xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	case ICE_DEV_ID_E830_BACKPLANE:
158 	case ICE_DEV_ID_E830_QSFP56:
159 	case ICE_DEV_ID_E830_SFP:
160 	case ICE_DEV_ID_E830_SFP_DD:
161 		hw->mac_type = ICE_MAC_E830;
162 		break;
163 	default:
164 		hw->mac_type = ICE_MAC_UNKNOWN;
165 		break;
166 	}
167 
168 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
169 	return 0;
170 }
171 
172 /**
173  * ice_is_e810
174  * @hw: pointer to the hardware structure
175  *
176  * returns true if the device is E810 based, false if not.
177  */
178 bool ice_is_e810(struct ice_hw *hw)
179 {
180 	return hw->mac_type == ICE_MAC_E810;
181 }
182 
183 /**
184  * ice_is_e810t
185  * @hw: pointer to the hardware structure
186  *
187  * returns true if the device is E810T based, false if not.
188  */
189 bool ice_is_e810t(struct ice_hw *hw)
190 {
191 	switch (hw->device_id) {
192 	case ICE_DEV_ID_E810C_SFP:
193 		switch (hw->subsystem_device_id) {
194 		case ICE_SUBDEV_ID_E810T:
195 		case ICE_SUBDEV_ID_E810T2:
196 		case ICE_SUBDEV_ID_E810T3:
197 		case ICE_SUBDEV_ID_E810T4:
198 		case ICE_SUBDEV_ID_E810T6:
199 		case ICE_SUBDEV_ID_E810T7:
200 			return true;
201 		}
202 		break;
203 	case ICE_DEV_ID_E810C_QSFP:
204 		switch (hw->subsystem_device_id) {
205 		case ICE_SUBDEV_ID_E810T2:
206 		case ICE_SUBDEV_ID_E810T3:
207 		case ICE_SUBDEV_ID_E810T5:
208 			return true;
209 		}
210 		break;
211 	default:
212 		break;
213 	}
214 
215 	return false;
216 }
217 
218 /**
219  * ice_is_e823
220  * @hw: pointer to the hardware structure
221  *
222  * returns true if the device is E823-L or E823-C based, false if not.
223  */
224 bool ice_is_e823(struct ice_hw *hw)
225 {
226 	switch (hw->device_id) {
227 	case ICE_DEV_ID_E823L_BACKPLANE:
228 	case ICE_DEV_ID_E823L_SFP:
229 	case ICE_DEV_ID_E823L_10G_BASE_T:
230 	case ICE_DEV_ID_E823L_1GBE:
231 	case ICE_DEV_ID_E823L_QSFP:
232 	case ICE_DEV_ID_E823C_BACKPLANE:
233 	case ICE_DEV_ID_E823C_QSFP:
234 	case ICE_DEV_ID_E823C_SFP:
235 	case ICE_DEV_ID_E823C_10G_BASE_T:
236 	case ICE_DEV_ID_E823C_SGMII:
237 		return true;
238 	default:
239 		return false;
240 	}
241 }
242 
243 /**
244  * ice_clear_pf_cfg - Clear PF configuration
245  * @hw: pointer to the hardware structure
246  *
247  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
248  * configuration, flow director filters, etc.).
249  */
250 int ice_clear_pf_cfg(struct ice_hw *hw)
251 {
252 	struct ice_aq_desc desc;
253 
254 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
255 
256 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
257 }
258 
259 /**
260  * ice_aq_manage_mac_read - manage MAC address read command
261  * @hw: pointer to the HW struct
262  * @buf: a virtual buffer to hold the manage MAC read response
263  * @buf_size: Size of the virtual buffer
264  * @cd: pointer to command details structure or NULL
265  *
266  * This function is used to return per PF station MAC address (0x0107).
267  * NOTE: Upon successful completion of this command, MAC address information
268  * is returned in user specified buffer. Please interpret user specified
269  * buffer as "manage_mac_read" response.
270  * Response such as various MAC addresses are stored in HW struct (port.mac)
271  * ice_discover_dev_caps is expected to be called before this function is
272  * called.
273  */
274 static int
275 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
276 		       struct ice_sq_cd *cd)
277 {
278 	struct ice_aqc_manage_mac_read_resp *resp;
279 	struct ice_aqc_manage_mac_read *cmd;
280 	struct ice_aq_desc desc;
281 	int status;
282 	u16 flags;
283 	u8 i;
284 
285 	cmd = &desc.params.mac_read;
286 
287 	if (buf_size < sizeof(*resp))
288 		return -EINVAL;
289 
290 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
291 
292 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
293 	if (status)
294 		return status;
295 
296 	resp = buf;
297 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
298 
299 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
300 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
301 		return -EIO;
302 	}
303 
304 	/* A single port can report up to two (LAN and WoL) addresses */
305 	for (i = 0; i < cmd->num_addr; i++)
306 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
307 			ether_addr_copy(hw->port_info->mac.lan_addr,
308 					resp[i].mac_addr);
309 			ether_addr_copy(hw->port_info->mac.perm_addr,
310 					resp[i].mac_addr);
311 			break;
312 		}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_aq_get_phy_caps - returns PHY capabilities
319  * @pi: port information structure
320  * @qual_mods: report qualified modules
321  * @report_mode: report mode capabilities
322  * @pcaps: structure for PHY capabilities to be filled
323  * @cd: pointer to command details structure or NULL
324  *
325  * Returns the various PHY capabilities supported on the Port (0x0600)
326  */
327 int
328 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
329 		    struct ice_aqc_get_phy_caps_data *pcaps,
330 		    struct ice_sq_cd *cd)
331 {
332 	struct ice_aqc_get_phy_caps *cmd;
333 	u16 pcaps_size = sizeof(*pcaps);
334 	struct ice_aq_desc desc;
335 	const char *prefix;
336 	struct ice_hw *hw;
337 	int status;
338 
339 	cmd = &desc.params.get_phy;
340 
341 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
342 		return -EINVAL;
343 	hw = pi->hw;
344 
345 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
346 	    !ice_fw_supports_report_dflt_cfg(hw))
347 		return -EINVAL;
348 
349 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
350 
351 	if (qual_mods)
352 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
353 
354 	cmd->param0 |= cpu_to_le16(report_mode);
355 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
356 
357 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
358 
