xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision d2b007374551ac09db16badde575cdd698f6fc92)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10 
11 #define ICE_PF_RESET_WAIT_COUNT	300
12 #define ICE_MAX_NETLIST_SIZE	10
13 
14 static const char * const ice_link_mode_str_low[] = {
15 	[0] = "100BASE_TX",
16 	[1] = "100M_SGMII",
17 	[2] = "1000BASE_T",
18 	[3] = "1000BASE_SX",
19 	[4] = "1000BASE_LX",
20 	[5] = "1000BASE_KX",
21 	[6] = "1G_SGMII",
22 	[7] = "2500BASE_T",
23 	[8] = "2500BASE_X",
24 	[9] = "2500BASE_KX",
25 	[10] = "5GBASE_T",
26 	[11] = "5GBASE_KR",
27 	[12] = "10GBASE_T",
28 	[13] = "10G_SFI_DA",
29 	[14] = "10GBASE_SR",
30 	[15] = "10GBASE_LR",
31 	[16] = "10GBASE_KR_CR1",
32 	[17] = "10G_SFI_AOC_ACC",
33 	[18] = "10G_SFI_C2C",
34 	[19] = "25GBASE_T",
35 	[20] = "25GBASE_CR",
36 	[21] = "25GBASE_CR_S",
37 	[22] = "25GBASE_CR1",
38 	[23] = "25GBASE_SR",
39 	[24] = "25GBASE_LR",
40 	[25] = "25GBASE_KR",
41 	[26] = "25GBASE_KR_S",
42 	[27] = "25GBASE_KR1",
43 	[28] = "25G_AUI_AOC_ACC",
44 	[29] = "25G_AUI_C2C",
45 	[30] = "40GBASE_CR4",
46 	[31] = "40GBASE_SR4",
47 	[32] = "40GBASE_LR4",
48 	[33] = "40GBASE_KR4",
49 	[34] = "40G_XLAUI_AOC_ACC",
50 	[35] = "40G_XLAUI",
51 	[36] = "50GBASE_CR2",
52 	[37] = "50GBASE_SR2",
53 	[38] = "50GBASE_LR2",
54 	[39] = "50GBASE_KR2",
55 	[40] = "50G_LAUI2_AOC_ACC",
56 	[41] = "50G_LAUI2",
57 	[42] = "50G_AUI2_AOC_ACC",
58 	[43] = "50G_AUI2",
59 	[44] = "50GBASE_CP",
60 	[45] = "50GBASE_SR",
61 	[46] = "50GBASE_FR",
62 	[47] = "50GBASE_LR",
63 	[48] = "50GBASE_KR_PAM4",
64 	[49] = "50G_AUI1_AOC_ACC",
65 	[50] = "50G_AUI1",
66 	[51] = "100GBASE_CR4",
67 	[52] = "100GBASE_SR4",
68 	[53] = "100GBASE_LR4",
69 	[54] = "100GBASE_KR4",
70 	[55] = "100G_CAUI4_AOC_ACC",
71 	[56] = "100G_CAUI4",
72 	[57] = "100G_AUI4_AOC_ACC",
73 	[58] = "100G_AUI4",
74 	[59] = "100GBASE_CR_PAM4",
75 	[60] = "100GBASE_KR_PAM4",
76 	[61] = "100GBASE_CP2",
77 	[62] = "100GBASE_SR2",
78 	[63] = "100GBASE_DR",
79 };
80 
81 static const char * const ice_link_mode_str_high[] = {
82 	[0] = "100GBASE_KR2_PAM4",
83 	[1] = "100G_CAUI2_AOC_ACC",
84 	[2] = "100G_CAUI2",
85 	[3] = "100G_AUI2_AOC_ACC",
86 	[4] = "100G_AUI2",
87 };
88 
89 /**
90  * ice_dump_phy_type - helper function to dump phy_type
91  * @hw: pointer to the HW structure
92  * @low: 64 bit value for phy_type_low
93  * @high: 64 bit value for phy_type_high
94  * @prefix: prefix string to differentiate multiple dumps
95  */
96 static void
97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100 
101 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 		if (low & BIT_ULL(i))
103 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
104 				  prefix, i, ice_link_mode_str_low[i]);
105 	}
106 
107 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108 
109 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 		if (high & BIT_ULL(i))
111 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
112 				  prefix, i, ice_link_mode_str_high[i]);
113 	}
114 }
115 
116 /**
117  * ice_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the MAC type of the adapter based on the
121  * vendor ID and device ID stored in the HW structure.
122  */
123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 		return -ENODEV;
127 
128 	switch (hw->device_id) {
129 	case ICE_DEV_ID_E810C_BACKPLANE:
130 	case ICE_DEV_ID_E810C_QSFP:
131 	case ICE_DEV_ID_E810C_SFP:
132 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 	case ICE_DEV_ID_E810_XXV_QSFP:
134 	case ICE_DEV_ID_E810_XXV_SFP:
135 		hw->mac_type = ICE_MAC_E810;
136 		break;
137 	case ICE_DEV_ID_E823C_10G_BASE_T:
138 	case ICE_DEV_ID_E823C_BACKPLANE:
139 	case ICE_DEV_ID_E823C_QSFP:
140 	case ICE_DEV_ID_E823C_SFP:
141 	case ICE_DEV_ID_E823C_SGMII:
142 	case ICE_DEV_ID_E822C_10G_BASE_T:
143 	case ICE_DEV_ID_E822C_BACKPLANE:
144 	case ICE_DEV_ID_E822C_QSFP:
145 	case ICE_DEV_ID_E822C_SFP:
146 	case ICE_DEV_ID_E822C_SGMII:
147 	case ICE_DEV_ID_E822L_10G_BASE_T:
148 	case ICE_DEV_ID_E822L_BACKPLANE:
149 	case ICE_DEV_ID_E822L_SFP:
150 	case ICE_DEV_ID_E822L_SGMII:
151 	case ICE_DEV_ID_E823L_10G_BASE_T:
152 	case ICE_DEV_ID_E823L_1GBE:
153 	case ICE_DEV_ID_E823L_BACKPLANE:
154 	case ICE_DEV_ID_E823L_QSFP:
155 	case ICE_DEV_ID_E823L_SFP:
156 		hw->mac_type = ICE_MAC_GENERIC;
157 		break;
158 	case ICE_DEV_ID_E825C_BACKPLANE:
159 	case ICE_DEV_ID_E825C_QSFP:
160 	case ICE_DEV_ID_E825C_SFP:
161 	case ICE_DEV_ID_E825C_SGMII:
162 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 		break;
164 	case ICE_DEV_ID_E830CC_BACKPLANE:
165 	case ICE_DEV_ID_E830CC_QSFP56:
166 	case ICE_DEV_ID_E830CC_SFP:
167 	case ICE_DEV_ID_E830CC_SFP_DD:
168 	case ICE_DEV_ID_E830C_BACKPLANE:
169 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 	case ICE_DEV_ID_E830C_QSFP:
171 	case ICE_DEV_ID_E830_XXV_QSFP:
172 	case ICE_DEV_ID_E830C_SFP:
173 	case ICE_DEV_ID_E830_XXV_SFP:
174 	case ICE_DEV_ID_E835CC_BACKPLANE:
175 	case ICE_DEV_ID_E835CC_QSFP56:
176 	case ICE_DEV_ID_E835CC_SFP:
177 	case ICE_DEV_ID_E835C_BACKPLANE:
178 	case ICE_DEV_ID_E835C_QSFP:
179 	case ICE_DEV_ID_E835C_SFP:
180 	case ICE_DEV_ID_E835_L_BACKPLANE:
181 	case ICE_DEV_ID_E835_L_QSFP:
182 	case ICE_DEV_ID_E835_L_SFP:
183 		hw->mac_type = ICE_MAC_E830;
184 		break;
185 	default:
186 		hw->mac_type = ICE_MAC_UNKNOWN;
187 		break;
188 	}
189 
190 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 	return 0;
192 }
193 
194 /**
195  * ice_is_generic_mac - check if device's mac_type is generic
196  * @hw: pointer to the hardware structure
197  *
198  * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199  */
200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 	return (hw->mac_type == ICE_MAC_GENERIC ||
203 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205 
206 /**
207  * ice_is_pf_c827 - check if pf contains c827 phy
208  * @hw: pointer to the hw struct
209  *
210  * Return: true if the device has c827 phy.
211  */
212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 	struct ice_aqc_get_link_topo cmd = {};
215 	u8 node_part_number;
216 	u16 node_handle;
217 	int status;
218 
219 	if (hw->mac_type != ICE_MAC_E810)
220 		return false;
221 
222 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 		return true;
224 
225 	cmd.addr.topo_params.node_type_ctx =
226 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 	cmd.addr.topo_params.index = 0;
229 
230 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 					 &node_handle);
232 
233 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 		return false;
235 
236 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 		return true;
238 
239 	return false;
240 }
241 
242 /**
243  * ice_clear_pf_cfg - Clear PF configuration
244  * @hw: pointer to the hardware structure
245  *
246  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247  * configuration, flow director filters, etc.).
248  */
249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 	struct libie_aq_desc desc;
252 
253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254 
255 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257 
258 /**
259  * ice_aq_manage_mac_read - manage MAC address read command
260  * @hw: pointer to the HW struct
261  * @buf: a virtual buffer to hold the manage MAC read response
262  * @buf_size: Size of the virtual buffer
263  * @cd: pointer to command details structure or NULL
264  *
265  * This function is used to return per PF station MAC address (0x0107).
266  * NOTE: Upon successful completion of this command, MAC address information
267  * is returned in user specified buffer. Please interpret user specified
268  * buffer as "manage_mac_read" response.
269  * Response such as various MAC addresses are stored in HW struct (port.mac)
270  * ice_discover_dev_caps is expected to be called before this function is
271  * called.
272  */
273 static int
274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 		       struct ice_sq_cd *cd)
276 {
277 	struct ice_aqc_manage_mac_read_resp *resp;
278 	struct ice_aqc_manage_mac_read *cmd;
279 	struct libie_aq_desc desc;
280 	int status;
281 	u16 flags;
282 	u8 i;
283 
284 	cmd = libie_aq_raw(&desc);
285 
286 	if (buf_size < sizeof(*resp))
287 		return -EINVAL;
288 
289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290 
291 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 	if (status)
293 		return status;
294 
295 	resp = buf;
296 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297 
298 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 		return -EIO;
301 	}
302 
303 	/* A single port can report up to two (LAN and WoL) addresses */
304 	for (i = 0; i < cmd->num_addr; i++)
305 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 			ether_addr_copy(hw->port_info->mac.lan_addr,
307 					resp[i].mac_addr);
308 			ether_addr_copy(hw->port_info->mac.perm_addr,
309 					resp[i].mac_addr);
310 			break;
311 		}
312 
313 	return 0;
314 }
315 
316 /**
317  * ice_aq_get_phy_caps - returns PHY capabilities
318  * @pi: port information structure
319  * @qual_mods: report qualified modules
320  * @report_mode: report mode capabilities
321  * @pcaps: structure for PHY capabilities to be filled
322  * @cd: pointer to command details structure or NULL
323  *
324  * Returns the various PHY capabilities supported on the Port (0x0600)
325  */
326 int
327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 		    struct ice_aqc_get_phy_caps_data *pcaps,
329 		    struct ice_sq_cd *cd)
330 {
331 	struct ice_aqc_get_phy_caps *cmd;
332 	u16 pcaps_size = sizeof(*pcaps);
333 	struct libie_aq_desc desc;
334 	const char *prefix;
335 	struct ice_hw *hw;
336 	int status;
337 
338 	cmd = libie_aq_raw(&desc);
339 
340 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 		return -EINVAL;
342 	hw = pi->hw;
343 
344 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 	    !ice_fw_supports_report_dflt_cfg(hw))
346 		return -EINVAL;
347 
348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349 
350 	if (qual_mods)
351 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352 
353 	cmd->param0 |= cpu_to_le16(report_mode);
354 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355 
356 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357 
358 	switch (report_mode) {
359 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 		prefix = "phy_caps_media";
361 		break;
362 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 		prefix = "phy_caps_no_media";
364 		break;
365 	case ICE_AQC_REPORT_ACTIVE_CFG:
366 		prefix = "phy_caps_active";
367 		break;
368 	case ICE_AQC_REPORT_DFLT_CFG:
369 		prefix = "phy_caps_default";
370 		break;
371 	default:
372 		prefix = "phy_caps_invalid";
373 	}
374 
375 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 			  le64_to_cpu(pcaps->phy_type_high), prefix);
377 
378 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 		  prefix, report_mode);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 		  pcaps->low_power_ctrl_an);
383 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 		  pcaps->eee_cap);
385 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 		  pcaps->eeer_value);
387 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 		  pcaps->link_fec_options);
389 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 		  prefix, pcaps->module_compliance_enforcement);
391 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 		  prefix, pcaps->extended_compliance_code);
393 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 		  pcaps->module_type[0]);
395 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 		  pcaps->module_type[1]);
397 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 		  pcaps->module_type[2]);
399 
400 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 		       sizeof(pi->phy.link_info.module_type));
405 	}
406 
407 	return status;
408 }
409 
410 /**
411  * ice_aq_get_link_topo_handle - get link topology node return status
412  * @pi: port information structure
413  * @node_type: requested node type
414  * @cd: pointer to command details structure or NULL
415  *
416  * Get link topology node return status for specified node type (0x06E0)
417  *
418  * Node type cage can be used to determine if cage is present. If AQC
419  * returns error (ENOENT), then no cage present. If no cage present, then
420  * connection type is backplane or BASE-T.
421  */
422 static int
423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 			    struct ice_sq_cd *cd)
425 {
426 	struct ice_aqc_get_link_topo *cmd;
427 	struct libie_aq_desc desc;
428 
429 	cmd = libie_aq_raw(&desc);
430 
431 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432 
433 	cmd->addr.topo_params.node_type_ctx =
434 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436 
437 	/* set node type */
438 	cmd->addr.topo_params.node_type_ctx |=
439 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440 
441 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443 
444 /**
445  * ice_aq_get_netlist_node
446  * @hw: pointer to the hw struct
447  * @cmd: get_link_topo AQ structure
448  * @node_part_number: output node part number if node found
449  * @node_handle: output node handle parameter if node found
450  *
451  * Get netlist node handle.
452  */
453 int
454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 			u8 *node_part_number, u16 *node_handle)
456 {
457 	struct ice_aqc_get_link_topo *resp;
458 	struct libie_aq_desc desc;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 	resp = libie_aq_raw(&desc);
462 	*resp = *cmd;
463 
464 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 		return -EINTR;
466 
467 	if (node_handle)
468 		*node_handle = le16_to_cpu(resp->addr.handle);
469 	if (node_part_number)
470 		*node_part_number = resp->node_part_num;
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_find_netlist_node
477  * @hw: pointer to the hw struct
478  * @node_type: type of netlist node to look for
479  * @ctx: context of the search
480  * @node_part_number: node part number to look for
481  * @node_handle: output parameter if node found - optional
482  *
483  * Scan the netlist for a node handle of the given node type and part number.
484  *
485  * If node_handle is non-NULL it will be modified on function exit. It is only
486  * valid if the function returns zero, and should be ignored on any non-zero
487  * return value.
488  *
489  * Return:
490  * * 0 if the node is found,
491  * * -ENOENT if no handle was found,
492  * * negative error code on failure to access the AQ.
493  */
494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 				 u8 node_part_number, u16 *node_handle)
496 {
497 	u8 idx;
498 
499 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 		struct ice_aqc_get_link_topo cmd = {};
501 		u8 rec_node_part_number;
502 		int status;
503 
504 		cmd.addr.topo_params.node_type_ctx =
505 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 		cmd.addr.topo_params.index = idx;
508 
509 		status = ice_aq_get_netlist_node(hw, &cmd,
510 						 &rec_node_part_number,
511 						 node_handle);
512 		if (status)
513 			return status;
514 
515 		if (rec_node_part_number == node_part_number)
516 			return 0;
517 	}
518 
519 	return -ENOENT;
520 }
521 
522 /**
523  * ice_is_media_cage_present
524  * @pi: port information structure
525  *
526  * Returns true if media cage is present, else false. If no cage, then
527  * media type is backplane or BASE-T.
528  */
529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 	/* Node type cage can be used to determine if cage is present. If AQC
532 	 * returns error (ENOENT), then no cage present. If no cage present then
533 	 * connection type is backplane or BASE-T.
534 	 */
535 	return !ice_aq_get_link_topo_handle(pi,
536 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 					    NULL);
538 }
539 
540 /**
541  * ice_get_media_type - Gets media type
542  * @pi: port information structure
543  */
544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 	struct ice_link_status *hw_link_info;
547 
548 	if (!pi)
549 		return ICE_MEDIA_UNKNOWN;
550 
551 	hw_link_info = &pi->phy.link_info;
552 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 		/* If more than one media type is selected, report unknown */
554 		return ICE_MEDIA_UNKNOWN;
555 
556 	if (hw_link_info->phy_type_low) {
557 		/* 1G SGMII is a special case where some DA cable PHYs
558 		 * may show this as an option when it really shouldn't
559 		 * be since SGMII is meant to be between a MAC and a PHY
560 		 * in a backplane. Try to detect this case and handle it
561 		 */
562 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 			return ICE_MEDIA_DA;
568 
569 		switch (hw_link_info->phy_type_low) {
570 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 			return ICE_MEDIA_FIBER;
597 		case ICE_PHY_TYPE_LOW_100BASE_TX:
598 		case ICE_PHY_TYPE_LOW_1000BASE_T:
599 		case ICE_PHY_TYPE_LOW_2500BASE_T:
600 		case ICE_PHY_TYPE_LOW_5GBASE_T:
601 		case ICE_PHY_TYPE_LOW_10GBASE_T:
602 		case ICE_PHY_TYPE_LOW_25GBASE_T:
603 			return ICE_MEDIA_BASET;
604 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 			return ICE_MEDIA_DA;
615 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 		case ICE_PHY_TYPE_LOW_50G_AUI2:
619 		case ICE_PHY_TYPE_LOW_50G_AUI1:
620 		case ICE_PHY_TYPE_LOW_100G_AUI4:
621 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 			if (ice_is_media_cage_present(pi))
623 				return ICE_MEDIA_DA;
624 			fallthrough;
625 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 		case ICE_PHY_TYPE_LOW_2500BASE_X:
628 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 			return ICE_MEDIA_BACKPLANE;
639 		}
640 	} else {
641 		switch (hw_link_info->phy_type_high) {
642 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 			if (ice_is_media_cage_present(pi))
645 				return ICE_MEDIA_DA;
646 			fallthrough;
647 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 			return ICE_MEDIA_BACKPLANE;
649 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 			return ICE_MEDIA_FIBER;
652 		}
653 	}
654 	return ICE_MEDIA_UNKNOWN;
655 }
656 
657 /**
658  * ice_get_link_status_datalen
659  * @hw: pointer to the HW struct
660  *
661  * Returns datalength for the Get Link Status AQ command, which is bigger for
662  * newer adapter families handled by ice driver.
663  */
664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 	switch (hw->mac_type) {
667 	case ICE_MAC_E830:
668 		return ICE_AQC_LS_DATA_SIZE_V2;
669 	case ICE_MAC_E810:
670 	default:
671 		return ICE_AQC_LS_DATA_SIZE_V1;
672 	}
673 }
674 
675 /**
676  * ice_aq_get_link_info
677  * @pi: port information structure
678  * @ena_lse: enable/disable LinkStatusEvent reporting
679  * @link: pointer to link status structure - optional
680  * @cd: pointer to command details structure or NULL
681  *
682  * Get Link Status (0x607). Returns the link status of the adapter.
