xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	case ICE_DEV_ID_E825C_BACKPLANE:
158 	case ICE_DEV_ID_E825C_QSFP:
159 	case ICE_DEV_ID_E825C_SFP:
160 	case ICE_DEV_ID_E825C_SGMII:
161 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 		break;
163 	case ICE_DEV_ID_E830CC_BACKPLANE:
164 	case ICE_DEV_ID_E830CC_QSFP56:
165 	case ICE_DEV_ID_E830CC_SFP:
166 	case ICE_DEV_ID_E830CC_SFP_DD:
167 	case ICE_DEV_ID_E830C_BACKPLANE:
168 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
169 	case ICE_DEV_ID_E830C_QSFP:
170 	case ICE_DEV_ID_E830_XXV_QSFP:
171 	case ICE_DEV_ID_E830C_SFP:
172 	case ICE_DEV_ID_E830_XXV_SFP:
173 		hw->mac_type = ICE_MAC_E830;
174 		break;
175 	default:
176 		hw->mac_type = ICE_MAC_UNKNOWN;
177 		break;
178 	}
179 
180 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
181 	return 0;
182 }
183 
184 /**
185  * ice_is_generic_mac - check if device's mac_type is generic
186  * @hw: pointer to the hardware structure
187  *
188  * Return: true if mac_type is generic (with SBQ support), false if not
189  */
190 bool ice_is_generic_mac(struct ice_hw *hw)
191 {
192 	return (hw->mac_type == ICE_MAC_GENERIC ||
193 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
194 }
195 
196 /**
197  * ice_is_e810
198  * @hw: pointer to the hardware structure
199  *
200  * returns true if the device is E810 based, false if not.
201  */
202 bool ice_is_e810(struct ice_hw *hw)
203 {
204 	return hw->mac_type == ICE_MAC_E810;
205 }
206 
207 /**
208  * ice_is_e810t
209  * @hw: pointer to the hardware structure
210  *
211  * returns true if the device is E810T based, false if not.
212  */
213 bool ice_is_e810t(struct ice_hw *hw)
214 {
215 	switch (hw->device_id) {
216 	case ICE_DEV_ID_E810C_SFP:
217 		switch (hw->subsystem_device_id) {
218 		case ICE_SUBDEV_ID_E810T:
219 		case ICE_SUBDEV_ID_E810T2:
220 		case ICE_SUBDEV_ID_E810T3:
221 		case ICE_SUBDEV_ID_E810T4:
222 		case ICE_SUBDEV_ID_E810T6:
223 		case ICE_SUBDEV_ID_E810T7:
224 			return true;
225 		}
226 		break;
227 	case ICE_DEV_ID_E810C_QSFP:
228 		switch (hw->subsystem_device_id) {
229 		case ICE_SUBDEV_ID_E810T2:
230 		case ICE_SUBDEV_ID_E810T3:
231 		case ICE_SUBDEV_ID_E810T5:
232 			return true;
233 		}
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	return false;
240 }
241 
242 /**
243  * ice_is_e822 - Check if a device is E822 family device
244  * @hw: pointer to the hardware structure
245  *
246  * Return: true if the device is E822 based, false if not.
247  */
248 bool ice_is_e822(struct ice_hw *hw)
249 {
250 	switch (hw->device_id) {
251 	case ICE_DEV_ID_E822C_BACKPLANE:
252 	case ICE_DEV_ID_E822C_QSFP:
253 	case ICE_DEV_ID_E822C_SFP:
254 	case ICE_DEV_ID_E822C_10G_BASE_T:
255 	case ICE_DEV_ID_E822C_SGMII:
256 	case ICE_DEV_ID_E822L_BACKPLANE:
257 	case ICE_DEV_ID_E822L_SFP:
258 	case ICE_DEV_ID_E822L_10G_BASE_T:
259 	case ICE_DEV_ID_E822L_SGMII:
260 		return true;
261 	default:
262 		return false;
263 	}
264 }
265 
266 /**
267  * ice_is_e823
268  * @hw: pointer to the hardware structure
269  *
270  * returns true if the device is E823-L or E823-C based, false if not.
271  */
272 bool ice_is_e823(struct ice_hw *hw)
273 {
274 	switch (hw->device_id) {
275 	case ICE_DEV_ID_E823L_BACKPLANE:
276 	case ICE_DEV_ID_E823L_SFP:
277 	case ICE_DEV_ID_E823L_10G_BASE_T:
278 	case ICE_DEV_ID_E823L_1GBE:
279 	case ICE_DEV_ID_E823L_QSFP:
280 	case ICE_DEV_ID_E823C_BACKPLANE:
281 	case ICE_DEV_ID_E823C_QSFP:
282 	case ICE_DEV_ID_E823C_SFP:
283 	case ICE_DEV_ID_E823C_10G_BASE_T:
284 	case ICE_DEV_ID_E823C_SGMII:
285 		return true;
286 	default:
287 		return false;
288 	}
289 }
290 
291 /**
292  * ice_is_e825c - Check if a device is E825C family device
293  * @hw: pointer to the hardware structure
294  *
295  * Return: true if the device is E825-C based, false if not.
296  */
297 bool ice_is_e825c(struct ice_hw *hw)
298 {
299 	switch (hw->device_id) {
300 	case ICE_DEV_ID_E825C_BACKPLANE:
301 	case ICE_DEV_ID_E825C_QSFP:
302 	case ICE_DEV_ID_E825C_SFP:
303 	case ICE_DEV_ID_E825C_SGMII:
304 		return true;
305 	default:
306 		return false;
307 	}
308 }
309 
310 /**
311  * ice_clear_pf_cfg - Clear PF configuration
312  * @hw: pointer to the hardware structure
313  *
314  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
315  * configuration, flow director filters, etc.).
316  */
317 int ice_clear_pf_cfg(struct ice_hw *hw)
318 {
319 	struct ice_aq_desc desc;
320 
321 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
322 
323 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
324 }
325 
326 /**
327  * ice_aq_manage_mac_read - manage MAC address read command
328  * @hw: pointer to the HW struct
329  * @buf: a virtual buffer to hold the manage MAC read response
330  * @buf_size: Size of the virtual buffer
331  * @cd: pointer to command details structure or NULL
332  *
333  * This function is used to return per PF station MAC address (0x0107).
334  * NOTE: Upon successful completion of this command, MAC address information
335  * is returned in user specified buffer. Please interpret user specified
336  * buffer as "manage_mac_read" response.
337  * Response such as various MAC addresses are stored in HW struct (port.mac)
338  * ice_discover_dev_caps is expected to be called before this function is
339  * called.
340  */
341 static int
342 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
343 		       struct ice_sq_cd *cd)
344 {
345 	struct ice_aqc_manage_mac_read_resp *resp;
346 	struct ice_aqc_manage_mac_read *cmd;
347 	struct ice_aq_desc desc;
348 	int status;
349 	u16 flags;
350 	u8 i;
351 
352 	cmd = &desc.params.mac_read;
353 
354 	if (buf_size < sizeof(*resp))
355 		return -EINVAL;
356 
357 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
358 
359 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
360 	if (status)
361 		return status;
362 
363 	resp = buf;
364 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
365 
366 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
367 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
368 		return -EIO;
369 	}
370 
371 	/* A single port can report up to two (LAN and WoL) addresses */
372 	for (i = 0; i < cmd->num_addr; i++)
373 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
374 			ether_addr_copy(hw->port_info->mac.lan_addr,
375 					resp[i].mac_addr);
376 			ether_addr_copy(hw->port_info->mac.perm_addr,
377 					resp[i].mac_addr);
378 			break;
379 		}
380 
381 	return 0;
382 }
383 
384 /**
385  * ice_aq_get_phy_caps - returns PHY capabilities
386  * @pi: port information structure
387  * @qual_mods: report qualified modules
388  * @report_mode: report mode capabilities
389  * @pcaps: structure for PHY capabilities to be filled
390  * @cd: pointer to command details structure or NULL
391  *
392  * Returns the various PHY capabilities supported on the Port (0x0600)
393  */
394 int
395 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
396 		    struct ice_aqc_get_phy_caps_data *pcaps,
397 		    struct ice_sq_cd *cd)
398 {
399 	struct ice_aqc_get_phy_caps *cmd;
400 	u16 pcaps_size = sizeof(*pcaps);
401 	struct ice_aq_desc desc;
402 	const char *prefix;
403 	struct ice_hw *hw;
404 	int status;
405 
406 	cmd = &desc.params.get_phy;
407 
408 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
409 		return -EINVAL;
410 	hw = pi->hw;
411 
412 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
413 	    !ice_fw_supports_report_dflt_cfg(hw))
414 		return -EINVAL;
415 
416 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
417 
418 	if (qual_mods)
419 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
420 
421 	cmd->param0 |= cpu_to_le16(report_mode);
422 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
423 
424 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
425 
426 	switch (report_mode) {
427 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
428 		prefix = "phy_caps_media";
429 		break;
430 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
431 		prefix = "phy_caps_no_media";
432 		break;
433 	case ICE_AQC_REPORT_ACTIVE_CFG:
434 		prefix = "phy_caps_active";
435 		break;
436 	case ICE_AQC_REPORT_DFLT_CFG:
437 		prefix = "phy_caps_default";
438 		break;
439 	default:
440 		prefix = "phy_caps_invalid";
441 	}
442 
443 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
444 			  le64_to_cpu(pcaps->phy_type_high), prefix);
445 
446 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
447 		  prefix, report_mode);
448 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
449 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
450 		  pcaps->low_power_ctrl_an);
451 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
452 		  pcaps->eee_cap);
453 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
454 		  pcaps->eeer_value);
455 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
456 		  pcaps->link_fec_options);
457 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
458 		  prefix, pcaps->module_compliance_enforcement);
459 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
460 		  prefix, pcaps->extended_compliance_code);
461 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
462 		  pcaps->module_type[0]);
463 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
464 		  pcaps->module_type[1]);
465 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
466 		  pcaps->module_type[2]);
467 
468 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
469 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
470 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
471 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
472 		       sizeof(pi->phy.link_info.module_type));
473 	}
474 
475 	return status;
476 }
477 
478 /**
479  * ice_aq_get_link_topo_handle - get link topology node return status
480  * @pi: port information structure
481  * @node_type: requested node type
482  * @cd: pointer to command details structure or NULL
483  *
484  * Get link topology node return status for specified node type (0x06E0)
485  *
486  * Node type cage can be used to determine if cage is present. If AQC
487  * returns error (ENOENT), then no cage present. If no cage present, then
488  * connection type is backplane or BASE-T.
489  */
490 static int
491 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
492 			    struct ice_sq_cd *cd)
493 {
494 	struct ice_aqc_get_link_topo *cmd;
495 	struct ice_aq_desc desc;
496 
497 	cmd = &desc.params.get_link_topo;
498 
499 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
500 
501 	cmd->addr.topo_params.node_type_ctx =
502 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
503 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
504 
505 	/* set node type */
506 	cmd->addr.topo_params.node_type_ctx |=
507 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
508 
509 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
510 }
511 
512 /**
513  * ice_aq_get_netlist_node
514  * @hw: pointer to the hw struct
515  * @cmd: get_link_topo AQ structure
516  * @node_part_number: output node part number if node found
517  * @node_handle: output node handle parameter if node found
518  *
519  * Get netlist node handle.
520  */
521 int
522 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
523 			u8 *node_part_number, u16 *node_handle)
524 {
525 	struct ice_aq_desc desc;
526 
527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
528 	desc.params.get_link_topo = *cmd;
529 
530 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
531 		return -EINTR;
532 
533 	if (node_handle)
534 		*node_handle =
535 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
536 	if (node_part_number)
537 		*node_part_number = desc.params.get_link_topo.node_part_num;
538 
539 	return 0;
540 }
541 
542 /**
543  * ice_find_netlist_node
544  * @hw: pointer to the hw struct
545  * @node_type_ctx: type of netlist node to look for
546  * @node_part_number: node part number to look for
547  * @node_handle: output parameter if node found - optional
548  *
549  * Scan the netlist for a node handle of the given node type and part number.
550  *
551  * If node_handle is non-NULL it will be modified on function exit. It is only
552  * valid if the function returns zero, and should be ignored on any non-zero
553  * return value.
554  *
555  * Returns: 0 if the node is found, -ENOENT if no handle was found, and
556  * a negative error code on failure to access the AQ.
557  */
558 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
559 				 u8 node_part_number, u16 *node_handle)
560 {
561 	u8 idx;
562 
563 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
564 		struct ice_aqc_get_link_topo cmd = {};
565 		u8 rec_node_part_number;
566 		int status;
567 
568 		cmd.addr.topo_params.node_type_ctx =
569 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
570 				   node_type_ctx);
571 		cmd.addr.topo_params.index = idx;
572 
573 		status = ice_aq_get_netlist_node(hw, &cmd,
574 						 &rec_node_part_number,
575 						 node_handle);
576 		if (status)
577 			return status;
578 
579 		if (rec_node_part_number == node_part_number)
580 			return 0;
581 	}
582 
583 	return -ENOENT;
584 }
585 
586 /**
587  * ice_is_media_cage_present
588  * @pi: port information structure
589  *
590  * Returns true if media cage is present, else false. If no cage, then
591  * media type is backplane or BASE-T.
592  */
593 static bool ice_is_media_cage_present(struct ice_port_info *pi)
594 {
595 	/* Node type cage can be used to determine if cage is present. If AQC
596 	 * returns error (ENOENT), then no cage present. If no cage present then
597 	 * connection type is backplane or BASE-T.
598 	 */
599 	return !ice_aq_get_link_topo_handle(pi,
600 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
601 					    NULL);
602 }
603 
604 /**
605  * ice_get_media_type - Gets media type
606  * @pi: port information structure
607  */
608 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
609 {
610 	struct ice_link_status *hw_link_info;
611 
612 	if (!pi)
613 		return ICE_MEDIA_UNKNOWN;
614 
615 	hw_link_info = &pi->phy.link_info;
616 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
617 		/* If more than one media type is selected, report unknown */
618 		return ICE_MEDIA_UNKNOWN;
619 
620 	if (hw_link_info->phy_type_low) {
621 		/* 1G SGMII is a special case where some DA cable PHYs
622 		 * may show this as an option when it really shouldn't
623 		 * be since SGMII is meant to be between a MAC and a PHY
624 		 * in a backplane. Try to detect this case and handle it
625 		 */
626 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
627 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
628 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
629 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
630 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
631 			return ICE_MEDIA_DA;
632 
633 		switch (hw_link_info->phy_type_low) {
634 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
635 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
636 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
637 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
638 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
639 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
640 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
641 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
642 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
643 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
644 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
645 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
646 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
647 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
648 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
649 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
650 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
651 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
652 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
653 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
654 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
655 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
656 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
657 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
658 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
659 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
660 			return ICE_MEDIA_FIBER;
661 		case ICE_PHY_TYPE_LOW_100BASE_TX:
662 		case ICE_PHY_TYPE_LOW_1000BASE_T:
663 		case ICE_PHY_TYPE_LOW_2500BASE_T:
664 		case ICE_PHY_TYPE_LOW_5GBASE_T:
665 		case ICE_PHY_TYPE_LOW_10GBASE_T:
666 		case ICE_PHY_TYPE_LOW_25GBASE_T:
667 			return ICE_MEDIA_BASET;
668 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
669 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
670 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
671 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
672 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
673 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
674 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
675 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
676 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
677 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
678 			return ICE_MEDIA_DA;
679 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
680 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
681 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
682 		case ICE_PHY_TYPE_LOW_50G_AUI2:
683 		case ICE_PHY_TYPE_LOW_50G_AUI1:
684 		case ICE_PHY_TYPE_LOW_100G_AUI4:
685 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
686 			if (ice_is_media_cage_present(pi))
687 				return ICE_MEDIA_DA;
688 			fallthrough;
689 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
690 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
691 		case ICE_PHY_TYPE_LOW_2500BASE_X:
692 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
693 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
694 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
695 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
696 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
697 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
698 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
699 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
700 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
701 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
702 			return ICE_MEDIA_BACKPLANE;
703 		}
704 	} else {
705 		switch (hw_link_info->phy_type_high) {
706 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
707 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
708 			if (ice_is_media_cage_present(pi))
709 				return ICE_MEDIA_DA;
710 			fallthrough;
711 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
712 			return ICE_MEDIA_BACKPLANE;
713 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
714 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
715 			return ICE_MEDIA_FIBER;
716 		}
717 	}
718 	return ICE_MEDIA_UNKNOWN;
719 }
720 
721 /**
722  * ice_get_link_status_datalen
723  * @hw: pointer to the HW struct
724  *
725  * Returns datalength for the Get Link Status AQ command, which is bigger for
726  * newer adapter families handled by ice driver.
727  */
728 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
729 {
730 	switch (hw->mac_type) {
731 	case ICE_MAC_E830:
732 		return ICE_AQC_LS_DATA_SIZE_V2;
733 	case ICE_MAC_E810:
734 	default:
735 		return ICE_AQC_LS_DATA_SIZE_V1;
736 	}
737 }
738 
739 /**
740  * ice_aq_get_link_info
741  * @pi: port information structure
742  * @ena_lse: enable/disable LinkStatusEvent reporting
743  * @link: pointer to link status structure - optional
744  * @cd: pointer to command details structure or NULL
745  *
746  * Get Link Status (0x607). Returns the link status of the adapter.
747  */
748 int
749 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
750 		     struct ice_link_status *link, struct ice_sq_cd *cd)
751 {
752 	struct ice_aqc_get_link_status_data link_data = { 0 };
753 	struct ice_aqc_get_link_status *resp;
754 	struct ice_link_status *li_old, *li;
755 	enum ice_media_type *hw_media_type;
756 	struct ice_fc_info *hw_fc_info;
757 	bool tx_pause, rx_pause;
758 	struct ice_aq_desc desc;
759 	struct ice_hw *hw;
760 	u16 cmd_flags;
761 	int status;
762 
763 	if (!pi)
764 		return -EINVAL;
765 	hw = pi->hw;
766 	li_old = &pi->phy.link_info_old;
767 	hw_media_type = &pi->phy.media_type;
768 	li = &pi->phy.link_info;
769 	hw_fc_info = &pi->fc;
770 
771 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
772 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
773 	resp = &desc.params.get_link_status;
774 	resp->cmd_flags = cpu_to_le16(cmd_flags);
775 	resp->lport_num = pi->lport;
776 
777 	status = ice_aq_send_cmd(hw, &desc, &link_data,
778 				 ice_get_link_status_datalen(hw), cd);
779 	if (status)
780 		return status;
781 
782 	/* save off old link status information */
783 	*li_old = *li;
784 
785 	/* update current link status information */
786 	li->link_speed = le16_to_cpu(link_data.link_speed);
787 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
788 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
789 	*hw_media_type = ice_get_media_type(pi);
790 	li->link_info = link_data.link_info;
791 	li->link_cfg_err = link_data.link_cfg_err;
792 	li->an_info = link_data.an_info;
793 	li->ext_info = link_data.ext_info;
794 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
795 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
796 	li->topo_media_conflict = link_data.topo_media_conflict;
797 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
798 				      ICE_AQ_CFG_PACING_TYPE_M);
799 
800 	/* update fc info */
801 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
802 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
803 	if (tx_pause && rx_pause)
804 		hw_fc_info->current_mode = ICE_FC_FULL;
805 	else if (tx_pause)
806 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
807 	else if (rx_pause)
808 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
809 	else
810 		hw_fc_info->current_mode = ICE_FC_NONE;
811 
812 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
813 
814 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
815 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
816 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
817 		  (unsigned long long)li->phy_type_low);
818 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
819 		  (unsigned long long)li->phy_type_high);
820 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
821 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
822 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
823 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
824 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
825 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
826 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
827 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
828 		  li->max_frame_size);
829 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
830 
831 	/* save link status information */
832 	if (link)
833 		*link = *li;
834 
835 	/* flag cleared so calling functions don't call AQ again */
836 	pi->phy.get_link_info = false;
837 
838 	return 0;
839 }
840 
841 /**
842  * ice_fill_tx_timer_and_fc_thresh
843  * @hw: pointer to the HW struct
844  * @cmd: pointer to MAC cfg structure
845  *
846  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
847  * descriptor
848  */
849 static void
850 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
851 				struct ice_aqc_set_mac_cfg *cmd)
852 {
853 	u32 val, fc_thres_m;
854 
855 	/* We read back the transmit timer and FC threshold value of
856 	 * LFC. Thus, we will use index =
857 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
858 	 *
859 	 * Also, because we are operating on transmit timer and FC
860 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
861 	 */
862 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
863 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
864 
865 	if (hw->mac_type == ICE_MAC_E830) {
866 		/* Retrieve the transmit timer */
867 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
868 		cmd->tx_tmr_value =
869 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
870 
871 		/* Retrieve the fc threshold */
872 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
873 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
874 	} else {
875 		/* Retrieve the transmit timer */
876 		val = rd32(hw,
877 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
878 		cmd->tx_tmr_value =
879 			le16_encode_bits(val,
880 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
881 
882 		/* Retrieve the fc threshold */
883 		val = rd32(hw,
884 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
885 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
886 	}
887 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
888 }
889 
890 /**
891  * ice_aq_set_mac_cfg
892  * @hw: pointer to the HW struct
893  * @max_frame_size: Maximum Frame Size to be supported
894  * @cd: pointer to command details structure or NULL
895  *
896  * Set MAC configuration (0x0603)
897  */
898 int
899 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
900 {
901 	struct ice_aqc_set_mac_cfg *cmd;
902 	struct ice_aq_desc desc;
903 
904 	cmd = &desc.params.set_mac_cfg;
905 
906 	if (max_frame_size == 0)
907 		return -EINVAL;
908 
909 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
910 
911 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
912 
913 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
914 
915 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
916 }
917 
918 /**
919  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
920  * @hw: pointer to the HW struct
921  */
922 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
923 {
924 	struct ice_switch_info *sw;
925 	int status;
926 
927 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
928 				       sizeof(*hw->switch_info), GFP_KERNEL);
929 	sw = hw->switch_info;
930 
931 	if (!sw)
932 		return -ENOMEM;
933 
934 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
935 	sw->prof_res_bm_init = 0;
936 
937 	/* Initialize recipe count with default recipes read from NVM */
938 	sw->recp_cnt = ICE_SW_LKUP_LAST;
939 
940 	status = ice_init_def_sw_recp(hw);
941 	if (status) {
942 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
943 		return status;
944 	}
945 	return 0;
946 }
947 
948 /**
949  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
950  * @hw: pointer to the HW struct
951  */
952 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
953 {
954 	struct ice_switch_info *sw = hw->switch_info;
955 	struct ice_vsi_list_map_info *v_pos_map;
956 	struct ice_vsi_list_map_info *v_tmp_map;
957 	struct ice_sw_recipe *recps;
958 	u8 i;
959 
960 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
961 				 list_entry) {
962 		list_del(&v_pos_map->list_entry);
963 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
964 	}
965 	recps = sw->recp_list;
966 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
967 		recps[i].root_rid = i;
968 
969 		if (recps[i].adv_rule) {
970 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
971 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
972 
973 			mutex_destroy(&recps[i].filt_rule_lock);
974 			list_for_each_entry_safe(lst_itr, tmp_entry,
975 						 &recps[i].filt_rules,
976 						 list_entry) {
977 				list_del(&lst_itr->list_entry);
978 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
979 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
980 			}
981 		} else {
982 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
983 
984 			mutex_destroy(&recps[i].filt_rule_lock);
985 			list_for_each_entry_safe(lst_itr, tmp_entry,
986 						 &recps[i].filt_rules,
987 						 list_entry) {
988 				list_del(&lst_itr->list_entry);
989 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
990 			}
991 		}
992 	}
993 	ice_rm_all_sw_replay_rule_info(hw);
994 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
995 	devm_kfree(ice_hw_to_dev(hw), sw);
996 }
997 
998 /**
999  * ice_get_itr_intrl_gran
1000  * @hw: pointer to the HW struct
1001  *
1002  * Determines the ITR/INTRL granularities based on the maximum aggregate
1003  * bandwidth according to the device's configuration during power-on.