359 	switch (report_mode) {
360 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
361 		prefix = "phy_caps_media";
362 		break;
363 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
364 		prefix = "phy_caps_no_media";
365 		break;
366 	case ICE_AQC_REPORT_ACTIVE_CFG:
367 		prefix = "phy_caps_active";
368 		break;
369 	case ICE_AQC_REPORT_DFLT_CFG:
370 		prefix = "phy_caps_default";
371 		break;
372 	default:
373 		prefix = "phy_caps_invalid";
374 	}
375 
376 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
377 			  le64_to_cpu(pcaps->phy_type_high), prefix);
378 
379 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
380 		  prefix, report_mode);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
382 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
383 		  pcaps->low_power_ctrl_an);
384 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
385 		  pcaps->eee_cap);
386 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
387 		  pcaps->eeer_value);
388 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
389 		  pcaps->link_fec_options);
390 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
391 		  prefix, pcaps->module_compliance_enforcement);
392 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
393 		  prefix, pcaps->extended_compliance_code);
394 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
395 		  pcaps->module_type[0]);
396 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
397 		  pcaps->module_type[1]);
398 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
399 		  pcaps->module_type[2]);
400 
401 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
402 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
403 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
404 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
405 		       sizeof(pi->phy.link_info.module_type));
406 	}
407 
408 	return status;
409 }
410 
411 /**
412  * ice_aq_get_link_topo_handle - get link topology node return status
413  * @pi: port information structure
414  * @node_type: requested node type
415  * @cd: pointer to command details structure or NULL
416  *
417  * Get link topology node return status for specified node type (0x06E0)
418  *
419  * Node type cage can be used to determine if cage is present. If AQC
420  * returns error (ENOENT), then no cage present. If no cage present, then
421  * connection type is backplane or BASE-T.
422  */
423 static int
424 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
425 			    struct ice_sq_cd *cd)
426 {
427 	struct ice_aqc_get_link_topo *cmd;
428 	struct ice_aq_desc desc;
429 
430 	cmd = &desc.params.get_link_topo;
431 
432 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
433 
434 	cmd->addr.topo_params.node_type_ctx =
435 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
436 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
437 
438 	/* set node type */
439 	cmd->addr.topo_params.node_type_ctx |=
440 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
441 
442 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
443 }
444 
445 /**
446  * ice_aq_get_netlist_node
447  * @hw: pointer to the hw struct
448  * @cmd: get_link_topo AQ structure
449  * @node_part_number: output node part number if node found
450  * @node_handle: output node handle parameter if node found
451  *
452  * Get netlist node handle.
453  */
454 int
455 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
456 			u8 *node_part_number, u16 *node_handle)
457 {
458 	struct ice_aq_desc desc;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 	desc.params.get_link_topo = *cmd;
462 
463 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
464 		return -EINTR;
465 
466 	if (node_handle)
467 		*node_handle =
468 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
469 	if (node_part_number)
470 		*node_part_number = desc.params.get_link_topo.node_part_num;
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_find_netlist_node
477  * @hw: pointer to the hw struct
478  * @node_type_ctx: type of netlist node to look for
479  * @node_part_number: node part number to look for
480  * @node_handle: output parameter if node found - optional
481  *
482  * Scan the netlist for a node handle of the given node type and part number.
483  *
484  * If node_handle is non-NULL it will be modified on function exit. It is only
485  * valid if the function returns zero, and should be ignored on any non-zero
486  * return value.
487  *
488  * Returns: 0 if the node is found, -ENOENT if no handle was found, and
489  * a negative error code on failure to access the AQ.
490  */
491 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
492 				 u8 node_part_number, u16 *node_handle)
493 {
494 	u8 idx;
495 
496 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
497 		struct ice_aqc_get_link_topo cmd = {};
498 		u8 rec_node_part_number;
499 		int status;
500 
501 		cmd.addr.topo_params.node_type_ctx =
502 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
503 				   node_type_ctx);
504 		cmd.addr.topo_params.index = idx;
505 
506 		status = ice_aq_get_netlist_node(hw, &cmd,
507 						 &rec_node_part_number,
508 						 node_handle);
509 		if (status)
510 			return status;
511 
512 		if (rec_node_part_number == node_part_number)
513 			return 0;
514 	}
515 
516 	return -ENOENT;
517 }
518 
519 /**
520  * ice_is_media_cage_present
521  * @pi: port information structure
522  *
523  * Returns true if media cage is present, else false. If no cage, then
524  * media type is backplane or BASE-T.
525  */
526 static bool ice_is_media_cage_present(struct ice_port_info *pi)
527 {
528 	/* Node type cage can be used to determine if cage is present. If AQC
529 	 * returns error (ENOENT), then no cage present. If no cage present then
530 	 * connection type is backplane or BASE-T.