683  */
684 int
685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 		     struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 	struct ice_aqc_get_link_status_data link_data = { 0 };
689 	struct ice_aqc_get_link_status *resp;
690 	struct ice_link_status *li_old, *li;
691 	enum ice_media_type *hw_media_type;
692 	struct ice_fc_info *hw_fc_info;
693 	struct libie_aq_desc desc;
694 	bool tx_pause, rx_pause;
695 	struct ice_hw *hw;
696 	u16 cmd_flags;
697 	int status;
698 
699 	if (!pi)
700 		return -EINVAL;
701 	hw = pi->hw;
702 	li_old = &pi->phy.link_info_old;
703 	hw_media_type = &pi->phy.media_type;
704 	li = &pi->phy.link_info;
705 	hw_fc_info = &pi->fc;
706 
707 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 	resp = libie_aq_raw(&desc);
710 	resp->cmd_flags = cpu_to_le16(cmd_flags);
711 	resp->lport_num = pi->lport;
712 
713 	status = ice_aq_send_cmd(hw, &desc, &link_data,
714 				 ice_get_link_status_datalen(hw), cd);
715 	if (status)
716 		return status;
717 
718 	/* save off old link status information */
719 	*li_old = *li;
720 
721 	/* update current link status information */
722 	li->link_speed = le16_to_cpu(link_data.link_speed);
723 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 	*hw_media_type = ice_get_media_type(pi);
726 	li->link_info = link_data.link_info;
727 	li->link_cfg_err = link_data.link_cfg_err;
728 	li->an_info = link_data.an_info;
729 	li->ext_info = link_data.ext_info;
730 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 	li->topo_media_conflict = link_data.topo_media_conflict;
733 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 				      ICE_AQ_CFG_PACING_TYPE_M);
735 
736 	/* update fc info */
737 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 	if (tx_pause && rx_pause)
740 		hw_fc_info->current_mode = ICE_FC_FULL;
741 	else if (tx_pause)
742 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 	else if (rx_pause)
744 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 	else
746 		hw_fc_info->current_mode = ICE_FC_NONE;
747 
748 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749 
750 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
752 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
753 		  (unsigned long long)li->phy_type_low);
754 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
755 		  (unsigned long long)li->phy_type_high);
756 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
757 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
758 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
759 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
760 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
761 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
762 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
763 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
764 		  li->max_frame_size);
765 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
766 
767 	/* save link status information */
768 	if (link)
769 		*link = *li;
770 
771 	/* flag cleared so calling functions don't call AQ again */
772 	pi->phy.get_link_info = false;
773 
774 	return 0;
775 }
776 
777 /**
778  * ice_fill_tx_timer_and_fc_thresh
779  * @hw: pointer to the HW struct
780  * @cmd: pointer to MAC cfg structure
781  *
782  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783  * descriptor
784  */
785 static void
786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 				struct ice_aqc_set_mac_cfg *cmd)
788 {
789 	u32 val, fc_thres_m;
790 
791 	/* We read back the transmit timer and FC threshold value of
792 	 * LFC. Thus, we will use index =
793 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 	 *
795 	 * Also, because we are operating on transmit timer and FC
796 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 	 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800 
801 	if (hw->mac_type == ICE_MAC_E830) {
802 		/* Retrieve the transmit timer */
803 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 		cmd->tx_tmr_value =
805 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806 
807 		/* Retrieve the fc threshold */
808 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 	} else {
811 		/* Retrieve the transmit timer */
812 		val = rd32(hw,
813 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 		cmd->tx_tmr_value =
815 			le16_encode_bits(val,
816 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817 
818 		/* Retrieve the fc threshold */
819 		val = rd32(hw,
820 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 	}
823 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825 
826 /**
827  * ice_aq_set_mac_cfg
828  * @hw: pointer to the HW struct
829  * @max_frame_size: Maximum Frame Size to be supported
830  * @cd: pointer to command details structure or NULL
831  *
832  * Set MAC configuration (0x0603)
833  */
834 int
835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 	struct ice_aqc_set_mac_cfg *cmd;
838 	struct libie_aq_desc desc;
839 
840 	cmd = libie_aq_raw(&desc);
841 
842 	if (max_frame_size == 0)
843 		return -EINVAL;
844 
845 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846 
847 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
848 
849 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850 
851 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853 
854 /**
855  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856  * @hw: pointer to the HW struct
857  */
858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 	struct ice_switch_info *sw;
861 	int status;
862 
863 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 				       sizeof(*hw->switch_info), GFP_KERNEL);
865 	sw = hw->switch_info;
866 
867 	if (!sw)
868 		return -ENOMEM;
869 
870 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 	sw->prof_res_bm_init = 0;
872 
873 	/* Initialize recipe count with default recipes read from NVM */
874 	sw->recp_cnt = ICE_SW_LKUP_LAST;
875 
876 	status = ice_init_def_sw_recp(hw);
877 	if (status) {
878 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 		return status;
880 	}
881 	return 0;
882 }
883 
884 /**
885  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886  * @hw: pointer to the HW struct
887  */
888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 	struct ice_switch_info *sw = hw->switch_info;
891 	struct ice_vsi_list_map_info *v_pos_map;
892 	struct ice_vsi_list_map_info *v_tmp_map;
893 	struct ice_sw_recipe *recps;
894 	u8 i;
895 
896 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 				 list_entry) {
898 		list_del(&v_pos_map->list_entry);
899 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 	}
901 	recps = sw->recp_list;
902 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 		recps[i].root_rid = i;
904 
905 		if (recps[i].adv_rule) {
906 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908 
909 			mutex_destroy(&recps[i].filt_rule_lock);
910 			list_for_each_entry_safe(lst_itr, tmp_entry,
911 						 &recps[i].filt_rules,
912 						 list_entry) {
913 				list_del(&lst_itr->list_entry);
914 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 			}
917 		} else {
918 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919 
920 			mutex_destroy(&recps[i].filt_rule_lock);
921 			list_for_each_entry_safe(lst_itr, tmp_entry,
922 						 &recps[i].filt_rules,
923 						 list_entry) {
924 				list_del(&lst_itr->list_entry);
925 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 			}
927 		}
928 	}
929 	ice_rm_all_sw_replay_rule_info(hw);
930 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 	devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933 
934 /**
935  * ice_get_itr_intrl_gran
936  * @hw: pointer to the HW struct
937  *
938  * Determines the ITR/INTRL granularities based on the maximum aggregate
939  * bandwidth according to the device's configuration during power-on.
940  */
941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 				  rd32(hw, GL_PWR_MODE_CTL));
945 
946 	switch (max_agg_bw) {
947 	case ICE_MAX_AGG_BW_200G:
948 	case ICE_MAX_AGG_BW_100G:
949 	case ICE_MAX_AGG_BW_50G:
950 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 		break;
953 	case ICE_MAX_AGG_BW_25G:
954 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 		break;
957 	}
958 }
959 
960 /**
961  * ice_wait_for_fw - wait for full FW readiness
962  * @hw: pointer to the hardware structure
963  * @timeout: milliseconds that can elapse before timing out
964  *
965  * Return: 0 on success, -ETIMEDOUT on timeout.
966  */
967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 	int fw_loading;
970 	u32 elapsed = 0;
971 
972 	while (elapsed <= timeout) {
973 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974 
975 		/* firmware was not yet loaded, we have to wait more */
976 		if (fw_loading) {
977 			elapsed += 100;
978 			msleep(100);
979 			continue;
980 		}
981 		return 0;
982 	}
983 
984 	return -ETIMEDOUT;
985 }
986 
987 /**
988  * ice_init_hw - main hardware initialization routine
989  * @hw: pointer to the hardware structure
990  */
991 int ice_init_hw(struct ice_hw *hw)
992 {
993 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
994 	void *mac_buf __free(kfree) = NULL;
995 	u16 mac_buf_len;
996 	int status;
997 
998 	/* Set MAC type based on DeviceID */
999 	status = ice_set_mac_type(hw);
1000 	if (status)
1001 		return status;
1002 
1003 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1004 
1005 	status = ice_reset(hw, ICE_RESET_PFR);
1006 	if (status)
1007 		return status;
1008 
1009 	ice_get_itr_intrl_gran(hw);
1010 
1011 	status = ice_create_all_ctrlq(hw);
1012 	if (status)
1013 		goto err_unroll_cqinit;
1014 
1015 	status = ice_fwlog_init(hw);
1016 	if (status)
1017 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1018 			  status);
1019 
1020 	status = ice_clear_pf_cfg(hw);
1021 	if (status)
1022 		goto err_unroll_cqinit;
1023 
1024 	/* Set bit to enable Flow Director filters */
1025 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1026 	INIT_LIST_HEAD(&hw->fdir_list_head);
1027 
1028 	ice_clear_pxe_mode(hw);
1029 
1030 	status = ice_init_nvm(hw);
1031 	if (status)
1032 		goto err_unroll_cqinit;
1033 
1034 	status = ice_get_caps(hw);
1035 	if (status)
1036 		goto err_unroll_cqinit;
1037 
1038 	if (!hw->port_info)
1039 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1040 					     sizeof(*hw->port_info),
1041 					     GFP_KERNEL);
1042 	if (!hw->port_info) {
1043 		status = -ENOMEM;
1044 		goto err_unroll_cqinit;
1045 	}
1046 
1047 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1048 	/* set the back pointer to HW */
1049 	hw->port_info->hw = hw;
1050 
1051 	/* Initialize port_info struct with switch configuration data */
1052 	status = ice_get_initial_sw_cfg(hw);
1053 	if (status)
1054 		goto err_unroll_alloc;
1055 
1056 	hw->evb_veb = true;
1057 
1058 	/* init xarray for identifying scheduling nodes uniquely */
1059 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1060 
1061 	/* Query the allocated resources for Tx scheduler */
1062 	status = ice_sched_query_res_alloc(hw);
1063 	if (status) {
1064 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1065 		goto err_unroll_alloc;
1066 	}
1067 	ice_sched_get_psm_clk_freq(hw);
1068 
1069 	/* Initialize port_info struct with scheduler data */
1070 	status = ice_sched_init_port(hw->port_info);
1071 	if (status)
1072 		goto err_unroll_sched;
1073 
1074 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1075 	if (!pcaps) {
1076 		status = -ENOMEM;
1077 		goto err_unroll_sched;
1078 	}
1079 
1080 	/* Initialize port_info struct with PHY capabilities */
1081 	status = ice_aq_get_phy_caps(hw->port_info, false,
1082 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1083 				     NULL);
1084 	if (status)
1085 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1086 			 status);
1087 
1088 	/* Initialize port_info struct with link information */
1089 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1090 	if (status)
1091 		goto err_unroll_sched;
1092 
1093 	/* need a valid SW entry point to build a Tx tree */
1094 	if (!hw->sw_entry_point_layer) {
1095 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1096 		status = -EIO;
1097 		goto err_unroll_sched;
1098 	}
1099 	INIT_LIST_HEAD(&hw->agg_list);
1100 	/* Initialize max burst size */
1101 	if (!hw->max_burst_size)
1102 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1103 
1104 	status = ice_init_fltr_mgmt_struct(hw);
1105 	if (status)
1106 		goto err_unroll_sched;
1107 
1108 	/* Get MAC information */
1109 	/* A single port can report up to two (LAN and WoL) addresses */
1110 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1111 			  GFP_KERNEL);
1112 	if (!mac_buf) {
1113 		status = -ENOMEM;
1114 		goto err_unroll_fltr_mgmt_struct;
1115 	}
1116 
1117 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1118 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1119 
1120 	if (status)
1121 		goto err_unroll_fltr_mgmt_struct;
1122 	/* enable jumbo frame support at MAC level */
1123 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1124 	if (status)
1125 		goto err_unroll_fltr_mgmt_struct;
1126 	/* Obtain counter base index which would be used by flow director */
1127 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1128 	if (status)
1129 		goto err_unroll_fltr_mgmt_struct;
1130 	status = ice_init_hw_tbls(hw);
1131 	if (status)
1132 		goto err_unroll_fltr_mgmt_struct;
1133 	mutex_init(&hw->tnl_lock);
1134 	ice_init_chk_recipe_reuse_support(hw);
1135 
1136 	/* Some cards require longer initialization times
1137 	 * due to necessity of loading FW from an external source.
1138 	 * This can take even half a minute.
1139 	 */
1140 	if (ice_is_pf_c827(hw)) {
1141 		status = ice_wait_for_fw(hw, 30000);
1142 		if (status) {
1143 			dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1144 			goto err_unroll_fltr_mgmt_struct;
1145 		}
1146 	}
1147 
1148 	hw->lane_num = ice_get_phy_lane_number(hw);
1149 
1150 	return 0;
1151 err_unroll_fltr_mgmt_struct:
1152 	ice_cleanup_fltr_mgmt_struct(hw);
1153 err_unroll_sched:
1154 	ice_sched_cleanup_all(hw);
1155 err_unroll_alloc:
1156 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1157 err_unroll_cqinit:
1158 	ice_destroy_all_ctrlq(hw);
1159 	return status;
1160 }
1161 
1162 /**
1163  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1164  * @hw: pointer to the hardware structure
1165  *
1166  * This should be called only during nominal operation, not as a result of
1167  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1168  * applicable initializations if it fails for any reason.
1169  */
1170 void ice_deinit_hw(struct ice_hw *hw)
1171 {
1172 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1173 	ice_cleanup_fltr_mgmt_struct(hw);
1174 
1175 	ice_sched_cleanup_all(hw);
1176 	ice_sched_clear_agg(hw);
1177 	ice_free_seg(hw);
1178 	ice_free_hw_tbls(hw);
1179 	mutex_destroy(&hw->tnl_lock);
1180 
1181 	ice_fwlog_deinit(hw);
1182 	ice_destroy_all_ctrlq(hw);
1183 
1184 	/* Clear VSI contexts if not already cleared */
1185 	ice_clear_all_vsi_ctx(hw);
1186 }
1187 
1188 /**
1189  * ice_check_reset - Check to see if a global reset is complete
1190  * @hw: pointer to the hardware structure
1191  */
1192 int ice_check_reset(struct ice_hw *hw)
1193 {
1194 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1195 
1196 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1197 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1198 	 * Add 1sec for outstanding AQ commands that can take a long time.
1199 	 */
1200 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1201 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1202 
1203 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1204 		mdelay(100);
1205 		reg = rd32(hw, GLGEN_RSTAT);
1206 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1207 			break;
1208 	}
1209 
1210 	if (cnt == grst_timeout) {
1211 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1212 		return -EIO;
1213 	}
1214 
1215 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1216 				 GLNVM_ULD_PCIER_DONE_1_M |\
1217 				 GLNVM_ULD_CORER_DONE_M |\
1218 				 GLNVM_ULD_GLOBR_DONE_M |\
1219 				 GLNVM_ULD_POR_DONE_M |\
1220 				 GLNVM_ULD_POR_DONE_1_M |\
1221 				 GLNVM_ULD_PCIER_DONE_2_M)
1222 
1223 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1224 					  GLNVM_ULD_PE_DONE_M : 0);
1225 
1226 	/* Device is Active; check Global Reset processes are done */
1227 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1228 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1229 		if (reg == uld_mask) {
1230 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1231 			break;
1232 		}
1233 		mdelay(10);
1234 	}
1235 
1236 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1237 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1238 			  reg);
1239 		return -EIO;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 /**
1246  * ice_pf_reset - Reset the PF
1247  * @hw: pointer to the hardware structure
1248  *
1249  * If a global reset has been triggered, this function checks
1250  * for its completion and then issues the PF reset
1251  */
1252 static int ice_pf_reset(struct ice_hw *hw)
1253 {
1254 	u32 cnt, reg;
1255 
1256 	/* If at function entry a global reset was already in progress, i.e.
1257 	 * state is not 'device active' or any of the reset done bits are not
1258 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1259 	 * global reset is done.
1260 	 */
1261 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1262 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1263 		/* poll on global reset currently in progress until done */
1264 		if (ice_check_reset(hw))
1265 			return -EIO;
1266 
1267 		return 0;
1268 	}
1269 
1270 	/* Reset the PF */
1271 	reg = rd32(hw, PFGEN_CTRL);
1272 
1273 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1274 
1275 	/* Wait for the PFR to complete. The wait time is the global config lock
1276 	 * timeout plus the PFR timeout which will account for a possible reset
1277 	 * that is occurring during a download package operation.
1278 	 */
1279 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1280 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1281 		reg = rd32(hw, PFGEN_CTRL);
1282 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1283 			break;
1284 
1285 		mdelay(1);
1286 	}
1287 
1288 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1289 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1290 		return -EIO;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * ice_reset - Perform different types of reset
1298  * @hw: pointer to the hardware structure
1299  * @req: reset request
1300  *
1301  * This function triggers a reset as specified by the req parameter.
1302  *
1303  * Note:
1304  * If anything other than a PF reset is triggered, PXE mode is restored.
1305  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1306  * interface has been restored in the rebuild flow.
1307  */
1308 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1309 {
1310 	u32 val = 0;
1311 
1312 	switch (req) {
1313 	case ICE_RESET_PFR:
1314 		return ice_pf_reset(hw);
1315 	case ICE_RESET_CORER:
1316 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1317 		val = GLGEN_RTRIG_CORER_M;
1318 		break;
1319 	case ICE_RESET_GLOBR:
1320 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1321 		val = GLGEN_RTRIG_GLOBR_M;
1322 		break;
1323 	default:
1324 		return -EINVAL;
1325 	}
1326 
1327 	val |= rd32(hw, GLGEN_RTRIG);
1328 	wr32(hw, GLGEN_RTRIG, val);
1329 	ice_flush(hw);
1330 
1331 	/* wait for the FW to be ready */
1332 	return ice_check_reset(hw);
1333 }
1334 
1335 /**
1336  * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1337  * @hw: pointer to the hardware structure
1338  * @rxq_ctx: pointer to the packed Rx queue context
1339  * @rxq_index: the index of the Rx queue
1340  */
1341 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1342 				   const ice_rxq_ctx_buf_t *rxq_ctx,
1343 				   u32 rxq_index)
1344 {
1345 	/* Copy each dword separately to HW */
1346 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1347 		u32 ctx = ((const u32 *)rxq_ctx)[i];
1348 
1349 		wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1350 
1351 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1352 	}
1353 }
1354 
1355 /**
1356  * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1357  * @hw: pointer to the hardware structure
1358  * @rxq_ctx: pointer to the packed Rx queue context
1359  * @rxq_index: the index of the Rx queue
1360  */
1361 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1362 				     ice_rxq_ctx_buf_t *rxq_ctx,
1363 				     u32 rxq_index)
1364 {
1365 	u32 *ctx = (u32 *)rxq_ctx;
1366 
1367 	/* Copy each dword separately from HW */
1368 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1369 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1370 
1371 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1372 	}
1373 }
1374 
1375 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1376 	PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1377 
1378 /* LAN Rx Queue Context */
1379 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1380 				 /* Field		Width	LSB */
1381 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1382 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1383 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1384 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1385 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1386 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1387 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1388 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1389 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1390 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1391 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1392 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1393 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1394 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1395 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1396 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1397 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1398 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1399 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1400 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1401 };
1402 
1403 /**
1404  * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1405  * @ctx: the Rx queue context to pack
1406  * @buf: the HW buffer to pack into
1407  *
1408  * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1409  * bit-packed HW layout.
1410  */
1411 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1412 			     ice_rxq_ctx_buf_t *buf)
1413 {
1414 	pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1415 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1416 }
1417 
1418 /**
1419  * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1420  * @buf: the HW buffer to unpack from
1421  * @ctx: the Rx queue context to unpack
1422  *
1423  * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1424  * structure.
1425  */
1426 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1427 			       struct ice_rlan_ctx *ctx)
1428 {
1429 	unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1430 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1431 }
1432 
1433 /**
1434  * ice_write_rxq_ctx - Write Rx Queue context to hardware
1435  * @hw: pointer to the hardware structure
1436  * @rlan_ctx: pointer to the unpacked Rx queue context
1437  * @rxq_index: the index of the Rx queue
1438  *
1439  * Pack the sparse Rx Queue context into dense hardware format and write it
1440  * into the HW register space.
1441  *
1442  * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1443  */
1444 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1445 		      u32 rxq_index)
1446 {
1447 	ice_rxq_ctx_buf_t buf = {};
1448 
1449 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1450 		return -EINVAL;
1451 
1452 	ice_pack_rxq_ctx(rlan_ctx, &buf);
1453 	ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1454 
1455 	return 0;
1456 }
1457 
1458 /**
1459  * ice_read_rxq_ctx - Read Rx queue context from HW
1460  * @hw: pointer to the hardware structure
1461  * @rlan_ctx: pointer to the Rx queue context
1462  * @rxq_index: the index of the Rx queue
1463  *
1464  * Read the Rx queue context from the hardware registers, and unpack it into
1465  * the sparse Rx queue context structure.
1466  *
1467  * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1468  */
1469 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1470 		     u32 rxq_index)
1471 {
1472 	ice_rxq_ctx_buf_t buf = {};
1473 
1474 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1475 		return -EINVAL;
1476 
1477 	ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1478 	ice_unpack_rxq_ctx(&buf, rlan_ctx);
1479 
1480 	return 0;
1481 }
1482 
1483 /* LAN Tx Queue Context */
1484 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1485 				    /* Field			Width	LSB */
1486 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1487 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1488 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1489 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1490 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1491 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1492 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1493 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1494 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1495 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1496 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1497 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1498 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1499 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1500 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1501 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1502 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1503 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1504 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1505 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1506 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1507 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1508 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1509 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1510 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1511 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1512 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1513 };
1514 
1515 /**
1516  * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1517  * @ctx: the Tx queue context to pack
1518  * @buf: the Admin Queue HW buffer to pack into
1519  *
1520  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1521  * bit-packed Admin Queue layout.
1522  */
1523 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1524 {
1525 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1526 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1527 }
1528 
1529 /**
1530  * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1531  * @ctx: the Tx queue context to pack
1532  * @buf: the HW buffer to pack into
1533  *
1534  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1535  * bit-packed HW layout, including the internal data portion.
1536  */
1537 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1538 				  ice_txq_ctx_buf_full_t *buf)
1539 {
1540 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1541 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1542 }
1543 
1544 /**
1545  * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1546  * @buf: the HW buffer to unpack from
1547  * @ctx: the Tx queue context to unpack
1548  *
1549  * Unpack the Tx queue context from the HW buffer (including the full internal
1550  * state) into the CPU-friendly structure.
1551  */
1552 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1553 				    struct ice_tlan_ctx *ctx)
1554 {
1555 	unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1556 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1557 }
1558 
1559 /**
1560  * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1561  * @hw: pointer to the hardware structure
1562  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1563  * @txq_index: the index of the Tx queue
1564  *
1565  * Copy Tx Queue context from HW register space to dense structure
1566  */
1567 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1568 				     ice_txq_ctx_buf_full_t *txq_ctx,
1569 				     u32 txq_index)
1570 {
1571 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1572 	u32 *ctx = (u32 *)txq_ctx;
1573 	u32 txq_base, reg;
1574 
1575 	/* Get Tx queue base within card space */
1576 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1577 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1578 
1579 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1580 			 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1581 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1582 			 txq_base + txq_index) |
1583 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1584 
1585 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1586 	 * context interface concurrently.
1587 	 */
1588 	spin_lock(&pf->adapter->txq_ctx_lock);
1589 
1590 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1591 	ice_flush(hw);
1592 
1593 	/* Copy each dword separately from HW */
1594 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1595 		*ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1596 
1597 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1598 	}
1599 
1600 	spin_unlock(&pf->adapter->txq_ctx_lock);
1601 }
1602 
1603 /**
1604  * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1605  * @hw: pointer to the hardware structure
1606  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1607  * @txq_index: the index of the Tx queue
1608  */
1609 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1610 				   const ice_txq_ctx_buf_full_t *txq_ctx,
1611 				   u32 txq_index)
1612 {
1613 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1614 	u32 txq_base, reg;
1615 
1616 	/* Get Tx queue base within card space */
1617 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1618 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1619 
1620 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1621 			 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1622 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1623 			 txq_base + txq_index) |
1624 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1625 
1626 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1627 	 * context interface concurrently.
1628 	 */
1629 	spin_lock(&pf->adapter->txq_ctx_lock);
1630 
1631 	/* Copy each dword separately to HW */
1632 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1633 		u32 ctx = ((const u32 *)txq_ctx)[i];
1634 
1635 		wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1636 
1637 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1638 	}
1639 
1640 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1641 	ice_flush(hw);
1642 
1643 	spin_unlock(&pf->adapter->txq_ctx_lock);
1644 }
1645 
1646 /**
1647  * ice_read_txq_ctx - Read Tx queue context from HW
1648  * @hw: pointer to the hardware structure
1649  * @tlan_ctx: pointer to the Tx queue context
1650  * @txq_index: the index of the Tx queue
1651  *
1652  * Read the Tx queue context from the HW registers, then unpack it into the
1653  * ice_tlan_ctx structure for use.
