output_idx = output_idx; 5252 cmd->flags = flags; 5253 cmd->src_sel = src_sel; 5254 cmd->freq = cpu_to_le32(freq); 5255 cmd->phase_delay = cpu_to_le32(phase_delay); 5256 5257 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5258 } 5259 5260 /** 5261 * ice_aq_get_output_pin_cfg - get output pin config 5262 * @hw: pointer to the HW struct 5263 * @output_idx: Output index 5264 * @flags: Output flags 5265 * @src_sel: Internal DPLL source 5266 * @freq: Output frequency 5267 * @src_freq: Source frequency 5268 * 5269 * Get CGU output config (0x0C65) 5270 * Return: 0 on success or negative value on failure. 5271 */ 5272 int 5273 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags, 5274 u8 *src_sel, u32 *freq, u32 *src_freq) 5275 { 5276 struct ice_aqc_get_cgu_output_config *cmd; 5277 struct ice_aq_desc desc; 5278 int ret; 5279 5280 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config); 5281 cmd = &desc.params.get_cgu_output_config; 5282 cmd->output_idx = output_idx; 5283 5284 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5285 if (!ret) { 5286 if (flags) 5287 *flags = cmd->flags; 5288 if (src_sel) 5289 *src_sel = cmd->src_sel; 5290 if (freq) 5291 *freq = le32_to_cpu(cmd->freq); 5292 if (src_freq) 5293 *src_freq = le32_to_cpu(cmd->src_freq); 5294 } 5295 5296 return ret; 5297 } 5298 5299 /** 5300 * ice_aq_get_cgu_dpll_status - get dpll status 5301 * @hw: pointer to the HW struct 5302 * @dpll_num: DPLL index 5303 * @ref_state: Reference clock state 5304 * @config: current DPLL config 5305 * @dpll_state: current DPLL state 5306 * @phase_offset: Phase offset in ns 5307 * @eec_mode: EEC_mode 5308 * 5309 * Get CGU DPLL status (0x0C66) 5310 * Return: 0 on success or negative value on failure. 5311 */ 5312 int 5313 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state, 5314 u8 *dpll_state, u8 *config, s64 *phase_offset, 5315 u8 *eec_mode) 5316 { 5317 struct ice_aqc_get_cgu_dpll_status *cmd; 5318 struct ice_aq_desc desc; 5319 int status; 5320 5321 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status); 5322 cmd = &desc.params.get_cgu_dpll_status; 5323 cmd->dpll_num = dpll_num; 5324 5325 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5326 if (!status) { 5327 *ref_state = cmd->ref_state; 5328 *dpll_state = cmd->dpll_state; 5329 *config = cmd->config; 5330 *phase_offset = le32_to_cpu(cmd->phase_offset_h); 5331 *phase_offset <<= 32; 5332 *phase_offset += le32_to_cpu(cmd->phase_offset_l); 5333 *phase_offset = sign_extend64(*phase_offset, 47); 5334 *eec_mode = cmd->eec_mode; 5335 } 5336 5337 return status; 5338 } 5339 5340 /** 5341 * ice_aq_set_cgu_dpll_config - set dpll config 5342 * @hw: pointer to the HW struct 5343 * @dpll_num: DPLL index 5344 * @ref_state: Reference clock state 5345 * @config: DPLL config 5346 * @eec_mode: EEC mode 5347 * 5348 * Set CGU DPLL config (0x0C67) 5349 * Return: 0 on success or negative value on failure. 5350 */ 5351 int 5352 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state, 5353 u8 config, u8 eec_mode) 5354 { 5355 struct ice_aqc_set_cgu_dpll_config *cmd; 5356 struct ice_aq_desc desc; 5357 5358 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config); 5359 cmd = &desc.params.set_cgu_dpll_config; 5360 cmd->dpll_num = dpll_num; 5361 cmd->ref_state = ref_state; 5362 cmd->config = config; 5363 cmd->eec_mode = eec_mode; 5364 5365 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5366 } 5367 5368 /** 5369 * ice_aq_set_cgu_ref_prio - set input reference priority 5370 * @hw: pointer to the HW struct 5371 * @dpll_num: DPLL index 5372 * @ref_idx: Reference pin index 5373 * @ref_priority: Reference input priority 5374 * 5375 * Set CGU reference priority (0x0C68) 5376 * Return: 0 on success or negative value on failure. 