1004  */
1005 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1006 {
1007 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1008 				  rd32(hw, GL_PWR_MODE_CTL));
1009 
1010 	switch (max_agg_bw) {
1011 	case ICE_MAX_AGG_BW_200G:
1012 	case ICE_MAX_AGG_BW_100G:
1013 	case ICE_MAX_AGG_BW_50G:
1014 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1015 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1016 		break;
1017 	case ICE_MAX_AGG_BW_25G:
1018 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1019 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1020 		break;
1021 	}
1022 }
1023 
1024 /**
1025  * ice_init_hw - main hardware initialization routine
1026  * @hw: pointer to the hardware structure
1027  */
1028 int ice_init_hw(struct ice_hw *hw)
1029 {
1030 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1031 	void *mac_buf __free(kfree) = NULL;
1032 	u16 mac_buf_len;
1033 	int status;
1034 
1035 	/* Set MAC type based on DeviceID */
1036 	status = ice_set_mac_type(hw);
1037 	if (status)
1038 		return status;
1039 
1040 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1041 
1042 	status = ice_reset(hw, ICE_RESET_PFR);
1043 	if (status)
1044 		return status;
1045 
1046 	ice_get_itr_intrl_gran(hw);
1047 
1048 	status = ice_create_all_ctrlq(hw);
1049 	if (status)
1050 		goto err_unroll_cqinit;
1051 
1052 	status = ice_fwlog_init(hw);
1053 	if (status)
1054 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1055 			  status);
1056 
1057 	status = ice_clear_pf_cfg(hw);
1058 	if (status)
1059 		goto err_unroll_cqinit;
1060 
1061 	/* Set bit to enable Flow Director filters */
1062 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1063 	INIT_LIST_HEAD(&hw->fdir_list_head);
1064 
1065 	ice_clear_pxe_mode(hw);
1066 
1067 	status = ice_init_nvm(hw);
1068 	if (status)
1069 		goto err_unroll_cqinit;
1070 
1071 	status = ice_get_caps(hw);
1072 	if (status)
1073 		goto err_unroll_cqinit;
1074 
1075 	if (!hw->port_info)
1076 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1077 					     sizeof(*hw->port_info),
1078 					     GFP_KERNEL);
1079 	if (!hw->port_info) {
1080 		status = -ENOMEM;
1081 		goto err_unroll_cqinit;
1082 	}
1083 
1084 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1085 	/* set the back pointer to HW */
1086 	hw->port_info->hw = hw;
1087 
1088 	/* Initialize port_info struct with switch configuration data */
1089 	status = ice_get_initial_sw_cfg(hw);
1090 	if (status)
1091 		goto err_unroll_alloc;
1092 
1093 	hw->evb_veb = true;
1094 
1095 	/* init xarray for identifying scheduling nodes uniquely */
1096 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1097 
1098 	/* Query the allocated resources for Tx scheduler */
1099 	status = ice_sched_query_res_alloc(hw);
1100 	if (status) {
1101 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1102 		goto err_unroll_alloc;
1103 	}
1104 	ice_sched_get_psm_clk_freq(hw);
1105 
1106 	/* Initialize port_info struct with scheduler data */
1107 	status = ice_sched_init_port(hw->port_info);
1108 	if (status)
1109 		goto err_unroll_sched;
1110 
1111 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1112 	if (!pcaps) {
1113 		status = -ENOMEM;
1114 		goto err_unroll_sched;
1115 	}
1116 
1117 	/* Initialize port_info struct with PHY capabilities */
1118 	status = ice_aq_get_phy_caps(hw->port_info, false,
1119 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1120 				     NULL);
1121 	if (status)
1122 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1123 			 status);
1124 
1125 	/* Initialize port_info struct with link information */
1126 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1127 	if (status)
1128 		goto err_unroll_sched;
1129 
1130 	/* need a valid SW entry point to build a Tx tree */
1131 	if (!hw->sw_entry_point_layer) {
1132 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1133 		status = -EIO;
1134 		goto err_unroll_sched;
1135 	}
1136 	INIT_LIST_HEAD(&hw->agg_list);
1137 	/* Initialize max burst size */
1138 	if (!hw->max_burst_size)
1139 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1140 
1141 	status = ice_init_fltr_mgmt_struct(hw);
1142 	if (status)
1143 		goto err_unroll_sched;
1144 
1145 	/* Get MAC information */
1146 	/* A single port can report up to two (LAN and WoL) addresses */
1147 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1148 			  GFP_KERNEL);
1149 	if (!mac_buf) {
1150 		status = -ENOMEM;
1151 		goto err_unroll_fltr_mgmt_struct;
1152 	}
1153 
1154 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1155 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1156 
1157 	if (status)
1158 		goto err_unroll_fltr_mgmt_struct;
1159 	/* enable jumbo frame support at MAC level */
1160 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1161 	if (status)
1162 		goto err_unroll_fltr_mgmt_struct;
1163 	/* Obtain counter base index which would be used by flow director */
1164 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1165 	if (status)
1166 		goto err_unroll_fltr_mgmt_struct;
1167 	status = ice_init_hw_tbls(hw);
1168 	if (status)
1169 		goto err_unroll_fltr_mgmt_struct;
1170 	mutex_init(&hw->tnl_lock);
1171 	ice_init_chk_recipe_reuse_support(hw);
1172 
1173 	return 0;
1174 
1175 err_unroll_fltr_mgmt_struct:
1176 	ice_cleanup_fltr_mgmt_struct(hw);
1177 err_unroll_sched:
1178 	ice_sched_cleanup_all(hw);
1179 err_unroll_alloc:
1180 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1181 err_unroll_cqinit:
1182 	ice_destroy_all_ctrlq(hw);
1183 	return status;
1184 }
1185 
1186 /**
1187  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1188  * @hw: pointer to the hardware structure
1189  *
1190  * This should be called only during nominal operation, not as a result of
1191  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1192  * applicable initializations if it fails for any reason.
1193  */
1194 void ice_deinit_hw(struct ice_hw *hw)
1195 {
1196 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1197 	ice_cleanup_fltr_mgmt_struct(hw);
1198 
1199 	ice_sched_cleanup_all(hw);
1200 	ice_sched_clear_agg(hw);
1201 	ice_free_seg(hw);
1202 	ice_free_hw_tbls(hw);
1203 	mutex_destroy(&hw->tnl_lock);
1204 
1205 	ice_fwlog_deinit(hw);
1206 	ice_destroy_all_ctrlq(hw);
1207 
1208 	/* Clear VSI contexts if not already cleared */
1209 	ice_clear_all_vsi_ctx(hw);
1210 }
1211 
1212 /**
1213  * ice_check_reset - Check to see if a global reset is complete
1214  * @hw: pointer to the hardware structure
1215  */
1216 int ice_check_reset(struct ice_hw *hw)
1217 {
1218 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1219 
1220 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1221 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1222 	 * Add 1sec for outstanding AQ commands that can take a long time.
1223 	 */
1224 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1225 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1226 
1227 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1228 		mdelay(100);
1229 		reg = rd32(hw, GLGEN_RSTAT);
1230 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1231 			break;
1232 	}
1233 
1234 	if (cnt == grst_timeout) {
1235 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1236 		return -EIO;
1237 	}
1238 
1239 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1240 				 GLNVM_ULD_PCIER_DONE_1_M |\
1241 				 GLNVM_ULD_CORER_DONE_M |\
1242 				 GLNVM_ULD_GLOBR_DONE_M |\
1243 				 GLNVM_ULD_POR_DONE_M |\
1244 				 GLNVM_ULD_POR_DONE_1_M |\
1245 				 GLNVM_ULD_PCIER_DONE_2_M)
1246 
1247 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1248 					  GLNVM_ULD_PE_DONE_M : 0);
1249 
1250 	/* Device is Active; check Global Reset processes are done */
1251 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1252 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1253 		if (reg == uld_mask) {
1254 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1255 			break;
1256 		}
1257 		mdelay(10);
1258 	}
1259 
1260 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1261 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1262 			  reg);
1263 		return -EIO;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /**
1270  * ice_pf_reset - Reset the PF
1271  * @hw: pointer to the hardware structure
1272  *
1273  * If a global reset has been triggered, this function checks
1274  * for its completion and then issues the PF reset
1275  */
1276 static int ice_pf_reset(struct ice_hw *hw)
1277 {
1278 	u32 cnt, reg;
1279 
1280 	/* If at function entry a global reset was already in progress, i.e.
1281 	 * state is not 'device active' or any of the reset done bits are not
1282 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1283 	 * global reset is done.
1284 	 */
1285 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1286 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1287 		/* poll on global reset currently in progress until done */
1288 		if (ice_check_reset(hw))
1289 			return -EIO;
1290 
1291 		return 0;
1292 	}
1293 
1294 	/* Reset the PF */
1295 	reg = rd32(hw, PFGEN_CTRL);
1296 
1297 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1298 
1299 	/* Wait for the PFR to complete. The wait time is the global config lock
1300 	 * timeout plus the PFR timeout which will account for a possible reset
1301 	 * that is occurring during a download package operation.
1302 	 */
1303 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1304 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1305 		reg = rd32(hw, PFGEN_CTRL);
1306 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1307 			break;
1308 
1309 		mdelay(1);
1310 	}
1311 
1312 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1313 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1314 		return -EIO;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * ice_reset - Perform different types of reset
1322  * @hw: pointer to the hardware structure
1323  * @req: reset request
1324  *
1325  * This function triggers a reset as specified by the req parameter.
1326  *
1327  * Note:
1328  * If anything other than a PF reset is triggered, PXE mode is restored.
1329  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1330  * interface has been restored in the rebuild flow.
1331  */
1332 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1333 {
1334 	u32 val = 0;
1335 
1336 	switch (req) {
1337 	case ICE_RESET_PFR:
1338 		return ice_pf_reset(hw);
1339 	case ICE_RESET_CORER:
1340 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1341 		val = GLGEN_RTRIG_CORER_M;
1342 		break;
1343 	case ICE_RESET_GLOBR:
1344 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1345 		val = GLGEN_RTRIG_GLOBR_M;
1346 		break;
1347 	default:
1348 		return -EINVAL;
1349 	}
1350 
1351 	val |= rd32(hw, GLGEN_RTRIG);
1352 	wr32(hw, GLGEN_RTRIG, val);
1353 	ice_flush(hw);
1354 
1355 	/* wait for the FW to be ready */
1356 	return ice_check_reset(hw);
1357 }
1358 
1359 /**
1360  * ice_copy_rxq_ctx_to_hw
1361  * @hw: pointer to the hardware structure
1362  * @ice_rxq_ctx: pointer to the rxq context
1363  * @rxq_index: the index of the Rx queue
1364  *
1365  * Copies rxq context from dense structure to HW register space
1366  */
1367 static int
1368 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1369 {
1370 	u8 i;
1371 
1372 	if (!ice_rxq_ctx)
1373 		return -EINVAL;
1374 
1375 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1376 		return -EINVAL;
1377 
1378 	/* Copy each dword separately to HW */
1379 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1380 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1381 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1382 
1383 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1384 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 /* LAN Rx Queue Context */
1391 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1392 	/* Field		Width	LSB */
1393 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1394 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1395 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1396 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1397 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1398 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1399 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1400 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1401 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1402 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1403 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1404 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1405 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1406 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1407 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1408 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1409 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1410 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1411 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1412 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1413 	{ 0 }
1414 };
1415 
1416 /**
1417  * ice_write_rxq_ctx
1418  * @hw: pointer to the hardware structure
1419  * @rlan_ctx: pointer to the rxq context
1420  * @rxq_index: the index of the Rx queue
1421  *
1422  * Converts rxq context from sparse to dense structure and then writes
1423  * it to HW register space and enables the hardware to prefetch descriptors
1424  * instead of only fetching them on demand
1425  */
1426 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1427 		      u32 rxq_index)
1428 {
1429 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1430 
1431 	if (!rlan_ctx)
1432 		return -EINVAL;
1433 
1434 	rlan_ctx->prefena = 1;
1435 
1436 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1437 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1438 }
1439 
1440 /* LAN Tx Queue Context */
1441 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1442 				    /* Field			Width	LSB */
1443 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1444 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1445 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1446 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1447 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1448 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1449 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1450 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1451 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1452 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1453 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1454 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1455 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1456 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1457 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1458 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1459 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1460 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1461 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1462 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1463 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1464 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1465 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1466 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1467 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1468 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1469 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1470 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1471 	{ 0 }
1472 };
1473 
1474 /* Sideband Queue command wrappers */
1475 
1476 /**
1477  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1478  * @hw: pointer to the HW struct
1479  * @desc: descriptor describing the command
1480  * @buf: buffer to use for indirect commands (NULL for direct commands)
1481  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1482  * @cd: pointer to command details structure
1483  */
1484 static int
1485 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1486 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1487 {
1488 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1489 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1490 }
1491 
1492 /**
1493  * ice_sbq_rw_reg - Fill Sideband Queue command
1494  * @hw: pointer to the HW struct
1495  * @in: message info to be filled in descriptor
1496  * @flags: control queue descriptor flags
1497  */
1498 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1499 {
1500 	struct ice_sbq_cmd_desc desc = {0};
1501 	struct ice_sbq_msg_req msg = {0};
1502 	u16 msg_len;
1503 	int status;
1504 
1505 	msg_len = sizeof(msg);
1506 
1507 	msg.dest_dev = in->dest_dev;
1508 	msg.opcode = in->opcode;
1509 	msg.flags = ICE_SBQ_MSG_FLAGS;
1510 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1511 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1512 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1513 
1514 	if (in->opcode)
1515 		msg.data = cpu_to_le32(in->data);
1516 	else
1517 		/* data read comes back in completion, so shorten the struct by
1518 		 * sizeof(msg.data)
1519 		 */
1520 		msg_len -= sizeof(msg.data);
1521 
1522 	desc.flags = cpu_to_le16(flags);
1523 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1524 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1525 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1526 	if (!status && !in->opcode)
1527 		in->data = le32_to_cpu
1528 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1529 	return status;
1530 }
1531 
1532 /* FW Admin Queue command wrappers */
1533 
1534 /* Software lock/mutex that is meant to be held while the Global Config Lock
1535  * in firmware is acquired by the software to prevent most (but not all) types
1536  * of AQ commands from being sent to FW
1537  */
1538 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1539 
1540 /**
1541  * ice_should_retry_sq_send_cmd
1542  * @opcode: AQ opcode
1543  *
1544  * Decide if we should retry the send command routine for the ATQ, depending
1545  * on the opcode.
1546  */
1547 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1548 {
1549 	switch (opcode) {
1550 	case ice_aqc_opc_get_link_topo:
1551 	case ice_aqc_opc_lldp_stop:
1552 	case ice_aqc_opc_lldp_start:
1553 	case ice_aqc_opc_lldp_filter_ctrl:
1554 		return true;
1555 	}
1556 
1557 	return false;
1558 }
1559 
1560 /**
1561  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1562  * @hw: pointer to the HW struct
1563  * @cq: pointer to the specific Control queue
1564  * @desc: prefilled descriptor describing the command
1565  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1566  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1567  * @cd: pointer to command details structure
1568  *
1569  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1570  * Queue if the EBUSY AQ error is returned.