1654  *
1655  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1656  */
1657 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1658 		     u32 txq_index)
1659 {
1660 	ice_txq_ctx_buf_full_t buf = {};
1661 
1662 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1663 		return -EINVAL;
1664 
1665 	ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1666 	ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * ice_write_txq_ctx - Write Tx queue context to HW
1673  * @hw: pointer to the hardware structure
1674  * @tlan_ctx: pointer to the Tx queue context
1675  * @txq_index: the index of the Tx queue
1676  *
1677  * Pack the Tx queue context into the dense HW layout, then write it into the
1678  * HW registers.
1679  *
1680  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1681  */
1682 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1683 		      u32 txq_index)
1684 {
1685 	ice_txq_ctx_buf_full_t buf = {};
1686 
1687 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1688 		return -EINVAL;
1689 
1690 	ice_pack_txq_ctx_full(tlan_ctx, &buf);
1691 	ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1692 
1693 	return 0;
1694 }
1695 
1696 /* Sideband Queue command wrappers */
1697 
1698 /**
1699  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1700  * @hw: pointer to the HW struct
1701  * @desc: descriptor describing the command
1702  * @buf: buffer to use for indirect commands (NULL for direct commands)
1703  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1704  * @cd: pointer to command details structure
1705  */
1706 static int
1707 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1708 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1709 {
1710 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1711 			       (struct libie_aq_desc *)desc, buf, buf_size, cd);
1712 }
1713 
1714 /**
1715  * ice_sbq_rw_reg - Fill Sideband Queue command
1716  * @hw: pointer to the HW struct
1717  * @in: message info to be filled in descriptor
1718  * @flags: control queue descriptor flags
1719  */
1720 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1721 {
1722 	struct ice_sbq_cmd_desc desc = {0};
1723 	struct ice_sbq_msg_req msg = {0};
1724 	u16 msg_len;
1725 	int status;
1726 
1727 	msg_len = sizeof(msg);
1728 
1729 	msg.dest_dev = in->dest_dev;
1730 	msg.opcode = in->opcode;
1731 	msg.flags = ICE_SBQ_MSG_FLAGS;
1732 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1733 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1734 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1735 
1736 	if (in->opcode)
1737 		msg.data = cpu_to_le32(in->data);
1738 	else
1739 		/* data read comes back in completion, so shorten the struct by
1740 		 * sizeof(msg.data)
1741 		 */
1742 		msg_len -= sizeof(msg.data);
1743 
1744 	desc.flags = cpu_to_le16(flags);
1745 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1746 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1747 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1748 	if (!status && !in->opcode)
1749 		in->data = le32_to_cpu
1750 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1751 	return status;
1752 }
1753 
1754 /* FW Admin Queue command wrappers */
1755 
1756 /* Software lock/mutex that is meant to be held while the Global Config Lock
1757  * in firmware is acquired by the software to prevent most (but not all) types
1758  * of AQ commands from being sent to FW
1759  */
1760 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1761 
1762 /**
1763  * ice_should_retry_sq_send_cmd
1764  * @opcode: AQ opcode
1765  *
1766  * Decide if we should retry the send command routine for the ATQ, depending
1767  * on the opcode.
1768  */
1769 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1770 {
1771 	switch (opcode) {
1772 	case ice_aqc_opc_get_link_topo:
1773 	case ice_aqc_opc_lldp_stop:
1774 	case ice_aqc_opc_lldp_start:
1775 	case ice_aqc_opc_lldp_filter_ctrl:
1776 		return true;
1777 	}
1778 
1779 	return false;
1780 }
1781 
1782 /**
1783  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1784  * @hw: pointer to the HW struct
1785  * @cq: pointer to the specific Control queue
1786  * @desc: prefilled descriptor describing the command
1787  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1788  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1789  * @cd: pointer to command details structure
1790  *
1791  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1792  * Queue if the EBUSY AQ error is returned.
1793  */
1794 static int
1795 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1796 		      struct libie_aq_desc *desc, void *buf, u16 buf_size,
1797 		      struct ice_sq_cd *cd)
1798 {
1799 	struct libie_aq_desc desc_cpy;
1800 	bool is_cmd_for_retry;
1801 	u8 idx = 0;
1802 	u16 opcode;
1803 	int status;
1804 
1805 	opcode = le16_to_cpu(desc->opcode);
1806 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1807 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1808 
1809 	if (is_cmd_for_retry) {
1810 		/* All retryable cmds are direct, without buf. */
1811 		WARN_ON(buf);
1812 
1813 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1814 	}
1815 
1816 	do {
1817 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1818 
1819 		if (!is_cmd_for_retry || !status ||
1820 		    hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1821 			break;
1822 
1823 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1824 
1825 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1826 
1827 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1828 
1829 	return status;
1830 }
1831 
1832 /**
1833  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1834  * @hw: pointer to the HW struct
1835  * @desc: descriptor describing the command
1836  * @buf: buffer to use for indirect commands (NULL for direct commands)
1837  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1838  * @cd: pointer to command details structure
1839  *
1840  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1841  */
1842 int
1843 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1844 		u16 buf_size, struct ice_sq_cd *cd)
1845 {
1846 	struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1847 	bool lock_acquired = false;
1848 	int status;
1849 
1850 	/* When a package download is in process (i.e. when the firmware's
1851 	 * Global Configuration Lock resource is held), only the Download
1852 	 * Package, Get Version, Get Package Info List, Upload Section,
1853 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1854 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1855 	 * Recipes to Profile Association, and Release Resource (with resource
1856 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1857 	 * must block until the package download completes and the Global Config
1858 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1859 	 */
1860 	switch (le16_to_cpu(desc->opcode)) {
1861 	case ice_aqc_opc_download_pkg:
1862 	case ice_aqc_opc_get_pkg_info_list:
1863 	case ice_aqc_opc_get_ver:
1864 	case ice_aqc_opc_upload_section:
1865 	case ice_aqc_opc_update_pkg:
1866 	case ice_aqc_opc_set_port_params:
1867 	case ice_aqc_opc_get_vlan_mode_parameters:
1868 	case ice_aqc_opc_set_vlan_mode_parameters:
1869 	case ice_aqc_opc_set_tx_topo:
1870 	case ice_aqc_opc_get_tx_topo:
1871 	case ice_aqc_opc_add_recipe:
1872 	case ice_aqc_opc_recipe_to_profile:
1873 	case ice_aqc_opc_get_recipe:
1874 	case ice_aqc_opc_get_recipe_to_profile:
1875 		break;
1876 	case ice_aqc_opc_release_res:
1877 		if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1878 			break;
1879 		fallthrough;
1880 	default:
1881 		mutex_lock(&ice_global_cfg_lock_sw);
1882 		lock_acquired = true;
1883 		break;
1884 	}
1885 
1886 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1887 	if (lock_acquired)
1888 		mutex_unlock(&ice_global_cfg_lock_sw);
1889 
1890 	return status;
1891 }
1892 
1893 /**
1894  * ice_aq_get_fw_ver
1895  * @hw: pointer to the HW struct
1896  * @cd: pointer to command details structure or NULL
1897  *
1898  * Get the firmware version (0x0001) from the admin queue commands
1899  */
1900 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1901 {
1902 	struct libie_aqc_get_ver *resp;
1903 	struct libie_aq_desc desc;
1904 	int status;
1905 
1906 	resp = &desc.params.get_ver;
1907 
1908 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1909 
1910 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1911 
1912 	if (!status) {
1913 		hw->fw_branch = resp->fw_branch;
1914 		hw->fw_maj_ver = resp->fw_major;
1915 		hw->fw_min_ver = resp->fw_minor;
1916 		hw->fw_patch = resp->fw_patch;
1917 		hw->fw_build = le32_to_cpu(resp->fw_build);
1918 		hw->api_branch = resp->api_branch;
1919 		hw->api_maj_ver = resp->api_major;
1920 		hw->api_min_ver = resp->api_minor;
1921 		hw->api_patch = resp->api_patch;
1922 	}
1923 
1924 	return status;
1925 }
1926 
1927 /**
1928  * ice_aq_send_driver_ver
1929  * @hw: pointer to the HW struct
1930  * @dv: driver's major, minor version
1931  * @cd: pointer to command details structure or NULL
1932  *
1933  * Send the driver version (0x0002) to the firmware
1934  */
1935 int
1936 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1937 		       struct ice_sq_cd *cd)
1938 {
1939 	struct libie_aqc_driver_ver *cmd;
1940 	struct libie_aq_desc desc;
1941 	u16 len;
1942 
1943 	cmd = &desc.params.driver_ver;
1944 
1945 	if (!dv)
1946 		return -EINVAL;
1947 
1948 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1949 
1950 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
1951 	cmd->major_ver = dv->major_ver;
1952 	cmd->minor_ver = dv->minor_ver;
1953 	cmd->build_ver = dv->build_ver;
1954 	cmd->subbuild_ver = dv->subbuild_ver;
1955 
1956 	len = 0;
1957 	while (len < sizeof(dv->driver_string) &&
1958 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1959 		len++;
1960 
1961 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1962 }
1963 
1964 /**
1965  * ice_aq_q_shutdown
1966  * @hw: pointer to the HW struct
1967  * @unloading: is the driver unloading itself
1968  *
1969  * Tell the Firmware that we're shutting down the AdminQ and whether
1970  * or not the driver is unloading as well (0x0003).
1971  */
1972 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1973 {
1974 	struct ice_aqc_q_shutdown *cmd;
1975 	struct libie_aq_desc desc;
1976 
1977 	cmd = libie_aq_raw(&desc);
1978 
1979 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1980 
1981 	if (unloading)
1982 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1983 
1984 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1985 }
1986 
1987 /**
1988  * ice_aq_req_res
1989  * @hw: pointer to the HW struct
1990  * @res: resource ID
1991  * @access: access type
1992  * @sdp_number: resource number
1993  * @timeout: the maximum time in ms that the driver may hold the resource
1994  * @cd: pointer to command details structure or NULL
1995  *
1996  * Requests common resource using the admin queue commands (0x0008).
1997  * When attempting to acquire the Global Config Lock, the driver can
1998  * learn of three states:
1999  *  1) 0 -         acquired lock, and can perform download package
2000  *  2) -EIO -      did not get lock, driver should fail to load
2001  *  3) -EALREADY - did not get lock, but another driver has
2002  *                 successfully downloaded the package; the driver does
2003  *                 not have to download the package and can continue
2004  *                 loading
2005  *
2006  * Note that if the caller is in an acquire lock, perform action, release lock
2007  * phase of operation, it is possible that the FW may detect a timeout and issue
2008  * a CORER. In this case, the driver will receive a CORER interrupt and will
2009  * have to determine its cause. The calling thread that is handling this flow
2010  * will likely get an error propagated back to it indicating the Download
2011  * Package, Update Package or the Release Resource AQ commands timed out.
2012  */
2013 static int
2014 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2015 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2016 	       struct ice_sq_cd *cd)
2017 {
2018 	struct libie_aqc_req_res *cmd_resp;
2019 	struct libie_aq_desc desc;
2020 	int status;
2021 
2022 	cmd_resp = &desc.params.res_owner;
2023 
2024 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2025 
2026 	cmd_resp->res_id = cpu_to_le16(res);
2027 	cmd_resp->access_type = cpu_to_le16(access);
2028 	cmd_resp->res_number = cpu_to_le32(sdp_number);
2029 	cmd_resp->timeout = cpu_to_le32(*timeout);
2030 	*timeout = 0;
2031 
2032 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2033 
2034 	/* The completion specifies the maximum time in ms that the driver
2035 	 * may hold the resource in the Timeout field.
2036 	 */
2037 
2038 	/* Global config lock response utilizes an additional status field.
2039 	 *
2040 	 * If the Global config lock resource is held by some other driver, the
2041 	 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2042 	 * and the timeout field indicates the maximum time the current owner
2043 	 * of the resource has to free it.
2044 	 */
2045 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2046 		if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2047 			*timeout = le32_to_cpu(cmd_resp->timeout);
2048 			return 0;
2049 		} else if (le16_to_cpu(cmd_resp->status) ==
2050 			   LIBIE_AQ_RES_GLBL_IN_PROG) {
2051 			*timeout = le32_to_cpu(cmd_resp->timeout);
2052 			return -EIO;
2053 		} else if (le16_to_cpu(cmd_resp->status) ==
2054 			   LIBIE_AQ_RES_GLBL_DONE) {
2055 			return -EALREADY;
2056 		}
2057 
2058 		/* invalid FW response, force a timeout immediately */
2059 		*timeout = 0;
2060 		return -EIO;
2061 	}
2062 
2063 	/* If the resource is held by some other driver, the command completes
2064 	 * with a busy return value and the timeout field indicates the maximum
2065 	 * time the current owner of the resource has to free it.
2066 	 */
2067 	if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2068 		*timeout = le32_to_cpu(cmd_resp->timeout);
2069 
2070 	return status;
2071 }
2072 
2073 /**
2074  * ice_aq_release_res
2075  * @hw: pointer to the HW struct
2076  * @res: resource ID
2077  * @sdp_number: resource number
2078  * @cd: pointer to command details structure or NULL
2079  *
2080  * release common resource using the admin queue commands (0x0009)
2081  */
2082 static int
2083 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2084 		   struct ice_sq_cd *cd)
2085 {
2086 	struct libie_aqc_req_res *cmd;
2087 	struct libie_aq_desc desc;
2088 
2089 	cmd = &desc.params.res_owner;
2090 
2091 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2092 
2093 	cmd->res_id = cpu_to_le16(res);
2094 	cmd->res_number = cpu_to_le32(sdp_number);
2095 
2096 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2097 }
2098 
2099 /**
2100  * ice_acquire_res
2101  * @hw: pointer to the HW structure
2102  * @res: resource ID
2103  * @access: access type (read or write)
2104  * @timeout: timeout in milliseconds
2105  *
2106  * This function will attempt to acquire the ownership of a resource.
2107  */
2108 int
2109 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2110 		enum ice_aq_res_access_type access, u32 timeout)
2111 {
2112 #define ICE_RES_POLLING_DELAY_MS	10
2113 	u32 delay = ICE_RES_POLLING_DELAY_MS;
2114 	u32 time_left = timeout;
2115 	int status;
2116 
2117 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2118 
2119 	/* A return code of -EALREADY means that another driver has
2120 	 * previously acquired the resource and performed any necessary updates;
2121 	 * in this case the caller does not obtain the resource and has no
2122 	 * further work to do.
2123 	 */
2124 	if (status == -EALREADY)
2125 		goto ice_acquire_res_exit;
2126 
2127 	if (status)
2128 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2129 
2130 	/* If necessary, poll until the current lock owner timeouts */
2131 	timeout = time_left;
2132 	while (status && timeout && time_left) {
2133 		mdelay(delay);
2134 		timeout = (timeout > delay) ? timeout - delay : 0;
2135 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2136 
2137 		if (status == -EALREADY)
2138 			/* lock free, but no work to do */
2139 			break;
2140 
2141 		if (!status)
2142 			/* lock acquired */
2143 			break;
2144 	}
2145 	if (status && status != -EALREADY)
2146 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2147 
2148 ice_acquire_res_exit:
2149 	if (status == -EALREADY) {
2150 		if (access == ICE_RES_WRITE)
2151 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2152 		else
2153 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2154 	}
2155 	return status;
2156 }
2157 
2158 /**
2159  * ice_release_res
2160  * @hw: pointer to the HW structure
2161  * @res: resource ID
2162  *
2163  * This function will release a resource using the proper Admin Command.
2164  */
2165 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2166 {
2167 	unsigned long timeout;
2168 	int status;
2169 
2170 	/* there are some rare cases when trying to release the resource
2171 	 * results in an admin queue timeout, so handle them correctly
2172 	 */
2173 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2174 	do {
2175 		status = ice_aq_release_res(hw, res, 0, NULL);
2176 		if (status != -EIO)
2177 			break;
2178 		usleep_range(1000, 2000);
2179 	} while (time_before(jiffies, timeout));
2180 }
2181 
2182 /**
2183  * ice_aq_alloc_free_res - command to allocate/free resources
2184  * @hw: pointer to the HW struct
2185  * @buf: Indirect buffer to hold data parameters and response
2186  * @buf_size: size of buffer for indirect commands
2187  * @opc: pass in the command opcode
2188  *
2189  * Helper function to allocate/free resources using the admin queue commands
2190  */
2191 int ice_aq_alloc_free_res(struct ice_hw *hw,
2192 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2193 			  enum ice_adminq_opc opc)
2194 {
2195 	struct ice_aqc_alloc_free_res_cmd *cmd;
2196 	struct libie_aq_desc desc;
2197 
2198 	cmd = libie_aq_raw(&desc);
2199 
2200 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2201 		return -EINVAL;
2202 
2203 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2204 
2205 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2206 
2207 	cmd->num_entries = cpu_to_le16(1);
2208 
2209 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2210 }
2211 
2212 /**
2213  * ice_alloc_hw_res - allocate resource
2214  * @hw: pointer to the HW struct
2215  * @type: type of resource
2216  * @num: number of resources to allocate
2217  * @btm: allocate from bottom
2218  * @res: pointer to array that will receive the resources
2219  */
2220 int
2221 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2222 {
2223 	struct ice_aqc_alloc_free_res_elem *buf;
2224 	u16 buf_len;
2225 	int status;
2226 
2227 	buf_len = struct_size(buf, elem, num);
2228 	buf = kzalloc(buf_len, GFP_KERNEL);
2229 	if (!buf)
2230 		return -ENOMEM;
2231 
2232 	/* Prepare buffer to allocate resource. */
2233 	buf->num_elems = cpu_to_le16(num);
2234 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2235 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2236 	if (btm)
2237 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2238 
2239 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2240 	if (status)
2241 		goto ice_alloc_res_exit;
2242 
2243 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2244 
2245 ice_alloc_res_exit:
2246 	kfree(buf);
2247 	return status;
2248 }
2249 
2250 /**
2251  * ice_free_hw_res - free allocated HW resource
2252  * @hw: pointer to the HW struct
2253  * @type: type of resource to free
2254  * @num: number of resources
2255  * @res: pointer to array that contains the resources to free
2256  */
2257 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2258 {
2259 	struct ice_aqc_alloc_free_res_elem *buf;
2260 	u16 buf_len;
2261 	int status;
2262 
2263 	buf_len = struct_size(buf, elem, num);
2264 	buf = kzalloc(buf_len, GFP_KERNEL);
2265 	if (!buf)
2266 		return -ENOMEM;
2267 
2268 	/* Prepare buffer to free resource. */
2269 	buf->num_elems = cpu_to_le16(num);
2270 	buf->res_type = cpu_to_le16(type);
2271 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2272 
2273 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2274 	if (status)
2275 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2276 
2277 	kfree(buf);
2278 	return status;
2279 }
2280 
2281 /**
2282  * ice_get_num_per_func - determine number of resources per PF
2283  * @hw: pointer to the HW structure
2284  * @max: value to be evenly split between each PF
2285  *
2286  * Determine the number of valid functions by going through the bitmap returned
2287  * from parsing capabilities and use this to calculate the number of resources
2288  * per PF based on the max value passed in.
2289  */
2290 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2291 {
2292 	u8 funcs;
2293 
2294 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2295 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2296 			 ICE_CAPS_VALID_FUNCS_M);
2297 
2298 	if (!funcs)
2299 		return 0;
2300 
2301 	return max / funcs;
2302 }
2303 
2304 /**
2305  * ice_parse_common_caps - parse common device/function capabilities
2306  * @hw: pointer to the HW struct
2307  * @caps: pointer to common capabilities structure
2308  * @elem: the capability element to parse
2309  * @prefix: message prefix for tracing capabilities
2310  *
2311  * Given a capability element, extract relevant details into the common
2312  * capability structure.
2313  *
2314  * Returns: true if the capability matches one of the common capability ids,
2315  * false otherwise.
2316  */
2317 static bool
2318 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2319 		      struct libie_aqc_list_caps_elem *elem, const char *prefix)
2320 {
2321 	u32 logical_id = le32_to_cpu(elem->logical_id);
2322 	u32 phys_id = le32_to_cpu(elem->phys_id);
2323 	u32 number = le32_to_cpu(elem->number);
2324 	u16 cap = le16_to_cpu(elem->cap);
2325 	bool found = true;
2326 
2327 	switch (cap) {
2328 	case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2329 		caps->valid_functions = number;
2330 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2331 			  caps->valid_functions);
2332 		break;
2333 	case LIBIE_AQC_CAPS_SRIOV:
2334 		caps->sr_iov_1_1 = (number == 1);
2335 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2336 			  caps->sr_iov_1_1);
2337 		break;
2338 	case LIBIE_AQC_CAPS_DCB:
2339 		caps->dcb = (number == 1);
2340 		caps->active_tc_bitmap = logical_id;
2341 		caps->maxtc = phys_id;
2342 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2343 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2344 			  caps->active_tc_bitmap);
2345 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2346 		break;
2347 	case LIBIE_AQC_CAPS_RSS:
2348 		caps->rss_table_size = number;
2349 		caps->rss_table_entry_width = logical_id;
2350 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2351 			  caps->rss_table_size);
2352 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2353 			  caps->rss_table_entry_width);
2354 		break;
2355 	case LIBIE_AQC_CAPS_RXQS:
2356 		caps->num_rxq = number;
2357 		caps->rxq_first_id = phys_id;
2358 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2359 			  caps->num_rxq);
2360 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2361 			  caps->rxq_first_id);
2362 		break;
2363 	case LIBIE_AQC_CAPS_TXQS:
2364 		caps->num_txq = number;
2365 		caps->txq_first_id = phys_id;
2366 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2367 			  caps->num_txq);
2368 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2369 			  caps->txq_first_id);
2370 		break;
2371 	case LIBIE_AQC_CAPS_MSIX:
2372 		caps->num_msix_vectors = number;
2373 		caps->msix_vector_first_id = phys_id;
2374 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2375 			  caps->num_msix_vectors);
2376 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2377 			  caps->msix_vector_first_id);
2378 		break;
2379 	case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2380 		caps->nvm_update_pending_nvm = true;
2381 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2382 		break;
2383 	case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2384 		caps->nvm_update_pending_orom = true;
2385 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2386 		break;
2387 	case LIBIE_AQC_CAPS_PENDING_NET_VER:
2388 		caps->nvm_update_pending_netlist = true;
2389 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2390 		break;
2391 	case LIBIE_AQC_CAPS_NVM_MGMT:
2392 		caps->nvm_unified_update =
2393 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2394 			true : false;
2395 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2396 			  caps->nvm_unified_update);
2397 		break;
2398 	case LIBIE_AQC_CAPS_RDMA:
2399 		if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2400 			caps->rdma = (number == 1);
2401 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2402 		break;
2403 	case LIBIE_AQC_CAPS_MAX_MTU:
2404 		caps->max_mtu = number;
2405 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2406 			  prefix, caps->max_mtu);
2407 		break;
2408 	case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2409 		caps->pcie_reset_avoidance = (number > 0);
2410 		ice_debug(hw, ICE_DBG_INIT,
2411 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2412 			  caps->pcie_reset_avoidance);
2413 		break;
2414 	case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2415 		caps->reset_restrict_support = (number == 1);
2416 		ice_debug(hw, ICE_DBG_INIT,
2417 			  "%s: reset_restrict_support = %d\n", prefix,
2418 			  caps->reset_restrict_support);
2419 		break;
2420 	case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2421 		caps->roce_lag = number & LIBIE_AQC_BIT_ROCEV2_LAG;
2422 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2423 			  prefix, caps->roce_lag);
2424 		caps->sriov_lag = number & LIBIE_AQC_BIT_SRIOV_LAG;
2425 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2426 			  prefix, caps->sriov_lag);
2427 		caps->sriov_aa_lag = number & LIBIE_AQC_BIT_SRIOV_AA_LAG;
2428 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_aa_lag = %u\n",
2429 			  prefix, caps->sriov_aa_lag);
2430 		break;
2431 	case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2432 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2433 		break;
2434 	default:
2435 		/* Not one of the recognized common capabilities */
2436 		found = false;
2437 	}
2438 
2439 	return found;
2440 }
2441 
2442 /**
2443  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2444  * @hw: pointer to the HW structure
2445  * @caps: pointer to capabilities structure to fix
2446  *
2447  * Re-calculate the capabilities that are dependent on the number of physical
2448  * ports; i.e. some features are not supported or function differently on
2449  * devices with more than 4 ports.