531 	 */
532 	return !ice_aq_get_link_topo_handle(pi,
533 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
534 					    NULL);
535 }
536 
537 /**
538  * ice_get_media_type - Gets media type
539  * @pi: port information structure
540  */
541 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
542 {
543 	struct ice_link_status *hw_link_info;
544 
545 	if (!pi)
546 		return ICE_MEDIA_UNKNOWN;
547 
548 	hw_link_info = &pi->phy.link_info;
549 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
550 		/* If more than one media type is selected, report unknown */
551 		return ICE_MEDIA_UNKNOWN;
552 
553 	if (hw_link_info->phy_type_low) {
554 		/* 1G SGMII is a special case where some DA cable PHYs
555 		 * may show this as an option when it really shouldn't
556 		 * be since SGMII is meant to be between a MAC and a PHY
557 		 * in a backplane. Try to detect this case and handle it
558 		 */
559 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
560 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
561 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
562 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
563 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
564 			return ICE_MEDIA_DA;
565 
566 		switch (hw_link_info->phy_type_low) {
567 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
568 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
569 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
570 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
571 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
572 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
573 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
574 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
575 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
576 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
577 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
578 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
579 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
580 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
581 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
582 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
583 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
584 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
585 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
586 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
587 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
588 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
589 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
590 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
591 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
592 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
593 			return ICE_MEDIA_FIBER;
594 		case ICE_PHY_TYPE_LOW_100BASE_TX:
595 		case ICE_PHY_TYPE_LOW_1000BASE_T:
596 		case ICE_PHY_TYPE_LOW_2500BASE_T:
597 		case ICE_PHY_TYPE_LOW_5GBASE_T:
598 		case ICE_PHY_TYPE_LOW_10GBASE_T:
599 		case ICE_PHY_TYPE_LOW_25GBASE_T:
600 			return ICE_MEDIA_BASET;
601 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
602 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
603 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
604 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
605 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
606 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
607 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
608 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
609 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
610 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
611 			return ICE_MEDIA_DA;
612 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
613 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
614 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
615 		case ICE_PHY_TYPE_LOW_50G_AUI2:
616 		case ICE_PHY_TYPE_LOW_50G_AUI1:
617 		case ICE_PHY_TYPE_LOW_100G_AUI4:
618 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
619 			if (ice_is_media_cage_present(pi))
620 				return ICE_MEDIA_DA;
621 			fallthrough;
622 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
623 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
624 		case ICE_PHY_TYPE_LOW_2500BASE_X:
625 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
626 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
627 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
628 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
629 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
630 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
631 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
632 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
633 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
634 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
635 			return ICE_MEDIA_BACKPLANE;
636 		}
637 	} else {
638 		switch (hw_link_info->phy_type_high) {
639 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
640 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
641 			if (ice_is_media_cage_present(pi))
642 				return ICE_MEDIA_DA;
643 			fallthrough;
644 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
645 			return ICE_MEDIA_BACKPLANE;
646 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
647 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
648 			return ICE_MEDIA_FIBER;
649 		}
650 	}
651 	return ICE_MEDIA_UNKNOWN;
652 }
653 
654 /**
655  * ice_get_link_status_datalen
656  * @hw: pointer to the HW struct
657  *
658  * Returns datalength for the Get Link Status AQ command, which is bigger for
659  * newer adapter families handled by ice driver.
660  */
661 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
662 {
663 	switch (hw->mac_type) {
664 	case ICE_MAC_E830:
665 		return ICE_AQC_LS_DATA_SIZE_V2;
666 	case ICE_MAC_E810:
667 	default:
668 		return ICE_AQC_LS_DATA_SIZE_V1;
669 	}
670 }
671 
672 /**
673  * ice_aq_get_link_info
674  * @pi: port information structure
675  * @ena_lse: enable/disable LinkStatusEvent reporting
676  * @link: pointer to link status structure - optional
677  * @cd: pointer to command details structure or NULL
678  *
679  * Get Link Status (0x607). Returns the link status of the adapter.
680  */
681 int
682 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
683 		     struct ice_link_status *link, struct ice_sq_cd *cd)
684 {
685 	struct ice_aqc_get_link_status_data link_data = { 0 };
686 	struct ice_aqc_get_link_status *resp;
687 	struct ice_link_status *li_old, *li;
688 	enum ice_media_type *hw_media_type;
689 	struct ice_fc_info *hw_fc_info;
690 	bool tx_pause, rx_pause;
691 	struct ice_aq_desc desc;
692 	struct ice_hw *hw;
693 	u16 cmd_flags;
694 	int status;
695 
696 	if (!pi)
697 		return -EINVAL;
698 	hw = pi->hw;
699 	li_old = &pi->phy.link_info_old;
700 	hw_media_type = &pi->phy.media_type;
701 	li = &pi->phy.link_info;
702 	hw_fc_info = &pi->fc;
703 
704 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
705 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
706 	resp = &desc.params.get_link_status;
707 	resp->cmd_flags = cpu_to_le16(cmd_flags);
708 	resp->lport_num = pi->lport;
709 
710 	status = ice_aq_send_cmd(hw, &desc, &link_data,
711 				 ice_get_link_status_datalen(hw), cd);
712 	if (status)
713 		return status;
714 
715 	/* save off old link status information */
716 	*li_old = *li;
717 
718 	/* update current link status information */
719 	li->link_speed = le16_to_cpu(link_data.link_speed);