5377 */ 5378 int 5379 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx, 5380 u8 ref_priority) 5381 { 5382 struct ice_aqc_set_cgu_ref_prio *cmd; 5383 struct ice_aq_desc desc; 5384 5385 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio); 5386 cmd = &desc.params.set_cgu_ref_prio; 5387 cmd->dpll_num = dpll_num; 5388 cmd->ref_idx = ref_idx; 5389 cmd->ref_priority = ref_priority; 5390 5391 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5392 } 5393 5394 /** 5395 * ice_aq_get_cgu_ref_prio - get input reference priority 5396 * @hw: pointer to the HW struct 5397 * @dpll_num: DPLL index 5398 * @ref_idx: Reference pin index 5399 * @ref_prio: Reference input priority 5400 * 5401 * Get CGU reference priority (0x0C69) 5402 * Return: 0 on success or negative value on failure. 5403 */ 5404 int 5405 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx, 5406 u8 *ref_prio) 5407 { 5408 struct ice_aqc_get_cgu_ref_prio *cmd; 5409 struct ice_aq_desc desc; 5410 int status; 5411 5412 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio); 5413 cmd = &desc.params.get_cgu_ref_prio; 5414 cmd->dpll_num = dpll_num; 5415 cmd->ref_idx = ref_idx; 5416 5417 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5418 if (!status) 5419 *ref_prio = cmd->ref_priority; 5420 5421 return status; 5422 } 5423 5424 /** 5425 * ice_aq_get_cgu_info - get cgu info 5426 * @hw: pointer to the HW struct 5427 * @cgu_id: CGU ID 5428 * @cgu_cfg_ver: CGU config version 5429 * @cgu_fw_ver: CGU firmware version 5430 * 5431 * Get CGU info (0x0C6A) 5432 * Return: 0 on success or negative value on failure. 5433 */ 5434 int 5435 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver, 5436 u32 *cgu_fw_ver) 5437 { 5438 struct ice_aqc_get_cgu_info *cmd; 5439 struct ice_aq_desc desc; 5440 int status; 5441 5442 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info); 5443 cmd = &desc.params.get_cgu_info; 5444 5445 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5446 if (!status) { 5447 *cgu_id = le32_to_cpu(cmd->cgu_id); 5448 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver); 5449 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver); 5450 } 5451 5452 return status; 5453 } 5454 5455 /** 5456 * ice_aq_set_phy_rec_clk_out - set RCLK phy out 5457 * @hw: pointer to the HW struct 5458 * @phy_output: PHY reference clock output pin 5459 * @enable: GPIO state to be applied 5460 * @freq: PHY output frequency 5461 * 5462 * Set phy recovered clock as reference (0x0630) 5463 * Return: 0 on success or negative value on failure. 5464 */ 5465 int 5466 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable, 5467 u32 *freq) 5468 { 5469 struct ice_aqc_set_phy_rec_clk_out *cmd; 5470 struct ice_aq_desc desc; 5471 int status; 5472 5473 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out); 5474 cmd = &desc.params.set_phy_rec_clk_out; 5475 cmd->phy_output = phy_output; 5476 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT; 5477 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN; 5478 cmd->freq = cpu_to_le32(*freq); 5479 5480 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5481 if (!status) 5482 *freq = le32_to_cpu(cmd->freq); 5483 5484 return status; 5485 } 5486 5487 /** 5488 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info 5489 * @hw: pointer to the HW struct 5490 * @phy_output: PHY reference clock output pin 5491 * @port_num: Port number 5492 * @flags: PHY flags 5493 * @node_handle: PHY output frequency 5494 * 5495 * Get PHY recovered clock output info (0x0631) 5496 * Return: 0 on success or negative value on failure. 