2450  */
2451 static void
2452 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2453 {
2454 	/* This assumes device capabilities are always scanned before function
2455 	 * capabilities during the initialization flow.
2456 	 */
2457 	if (hw->dev_caps.num_funcs > 4) {
2458 		/* Max 4 TCs per port */
2459 		caps->maxtc = 4;
2460 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2461 			  caps->maxtc);
2462 		if (caps->rdma) {
2463 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2464 			caps->rdma = 0;
2465 		}
2466 
2467 		/* print message only when processing device capabilities
2468 		 * during initialization.
2469 		 */
2470 		if (caps == &hw->dev_caps.common_cap)
2471 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2472 	}
2473 }
2474 
2475 /**
2476  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2477  * @hw: pointer to the HW struct
2478  * @func_p: pointer to function capabilities structure
2479  * @cap: pointer to the capability element to parse
2480  *
2481  * Extract function capabilities for ICE_AQC_CAPS_VF.
2482  */
2483 static void
2484 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2485 		       struct libie_aqc_list_caps_elem *cap)
2486 {
2487 	u32 logical_id = le32_to_cpu(cap->logical_id);
2488 	u32 number = le32_to_cpu(cap->number);
2489 
2490 	func_p->num_allocd_vfs = number;
2491 	func_p->vf_base_id = logical_id;
2492 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2493 		  func_p->num_allocd_vfs);
2494 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2495 		  func_p->vf_base_id);
2496 }
2497 
2498 /**
2499  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2500  * @hw: pointer to the HW struct
2501  * @func_p: pointer to function capabilities structure
2502  * @cap: pointer to the capability element to parse
2503  *
2504  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2505  */
2506 static void
2507 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2508 			struct libie_aqc_list_caps_elem *cap)
2509 {
2510 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2511 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2512 		  le32_to_cpu(cap->number));
2513 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2514 		  func_p->guar_num_vsi);
2515 }
2516 
2517 /**
2518  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2519  * @hw: pointer to the HW struct
2520  * @func_p: pointer to function capabilities structure
2521  * @cap: pointer to the capability element to parse
2522  *
2523  * Extract function capabilities for ICE_AQC_CAPS_1588.
2524  */
2525 static void
2526 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2527 			 struct libie_aqc_list_caps_elem *cap)
2528 {
2529 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2530 	u32 number = le32_to_cpu(cap->number);
2531 
2532 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2533 	func_p->common_cap.ieee_1588 = info->ena;
2534 
2535 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2536 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2537 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2538 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2539 
2540 	if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2541 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2542 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2543 	} else {
2544 		info->clk_freq = ICE_TSPLL_FREQ_156_250;
2545 		info->clk_src = ICE_CLK_SRC_TIME_REF;
2546 	}
2547 
2548 	if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2549 		info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2550 	} else {
2551 		/* Unknown clock frequency, so assume a (probably incorrect)
2552 		 * default to avoid out-of-bounds look ups of frequency
2553 		 * related information.
2554 		 */
2555 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2556 			  info->clk_freq);
2557 		info->time_ref = ICE_TSPLL_FREQ_25_000;
2558 	}
2559 
2560 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2561 		  func_p->common_cap.ieee_1588);
2562 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2563 		  info->src_tmr_owned);
2564 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2565 		  info->tmr_ena);
2566 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2567 		  info->tmr_index_owned);
2568 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2569 		  info->tmr_index_assoc);
2570 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2571 		  info->clk_freq);
2572 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2573 		  info->clk_src);
2574 }
2575 
2576 /**
2577  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2578  * @hw: pointer to the HW struct
2579  * @func_p: pointer to function capabilities structure
2580  *
2581  * Extract function capabilities for ICE_AQC_CAPS_FD.
2582  */
2583 static void
2584 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2585 {
2586 	u32 reg_val, gsize, bsize;
2587 
2588 	reg_val = rd32(hw, GLQF_FD_SIZE);
2589 	switch (hw->mac_type) {
2590 	case ICE_MAC_E830:
2591 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2592 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2593 		break;
2594 	case ICE_MAC_E810:
2595 	default:
2596 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2597 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2598 	}
2599 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2600 	func_p->fd_fltr_best_effort = bsize;
2601 
2602 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2603 		  func_p->fd_fltr_guar);
2604 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2605 		  func_p->fd_fltr_best_effort);
2606 }
2607 
2608 /**
2609  * ice_parse_func_caps - Parse function capabilities
2610  * @hw: pointer to the HW struct
2611  * @func_p: pointer to function capabilities structure
2612  * @buf: buffer containing the function capability records
2613  * @cap_count: the number of capabilities
2614  *
2615  * Helper function to parse function (0x000A) capabilities list. For
2616  * capabilities shared between device and function, this relies on
2617  * ice_parse_common_caps.
2618  *
2619  * Loop through the list of provided capabilities and extract the relevant
2620  * data into the function capabilities structured.
2621  */
2622 static void
2623 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2624 		    void *buf, u32 cap_count)
2625 {
2626 	struct libie_aqc_list_caps_elem *cap_resp;
2627 	u32 i;
2628 
2629 	cap_resp = buf;
2630 
2631 	memset(func_p, 0, sizeof(*func_p));
2632 
2633 	for (i = 0; i < cap_count; i++) {
2634 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2635 		bool found;
2636 
2637 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2638 					      &cap_resp[i], "func caps");
2639 
2640 		switch (cap) {
2641 		case LIBIE_AQC_CAPS_VF:
2642 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2643 			break;
2644 		case LIBIE_AQC_CAPS_VSI:
2645 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2646 			break;
2647 		case LIBIE_AQC_CAPS_1588:
2648 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2649 			break;
2650 		case LIBIE_AQC_CAPS_FD:
2651 			ice_parse_fdir_func_caps(hw, func_p);
2652 			break;
2653 		default:
2654 			/* Don't list common capabilities as unknown */
2655 			if (!found)
2656 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2657 					  i, cap);
2658 			break;
2659 		}
2660 	}
2661 
2662 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2663 }
2664 
2665 /**
2666  * ice_func_id_to_logical_id - map from function id to logical pf id
2667  * @active_function_bitmap: active function bitmap
2668  * @pf_id: function number of device
2669  *
2670  * Return: logical PF ID.
2671  */
2672 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2673 {
2674 	u8 logical_id = 0;
2675 	u8 i;
2676 
2677 	for (i = 0; i < pf_id; i++)
2678 		if (active_function_bitmap & BIT(i))
2679 			logical_id++;
2680 
2681 	return logical_id;
2682 }
2683 
2684 /**
2685  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2686  * @hw: pointer to the HW struct
2687  * @dev_p: pointer to device capabilities structure
2688  * @cap: capability element to parse
2689  *
2690  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2691  */
2692 static void
2693 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2694 			      struct libie_aqc_list_caps_elem *cap)
2695 {
2696 	u32 number = le32_to_cpu(cap->number);
2697 
2698 	dev_p->num_funcs = hweight32(number);
2699 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2700 		  dev_p->num_funcs);
2701 
2702 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2703 }
2704 
2705 /**
2706  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2707  * @hw: pointer to the HW struct
2708  * @dev_p: pointer to device capabilities structure
2709  * @cap: capability element to parse
2710  *
2711  * Parse ICE_AQC_CAPS_VF for device capabilities.
2712  */
2713 static void
2714 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2715 		      struct libie_aqc_list_caps_elem *cap)
2716 {
2717 	u32 number = le32_to_cpu(cap->number);
2718 
2719 	dev_p->num_vfs_exposed = number;
2720 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2721 		  dev_p->num_vfs_exposed);
2722 }
2723 
2724 /**
2725  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2726  * @hw: pointer to the HW struct
2727  * @dev_p: pointer to device capabilities structure
2728  * @cap: capability element to parse
2729  *
2730  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2731  */
2732 static void
2733 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2734 		       struct libie_aqc_list_caps_elem *cap)
2735 {
2736 	u32 number = le32_to_cpu(cap->number);
2737 
2738 	dev_p->num_vsi_allocd_to_host = number;
2739 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2740 		  dev_p->num_vsi_allocd_to_host);
2741 }
2742 
2743 /**
2744  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2745  * @hw: pointer to the HW struct
2746  * @dev_p: pointer to device capabilities structure
2747  * @cap: capability element to parse
2748  *
2749  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2750  */
2751 static void
2752 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2753 			struct libie_aqc_list_caps_elem *cap)
2754 {
2755 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2756 	u32 logical_id = le32_to_cpu(cap->logical_id);
2757 	u32 phys_id = le32_to_cpu(cap->phys_id);
2758 	u32 number = le32_to_cpu(cap->number);
2759 
2760 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2761 	dev_p->common_cap.ieee_1588 = info->ena;
2762 
2763 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2764 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2765 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2766 
2767 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2768 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2769 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2770 
2771 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2772 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2773 	info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2774 
2775 	info->ena_ports = logical_id;
2776 	info->tmr_own_map = phys_id;
2777 
2778 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2779 		  dev_p->common_cap.ieee_1588);
2780 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2781 		  info->tmr0_owner);
2782 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2783 		  info->tmr0_owned);
2784 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2785 		  info->tmr0_ena);
2786 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2787 		  info->tmr1_owner);
2788 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2789 		  info->tmr1_owned);
2790 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2791 		  info->tmr1_ena);
2792 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2793 		  info->ts_ll_read);
2794 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2795 		  info->ts_ll_int_read);
2796 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2797 		  info->ll_phy_tmr_update);
2798 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2799 		  info->ena_ports);
2800 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2801 		  info->tmr_own_map);
2802 }
2803 
2804 /**
2805  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2806  * @hw: pointer to the HW struct
2807  * @dev_p: pointer to device capabilities structure
2808  * @cap: capability element to parse
2809  *
2810  * Parse ICE_AQC_CAPS_FD for device capabilities.
2811  */
2812 static void
2813 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2814 			struct libie_aqc_list_caps_elem *cap)
2815 {
2816 	u32 number = le32_to_cpu(cap->number);
2817 
2818 	dev_p->num_flow_director_fltr = number;
2819 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2820 		  dev_p->num_flow_director_fltr);
2821 }
2822 
2823 /**
2824  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2825  * @hw: pointer to the HW struct
2826  * @dev_p: pointer to device capabilities structure
2827  * @cap: capability element to parse
2828  *
2829  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2830  * enabled sensors.
2831  */
2832 static void
2833 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2834 			     struct libie_aqc_list_caps_elem *cap)
2835 {
2836 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2837 
2838 	ice_debug(hw, ICE_DBG_INIT,
2839 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2840 		  dev_p->supported_sensors);
2841 }
2842 
2843 /**
2844  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2845  * @hw: pointer to the HW struct
2846  * @dev_p: pointer to device capabilities structure
2847  * @cap: capability element to parse
2848  *
2849  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2850  */
2851 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2852 					struct ice_hw_dev_caps *dev_p,
2853 					struct libie_aqc_list_caps_elem *cap)
2854 {
2855 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2856 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2857 
2858 	dev_info(ice_hw_to_dev(hw),
2859 		 "PF is configured in %s mode with IP instance ID %d\n",
2860 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2861 		 "primary" : "secondary", dev_p->nac_topo.id);
2862 
2863 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2864 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2865 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2866 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2867 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2868 		  dev_p->nac_topo.id);
2869 }
2870 
2871 /**
2872  * ice_parse_dev_caps - Parse device capabilities
2873  * @hw: pointer to the HW struct
2874  * @dev_p: pointer to device capabilities structure
2875  * @buf: buffer containing the device capability records
2876  * @cap_count: the number of capabilities
2877  *
2878  * Helper device to parse device (0x000B) capabilities list. For
2879  * capabilities shared between device and function, this relies on
2880  * ice_parse_common_caps.
2881  *
2882  * Loop through the list of provided capabilities and extract the relevant
2883  * data into the device capabilities structured.
2884  */
2885 static void
2886 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2887 		   void *buf, u32 cap_count)
2888 {
2889 	struct libie_aqc_list_caps_elem *cap_resp;
2890 	u32 i;
2891 
2892 	cap_resp = buf;
2893 
2894 	memset(dev_p, 0, sizeof(*dev_p));
2895 
2896 	for (i = 0; i < cap_count; i++) {
2897 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2898 		bool found;
2899 
2900 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2901 					      &cap_resp[i], "dev caps");
2902 
2903 		switch (cap) {
2904 		case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2905 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2906 			break;
2907 		case LIBIE_AQC_CAPS_VF:
2908 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2909 			break;
2910 		case LIBIE_AQC_CAPS_VSI:
2911 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2912 			break;
2913 		case LIBIE_AQC_CAPS_1588:
2914 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2915 			break;
2916 		case LIBIE_AQC_CAPS_FD:
2917 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2918 			break;
2919 		case LIBIE_AQC_CAPS_SENSOR_READING:
2920 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2921 			break;
2922 		case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
2923 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2924 			break;
2925 		default:
2926 			/* Don't list common capabilities as unknown */
2927 			if (!found)
2928 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2929 					  i, cap);
2930 			break;
2931 		}
2932 	}
2933 
2934 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2935 }
2936 
2937 /**
2938  * ice_is_phy_rclk_in_netlist
2939  * @hw: pointer to the hw struct
2940  *
2941  * Check if the PHY Recovered Clock device is present in the netlist
2942  */
2943 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2944 {
2945 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2946 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2947 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2948 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2949 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2950 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2951 		return false;
2952 
2953 	return true;
2954 }
2955 
2956 /**
2957  * ice_is_clock_mux_in_netlist
2958  * @hw: pointer to the hw struct
2959  *
2960  * Check if the Clock Multiplexer device is present in the netlist
2961  */
2962 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2963 {
2964 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2965 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2966 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2967 				  NULL))
2968 		return false;
2969 
2970 	return true;
2971 }
2972 
2973 /**
2974  * ice_is_cgu_in_netlist - check for CGU presence
2975  * @hw: pointer to the hw struct
2976  *
2977  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2978  * Save the CGU part number in the hw structure for later use.
2979  * Return:
2980  * * true - cgu is present
2981  * * false - cgu is not present
2982  */
2983 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2984 {
2985 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2986 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2987 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2988 				   NULL)) {
2989 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2990 		return true;
2991 	} else if (!ice_find_netlist_node(hw,
2992 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2993 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2994 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2995 					  NULL)) {
2996 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2997 		return true;
2998 	}
2999 
3000 	return false;
3001 }
3002 
3003 /**
3004  * ice_is_gps_in_netlist
3005  * @hw: pointer to the hw struct
3006  *
3007  * Check if the GPS generic device is present in the netlist
3008  */
3009 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3010 {
3011 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3012 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3013 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3014 		return false;
3015 
3016 	return true;
3017 }
3018 
3019 /**
3020  * ice_aq_list_caps - query function/device capabilities
3021  * @hw: pointer to the HW struct
3022  * @buf: a buffer to hold the capabilities
3023  * @buf_size: size of the buffer
3024  * @cap_count: if not NULL, set to the number of capabilities reported
3025  * @opc: capabilities type to discover, device or function
3026  * @cd: pointer to command details structure or NULL
3027  *
3028  * Get the function (0x000A) or device (0x000B) capabilities description from
3029  * firmware and store it in the buffer.
3030  *
3031  * If the cap_count pointer is not NULL, then it is set to the number of
3032  * capabilities firmware will report. Note that if the buffer size is too
3033  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3034  * cap_count will still be updated in this case. It is recommended that the
3035  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3036  * firmware could return) to avoid this.
3037  */
3038 int
3039 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3040 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3041 {
3042 	struct libie_aqc_list_caps *cmd;
3043 	struct libie_aq_desc desc;
3044 	int status;
3045 
3046 	cmd = &desc.params.get_cap;
3047 
3048 	if (opc != ice_aqc_opc_list_func_caps &&
3049 	    opc != ice_aqc_opc_list_dev_caps)
3050 		return -EINVAL;
3051 
3052 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
3053 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3054 
3055 	if (cap_count)
3056 		*cap_count = le32_to_cpu(cmd->count);
3057 
3058 	return status;
3059 }
3060 
3061 /**
3062  * ice_discover_dev_caps - Read and extract device capabilities
3063  * @hw: pointer to the hardware structure
3064  * @dev_caps: pointer to device capabilities structure
3065  *
3066  * Read the device capabilities and extract them into the dev_caps structure
3067  * for later use.
3068  */
3069 int
3070 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3071 {
3072 	u32 cap_count = 0;
3073 	void *cbuf;
3074 	int status;
3075 
3076 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3077 	if (!cbuf)
3078 		return -ENOMEM;
3079 
3080 	/* Although the driver doesn't know the number of capabilities the
3081 	 * device will return, we can simply send a 4KB buffer, the maximum
3082 	 * possible size that firmware can return.
3083 	 */
3084 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3085 
3086 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3087 				  ice_aqc_opc_list_dev_caps, NULL);
3088 	if (!status)
3089 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3090 	kfree(cbuf);
3091 
3092 	return status;
3093 }
3094 
3095 /**
3096  * ice_discover_func_caps - Read and extract function capabilities
3097  * @hw: pointer to the hardware structure
3098  * @func_caps: pointer to function capabilities structure
3099  *
3100  * Read the function capabilities and extract them into the func_caps structure
3101  * for later use.
3102  */
3103 static int
3104 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3105 {
3106 	u32 cap_count = 0;
3107 	void *cbuf;
3108 	int status;
3109 
3110 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3111 	if (!cbuf)
3112 		return -ENOMEM;
3113 
3114 	/* Although the driver doesn't know the number of capabilities the
3115 	 * device will return, we can simply send a 4KB buffer, the maximum
3116 	 * possible size that firmware can return.
3117 	 */
3118 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3119 
3120 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3121 				  ice_aqc_opc_list_func_caps, NULL);
3122 	if (!status)
3123 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3124 	kfree(cbuf);
3125 
3126 	return status;
3127 }
3128 
3129 /**
3130  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3131  * @hw: pointer to the hardware structure
3132  */
3133 void ice_set_safe_mode_caps(struct ice_hw *hw)
3134 {
3135 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
3136 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3137 	struct ice_hw_common_caps cached_caps;
3138 	u32 num_funcs;
3139 
3140 	/* cache some func_caps values that should be restored after memset */
3141 	cached_caps = func_caps->common_cap;
3142 
3143 	/* unset func capabilities */
3144 	memset(func_caps, 0, sizeof(*func_caps));
3145 
3146 #define ICE_RESTORE_FUNC_CAP(name) \
3147 	func_caps->common_cap.name = cached_caps.name
3148 
3149 	/* restore cached values */
3150 	ICE_RESTORE_FUNC_CAP(valid_functions);
3151 	ICE_RESTORE_FUNC_CAP(txq_first_id);
3152 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
3153 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3154 	ICE_RESTORE_FUNC_CAP(max_mtu);
3155 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3156 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3157 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3158 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3159 
3160 	/* one Tx and one Rx queue in safe mode */
3161 	func_caps->common_cap.num_rxq = 1;
3162 	func_caps->common_cap.num_txq = 1;
3163 
3164 	/* two MSIX vectors, one for traffic and one for misc causes */
3165 	func_caps->common_cap.num_msix_vectors = 2;
3166 	func_caps->guar_num_vsi = 1;
3167 
3168 	/* cache some dev_caps values that should be restored after memset */
3169 	cached_caps = dev_caps->common_cap;
3170 	num_funcs = dev_caps->num_funcs;
3171 
3172 	/* unset dev capabilities */
3173 	memset(dev_caps, 0, sizeof(*dev_caps));
3174 
3175 #define ICE_RESTORE_DEV_CAP(name) \
3176 	dev_caps->common_cap.name = cached_caps.name
3177 
3178 	/* restore cached values */
3179 	ICE_RESTORE_DEV_CAP(valid_functions);
3180 	ICE_RESTORE_DEV_CAP(txq_first_id);
3181 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3182 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3183 	ICE_RESTORE_DEV_CAP(max_mtu);
3184 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3185 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3186 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3187 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3188 	dev_caps->num_funcs = num_funcs;
3189 
3190 	/* one Tx and one Rx queue per function in safe mode */
3191 	dev_caps->common_cap.num_rxq = num_funcs;
3192 	dev_caps->common_cap.num_txq = num_funcs;
3193 
3194 	/* two MSIX vectors per function */
3195 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3196 }
3197 
3198 /**
3199  * ice_get_caps - get info about the HW
3200  * @hw: pointer to the hardware structure
3201  */
3202 int ice_get_caps(struct ice_hw *hw)
3203 {
3204 	int status;
3205 
3206 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3207 	if (status)
3208 		return status;
3209 
3210 	return ice_discover_func_caps(hw, &hw->func_caps);
3211 }
3212 
3213 /**
3214  * ice_aq_manage_mac_write - manage MAC address write command
3215  * @hw: pointer to the HW struct
3216  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3217  * @flags: flags to control write behavior
3218  * @cd: pointer to command details structure or NULL
3219  *
3220  * This function is used to write MAC address to the NVM (0x0108).