720 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
721 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
722 	*hw_media_type = ice_get_media_type(pi);
723 	li->link_info = link_data.link_info;
724 	li->link_cfg_err = link_data.link_cfg_err;
725 	li->an_info = link_data.an_info;
726 	li->ext_info = link_data.ext_info;
727 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
728 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
729 	li->topo_media_conflict = link_data.topo_media_conflict;
730 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
731 				      ICE_AQ_CFG_PACING_TYPE_M);
732 
733 	/* update fc info */
734 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
735 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
736 	if (tx_pause && rx_pause)
737 		hw_fc_info->current_mode = ICE_FC_FULL;
738 	else if (tx_pause)
739 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
740 	else if (rx_pause)
741 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
742 	else
743 		hw_fc_info->current_mode = ICE_FC_NONE;
744 
745 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
746 
747 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
748 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
749 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
750 		  (unsigned long long)li->phy_type_low);
751 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
752 		  (unsigned long long)li->phy_type_high);
753 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
754 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
755 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
756 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
757 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
758 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
759 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
760 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
761 		  li->max_frame_size);
762 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
763 
764 	/* save link status information */
765 	if (link)
766 		*link = *li;
767 
768 	/* flag cleared so calling functions don't call AQ again */
769 	pi->phy.get_link_info = false;
770 
771 	return 0;
772 }
773 
774 /**
775  * ice_fill_tx_timer_and_fc_thresh
776  * @hw: pointer to the HW struct
777  * @cmd: pointer to MAC cfg structure
778  *
779  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
780  * descriptor
781  */
782 static void
783 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
784 				struct ice_aqc_set_mac_cfg *cmd)
785 {
786 	u32 val, fc_thres_m;
787 
788 	/* We read back the transmit timer and FC threshold value of
789 	 * LFC. Thus, we will use index =
790 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
791 	 *
792 	 * Also, because we are operating on transmit timer and FC
793 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
794 	 */
795 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
796 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
797 
798 	if (hw->mac_type == ICE_MAC_E830) {
799 		/* Retrieve the transmit timer */
800 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
801 		cmd->tx_tmr_value =
802 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
803 
804 		/* Retrieve the fc threshold */
805 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
806 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
807 	} else {
808 		/* Retrieve the transmit timer */
809 		val = rd32(hw,
810 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
811 		cmd->tx_tmr_value =
812 			le16_encode_bits(val,
813 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
814 
815 		/* Retrieve the fc threshold */
816 		val = rd32(hw,
817 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
818 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
819 	}
820 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
821 }
822 
823 /**
824  * ice_aq_set_mac_cfg
825  * @hw: pointer to the HW struct
826  * @max_frame_size: Maximum Frame Size to be supported
827  * @cd: pointer to command details structure or NULL
828  *
829  * Set MAC configuration (0x0603)
830  */
831 int
832 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
833 {
834 	struct ice_aqc_set_mac_cfg *cmd;
835 	struct ice_aq_desc desc;
836 
837 	cmd = &desc.params.set_mac_cfg;
838 
839 	if (max_frame_size == 0)
840 		return -EINVAL;
841 
842 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
843 
844 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
845 
846 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
847 
848 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
849 }
850 
851 /**
852  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
853  * @hw: pointer to the HW struct
854  */
855 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
856 {
857 	struct ice_switch_info *sw;
858 	int status;
859 
860 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
861 				       sizeof(*hw->switch_info), GFP_KERNEL);
862 	sw = hw->switch_info;
863 
864 	if (!sw)
865 		return -ENOMEM;
866 
867 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
868 	sw->prof_res_bm_init = 0;
869 
870 	status = ice_init_def_sw_recp(hw);
871 	if (status) {
872 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
873 		return status;
874 	}
875 	return 0;
876 }
877 
878 /**
879  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
880  * @hw: pointer to the HW struct
881  */
882 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
883 {
884 	struct ice_switch_info *sw = hw->switch_info;
885 	struct ice_vsi_list_map_info *v_pos_map;
886 	struct ice_vsi_list_map_info *v_tmp_map;
887 	struct ice_sw_recipe *recps;
888 	u8 i;
889 
890 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
891 				 list_entry) {
892 		list_del(&v_pos_map->list_entry);
893 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
894 	}
895 	recps = sw->recp_list;
896 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
897 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
898 
899 		recps[i].root_rid = i;
900 		list_for_each_entry_safe(rg_entry, tmprg_entry,
901 					 &recps[i].rg_list, l_entry) {
902 			list_del(&rg_entry->l_entry);
903 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
904 		}
905 
906 		if (recps[i].adv_rule) {
907 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
908 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
909 
910 			mutex_destroy(&recps[i].filt_rule_lock);
911 			list_for_each_entry_safe(lst_itr, tmp_entry,
912 						 &recps[i].filt_rules,
913 						 list_entry) {
914 				list_del(&lst_itr->list_entry);
915 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
916 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
917 			}
918 		} else {
919 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
920 
921 			mutex_destroy(&recps[i].filt_rule_lock);
922 			list_for_each_entry_safe(lst_itr, tmp_entry,
923 						 &recps[i].filt_rules,
924 						 list_entry) {
925 				list_del(&lst_itr->list_entry);
926 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
927 			}
928 		}
929 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
930 	}
931 	ice_rm_all_sw_replay_rule_info(hw);
932 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
933 	devm_kfree(ice_hw_to_dev(hw), sw);
934 }
935 
936 /**
937  * ice_get_itr_intrl_gran
938  * @hw: pointer to the HW struct
939  *
940  * Determines the ITR/INTRL granularities based on the maximum aggregate
941  * bandwidth according to the device's configuration during power-on.