1571  */
1572 static int
1573 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1574 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1575 		      struct ice_sq_cd *cd)
1576 {
1577 	struct ice_aq_desc desc_cpy;
1578 	bool is_cmd_for_retry;
1579 	u8 idx = 0;
1580 	u16 opcode;
1581 	int status;
1582 
1583 	opcode = le16_to_cpu(desc->opcode);
1584 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1585 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1586 
1587 	if (is_cmd_for_retry) {
1588 		/* All retryable cmds are direct, without buf. */
1589 		WARN_ON(buf);
1590 
1591 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1592 	}
1593 
1594 	do {
1595 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1596 
1597 		if (!is_cmd_for_retry || !status ||
1598 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1599 			break;
1600 
1601 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1602 
1603 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1604 
1605 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1606 
1607 	return status;
1608 }
1609 
1610 /**
1611  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1612  * @hw: pointer to the HW struct
1613  * @desc: descriptor describing the command
1614  * @buf: buffer to use for indirect commands (NULL for direct commands)
1615  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1616  * @cd: pointer to command details structure
1617  *
1618  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1619  */
1620 int
1621 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1622 		u16 buf_size, struct ice_sq_cd *cd)
1623 {
1624 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1625 	bool lock_acquired = false;
1626 	int status;
1627 
1628 	/* When a package download is in process (i.e. when the firmware's
1629 	 * Global Configuration Lock resource is held), only the Download
1630 	 * Package, Get Version, Get Package Info List, Upload Section,
1631 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1632 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1633 	 * Recipes to Profile Association, and Release Resource (with resource
1634 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1635 	 * must block until the package download completes and the Global Config
1636 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1637 	 */
1638 	switch (le16_to_cpu(desc->opcode)) {
1639 	case ice_aqc_opc_download_pkg:
1640 	case ice_aqc_opc_get_pkg_info_list:
1641 	case ice_aqc_opc_get_ver:
1642 	case ice_aqc_opc_upload_section:
1643 	case ice_aqc_opc_update_pkg:
1644 	case ice_aqc_opc_set_port_params:
1645 	case ice_aqc_opc_get_vlan_mode_parameters:
1646 	case ice_aqc_opc_set_vlan_mode_parameters:
1647 	case ice_aqc_opc_set_tx_topo:
1648 	case ice_aqc_opc_get_tx_topo:
1649 	case ice_aqc_opc_add_recipe:
1650 	case ice_aqc_opc_recipe_to_profile:
1651 	case ice_aqc_opc_get_recipe:
1652 	case ice_aqc_opc_get_recipe_to_profile:
1653 		break;
1654 	case ice_aqc_opc_release_res:
1655 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1656 			break;
1657 		fallthrough;
1658 	default:
1659 		mutex_lock(&ice_global_cfg_lock_sw);
1660 		lock_acquired = true;
1661 		break;
1662 	}
1663 
1664 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1665 	if (lock_acquired)
1666 		mutex_unlock(&ice_global_cfg_lock_sw);
1667 
1668 	return status;
1669 }
1670 
1671 /**
1672  * ice_aq_get_fw_ver
1673  * @hw: pointer to the HW struct
1674  * @cd: pointer to command details structure or NULL
1675  *
1676  * Get the firmware version (0x0001) from the admin queue commands
1677  */
1678 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1679 {
1680 	struct ice_aqc_get_ver *resp;
1681 	struct ice_aq_desc desc;
1682 	int status;
1683 
1684 	resp = &desc.params.get_ver;
1685 
1686 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1687 
1688 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1689 
1690 	if (!status) {
1691 		hw->fw_branch = resp->fw_branch;
1692 		hw->fw_maj_ver = resp->fw_major;
1693 		hw->fw_min_ver = resp->fw_minor;
1694 		hw->fw_patch = resp->fw_patch;
1695 		hw->fw_build = le32_to_cpu(resp->fw_build);
1696 		hw->api_branch = resp->api_branch;
1697 		hw->api_maj_ver = resp->api_major;
1698 		hw->api_min_ver = resp->api_minor;
1699 		hw->api_patch = resp->api_patch;
1700 	}
1701 
1702 	return status;
1703 }
1704 
1705 /**
1706  * ice_aq_send_driver_ver
1707  * @hw: pointer to the HW struct
1708  * @dv: driver's major, minor version
1709  * @cd: pointer to command details structure or NULL
1710  *
1711  * Send the driver version (0x0002) to the firmware
1712  */
1713 int
1714 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1715 		       struct ice_sq_cd *cd)
1716 {
1717 	struct ice_aqc_driver_ver *cmd;
1718 	struct ice_aq_desc desc;
1719 	u16 len;
1720 
1721 	cmd = &desc.params.driver_ver;
1722 
1723 	if (!dv)
1724 		return -EINVAL;
1725 
1726 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1727 
1728 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1729 	cmd->major_ver = dv->major_ver;
1730 	cmd->minor_ver = dv->minor_ver;
1731 	cmd->build_ver = dv->build_ver;
1732 	cmd->subbuild_ver = dv->subbuild_ver;
1733 
1734 	len = 0;
1735 	while (len < sizeof(dv->driver_string) &&
1736 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1737 		len++;
1738 
1739 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1740 }
1741 
1742 /**
1743  * ice_aq_q_shutdown
1744  * @hw: pointer to the HW struct
1745  * @unloading: is the driver unloading itself
1746  *
1747  * Tell the Firmware that we're shutting down the AdminQ and whether
1748  * or not the driver is unloading as well (0x0003).
1749  */
1750 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1751 {
1752 	struct ice_aqc_q_shutdown *cmd;
1753 	struct ice_aq_desc desc;
1754 
1755 	cmd = &desc.params.q_shutdown;
1756 
1757 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1758 
1759 	if (unloading)
1760 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1761 
1762 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1763 }
1764 
1765 /**
1766  * ice_aq_req_res
1767  * @hw: pointer to the HW struct
1768  * @res: resource ID
1769  * @access: access type
1770  * @sdp_number: resource number
1771  * @timeout: the maximum time in ms that the driver may hold the resource
1772  * @cd: pointer to command details structure or NULL
1773  *
1774  * Requests common resource using the admin queue commands (0x0008).
1775  * When attempting to acquire the Global Config Lock, the driver can
1776  * learn of three states:
1777  *  1) 0 -         acquired lock, and can perform download package
1778  *  2) -EIO -      did not get lock, driver should fail to load
1779  *  3) -EALREADY - did not get lock, but another driver has
1780  *                 successfully downloaded the package; the driver does
1781  *                 not have to download the package and can continue
1782  *                 loading
1783  *
1784  * Note that if the caller is in an acquire lock, perform action, release lock
1785  * phase of operation, it is possible that the FW may detect a timeout and issue
1786  * a CORER. In this case, the driver will receive a CORER interrupt and will
1787  * have to determine its cause. The calling thread that is handling this flow
1788  * will likely get an error propagated back to it indicating the Download
1789  * Package, Update Package or the Release Resource AQ commands timed out.
1790  */
1791 static int
1792 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1793 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1794 	       struct ice_sq_cd *cd)
1795 {
1796 	struct ice_aqc_req_res *cmd_resp;
1797 	struct ice_aq_desc desc;
1798 	int status;
1799 
1800 	cmd_resp = &desc.params.res_owner;
1801 
1802 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1803 
1804 	cmd_resp->res_id = cpu_to_le16(res);
1805 	cmd_resp->access_type = cpu_to_le16(access);
1806 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1807 	cmd_resp->timeout = cpu_to_le32(*timeout);
1808 	*timeout = 0;
1809 
1810 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1811 
1812 	/* The completion specifies the maximum time in ms that the driver
1813 	 * may hold the resource in the Timeout field.
1814 	 */
1815 
1816 	/* Global config lock response utilizes an additional status field.
1817 	 *
1818 	 * If the Global config lock resource is held by some other driver, the
1819 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1820 	 * and the timeout field indicates the maximum time the current owner
1821 	 * of the resource has to free it.
1822 	 */
1823 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1824 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1825 			*timeout = le32_to_cpu(cmd_resp->timeout);
1826 			return 0;
1827 		} else if (le16_to_cpu(cmd_resp->status) ==
1828 			   ICE_AQ_RES_GLBL_IN_PROG) {
1829 			*timeout = le32_to_cpu(cmd_resp->timeout);
1830 			return -EIO;
1831 		} else if (le16_to_cpu(cmd_resp->status) ==
1832 			   ICE_AQ_RES_GLBL_DONE) {
1833 			return -EALREADY;
1834 		}
1835 
1836 		/* invalid FW response, force a timeout immediately */
1837 		*timeout = 0;
1838 		return -EIO;
1839 	}
1840 
1841 	/* If the resource is held by some other driver, the command completes
1842 	 * with a busy return value and the timeout field indicates the maximum
1843 	 * time the current owner of the resource has to free it.
1844 	 */
1845 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1846 		*timeout = le32_to_cpu(cmd_resp->timeout);
1847 
1848 	return status;
1849 }
1850 
1851 /**
1852  * ice_aq_release_res
1853  * @hw: pointer to the HW struct
1854  * @res: resource ID
1855  * @sdp_number: resource number
1856  * @cd: pointer to command details structure or NULL
1857  *
1858  * release common resource using the admin queue commands (0x0009)
1859  */
1860 static int
1861 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1862 		   struct ice_sq_cd *cd)
1863 {
1864 	struct ice_aqc_req_res *cmd;
1865 	struct ice_aq_desc desc;
1866 
1867 	cmd = &desc.params.res_owner;
1868 
1869 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1870 
1871 	cmd->res_id = cpu_to_le16(res);
1872 	cmd->res_number = cpu_to_le32(sdp_number);
1873 
1874 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1875 }
1876 
1877 /**
1878  * ice_acquire_res
1879  * @hw: pointer to the HW structure
1880  * @res: resource ID
1881  * @access: access type (read or write)
1882  * @timeout: timeout in milliseconds
1883  *
1884  * This function will attempt to acquire the ownership of a resource.
1885  */
1886 int
1887 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1888 		enum ice_aq_res_access_type access, u32 timeout)
1889 {
1890 #define ICE_RES_POLLING_DELAY_MS	10
1891 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1892 	u32 time_left = timeout;
1893 	int status;
1894 
1895 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1896 
1897 	/* A return code of -EALREADY means that another driver has
1898 	 * previously acquired the resource and performed any necessary updates;
1899 	 * in this case the caller does not obtain the resource and has no
1900 	 * further work to do.
1901 	 */
1902 	if (status == -EALREADY)
1903 		goto ice_acquire_res_exit;
1904 
1905 	if (status)
1906 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1907 
1908 	/* If necessary, poll until the current lock owner timeouts */
1909 	timeout = time_left;
1910 	while (status && timeout && time_left) {
1911 		mdelay(delay);
1912 		timeout = (timeout > delay) ? timeout - delay : 0;
1913 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1914 
1915 		if (status == -EALREADY)
1916 			/* lock free, but no work to do */
1917 			break;
1918 
1919 		if (!status)
1920 			/* lock acquired */
1921 			break;
1922 	}
1923 	if (status && status != -EALREADY)
1924 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1925 
1926 ice_acquire_res_exit:
1927 	if (status == -EALREADY) {
1928 		if (access == ICE_RES_WRITE)
1929 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1930 		else
1931 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1932 	}
1933 	return status;
1934 }
1935 
1936 /**
1937  * ice_release_res
1938  * @hw: pointer to the HW structure
1939  * @res: resource ID
1940  *
1941  * This function will release a resource using the proper Admin Command.
1942  */
1943 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1944 {
1945 	unsigned long timeout;
1946 	int status;
1947 
1948 	/* there are some rare cases when trying to release the resource
1949 	 * results in an admin queue timeout, so handle them correctly
1950 	 */
1951 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1952 	do {
1953 		status = ice_aq_release_res(hw, res, 0, NULL);
1954 		if (status != -EIO)
1955 			break;
1956 		usleep_range(1000, 2000);
1957 	} while (time_before(jiffies, timeout));
1958 }
1959 
1960 /**
1961  * ice_aq_alloc_free_res - command to allocate/free resources
1962  * @hw: pointer to the HW struct
1963  * @buf: Indirect buffer to hold data parameters and response
1964  * @buf_size: size of buffer for indirect commands
1965  * @opc: pass in the command opcode
1966  *
1967  * Helper function to allocate/free resources using the admin queue commands
1968  */
1969 int ice_aq_alloc_free_res(struct ice_hw *hw,
1970 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1971 			  enum ice_adminq_opc opc)
1972 {
1973 	struct ice_aqc_alloc_free_res_cmd *cmd;
1974 	struct ice_aq_desc desc;
1975 
1976 	cmd = &desc.params.sw_res_ctrl;
1977 
1978 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1979 		return -EINVAL;
1980 
1981 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1982 
1983 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1984 
1985 	cmd->num_entries = cpu_to_le16(1);
1986 
1987 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1988 }
1989 
1990 /**
1991  * ice_alloc_hw_res - allocate resource
1992  * @hw: pointer to the HW struct
1993  * @type: type of resource
1994  * @num: number of resources to allocate
1995  * @btm: allocate from bottom
1996  * @res: pointer to array that will receive the resources
1997  */
1998 int
1999 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2000 {
2001 	struct ice_aqc_alloc_free_res_elem *buf;
2002 	u16 buf_len;
2003 	int status;
2004 
2005 	buf_len = struct_size(buf, elem, num);
2006 	buf = kzalloc(buf_len, GFP_KERNEL);
2007 	if (!buf)
2008 		return -ENOMEM;
2009 
2010 	/* Prepare buffer to allocate resource. */
2011 	buf->num_elems = cpu_to_le16(num);
2012 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2013 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2014 	if (btm)
2015 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2016 
2017 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2018 	if (status)
2019 		goto ice_alloc_res_exit;
2020 
2021 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2022 
2023 ice_alloc_res_exit:
2024 	kfree(buf);
2025 	return status;
2026 }
2027 
2028 /**
2029  * ice_free_hw_res - free allocated HW resource
2030  * @hw: pointer to the HW struct
2031  * @type: type of resource to free
2032  * @num: number of resources
2033  * @res: pointer to array that contains the resources to free
2034  */
2035 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2036 {
2037 	struct ice_aqc_alloc_free_res_elem *buf;
2038 	u16 buf_len;
2039 	int status;
2040 
2041 	buf_len = struct_size(buf, elem, num);
2042 	buf = kzalloc(buf_len, GFP_KERNEL);
2043 	if (!buf)
2044 		return -ENOMEM;
2045 
2046 	/* Prepare buffer to free resource. */
2047 	buf->num_elems = cpu_to_le16(num);
2048 	buf->res_type = cpu_to_le16(type);
2049 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2050 
2051 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2052 	if (status)
2053 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2054 
2055 	kfree(buf);
2056 	return status;
2057 }
2058 
2059 /**
2060  * ice_get_num_per_func - determine number of resources per PF
2061  * @hw: pointer to the HW structure
2062  * @max: value to be evenly split between each PF
2063  *
2064  * Determine the number of valid functions by going through the bitmap returned
2065  * from parsing capabilities and use this to calculate the number of resources
2066  * per PF based on the max value passed in.
2067  */
2068 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2069 {
2070 	u8 funcs;
2071 
2072 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2073 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2074 			 ICE_CAPS_VALID_FUNCS_M);
2075 
2076 	if (!funcs)
2077 		return 0;
2078 
2079 	return max / funcs;
2080 }
2081 
2082 /**
2083  * ice_parse_common_caps - parse common device/function capabilities
2084  * @hw: pointer to the HW struct
2085  * @caps: pointer to common capabilities structure
2086  * @elem: the capability element to parse
2087  * @prefix: message prefix for tracing capabilities
2088  *
2089  * Given a capability element, extract relevant details into the common
2090  * capability structure.
2091  *
2092  * Returns: true if the capability matches one of the common capability ids,
2093  * false otherwise.
2094  */
2095 static bool
2096 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2097 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2098 {
2099 	u32 logical_id = le32_to_cpu(elem->logical_id);
2100 	u32 phys_id = le32_to_cpu(elem->phys_id);
2101 	u32 number = le32_to_cpu(elem->number);
2102 	u16 cap = le16_to_cpu(elem->cap);
2103 	bool found = true;
2104 
2105 	switch (cap) {
2106 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2107 		caps->valid_functions = number;
2108 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2109 			  caps->valid_functions);
2110 		break;
2111 	case ICE_AQC_CAPS_SRIOV:
2112 		caps->sr_iov_1_1 = (number == 1);
2113 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2114 			  caps->sr_iov_1_1);
2115 		break;
2116 	case ICE_AQC_CAPS_DCB:
2117 		caps->dcb = (number == 1);
2118 		caps->active_tc_bitmap = logical_id;
2119 		caps->maxtc = phys_id;
2120 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2121 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2122 			  caps->active_tc_bitmap);
2123 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2124 		break;
2125 	case ICE_AQC_CAPS_RSS:
2126 		caps->rss_table_size = number;
2127 		caps->rss_table_entry_width = logical_id;
2128 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2129 			  caps->rss_table_size);
2130 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2131 			  caps->rss_table_entry_width);
2132 		break;
2133 	case ICE_AQC_CAPS_RXQS:
2134 		caps->num_rxq = number;
2135 		caps->rxq_first_id = phys_id;
2136 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2137 			  caps->num_rxq);
2138 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2139 			  caps->rxq_first_id);
2140 		break;
2141 	case ICE_AQC_CAPS_TXQS:
2142 		caps->num_txq = number;
2143 		caps->txq_first_id = phys_id;
2144 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2145 			  caps->num_txq);
2146 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2147 			  caps->txq_first_id);
2148 		break;
2149 	case ICE_AQC_CAPS_MSIX:
2150 		caps->num_msix_vectors = number;
2151 		caps->msix_vector_first_id = phys_id;
2152 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2153 			  caps->num_msix_vectors);
2154 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2155 			  caps->msix_vector_first_id);
2156 		break;
2157 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2158 		caps->nvm_update_pending_nvm = true;
2159 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2160 		break;
2161 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2162 		caps->nvm_update_pending_orom = true;
2163 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2164 		break;
2165 	case ICE_AQC_CAPS_PENDING_NET_VER:
2166 		caps->nvm_update_pending_netlist = true;
2167 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2168 		break;
2169 	case ICE_AQC_CAPS_NVM_MGMT:
2170 		caps->nvm_unified_update =
2171 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2172 			true : false;
2173 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2174 			  caps->nvm_unified_update);
2175 		break;
2176 	case ICE_AQC_CAPS_RDMA:
2177 		caps->rdma = (number == 1);
2178 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2179 		break;
2180 	case ICE_AQC_CAPS_MAX_MTU:
2181 		caps->max_mtu = number;
2182 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2183 			  prefix, caps->max_mtu);
2184 		break;
2185 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2186 		caps->pcie_reset_avoidance = (number > 0);
2187 		ice_debug(hw, ICE_DBG_INIT,
2188 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2189 			  caps->pcie_reset_avoidance);
2190 		break;
2191 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2192 		caps->reset_restrict_support = (number == 1);
2193 		ice_debug(hw, ICE_DBG_INIT,
2194 			  "%s: reset_restrict_support = %d\n", prefix,
2195 			  caps->reset_restrict_support);
2196 		break;
2197 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2198 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2199 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2200 			  prefix, caps->roce_lag);
2201 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2202 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2203 			  prefix, caps->sriov_lag);
2204 		break;
2205 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2206 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2207 		break;
2208 	default:
2209 		/* Not one of the recognized common capabilities */
2210 		found = false;
2211 	}
2212 
2213 	return found;
2214 }
2215 
2216 /**
2217  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2218  * @hw: pointer to the HW structure
2219  * @caps: pointer to capabilities structure to fix
2220  *
2221  * Re-calculate the capabilities that are dependent on the number of physical
2222  * ports; i.e. some features are not supported or function differently on
2223  * devices with more than 4 ports.
2224  */
2225 static void
2226 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2227 {
2228 	/* This assumes device capabilities are always scanned before function
2229 	 * capabilities during the initialization flow.
2230 	 */
2231 	if (hw->dev_caps.num_funcs > 4) {
2232 		/* Max 4 TCs per port */
2233 		caps->maxtc = 4;
2234 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2235 			  caps->maxtc);
2236 		if (caps->rdma) {
2237 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2238 			caps->rdma = 0;
2239 		}
2240 
2241 		/* print message only when processing device capabilities
2242 		 * during initialization.
2243 		 */
2244 		if (caps == &hw->dev_caps.common_cap)
2245 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2246 	}
2247 }
2248 
2249 /**
2250  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2251  * @hw: pointer to the HW struct
2252  * @func_p: pointer to function capabilities structure
2253  * @cap: pointer to the capability element to parse
2254  *
2255  * Extract function capabilities for ICE_AQC_CAPS_VF.
2256  */
2257 static void
2258 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2259 		       struct ice_aqc_list_caps_elem *cap)
2260 {
2261 	u32 logical_id = le32_to_cpu(cap->logical_id);
2262 	u32 number = le32_to_cpu(cap->number);
2263 
2264 	func_p->num_allocd_vfs = number;
2265 	func_p->vf_base_id = logical_id;
2266 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2267 		  func_p->num_allocd_vfs);
2268 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2269 		  func_p->vf_base_id);
2270 }
2271 
2272 /**
2273  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2274  * @hw: pointer to the HW struct
2275  * @func_p: pointer to function capabilities structure
2276  * @cap: pointer to the capability element to parse
2277  *
2278  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2279  */
2280 static void
2281 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2282 			struct ice_aqc_list_caps_elem *cap)
2283 {
2284 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2285 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2286 		  le32_to_cpu(cap->number));
2287 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2288 		  func_p->guar_num_vsi);
2289 }
2290 
2291 /**
2292  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2293  * @hw: pointer to the HW struct
2294  * @func_p: pointer to function capabilities structure
2295  * @cap: pointer to the capability element to parse
2296  *
2297  * Extract function capabilities for ICE_AQC_CAPS_1588.
2298  */
2299 static void
2300 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2301 			 struct ice_aqc_list_caps_elem *cap)
2302 {
2303 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2304 	u32 number = le32_to_cpu(cap->number);
2305 
2306 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2307 	func_p->common_cap.ieee_1588 = info->ena;
2308 
2309 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2310 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2311 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2312 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2313 
2314 	if (!ice_is_e825c(hw)) {
2315 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2316 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2317 	} else {
2318 		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2319 		info->clk_src = ICE_CLK_SRC_TCXO;
2320 	}
2321 
2322 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2323 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2324 	} else {
2325 		/* Unknown clock frequency, so assume a (probably incorrect)
2326 		 * default to avoid out-of-bounds look ups of frequency
2327 		 * related information.
2328 		 */
2329 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2330 			  info->clk_freq);
2331 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2332 	}
2333 
2334 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2335 		  func_p->common_cap.ieee_1588);
2336 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2337 		  info->src_tmr_owned);
2338 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2339 		  info->tmr_ena);
2340 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2341 		  info->tmr_index_owned);
2342 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2343 		  info->tmr_index_assoc);
2344 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2345 		  info->clk_freq);
2346 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2347 		  info->clk_src);
2348 }
2349 
2350 /**
2351  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2352  * @hw: pointer to the HW struct
2353  * @func_p: pointer to function capabilities structure
2354  *
2355  * Extract function capabilities for ICE_AQC_CAPS_FD.