3221  */
3222 int
3223 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3224 			struct ice_sq_cd *cd)
3225 {
3226 	struct ice_aqc_manage_mac_write *cmd;
3227 	struct libie_aq_desc desc;
3228 
3229 	cmd = libie_aq_raw(&desc);
3230 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3231 
3232 	cmd->flags = flags;
3233 	ether_addr_copy(cmd->mac_addr, mac_addr);
3234 
3235 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3236 }
3237 
3238 /**
3239  * ice_aq_clear_pxe_mode
3240  * @hw: pointer to the HW struct
3241  *
3242  * Tell the firmware that the driver is taking over from PXE (0x0110).
3243  */
3244 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3245 {
3246 	struct ice_aqc_clear_pxe *cmd;
3247 	struct libie_aq_desc desc;
3248 
3249 	cmd = libie_aq_raw(&desc);
3250 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3251 	cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3252 
3253 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3254 }
3255 
3256 /**
3257  * ice_clear_pxe_mode - clear pxe operations mode
3258  * @hw: pointer to the HW struct
3259  *
3260  * Make sure all PXE mode settings are cleared, including things
3261  * like descriptor fetch/write-back mode.
3262  */
3263 void ice_clear_pxe_mode(struct ice_hw *hw)
3264 {
3265 	if (ice_check_sq_alive(hw, &hw->adminq))
3266 		ice_aq_clear_pxe_mode(hw);
3267 }
3268 
3269 /**
3270  * ice_aq_set_port_params - set physical port parameters.
3271  * @pi: pointer to the port info struct
3272  * @double_vlan: if set double VLAN is enabled
3273  * @cd: pointer to command details structure or NULL
3274  *
3275  * Set Physical port parameters (0x0203)
3276  */
3277 int
3278 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3279 		       struct ice_sq_cd *cd)
3280 
3281 {
3282 	struct ice_aqc_set_port_params *cmd;
3283 	struct ice_hw *hw = pi->hw;
3284 	struct libie_aq_desc desc;
3285 	u16 cmd_flags = 0;
3286 
3287 	cmd = libie_aq_raw(&desc);
3288 
3289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3290 	if (double_vlan)
3291 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3292 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3293 
3294 	cmd->local_fwd_mode = pi->local_fwd_mode |
3295 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3296 
3297 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3298 }
3299 
3300 /**
3301  * ice_is_100m_speed_supported
3302  * @hw: pointer to the HW struct
3303  *
3304  * returns true if 100M speeds are supported by the device,
3305  * false otherwise.
3306  */
3307 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3308 {
3309 	switch (hw->device_id) {
3310 	case ICE_DEV_ID_E822C_SGMII:
3311 	case ICE_DEV_ID_E822L_SGMII:
3312 	case ICE_DEV_ID_E823L_1GBE:
3313 	case ICE_DEV_ID_E823C_SGMII:
3314 		return true;
3315 	default:
3316 		return false;
3317 	}
3318 }
3319 
3320 /**
3321  * ice_get_link_speed_based_on_phy_type - returns link speed
3322  * @phy_type_low: lower part of phy_type
3323  * @phy_type_high: higher part of phy_type
3324  *
3325  * This helper function will convert an entry in PHY type structure
3326  * [phy_type_low, phy_type_high] to its corresponding link speed.
3327  * Note: In the structure of [phy_type_low, phy_type_high], there should
3328  * be one bit set, as this function will convert one PHY type to its
3329  * speed.
3330  *
3331  * Return:
3332  * * PHY speed for recognized PHY type
3333  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3334  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3335  */
3336 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3337 {
3338 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3339 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3340 
3341 	switch (phy_type_low) {
3342 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3343 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3344 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3345 		break;
3346 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3347 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3348 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3349 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3350 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3351 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3352 		break;
3353 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3354 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3355 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3356 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3357 		break;
3358 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3359 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3360 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3361 		break;
3362 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3363 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3364 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3365 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3366 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3367 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3368 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3369 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3370 		break;
3371 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3372 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3373 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3374 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3375 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3376 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3377 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3378 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3379 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3380 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3381 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3382 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3383 		break;
3384 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3385 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3386 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3387 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3388 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3389 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3390 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3391 		break;
3392 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3393 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3394 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3395 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3396 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3397 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3398 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3399 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3400 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3401 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3402 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3403 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3404 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3405 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3406 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3407 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3408 		break;
3409 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3410 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3411 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3412 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3413 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3414 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3415 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3416 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3417 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3418 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3419 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3420 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3421 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3422 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3423 		break;
3424 	default:
3425 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3426 		break;
3427 	}
3428 
3429 	switch (phy_type_high) {
3430 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3431 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3432 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3433 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3434 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3435 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3436 		break;
3437 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3438 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3439 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3440 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3441 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3442 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3443 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3444 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3445 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3446 		break;
3447 	default:
3448 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3449 		break;
3450 	}
3451 
3452 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3453 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3454 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3455 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3456 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3457 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3458 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3459 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3460 		return speed_phy_type_low;
3461 	else
3462 		return speed_phy_type_high;
3463 }
3464 
3465 /**
3466  * ice_update_phy_type
3467  * @phy_type_low: pointer to the lower part of phy_type
3468  * @phy_type_high: pointer to the higher part of phy_type
3469  * @link_speeds_bitmap: targeted link speeds bitmap
3470  *
3471  * Note: For the link_speeds_bitmap structure, you can check it at
3472  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3473  * link_speeds_bitmap include multiple speeds.
3474  *
3475  * Each entry in this [phy_type_low, phy_type_high] structure will
3476  * present a certain link speed. This helper function will turn on bits
3477  * in [phy_type_low, phy_type_high] structure based on the value of
3478  * link_speeds_bitmap input parameter.
3479  */
3480 void
3481 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3482 		    u16 link_speeds_bitmap)
3483 {
3484 	u64 pt_high;
3485 	u64 pt_low;
3486 	int index;
3487 	u16 speed;
3488 
3489 	/* We first check with low part of phy_type */
3490 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3491 		pt_low = BIT_ULL(index);
3492 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3493 
3494 		if (link_speeds_bitmap & speed)
3495 			*phy_type_low |= BIT_ULL(index);
3496 	}
3497 
3498 	/* We then check with high part of phy_type */
3499 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3500 		pt_high = BIT_ULL(index);
3501 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3502 
3503 		if (link_speeds_bitmap & speed)
3504 			*phy_type_high |= BIT_ULL(index);
3505 	}
3506 }
3507 
3508 /**
3509  * ice_aq_set_phy_cfg
3510  * @hw: pointer to the HW struct
3511  * @pi: port info structure of the interested logical port
3512  * @cfg: structure with PHY configuration data to be set
3513  * @cd: pointer to command details structure or NULL
3514  *
3515  * Set the various PHY configuration parameters supported on the Port.
3516  * One or more of the Set PHY config parameters may be ignored in an MFP
3517  * mode as the PF may not have the privilege to set some of the PHY Config
3518  * parameters. This status will be indicated by the command response (0x0601).
3519  */
3520 int
3521 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3522 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3523 {
3524 	struct ice_aqc_set_phy_cfg *cmd;
3525 	struct libie_aq_desc desc;
3526 	int status;
3527 
3528 	if (!cfg)
3529 		return -EINVAL;
3530 
3531 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3532 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3533 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3534 			  cfg->caps);
3535 
3536 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3537 	}
3538 
3539 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3540 	cmd = libie_aq_raw(&desc);
3541 	cmd->lport_num = pi->lport;
3542 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3543 
3544 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3545 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3546 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3547 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3548 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3549 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3550 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3551 		  cfg->low_power_ctrl_an);
3552 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3553 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3554 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3555 		  cfg->link_fec_opt);
3556 
3557 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3558 	if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3559 		status = 0;
3560 
3561 	if (!status)
3562 		pi->phy.curr_user_phy_cfg = *cfg;
3563 
3564 	return status;
3565 }
3566 
3567 /**
3568  * ice_update_link_info - update status of the HW network link
3569  * @pi: port info structure of the interested logical port
3570  */
3571 int ice_update_link_info(struct ice_port_info *pi)
3572 {
3573 	struct ice_link_status *li;
3574 	int status;
3575 
3576 	if (!pi)
3577 		return -EINVAL;
3578 
3579 	li = &pi->phy.link_info;
3580 
3581 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3582 	if (status)
3583 		return status;
3584 
3585 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3586 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3587 
3588 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3589 		if (!pcaps)
3590 			return -ENOMEM;
3591 
3592 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3593 					     pcaps, NULL);
3594 	}
3595 
3596 	return status;
3597 }
3598 
3599 /**
3600  * ice_aq_get_phy_equalization - function to read serdes equaliser
3601  * value from firmware using admin queue command.
3602  * @hw: pointer to the HW struct
3603  * @data_in: represents the serdes equalization parameter requested
3604  * @op_code: represents the serdes number and flag to represent tx or rx
3605  * @serdes_num: represents the serdes number
3606  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3607  *
3608  * Return: non-zero status on error and 0 on success.
3609  */
3610 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3611 				u8 serdes_num, int *output)
3612 {
3613 	struct ice_aqc_dnl_call_command *cmd;
3614 	struct ice_aqc_dnl_call buf = {};
3615 	struct libie_aq_desc desc;
3616 	int err;
3617 
3618 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3619 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3620 		cpu_to_le16(op_code | (serdes_num & 0xF));
3621 	cmd = libie_aq_raw(&desc);
3622 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3623 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3624 				  LIBIE_AQ_FLAG_RD |
3625 				  LIBIE_AQ_FLAG_SI);
3626 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3627 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3628 
3629 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3630 			      NULL);
3631 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3632 
3633 	return err;
3634 }
3635 
3636 #define FEC_REG_PORT(port) {	\
3637 	FEC_CORR_LOW_REG_PORT##port,		\
3638 	FEC_CORR_HIGH_REG_PORT##port,	\
3639 	FEC_UNCORR_LOW_REG_PORT##port,	\
3640 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3641 }
3642 
3643 static const u32 fec_reg[][ICE_FEC_MAX] = {
3644 	FEC_REG_PORT(0),
3645 	FEC_REG_PORT(1),
3646 	FEC_REG_PORT(2),
3647 	FEC_REG_PORT(3)
3648 };
3649 
3650 /**
3651  * ice_aq_get_fec_stats - reads fec stats from phy
3652  * @hw: pointer to the HW struct
3653  * @pcs_quad: represents pcsquad of user input serdes
3654  * @pcs_port: represents the pcs port number part of above pcs quad
3655  * @fec_type: represents FEC stats type
3656  * @output: pointer to the caller-supplied buffer to return requested fec stats
3657  *
3658  * Return: non-zero status on error and 0 on success.
3659  */
3660 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3661 			 enum ice_fec_stats_types fec_type, u32 *output)
3662 {
3663 	u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3664 	struct ice_sbq_msg_input msg = {};
3665 	u32 receiver_id, reg_offset;
3666 	int err;
3667 
3668 	if (pcs_port > 3)
3669 		return -EINVAL;
3670 
3671 	reg_offset = fec_reg[pcs_port][fec_type];
3672 
3673 	if (pcs_quad == 0)
3674 		receiver_id = FEC_RECEIVER_ID_PCS0;
3675 	else if (pcs_quad == 1)
3676 		receiver_id = FEC_RECEIVER_ID_PCS1;
3677 	else
3678 		return -EINVAL;
3679 
3680 	msg.msg_addr_low = lower_16_bits(reg_offset);
3681 	msg.msg_addr_high = receiver_id;
3682 	msg.opcode = ice_sbq_msg_rd;
3683 	msg.dest_dev = ice_sbq_dev_phy_0;
3684 
3685 	err = ice_sbq_rw_reg(hw, &msg, flag);
3686 	if (err)
3687 		return err;
3688 
3689 	*output = msg.data;
3690 	return 0;
3691 }
3692 
3693 /**
3694  * ice_cache_phy_user_req
3695  * @pi: port information structure
3696  * @cache_data: PHY logging data
3697  * @cache_mode: PHY logging mode
3698  *
3699  * Log the user request on (FC, FEC, SPEED) for later use.
3700  */
3701 static void
3702 ice_cache_phy_user_req(struct ice_port_info *pi,
3703 		       struct ice_phy_cache_mode_data cache_data,
3704 		       enum ice_phy_cache_mode cache_mode)
3705 {
3706 	if (!pi)
3707 		return;
3708 
3709 	switch (cache_mode) {
3710 	case ICE_FC_MODE:
3711 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3712 		break;
3713 	case ICE_SPEED_MODE:
3714 		pi->phy.curr_user_speed_req =
3715 			cache_data.data.curr_user_speed_req;
3716 		break;
3717 	case ICE_FEC_MODE:
3718 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3719 		break;
3720 	default:
3721 		break;
3722 	}
3723 }
3724 
3725 /**
3726  * ice_caps_to_fc_mode
3727  * @caps: PHY capabilities
3728  *
3729  * Convert PHY FC capabilities to ice FC mode
3730  */
3731 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3732 {
3733 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3734 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3735 		return ICE_FC_FULL;
3736 
3737 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3738 		return ICE_FC_TX_PAUSE;
3739 
3740 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3741 		return ICE_FC_RX_PAUSE;
3742 
3743 	return ICE_FC_NONE;
3744 }
3745 
3746 /**
3747  * ice_caps_to_fec_mode
3748  * @caps: PHY capabilities
3749  * @fec_options: Link FEC options
3750  *
3751  * Convert PHY FEC capabilities to ice FEC mode
3752  */
3753 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3754 {
3755 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3756 		return ICE_FEC_AUTO;
3757 
3758 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3759 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3760 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3761 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3762 		return ICE_FEC_BASER;
3763 
3764 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3765 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3766 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3767 		return ICE_FEC_RS;
3768 
3769 	return ICE_FEC_NONE;
3770 }
3771 
3772 /**
3773  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3774  * @pi: port information structure
3775  * @cfg: PHY configuration data to set FC mode
3776  * @req_mode: FC mode to configure
3777  */
3778 int
3779 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3780 	       enum ice_fc_mode req_mode)
3781 {
3782 	struct ice_phy_cache_mode_data cache_data;
3783 	u8 pause_mask = 0x0;
3784 
3785 	if (!pi || !cfg)
3786 		return -EINVAL;
3787 
3788 	switch (req_mode) {
3789 	case ICE_FC_FULL:
3790 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3791 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3792 		break;
3793 	case ICE_FC_RX_PAUSE:
3794 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3795 		break;
3796 	case ICE_FC_TX_PAUSE:
3797 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3798 		break;
3799 	default:
3800 		break;
3801 	}
3802 
3803 	/* clear the old pause settings */
3804 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3805 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3806 
3807 	/* set the new capabilities */
3808 	cfg->caps |= pause_mask;
3809 
3810 	/* Cache user FC request */
3811 	cache_data.data.curr_user_fc_req = req_mode;
3812 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3813 
3814 	return 0;
3815 }
3816 
3817 /**
3818  * ice_set_fc
3819  * @pi: port information structure
3820  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3821  * @ena_auto_link_update: enable automatic link update
3822  *
3823  * Set the requested flow control mode.
3824  */
3825 int
3826 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3827 {
3828 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3829 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3830 	struct ice_hw *hw;
3831 	int status;
3832 
3833 	if (!pi || !aq_failures)
3834 		return -EINVAL;
3835 
3836 	*aq_failures = 0;
3837 	hw = pi->hw;
3838 
3839 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3840 	if (!pcaps)
3841 		return -ENOMEM;
3842 
3843 	/* Get the current PHY config */
3844 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3845 				     pcaps, NULL);
3846 	if (status) {
3847 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3848 		goto out;
3849 	}
3850 
3851 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3852 
3853 	/* Configure the set PHY data */
3854 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3855 	if (status)
3856 		goto out;
3857 
3858 	/* If the capabilities have changed, then set the new config */
3859 	if (cfg.caps != pcaps->caps) {
3860 		int retry_count, retry_max = 10;
3861 
3862 		/* Auto restart link so settings take effect */
3863 		if (ena_auto_link_update)
3864 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3865 
3866 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3867 		if (status) {
3868 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3869 			goto out;
3870 		}
3871 
3872 		/* Update the link info
3873 		 * It sometimes takes a really long time for link to
3874 		 * come back from the atomic reset. Thus, we wait a
3875 		 * little bit.
3876 		 */
3877 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3878 			status = ice_update_link_info(pi);
3879 
3880 			if (!status)
3881 				break;
3882 
3883 			mdelay(100);
3884 		}
3885 
3886 		if (status)
3887 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3888 	}
3889 
3890 out:
3891 	return status;
3892 }
3893 
3894 /**
3895  * ice_phy_caps_equals_cfg
3896  * @phy_caps: PHY capabilities
3897  * @phy_cfg: PHY configuration
3898  *
3899  * Helper function to determine if PHY capabilities matches PHY
3900  * configuration
3901  */
3902 bool
3903 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3904 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3905 {
3906 	u8 caps_mask, cfg_mask;
3907 
3908 	if (!phy_caps || !phy_cfg)
3909 		return false;
3910 
3911 	/* These bits are not common between capabilities and configuration.
3912 	 * Do not use them to determine equality.
3913 	 */
3914 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3915 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3916 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3917 
3918 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3919 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3920 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3921 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3922 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3923 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3924 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3925 		return false;
3926 
3927 	return true;
3928 }
3929 
3930 /**
3931  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3932  * @pi: port information structure
3933  * @caps: PHY ability structure to copy date from
3934  * @cfg: PHY configuration structure to copy data to
3935  *
3936  * Helper function to copy AQC PHY get ability data to PHY set configuration
3937  * data structure
3938  */
3939 void
3940 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3941 			 struct ice_aqc_get_phy_caps_data *caps,
3942 			 struct ice_aqc_set_phy_cfg_data *cfg)
3943 {
3944 	if (!pi || !caps || !cfg)
3945 		return;
3946 
3947 	memset(cfg, 0, sizeof(*cfg));
3948 	cfg->phy_type_low = caps->phy_type_low;
3949 	cfg->phy_type_high = caps->phy_type_high;
3950 	cfg->caps = caps->caps;
3951 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3952 	cfg->eee_cap = caps->eee_cap;
3953 	cfg->eeer_value = caps->eeer_value;
3954 	cfg->link_fec_opt = caps->link_fec_options;
3955 	cfg->module_compliance_enforcement =
3956 		caps->module_compliance_enforcement;
3957 }
3958 
3959 /**
3960  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3961  * @pi: port information structure
3962  * @cfg: PHY configuration data to set FEC mode
3963  * @fec: FEC mode to configure
3964  */
3965 int
3966 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3967 		enum ice_fec_mode fec)
3968 {
3969 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3970 	struct ice_hw *hw;
3971 	int status;
3972 
3973 	if (!pi || !cfg)
3974 		return -EINVAL;
3975 
3976 	hw = pi->hw;
3977 
3978 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3979 	if (!pcaps)
3980 		return -ENOMEM;
3981 
3982 	status = ice_aq_get_phy_caps(pi, false,
3983 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3984 				      ICE_AQC_REPORT_DFLT_CFG :
3985 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3986 	if (status)
3987 		goto out;
3988 
3989 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3990 	cfg->link_fec_opt = pcaps->link_fec_options;
3991 
3992 	switch (fec) {
3993 	case ICE_FEC_BASER:
3994 		/* Clear RS bits, and AND BASE-R ability
3995 		 * bits and OR request bits.
3996 		 */
3997 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3998 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3999 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4000 			ICE_AQC_PHY_FEC_25G_KR_REQ;
4001 		break;
4002 	case ICE_FEC_RS:
4003 		/* Clear BASE-R bits, and AND RS ability
4004 		 * bits and OR request bits.
4005 		 */
4006 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4007 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4008 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4009 		break;
4010 	case ICE_FEC_NONE:
4011 		/* Clear all FEC option bits. */
4012 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4013 		break;
4014 	case ICE_FEC_AUTO:
4015 		/* AND auto FEC bit, and all caps bits. */
4016 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4017 		cfg->link_fec_opt |= pcaps->link_fec_options;
4018 		break;
4019 	default:
4020 		status = -EINVAL;
4021 		break;
4022 	}
4023 
4024 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4025 	    !ice_fw_supports_report_dflt_cfg(hw)) {
4026 		struct ice_link_default_override_tlv tlv = { 0 };
4027 
4028 		status = ice_get_link_default_override(&tlv, pi);
4029 		if (status)
4030 			goto out;
4031 
4032 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4033 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
4034 			cfg->link_fec_opt = tlv.fec_options;
4035 	}
4036 
4037 out:
4038 	return status;
4039 }
4040 
4041 /**
4042  * ice_get_link_status - get status of the HW network link
4043  * @pi: port information structure
4044  * @link_up: pointer to bool (true/false = linkup/linkdown)
4045  *
4046  * Variable link_up is true if link is up, false if link is down.
4047  * The variable link_up is invalid if status is non zero. As a
4048  * result of this call, link status reporting becomes enabled
4049  */
4050 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4051 {
4052 	struct ice_phy_info *phy_info;
4053 	int status = 0;
4054 
4055 	if (!pi || !link_up)
4056 		return -EINVAL;
4057 
4058 	phy_info = &pi->phy;
4059 
4060 	if (phy_info->get_link_info) {
4061 		status = ice_update_link_info(pi);
4062 
4063 		if (status)
4064 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4065 				  status);
4066 	}
4067 
4068 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4069 
4070 	return status;
4071 }
4072 
4073 /**
4074  * ice_aq_set_link_restart_an
4075  * @pi: pointer to the port information structure
4076  * @ena_link: if true: enable link, if false: disable link
4077  * @cd: pointer to command details structure or NULL
4078  *
4079  * Sets up the link and restarts the Auto-Negotiation over the link.