942  */
943 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
944 {
945 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
946 				  rd32(hw, GL_PWR_MODE_CTL));
947 
948 	switch (max_agg_bw) {
949 	case ICE_MAX_AGG_BW_200G:
950 	case ICE_MAX_AGG_BW_100G:
951 	case ICE_MAX_AGG_BW_50G:
952 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
953 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
954 		break;
955 	case ICE_MAX_AGG_BW_25G:
956 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
957 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
958 		break;
959 	}
960 }
961 
962 /**
963  * ice_init_hw - main hardware initialization routine
964  * @hw: pointer to the hardware structure
965  */
966 int ice_init_hw(struct ice_hw *hw)
967 {
968 	struct ice_aqc_get_phy_caps_data *pcaps;
969 	u16 mac_buf_len;
970 	void *mac_buf;
971 	int status;
972 
973 	/* Set MAC type based on DeviceID */
974 	status = ice_set_mac_type(hw);
975 	if (status)
976 		return status;
977 
978 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
979 
980 	status = ice_reset(hw, ICE_RESET_PFR);
981 	if (status)
982 		return status;
983 
984 	ice_get_itr_intrl_gran(hw);
985 
986 	status = ice_create_all_ctrlq(hw);
987 	if (status)
988 		goto err_unroll_cqinit;
989 
990 	status = ice_fwlog_init(hw);
991 	if (status)
992 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
993 			  status);
994 
995 	status = ice_clear_pf_cfg(hw);
996 	if (status)
997 		goto err_unroll_cqinit;
998 
999 	/* Set bit to enable Flow Director filters */
1000 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1001 	INIT_LIST_HEAD(&hw->fdir_list_head);
1002 
1003 	ice_clear_pxe_mode(hw);
1004 
1005 	status = ice_init_nvm(hw);
1006 	if (status)
1007 		goto err_unroll_cqinit;
1008 
1009 	status = ice_get_caps(hw);
1010 	if (status)
1011 		goto err_unroll_cqinit;
1012 
1013 	if (!hw->port_info)
1014 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1015 					     sizeof(*hw->port_info),
1016 					     GFP_KERNEL);
1017 	if (!hw->port_info) {
1018 		status = -ENOMEM;
1019 		goto err_unroll_cqinit;
1020 	}
1021 
1022 	/* set the back pointer to HW */
1023 	hw->port_info->hw = hw;
1024 
1025 	/* Initialize port_info struct with switch configuration data */
1026 	status = ice_get_initial_sw_cfg(hw);
1027 	if (status)
1028 		goto err_unroll_alloc;
1029 
1030 	hw->evb_veb = true;
1031 
1032 	/* init xarray for identifying scheduling nodes uniquely */
1033 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1034 
1035 	/* Query the allocated resources for Tx scheduler */
1036 	status = ice_sched_query_res_alloc(hw);
1037 	if (status) {
1038 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1039 		goto err_unroll_alloc;
1040 	}
1041 	ice_sched_get_psm_clk_freq(hw);
1042 
1043 	/* Initialize port_info struct with scheduler data */
1044 	status = ice_sched_init_port(hw->port_info);
1045 	if (status)
1046 		goto err_unroll_sched;
1047 
1048 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1049 	if (!pcaps) {
1050 		status = -ENOMEM;
1051 		goto err_unroll_sched;
1052 	}
1053 
1054 	/* Initialize port_info struct with PHY capabilities */
1055 	status = ice_aq_get_phy_caps(hw->port_info, false,
1056 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1057 				     NULL);
1058 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1059 	if (status)
1060 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1061 			 status);
1062 
1063 	/* Initialize port_info struct with link information */
1064 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1065 	if (status)
1066 		goto err_unroll_sched;
1067 
1068 	/* need a valid SW entry point to build a Tx tree */
1069 	if (!hw->sw_entry_point_layer) {
1070 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1071 		status = -EIO;
1072 		goto err_unroll_sched;
1073 	}
1074 	INIT_LIST_HEAD(&hw->agg_list);
1075 	/* Initialize max burst size */
1076 	if (!hw->max_burst_size)
1077 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1078 
1079 	status = ice_init_fltr_mgmt_struct(hw);
1080 	if (status)
1081 		goto err_unroll_sched;
1082 
1083 	/* Get MAC information */
1084 	/* A single port can report up to two (LAN and WoL) addresses */
1085 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1086 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1087 			       GFP_KERNEL);
1088 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1089 
1090 	if (!mac_buf) {
1091 		status = -ENOMEM;
1092 		goto err_unroll_fltr_mgmt_struct;
1093 	}
1094 
1095 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1096 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1097 
1098 	if (status)
1099 		goto err_unroll_fltr_mgmt_struct;
1100 	/* enable jumbo frame support at MAC level */
1101 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1102 	if (status)
1103 		goto err_unroll_fltr_mgmt_struct;
1104 	/* Obtain counter base index which would be used by flow director */
1105 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1106 	if (status)
1107 		goto err_unroll_fltr_mgmt_struct;
1108 	status = ice_init_hw_tbls(hw);
1109 	if (status)
1110 		goto err_unroll_fltr_mgmt_struct;
1111 	mutex_init(&hw->tnl_lock);
1112 	return 0;
1113 
1114 err_unroll_fltr_mgmt_struct:
1115 	ice_cleanup_fltr_mgmt_struct(hw);
1116 err_unroll_sched:
1117 	ice_sched_cleanup_all(hw);
1118 err_unroll_alloc:
1119 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1120 err_unroll_cqinit:
1121 	ice_destroy_all_ctrlq(hw);
1122 	return status;
1123 }
1124 
1125 /**
1126  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1127  * @hw: pointer to the hardware structure
1128  *
1129  * This should be called only during nominal operation, not as a result of
1130  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1131  * applicable initializations if it fails for any reason.
1132  */
1133 void ice_deinit_hw(struct ice_hw *hw)
1134 {
1135 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1136 	ice_cleanup_fltr_mgmt_struct(hw);
1137 
1138 	ice_sched_cleanup_all(hw);
1139 	ice_sched_clear_agg(hw);
1140 	ice_free_seg(hw);
1141 	ice_free_hw_tbls(hw);
1142 	mutex_destroy(&hw->tnl_lock);
1143 
1144 	ice_fwlog_deinit(hw);
1145 	ice_destroy_all_ctrlq(hw);
1146 
1147 	/* Clear VSI contexts if not already cleared */
1148 	ice_clear_all_vsi_ctx(hw);
1149 }
1150 
1151 /**
1152  * ice_check_reset - Check to see if a global reset is complete
1153  * @hw: pointer to the hardware structure
1154  */
1155 int ice_check_reset(struct ice_hw *hw)
1156 {
1157 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1158 
1159 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1160 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1161 	 * Add 1sec for outstanding AQ commands that can take a long time.