2356  */
2357 static void
2358 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2359 {
2360 	u32 reg_val, gsize, bsize;
2361 
2362 	reg_val = rd32(hw, GLQF_FD_SIZE);
2363 	switch (hw->mac_type) {
2364 	case ICE_MAC_E830:
2365 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2366 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2367 		break;
2368 	case ICE_MAC_E810:
2369 	default:
2370 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2371 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2372 	}
2373 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2374 	func_p->fd_fltr_best_effort = bsize;
2375 
2376 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2377 		  func_p->fd_fltr_guar);
2378 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2379 		  func_p->fd_fltr_best_effort);
2380 }
2381 
2382 /**
2383  * ice_parse_func_caps - Parse function capabilities
2384  * @hw: pointer to the HW struct
2385  * @func_p: pointer to function capabilities structure
2386  * @buf: buffer containing the function capability records
2387  * @cap_count: the number of capabilities
2388  *
2389  * Helper function to parse function (0x000A) capabilities list. For
2390  * capabilities shared between device and function, this relies on
2391  * ice_parse_common_caps.
2392  *
2393  * Loop through the list of provided capabilities and extract the relevant
2394  * data into the function capabilities structured.
2395  */
2396 static void
2397 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2398 		    void *buf, u32 cap_count)
2399 {
2400 	struct ice_aqc_list_caps_elem *cap_resp;
2401 	u32 i;
2402 
2403 	cap_resp = buf;
2404 
2405 	memset(func_p, 0, sizeof(*func_p));
2406 
2407 	for (i = 0; i < cap_count; i++) {
2408 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2409 		bool found;
2410 
2411 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2412 					      &cap_resp[i], "func caps");
2413 
2414 		switch (cap) {
2415 		case ICE_AQC_CAPS_VF:
2416 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2417 			break;
2418 		case ICE_AQC_CAPS_VSI:
2419 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2420 			break;
2421 		case ICE_AQC_CAPS_1588:
2422 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2423 			break;
2424 		case ICE_AQC_CAPS_FD:
2425 			ice_parse_fdir_func_caps(hw, func_p);
2426 			break;
2427 		default:
2428 			/* Don't list common capabilities as unknown */
2429 			if (!found)
2430 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2431 					  i, cap);
2432 			break;
2433 		}
2434 	}
2435 
2436 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2437 }
2438 
2439 /**
2440  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2441  * @hw: pointer to the HW struct
2442  * @dev_p: pointer to device capabilities structure
2443  * @cap: capability element to parse
2444  *
2445  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2446  */
2447 static void
2448 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2449 			      struct ice_aqc_list_caps_elem *cap)
2450 {
2451 	u32 number = le32_to_cpu(cap->number);
2452 
2453 	dev_p->num_funcs = hweight32(number);
2454 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2455 		  dev_p->num_funcs);
2456 }
2457 
2458 /**
2459  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2460  * @hw: pointer to the HW struct
2461  * @dev_p: pointer to device capabilities structure
2462  * @cap: capability element to parse
2463  *
2464  * Parse ICE_AQC_CAPS_VF for device capabilities.
2465  */
2466 static void
2467 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2468 		      struct ice_aqc_list_caps_elem *cap)
2469 {
2470 	u32 number = le32_to_cpu(cap->number);
2471 
2472 	dev_p->num_vfs_exposed = number;
2473 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2474 		  dev_p->num_vfs_exposed);
2475 }
2476 
2477 /**
2478  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2479  * @hw: pointer to the HW struct
2480  * @dev_p: pointer to device capabilities structure
2481  * @cap: capability element to parse
2482  *
2483  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2484  */
2485 static void
2486 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2487 		       struct ice_aqc_list_caps_elem *cap)
2488 {
2489 	u32 number = le32_to_cpu(cap->number);
2490 
2491 	dev_p->num_vsi_allocd_to_host = number;
2492 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2493 		  dev_p->num_vsi_allocd_to_host);
2494 }
2495 
2496 /**
2497  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2498  * @hw: pointer to the HW struct
2499  * @dev_p: pointer to device capabilities structure
2500  * @cap: capability element to parse
2501  *
2502  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2503  */
2504 static void
2505 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2506 			struct ice_aqc_list_caps_elem *cap)
2507 {
2508 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2509 	u32 logical_id = le32_to_cpu(cap->logical_id);
2510 	u32 phys_id = le32_to_cpu(cap->phys_id);
2511 	u32 number = le32_to_cpu(cap->number);
2512 
2513 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2514 	dev_p->common_cap.ieee_1588 = info->ena;
2515 
2516 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2517 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2518 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2519 
2520 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2521 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2522 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2523 
2524 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2525 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2526 
2527 	info->ena_ports = logical_id;
2528 	info->tmr_own_map = phys_id;
2529 
2530 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2531 		  dev_p->common_cap.ieee_1588);
2532 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2533 		  info->tmr0_owner);
2534 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2535 		  info->tmr0_owned);
2536 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2537 		  info->tmr0_ena);
2538 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2539 		  info->tmr1_owner);
2540 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2541 		  info->tmr1_owned);
2542 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2543 		  info->tmr1_ena);
2544 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2545 		  info->ts_ll_read);
2546 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2547 		  info->ts_ll_int_read);
2548 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2549 		  info->ena_ports);
2550 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2551 		  info->tmr_own_map);
2552 }
2553 
2554 /**
2555  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2556  * @hw: pointer to the HW struct
2557  * @dev_p: pointer to device capabilities structure
2558  * @cap: capability element to parse
2559  *
2560  * Parse ICE_AQC_CAPS_FD for device capabilities.
2561  */
2562 static void
2563 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2564 			struct ice_aqc_list_caps_elem *cap)
2565 {
2566 	u32 number = le32_to_cpu(cap->number);
2567 
2568 	dev_p->num_flow_director_fltr = number;
2569 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2570 		  dev_p->num_flow_director_fltr);
2571 }
2572 
2573 /**
2574  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2575  * @hw: pointer to the HW struct
2576  * @dev_p: pointer to device capabilities structure
2577  * @cap: capability element to parse
2578  *
2579  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2580  * enabled sensors.
2581  */
2582 static void
2583 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2584 			     struct ice_aqc_list_caps_elem *cap)
2585 {
2586 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2587 
2588 	ice_debug(hw, ICE_DBG_INIT,
2589 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2590 		  dev_p->supported_sensors);
2591 }
2592 
2593 /**
2594  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2595  * @hw: pointer to the HW struct
2596  * @dev_p: pointer to device capabilities structure
2597  * @cap: capability element to parse
2598  *
2599  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2600  */
2601 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2602 					struct ice_hw_dev_caps *dev_p,
2603 					struct ice_aqc_list_caps_elem *cap)
2604 {
2605 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2606 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2607 
2608 	dev_info(ice_hw_to_dev(hw),
2609 		 "PF is configured in %s mode with IP instance ID %d\n",
2610 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2611 		 "primary" : "secondary", dev_p->nac_topo.id);
2612 
2613 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2614 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2615 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2616 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2617 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2618 		  dev_p->nac_topo.id);
2619 }
2620 
2621 /**
2622  * ice_parse_dev_caps - Parse device capabilities
2623  * @hw: pointer to the HW struct
2624  * @dev_p: pointer to device capabilities structure
2625  * @buf: buffer containing the device capability records
2626  * @cap_count: the number of capabilities
2627  *
2628  * Helper device to parse device (0x000B) capabilities list. For
2629  * capabilities shared between device and function, this relies on
2630  * ice_parse_common_caps.
2631  *
2632  * Loop through the list of provided capabilities and extract the relevant
2633  * data into the device capabilities structured.
2634  */
2635 static void
2636 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2637 		   void *buf, u32 cap_count)
2638 {
2639 	struct ice_aqc_list_caps_elem *cap_resp;
2640 	u32 i;
2641 
2642 	cap_resp = buf;
2643 
2644 	memset(dev_p, 0, sizeof(*dev_p));
2645 
2646 	for (i = 0; i < cap_count; i++) {
2647 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2648 		bool found;
2649 
2650 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2651 					      &cap_resp[i], "dev caps");
2652 
2653 		switch (cap) {
2654 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2655 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2656 			break;
2657 		case ICE_AQC_CAPS_VF:
2658 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2659 			break;
2660 		case ICE_AQC_CAPS_VSI:
2661 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2662 			break;
2663 		case ICE_AQC_CAPS_1588:
2664 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2665 			break;
2666 		case ICE_AQC_CAPS_FD:
2667 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2668 			break;
2669 		case ICE_AQC_CAPS_SENSOR_READING:
2670 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2671 			break;
2672 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2673 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2674 			break;
2675 		default:
2676 			/* Don't list common capabilities as unknown */
2677 			if (!found)
2678 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2679 					  i, cap);
2680 			break;
2681 		}
2682 	}
2683 
2684 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2685 }
2686 
2687 /**
2688  * ice_is_pf_c827 - check if pf contains c827 phy
2689  * @hw: pointer to the hw struct
2690  */
2691 bool ice_is_pf_c827(struct ice_hw *hw)
2692 {
2693 	struct ice_aqc_get_link_topo cmd = {};
2694 	u8 node_part_number;
2695 	u16 node_handle;
2696 	int status;
2697 
2698 	if (hw->mac_type != ICE_MAC_E810)
2699 		return false;
2700 
2701 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2702 		return true;
2703 
2704 	cmd.addr.topo_params.node_type_ctx =
2705 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2706 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2707 	cmd.addr.topo_params.index = 0;
2708 
2709 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2710 					 &node_handle);
2711 
2712 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2713 		return false;
2714 
2715 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2716 		return true;
2717 
2718 	return false;
2719 }
2720 
2721 /**
2722  * ice_is_phy_rclk_in_netlist
2723  * @hw: pointer to the hw struct
2724  *
2725  * Check if the PHY Recovered Clock device is present in the netlist
2726  */
2727 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2728 {
2729 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2730 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2731 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2732 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2733 		return false;
2734 
2735 	return true;
2736 }
2737 
2738 /**
2739  * ice_is_clock_mux_in_netlist
2740  * @hw: pointer to the hw struct
2741  *
2742  * Check if the Clock Multiplexer device is present in the netlist
2743  */
2744 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2745 {
2746 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2747 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2748 				  NULL))
2749 		return false;
2750 
2751 	return true;
2752 }
2753 
2754 /**
2755  * ice_is_cgu_in_netlist - check for CGU presence
2756  * @hw: pointer to the hw struct
2757  *
2758  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2759  * Save the CGU part number in the hw structure for later use.
2760  * Return:
2761  * * true - cgu is present
2762  * * false - cgu is not present
2763  */
2764 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2765 {
2766 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2767 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2768 				   NULL)) {
2769 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2770 		return true;
2771 	} else if (!ice_find_netlist_node(hw,
2772 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2773 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2774 					  NULL)) {
2775 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2776 		return true;
2777 	}
2778 
2779 	return false;
2780 }
2781 
2782 /**
2783  * ice_is_gps_in_netlist
2784  * @hw: pointer to the hw struct
2785  *
2786  * Check if the GPS generic device is present in the netlist
2787  */
2788 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2789 {
2790 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2791 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2792 		return false;
2793 
2794 	return true;
2795 }
2796 
2797 /**
2798  * ice_aq_list_caps - query function/device capabilities
2799  * @hw: pointer to the HW struct
2800  * @buf: a buffer to hold the capabilities
2801  * @buf_size: size of the buffer
2802  * @cap_count: if not NULL, set to the number of capabilities reported
2803  * @opc: capabilities type to discover, device or function
2804  * @cd: pointer to command details structure or NULL
2805  *
2806  * Get the function (0x000A) or device (0x000B) capabilities description from
2807  * firmware and store it in the buffer.
2808  *
2809  * If the cap_count pointer is not NULL, then it is set to the number of
2810  * capabilities firmware will report. Note that if the buffer size is too
2811  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2812  * cap_count will still be updated in this case. It is recommended that the
2813  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2814  * firmware could return) to avoid this.
2815  */
2816 int
2817 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2818 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2819 {
2820 	struct ice_aqc_list_caps *cmd;
2821 	struct ice_aq_desc desc;
2822 	int status;
2823 
2824 	cmd = &desc.params.get_cap;
2825 
2826 	if (opc != ice_aqc_opc_list_func_caps &&
2827 	    opc != ice_aqc_opc_list_dev_caps)
2828 		return -EINVAL;
2829 
2830 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2831 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2832 
2833 	if (cap_count)
2834 		*cap_count = le32_to_cpu(cmd->count);
2835 
2836 	return status;
2837 }
2838 
2839 /**
2840  * ice_discover_dev_caps - Read and extract device capabilities
2841  * @hw: pointer to the hardware structure
2842  * @dev_caps: pointer to device capabilities structure
2843  *
2844  * Read the device capabilities and extract them into the dev_caps structure
2845  * for later use.
2846  */
2847 int
2848 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2849 {
2850 	u32 cap_count = 0;
2851 	void *cbuf;
2852 	int status;
2853 
2854 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2855 	if (!cbuf)
2856 		return -ENOMEM;
2857 
2858 	/* Although the driver doesn't know the number of capabilities the
2859 	 * device will return, we can simply send a 4KB buffer, the maximum
2860 	 * possible size that firmware can return.
2861 	 */
2862 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2863 
2864 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2865 				  ice_aqc_opc_list_dev_caps, NULL);
2866 	if (!status)
2867 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2868 	kfree(cbuf);
2869 
2870 	return status;
2871 }
2872 
2873 /**
2874  * ice_discover_func_caps - Read and extract function capabilities
2875  * @hw: pointer to the hardware structure
2876  * @func_caps: pointer to function capabilities structure
2877  *
2878  * Read the function capabilities and extract them into the func_caps structure
2879  * for later use.
2880  */
2881 static int
2882 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2883 {
2884 	u32 cap_count = 0;
2885 	void *cbuf;
2886 	int status;
2887 
2888 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2889 	if (!cbuf)
2890 		return -ENOMEM;
2891 
2892 	/* Although the driver doesn't know the number of capabilities the
2893 	 * device will return, we can simply send a 4KB buffer, the maximum
2894 	 * possible size that firmware can return.
2895 	 */
2896 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2897 
2898 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2899 				  ice_aqc_opc_list_func_caps, NULL);
2900 	if (!status)
2901 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2902 	kfree(cbuf);
2903 
2904 	return status;
2905 }
2906 
2907 /**
2908  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2909  * @hw: pointer to the hardware structure
2910  */
2911 void ice_set_safe_mode_caps(struct ice_hw *hw)
2912 {
2913 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2914 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2915 	struct ice_hw_common_caps cached_caps;
2916 	u32 num_funcs;
2917 
2918 	/* cache some func_caps values that should be restored after memset */
2919 	cached_caps = func_caps->common_cap;
2920 
2921 	/* unset func capabilities */
2922 	memset(func_caps, 0, sizeof(*func_caps));
2923 
2924 #define ICE_RESTORE_FUNC_CAP(name) \
2925 	func_caps->common_cap.name = cached_caps.name
2926 
2927 	/* restore cached values */
2928 	ICE_RESTORE_FUNC_CAP(valid_functions);
2929 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2930 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2931 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2932 	ICE_RESTORE_FUNC_CAP(max_mtu);
2933 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2934 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2935 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2936 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2937 
2938 	/* one Tx and one Rx queue in safe mode */
2939 	func_caps->common_cap.num_rxq = 1;
2940 	func_caps->common_cap.num_txq = 1;
2941 
2942 	/* two MSIX vectors, one for traffic and one for misc causes */
2943 	func_caps->common_cap.num_msix_vectors = 2;
2944 	func_caps->guar_num_vsi = 1;
2945 
2946 	/* cache some dev_caps values that should be restored after memset */
2947 	cached_caps = dev_caps->common_cap;
2948 	num_funcs = dev_caps->num_funcs;
2949 
2950 	/* unset dev capabilities */
2951 	memset(dev_caps, 0, sizeof(*dev_caps));
2952 
2953 #define ICE_RESTORE_DEV_CAP(name) \
2954 	dev_caps->common_cap.name = cached_caps.name
2955 
2956 	/* restore cached values */
2957 	ICE_RESTORE_DEV_CAP(valid_functions);
2958 	ICE_RESTORE_DEV_CAP(txq_first_id);
2959 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2960 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2961 	ICE_RESTORE_DEV_CAP(max_mtu);
2962 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2963 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2964 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2965 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2966 	dev_caps->num_funcs = num_funcs;
2967 
2968 	/* one Tx and one Rx queue per function in safe mode */
2969 	dev_caps->common_cap.num_rxq = num_funcs;
2970 	dev_caps->common_cap.num_txq = num_funcs;
2971 
2972 	/* two MSIX vectors per function */
2973 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2974 }
2975 
2976 /**
2977  * ice_get_caps - get info about the HW
2978  * @hw: pointer to the hardware structure
2979  */
2980 int ice_get_caps(struct ice_hw *hw)
2981 {
2982 	int status;
2983 
2984 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2985 	if (status)
2986 		return status;
2987 
2988 	return ice_discover_func_caps(hw, &hw->func_caps);
2989 }
2990 
2991 /**
2992  * ice_aq_manage_mac_write - manage MAC address write command
2993  * @hw: pointer to the HW struct
2994  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2995  * @flags: flags to control write behavior
2996  * @cd: pointer to command details structure or NULL
2997  *
2998  * This function is used to write MAC address to the NVM (0x0108).
2999  */
3000 int
3001 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3002 			struct ice_sq_cd *cd)
3003 {
3004 	struct ice_aqc_manage_mac_write *cmd;
3005 	struct ice_aq_desc desc;
3006 
3007 	cmd = &desc.params.mac_write;
3008 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3009 
3010 	cmd->flags = flags;
3011 	ether_addr_copy(cmd->mac_addr, mac_addr);
3012 
3013 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3014 }
3015 
3016 /**
3017  * ice_aq_clear_pxe_mode
3018  * @hw: pointer to the HW struct
3019  *
3020  * Tell the firmware that the driver is taking over from PXE (0x0110).
3021  */
3022 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3023 {
3024 	struct ice_aq_desc desc;
3025 
3026 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3027 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3028 
3029 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3030 }
3031 
3032 /**
3033  * ice_clear_pxe_mode - clear pxe operations mode
3034  * @hw: pointer to the HW struct
3035  *
3036  * Make sure all PXE mode settings are cleared, including things
3037  * like descriptor fetch/write-back mode.
3038  */
3039 void ice_clear_pxe_mode(struct ice_hw *hw)
3040 {
3041 	if (ice_check_sq_alive(hw, &hw->adminq))
3042 		ice_aq_clear_pxe_mode(hw);
3043 }
3044 
3045 /**
3046  * ice_aq_set_port_params - set physical port parameters.
3047  * @pi: pointer to the port info struct
3048  * @double_vlan: if set double VLAN is enabled
3049  * @cd: pointer to command details structure or NULL
3050  *
3051  * Set Physical port parameters (0x0203)
3052  */
3053 int
3054 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3055 		       struct ice_sq_cd *cd)
3056 
3057 {
3058 	struct ice_aqc_set_port_params *cmd;
3059 	struct ice_hw *hw = pi->hw;
3060 	struct ice_aq_desc desc;
3061 	u16 cmd_flags = 0;
3062 
3063 	cmd = &desc.params.set_port_params;
3064 
3065 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3066 	if (double_vlan)
3067 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3068 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3069 
3070 	cmd->local_fwd_mode = pi->local_fwd_mode |
3071 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3072 
3073 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3074 }
3075 
3076 /**
3077  * ice_is_100m_speed_supported
3078  * @hw: pointer to the HW struct
3079  *
3080  * returns true if 100M speeds are supported by the device,
3081  * false otherwise.
3082  */
3083 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3084 {
3085 	switch (hw->device_id) {
3086 	case ICE_DEV_ID_E822C_SGMII:
3087 	case ICE_DEV_ID_E822L_SGMII:
3088 	case ICE_DEV_ID_E823L_1GBE:
3089 	case ICE_DEV_ID_E823C_SGMII:
3090 		return true;
3091 	default:
3092 		return false;
3093 	}
3094 }
3095 
3096 /**
3097  * ice_get_link_speed_based_on_phy_type - returns link speed
3098  * @phy_type_low: lower part of phy_type
3099  * @phy_type_high: higher part of phy_type
3100  *
3101  * This helper function will convert an entry in PHY type structure
3102  * [phy_type_low, phy_type_high] to its corresponding link speed.
3103  * Note: In the structure of [phy_type_low, phy_type_high], there should
3104  * be one bit set, as this function will convert one PHY type to its
3105  * speed.