5497 */ 5498 int 5499 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num, 5500 u8 *flags, u16 *node_handle) 5501 { 5502 struct ice_aqc_get_phy_rec_clk_out *cmd; 5503 struct ice_aq_desc desc; 5504 int status; 5505 5506 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out); 5507 cmd = &desc.params.get_phy_rec_clk_out; 5508 cmd->phy_output = *phy_output; 5509 5510 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5511 if (!status) { 5512 *phy_output = cmd->phy_output; 5513 if (port_num) 5514 *port_num = cmd->port_num; 5515 if (flags) 5516 *flags = cmd->flags; 5517 if (node_handle) 5518 *node_handle = le16_to_cpu(cmd->node_handle); 5519 } 5520 5521 return status; 5522 } 5523 5524 /** 5525 * ice_aq_get_sensor_reading 5526 * @hw: pointer to the HW struct 5527 * @data: pointer to data to be read from the sensor 5528 * 5529 * Get sensor reading (0x0632) 5530 */ 5531 int ice_aq_get_sensor_reading(struct ice_hw *hw, 5532 struct ice_aqc_get_sensor_reading_resp *data) 5533 { 5534 struct ice_aqc_get_sensor_reading *cmd; 5535 struct ice_aq_desc desc; 5536 int status; 5537 5538 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading); 5539 cmd = &desc.params.get_sensor_reading; 5540 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0 5541 #define ICE_INTERNAL_TEMP_SENSOR 0 5542 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR; 5543 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT; 5544 5545 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5546 if (!status) 5547 memcpy(data, &desc.params.get_sensor_reading_resp, 5548 sizeof(*data)); 5549 5550 return status; 5551 } 5552 5553 /** 5554 * ice_replay_pre_init - replay pre initialization 5555 * @hw: pointer to the HW struct 5556 * 5557 * Initializes required config data for VSI, FD, ACL, and RSS before replay. 5558 */ 5559 static int ice_replay_pre_init(struct ice_hw *hw) 5560 { 5561 struct ice_switch_info *sw = hw->switch_info; 5562 u8 i; 5563 5564 /* Delete old entries from replay filter list head if there is any */ 5565 ice_rm_all_sw_replay_rule_info(hw); 5566 /* In start of replay, move entries into replay_rules list, it 5567 * will allow adding rules entries back to filt_rules list, 5568 * which is operational list. 5569 */ 5570 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 5571 list_replace_init(&sw->recp_list[i].filt_rules, 5572 &sw->recp_list[i].filt_replay_rules); 5573 ice_sched_replay_agg_vsi_preinit(hw); 5574 5575 return 0; 5576 } 5577 5578 /** 5579 * ice_replay_vsi - replay VSI configuration 5580 * @hw: pointer to the HW struct 5581 * @vsi_handle: driver VSI handle 5582 * 5583 * Restore all VSI configuration after reset. It is required to call this 5584 * function with main VSI first. 5585 */ 5586 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) 5587 { 5588 int status; 5589 5590 if (!ice_is_vsi_valid(hw, vsi_handle)) 5591 return -EINVAL; 5592 5593 /* Replay pre-initialization if there is any */ 5594 if (vsi_handle == ICE_MAIN_VSI_HANDLE) { 5595 status = ice_replay_pre_init(hw); 5596 if (status) 5597 return status; 5598 } 5599 /* Replay per VSI all RSS configurations */ 5600 status = ice_replay_rss_cfg(hw, vsi_handle); 5601 if (status) 5602 return status; 5603 /* Replay per VSI all filters */ 5604 status = ice_replay_vsi_all_fltr(hw, vsi_handle); 5605 if (!status) 5606 status = ice_replay_vsi_agg(hw, vsi_handle); 5607 return status; 5608 } 5609 5610 /** 5611 * ice_replay_post - post replay configuration cleanup 5612 * @hw: pointer to the HW struct 5613 * 5614 * Post replay cleanup. 5615 */ 5616 void ice_replay_post(struct ice_hw *hw) 5617 { 5618 /* Delete old entries from replay filter list head */ 5619 ice_rm_all_sw_replay_rule_info(hw); 5620 ice_sched_replay_agg(hw); 5621 } 5622 5623 /** 5624 * ice_stat_update40 - read 40 bit stat from the chip and update stat values 5625 * @hw: ptr to the hardware info 5626 * @reg: offset of 64 bit HW register to read from 5627 * @prev_stat_loaded: bool to specify if previous stats are loaded 5628 * @prev_stat: ptr to previous loaded stat value 5629 * @cur_stat: ptr to current stat value 5630 */ 5631 void 5632 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 5633 u64 *prev_stat, u64 *cur_stat) 5634 { 5635 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1); 5636 5637 /* device stats are not reset at PFR, they likely will not be zeroed 5638 * when the driver starts. Thus, save the value from the first read 5639 * without adding to the statistic value so that we report stats which 5640 * count up from zero. 5641 */ 5642 if (!prev_stat_loaded) { 5643 *prev_stat = new_data; 5644 return; 5645 } 5646 5647 /* Calculate the difference between the new and old values, and then 5648 * add it to the software stat value. 