1162 	 */
1163 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1164 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1165 
1166 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1167 		mdelay(100);
1168 		reg = rd32(hw, GLGEN_RSTAT);
1169 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1170 			break;
1171 	}
1172 
1173 	if (cnt == grst_timeout) {
1174 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1175 		return -EIO;
1176 	}
1177 
1178 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1179 				 GLNVM_ULD_PCIER_DONE_1_M |\
1180 				 GLNVM_ULD_CORER_DONE_M |\
1181 				 GLNVM_ULD_GLOBR_DONE_M |\
1182 				 GLNVM_ULD_POR_DONE_M |\
1183 				 GLNVM_ULD_POR_DONE_1_M |\
1184 				 GLNVM_ULD_PCIER_DONE_2_M)
1185 
1186 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1187 					  GLNVM_ULD_PE_DONE_M : 0);
1188 
1189 	/* Device is Active; check Global Reset processes are done */
1190 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1191 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1192 		if (reg == uld_mask) {
1193 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1194 			break;
1195 		}
1196 		mdelay(10);
1197 	}
1198 
1199 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1200 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1201 			  reg);
1202 		return -EIO;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 /**
1209  * ice_pf_reset - Reset the PF
1210  * @hw: pointer to the hardware structure
1211  *
1212  * If a global reset has been triggered, this function checks
1213  * for its completion and then issues the PF reset
1214  */
1215 static int ice_pf_reset(struct ice_hw *hw)
1216 {
1217 	u32 cnt, reg;
1218 
1219 	/* If at function entry a global reset was already in progress, i.e.
1220 	 * state is not 'device active' or any of the reset done bits are not
1221 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1222 	 * global reset is done.
1223 	 */
1224 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1225 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1226 		/* poll on global reset currently in progress until done */
1227 		if (ice_check_reset(hw))
1228 			return -EIO;
1229 
1230 		return 0;
1231 	}
1232 
1233 	/* Reset the PF */
1234 	reg = rd32(hw, PFGEN_CTRL);
1235 
1236 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1237 
1238 	/* Wait for the PFR to complete. The wait time is the global config lock
1239 	 * timeout plus the PFR timeout which will account for a possible reset
1240 	 * that is occurring during a download package operation.
1241 	 */
1242 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1243 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1244 		reg = rd32(hw, PFGEN_CTRL);
1245 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1246 			break;
1247 
1248 		mdelay(1);
1249 	}
1250 
1251 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1252 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1253 		return -EIO;
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  * ice_reset - Perform different types of reset
1261  * @hw: pointer to the hardware structure
1262  * @req: reset request
1263  *
1264  * This function triggers a reset as specified by the req parameter.
1265  *
1266  * Note:
1267  * If anything other than a PF reset is triggered, PXE mode is restored.
1268  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1269  * interface has been restored in the rebuild flow.
1270  */
1271 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1272 {
1273 	u32 val = 0;
1274 
1275 	switch (req) {
1276 	case ICE_RESET_PFR:
1277 		return ice_pf_reset(hw);
1278 	case ICE_RESET_CORER:
1279 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1280 		val = GLGEN_RTRIG_CORER_M;
1281 		break;
1282 	case ICE_RESET_GLOBR:
1283 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1284 		val = GLGEN_RTRIG_GLOBR_M;
1285 		break;
1286 	default:
1287 		return -EINVAL;
1288 	}
1289 
1290 	val |= rd32(hw, GLGEN_RTRIG);
1291 	wr32(hw, GLGEN_RTRIG, val);
1292 	ice_flush(hw);
1293 
1294 	/* wait for the FW to be ready */
1295 	return ice_check_reset(hw);
1296 }
1297 
1298 /**
1299  * ice_copy_rxq_ctx_to_hw
1300  * @hw: pointer to the hardware structure
1301  * @ice_rxq_ctx: pointer to the rxq context
1302  * @rxq_index: the index of the Rx queue
1303  *
1304  * Copies rxq context from dense structure to HW register space
1305  */
1306 static int
1307 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1308 {
1309 	u8 i;
1310 
1311 	if (!ice_rxq_ctx)
1312 		return -EINVAL;
1313 
1314 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1315 		return -EINVAL;
1316 
1317 	/* Copy each dword separately to HW */
1318 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1319 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1320 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1321 
1322 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1323 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /* LAN Rx Queue Context */
1330 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1331 	/* Field		Width	LSB */
1332 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1333 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1334 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1335 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1336 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1337 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1338 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1339 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1340 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1341 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1342 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1343 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1344 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1345 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1346 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1347 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1348 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1349 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1350 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1351 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1352 	{ 0 }
1353 };
1354 
1355 /**
1356  * ice_write_rxq_ctx
1357  * @hw: pointer to the hardware structure
1358  * @rlan_ctx: pointer to the rxq context
1359  * @rxq_index: the index of the Rx queue
1360  *
1361  * Converts rxq context from sparse to dense structure and then writes
1362  * it to HW register space and enables the hardware to prefetch descriptors
1363  * instead of only fetching them on demand
1364  */
1365 int
1366 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1367 		  u32 rxq_index)
1368 {
1369 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1370 
1371 	if (!rlan_ctx)
1372 		return -EINVAL;
1373 
1374 	rlan_ctx->prefena = 1;
1375 
1376 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1377 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1378 }
1379 
1380 /* LAN Tx Queue Context */
1381 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1382 				    /* Field			Width	LSB */