3106  *
3107  * Return:
3108  * * PHY speed for recognized PHY type
3109  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3110  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3111  */
3112 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3113 {
3114 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3115 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3116 
3117 	switch (phy_type_low) {
3118 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3119 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3120 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3121 		break;
3122 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3123 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3124 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3125 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3126 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3127 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3128 		break;
3129 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3130 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3131 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3132 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3133 		break;
3134 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3135 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3136 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3137 		break;
3138 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3139 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3140 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3141 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3142 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3143 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3144 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3145 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3146 		break;
3147 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3148 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3149 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3150 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3151 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3152 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3153 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3154 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3155 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3156 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3157 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3158 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3159 		break;
3160 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3161 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3162 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3163 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3164 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3165 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3166 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3167 		break;
3168 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3169 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3170 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3171 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3172 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3173 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3174 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3175 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3176 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3177 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3178 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3179 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3180 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3181 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3182 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3183 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3184 		break;
3185 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3186 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3187 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3188 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3189 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3190 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3191 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3192 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3193 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3194 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3195 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3196 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3197 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3198 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3199 		break;
3200 	default:
3201 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3202 		break;
3203 	}
3204 
3205 	switch (phy_type_high) {
3206 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3207 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3208 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3209 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3210 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3211 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3212 		break;
3213 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3214 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3215 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3216 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3217 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3218 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3219 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3220 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3221 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3222 		break;
3223 	default:
3224 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3225 		break;
3226 	}
3227 
3228 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3229 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3230 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3231 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3232 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3233 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3234 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3235 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3236 		return speed_phy_type_low;
3237 	else
3238 		return speed_phy_type_high;
3239 }
3240 
3241 /**
3242  * ice_update_phy_type
3243  * @phy_type_low: pointer to the lower part of phy_type
3244  * @phy_type_high: pointer to the higher part of phy_type
3245  * @link_speeds_bitmap: targeted link speeds bitmap
3246  *
3247  * Note: For the link_speeds_bitmap structure, you can check it at
3248  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3249  * link_speeds_bitmap include multiple speeds.
3250  *
3251  * Each entry in this [phy_type_low, phy_type_high] structure will
3252  * present a certain link speed. This helper function will turn on bits
3253  * in [phy_type_low, phy_type_high] structure based on the value of
3254  * link_speeds_bitmap input parameter.
3255  */
3256 void
3257 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3258 		    u16 link_speeds_bitmap)
3259 {
3260 	u64 pt_high;
3261 	u64 pt_low;
3262 	int index;
3263 	u16 speed;
3264 
3265 	/* We first check with low part of phy_type */
3266 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3267 		pt_low = BIT_ULL(index);
3268 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3269 
3270 		if (link_speeds_bitmap & speed)
3271 			*phy_type_low |= BIT_ULL(index);
3272 	}
3273 
3274 	/* We then check with high part of phy_type */
3275 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3276 		pt_high = BIT_ULL(index);
3277 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3278 
3279 		if (link_speeds_bitmap & speed)
3280 			*phy_type_high |= BIT_ULL(index);
3281 	}
3282 }
3283 
3284 /**
3285  * ice_aq_set_phy_cfg
3286  * @hw: pointer to the HW struct
3287  * @pi: port info structure of the interested logical port
3288  * @cfg: structure with PHY configuration data to be set
3289  * @cd: pointer to command details structure or NULL
3290  *
3291  * Set the various PHY configuration parameters supported on the Port.
3292  * One or more of the Set PHY config parameters may be ignored in an MFP
3293  * mode as the PF may not have the privilege to set some of the PHY Config
3294  * parameters. This status will be indicated by the command response (0x0601).
3295  */
3296 int
3297 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3298 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3299 {
3300 	struct ice_aq_desc desc;
3301 	int status;
3302 
3303 	if (!cfg)
3304 		return -EINVAL;
3305 
3306 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3307 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3308 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3309 			  cfg->caps);
3310 
3311 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3312 	}
3313 
3314 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3315 	desc.params.set_phy.lport_num = pi->lport;
3316 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3317 
3318 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3319 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3320 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3321 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3322 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3323 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3324 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3325 		  cfg->low_power_ctrl_an);
3326 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3327 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3328 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3329 		  cfg->link_fec_opt);
3330 
3331 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3332 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3333 		status = 0;
3334 
3335 	if (!status)
3336 		pi->phy.curr_user_phy_cfg = *cfg;
3337 
3338 	return status;
3339 }
3340 
3341 /**
3342  * ice_update_link_info - update status of the HW network link
3343  * @pi: port info structure of the interested logical port
3344  */
3345 int ice_update_link_info(struct ice_port_info *pi)
3346 {
3347 	struct ice_link_status *li;
3348 	int status;
3349 
3350 	if (!pi)
3351 		return -EINVAL;
3352 
3353 	li = &pi->phy.link_info;
3354 
3355 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3356 	if (status)
3357 		return status;
3358 
3359 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3360 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3361 
3362 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3363 		if (!pcaps)
3364 			return -ENOMEM;
3365 
3366 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3367 					     pcaps, NULL);
3368 	}
3369 
3370 	return status;
3371 }
3372 
3373 /**
3374  * ice_aq_get_phy_equalization - function to read serdes equaliser
3375  * value from firmware using admin queue command.
3376  * @hw: pointer to the HW struct
3377  * @data_in: represents the serdes equalization parameter requested
3378  * @op_code: represents the serdes number and flag to represent tx or rx
3379  * @serdes_num: represents the serdes number
3380  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3381  *
3382  * Return: non-zero status on error and 0 on success.
3383  */
3384 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3385 				u8 serdes_num, int *output)
3386 {
3387 	struct ice_aqc_dnl_call_command *cmd;
3388 	struct ice_aqc_dnl_call buf = {};
3389 	struct ice_aq_desc desc;
3390 	int err;
3391 
3392 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3393 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3394 		cpu_to_le16(op_code | (serdes_num & 0xF));
3395 	cmd = &desc.params.dnl_call;
3396 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3397 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3398 				  ICE_AQ_FLAG_RD |
3399 				  ICE_AQ_FLAG_SI);
3400 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3401 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3402 
3403 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3404 			      NULL);
3405 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3406 
3407 	return err;
3408 }
3409 
3410 #define FEC_REG_PORT(port) {	\
3411 	FEC_CORR_LOW_REG_PORT##port,		\
3412 	FEC_CORR_HIGH_REG_PORT##port,	\
3413 	FEC_UNCORR_LOW_REG_PORT##port,	\
3414 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3415 }
3416 
3417 static const u32 fec_reg[][ICE_FEC_MAX] = {
3418 	FEC_REG_PORT(0),
3419 	FEC_REG_PORT(1),
3420 	FEC_REG_PORT(2),
3421 	FEC_REG_PORT(3)
3422 };
3423 
3424 /**
3425  * ice_aq_get_fec_stats - reads fec stats from phy
3426  * @hw: pointer to the HW struct
3427  * @pcs_quad: represents pcsquad of user input serdes
3428  * @pcs_port: represents the pcs port number part of above pcs quad
3429  * @fec_type: represents FEC stats type
3430  * @output: pointer to the caller-supplied buffer to return requested fec stats
3431  *
3432  * Return: non-zero status on error and 0 on success.
3433  */
3434 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3435 			 enum ice_fec_stats_types fec_type, u32 *output)
3436 {
3437 	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3438 	struct ice_sbq_msg_input msg = {};
3439 	u32 receiver_id, reg_offset;
3440 	int err;
3441 
3442 	if (pcs_port > 3)
3443 		return -EINVAL;
3444 
3445 	reg_offset = fec_reg[pcs_port][fec_type];
3446 
3447 	if (pcs_quad == 0)
3448 		receiver_id = FEC_RECEIVER_ID_PCS0;
3449 	else if (pcs_quad == 1)
3450 		receiver_id = FEC_RECEIVER_ID_PCS1;
3451 	else
3452 		return -EINVAL;
3453 
3454 	msg.msg_addr_low = lower_16_bits(reg_offset);
3455 	msg.msg_addr_high = receiver_id;
3456 	msg.opcode = ice_sbq_msg_rd;
3457 	msg.dest_dev = rmn_0;
3458 
3459 	err = ice_sbq_rw_reg(hw, &msg, flag);
3460 	if (err)
3461 		return err;
3462 
3463 	*output = msg.data;
3464 	return 0;
3465 }
3466 
3467 /**
3468  * ice_cache_phy_user_req
3469  * @pi: port information structure
3470  * @cache_data: PHY logging data
3471  * @cache_mode: PHY logging mode
3472  *
3473  * Log the user request on (FC, FEC, SPEED) for later use.
3474  */
3475 static void
3476 ice_cache_phy_user_req(struct ice_port_info *pi,
3477 		       struct ice_phy_cache_mode_data cache_data,
3478 		       enum ice_phy_cache_mode cache_mode)
3479 {
3480 	if (!pi)
3481 		return;
3482 
3483 	switch (cache_mode) {
3484 	case ICE_FC_MODE:
3485 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3486 		break;
3487 	case ICE_SPEED_MODE:
3488 		pi->phy.curr_user_speed_req =
3489 			cache_data.data.curr_user_speed_req;
3490 		break;
3491 	case ICE_FEC_MODE:
3492 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3493 		break;
3494 	default:
3495 		break;
3496 	}
3497 }
3498 
3499 /**
3500  * ice_caps_to_fc_mode
3501  * @caps: PHY capabilities
3502  *
3503  * Convert PHY FC capabilities to ice FC mode
3504  */
3505 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3506 {
3507 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3508 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3509 		return ICE_FC_FULL;
3510 
3511 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3512 		return ICE_FC_TX_PAUSE;
3513 
3514 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3515 		return ICE_FC_RX_PAUSE;
3516 
3517 	return ICE_FC_NONE;
3518 }
3519 
3520 /**
3521  * ice_caps_to_fec_mode
3522  * @caps: PHY capabilities
3523  * @fec_options: Link FEC options
3524  *
3525  * Convert PHY FEC capabilities to ice FEC mode
3526  */
3527 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3528 {
3529 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3530 		return ICE_FEC_AUTO;
3531 
3532 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3533 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3534 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3535 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3536 		return ICE_FEC_BASER;
3537 
3538 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3539 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3540 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3541 		return ICE_FEC_RS;
3542 
3543 	return ICE_FEC_NONE;
3544 }
3545 
3546 /**
3547  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3548  * @pi: port information structure
3549  * @cfg: PHY configuration data to set FC mode
3550  * @req_mode: FC mode to configure
3551  */
3552 int
3553 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3554 	       enum ice_fc_mode req_mode)
3555 {
3556 	struct ice_phy_cache_mode_data cache_data;
3557 	u8 pause_mask = 0x0;
3558 
3559 	if (!pi || !cfg)
3560 		return -EINVAL;
3561 
3562 	switch (req_mode) {
3563 	case ICE_FC_FULL:
3564 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3565 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3566 		break;
3567 	case ICE_FC_RX_PAUSE:
3568 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3569 		break;
3570 	case ICE_FC_TX_PAUSE:
3571 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3572 		break;
3573 	default:
3574 		break;
3575 	}
3576 
3577 	/* clear the old pause settings */
3578 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3579 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3580 
3581 	/* set the new capabilities */
3582 	cfg->caps |= pause_mask;
3583 
3584 	/* Cache user FC request */
3585 	cache_data.data.curr_user_fc_req = req_mode;
3586 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3587 
3588 	return 0;
3589 }
3590 
3591 /**
3592  * ice_set_fc
3593  * @pi: port information structure
3594  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3595  * @ena_auto_link_update: enable automatic link update
3596  *
3597  * Set the requested flow control mode.
3598  */
3599 int
3600 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3601 {
3602 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3603 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3604 	struct ice_hw *hw;
3605 	int status;
3606 
3607 	if (!pi || !aq_failures)
3608 		return -EINVAL;
3609 
3610 	*aq_failures = 0;
3611 	hw = pi->hw;
3612 
3613 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3614 	if (!pcaps)
3615 		return -ENOMEM;
3616 
3617 	/* Get the current PHY config */
3618 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3619 				     pcaps, NULL);
3620 	if (status) {
3621 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3622 		goto out;
3623 	}
3624 
3625 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3626 
3627 	/* Configure the set PHY data */
3628 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3629 	if (status)
3630 		goto out;
3631 
3632 	/* If the capabilities have changed, then set the new config */
3633 	if (cfg.caps != pcaps->caps) {
3634 		int retry_count, retry_max = 10;
3635 
3636 		/* Auto restart link so settings take effect */
3637 		if (ena_auto_link_update)
3638 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3639 
3640 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3641 		if (status) {
3642 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3643 			goto out;
3644 		}
3645 
3646 		/* Update the link info
3647 		 * It sometimes takes a really long time for link to
3648 		 * come back from the atomic reset. Thus, we wait a
3649 		 * little bit.
3650 		 */
3651 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3652 			status = ice_update_link_info(pi);
3653 
3654 			if (!status)
3655 				break;
3656 
3657 			mdelay(100);
3658 		}
3659 
3660 		if (status)
3661 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3662 	}
3663 
3664 out:
3665 	return status;
3666 }
3667 
3668 /**
3669  * ice_phy_caps_equals_cfg
3670  * @phy_caps: PHY capabilities
3671  * @phy_cfg: PHY configuration
3672  *
3673  * Helper function to determine if PHY capabilities matches PHY
3674  * configuration
3675  */
3676 bool
3677 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3678 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3679 {
3680 	u8 caps_mask, cfg_mask;
3681 
3682 	if (!phy_caps || !phy_cfg)
3683 		return false;
3684 
3685 	/* These bits are not common between capabilities and configuration.
3686 	 * Do not use them to determine equality.
3687 	 */
3688 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3689 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3690 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3691 
3692 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3693 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3694 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3695 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3696 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3697 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3698 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3699 		return false;
3700 
3701 	return true;
3702 }
3703 
3704 /**
3705  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3706  * @pi: port information structure
3707  * @caps: PHY ability structure to copy date from
3708  * @cfg: PHY configuration structure to copy data to
3709  *
3710  * Helper function to copy AQC PHY get ability data to PHY set configuration
3711  * data structure
3712  */
3713 void
3714 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3715 			 struct ice_aqc_get_phy_caps_data *caps,
3716 			 struct ice_aqc_set_phy_cfg_data *cfg)
3717 {
3718 	if (!pi || !caps || !cfg)
3719 		return;
3720 
3721 	memset(cfg, 0, sizeof(*cfg));
3722 	cfg->phy_type_low = caps->phy_type_low;
3723 	cfg->phy_type_high = caps->phy_type_high;
3724 	cfg->caps = caps->caps;
3725 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3726 	cfg->eee_cap = caps->eee_cap;
3727 	cfg->eeer_value = caps->eeer_value;
3728 	cfg->link_fec_opt = caps->link_fec_options;
3729 	cfg->module_compliance_enforcement =
3730 		caps->module_compliance_enforcement;
3731 }
3732 
3733 /**
3734  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3735  * @pi: port information structure
3736  * @cfg: PHY configuration data to set FEC mode
3737  * @fec: FEC mode to configure
3738  */
3739 int
3740 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3741 		enum ice_fec_mode fec)
3742 {
3743 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3744 	struct ice_hw *hw;
3745 	int status;
3746 
3747 	if (!pi || !cfg)
3748 		return -EINVAL;
3749 
3750 	hw = pi->hw;
3751 
3752 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3753 	if (!pcaps)
3754 		return -ENOMEM;
3755 
3756 	status = ice_aq_get_phy_caps(pi, false,
3757 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3758 				      ICE_AQC_REPORT_DFLT_CFG :
3759 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3760 	if (status)
3761 		goto out;
3762 
3763 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3764 	cfg->link_fec_opt = pcaps->link_fec_options;
3765 
3766 	switch (fec) {
3767 	case ICE_FEC_BASER:
3768 		/* Clear RS bits, and AND BASE-R ability
3769 		 * bits and OR request bits.
3770 		 */
3771 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3772 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3773 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3774 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3775 		break;
3776 	case ICE_FEC_RS:
3777 		/* Clear BASE-R bits, and AND RS ability
3778 		 * bits and OR request bits.
3779 		 */
3780 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3781 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3782 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3783 		break;
3784 	case ICE_FEC_NONE:
3785 		/* Clear all FEC option bits. */
3786 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3787 		break;
3788 	case ICE_FEC_AUTO:
3789 		/* AND auto FEC bit, and all caps bits. */
3790 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3791 		cfg->link_fec_opt |= pcaps->link_fec_options;
3792 		break;
3793 	default:
3794 		status = -EINVAL;
3795 		break;
3796 	}
3797 
3798 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3799 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3800 		struct ice_link_default_override_tlv tlv = { 0 };
3801 
3802 		status = ice_get_link_default_override(&tlv, pi);
3803 		if (status)
3804 			goto out;
3805 
3806 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3807 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3808 			cfg->link_fec_opt = tlv.fec_options;
3809 	}
3810 
3811 out:
3812 	return status;
3813 }
3814 
3815 /**
3816  * ice_get_link_status - get status of the HW network link
3817  * @pi: port information structure
3818  * @link_up: pointer to bool (true/false = linkup/linkdown)
3819  *
3820  * Variable link_up is true if link is up, false if link is down.
3821  * The variable link_up is invalid if status is non zero. As a
3822  * result of this call, link status reporting becomes enabled
3823  */
3824 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3825 {
3826 	struct ice_phy_info *phy_info;
3827 	int status = 0;
3828 
3829 	if (!pi || !link_up)
3830 		return -EINVAL;
3831 
3832 	phy_info = &pi->phy;
3833 
3834 	if (phy_info->get_link_info) {
3835 		status = ice_update_link_info(pi);
3836 
3837 		if (status)
3838 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3839 				  status);
3840 	}
3841 
3842 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3843 
3844 	return status;
3845 }
3846 
3847 /**
3848  * ice_aq_set_link_restart_an
3849  * @pi: pointer to the port information structure
3850  * @ena_link: if true: enable link, if false: disable link
3851  * @cd: pointer to command details structure or NULL
3852  *
3853  * Sets up the link and restarts the Auto-Negotiation over the link.
3854  */
3855 int
3856 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3857 			   struct ice_sq_cd *cd)
3858 {
3859 	struct ice_aqc_restart_an *cmd;
3860 	struct ice_aq_desc desc;
3861 
3862 	cmd = &desc.params.restart_an;
3863 
3864 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3865 
3866 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3867 	cmd->lport_num = pi->lport;
3868 	if (ena_link)
3869 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3870 	else
3871 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3872 
3873 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3874 }
3875 
3876 /**
3877  * ice_aq_set_event_mask
3878  * @hw: pointer to the HW struct
3879  * @port_num: port number of the physical function
3880  * @mask: event mask to be set
3881  * @cd: pointer to command details structure or NULL
3882  *
3883  * Set event mask (0x0613)
3884  */
3885 int
3886 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3887 		      struct ice_sq_cd *cd)
3888 {
3889 	struct ice_aqc_set_event_mask *cmd;
3890 	struct ice_aq_desc desc;
3891 
3892 	cmd = &desc.params.set_event_mask;
3893 
3894 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3895 
3896 	cmd->lport_num = port_num;
3897 
3898 	cmd->event_mask = cpu_to_le16(mask);
3899 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3900 }
3901 
3902 /**
3903  * ice_aq_set_mac_loopback
3904  * @hw: pointer to the HW struct
3905  * @ena_lpbk: Enable or Disable loopback
3906  * @cd: pointer to command details structure or NULL
3907  *
3908  * Enable/disable loopback on a given port
3909  */
3910 int
3911 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3912 {
3913 	struct ice_aqc_set_mac_lb *cmd;
3914 	struct ice_aq_desc desc;
3915 
3916 	cmd = &desc.params.set_mac_lb;
3917 
3918 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3919 	if (ena_lpbk)
3920 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3921 
3922 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3923 }
3924 
3925 /**
3926  * ice_aq_set_port_id_led
3927  * @pi: pointer to the port information
3928  * @is_orig_mode: is this LED set to original mode (by the net-list)
3929  * @cd: pointer to command details structure or NULL
3930  *
3931  * Set LED value for the given port (0x06e9)
3932  */
3933 int
3934 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3935 		       struct ice_sq_cd *cd)
3936 {
3937 	struct ice_aqc_set_port_id_led *cmd;
3938 	struct ice_hw *hw = pi->hw;
3939 	struct ice_aq_desc desc;
3940 
3941 	cmd = &desc.params.set_port_id_led;
3942 
3943 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3944 
3945 	if (is_orig_mode)
3946 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3947 	else
3948 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3949 
3950 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3951 }
3952 
3953 /**
3954  * ice_aq_get_port_options
3955  * @hw: pointer to the HW struct
3956  * @options: buffer for the resultant port options
3957  * @option_count: input - size of the buffer in port options structures,
3958  *                output - number of returned port options
3959  * @lport: logical port to call the command with (optional)
3960  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3961  *               when PF owns more than 1 port it must be true
3962  * @active_option_idx: index of active port option in returned buffer
3963  * @active_option_valid: active option in returned buffer is valid
3964  * @pending_option_idx: index of pending port option in returned buffer
3965  * @pending_option_valid: pending option in returned buffer is valid
3966  *
3967  * Calls Get Port Options AQC (0x06ea) and verifies result.