4080  */
4081 int
4082 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4083 			   struct ice_sq_cd *cd)
4084 {
4085 	struct ice_aqc_restart_an *cmd;
4086 	struct libie_aq_desc desc;
4087 
4088 	cmd = libie_aq_raw(&desc);
4089 
4090 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4091 
4092 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4093 	cmd->lport_num = pi->lport;
4094 	if (ena_link)
4095 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4096 	else
4097 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4098 
4099 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4100 }
4101 
4102 /**
4103  * ice_aq_set_event_mask
4104  * @hw: pointer to the HW struct
4105  * @port_num: port number of the physical function
4106  * @mask: event mask to be set
4107  * @cd: pointer to command details structure or NULL
4108  *
4109  * Set event mask (0x0613)
4110  */
4111 int
4112 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4113 		      struct ice_sq_cd *cd)
4114 {
4115 	struct ice_aqc_set_event_mask *cmd;
4116 	struct libie_aq_desc desc;
4117 
4118 	cmd = libie_aq_raw(&desc);
4119 
4120 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4121 
4122 	cmd->lport_num = port_num;
4123 
4124 	cmd->event_mask = cpu_to_le16(mask);
4125 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4126 }
4127 
4128 /**
4129  * ice_aq_set_mac_loopback
4130  * @hw: pointer to the HW struct
4131  * @ena_lpbk: Enable or Disable loopback
4132  * @cd: pointer to command details structure or NULL
4133  *
4134  * Enable/disable loopback on a given port
4135  */
4136 int
4137 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4138 {
4139 	struct ice_aqc_set_mac_lb *cmd;
4140 	struct libie_aq_desc desc;
4141 
4142 	cmd = libie_aq_raw(&desc);
4143 
4144 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4145 	if (ena_lpbk)
4146 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4147 
4148 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4149 }
4150 
4151 /**
4152  * ice_aq_set_port_id_led
4153  * @pi: pointer to the port information
4154  * @is_orig_mode: is this LED set to original mode (by the net-list)
4155  * @cd: pointer to command details structure or NULL
4156  *
4157  * Set LED value for the given port (0x06e9)
4158  */
4159 int
4160 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4161 		       struct ice_sq_cd *cd)
4162 {
4163 	struct ice_aqc_set_port_id_led *cmd;
4164 	struct ice_hw *hw = pi->hw;
4165 	struct libie_aq_desc desc;
4166 
4167 	cmd = libie_aq_raw(&desc);
4168 
4169 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4170 
4171 	if (is_orig_mode)
4172 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4173 	else
4174 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4175 
4176 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4177 }
4178 
4179 /**
4180  * ice_aq_get_port_options
4181  * @hw: pointer to the HW struct
4182  * @options: buffer for the resultant port options
4183  * @option_count: input - size of the buffer in port options structures,
4184  *                output - number of returned port options
4185  * @lport: logical port to call the command with (optional)
4186  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4187  *               when PF owns more than 1 port it must be true
4188  * @active_option_idx: index of active port option in returned buffer
4189  * @active_option_valid: active option in returned buffer is valid
4190  * @pending_option_idx: index of pending port option in returned buffer
4191  * @pending_option_valid: pending option in returned buffer is valid
4192  *
4193  * Calls Get Port Options AQC (0x06ea) and verifies result.
4194  */
4195 int
4196 ice_aq_get_port_options(struct ice_hw *hw,
4197 			struct ice_aqc_get_port_options_elem *options,
4198 			u8 *option_count, u8 lport, bool lport_valid,
4199 			u8 *active_option_idx, bool *active_option_valid,
4200 			u8 *pending_option_idx, bool *pending_option_valid)
4201 {
4202 	struct ice_aqc_get_port_options *cmd;
4203 	struct libie_aq_desc desc;
4204 	int status;
4205 	u8 i;
4206 
4207 	/* options buffer shall be able to hold max returned options */
4208 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4209 		return -EINVAL;
4210 
4211 	cmd = libie_aq_raw(&desc);
4212 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4213 
4214 	if (lport_valid)
4215 		cmd->lport_num = lport;
4216 	cmd->lport_num_valid = lport_valid;
4217 
4218 	status = ice_aq_send_cmd(hw, &desc, options,
4219 				 *option_count * sizeof(*options), NULL);
4220 	if (status)
4221 		return status;
4222 
4223 	/* verify direct FW response & set output parameters */
4224 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4225 				  cmd->port_options_count);
4226 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4227 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4228 					 cmd->port_options);
4229 	if (*active_option_valid) {
4230 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4231 					       cmd->port_options);
4232 		if (*active_option_idx > (*option_count - 1))
4233 			return -EIO;
4234 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4235 			  *active_option_idx);
4236 	}
4237 
4238 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4239 					  cmd->pending_port_option_status);
4240 	if (*pending_option_valid) {
4241 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4242 						cmd->pending_port_option_status);
4243 		if (*pending_option_idx > (*option_count - 1))
4244 			return -EIO;
4245 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4246 			  *pending_option_idx);
4247 	}
4248 
4249 	/* mask output options fields */
4250 	for (i = 0; i < *option_count; i++) {
4251 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4252 					   options[i].pmd);
4253 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4254 						      options[i].max_lane_speed);
4255 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4256 			  options[i].pmd, options[i].max_lane_speed);
4257 	}
4258 
4259 	return 0;
4260 }
4261 
4262 /**
4263  * ice_aq_set_port_option
4264  * @hw: pointer to the HW struct
4265  * @lport: logical port to call the command with
4266  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4267  *               when PF owns more than 1 port it must be true
4268  * @new_option: new port option to be written
4269  *
4270  * Calls Set Port Options AQC (0x06eb).
4271  */
4272 int
4273 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4274 		       u8 new_option)
4275 {
4276 	struct ice_aqc_set_port_option *cmd;
4277 	struct libie_aq_desc desc;
4278 
4279 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4280 		return -EINVAL;
4281 
4282 	cmd = libie_aq_raw(&desc);
4283 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4284 
4285 	if (lport_valid)
4286 		cmd->lport_num = lport;
4287 
4288 	cmd->lport_num_valid = lport_valid;
4289 	cmd->selected_port_option = new_option;
4290 
4291 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4292 }
4293 
4294 /**
4295  * ice_get_phy_lane_number - Get PHY lane number for current adapter
4296  * @hw: pointer to the hw struct
4297  *
4298  * Return: PHY lane number on success, negative error code otherwise.
4299  */
4300 int ice_get_phy_lane_number(struct ice_hw *hw)
4301 {
4302 	struct ice_aqc_get_port_options_elem *options;
4303 	unsigned int lport = 0;
4304 	unsigned int lane;
4305 	int err;
4306 
4307 	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4308 	if (!options)
4309 		return -ENOMEM;
4310 
4311 	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4312 		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4313 		u8 speed, active_idx, pending_idx;
4314 		bool active_valid, pending_valid;
4315 
4316 		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4317 					      true, &active_idx, &active_valid,
4318 					      &pending_idx, &pending_valid);
4319 		if (err)
4320 			goto err;
4321 
4322 		if (!active_valid)
4323 			continue;
4324 
4325 		speed = options[active_idx].max_lane_speed;
4326 		/* If we don't get speed for this lane, it's unoccupied */
4327 		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4328 			continue;
4329 
4330 		if (hw->pf_id == lport) {
4331 			if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4332 			    ice_is_dual(hw) && !ice_is_primary(hw))
4333 				lane += ICE_PORTS_PER_QUAD;
4334 			kfree(options);
4335 			return lane;
4336 		}
4337 		lport++;
4338 	}
4339 
4340 	/* PHY lane not found */
4341 	err = -ENXIO;
4342 err:
4343 	kfree(options);
4344 	return err;
4345 }
4346 
4347 /**
4348  * ice_aq_sff_eeprom
4349  * @hw: pointer to the HW struct
4350  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4351  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4352  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4353  * @page: QSFP page
4354  * @set_page: set or ignore the page
4355  * @data: pointer to data buffer to be read/written to the I2C device.
4356  * @length: 1-16 for read, 1 for write.
4357  * @write: 0 read, 1 for write.
4358  * @cd: pointer to command details structure or NULL
4359  *
4360  * Read/Write SFF EEPROM (0x06EE)
4361  */
4362 int
4363 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4364 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4365 		  bool write, struct ice_sq_cd *cd)
4366 {
4367 	struct ice_aqc_sff_eeprom *cmd;
4368 	struct libie_aq_desc desc;
4369 	u16 i2c_bus_addr;
4370 	int status;
4371 
4372 	if (!data || (mem_addr & 0xff00))
4373 		return -EINVAL;
4374 
4375 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4376 	cmd = libie_aq_raw(&desc);
4377 	desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4378 	cmd->lport_num = (u8)(lport & 0xff);
4379 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4380 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4381 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4382 	if (write)
4383 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4384 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4385 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4386 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4387 
4388 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4389 	return status;
4390 }
4391 
4392 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4393 {
4394 	switch (type) {
4395 	case ICE_LUT_VSI:
4396 		return ICE_LUT_VSI_SIZE;
4397 	case ICE_LUT_GLOBAL:
4398 		return ICE_LUT_GLOBAL_SIZE;
4399 	case ICE_LUT_PF:
4400 		return ICE_LUT_PF_SIZE;
4401 	}
4402 	WARN_ONCE(1, "incorrect type passed");
4403 	return ICE_LUT_VSI_SIZE;
4404 }
4405 
4406 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4407 {
4408 	switch (size) {
4409 	case ICE_LUT_VSI_SIZE:
4410 		return ICE_AQC_LUT_SIZE_SMALL;
4411 	case ICE_LUT_GLOBAL_SIZE:
4412 		return ICE_AQC_LUT_SIZE_512;
4413 	case ICE_LUT_PF_SIZE:
4414 		return ICE_AQC_LUT_SIZE_2K;
4415 	}
4416 	WARN_ONCE(1, "incorrect size passed");
4417 	return 0;
4418 }
4419 
4420 /**
4421  * __ice_aq_get_set_rss_lut
4422  * @hw: pointer to the hardware structure
4423  * @params: RSS LUT parameters
4424  * @set: set true to set the table, false to get the table
4425  *
4426  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4427  */
4428 static int
4429 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4430 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4431 {
4432 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4433 	enum ice_lut_type lut_type = params->lut_type;
4434 	struct ice_aqc_get_set_rss_lut *desc_params;
4435 	enum ice_aqc_lut_flags flags;
4436 	enum ice_lut_size lut_size;
4437 	struct libie_aq_desc desc;
4438 	u8 *lut = params->lut;
4439 
4440 
4441 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4442 		return -EINVAL;
4443 
4444 	lut_size = ice_lut_type_to_size(lut_type);
4445 	if (lut_size > params->lut_size)
4446 		return -EINVAL;
4447 	else if (set && lut_size != params->lut_size)
4448 		return -EINVAL;
4449 
4450 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4451 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4452 	if (set)
4453 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4454 
4455 	desc_params = libie_aq_raw(&desc);
4456 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4457 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4458 
4459 	if (lut_type == ICE_LUT_GLOBAL)
4460 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4461 					  params->global_lut_id);
4462 
4463 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4464 	desc_params->flags = cpu_to_le16(flags);
4465 
4466 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4467 }
4468 
4469 /**
4470  * ice_aq_get_rss_lut
4471  * @hw: pointer to the hardware structure
4472  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4473  *
4474  * get the RSS lookup table, PF or VSI type
4475  */
4476 int
4477 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4478 {
4479 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4480 }
4481 
4482 /**
4483  * ice_aq_set_rss_lut
4484  * @hw: pointer to the hardware structure
4485  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4486  *
4487  * set the RSS lookup table, PF or VSI type
4488  */
4489 int
4490 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4491 {
4492 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4493 }
4494 
4495 /**
4496  * __ice_aq_get_set_rss_key
4497  * @hw: pointer to the HW struct
4498  * @vsi_id: VSI FW index
4499  * @key: pointer to key info struct
4500  * @set: set true to set the key, false to get the key
4501  *
4502  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4503  */
4504 static int
4505 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4506 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4507 {
4508 	struct ice_aqc_get_set_rss_key *desc_params;
4509 	u16 key_size = sizeof(*key);
4510 	struct libie_aq_desc desc;
4511 
4512 	if (set) {
4513 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4514 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4515 	} else {
4516 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4517 	}
4518 
4519 	desc_params = libie_aq_raw(&desc);
4520 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4521 
4522 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4523 }
4524 
4525 /**
4526  * ice_aq_get_rss_key
4527  * @hw: pointer to the HW struct
4528  * @vsi_handle: software VSI handle
4529  * @key: pointer to key info struct
4530  *
4531  * get the RSS key per VSI
4532  */
4533 int
4534 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4535 		   struct ice_aqc_get_set_rss_keys *key)
4536 {
4537 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4538 		return -EINVAL;
4539 
4540 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4541 					key, false);
4542 }
4543 
4544 /**
4545  * ice_aq_set_rss_key
4546  * @hw: pointer to the HW struct
4547  * @vsi_handle: software VSI handle
4548  * @keys: pointer to key info struct
4549  *
4550  * set the RSS key per VSI
4551  */
4552 int
4553 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4554 		   struct ice_aqc_get_set_rss_keys *keys)
4555 {
4556 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4557 		return -EINVAL;
4558 
4559 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4560 					keys, true);
4561 }
4562 
4563 /**
4564  * ice_aq_add_lan_txq
4565  * @hw: pointer to the hardware structure
4566  * @num_qgrps: Number of added queue groups
4567  * @qg_list: list of queue groups to be added
4568  * @buf_size: size of buffer for indirect command
4569  * @cd: pointer to command details structure or NULL
4570  *
4571  * Add Tx LAN queue (0x0C30)
4572  *
4573  * NOTE:
4574  * Prior to calling add Tx LAN queue:
4575  * Initialize the following as part of the Tx queue context:
4576  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4577  * Cache profile and Packet shaper profile.
4578  *
4579  * After add Tx LAN queue AQ command is completed:
4580  * Interrupts should be associated with specific queues,
4581  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4582  * flow.
4583  */
4584 static int
4585 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4586 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4587 		   struct ice_sq_cd *cd)
4588 {
4589 	struct ice_aqc_add_tx_qgrp *list;
4590 	struct ice_aqc_add_txqs *cmd;
4591 	struct libie_aq_desc desc;
4592 	u16 i, sum_size = 0;
4593 
4594 	cmd = libie_aq_raw(&desc);
4595 
4596 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4597 
4598 	if (!qg_list)
4599 		return -EINVAL;
4600 
4601 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4602 		return -EINVAL;
4603 
4604 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4605 		sum_size += struct_size(list, txqs, list->num_txqs);
4606 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4607 						      list->num_txqs);
4608 	}
4609 
4610 	if (buf_size != sum_size)
4611 		return -EINVAL;
4612 
4613 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4614 
4615 	cmd->num_qgrps = num_qgrps;
4616 
4617 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4618 }
4619 
4620 /**
4621  * ice_aq_dis_lan_txq
4622  * @hw: pointer to the hardware structure
4623  * @num_qgrps: number of groups in the list
4624  * @qg_list: the list of groups to disable
4625  * @buf_size: the total size of the qg_list buffer in bytes
4626  * @rst_src: if called due to reset, specifies the reset source
4627  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4628  * @cd: pointer to command details structure or NULL
4629  *
4630  * Disable LAN Tx queue (0x0C31)
4631  */
4632 static int
4633 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4634 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4635 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4636 		   struct ice_sq_cd *cd)
4637 {
4638 	struct ice_aqc_dis_txq_item *item;
4639 	struct ice_aqc_dis_txqs *cmd;
4640 	struct libie_aq_desc desc;
4641 	u16 vmvf_and_timeout;
4642 	u16 i, sz = 0;
4643 	int status;
4644 
4645 	cmd = libie_aq_raw(&desc);
4646 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4647 
4648 	/* qg_list can be NULL only in VM/VF reset flow */
4649 	if (!qg_list && !rst_src)
4650 		return -EINVAL;
4651 
4652 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4653 		return -EINVAL;
4654 
4655 	cmd->num_entries = num_qgrps;
4656 
4657 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4658 
4659 	switch (rst_src) {
4660 	case ICE_VM_RESET:
4661 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4662 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4663 		break;
4664 	case ICE_VF_RESET:
4665 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4666 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4667 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4668 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4669 		break;
4670 	case ICE_NO_RESET:
4671 	default:
4672 		break;
4673 	}
4674 
4675 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4676 
4677 	/* flush pipe on time out */
4678 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4679 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4680 	if (!qg_list)
4681 		goto do_aq;
4682 
4683 	/* set RD bit to indicate that command buffer is provided by the driver
4684 	 * and it needs to be read by the firmware
4685 	 */
4686 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4687 
4688 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4689 		u16 item_size = struct_size(item, q_id, item->num_qs);
4690 
4691 		/* If the num of queues is even, add 2 bytes of padding */
4692 		if ((item->num_qs % 2) == 0)
4693 			item_size += 2;
4694 
4695 		sz += item_size;
4696 
4697 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4698 	}
4699 
4700 	if (buf_size != sz)
4701 		return -EINVAL;
4702 
4703 do_aq:
4704 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4705 	if (status) {
4706 		if (!qg_list)
4707 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4708 				  vmvf_num, hw->adminq.sq_last_status);
4709 		else
4710 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4711 				  le16_to_cpu(qg_list[0].q_id[0]),
4712 				  hw->adminq.sq_last_status);
4713 	}
4714 	return status;
4715 }
4716 
4717 /**
4718  * ice_aq_cfg_lan_txq - send AQ command 0x0C32 to FW
4719  * @hw: pointer to the hardware structure
4720  * @buf: buffer for command
4721  * @buf_size: size of buffer in bytes
4722  * @num_qs: number of queues being configured
4723  * @oldport: origination lport
4724  * @newport: destination lport
4725  * @mode: cmd_type for move to use
4726  * @cd: pointer to command details structure or NULL
4727  *
4728  * Move/Configure LAN Tx queue (0x0C32)
4729  *
4730  * Return: Zero on success, associated error code on failure.
4731  */
4732 int
4733 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4734 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4735 		   u8 mode, struct ice_sq_cd *cd)
4736 {
4737 	struct ice_aqc_cfg_txqs *cmd;
4738 	struct libie_aq_desc desc;
4739 	int status;
4740 
4741 	cmd = libie_aq_raw(&desc);
4742 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4743 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4744 
4745 	if (!buf)
4746 		return -EINVAL;
4747 
4748 	cmd->cmd_type = mode;
4749 	cmd->num_qs = num_qs;
4750 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4751 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4752 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_MODE_M,
4753 					 ICE_AQC_Q_CFG_MODE_KEEP_OWN);
4754 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4755 	cmd->blocked_cgds = 0;
4756 
4757 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4758 	if (status)
4759 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4760 			  hw->adminq.sq_last_status);
4761 	return status;
4762 }
4763 
4764 /**
4765  * ice_aq_add_rdma_qsets
4766  * @hw: pointer to the hardware structure
4767  * @num_qset_grps: Number of RDMA Qset groups
4768  * @qset_list: list of Qset groups to be added
4769  * @buf_size: size of buffer for indirect command
4770  * @cd: pointer to command details structure or NULL
4771  *
4772  * Add Tx RDMA Qsets (0x0C33)
4773  */
4774 static int
4775 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4776 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4777 		      u16 buf_size, struct ice_sq_cd *cd)
4778 {
4779 	struct ice_aqc_add_rdma_qset_data *list;
4780 	struct ice_aqc_add_rdma_qset *cmd;
4781 	struct libie_aq_desc desc;
4782 	u16 i, sum_size = 0;
4783 
4784 	cmd = libie_aq_raw(&desc);
4785 
4786 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4787 
4788 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4789 		return -EINVAL;
4790 
4791 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4792 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4793 
4794 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4795 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4796 							     num_qsets);
4797 	}
4798 
4799 	if (buf_size != sum_size)
4800 		return -EINVAL;
4801 
4802 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4803 
4804 	cmd->num_qset_grps = num_qset_grps;
4805 
4806 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4807 }
4808 
4809 /* End of FW Admin Queue command wrappers */
4810 
4811 /**
4812  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4813  * @hw: pointer to the HW struct
4814  * @vsi_handle: software VSI handle
4815  * @tc: TC number
4816  * @q_handle: software queue handle
4817  */
4818 struct ice_q_ctx *
4819 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4820 {
4821 	struct ice_vsi_ctx *vsi;
4822 	struct ice_q_ctx *q_ctx;
4823 
4824 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4825 	if (!vsi)
4826 		return NULL;
4827 	if (q_handle >= vsi->num_lan_q_entries[tc])
4828 		return NULL;
4829 	if (!vsi->lan_q_ctx[tc])
4830 		return NULL;
4831 	q_ctx = vsi->lan_q_ctx[tc];
4832 	return &q_ctx[q_handle];
4833 }
4834 
4835 /**
4836  * ice_ena_vsi_txq
4837  * @pi: port information structure
4838  * @vsi_handle: software VSI handle
4839  * @tc: TC number
4840  * @q_handle: software queue handle
4841  * @num_qgrps: Number of added queue groups
4842  * @buf: list of queue groups to be added
4843  * @buf_size: size of buffer for indirect command
4844  * @cd: pointer to command details structure or NULL
4845  *
4846  * This function adds one LAN queue
4847  */
4848 int
4849 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4850 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4851 		struct ice_sq_cd *cd)
4852 {
4853 	struct ice_aqc_txsched_elem_data node = { 0 };
4854 	struct ice_sched_node *parent;
4855 	struct ice_q_ctx *q_ctx;
4856 	struct ice_hw *hw;
4857 	int status;
4858 
4859 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4860 		return -EIO;
4861 
4862 	if (num_qgrps > 1 || buf->num_txqs > 1)
4863 		return -ENOSPC;
4864 
4865 	hw = pi->hw;
4866 
4867 	if (!ice_is_vsi_valid(hw, vsi_handle))
4868 		return -EINVAL;
4869 
4870 	mutex_lock(&pi->sched_lock);
4871 
4872 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4873 	if (!q_ctx) {
4874 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4875 			  q_handle);
4876 		status = -EINVAL;
4877 		goto ena_txq_exit;
4878 	}
4879 
4880 	/* find a parent node */
4881 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4882 					    ICE_SCHED_NODE_OWNER_LAN);
4883 	if (!parent) {
4884 		status = -EINVAL;
4885 		goto ena_txq_exit;
4886 	}
4887 
4888 	buf->parent_teid = parent->info.node_teid;
4889 	node.parent_teid = parent->info.node_teid;
4890 	/* Mark that the values in the "generic" section as valid. The default
4891 	 * value in the "generic" section is zero. This means that :
4892 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4893 	 * - 0 priority among siblings, indicated by Bit 1-3.