1383 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1384 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1385 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1386 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1387 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1388 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1389 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1390 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1391 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1392 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1393 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1394 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1395 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1396 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1397 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1398 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1399 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1400 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1401 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1402 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1403 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1404 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1405 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1406 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1407 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1408 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1409 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1410 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1411 	{ 0 }
1412 };
1413 
1414 /* Sideband Queue command wrappers */
1415 
1416 /**
1417  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1418  * @hw: pointer to the HW struct
1419  * @desc: descriptor describing the command
1420  * @buf: buffer to use for indirect commands (NULL for direct commands)
1421  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1422  * @cd: pointer to command details structure
1423  */
1424 static int
1425 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1426 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1427 {
1428 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1429 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1430 }
1431 
1432 /**
1433  * ice_sbq_rw_reg - Fill Sideband Queue command
1434  * @hw: pointer to the HW struct
1435  * @in: message info to be filled in descriptor
1436  */
1437 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1438 {
1439 	struct ice_sbq_cmd_desc desc = {0};
1440 	struct ice_sbq_msg_req msg = {0};
1441 	u16 msg_len;
1442 	int status;
1443 
1444 	msg_len = sizeof(msg);
1445 
1446 	msg.dest_dev = in->dest_dev;
1447 	msg.opcode = in->opcode;
1448 	msg.flags = ICE_SBQ_MSG_FLAGS;
1449 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1450 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1451 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1452 
1453 	if (in->opcode)
1454 		msg.data = cpu_to_le32(in->data);
1455 	else
1456 		/* data read comes back in completion, so shorten the struct by
1457 		 * sizeof(msg.data)
1458 		 */
1459 		msg_len -= sizeof(msg.data);
1460 
1461 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1462 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1463 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1464 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1465 	if (!status && !in->opcode)
1466 		in->data = le32_to_cpu
1467 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1468 	return status;
1469 }
1470 
1471 /* FW Admin Queue command wrappers */
1472 
1473 /* Software lock/mutex that is meant to be held while the Global Config Lock
1474  * in firmware is acquired by the software to prevent most (but not all) types
1475  * of AQ commands from being sent to FW
1476  */
1477 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1478 
1479 /**
1480  * ice_should_retry_sq_send_cmd
1481  * @opcode: AQ opcode
1482  *
1483  * Decide if we should retry the send command routine for the ATQ, depending
1484  * on the opcode.
1485  */
1486 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1487 {
1488 	switch (opcode) {
1489 	case ice_aqc_opc_get_link_topo:
1490 	case ice_aqc_opc_lldp_stop:
1491 	case ice_aqc_opc_lldp_start:
1492 	case ice_aqc_opc_lldp_filter_ctrl:
1493 		return true;
1494 	}
1495 
1496 	return false;
1497 }
1498 
1499 /**
1500  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1501  * @hw: pointer to the HW struct
1502  * @cq: pointer to the specific Control queue
1503  * @desc: prefilled descriptor describing the command
1504  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1505  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1506  * @cd: pointer to command details structure
1507  *
1508  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1509  * Queue if the EBUSY AQ error is returned.
1510  */
1511 static int
1512 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1513 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1514 		      struct ice_sq_cd *cd)
1515 {
1516 	struct ice_aq_desc desc_cpy;
1517 	bool is_cmd_for_retry;
1518 	u8 idx = 0;
1519 	u16 opcode;
1520 	int status;
1521 
1522 	opcode = le16_to_cpu(desc->opcode);
1523 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1524 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1525 
1526 	if (is_cmd_for_retry) {
1527 		/* All retryable cmds are direct, without buf. */
1528 		WARN_ON(buf);
1529 
1530 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1531 	}
1532 
1533 	do {
1534 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1535 
1536 		if (!is_cmd_for_retry || !status ||
1537 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1538 			break;
1539 
1540 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1541 
1542 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1543 
1544 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1545 
1546 	return status;
1547 }
1548 
1549 /**
1550  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1551  * @hw: pointer to the HW struct
1552  * @desc: descriptor describing the command
1553  * @buf: buffer to use for indirect commands (NULL for direct commands)
1554  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1555  * @cd: pointer to command details structure
1556  *
1557  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1558  */
1559 int
1560 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1561 		u16 buf_size, struct ice_sq_cd *cd)
1562 {
1563 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1564 	bool lock_acquired = false;
1565 	int status;
1566 
1567 	/* When a package download is in process (i.e. when the firmware's
1568 	 * Global Configuration Lock resource is held), only the Download
1569 	 * Package, Get Version, Get Package Info List, Upload Section,
1570 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1571 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1572 	 * Recipes to Profile Association, and Release Resource (with resource
1573 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1574 	 * must block until the package download completes and the Global Config
1575 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1576 	 */
1577 	switch (le16_to_cpu(desc->opcode)) {