3968  */
3969 int
3970 ice_aq_get_port_options(struct ice_hw *hw,
3971 			struct ice_aqc_get_port_options_elem *options,
3972 			u8 *option_count, u8 lport, bool lport_valid,
3973 			u8 *active_option_idx, bool *active_option_valid,
3974 			u8 *pending_option_idx, bool *pending_option_valid)
3975 {
3976 	struct ice_aqc_get_port_options *cmd;
3977 	struct ice_aq_desc desc;
3978 	int status;
3979 	u8 i;
3980 
3981 	/* options buffer shall be able to hold max returned options */
3982 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3983 		return -EINVAL;
3984 
3985 	cmd = &desc.params.get_port_options;
3986 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3987 
3988 	if (lport_valid)
3989 		cmd->lport_num = lport;
3990 	cmd->lport_num_valid = lport_valid;
3991 
3992 	status = ice_aq_send_cmd(hw, &desc, options,
3993 				 *option_count * sizeof(*options), NULL);
3994 	if (status)
3995 		return status;
3996 
3997 	/* verify direct FW response & set output parameters */
3998 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3999 				  cmd->port_options_count);
4000 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4001 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4002 					 cmd->port_options);
4003 	if (*active_option_valid) {
4004 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4005 					       cmd->port_options);
4006 		if (*active_option_idx > (*option_count - 1))
4007 			return -EIO;
4008 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4009 			  *active_option_idx);
4010 	}
4011 
4012 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4013 					  cmd->pending_port_option_status);
4014 	if (*pending_option_valid) {
4015 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4016 						cmd->pending_port_option_status);
4017 		if (*pending_option_idx > (*option_count - 1))
4018 			return -EIO;
4019 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4020 			  *pending_option_idx);
4021 	}
4022 
4023 	/* mask output options fields */
4024 	for (i = 0; i < *option_count; i++) {
4025 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4026 					   options[i].pmd);
4027 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4028 						      options[i].max_lane_speed);
4029 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4030 			  options[i].pmd, options[i].max_lane_speed);
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 /**
4037  * ice_aq_set_port_option
4038  * @hw: pointer to the HW struct
4039  * @lport: logical port to call the command with
4040  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4041  *               when PF owns more than 1 port it must be true
4042  * @new_option: new port option to be written
4043  *
4044  * Calls Set Port Options AQC (0x06eb).
4045  */
4046 int
4047 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4048 		       u8 new_option)
4049 {
4050 	struct ice_aqc_set_port_option *cmd;
4051 	struct ice_aq_desc desc;
4052 
4053 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4054 		return -EINVAL;
4055 
4056 	cmd = &desc.params.set_port_option;
4057 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4058 
4059 	if (lport_valid)
4060 		cmd->lport_num = lport;
4061 
4062 	cmd->lport_num_valid = lport_valid;
4063 	cmd->selected_port_option = new_option;
4064 
4065 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4066 }
4067 
4068 /**
4069  * ice_aq_sff_eeprom
4070  * @hw: pointer to the HW struct
4071  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4072  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4073  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4074  * @page: QSFP page
4075  * @set_page: set or ignore the page
4076  * @data: pointer to data buffer to be read/written to the I2C device.
4077  * @length: 1-16 for read, 1 for write.
4078  * @write: 0 read, 1 for write.
4079  * @cd: pointer to command details structure or NULL
4080  *
4081  * Read/Write SFF EEPROM (0x06EE)
4082  */
4083 int
4084 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4085 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4086 		  bool write, struct ice_sq_cd *cd)
4087 {
4088 	struct ice_aqc_sff_eeprom *cmd;
4089 	struct ice_aq_desc desc;
4090 	u16 i2c_bus_addr;
4091 	int status;
4092 
4093 	if (!data || (mem_addr & 0xff00))
4094 		return -EINVAL;
4095 
4096 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4097 	cmd = &desc.params.read_write_sff_param;
4098 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4099 	cmd->lport_num = (u8)(lport & 0xff);
4100 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4101 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4102 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4103 	if (write)
4104 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4105 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4106 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4107 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4108 
4109 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4110 	return status;
4111 }
4112 
4113 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4114 {
4115 	switch (type) {
4116 	case ICE_LUT_VSI:
4117 		return ICE_LUT_VSI_SIZE;
4118 	case ICE_LUT_GLOBAL:
4119 		return ICE_LUT_GLOBAL_SIZE;
4120 	case ICE_LUT_PF:
4121 		return ICE_LUT_PF_SIZE;
4122 	}
4123 	WARN_ONCE(1, "incorrect type passed");
4124 	return ICE_LUT_VSI_SIZE;
4125 }
4126 
4127 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4128 {
4129 	switch (size) {
4130 	case ICE_LUT_VSI_SIZE:
4131 		return ICE_AQC_LUT_SIZE_SMALL;
4132 	case ICE_LUT_GLOBAL_SIZE:
4133 		return ICE_AQC_LUT_SIZE_512;
4134 	case ICE_LUT_PF_SIZE:
4135 		return ICE_AQC_LUT_SIZE_2K;
4136 	}
4137 	WARN_ONCE(1, "incorrect size passed");
4138 	return 0;
4139 }
4140 
4141 /**
4142  * __ice_aq_get_set_rss_lut
4143  * @hw: pointer to the hardware structure
4144  * @params: RSS LUT parameters
4145  * @set: set true to set the table, false to get the table
4146  *
4147  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4148  */
4149 static int
4150 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4151 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4152 {
4153 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4154 	enum ice_lut_type lut_type = params->lut_type;
4155 	struct ice_aqc_get_set_rss_lut *desc_params;
4156 	enum ice_aqc_lut_flags flags;
4157 	enum ice_lut_size lut_size;
4158 	struct ice_aq_desc desc;
4159 	u8 *lut = params->lut;
4160 
4161 
4162 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4163 		return -EINVAL;
4164 
4165 	lut_size = ice_lut_type_to_size(lut_type);
4166 	if (lut_size > params->lut_size)
4167 		return -EINVAL;
4168 	else if (set && lut_size != params->lut_size)
4169 		return -EINVAL;
4170 
4171 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4172 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4173 	if (set)
4174 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4175 
4176 	desc_params = &desc.params.get_set_rss_lut;
4177 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4178 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4179 
4180 	if (lut_type == ICE_LUT_GLOBAL)
4181 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4182 					  params->global_lut_id);
4183 
4184 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4185 	desc_params->flags = cpu_to_le16(flags);
4186 
4187 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4188 }
4189 
4190 /**
4191  * ice_aq_get_rss_lut
4192  * @hw: pointer to the hardware structure
4193  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4194  *
4195  * get the RSS lookup table, PF or VSI type
4196  */
4197 int
4198 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4199 {
4200 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4201 }
4202 
4203 /**
4204  * ice_aq_set_rss_lut
4205  * @hw: pointer to the hardware structure
4206  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4207  *
4208  * set the RSS lookup table, PF or VSI type
4209  */
4210 int
4211 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4212 {
4213 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4214 }
4215 
4216 /**
4217  * __ice_aq_get_set_rss_key
4218  * @hw: pointer to the HW struct
4219  * @vsi_id: VSI FW index
4220  * @key: pointer to key info struct
4221  * @set: set true to set the key, false to get the key
4222  *
4223  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4224  */
4225 static int
4226 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4227 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4228 {
4229 	struct ice_aqc_get_set_rss_key *desc_params;
4230 	u16 key_size = sizeof(*key);
4231 	struct ice_aq_desc desc;
4232 
4233 	if (set) {
4234 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4235 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4236 	} else {
4237 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4238 	}
4239 
4240 	desc_params = &desc.params.get_set_rss_key;
4241 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4242 
4243 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4244 }
4245 
4246 /**
4247  * ice_aq_get_rss_key
4248  * @hw: pointer to the HW struct
4249  * @vsi_handle: software VSI handle
4250  * @key: pointer to key info struct
4251  *
4252  * get the RSS key per VSI
4253  */
4254 int
4255 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4256 		   struct ice_aqc_get_set_rss_keys *key)
4257 {
4258 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4259 		return -EINVAL;
4260 
4261 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4262 					key, false);
4263 }
4264 
4265 /**
4266  * ice_aq_set_rss_key
4267  * @hw: pointer to the HW struct
4268  * @vsi_handle: software VSI handle
4269  * @keys: pointer to key info struct
4270  *
4271  * set the RSS key per VSI
4272  */
4273 int
4274 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4275 		   struct ice_aqc_get_set_rss_keys *keys)
4276 {
4277 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4278 		return -EINVAL;
4279 
4280 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4281 					keys, true);
4282 }
4283 
4284 /**
4285  * ice_aq_add_lan_txq
4286  * @hw: pointer to the hardware structure
4287  * @num_qgrps: Number of added queue groups
4288  * @qg_list: list of queue groups to be added
4289  * @buf_size: size of buffer for indirect command
4290  * @cd: pointer to command details structure or NULL
4291  *
4292  * Add Tx LAN queue (0x0C30)
4293  *
4294  * NOTE:
4295  * Prior to calling add Tx LAN queue:
4296  * Initialize the following as part of the Tx queue context:
4297  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4298  * Cache profile and Packet shaper profile.
4299  *
4300  * After add Tx LAN queue AQ command is completed:
4301  * Interrupts should be associated with specific queues,
4302  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4303  * flow.
4304  */
4305 static int
4306 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4307 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4308 		   struct ice_sq_cd *cd)
4309 {
4310 	struct ice_aqc_add_tx_qgrp *list;
4311 	struct ice_aqc_add_txqs *cmd;
4312 	struct ice_aq_desc desc;
4313 	u16 i, sum_size = 0;
4314 
4315 	cmd = &desc.params.add_txqs;
4316 
4317 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4318 
4319 	if (!qg_list)
4320 		return -EINVAL;
4321 
4322 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4323 		return -EINVAL;
4324 
4325 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4326 		sum_size += struct_size(list, txqs, list->num_txqs);
4327 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4328 						      list->num_txqs);
4329 	}
4330 
4331 	if (buf_size != sum_size)
4332 		return -EINVAL;
4333 
4334 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4335 
4336 	cmd->num_qgrps = num_qgrps;
4337 
4338 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4339 }
4340 
4341 /**
4342  * ice_aq_dis_lan_txq
4343  * @hw: pointer to the hardware structure
4344  * @num_qgrps: number of groups in the list
4345  * @qg_list: the list of groups to disable
4346  * @buf_size: the total size of the qg_list buffer in bytes
4347  * @rst_src: if called due to reset, specifies the reset source
4348  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4349  * @cd: pointer to command details structure or NULL
4350  *
4351  * Disable LAN Tx queue (0x0C31)
4352  */
4353 static int
4354 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4355 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4356 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4357 		   struct ice_sq_cd *cd)
4358 {
4359 	struct ice_aqc_dis_txq_item *item;
4360 	struct ice_aqc_dis_txqs *cmd;
4361 	struct ice_aq_desc desc;
4362 	u16 vmvf_and_timeout;
4363 	u16 i, sz = 0;
4364 	int status;
4365 
4366 	cmd = &desc.params.dis_txqs;
4367 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4368 
4369 	/* qg_list can be NULL only in VM/VF reset flow */
4370 	if (!qg_list && !rst_src)
4371 		return -EINVAL;
4372 
4373 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4374 		return -EINVAL;
4375 
4376 	cmd->num_entries = num_qgrps;
4377 
4378 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4379 
4380 	switch (rst_src) {
4381 	case ICE_VM_RESET:
4382 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4383 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4384 		break;
4385 	case ICE_VF_RESET:
4386 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4387 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4388 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4389 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4390 		break;
4391 	case ICE_NO_RESET:
4392 	default:
4393 		break;
4394 	}
4395 
4396 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4397 
4398 	/* flush pipe on time out */
4399 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4400 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4401 	if (!qg_list)
4402 		goto do_aq;
4403 
4404 	/* set RD bit to indicate that command buffer is provided by the driver
4405 	 * and it needs to be read by the firmware
4406 	 */
4407 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4408 
4409 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4410 		u16 item_size = struct_size(item, q_id, item->num_qs);
4411 
4412 		/* If the num of queues is even, add 2 bytes of padding */
4413 		if ((item->num_qs % 2) == 0)
4414 			item_size += 2;
4415 
4416 		sz += item_size;
4417 
4418 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4419 	}
4420 
4421 	if (buf_size != sz)
4422 		return -EINVAL;
4423 
4424 do_aq:
4425 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4426 	if (status) {
4427 		if (!qg_list)
4428 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4429 				  vmvf_num, hw->adminq.sq_last_status);
4430 		else
4431 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4432 				  le16_to_cpu(qg_list[0].q_id[0]),
4433 				  hw->adminq.sq_last_status);
4434 	}
4435 	return status;
4436 }
4437 
4438 /**
4439  * ice_aq_cfg_lan_txq
4440  * @hw: pointer to the hardware structure
4441  * @buf: buffer for command
4442  * @buf_size: size of buffer in bytes
4443  * @num_qs: number of queues being configured
4444  * @oldport: origination lport
4445  * @newport: destination lport
4446  * @cd: pointer to command details structure or NULL
4447  *
4448  * Move/Configure LAN Tx queue (0x0C32)
4449  *
4450  * There is a better AQ command to use for moving nodes, so only coding
4451  * this one for configuring the node.
4452  */
4453 int
4454 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4455 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4456 		   struct ice_sq_cd *cd)
4457 {
4458 	struct ice_aqc_cfg_txqs *cmd;
4459 	struct ice_aq_desc desc;
4460 	int status;
4461 
4462 	cmd = &desc.params.cfg_txqs;
4463 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4464 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4465 
4466 	if (!buf)
4467 		return -EINVAL;
4468 
4469 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4470 	cmd->num_qs = num_qs;
4471 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4472 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4473 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4474 	cmd->blocked_cgds = 0;
4475 
4476 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4477 	if (status)
4478 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4479 			  hw->adminq.sq_last_status);
4480 	return status;
4481 }
4482 
4483 /**
4484  * ice_aq_add_rdma_qsets
4485  * @hw: pointer to the hardware structure
4486  * @num_qset_grps: Number of RDMA Qset groups
4487  * @qset_list: list of Qset groups to be added
4488  * @buf_size: size of buffer for indirect command
4489  * @cd: pointer to command details structure or NULL
4490  *
4491  * Add Tx RDMA Qsets (0x0C33)
4492  */
4493 static int
4494 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4495 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4496 		      u16 buf_size, struct ice_sq_cd *cd)
4497 {
4498 	struct ice_aqc_add_rdma_qset_data *list;
4499 	struct ice_aqc_add_rdma_qset *cmd;
4500 	struct ice_aq_desc desc;
4501 	u16 i, sum_size = 0;
4502 
4503 	cmd = &desc.params.add_rdma_qset;
4504 
4505 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4506 
4507 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4508 		return -EINVAL;
4509 
4510 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4511 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4512 
4513 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4514 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4515 							     num_qsets);
4516 	}
4517 
4518 	if (buf_size != sum_size)
4519 		return -EINVAL;
4520 
4521 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4522 
4523 	cmd->num_qset_grps = num_qset_grps;
4524 
4525 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4526 }
4527 
4528 /* End of FW Admin Queue command wrappers */
4529 
4530 /**
4531  * ice_pack_ctx_byte - write a byte to a packed context structure
4532  * @src_ctx: unpacked source context structure
4533  * @dest_ctx: packed destination context data
4534  * @ce_info: context element description
4535  */
4536 static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4537 			      const struct ice_ctx_ele *ce_info)
4538 {
4539 	u8 src_byte, dest_byte, mask;
4540 	u8 *from, *dest;
4541 	u16 shift_width;
4542 
4543 	/* copy from the next struct field */
4544 	from = src_ctx + ce_info->offset;
4545 
4546 	/* prepare the bits and mask */
4547 	shift_width = ce_info->lsb % 8;
4548 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4549 
4550 	src_byte = *from;
4551 	src_byte <<= shift_width;
4552 	src_byte &= mask;
4553 
4554 	/* get the current bits from the target bit string */
4555 	dest = dest_ctx + (ce_info->lsb / 8);
4556 
4557 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4558 
4559 	dest_byte &= ~mask;	/* get the bits not changing */
4560 	dest_byte |= src_byte;	/* add in the new bits */
4561 
4562 	/* put it all back */
4563 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4564 }
4565 
4566 /**
4567  * ice_pack_ctx_word - write a word to a packed context structure
4568  * @src_ctx: unpacked source context structure
4569  * @dest_ctx: packed destination context data
4570  * @ce_info: context element description
4571  */
4572 static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4573 			      const struct ice_ctx_ele *ce_info)
4574 {
4575 	u16 src_word, mask;
4576 	__le16 dest_word;
4577 	u8 *from, *dest;
4578 	u16 shift_width;
4579 
4580 	/* copy from the next struct field */
4581 	from = src_ctx + ce_info->offset;
4582 
4583 	/* prepare the bits and mask */
4584 	shift_width = ce_info->lsb % 8;
4585 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4586 
4587 	/* don't swizzle the bits until after the mask because the mask bits
4588 	 * will be in a different bit position on big endian machines
4589 	 */
4590 	src_word = *(u16 *)from;
4591 	src_word <<= shift_width;
4592 	src_word &= mask;
4593 
4594 	/* get the current bits from the target bit string */
4595 	dest = dest_ctx + (ce_info->lsb / 8);
4596 
4597 	memcpy(&dest_word, dest, sizeof(dest_word));
4598 
4599 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4600 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4601 
4602 	/* put it all back */
4603 	memcpy(dest, &dest_word, sizeof(dest_word));
4604 }
4605 
4606 /**
4607  * ice_pack_ctx_dword - write a dword to a packed context structure
4608  * @src_ctx: unpacked source context structure
4609  * @dest_ctx: packed destination context data
4610  * @ce_info: context element description
4611  */
4612 static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4613 			       const struct ice_ctx_ele *ce_info)
4614 {
4615 	u32 src_dword, mask;
4616 	__le32 dest_dword;
4617 	u8 *from, *dest;
4618 	u16 shift_width;
4619 
4620 	/* copy from the next struct field */
4621 	from = src_ctx + ce_info->offset;
4622 
4623 	/* prepare the bits and mask */
4624 	shift_width = ce_info->lsb % 8;
4625 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4626 
4627 	/* don't swizzle the bits until after the mask because the mask bits
4628 	 * will be in a different bit position on big endian machines
4629 	 */
4630 	src_dword = *(u32 *)from;
4631 	src_dword <<= shift_width;
4632 	src_dword &= mask;
4633 
4634 	/* get the current bits from the target bit string */
4635 	dest = dest_ctx + (ce_info->lsb / 8);
4636 
4637 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4638 
4639 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4640 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4641 
4642 	/* put it all back */
4643 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4644 }
4645 
4646 /**
4647  * ice_pack_ctx_qword - write a qword to a packed context structure
4648  * @src_ctx: unpacked source context structure
4649  * @dest_ctx: packed destination context data
4650  * @ce_info: context element description
4651  */
4652 static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4653 			       const struct ice_ctx_ele *ce_info)
4654 {
4655 	u64 src_qword, mask;
4656 	__le64 dest_qword;
4657 	u8 *from, *dest;
4658 	u16 shift_width;
4659 
4660 	/* copy from the next struct field */
4661 	from = src_ctx + ce_info->offset;
4662 
4663 	/* prepare the bits and mask */
4664 	shift_width = ce_info->lsb % 8;
4665 	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4666 
4667 	/* don't swizzle the bits until after the mask because the mask bits
4668 	 * will be in a different bit position on big endian machines
4669 	 */
4670 	src_qword = *(u64 *)from;
4671 	src_qword <<= shift_width;
4672 	src_qword &= mask;
4673 
4674 	/* get the current bits from the target bit string */
4675 	dest = dest_ctx + (ce_info->lsb / 8);
4676 
4677 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4678 
4679 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4680 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4681 
4682 	/* put it all back */
4683 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4684 }
4685 
4686 /**
4687  * ice_set_ctx - set context bits in packed structure
4688  * @hw: pointer to the hardware structure
4689  * @src_ctx:  pointer to a generic non-packed context structure
4690  * @dest_ctx: pointer to memory for the packed structure
4691  * @ce_info: List of Rx context elements
4692  */
4693 int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4694 		const struct ice_ctx_ele *ce_info)
4695 {
4696 	int f;
4697 
4698 	for (f = 0; ce_info[f].width; f++) {
4699 		/* We have to deal with each element of the FW response
4700 		 * using the correct size so that we are correct regardless
4701 		 * of the endianness of the machine.