4894 	 * - WFQ, indicated by Bit 4.
4895 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4896 	 * Bit 5-6.
4897 	 * - Bit 7 is reserved.
4898 	 * Without setting the generic section as valid in valid_sections, the
4899 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4900 	 */
4901 	buf->txqs[0].info.valid_sections =
4902 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4903 		ICE_AQC_ELEM_VALID_EIR;
4904 	buf->txqs[0].info.generic = 0;
4905 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4906 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4907 	buf->txqs[0].info.cir_bw.bw_alloc =
4908 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4909 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4910 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4911 	buf->txqs[0].info.eir_bw.bw_alloc =
4912 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4913 
4914 	/* add the LAN queue */
4915 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4916 	if (status) {
4917 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4918 			  le16_to_cpu(buf->txqs[0].txq_id),
4919 			  hw->adminq.sq_last_status);
4920 		goto ena_txq_exit;
4921 	}
4922 
4923 	node.node_teid = buf->txqs[0].q_teid;
4924 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4925 	q_ctx->q_handle = q_handle;
4926 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4927 
4928 	/* add a leaf node into scheduler tree queue layer */
4929 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4930 	if (!status)
4931 		status = ice_sched_replay_q_bw(pi, q_ctx);
4932 
4933 ena_txq_exit:
4934 	mutex_unlock(&pi->sched_lock);
4935 	return status;
4936 }
4937 
4938 /**
4939  * ice_dis_vsi_txq
4940  * @pi: port information structure
4941  * @vsi_handle: software VSI handle
4942  * @tc: TC number
4943  * @num_queues: number of queues
4944  * @q_handles: pointer to software queue handle array
4945  * @q_ids: pointer to the q_id array
4946  * @q_teids: pointer to queue node teids
4947  * @rst_src: if called due to reset, specifies the reset source
4948  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4949  * @cd: pointer to command details structure or NULL
4950  *
4951  * This function removes queues and their corresponding nodes in SW DB
4952  */
4953 int
4954 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4955 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4956 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4957 		struct ice_sq_cd *cd)
4958 {
4959 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4960 	u16 i, buf_size = __struct_size(qg_list);
4961 	struct ice_q_ctx *q_ctx;
4962 	int status = -ENOENT;
4963 	struct ice_hw *hw;
4964 
4965 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4966 		return -EIO;
4967 
4968 	hw = pi->hw;
4969 
4970 	if (!num_queues) {
4971 		/* if queue is disabled already yet the disable queue command
4972 		 * has to be sent to complete the VF reset, then call
4973 		 * ice_aq_dis_lan_txq without any queue information
4974 		 */
4975 		if (rst_src)
4976 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4977 						  vmvf_num, NULL);
4978 		return -EIO;
4979 	}
4980 
4981 	mutex_lock(&pi->sched_lock);
4982 
4983 	for (i = 0; i < num_queues; i++) {
4984 		struct ice_sched_node *node;
4985 
4986 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4987 		if (!node)
4988 			continue;
4989 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4990 		if (!q_ctx) {
4991 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4992 				  q_handles[i]);
4993 			continue;
4994 		}
4995 		if (q_ctx->q_handle != q_handles[i]) {
4996 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4997 				  q_ctx->q_handle, q_handles[i]);
4998 			continue;
4999 		}
5000 		qg_list->parent_teid = node->info.parent_teid;
5001 		qg_list->num_qs = 1;
5002 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5003 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5004 					    vmvf_num, cd);
5005 
5006 		if (status)
5007 			break;
5008 		ice_free_sched_node(pi, node);
5009 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5010 		q_ctx->q_teid = ICE_INVAL_TEID;
5011 	}
5012 	mutex_unlock(&pi->sched_lock);
5013 	return status;
5014 }
5015 
5016 /**
5017  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5018  * @pi: port information structure
5019  * @vsi_handle: software VSI handle
5020  * @tc_bitmap: TC bitmap
5021  * @maxqs: max queues array per TC
5022  * @owner: LAN or RDMA
5023  *
5024  * This function adds/updates the VSI queues per TC.
5025  */
5026 static int
5027 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5028 	       u16 *maxqs, u8 owner)
5029 {
5030 	int status = 0;
5031 	u8 i;
5032 
5033 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5034 		return -EIO;
5035 
5036 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5037 		return -EINVAL;
5038 
5039 	mutex_lock(&pi->sched_lock);
5040 
5041 	ice_for_each_traffic_class(i) {
5042 		/* configuration is possible only if TC node is present */
5043 		if (!ice_sched_get_tc_node(pi, i))
5044 			continue;
5045 
5046 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5047 					   ice_is_tc_ena(tc_bitmap, i));
5048 		if (status)
5049 			break;
5050 	}
5051 
5052 	mutex_unlock(&pi->sched_lock);
5053 	return status;
5054 }
5055 
5056 /**
5057  * ice_cfg_vsi_lan - configure VSI LAN queues
5058  * @pi: port information structure
5059  * @vsi_handle: software VSI handle
5060  * @tc_bitmap: TC bitmap
5061  * @max_lanqs: max LAN queues array per TC
5062  *
5063  * This function adds/updates the VSI LAN queues per TC.
5064  */
5065 int
5066 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5067 		u16 *max_lanqs)
5068 {
5069 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5070 			      ICE_SCHED_NODE_OWNER_LAN);
5071 }
5072 
5073 /**
5074  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5075  * @pi: port information structure
5076  * @vsi_handle: software VSI handle
5077  * @tc_bitmap: TC bitmap
5078  * @max_rdmaqs: max RDMA queues array per TC
5079  *
5080  * This function adds/updates the VSI RDMA queues per TC.
5081  */
5082 int
5083 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5084 		 u16 *max_rdmaqs)
5085 {
5086 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5087 			      ICE_SCHED_NODE_OWNER_RDMA);
5088 }
5089 
5090 /**
5091  * ice_ena_vsi_rdma_qset
5092  * @pi: port information structure
5093  * @vsi_handle: software VSI handle
5094  * @tc: TC number
5095  * @rdma_qset: pointer to RDMA Qset
5096  * @num_qsets: number of RDMA Qsets
5097  * @qset_teid: pointer to Qset node TEIDs
5098  *
5099  * This function adds RDMA Qset
5100  */
5101 int
5102 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5103 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5104 {
5105 	struct ice_aqc_txsched_elem_data node = { 0 };
5106 	struct ice_aqc_add_rdma_qset_data *buf;
5107 	struct ice_sched_node *parent;
5108 	struct ice_hw *hw;
5109 	u16 i, buf_size;
5110 	int ret;
5111 
5112 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5113 		return -EIO;
5114 	hw = pi->hw;
5115 
5116 	if (!ice_is_vsi_valid(hw, vsi_handle))
5117 		return -EINVAL;
5118 
5119 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5120 	buf = kzalloc(buf_size, GFP_KERNEL);
5121 	if (!buf)
5122 		return -ENOMEM;
5123 	mutex_lock(&pi->sched_lock);
5124 
5125 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5126 					    ICE_SCHED_NODE_OWNER_RDMA);
5127 	if (!parent) {
5128 		ret = -EINVAL;
5129 		goto rdma_error_exit;
5130 	}
5131 	buf->parent_teid = parent->info.node_teid;
5132 	node.parent_teid = parent->info.node_teid;
5133 
5134 	buf->num_qsets = cpu_to_le16(num_qsets);
5135 	for (i = 0; i < num_qsets; i++) {
5136 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5137 		buf->rdma_qsets[i].info.valid_sections =
5138 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5139 			ICE_AQC_ELEM_VALID_EIR;
5140 		buf->rdma_qsets[i].info.generic = 0;
5141 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5142 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5143 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5144 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5145 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5146 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5147 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5148 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5149 	}
5150 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5151 	if (ret) {
5152 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5153 		goto rdma_error_exit;
5154 	}
5155 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5156 	for (i = 0; i < num_qsets; i++) {
5157 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5158 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5159 					 &node, NULL);
5160 		if (ret)
5161 			break;
5162 		qset_teid[i] = le32_to_cpu(node.node_teid);
5163 	}
5164 rdma_error_exit:
5165 	mutex_unlock(&pi->sched_lock);
5166 	kfree(buf);
5167 	return ret;
5168 }
5169 
5170 /**
5171  * ice_dis_vsi_rdma_qset - free RDMA resources
5172  * @pi: port_info struct
5173  * @count: number of RDMA Qsets to free
5174  * @qset_teid: TEID of Qset node
5175  * @q_id: list of queue IDs being disabled
5176  */
5177 int
5178 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5179 		      u16 *q_id)
5180 {
5181 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5182 	u16 qg_size = __struct_size(qg_list);
5183 	struct ice_hw *hw;
5184 	int status = 0;
5185 	int i;
5186 
5187 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5188 		return -EIO;
5189 
5190 	hw = pi->hw;
5191 
5192 	mutex_lock(&pi->sched_lock);
5193 
5194 	for (i = 0; i < count; i++) {
5195 		struct ice_sched_node *node;
5196 
5197 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5198 		if (!node)
5199 			continue;
5200 
5201 		qg_list->parent_teid = node->info.parent_teid;
5202 		qg_list->num_qs = 1;
5203 		qg_list->q_id[0] =
5204 			cpu_to_le16(q_id[i] |
5205 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5206 
5207 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5208 					    ICE_NO_RESET, 0, NULL);
5209 		if (status)
5210 			break;
5211 
5212 		ice_free_sched_node(pi, node);
5213 	}
5214 
5215 	mutex_unlock(&pi->sched_lock);
5216 	return status;
5217 }
5218 
5219 /**
5220  * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5221  * @hw: pointer to the HW struct
5222  * @dpll_idx: index of dpll to be measured
5223  * @meas: array to be filled with results
5224  * @meas_num: max number of results array can hold
5225  *
5226  * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5227  * pins on given dpll.
5228  *
5229  * Return: 0 on success or negative value on failure.
5230  */
5231 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5232 				     struct ice_cgu_input_measure *meas,
5233 				     u16 meas_num)
5234 {
5235 	struct ice_aqc_get_cgu_input_measure *cmd;
5236 	struct libie_aq_desc desc;
5237 
5238 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5239 	cmd = libie_aq_raw(&desc);
5240 	cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5241 
5242 	return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5243 }
5244 
5245 /**
5246  * ice_aq_get_cgu_abilities - get cgu abilities
5247  * @hw: pointer to the HW struct
5248  * @abilities: CGU abilities
5249  *
5250  * Get CGU abilities (0x0C61)
5251  * Return: 0 on success or negative value on failure.
5252  */
5253 int
5254 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5255 			 struct ice_aqc_get_cgu_abilities *abilities)
5256 {
5257 	struct libie_aq_desc desc;
5258 
5259 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5260 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5261 }
5262 
5263 /**
5264  * ice_aq_set_input_pin_cfg - set input pin config
5265  * @hw: pointer to the HW struct
5266  * @input_idx: Input index
5267  * @flags1: Input flags
5268  * @flags2: Input flags
5269  * @freq: Frequency in Hz
5270  * @phase_delay: Delay in ps
5271  *
5272  * Set CGU input config (0x0C62)
5273  * Return: 0 on success or negative value on failure.
5274  */
5275 int
5276 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5277 			 u32 freq, s32 phase_delay)
5278 {
5279 	struct ice_aqc_set_cgu_input_config *cmd;
5280 	struct libie_aq_desc desc;
5281 
5282 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5283 	cmd = libie_aq_raw(&desc);
5284 	cmd->input_idx = input_idx;
5285 	cmd->flags1 = flags1;
5286 	cmd->flags2 = flags2;
5287 	cmd->freq = cpu_to_le32(freq);
5288 	cmd->phase_delay = cpu_to_le32(phase_delay);
5289 
5290 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5291 }
5292 
5293 /**
5294  * ice_aq_get_input_pin_cfg - get input pin config
5295  * @hw: pointer to the HW struct
5296  * @input_idx: Input index
5297  * @status: Pin status
5298  * @type: Pin type
5299  * @flags1: Input flags
5300  * @flags2: Input flags
5301  * @freq: Frequency in Hz
5302  * @phase_delay: Delay in ps
5303  *
5304  * Get CGU input config (0x0C63)
5305  * Return: 0 on success or negative value on failure.
5306  */
5307 int
5308 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5309 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5310 {
5311 	struct ice_aqc_get_cgu_input_config *cmd;
5312 	struct libie_aq_desc desc;
5313 	int ret;
5314 
5315 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5316 	cmd = libie_aq_raw(&desc);
5317 	cmd->input_idx = input_idx;
5318 
5319 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5320 	if (!ret) {
5321 		if (status)
5322 			*status = cmd->status;
5323 		if (type)
5324 			*type = cmd->type;
5325 		if (flags1)
5326 			*flags1 = cmd->flags1;
5327 		if (flags2)
5328 			*flags2 = cmd->flags2;
5329 		if (freq)
5330 			*freq = le32_to_cpu(cmd->freq);
5331 		if (phase_delay)
5332 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5333 	}
5334 
5335 	return ret;
5336 }
5337 
5338 /**
5339  * ice_aq_set_output_pin_cfg - set output pin config
5340  * @hw: pointer to the HW struct
5341  * @output_idx: Output index
5342  * @flags: Output flags
5343  * @src_sel: Index of DPLL block
5344  * @freq: Output frequency
5345  * @phase_delay: Output phase compensation
5346  *
5347  * Set CGU output config (0x0C64)
5348  * Return: 0 on success or negative value on failure.
5349  */
5350 int
5351 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5352 			  u8 src_sel, u32 freq, s32 phase_delay)
5353 {
5354 	struct ice_aqc_set_cgu_output_config *cmd;
5355 	struct libie_aq_desc desc;
5356 
5357 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5358 	cmd = libie_aq_raw(&desc);
5359 	cmd->output_idx = output_idx;
5360 	cmd->flags = flags;
5361 	cmd->src_sel = src_sel;
5362 	cmd->freq = cpu_to_le32(freq);
5363 	cmd->phase_delay = cpu_to_le32(phase_delay);
5364 
5365 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5366 }
5367 
5368 /**
5369  * ice_aq_get_output_pin_cfg - get output pin config
5370  * @hw: pointer to the HW struct
5371  * @output_idx: Output index
5372  * @flags: Output flags
5373  * @src_sel: Internal DPLL source
5374  * @freq: Output frequency
5375  * @src_freq: Source frequency
5376  *
5377  * Get CGU output config (0x0C65)
5378  * Return: 0 on success or negative value on failure.
5379  */
5380 int
5381 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5382 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5383 {
5384 	struct ice_aqc_get_cgu_output_config *cmd;
5385 	struct libie_aq_desc desc;
5386 	int ret;
5387 
5388 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5389 	cmd = libie_aq_raw(&desc);
5390 	cmd->output_idx = output_idx;
5391 
5392 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5393 	if (!ret) {
5394 		if (flags)
5395 			*flags = cmd->flags;
5396 		if (src_sel)
5397 			*src_sel = cmd->src_sel;
5398 		if (freq)
5399 			*freq = le32_to_cpu(cmd->freq);
5400 		if (src_freq)
5401 			*src_freq = le32_to_cpu(cmd->src_freq);
5402 	}
5403 
5404 	return ret;
5405 }
5406 
5407 /**
5408  * ice_aq_get_cgu_dpll_status - get dpll status
5409  * @hw: pointer to the HW struct
5410  * @dpll_num: DPLL index
5411  * @ref_state: Reference clock state
5412  * @config: current DPLL config
5413  * @dpll_state: current DPLL state
5414  * @phase_offset: Phase offset in ns
5415  * @eec_mode: EEC_mode
5416  *
5417  * Get CGU DPLL status (0x0C66)
5418  * Return: 0 on success or negative value on failure.
5419  */
5420 int
5421 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5422 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5423 			   u8 *eec_mode)
5424 {
5425 	struct ice_aqc_get_cgu_dpll_status *cmd;
5426 	struct libie_aq_desc desc;
5427 	int status;
5428 
5429 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5430 	cmd = libie_aq_raw(&desc);
5431 	cmd->dpll_num = dpll_num;
5432 
5433 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5434 	if (!status) {
5435 		*ref_state = cmd->ref_state;
5436 		*dpll_state = cmd->dpll_state;
5437 		*config = cmd->config;
5438 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5439 		*phase_offset <<= 32;
5440 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5441 		*phase_offset = sign_extend64(*phase_offset, 47);
5442 		*eec_mode = cmd->eec_mode;
5443 	}
5444 
5445 	return status;
5446 }
5447 
5448 /**
5449  * ice_aq_set_cgu_dpll_config - set dpll config
5450  * @hw: pointer to the HW struct
5451  * @dpll_num: DPLL index
5452  * @ref_state: Reference clock state
5453  * @config: DPLL config
5454  * @eec_mode: EEC mode
5455  *
5456  * Set CGU DPLL config (0x0C67)
5457  * Return: 0 on success or negative value on failure.
5458  */
5459 int
5460 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5461 			   u8 config, u8 eec_mode)
5462 {
5463 	struct ice_aqc_set_cgu_dpll_config *cmd;
5464 	struct libie_aq_desc desc;
5465 
5466 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5467 	cmd = libie_aq_raw(&desc);
5468 	cmd->dpll_num = dpll_num;
5469 	cmd->ref_state = ref_state;
5470 	cmd->config = config;
5471 	cmd->eec_mode = eec_mode;
5472 
5473 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5474 }
5475 
5476 /**
5477  * ice_aq_set_cgu_ref_prio - set input reference priority
5478  * @hw: pointer to the HW struct
5479  * @dpll_num: DPLL index
5480  * @ref_idx: Reference pin index
5481  * @ref_priority: Reference input priority
5482  *
5483  * Set CGU reference priority (0x0C68)
5484  * Return: 0 on success or negative value on failure.
5485  */
5486 int
5487 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5488 			u8 ref_priority)
5489 {
5490 	struct ice_aqc_set_cgu_ref_prio *cmd;
5491 	struct libie_aq_desc desc;
5492 
5493 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5494 	cmd = libie_aq_raw(&desc);
5495 	cmd->dpll_num = dpll_num;
5496 	cmd->ref_idx = ref_idx;
5497 	cmd->ref_priority = ref_priority;
5498 
5499 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5500 }
5501 
5502 /**
5503  * ice_aq_get_cgu_ref_prio - get input reference priority
5504  * @hw: pointer to the HW struct
5505  * @dpll_num: DPLL index
5506  * @ref_idx: Reference pin index
5507  * @ref_prio: Reference input priority
5508  *
5509  * Get CGU reference priority (0x0C69)
5510  * Return: 0 on success or negative value on failure.
5511  */
5512 int
5513 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5514 			u8 *ref_prio)
5515 {
5516 	struct ice_aqc_get_cgu_ref_prio *cmd;
5517 	struct libie_aq_desc desc;
5518 	int status;
5519 
5520 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5521 	cmd = libie_aq_raw(&desc);
5522 	cmd->dpll_num = dpll_num;
5523 	cmd->ref_idx = ref_idx;
5524 
5525 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5526 	if (!status)
5527 		*ref_prio = cmd->ref_priority;
5528 
5529 	return status;
5530 }
5531 
5532 /**
5533  * ice_aq_get_cgu_info - get cgu info
5534  * @hw: pointer to the HW struct
5535  * @cgu_id: CGU ID
5536  * @cgu_cfg_ver: CGU config version
5537  * @cgu_fw_ver: CGU firmware version
5538  *
5539  * Get CGU info (0x0C6A)
5540  * Return: 0 on success or negative value on failure.
5541  */
5542 int
5543 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5544 		    u32 *cgu_fw_ver)
5545 {
5546 	struct ice_aqc_get_cgu_info *cmd;
5547 	struct libie_aq_desc desc;
5548 	int status;
5549 
5550 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5551 	cmd = libie_aq_raw(&desc);
5552 
5553 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5554 	if (!status) {
5555 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5556 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5557 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5558 	}
5559 
5560 	return status;
5561 }
5562 
5563 /**
5564  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5565  * @hw: pointer to the HW struct
5566  * @phy_output: PHY reference clock output pin
5567  * @enable: GPIO state to be applied
5568  * @freq: PHY output frequency
5569  *
5570  * Set phy recovered clock as reference (0x0630)
5571  * Return: 0 on success or negative value on failure.
5572  */
5573 int
5574 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5575 			   u32 *freq)
5576 {
5577 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5578 	struct libie_aq_desc desc;
5579 	int status;
5580 
5581 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5582 	cmd = libie_aq_raw(&desc);
5583 	cmd->phy_output = phy_output;
5584 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5585 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5586 	cmd->freq = cpu_to_le32(*freq);
5587 
5588 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5589 	if (!status)
5590 		*freq = le32_to_cpu(cmd->freq);
5591 
5592 	return status;
5593 }
5594 
5595 /**
5596  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5597  * @hw: pointer to the HW struct
5598  * @phy_output: PHY reference clock output pin
5599  * @port_num: Port number
5600  * @flags: PHY flags
5601  * @node_handle: PHY output frequency
5602  *
5603  * Get PHY recovered clock output info (0x0631)
5604  * Return: 0 on success or negative value on failure.
5605  */
5606 int
5607 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5608 			   u8 *flags, u16 *node_handle)
5609 {
5610 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5611 	struct libie_aq_desc desc;
5612 	int status;
5613 
5614 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5615 	cmd = libie_aq_raw(&desc);
5616 	cmd->phy_output = *phy_output;
5617 
5618 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5619 	if (!status) {
5620 		*phy_output = cmd->phy_output;
5621 		if (port_num)
5622 			*port_num = cmd->port_num;
5623 		if (flags)
5624 			*flags = cmd->flags;
5625 		if (node_handle)
5626 			*node_handle = le16_to_cpu(cmd->node_handle);
5627 	}
5628 
5629 	return status;
5630 }
5631 
5632 /**
5633  * ice_aq_get_sensor_reading
5634  * @hw: pointer to the HW struct
5635  * @data: pointer to data to be read from the sensor
5636  *
5637  * Get sensor reading (0x0632)
5638  */
5639 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5640 			      struct ice_aqc_get_sensor_reading_resp *data)
5641 {
5642 	struct ice_aqc_get_sensor_reading *cmd;
5643 	struct libie_aq_desc desc;
5644 	int status;
5645 
5646 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5647 	cmd = libie_aq_raw(&desc);
5648 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5649 #define ICE_INTERNAL_TEMP_SENSOR	0
5650 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5651 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5652 
5653 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5654 	if (!status)
5655 		memcpy(data, &desc.params.raw,
5656 		       sizeof(*data));
5657 
5658 	return status;
5659 }
5660 
5661 /**
5662  * ice_replay_pre_init - replay pre initialization
5663  * @hw: pointer to the HW struct
5664  *
5665  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5666  */
5667 static int ice_replay_pre_init(struct ice_hw *hw)
5668 {
5669 	struct ice_switch_info *sw = hw->switch_info;
5670 	u8 i;
5671 
5672 	/* Delete old entries from replay filter list head if there is any */
5673 	ice_rm_all_sw_replay_rule_info(hw);
5674 	/* In start of replay, move entries into replay_rules list, it
5675 	 * will allow adding rules entries back to filt_rules list,
5676 	 * which is operational list.