5649 */ 5650 if (new_data >= *prev_stat) 5651 *cur_stat += new_data - *prev_stat; 5652 else 5653 /* to manage the potential roll-over */ 5654 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat; 5655 5656 /* Update the previously stored value to prepare for next read */ 5657 *prev_stat = new_data; 5658 } 5659 5660 /** 5661 * ice_stat_update32 - read 32 bit stat from the chip and update stat values 5662 * @hw: ptr to the hardware info 5663 * @reg: offset of HW register to read from 5664 * @prev_stat_loaded: bool to specify if previous stats are loaded 5665 * @prev_stat: ptr to previous loaded stat value 5666 * @cur_stat: ptr to current stat value 5667 */ 5668 void 5669 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 5670 u64 *prev_stat, u64 *cur_stat) 5671 { 5672 u32 new_data; 5673 5674 new_data = rd32(hw, reg); 5675 5676 /* device stats are not reset at PFR, they likely will not be zeroed 5677 * when the driver starts. Thus, save the value from the first read 5678 * without adding to the statistic value so that we report stats which 5679 * count up from zero. 5680 */ 5681 if (!prev_stat_loaded) { 5682 *prev_stat = new_data; 5683 return; 5684 } 5685 5686 /* Calculate the difference between the new and old values, and then 5687 * add it to the software stat value. 5688 */ 5689 if (new_data >= *prev_stat) 5690 *cur_stat += new_data - *prev_stat; 5691 else 5692 /* to manage the potential roll-over */ 5693 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat; 5694 5695 /* Update the previously stored value to prepare for next read */ 5696 *prev_stat = new_data; 5697 } 5698 5699 /** 5700 * ice_sched_query_elem - query element information from HW 5701 * @hw: pointer to the HW struct 5702 * @node_teid: node TEID to be queried 5703 * @buf: buffer to element information 5704 * 5705 * This function queries HW element information 5706 */ 5707 int 5708 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, 5709 struct ice_aqc_txsched_elem_data *buf) 5710 { 5711 u16 buf_size, num_elem_ret = 0; 5712 int status; 5713 5714 buf_size = sizeof(*buf); 5715 memset(buf, 0, buf_size); 5716 buf->node_teid = cpu_to_le32(node_teid); 5717 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, 5718 NULL); 5719 if (status || num_elem_ret != 1) 5720 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); 5721 return status; 5722 } 5723 5724 /** 5725 * ice_aq_read_i2c 5726 * @hw: pointer to the hw struct 5727 * @topo_addr: topology address for a device to communicate with 5728 * @bus_addr: 7-bit I2C bus address 5729 * @addr: I2C memory address (I2C offset) with up to 16 bits 5730 * @params: I2C parameters: bit [7] - Repeated start, 5731 * bits [6:5] data offset size, 5732 * bit [4] - I2C address type, 5733 * bits [3:0] - data size to read (0-16 bytes) 5734 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device 5735 * @cd: pointer to command details structure or NULL 5736 * 5737 * Read I2C (0x06E2) 5738 */ 5739 int 5740 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr, 5741 u16 bus_addr, __le16 addr, u8 params, u8 *data, 5742 struct ice_sq_cd *cd) 5743 { 5744 struct ice_aq_desc desc = { 0 }; 5745 struct ice_aqc_i2c *cmd; 5746 u8 data_size; 5747 int status; 5748 5749 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c); 5750 cmd = &desc.params.read_write_i2c; 