4702 		 */
4703 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4704 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4705 				  f, ce_info[f].width, ce_info[f].size_of);
4706 			continue;
4707 		}
4708 		switch (ce_info[f].size_of) {
4709 		case sizeof(u8):
4710 			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4711 			break;
4712 		case sizeof(u16):
4713 			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4714 			break;
4715 		case sizeof(u32):
4716 			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4717 			break;
4718 		case sizeof(u64):
4719 			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4720 			break;
4721 		default:
4722 			return -EINVAL;
4723 		}
4724 	}
4725 
4726 	return 0;
4727 }
4728 
4729 /**
4730  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4731  * @hw: pointer to the HW struct
4732  * @vsi_handle: software VSI handle
4733  * @tc: TC number
4734  * @q_handle: software queue handle
4735  */
4736 struct ice_q_ctx *
4737 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4738 {
4739 	struct ice_vsi_ctx *vsi;
4740 	struct ice_q_ctx *q_ctx;
4741 
4742 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4743 	if (!vsi)
4744 		return NULL;
4745 	if (q_handle >= vsi->num_lan_q_entries[tc])
4746 		return NULL;
4747 	if (!vsi->lan_q_ctx[tc])
4748 		return NULL;
4749 	q_ctx = vsi->lan_q_ctx[tc];
4750 	return &q_ctx[q_handle];
4751 }
4752 
4753 /**
4754  * ice_ena_vsi_txq
4755  * @pi: port information structure
4756  * @vsi_handle: software VSI handle
4757  * @tc: TC number
4758  * @q_handle: software queue handle
4759  * @num_qgrps: Number of added queue groups
4760  * @buf: list of queue groups to be added
4761  * @buf_size: size of buffer for indirect command
4762  * @cd: pointer to command details structure or NULL
4763  *
4764  * This function adds one LAN queue
4765  */
4766 int
4767 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4768 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4769 		struct ice_sq_cd *cd)
4770 {
4771 	struct ice_aqc_txsched_elem_data node = { 0 };
4772 	struct ice_sched_node *parent;
4773 	struct ice_q_ctx *q_ctx;
4774 	struct ice_hw *hw;
4775 	int status;
4776 
4777 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4778 		return -EIO;
4779 
4780 	if (num_qgrps > 1 || buf->num_txqs > 1)
4781 		return -ENOSPC;
4782 
4783 	hw = pi->hw;
4784 
4785 	if (!ice_is_vsi_valid(hw, vsi_handle))
4786 		return -EINVAL;
4787 
4788 	mutex_lock(&pi->sched_lock);
4789 
4790 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4791 	if (!q_ctx) {
4792 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4793 			  q_handle);
4794 		status = -EINVAL;
4795 		goto ena_txq_exit;
4796 	}
4797 
4798 	/* find a parent node */
4799 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4800 					    ICE_SCHED_NODE_OWNER_LAN);
4801 	if (!parent) {
4802 		status = -EINVAL;
4803 		goto ena_txq_exit;
4804 	}
4805 
4806 	buf->parent_teid = parent->info.node_teid;
4807 	node.parent_teid = parent->info.node_teid;
4808 	/* Mark that the values in the "generic" section as valid. The default
4809 	 * value in the "generic" section is zero. This means that :
4810 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4811 	 * - 0 priority among siblings, indicated by Bit 1-3.
4812 	 * - WFQ, indicated by Bit 4.
4813 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4814 	 * Bit 5-6.
4815 	 * - Bit 7 is reserved.
4816 	 * Without setting the generic section as valid in valid_sections, the
4817 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4818 	 */
4819 	buf->txqs[0].info.valid_sections =
4820 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4821 		ICE_AQC_ELEM_VALID_EIR;
4822 	buf->txqs[0].info.generic = 0;
4823 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4824 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4825 	buf->txqs[0].info.cir_bw.bw_alloc =
4826 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4827 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4828 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4829 	buf->txqs[0].info.eir_bw.bw_alloc =
4830 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4831 
4832 	/* add the LAN queue */
4833 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4834 	if (status) {
4835 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4836 			  le16_to_cpu(buf->txqs[0].txq_id),
4837 			  hw->adminq.sq_last_status);
4838 		goto ena_txq_exit;
4839 	}
4840 
4841 	node.node_teid = buf->txqs[0].q_teid;
4842 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4843 	q_ctx->q_handle = q_handle;
4844 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4845 
4846 	/* add a leaf node into scheduler tree queue layer */
4847 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4848 	if (!status)
4849 		status = ice_sched_replay_q_bw(pi, q_ctx);
4850 
4851 ena_txq_exit:
4852 	mutex_unlock(&pi->sched_lock);
4853 	return status;
4854 }
4855 
4856 /**
4857  * ice_dis_vsi_txq
4858  * @pi: port information structure
4859  * @vsi_handle: software VSI handle
4860  * @tc: TC number
4861  * @num_queues: number of queues
4862  * @q_handles: pointer to software queue handle array
4863  * @q_ids: pointer to the q_id array
4864  * @q_teids: pointer to queue node teids
4865  * @rst_src: if called due to reset, specifies the reset source
4866  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4867  * @cd: pointer to command details structure or NULL
4868  *
4869  * This function removes queues and their corresponding nodes in SW DB
4870  */
4871 int
4872 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4873 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4874 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4875 		struct ice_sq_cd *cd)
4876 {
4877 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4878 	u16 i, buf_size = __struct_size(qg_list);
4879 	struct ice_q_ctx *q_ctx;
4880 	int status = -ENOENT;
4881 	struct ice_hw *hw;
4882 
4883 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4884 		return -EIO;
4885 
4886 	hw = pi->hw;
4887 
4888 	if (!num_queues) {
4889 		/* if queue is disabled already yet the disable queue command
4890 		 * has to be sent to complete the VF reset, then call
4891 		 * ice_aq_dis_lan_txq without any queue information
4892 		 */
4893 		if (rst_src)
4894 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4895 						  vmvf_num, NULL);
4896 		return -EIO;
4897 	}
4898 
4899 	mutex_lock(&pi->sched_lock);
4900 
4901 	for (i = 0; i < num_queues; i++) {
4902 		struct ice_sched_node *node;
4903 
4904 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4905 		if (!node)
4906 			continue;
4907 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4908 		if (!q_ctx) {
4909 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4910 				  q_handles[i]);
4911 			continue;
4912 		}
4913 		if (q_ctx->q_handle != q_handles[i]) {
4914 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4915 				  q_ctx->q_handle, q_handles[i]);
4916 			continue;
4917 		}
4918 		qg_list->parent_teid = node->info.parent_teid;
4919 		qg_list->num_qs = 1;
4920 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4921 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4922 					    vmvf_num, cd);
4923 
4924 		if (status)
4925 			break;
4926 		ice_free_sched_node(pi, node);
4927 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4928 		q_ctx->q_teid = ICE_INVAL_TEID;
4929 	}
4930 	mutex_unlock(&pi->sched_lock);
4931 	return status;
4932 }
4933 
4934 /**
4935  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4936  * @pi: port information structure
4937  * @vsi_handle: software VSI handle
4938  * @tc_bitmap: TC bitmap
4939  * @maxqs: max queues array per TC
4940  * @owner: LAN or RDMA
4941  *
4942  * This function adds/updates the VSI queues per TC.
4943  */
4944 static int
4945 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4946 	       u16 *maxqs, u8 owner)
4947 {
4948 	int status = 0;
4949 	u8 i;
4950 
4951 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4952 		return -EIO;
4953 
4954 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4955 		return -EINVAL;
4956 
4957 	mutex_lock(&pi->sched_lock);
4958 
4959 	ice_for_each_traffic_class(i) {
4960 		/* configuration is possible only if TC node is present */
4961 		if (!ice_sched_get_tc_node(pi, i))
4962 			continue;
4963 
4964 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4965 					   ice_is_tc_ena(tc_bitmap, i));
4966 		if (status)
4967 			break;
4968 	}
4969 
4970 	mutex_unlock(&pi->sched_lock);
4971 	return status;
4972 }
4973 
4974 /**
4975  * ice_cfg_vsi_lan - configure VSI LAN queues
4976  * @pi: port information structure
4977  * @vsi_handle: software VSI handle
4978  * @tc_bitmap: TC bitmap
4979  * @max_lanqs: max LAN queues array per TC
4980  *
4981  * This function adds/updates the VSI LAN queues per TC.
4982  */
4983 int
4984 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4985 		u16 *max_lanqs)
4986 {
4987 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4988 			      ICE_SCHED_NODE_OWNER_LAN);
4989 }
4990 
4991 /**
4992  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4993  * @pi: port information structure
4994  * @vsi_handle: software VSI handle
4995  * @tc_bitmap: TC bitmap
4996  * @max_rdmaqs: max RDMA queues array per TC
4997  *
4998  * This function adds/updates the VSI RDMA queues per TC.
4999  */
5000 int
5001 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5002 		 u16 *max_rdmaqs)
5003 {
5004 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5005 			      ICE_SCHED_NODE_OWNER_RDMA);
5006 }
5007 
5008 /**
5009  * ice_ena_vsi_rdma_qset
5010  * @pi: port information structure
5011  * @vsi_handle: software VSI handle
5012  * @tc: TC number
5013  * @rdma_qset: pointer to RDMA Qset
5014  * @num_qsets: number of RDMA Qsets
5015  * @qset_teid: pointer to Qset node TEIDs
5016  *
5017  * This function adds RDMA Qset
5018  */
5019 int
5020 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5021 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5022 {
5023 	struct ice_aqc_txsched_elem_data node = { 0 };
5024 	struct ice_aqc_add_rdma_qset_data *buf;
5025 	struct ice_sched_node *parent;
5026 	struct ice_hw *hw;
5027 	u16 i, buf_size;
5028 	int ret;
5029 
5030 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5031 		return -EIO;
5032 	hw = pi->hw;
5033 
5034 	if (!ice_is_vsi_valid(hw, vsi_handle))
5035 		return -EINVAL;
5036 
5037 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5038 	buf = kzalloc(buf_size, GFP_KERNEL);
5039 	if (!buf)
5040 		return -ENOMEM;
5041 	mutex_lock(&pi->sched_lock);
5042 
5043 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5044 					    ICE_SCHED_NODE_OWNER_RDMA);
5045 	if (!parent) {
5046 		ret = -EINVAL;
5047 		goto rdma_error_exit;
5048 	}
5049 	buf->parent_teid = parent->info.node_teid;
5050 	node.parent_teid = parent->info.node_teid;
5051 
5052 	buf->num_qsets = cpu_to_le16(num_qsets);
5053 	for (i = 0; i < num_qsets; i++) {
5054 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5055 		buf->rdma_qsets[i].info.valid_sections =
5056 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5057 			ICE_AQC_ELEM_VALID_EIR;
5058 		buf->rdma_qsets[i].info.generic = 0;
5059 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5060 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5061 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5062 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5063 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5064 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5065 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5066 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5067 	}
5068 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5069 	if (ret) {
5070 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5071 		goto rdma_error_exit;
5072 	}
5073 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5074 	for (i = 0; i < num_qsets; i++) {
5075 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5076 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5077 					 &node, NULL);
5078 		if (ret)
5079 			break;
5080 		qset_teid[i] = le32_to_cpu(node.node_teid);
5081 	}
5082 rdma_error_exit:
5083 	mutex_unlock(&pi->sched_lock);
5084 	kfree(buf);
5085 	return ret;
5086 }
5087 
5088 /**
5089  * ice_dis_vsi_rdma_qset - free RDMA resources
5090  * @pi: port_info struct
5091  * @count: number of RDMA Qsets to free
5092  * @qset_teid: TEID of Qset node
5093  * @q_id: list of queue IDs being disabled
5094  */
5095 int
5096 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5097 		      u16 *q_id)
5098 {
5099 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5100 	u16 qg_size = __struct_size(qg_list);
5101 	struct ice_hw *hw;
5102 	int status = 0;
5103 	int i;
5104 
5105 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5106 		return -EIO;
5107 
5108 	hw = pi->hw;
5109 
5110 	mutex_lock(&pi->sched_lock);
5111 
5112 	for (i = 0; i < count; i++) {
5113 		struct ice_sched_node *node;
5114 
5115 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5116 		if (!node)
5117 			continue;
5118 
5119 		qg_list->parent_teid = node->info.parent_teid;
5120 		qg_list->num_qs = 1;
5121 		qg_list->q_id[0] =
5122 			cpu_to_le16(q_id[i] |
5123 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5124 
5125 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5126 					    ICE_NO_RESET, 0, NULL);
5127 		if (status)
5128 			break;
5129 
5130 		ice_free_sched_node(pi, node);
5131 	}
5132 
5133 	mutex_unlock(&pi->sched_lock);
5134 	return status;
5135 }
5136 
5137 /**
5138  * ice_aq_get_cgu_abilities - get cgu abilities
5139  * @hw: pointer to the HW struct
5140  * @abilities: CGU abilities
5141  *
5142  * Get CGU abilities (0x0C61)
5143  * Return: 0 on success or negative value on failure.
5144  */
5145 int
5146 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5147 			 struct ice_aqc_get_cgu_abilities *abilities)
5148 {
5149 	struct ice_aq_desc desc;
5150 
5151 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5152 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5153 }
5154 
5155 /**
5156  * ice_aq_set_input_pin_cfg - set input pin config
5157  * @hw: pointer to the HW struct
5158  * @input_idx: Input index
5159  * @flags1: Input flags
5160  * @flags2: Input flags
5161  * @freq: Frequency in Hz
5162  * @phase_delay: Delay in ps
5163  *
5164  * Set CGU input config (0x0C62)
5165  * Return: 0 on success or negative value on failure.
5166  */
5167 int
5168 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5169 			 u32 freq, s32 phase_delay)
5170 {
5171 	struct ice_aqc_set_cgu_input_config *cmd;
5172 	struct ice_aq_desc desc;
5173 
5174 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5175 	cmd = &desc.params.set_cgu_input_config;
5176 	cmd->input_idx = input_idx;
5177 	cmd->flags1 = flags1;
5178 	cmd->flags2 = flags2;
5179 	cmd->freq = cpu_to_le32(freq);
5180 	cmd->phase_delay = cpu_to_le32(phase_delay);
5181 
5182 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5183 }
5184 
5185 /**
5186  * ice_aq_get_input_pin_cfg - get input pin config
5187  * @hw: pointer to the HW struct
5188  * @input_idx: Input index
5189  * @status: Pin status
5190  * @type: Pin type
5191  * @flags1: Input flags
5192  * @flags2: Input flags
5193  * @freq: Frequency in Hz
5194  * @phase_delay: Delay in ps
5195  *
5196  * Get CGU input config (0x0C63)
5197  * Return: 0 on success or negative value on failure.
5198  */
5199 int
5200 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5201 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5202 {
5203 	struct ice_aqc_get_cgu_input_config *cmd;
5204 	struct ice_aq_desc desc;
5205 	int ret;
5206 
5207 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5208 	cmd = &desc.params.get_cgu_input_config;
5209 	cmd->input_idx = input_idx;
5210 
5211 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5212 	if (!ret) {
5213 		if (status)
5214 			*status = cmd->status;
5215 		if (type)
5216 			*type = cmd->type;
5217 		if (flags1)
5218 			*flags1 = cmd->flags1;
5219 		if (flags2)
5220 			*flags2 = cmd->flags2;
5221 		if (freq)
5222 			*freq = le32_to_cpu(cmd->freq);
5223 		if (phase_delay)
5224 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5225 	}
5226 
5227 	return ret;
5228 }
5229 
5230 /**
5231  * ice_aq_set_output_pin_cfg - set output pin config
5232  * @hw: pointer to the HW struct
5233  * @output_idx: Output index
5234  * @flags: Output flags
5235  * @src_sel: Index of DPLL block
5236  * @freq: Output frequency
5237  * @phase_delay: Output phase compensation
5238  *
5239  * Set CGU output config (0x0C64)
5240  * Return: 0 on success or negative value on failure.
5241  */
5242 int
5243 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5244 			  u8 src_sel, u32 freq, s32 phase_delay)
5245 {
5246 	struct ice_aqc_set_cgu_output_config *cmd;
5247 	struct ice_aq_desc desc;
5248 
5249 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5250 	cmd = &desc.params.set_cgu_output_config;
5251 	cmd->output_idx = output_idx;
5252 	cmd->flags = flags;
5253 	cmd->src_sel = src_sel;
5254 	cmd->freq = cpu_to_le32(freq);
5255 	cmd->phase_delay = cpu_to_le32(phase_delay);
5256 
5257 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5258 }
5259 
5260 /**
5261  * ice_aq_get_output_pin_cfg - get output pin config
5262  * @hw: pointer to the HW struct
5263  * @output_idx: Output index
5264  * @flags: Output flags
5265  * @src_sel: Internal DPLL source
5266  * @freq: Output frequency
5267  * @src_freq: Source frequency
5268  *
5269  * Get CGU output config (0x0C65)
5270  * Return: 0 on success or negative value on failure.
5271  */
5272 int
5273 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5274 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5275 {
5276 	struct ice_aqc_get_cgu_output_config *cmd;
5277 	struct ice_aq_desc desc;
5278 	int ret;
5279 
5280 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5281 	cmd = &desc.params.get_cgu_output_config;
5282 	cmd->output_idx = output_idx;
5283 
5284 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5285 	if (!ret) {
5286 		if (flags)
5287 			*flags = cmd->flags;
5288 		if (src_sel)
5289 			*src_sel = cmd->src_sel;
5290 		if (freq)
5291 			*freq = le32_to_cpu(cmd->freq);
5292 		if (src_freq)
5293 			*src_freq = le32_to_cpu(cmd->src_freq);
5294 	}
5295 
5296 	return ret;
5297 }
5298 
5299 /**
5300  * ice_aq_get_cgu_dpll_status - get dpll status
5301  * @hw: pointer to the HW struct
5302  * @dpll_num: DPLL index
5303  * @ref_state: Reference clock state
5304  * @config: current DPLL config
5305  * @dpll_state: current DPLL state
5306  * @phase_offset: Phase offset in ns
5307  * @eec_mode: EEC_mode
5308  *
5309  * Get CGU DPLL status (0x0C66)
5310  * Return: 0 on success or negative value on failure.
5311  */
5312 int
5313 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5314 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5315 			   u8 *eec_mode)
5316 {
5317 	struct ice_aqc_get_cgu_dpll_status *cmd;
5318 	struct ice_aq_desc desc;
5319 	int status;
5320 
5321 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5322 	cmd = &desc.params.get_cgu_dpll_status;
5323 	cmd->dpll_num = dpll_num;
5324 
5325 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5326 	if (!status) {
5327 		*ref_state = cmd->ref_state;
5328 		*dpll_state = cmd->dpll_state;
5329 		*config = cmd->config;
5330 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5331 		*phase_offset <<= 32;
5332 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5333 		*phase_offset = sign_extend64(*phase_offset, 47);
5334 		*eec_mode = cmd->eec_mode;
5335 	}
5336 
5337 	return status;
5338 }
5339 
5340 /**
5341  * ice_aq_set_cgu_dpll_config - set dpll config
5342  * @hw: pointer to the HW struct
5343  * @dpll_num: DPLL index
5344  * @ref_state: Reference clock state
5345  * @config: DPLL config
5346  * @eec_mode: EEC mode
5347  *
5348  * Set CGU DPLL config (0x0C67)
5349  * Return: 0 on success or negative value on failure.
5350  */
5351 int
5352 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5353 			   u8 config, u8 eec_mode)
5354 {
5355 	struct ice_aqc_set_cgu_dpll_config *cmd;
5356 	struct ice_aq_desc desc;
5357 
5358 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5359 	cmd = &desc.params.set_cgu_dpll_config;
5360 	cmd->dpll_num = dpll_num;
5361 	cmd->ref_state = ref_state;
5362 	cmd->config = config;
5363 	cmd->eec_mode = eec_mode;
5364 
5365 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5366 }
5367 
5368 /**
5369  * ice_aq_set_cgu_ref_prio - set input reference priority
5370  * @hw: pointer to the HW struct
5371  * @dpll_num: DPLL index
5372  * @ref_idx: Reference pin index
5373  * @ref_priority: Reference input priority
5374  *
5375  * Set CGU reference priority (0x0C68)
5376  * Return: 0 on success or negative value on failure.
5377  */
5378 int
5379 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5380 			u8 ref_priority)
5381 {
5382 	struct ice_aqc_set_cgu_ref_prio *cmd;
5383 	struct ice_aq_desc desc;
5384 
5385 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5386 	cmd = &desc.params.set_cgu_ref_prio;
5387 	cmd->dpll_num = dpll_num;
5388 	cmd->ref_idx = ref_idx;
5389 	cmd->ref_priority = ref_priority;
5390 
5391 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5392 }
5393 
5394 /**
5395  * ice_aq_get_cgu_ref_prio - get input reference priority
5396  * @hw: pointer to the HW struct
5397  * @dpll_num: DPLL index
5398  * @ref_idx: Reference pin index
5399  * @ref_prio: Reference input priority
5400  *
5401  * Get CGU reference priority (0x0C69)
5402  * Return: 0 on success or negative value on failure.