5677 	 */
5678 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5679 		list_replace_init(&sw->recp_list[i].filt_rules,
5680 				  &sw->recp_list[i].filt_replay_rules);
5681 	ice_sched_replay_agg_vsi_preinit(hw);
5682 
5683 	return 0;
5684 }
5685 
5686 /**
5687  * ice_replay_vsi - replay VSI configuration
5688  * @hw: pointer to the HW struct
5689  * @vsi_handle: driver VSI handle
5690  *
5691  * Restore all VSI configuration after reset. It is required to call this
5692  * function with main VSI first.
5693  */
5694 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5695 {
5696 	int status;
5697 
5698 	if (!ice_is_vsi_valid(hw, vsi_handle))
5699 		return -EINVAL;
5700 
5701 	/* Replay pre-initialization if there is any */
5702 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5703 		status = ice_replay_pre_init(hw);
5704 		if (status)
5705 			return status;
5706 	}
5707 	/* Replay per VSI all RSS configurations */
5708 	status = ice_replay_rss_cfg(hw, vsi_handle);
5709 	if (status)
5710 		return status;
5711 	/* Replay per VSI all filters */
5712 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5713 	if (!status)
5714 		status = ice_replay_vsi_agg(hw, vsi_handle);
5715 	return status;
5716 }
5717 
5718 /**
5719  * ice_replay_post - post replay configuration cleanup
5720  * @hw: pointer to the HW struct
5721  *
5722  * Post replay cleanup.
5723  */
5724 void ice_replay_post(struct ice_hw *hw)
5725 {
5726 	/* Delete old entries from replay filter list head */
5727 	ice_rm_all_sw_replay_rule_info(hw);
5728 	ice_sched_replay_agg(hw);
5729 }
5730 
5731 /**
5732  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5733  * @hw: ptr to the hardware info
5734  * @reg: offset of 64 bit HW register to read from
5735  * @prev_stat_loaded: bool to specify if previous stats are loaded
5736  * @prev_stat: ptr to previous loaded stat value
5737  * @cur_stat: ptr to current stat value
5738  */
5739 void
5740 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5741 		  u64 *prev_stat, u64 *cur_stat)
5742 {
5743 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5744 
5745 	/* device stats are not reset at PFR, they likely will not be zeroed
5746 	 * when the driver starts. Thus, save the value from the first read
5747 	 * without adding to the statistic value so that we report stats which
5748 	 * count up from zero.
5749 	 */
5750 	if (!prev_stat_loaded) {
5751 		*prev_stat = new_data;
5752 		return;
5753 	}
5754 
5755 	/* Calculate the difference between the new and old values, and then
5756 	 * add it to the software stat value.
5757 	 */
5758 	if (new_data >= *prev_stat)
5759 		*cur_stat += new_data - *prev_stat;
5760 	else
5761 		/* to manage the potential roll-over */
5762 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5763 
5764 	/* Update the previously stored value to prepare for next read */
5765 	*prev_stat = new_data;
5766 }
5767 
5768 /**
5769  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5770  * @hw: ptr to the hardware info
5771  * @reg: offset of HW register to read from
5772  * @prev_stat_loaded: bool to specify if previous stats are loaded
5773  * @prev_stat: ptr to previous loaded stat value
5774  * @cur_stat: ptr to current stat value
5775  */
5776 void
5777 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5778 		  u64 *prev_stat, u64 *cur_stat)
5779 {
5780 	u32 new_data;
5781 
5782 	new_data = rd32(hw, reg);
5783 
5784 	/* device stats are not reset at PFR, they likely will not be zeroed
5785 	 * when the driver starts. Thus, save the value from the first read
5786 	 * without adding to the statistic value so that we report stats which
5787 	 * count up from zero.
5788 	 */
5789 	if (!prev_stat_loaded) {
5790 		*prev_stat = new_data;
5791 		return;
5792 	}
5793 
5794 	/* Calculate the difference between the new and old values, and then
5795 	 * add it to the software stat value.
5796 	 */
5797 	if (new_data >= *prev_stat)
5798 		*cur_stat += new_data - *prev_stat;
5799 	else
5800 		/* to manage the potential roll-over */
5801 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5802 
5803 	/* Update the previously stored value to prepare for next read */
5804 	*prev_stat = new_data;
5805 }
5806 
5807 /**
5808  * ice_sched_query_elem - query element information from HW
5809  * @hw: pointer to the HW struct
5810  * @node_teid: node TEID to be queried
5811  * @buf: buffer to element information
5812  *
5813  * This function queries HW element information
5814  */
5815 int
5816 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5817 		     struct ice_aqc_txsched_elem_data *buf)
5818 {
5819 	u16 buf_size, num_elem_ret = 0;
5820 	int status;
5821 
5822 	buf_size = sizeof(*buf);
5823 	memset(buf, 0, buf_size);
5824 	buf->node_teid = cpu_to_le32(node_teid);
5825 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5826 					  NULL);
5827 	if (status || num_elem_ret != 1)
5828 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5829 	return status;
5830 }
5831 
5832 /**
5833  * ice_aq_read_i2c
5834  * @hw: pointer to the hw struct
5835  * @topo_addr: topology address for a device to communicate with
5836  * @bus_addr: 7-bit I2C bus address
5837  * @addr: I2C memory address (I2C offset) with up to 16 bits
5838  * @params: I2C parameters: bit [7] - Repeated start,
5839  *			    bits [6:5] data offset size,
5840  *			    bit [4] - I2C address type,
5841  *			    bits [3:0] - data size to read (0-16 bytes)
5842  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5843  * @cd: pointer to command details structure or NULL
5844  *
5845  * Read I2C (0x06E2)
5846  */
5847 int
5848 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5849 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5850 		struct ice_sq_cd *cd)
5851 {
5852 	struct libie_aq_desc desc = { 0 };
5853 	struct ice_aqc_i2c *cmd;
5854 	u8 data_size;
5855 	int status;
5856 
5857 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5858 	cmd = libie_aq_raw(&desc);
5859 
5860 	if (!data)
5861 		return -EINVAL;
5862 
5863 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5864 
5865 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5866 	cmd->topo_addr = topo_addr;
5867 	cmd->i2c_params = params;
5868 	cmd->i2c_addr = addr;
5869 
5870 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5871 	if (!status) {
5872 		struct ice_aqc_read_i2c_resp *resp;
5873 		u8 i;
5874 
5875 		resp = libie_aq_raw(&desc);
5876 		for (i = 0; i < data_size; i++) {
5877 			*data = resp->i2c_data[i];
5878 			data++;
5879 		}
5880 	}
5881 
5882 	return status;
5883 }
5884 
5885 /**
5886  * ice_aq_write_i2c
5887  * @hw: pointer to the hw struct
5888  * @topo_addr: topology address for a device to communicate with
5889  * @bus_addr: 7-bit I2C bus address
5890  * @addr: I2C memory address (I2C offset) with up to 16 bits
5891  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5892  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5893  * @cd: pointer to command details structure or NULL
5894  *
5895  * Write I2C (0x06E3)
5896  *
5897  * * Return:
5898  * * 0             - Successful write to the i2c device
5899  * * -EINVAL       - Data size greater than 4 bytes
5900  * * -EIO          - FW error
5901  */
5902 int
5903 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5904 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5905 		 struct ice_sq_cd *cd)
5906 {
5907 	struct libie_aq_desc desc = { 0 };
5908 	struct ice_aqc_i2c *cmd;
5909 	u8 data_size;
5910 
5911 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5912 	cmd = libie_aq_raw(&desc);
5913 
5914 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5915 
5916 	/* data_size limited to 4 */
5917 	if (data_size > 4)
5918 		return -EINVAL;
5919 
5920 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5921 	cmd->topo_addr = topo_addr;
5922 	cmd->i2c_params = params;
5923 	cmd->i2c_addr = addr;
5924 
5925 	memcpy(cmd->i2c_data, data, data_size);
5926 
5927 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5928 }
5929 
5930 /**
5931  * ice_get_pca9575_handle - find and return the PCA9575 controller
5932  * @hw: pointer to the hw struct
5933  * @pca9575_handle: GPIO controller's handle
5934  *
5935  * Find and return the GPIO controller's handle in the netlist.
5936  * When found - the value will be cached in the hw structure and following calls
5937  * will return cached value.
5938  *
5939  * Return: 0 on success, -ENXIO when there's no PCA9575 present.
5940  */
5941 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5942 {
5943 	struct ice_aqc_get_link_topo *cmd;
5944 	struct libie_aq_desc desc;
5945 	int err;
5946 	u8 idx;
5947 
5948 	/* If handle was read previously return cached value */
5949 	if (hw->io_expander_handle) {
5950 		*pca9575_handle = hw->io_expander_handle;
5951 		return 0;
5952 	}
5953 
5954 #define SW_PCA9575_SFP_TOPO_IDX		2
5955 #define SW_PCA9575_QSFP_TOPO_IDX	1
5956 
5957 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
5958 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5959 		idx = SW_PCA9575_SFP_TOPO_IDX;
5960 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5961 		idx = SW_PCA9575_QSFP_TOPO_IDX;
5962 	else
5963 		return -ENXIO;
5964 
5965 	/* If handle was not detected read it from the netlist */
5966 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5967 	cmd = libie_aq_raw(&desc);
5968 	cmd->addr.topo_params.node_type_ctx =
5969 		ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
5970 	cmd->addr.topo_params.index = idx;
5971 
5972 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5973 	if (err)
5974 		return -ENXIO;
5975 
5976 	/* Verify if we found the right IO expander type */
5977 	if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5978 		return -ENXIO;
5979 
5980 	/* If present save the handle and return it */
5981 	hw->io_expander_handle =
5982 		le16_to_cpu(cmd->addr.handle);
5983 	*pca9575_handle = hw->io_expander_handle;
5984 
5985 	return 0;
5986 }
5987 
5988 /**
5989  * ice_read_pca9575_reg - read the register from the PCA9575 controller
5990  * @hw: pointer to the hw struct
5991  * @offset: GPIO controller register offset
5992  * @data: pointer to data to be read from the GPIO controller
5993  *
5994  * Return: 0 on success, negative error code otherwise.
5995  */
5996 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5997 {
5998 	struct ice_aqc_link_topo_addr link_topo;
5999 	__le16 addr;
6000 	u16 handle;
6001 	int err;
6002 
6003 	memset(&link_topo, 0, sizeof(link_topo));
6004 
6005 	err = ice_get_pca9575_handle(hw, &handle);
6006 	if (err)
6007 		return err;
6008 
6009 	link_topo.handle = cpu_to_le16(handle);
6010 	link_topo.topo_params.node_type_ctx =
6011 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6012 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6013 
6014 	addr = cpu_to_le16((u16)offset);
6015 
6016 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6017 }
6018 
6019 /**
6020  * ice_aq_set_gpio
6021  * @hw: pointer to the hw struct
6022  * @gpio_ctrl_handle: GPIO controller node handle
6023  * @pin_idx: IO Number of the GPIO that needs to be set
6024  * @value: SW provide IO value to set in the LSB
6025  * @cd: pointer to command details structure or NULL
6026  *
6027  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6028  */
6029 int
6030 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6031 		struct ice_sq_cd *cd)
6032 {
6033 	struct libie_aq_desc desc;
6034 	struct ice_aqc_gpio *cmd;
6035 
6036 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6037 	cmd = libie_aq_raw(&desc);
6038 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6039 	cmd->gpio_num = pin_idx;
6040 	cmd->gpio_val = value ? 1 : 0;
6041 
6042 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6043 }
6044 
6045 /**
6046  * ice_aq_get_gpio
6047  * @hw: pointer to the hw struct
6048  * @gpio_ctrl_handle: GPIO controller node handle
6049  * @pin_idx: IO Number of the GPIO that needs to be set
6050  * @value: IO value read
6051  * @cd: pointer to command details structure or NULL
6052  *
6053  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6054  * the topology
6055  */
6056 int
6057 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6058 		bool *value, struct ice_sq_cd *cd)
6059 {
6060 	struct libie_aq_desc desc;
6061 	struct ice_aqc_gpio *cmd;
6062 	int status;
6063 
6064 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6065 	cmd = libie_aq_raw(&desc);
6066 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6067 	cmd->gpio_num = pin_idx;
6068 
6069 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6070 	if (status)
6071 		return status;
6072 
6073 	*value = !!cmd->gpio_val;
6074 	return 0;
6075 }
6076 
6077 /**
6078  * ice_is_fw_api_min_ver
6079  * @hw: pointer to the hardware structure
6080  * @maj: major version
6081  * @min: minor version
6082  * @patch: patch version
6083  *
6084  * Checks if the firmware API is minimum version
6085  */
6086 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6087 {
6088 	if (hw->api_maj_ver == maj) {
6089 		if (hw->api_min_ver > min)
6090 			return true;
6091 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6092 			return true;
6093 	} else if (hw->api_maj_ver > maj) {
6094 		return true;
6095 	}
6096 
6097 	return false;
6098 }
6099 
6100 /**
6101  * ice_fw_supports_link_override
6102  * @hw: pointer to the hardware structure
6103  *
6104  * Checks if the firmware supports link override
6105  */
6106 bool ice_fw_supports_link_override(struct ice_hw *hw)
6107 {
6108 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6109 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6110 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6111 }
6112 
6113 /**
6114  * ice_get_link_default_override
6115  * @ldo: pointer to the link default override struct
6116  * @pi: pointer to the port info struct
6117  *
6118  * Gets the link default override for a port
6119  */
6120 int
6121 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6122 			      struct ice_port_info *pi)
6123 {
6124 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6125 	struct ice_hw *hw = pi->hw;
6126 	int status;
6127 
6128 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6129 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6130 	if (status) {
6131 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6132 		return status;
6133 	}
6134 
6135 	/* Each port has its own config; calculate for our port */
6136 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6137 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6138 
6139 	/* link options first */
6140 	status = ice_read_sr_word(hw, tlv_start, &buf);
6141 	if (status) {
6142 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6143 		return status;
6144 	}
6145 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6146 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6147 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6148 
6149 	/* link PHY config */
6150 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6151 	status = ice_read_sr_word(hw, offset, &buf);
6152 	if (status) {
6153 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6154 		return status;
6155 	}
6156 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6157 
6158 	/* PHY types low */
6159 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6160 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6161 		status = ice_read_sr_word(hw, (offset + i), &buf);
6162 		if (status) {
6163 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6164 			return status;
6165 		}
6166 		/* shift 16 bits at a time to fill 64 bits */
6167 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6168 	}
6169 
6170 	/* PHY types high */
6171 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6172 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6173 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6174 		status = ice_read_sr_word(hw, (offset + i), &buf);
6175 		if (status) {
6176 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6177 			return status;
6178 		}
6179 		/* shift 16 bits at a time to fill 64 bits */
6180 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6181 	}
6182 
6183 	return status;
6184 }
6185 
6186 /**
6187  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6188  * @caps: get PHY capability data
6189  */
6190 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6191 {
6192 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6193 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6194 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6195 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6196 		return true;
6197 
6198 	return false;
6199 }
6200 
6201 /**
6202  * ice_is_fw_health_report_supported - checks if firmware supports health events
6203  * @hw: pointer to the hardware structure
6204  *
6205  * Return: true if firmware supports health status reports,
6206  * false otherwise
6207  */
6208 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6209 {
6210 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6211 				     ICE_FW_API_HEALTH_REPORT_MIN,
6212 				     ICE_FW_API_HEALTH_REPORT_PATCH);
6213 }
6214 
6215 /**
6216  * ice_aq_set_health_status_cfg - Configure FW health events
6217  * @hw: pointer to the HW struct
6218  * @event_source: type of diagnostic events to enable
6219  *
6220  * Configure the health status event types that the firmware will send to this
6221  * PF. The supported event types are: PF-specific, all PFs, and global.
6222  *
6223  * Return: 0 on success, negative error code otherwise.
6224  */
6225 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6226 {
6227 	struct ice_aqc_set_health_status_cfg *cmd;
6228 	struct libie_aq_desc desc;
6229 
6230 	cmd = libie_aq_raw(&desc);
6231 
6232 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6233 
6234 	cmd->event_source = event_source;
6235 
6236 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6237 }
6238 
6239 /**
6240  * ice_aq_set_lldp_mib - Set the LLDP MIB
6241  * @hw: pointer to the HW struct
6242  * @mib_type: Local, Remote or both Local and Remote MIBs
6243  * @buf: pointer to the caller-supplied buffer to store the MIB block
6244  * @buf_size: size of the buffer (in bytes)
6245  * @cd: pointer to command details structure or NULL
6246  *
6247  * Set the LLDP MIB. (0x0A08)
6248  */
6249 int
6250 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6251 		    struct ice_sq_cd *cd)
6252 {
6253 	struct ice_aqc_lldp_set_local_mib *cmd;
6254 	struct libie_aq_desc desc;
6255 
6256 	cmd = libie_aq_raw(&desc);
6257 
6258 	if (buf_size == 0 || !buf)
6259 		return -EINVAL;
6260 
6261 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6262 
6263 	desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6264 	desc.datalen = cpu_to_le16(buf_size);
6265 
6266 	cmd->type = mib_type;
6267 	cmd->length = cpu_to_le16(buf_size);
6268 
6269 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6270 }
6271 
6272 /**
6273  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6274  * @hw: pointer to HW struct
6275  */
6276 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6277 {
6278 	if (hw->mac_type != ICE_MAC_E810)
6279 		return false;
6280 
6281 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6282 				     ICE_FW_API_LLDP_FLTR_MIN,
6283 				     ICE_FW_API_LLDP_FLTR_PATCH);
6284 }
6285 
6286 /**
6287  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6288  * @hw: pointer to HW struct
6289  * @vsi: VSI to add the filter to
6290  * @add: boolean for if adding or removing a filter
6291  *
6292  * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6293  *	   with this HW or VSI, otherwise an error corresponding to
6294  *	   the AQ transaction result.
6295  */
6296 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6297 {
6298 	struct ice_aqc_lldp_filter_ctrl *cmd;
6299 	struct libie_aq_desc desc;
6300 
6301 	if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6302 		return -EOPNOTSUPP;
6303 
6304 	cmd = libie_aq_raw(&desc);
6305 
6306 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6307 
6308 	if (add)
6309 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6310 	else
6311 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6312 
6313 	cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6314 
6315 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6316 }
6317 
6318 /**
6319  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6320  * @hw: pointer to HW struct
6321  */
6322 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6323 {
6324 	struct libie_aq_desc desc;
6325 
6326 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6327 
6328 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6329 }
6330 
6331 /**
6332  * ice_fw_supports_report_dflt_cfg
6333  * @hw: pointer to the hardware structure
6334  *
6335  * Checks if the firmware supports report default configuration
6336  */
6337 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6338 {
6339 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6340 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6341 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6342 }
6343 
6344 /* each of the indexes into the following array match the speed of a return
6345  * value from the list of AQ returned speeds like the range:
6346  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6347  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6348  * array. The array is defined as 15 elements long because the link_speed
6349  * returned by the firmware is a 16 bit * value, but is indexed
6350  * by [fls(speed) - 1]
6351  */
6352 static const u32 ice_aq_to_link_speed[] = {
6353 	SPEED_10,	/* BIT(0) */
6354 	SPEED_100,
6355 	SPEED_1000,
6356 	SPEED_2500,
6357 	SPEED_5000,
6358 	SPEED_10000,
6359 	SPEED_20000,
6360 	SPEED_25000,
6361 	SPEED_40000,
6362 	SPEED_50000,
6363 	SPEED_100000,	/* BIT(10) */
6364 	SPEED_200000,
6365 };
6366 
6367 /**
6368  * ice_get_link_speed - get integer speed from table
6369  * @index: array index from fls(aq speed) - 1
6370  *
6371  * Returns: u32 value containing integer speed
6372  */
6373 u32 ice_get_link_speed(u16 index)
6374 {
6375 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6376 		return 0;
6377 
6378 	return ice_aq_to_link_speed[index];
6379 }
6380 
6381 /**
6382  * ice_read_cgu_reg - Read a CGU register
6383  * @hw: Pointer to the HW struct
6384  * @addr: Register address to read
6385  * @val: Storage for register value read
6386  *
6387  * Read the contents of a register of the Clock Generation Unit. Only
6388  * applicable to E82X devices.
6389  *
6390  * Return: 0 on success, other error codes when failed to read from CGU.
6391  */
6392 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6393 {
6394 	struct ice_sbq_msg_input cgu_msg = {
6395 		.opcode = ice_sbq_msg_rd,
6396 		.dest_dev = ice_sbq_dev_cgu,
6397 		.msg_addr_low = addr
6398 	};
6399 	int err;
6400 
6401 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6402 	if (err) {
6403 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6404 			  addr, err);
6405 		return err;
6406 	}
6407 
6408 	*val = cgu_msg.data;
6409 
6410 	return 0;
6411 }
6412 
6413 /**
6414  * ice_write_cgu_reg - Write a CGU register
6415  * @hw: Pointer to the HW struct
6416  * @addr: Register address to write
6417  * @val: Value to write into the register
6418  *
6419  * Write the specified value to a register of the Clock Generation Unit. Only
6420  * applicable to E82X devices.
6421  *
6422  * Return: 0 on success, other error codes when failed to write to CGU.
6423  */
6424 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6425 {
6426 	struct ice_sbq_msg_input cgu_msg = {
6427 		.opcode = ice_sbq_msg_wr,
6428 		.dest_dev = ice_sbq_dev_cgu,
6429 		.msg_addr_low = addr,
6430 		.data = val
6431 	};
6432 	int err;
6433 
6434 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6435 	if (err)
6436 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6437 			  addr, err);
6438 
6439 	return err;
6440 }
6441