5751 5752 if (!data) 5753 return -EINVAL; 5754 5755 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params); 5756 5757 cmd->i2c_bus_addr = cpu_to_le16(bus_addr); 5758 cmd->topo_addr = topo_addr; 5759 cmd->i2c_params = params; 5760 cmd->i2c_addr = addr; 5761 5762 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5763 if (!status) { 5764 struct ice_aqc_read_i2c_resp *resp; 5765 u8 i; 5766 5767 resp = &desc.params.read_i2c_resp; 5768 for (i = 0; i < data_size; i++) { 5769 *data = resp->i2c_data[i]; 5770 data++; 5771 } 5772 } 5773 5774 return status; 5775 } 5776 5777 /** 5778 * ice_aq_write_i2c 5779 * @hw: pointer to the hw struct 5780 * @topo_addr: topology address for a device to communicate with 5781 * @bus_addr: 7-bit I2C bus address 5782 * @addr: I2C memory address (I2C offset) with up to 16 bits 5783 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes) 5784 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device 5785 * @cd: pointer to command details structure or NULL 5786 * 5787 * Write I2C (0x06E3) 5788 * 5789 * * Return: 5790 * * 0 - Successful write to the i2c device 5791 * * -EINVAL - Data size greater than 4 bytes 5792 * * -EIO - FW error 5793 */ 5794 int 5795 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr, 5796 u16 bus_addr, __le16 addr, u8 params, const u8 *data, 5797 struct ice_sq_cd *cd) 5798 { 5799 struct ice_aq_desc desc = { 0 }; 5800 struct ice_aqc_i2c *cmd; 5801 u8 data_size; 5802 5803 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c); 5804 cmd = &desc.params.read_write_i2c; 5805 5806 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params); 5807 5808 /* data_size limited to 4 */ 5809 if (data_size > 4) 5810 return -EINVAL; 5811 5812 cmd->i2c_bus_addr = cpu_to_le16(bus_addr); 5813 cmd->topo_addr = topo_addr; 5814 cmd->i2c_params = params; 5815 cmd->i2c_addr = addr; 5816 5817 memcpy(cmd->i2c_data, data, data_size); 5818 5819 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5820 } 5821 5822 /** 5823 * ice_aq_set_gpio 5824 * @hw: pointer to the hw struct 5825 * @gpio_ctrl_handle: GPIO controller node handle 5826 * @pin_idx: IO Number of the GPIO that needs to be set 5827 * @value: SW provide IO value to set in the LSB 5828 * @cd: pointer to command details structure or NULL 5829 * 5830 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology 5831 */ 5832 int 5833 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value, 5834 struct ice_sq_cd *cd) 5835 { 5836 struct ice_aqc_gpio *cmd; 5837 struct ice_aq_desc desc; 5838 5839 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio); 5840 cmd = &desc.params.read_write_gpio; 5841 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 5842 cmd->gpio_num = pin_idx; 5843 cmd->gpio_val = value ? 1 : 0; 5844 5845 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5846 } 5847 5848 /** 5849 * ice_aq_get_gpio 5850 * @hw: pointer to the hw struct 5851 * @gpio_ctrl_handle: GPIO controller node handle 5852 * @pin_idx: IO Number of the GPIO that needs to be set 5853 * @value: IO value read 5854 * @cd: pointer to command details structure or NULL 5855 * 5856 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of 5857 * the topology 5858 */ 5859 int 5860 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, 5861 bool *value, struct ice_sq_cd *cd) 5862 { 5863 struct ice_aqc_gpio *cmd; 5864 struct ice_aq_desc desc; 5865 int status; 5866 5867 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio); 5868 cmd = &desc.params.read_write_gpio; 5869 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 5870 cmd->gpio_num = pin_idx; 5871 5872 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5873 if (status) 5874 return status; 5875 5876 *value = !!cmd->gpio_val; 5877 return 0; 5878 } 5879 5880 /** 5881 * ice_is_fw_api_min_ver 5882 * @hw: pointer to the hardware structure 