5403  */
5404 int
5405 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5406 			u8 *ref_prio)
5407 {
5408 	struct ice_aqc_get_cgu_ref_prio *cmd;
5409 	struct ice_aq_desc desc;
5410 	int status;
5411 
5412 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5413 	cmd = &desc.params.get_cgu_ref_prio;
5414 	cmd->dpll_num = dpll_num;
5415 	cmd->ref_idx = ref_idx;
5416 
5417 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5418 	if (!status)
5419 		*ref_prio = cmd->ref_priority;
5420 
5421 	return status;
5422 }
5423 
5424 /**
5425  * ice_aq_get_cgu_info - get cgu info
5426  * @hw: pointer to the HW struct
5427  * @cgu_id: CGU ID
5428  * @cgu_cfg_ver: CGU config version
5429  * @cgu_fw_ver: CGU firmware version
5430  *
5431  * Get CGU info (0x0C6A)
5432  * Return: 0 on success or negative value on failure.
5433  */
5434 int
5435 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5436 		    u32 *cgu_fw_ver)
5437 {
5438 	struct ice_aqc_get_cgu_info *cmd;
5439 	struct ice_aq_desc desc;
5440 	int status;
5441 
5442 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5443 	cmd = &desc.params.get_cgu_info;
5444 
5445 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5446 	if (!status) {
5447 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5448 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5449 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5450 	}
5451 
5452 	return status;
5453 }
5454 
5455 /**
5456  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5457  * @hw: pointer to the HW struct
5458  * @phy_output: PHY reference clock output pin
5459  * @enable: GPIO state to be applied
5460  * @freq: PHY output frequency
5461  *
5462  * Set phy recovered clock as reference (0x0630)
5463  * Return: 0 on success or negative value on failure.
5464  */
5465 int
5466 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5467 			   u32 *freq)
5468 {
5469 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5470 	struct ice_aq_desc desc;
5471 	int status;
5472 
5473 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5474 	cmd = &desc.params.set_phy_rec_clk_out;
5475 	cmd->phy_output = phy_output;
5476 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5477 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5478 	cmd->freq = cpu_to_le32(*freq);
5479 
5480 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5481 	if (!status)
5482 		*freq = le32_to_cpu(cmd->freq);
5483 
5484 	return status;
5485 }
5486 
5487 /**
5488  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5489  * @hw: pointer to the HW struct
5490  * @phy_output: PHY reference clock output pin
5491  * @port_num: Port number
5492  * @flags: PHY flags
5493  * @node_handle: PHY output frequency
5494  *
5495  * Get PHY recovered clock output info (0x0631)
5496  * Return: 0 on success or negative value on failure.
5497  */
5498 int
5499 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5500 			   u8 *flags, u16 *node_handle)
5501 {
5502 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5503 	struct ice_aq_desc desc;
5504 	int status;
5505 
5506 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5507 	cmd = &desc.params.get_phy_rec_clk_out;
5508 	cmd->phy_output = *phy_output;
5509 
5510 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5511 	if (!status) {
5512 		*phy_output = cmd->phy_output;
5513 		if (port_num)
5514 			*port_num = cmd->port_num;
5515 		if (flags)
5516 			*flags = cmd->flags;
5517 		if (node_handle)
5518 			*node_handle = le16_to_cpu(cmd->node_handle);
5519 	}
5520 
5521 	return status;
5522 }
5523 
5524 /**
5525  * ice_aq_get_sensor_reading
5526  * @hw: pointer to the HW struct
5527  * @data: pointer to data to be read from the sensor
5528  *
5529  * Get sensor reading (0x0632)
5530  */
5531 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5532 			      struct ice_aqc_get_sensor_reading_resp *data)
5533 {
5534 	struct ice_aqc_get_sensor_reading *cmd;
5535 	struct ice_aq_desc desc;
5536 	int status;
5537 
5538 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5539 	cmd = &desc.params.get_sensor_reading;
5540 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5541 #define ICE_INTERNAL_TEMP_SENSOR	0
5542 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5543 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5544 
5545 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5546 	if (!status)
5547 		memcpy(data, &desc.params.get_sensor_reading_resp,
5548 		       sizeof(*data));
5549 
5550 	return status;
5551 }
5552 
5553 /**
5554  * ice_replay_pre_init - replay pre initialization
5555  * @hw: pointer to the HW struct
5556  *
5557  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5558  */
5559 static int ice_replay_pre_init(struct ice_hw *hw)
5560 {
5561 	struct ice_switch_info *sw = hw->switch_info;
5562 	u8 i;
5563 
5564 	/* Delete old entries from replay filter list head if there is any */
5565 	ice_rm_all_sw_replay_rule_info(hw);
5566 	/* In start of replay, move entries into replay_rules list, it
5567 	 * will allow adding rules entries back to filt_rules list,
5568 	 * which is operational list.
5569 	 */
5570 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5571 		list_replace_init(&sw->recp_list[i].filt_rules,
5572 				  &sw->recp_list[i].filt_replay_rules);
5573 	ice_sched_replay_agg_vsi_preinit(hw);
5574 
5575 	return 0;
5576 }
5577 
5578 /**
5579  * ice_replay_vsi - replay VSI configuration
5580  * @hw: pointer to the HW struct
5581  * @vsi_handle: driver VSI handle
5582  *
5583  * Restore all VSI configuration after reset. It is required to call this
5584  * function with main VSI first.
5585  */
5586 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5587 {
5588 	int status;
5589 
5590 	if (!ice_is_vsi_valid(hw, vsi_handle))
5591 		return -EINVAL;
5592 
5593 	/* Replay pre-initialization if there is any */
5594 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5595 		status = ice_replay_pre_init(hw);
5596 		if (status)
5597 			return status;
5598 	}
5599 	/* Replay per VSI all RSS configurations */
5600 	status = ice_replay_rss_cfg(hw, vsi_handle);
5601 	if (status)
5602 		return status;
5603 	/* Replay per VSI all filters */
5604 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5605 	if (!status)
5606 		status = ice_replay_vsi_agg(hw, vsi_handle);
5607 	return status;
5608 }
5609 
5610 /**
5611  * ice_replay_post - post replay configuration cleanup
5612  * @hw: pointer to the HW struct
5613  *
5614  * Post replay cleanup.
5615  */
5616 void ice_replay_post(struct ice_hw *hw)
5617 {
5618 	/* Delete old entries from replay filter list head */
5619 	ice_rm_all_sw_replay_rule_info(hw);
5620 	ice_sched_replay_agg(hw);
5621 }
5622 
5623 /**
5624  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5625  * @hw: ptr to the hardware info
5626  * @reg: offset of 64 bit HW register to read from
5627  * @prev_stat_loaded: bool to specify if previous stats are loaded
5628  * @prev_stat: ptr to previous loaded stat value
5629  * @cur_stat: ptr to current stat value
5630  */
5631 void
5632 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5633 		  u64 *prev_stat, u64 *cur_stat)
5634 {
5635 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5636 
5637 	/* device stats are not reset at PFR, they likely will not be zeroed
5638 	 * when the driver starts. Thus, save the value from the first read
5639 	 * without adding to the statistic value so that we report stats which
5640 	 * count up from zero.
5641 	 */
5642 	if (!prev_stat_loaded) {
5643 		*prev_stat = new_data;
5644 		return;
5645 	}
5646 
5647 	/* Calculate the difference between the new and old values, and then
5648 	 * add it to the software stat value.
5649 	 */
5650 	if (new_data >= *prev_stat)
5651 		*cur_stat += new_data - *prev_stat;
5652 	else
5653 		/* to manage the potential roll-over */
5654 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5655 
5656 	/* Update the previously stored value to prepare for next read */
5657 	*prev_stat = new_data;
5658 }
5659 
5660 /**
5661  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5662  * @hw: ptr to the hardware info
5663  * @reg: offset of HW register to read from
5664  * @prev_stat_loaded: bool to specify if previous stats are loaded
5665  * @prev_stat: ptr to previous loaded stat value
5666  * @cur_stat: ptr to current stat value
5667  */
5668 void
5669 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5670 		  u64 *prev_stat, u64 *cur_stat)
5671 {
5672 	u32 new_data;
5673 
5674 	new_data = rd32(hw, reg);
5675 
5676 	/* device stats are not reset at PFR, they likely will not be zeroed
5677 	 * when the driver starts. Thus, save the value from the first read
5678 	 * without adding to the statistic value so that we report stats which
5679 	 * count up from zero.
5680 	 */
5681 	if (!prev_stat_loaded) {
5682 		*prev_stat = new_data;
5683 		return;
5684 	}
5685 
5686 	/* Calculate the difference between the new and old values, and then
5687 	 * add it to the software stat value.
5688 	 */
5689 	if (new_data >= *prev_stat)
5690 		*cur_stat += new_data - *prev_stat;
5691 	else
5692 		/* to manage the potential roll-over */
5693 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5694 
5695 	/* Update the previously stored value to prepare for next read */
5696 	*prev_stat = new_data;
5697 }
5698 
5699 /**
5700  * ice_sched_query_elem - query element information from HW
5701  * @hw: pointer to the HW struct
5702  * @node_teid: node TEID to be queried
5703  * @buf: buffer to element information
5704  *
5705  * This function queries HW element information
5706  */
5707 int
5708 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5709 		     struct ice_aqc_txsched_elem_data *buf)
5710 {
5711 	u16 buf_size, num_elem_ret = 0;
5712 	int status;
5713 
5714 	buf_size = sizeof(*buf);
5715 	memset(buf, 0, buf_size);
5716 	buf->node_teid = cpu_to_le32(node_teid);
5717 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5718 					  NULL);
5719 	if (status || num_elem_ret != 1)
5720 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5721 	return status;
5722 }
5723 
5724 /**
5725  * ice_aq_read_i2c
5726  * @hw: pointer to the hw struct
5727  * @topo_addr: topology address for a device to communicate with
5728  * @bus_addr: 7-bit I2C bus address
5729  * @addr: I2C memory address (I2C offset) with up to 16 bits
5730  * @params: I2C parameters: bit [7] - Repeated start,
5731  *			    bits [6:5] data offset size,
5732  *			    bit [4] - I2C address type,
5733  *			    bits [3:0] - data size to read (0-16 bytes)
5734  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5735  * @cd: pointer to command details structure or NULL
5736  *
5737  * Read I2C (0x06E2)
5738  */
5739 int
5740 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5741 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5742 		struct ice_sq_cd *cd)
5743 {
5744 	struct ice_aq_desc desc = { 0 };
5745 	struct ice_aqc_i2c *cmd;
5746 	u8 data_size;
5747 	int status;
5748 
5749 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5750 	cmd = &desc.params.read_write_i2c;
5751 
5752 	if (!data)
5753 		return -EINVAL;
5754 
5755 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5756 
5757 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5758 	cmd->topo_addr = topo_addr;
5759 	cmd->i2c_params = params;
5760 	cmd->i2c_addr = addr;
5761 
5762 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5763 	if (!status) {
5764 		struct ice_aqc_read_i2c_resp *resp;
5765 		u8 i;
5766 
5767 		resp = &desc.params.read_i2c_resp;
5768 		for (i = 0; i < data_size; i++) {
5769 			*data = resp->i2c_data[i];
5770 			data++;
5771 		}
5772 	}
5773 
5774 	return status;
5775 }
5776 
5777 /**
5778  * ice_aq_write_i2c
5779  * @hw: pointer to the hw struct
5780  * @topo_addr: topology address for a device to communicate with
5781  * @bus_addr: 7-bit I2C bus address
5782  * @addr: I2C memory address (I2C offset) with up to 16 bits
5783  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5784  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5785  * @cd: pointer to command details structure or NULL
5786  *
5787  * Write I2C (0x06E3)
5788  *
5789  * * Return:
5790  * * 0             - Successful write to the i2c device
5791  * * -EINVAL       - Data size greater than 4 bytes
5792  * * -EIO          - FW error
5793  */
5794 int
5795 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5796 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5797 		 struct ice_sq_cd *cd)
5798 {
5799 	struct ice_aq_desc desc = { 0 };
5800 	struct ice_aqc_i2c *cmd;
5801 	u8 data_size;
5802 
5803 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5804 	cmd = &desc.params.read_write_i2c;
5805 
5806 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5807 
5808 	/* data_size limited to 4 */
5809 	if (data_size > 4)
5810 		return -EINVAL;
5811 
5812 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5813 	cmd->topo_addr = topo_addr;
5814 	cmd->i2c_params = params;
5815 	cmd->i2c_addr = addr;
5816 
5817 	memcpy(cmd->i2c_data, data, data_size);
5818 
5819 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5820 }
5821 
5822 /**
5823  * ice_aq_set_gpio
5824  * @hw: pointer to the hw struct
5825  * @gpio_ctrl_handle: GPIO controller node handle
5826  * @pin_idx: IO Number of the GPIO that needs to be set
5827  * @value: SW provide IO value to set in the LSB
5828  * @cd: pointer to command details structure or NULL
5829  *
5830  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5831  */
5832 int
5833 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5834 		struct ice_sq_cd *cd)
5835 {
5836 	struct ice_aqc_gpio *cmd;
5837 	struct ice_aq_desc desc;
5838 
5839 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5840 	cmd = &desc.params.read_write_gpio;
5841 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5842 	cmd->gpio_num = pin_idx;
5843 	cmd->gpio_val = value ? 1 : 0;
5844 
5845 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5846 }
5847 
5848 /**
5849  * ice_aq_get_gpio
5850  * @hw: pointer to the hw struct
5851  * @gpio_ctrl_handle: GPIO controller node handle
5852  * @pin_idx: IO Number of the GPIO that needs to be set
5853  * @value: IO value read
5854  * @cd: pointer to command details structure or NULL
5855  *
5856  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5857  * the topology
5858  */
5859 int
5860 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5861 		bool *value, struct ice_sq_cd *cd)
5862 {
5863 	struct ice_aqc_gpio *cmd;
5864 	struct ice_aq_desc desc;
5865 	int status;
5866 
5867 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5868 	cmd = &desc.params.read_write_gpio;
5869 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5870 	cmd->gpio_num = pin_idx;
5871 
5872 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5873 	if (status)
5874 		return status;
5875 
5876 	*value = !!cmd->gpio_val;
5877 	return 0;
5878 }
5879 
5880 /**
5881  * ice_is_fw_api_min_ver
5882  * @hw: pointer to the hardware structure
5883  * @maj: major version
5884  * @min: minor version
5885  * @patch: patch version
5886  *
5887  * Checks if the firmware API is minimum version
5888  */
5889 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5890 {
5891 	if (hw->api_maj_ver == maj) {
5892 		if (hw->api_min_ver > min)
5893 			return true;
5894 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5895 			return true;
5896 	} else if (hw->api_maj_ver > maj) {
5897 		return true;
5898 	}
5899 
5900 	return false;
5901 }
5902 
5903 /**
5904  * ice_fw_supports_link_override
5905  * @hw: pointer to the hardware structure
5906  *
5907  * Checks if the firmware supports link override
5908  */
5909 bool ice_fw_supports_link_override(struct ice_hw *hw)
5910 {
5911 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5912 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5913 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5914 }
5915 
5916 /**
5917  * ice_get_link_default_override
5918  * @ldo: pointer to the link default override struct
5919  * @pi: pointer to the port info struct
5920  *
5921  * Gets the link default override for a port
5922  */
5923 int
5924 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5925 			      struct ice_port_info *pi)
5926 {
5927 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5928 	struct ice_hw *hw = pi->hw;
5929 	int status;
5930 
5931 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5932 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5933 	if (status) {
5934 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5935 		return status;
5936 	}
5937 
5938 	/* Each port has its own config; calculate for our port */
5939 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5940 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5941 
5942 	/* link options first */
5943 	status = ice_read_sr_word(hw, tlv_start, &buf);
5944 	if (status) {
5945 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5946 		return status;
5947 	}
5948 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5949 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5950 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5951 
5952 	/* link PHY config */
5953 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5954 	status = ice_read_sr_word(hw, offset, &buf);
5955 	if (status) {
5956 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5957 		return status;
5958 	}
5959 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5960 
5961 	/* PHY types low */
5962 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5963 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5964 		status = ice_read_sr_word(hw, (offset + i), &buf);
5965 		if (status) {
5966 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5967 			return status;
5968 		}
5969 		/* shift 16 bits at a time to fill 64 bits */
5970 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5971 	}
5972 
5973 	/* PHY types high */
5974 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5975 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5976 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5977 		status = ice_read_sr_word(hw, (offset + i), &buf);
5978 		if (status) {
5979 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5980 			return status;
5981 		}
5982 		/* shift 16 bits at a time to fill 64 bits */
5983 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5984 	}
5985 
5986 	return status;
5987 }
5988 
5989 /**
5990  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5991  * @caps: get PHY capability data
5992  */
5993 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5994 {
5995 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5996 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5997 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5998 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5999 		return true;
6000 
6001 	return false;
6002 }
6003 
6004 /**
6005  * ice_aq_set_lldp_mib - Set the LLDP MIB
6006  * @hw: pointer to the HW struct
6007  * @mib_type: Local, Remote or both Local and Remote MIBs
6008  * @buf: pointer to the caller-supplied buffer to store the MIB block
6009  * @buf_size: size of the buffer (in bytes)
6010  * @cd: pointer to command details structure or NULL
6011  *
6012  * Set the LLDP MIB. (0x0A08)
6013  */
6014 int
6015 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6016 		    struct ice_sq_cd *cd)
6017 {
6018 	struct ice_aqc_lldp_set_local_mib *cmd;
6019 	struct ice_aq_desc desc;
6020 
6021 	cmd = &desc.params.lldp_set_mib;
6022 
6023 	if (buf_size == 0 || !buf)
6024 		return -EINVAL;
6025 
6026 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6027 
6028 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6029 	desc.datalen = cpu_to_le16(buf_size);
6030 
6031 	cmd->type = mib_type;
6032 	cmd->length = cpu_to_le16(buf_size);
6033 
6034 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6035 }
6036 
6037 /**
6038  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6039  * @hw: pointer to HW struct
6040  */
6041 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6042 {
6043 	if (hw->mac_type != ICE_MAC_E810)
6044 		return false;
6045 
6046 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6047 				     ICE_FW_API_LLDP_FLTR_MIN,
6048 				     ICE_FW_API_LLDP_FLTR_PATCH);
6049 }
6050 
6051 /**
6052  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6053  * @hw: pointer to HW struct
6054  * @vsi_num: absolute HW index for VSI
6055  * @add: boolean for if adding or removing a filter
6056  */
6057 int
6058 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6059 {
6060 	struct ice_aqc_lldp_filter_ctrl *cmd;
6061 	struct ice_aq_desc desc;
6062 
6063 	cmd = &desc.params.lldp_filter_ctrl;
6064 
6065 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6066 
6067 	if (add)
6068 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6069 	else
6070 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6071 
6072 	cmd->vsi_num = cpu_to_le16(vsi_num);
6073 
6074 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6075 }
6076 
6077 /**
6078  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6079  * @hw: pointer to HW struct
6080  */
6081 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6082 {
6083 	struct ice_aq_desc desc;
6084 
6085 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6086 
6087 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6088 }
6089 
6090 /**
6091  * ice_fw_supports_report_dflt_cfg
6092  * @hw: pointer to the hardware structure
6093  *
6094  * Checks if the firmware supports report default configuration
6095  */
6096 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6097 {
6098 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6099 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6100 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6101 }
6102 
6103 /* each of the indexes into the following array match the speed of a return
6104  * value from the list of AQ returned speeds like the range:
6105  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6106  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6107  * array. The array is defined as 15 elements long because the link_speed
6108  * returned by the firmware is a 16 bit * value, but is indexed
6109  * by [fls(speed) - 1]
6110  */
6111 static const u32 ice_aq_to_link_speed[] = {
6112 	SPEED_10,	/* BIT(0) */
6113 	SPEED_100,
6114 	SPEED_1000,
6115 	SPEED_2500,
6116 	SPEED_5000,
6117 	SPEED_10000,
6118 	SPEED_20000,
6119 	SPEED_25000,
6120 	SPEED_40000,
6121 	SPEED_50000,
6122 	SPEED_100000,	/* BIT(10) */
6123 	SPEED_200000,
6124 };
6125 
6126 /**
6127  * ice_get_link_speed - get integer speed from table
6128  * @index: array index from fls(aq speed) - 1
6129  *
6130  * Returns: u32 value containing integer speed
6131  */
6132 u32 ice_get_link_speed(u16 index)
6133 {
6134 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6135 		return 0;
6136 
6137 	return ice_aq_to_link_speed[index];
6138 }
6139