5883 * @maj: major version 5884 * @min: minor version 5885 * @patch: patch version 5886 * 5887 * Checks if the firmware API is minimum version 5888 */ 5889 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch) 5890 { 5891 if (hw->api_maj_ver == maj) { 5892 if (hw->api_min_ver > min) 5893 return true; 5894 if (hw->api_min_ver == min && hw->api_patch >= patch) 5895 return true; 5896 } else if (hw->api_maj_ver > maj) { 5897 return true; 5898 } 5899 5900 return false; 5901 } 5902 5903 /** 5904 * ice_fw_supports_link_override 5905 * @hw: pointer to the hardware structure 5906 * 5907 * Checks if the firmware supports link override 5908 */ 5909 bool ice_fw_supports_link_override(struct ice_hw *hw) 5910 { 5911 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ, 5912 ICE_FW_API_LINK_OVERRIDE_MIN, 5913 ICE_FW_API_LINK_OVERRIDE_PATCH); 5914 } 5915 5916 /** 5917 * ice_get_link_default_override 5918 * @ldo: pointer to the link default override struct 5919 * @pi: pointer to the port info struct 5920 * 5921 * Gets the link default override for a port 5922 */ 5923 int 5924 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo, 5925 struct ice_port_info *pi) 5926 { 5927 u16 i, tlv, tlv_len, tlv_start, buf, offset; 5928 struct ice_hw *hw = pi->hw; 5929 int status; 5930 5931 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len, 5932 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR); 5933 if (status) { 5934 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n"); 5935 return status; 5936 } 5937 5938 /* Each port has its own config; calculate for our port */ 5939 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS + 5940 ICE_SR_PFA_LINK_OVERRIDE_OFFSET; 5941 5942 /* link options first */ 5943 status = ice_read_sr_word(hw, tlv_start, &buf); 5944 if (status) { 5945 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5946 return status; 5947 } 5948 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf); 5949 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >> 5950 ICE_LINK_OVERRIDE_PHY_CFG_S; 5951 5952 /* link PHY config */ 5953 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET; 5954 status = ice_read_sr_word(hw, offset, &buf); 5955 if (status) { 5956 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n"); 5957 return status; 5958 } 5959 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M; 5960 5961 /* PHY types low */ 5962 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET; 5963 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5964 status = ice_read_sr_word(hw, (offset + i), &buf); 5965 if (status) { 5966 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5967 return status; 5968 } 5969 /* shift 16 bits at a time to fill 64 bits */ 5970 ldo->phy_type_low |= ((u64)buf << (i * 16)); 5971 } 5972 5973 /* PHY types high */ 5974 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET + 5975 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; 5976 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5977 status = ice_read_sr_word(hw, (offset + i), &buf); 5978 if (status) { 5979 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5980 return status; 5981 } 5982 /* shift 16 bits at a time to fill 64 bits */ 5983 ldo->phy_type_high |= ((u64)buf << (i * 16)); 5984 } 5985 5986 return status; 5987 } 5988 5989 /** 5990 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled 5991 * @caps: get PHY capability data 5992 */ 5993 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps) 5994 { 5995 if (caps->caps & ICE_AQC_PHY_AN_MODE || 5996 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 | 5997 ICE_AQC_PHY_AN_EN_CLAUSE73 | 5998 ICE_AQC_PHY_AN_EN_CLAUSE37)) 5999 return true; 6000 6001 return false; 6002 } 6003 6004 /** 6005 * ice_aq_set_lldp_mib - Set the LLDP MIB 6006 * @hw: pointer to the HW struct 6007 * @mib_type: Local, Remote or both Local and Remote MIBs 6008 * @buf: pointer to the caller-supplied buffer to store the MIB block 6009 * @buf_size: size of the buffer (in bytes) 6010 * @cd: pointer to command details structure or NULL 6011 * 6012 * Set the LLDP MIB. (0x0A08) 6013 */ 6014 int 6015 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size, 6016 struct ice_sq_cd *cd) 6017 { 6018 struct ice_aqc_lldp_set_local_mib *cmd; 6019 struct ice_aq_desc desc; 6020 6021 cmd = &desc.params.lldp_set_mib; 6022 6023 if (buf_size == 0 || !buf) 6024 return -EINVAL; 6025 6026 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib); 6027 6028 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD); 6029 desc.datalen = cpu_to_le16(buf_size); 6030 6031 cmd->type = mib_type; 6032 cmd->length = cpu_to_le16(buf_size); 6033 6034 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 6035 } 6036 6037 /** 6038 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl 6039 * @hw: pointer to HW struct 6040 */ 6041 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw) 6042 { 6043 if (hw->mac_type != ICE_MAC_E810) 6044 return false; 6045 6046 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ, 6047 ICE_FW_API_LLDP_FLTR_MIN, 6048 ICE_FW_API_LLDP_FLTR_PATCH); 6049 } 6050 6051 /** 6052 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter 6053 * @hw: pointer to HW struct 6054 * @vsi_num: absolute HW index for VSI 6055 * @add: boolean for if adding or removing a filter 6056 */ 6057 int 6058 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add) 6059 { 6060 struct ice_aqc_lldp_filter_ctrl *cmd; 6061 struct ice_aq_desc desc; 6062 6063 cmd = &desc.params.lldp_filter_ctrl; 6064 6065 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl); 6066 6067 if (add) 6068 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD; 6069 else 6070 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE; 6071 6072 cmd->vsi_num = cpu_to_le16(vsi_num); 6073 6074 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 6075 } 6076 6077 /** 6078 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request 6079 * @hw: pointer to HW struct 6080 */ 6081 int ice_lldp_execute_pending_mib(struct ice_hw *hw) 6082 { 6083 struct ice_aq_desc desc; 6084 6085 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib); 6086 6087 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 6088 } 6089 6090 /** 6091 * ice_fw_supports_report_dflt_cfg 6092 * @hw: pointer to the hardware structure 6093 * 6094 * Checks if the firmware supports report default configuration 6095 */ 6096 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw) 6097 { 6098 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ, 6099 ICE_FW_API_REPORT_DFLT_CFG_MIN, 6100 ICE_FW_API_REPORT_DFLT_CFG_PATCH); 6101 } 6102 6103 /* each of the indexes into the following array match the speed of a return 6104 * value from the list of AQ returned speeds like the range: 6105 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding 6106 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this 6107 * array. The array is defined as 15 elements long because the link_speed 6108 * returned by the firmware is a 16 bit * value, but is indexed 6109 * by [fls(speed) - 1] 6110 */ 6111 static const u32 ice_aq_to_link_speed[] = { 6112 SPEED_10, /* BIT(0) */ 6113 SPEED_100, 6114 SPEED_1000, 6115 SPEED_2500, 6116 SPEED_5000, 6117 SPEED_10000, 6118 SPEED_20000, 6119 SPEED_25000, 6120 SPEED_40000, 6121 SPEED_50000, 6122 SPEED_100000, /* BIT(10) */ 6123 SPEED_200000, 6124 }; 6125 6126 /** 6127 * ice_get_link_speed - get integer speed from table 6128 * @index: array index from fls(aq speed) - 1 6129 * 6130 * Returns: u32 value containing integer speed 6131 */ 6132 u32 ice_get_link_speed(u16 index) 6133 { 6134 if (index >= ARRAY_SIZE(ice_aq_to_link_speed)) 6135 return 0; 6136 6137 return ice_aq_to_link_speed[index]; 6138 } 6139