1578 	case ice_aqc_opc_download_pkg:
1579 	case ice_aqc_opc_get_pkg_info_list:
1580 	case ice_aqc_opc_get_ver:
1581 	case ice_aqc_opc_upload_section:
1582 	case ice_aqc_opc_update_pkg:
1583 	case ice_aqc_opc_set_port_params:
1584 	case ice_aqc_opc_get_vlan_mode_parameters:
1585 	case ice_aqc_opc_set_vlan_mode_parameters:
1586 	case ice_aqc_opc_add_recipe:
1587 	case ice_aqc_opc_recipe_to_profile:
1588 	case ice_aqc_opc_get_recipe:
1589 	case ice_aqc_opc_get_recipe_to_profile:
1590 		break;
1591 	case ice_aqc_opc_release_res:
1592 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1593 			break;
1594 		fallthrough;
1595 	default:
1596 		mutex_lock(&ice_global_cfg_lock_sw);
1597 		lock_acquired = true;
1598 		break;
1599 	}
1600 
1601 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1602 	if (lock_acquired)
1603 		mutex_unlock(&ice_global_cfg_lock_sw);
1604 
1605 	return status;
1606 }
1607 
1608 /**
1609  * ice_aq_get_fw_ver
1610  * @hw: pointer to the HW struct
1611  * @cd: pointer to command details structure or NULL
1612  *
1613  * Get the firmware version (0x0001) from the admin queue commands
1614  */
1615 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1616 {
1617 	struct ice_aqc_get_ver *resp;
1618 	struct ice_aq_desc desc;
1619 	int status;
1620 
1621 	resp = &desc.params.get_ver;
1622 
1623 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1624 
1625 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1626 
1627 	if (!status) {
1628 		hw->fw_branch = resp->fw_branch;
1629 		hw->fw_maj_ver = resp->fw_major;
1630 		hw->fw_min_ver = resp->fw_minor;
1631 		hw->fw_patch = resp->fw_patch;
1632 		hw->fw_build = le32_to_cpu(resp->fw_build);
1633 		hw->api_branch = resp->api_branch;
1634 		hw->api_maj_ver = resp->api_major;
1635 		hw->api_min_ver = resp->api_minor;
1636 		hw->api_patch = resp->api_patch;
1637 	}
1638 
1639 	return status;
1640 }
1641 
1642 /**
1643  * ice_aq_send_driver_ver
1644  * @hw: pointer to the HW struct
1645  * @dv: driver's major, minor version
1646  * @cd: pointer to command details structure or NULL
1647  *
1648  * Send the driver version (0x0002) to the firmware
1649  */
1650 int
1651 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1652 		       struct ice_sq_cd *cd)
1653 {
1654 	struct ice_aqc_driver_ver *cmd;
1655 	struct ice_aq_desc desc;
1656 	u16 len;
1657 
1658 	cmd = &desc.params.driver_ver;
1659 
1660 	if (!dv)
1661 		return -EINVAL;
1662 
1663 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1664 
1665 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1666 	cmd->major_ver = dv->major_ver;
1667 	cmd->minor_ver = dv->minor_ver;
1668 	cmd->build_ver = dv->build_ver;
1669 	cmd->subbuild_ver = dv->subbuild_ver;
1670 
1671 	len = 0;
1672 	while (len < sizeof(dv->driver_string) &&
1673 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1674 		len++;
1675 
1676 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1677 }
1678 
1679 /**
1680  * ice_aq_q_shutdown
1681  * @hw: pointer to the HW struct
1682  * @unloading: is the driver unloading itself
1683  *
1684  * Tell the Firmware that we're shutting down the AdminQ and whether
1685  * or not the driver is unloading as well (0x0003).
1686  */
1687 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1688 {
1689 	struct ice_aqc_q_shutdown *cmd;
1690 	struct ice_aq_desc desc;
1691 
1692 	cmd = &desc.params.q_shutdown;
1693 
1694 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1695 
1696 	if (unloading)
1697 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1698 
1699 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1700 }
1701 
1702 /**
1703  * ice_aq_req_res
1704  * @hw: pointer to the HW struct
1705  * @res: resource ID
1706  * @access: access type
1707  * @sdp_number: resource number
1708  * @timeout: the maximum time in ms that the driver may hold the resource
1709  * @cd: pointer to command details structure or NULL
1710  *
1711  * Requests common resource using the admin queue commands (0x0008).
1712  * When attempting to acquire the Global Config Lock, the driver can
1713  * learn of three states:
1714  *  1) 0 -         acquired lock, and can perform download package
1715  *  2) -EIO -      did not get lock, driver should fail to load
1716  *  3) -EALREADY - did not get lock, but another driver has
1717  *                 successfully downloaded the package; the driver does
1718  *                 not have to download the package and can continue
1719  *                 loading
1720  *
1721  * Note that if the caller is in an acquire lock, perform action, release lock
1722  * phase of operation, it is possible that the FW may detect a timeout and issue
1723  * a CORER. In this case, the driver will receive a CORER interrupt and will
1724  * have to determine its cause. The calling thread that is handling this flow
1725  * will likely get an error propagated back to it indicating the Download
1726  * Package, Update Package or the Release Resource AQ commands timed out.
1727  */
1728 static int
1729 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1730 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1731 	       struct ice_sq_cd *cd)
1732 {
1733 	struct ice_aqc_req_res *cmd_resp;
1734 	struct ice_aq_desc desc;
1735 	int status;
1736 
1737 	cmd_resp = &desc.params.res_owner;
1738 
1739 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1740 
1741 	cmd_resp->res_id = cpu_to_le16(res);
1742 	cmd_resp->access_type = cpu_to_le16(access);
1743 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1744 	cmd_resp->timeout = cpu_to_le32(*timeout);
1745 	*timeout = 0;
1746 
1747 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1748 
1749 	/* The completion specifies the maximum time in ms that the driver
1750 	 * may hold the resource in the Timeout field.
1751 	 */
1752 
1753 	/* Global config lock response utilizes an additional status field.
1754 	 *
1755 	 * If the Global config lock resource is held by some other driver, the
1756 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1757 	 * and the timeout field indicates the maximum time the current owner
1758 	 * of the resource has to free it.
1759 	 */
1760 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1761 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1762 			*timeout = le32_to_cpu(cmd_resp->timeout);
1763 			return 0;
1764 		} else if (le16_to_cpu(cmd_resp->status) ==
1765 			   ICE_AQ_RES_GLBL_IN_PROG) {
1766 			*timeout = le32_to_cpu(cmd_resp->timeout);
1767 			return -EIO;
1768 		} else if (le16_to_cpu(cmd_resp->status) ==
1769 			   ICE_AQ_RES_GLBL_DONE) {
1770 			return -EALREADY;
1771 		}
1772 
1773 		/* invalid FW response, force a timeout immediately */
1774 		*timeout = 0;
1775 		return -EIO;
1776 	}
1777 
1778 	/* If the resource is held by some other driver, the command completes
1779 	 * with a busy return value and the timeout field indicates the maximum
1780 	 * time the current owner of the resource has to free it.
1781 	 */
1782 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1783 		*timeout = le32_to_cpu(cmd_resp->timeout);
1784 
1785 	return status;
1786 }
1787 
1788 /**
1789  * ice_aq_release_res
1790  * @hw: pointer to the HW struct
1791  * @res: resource ID
1792  * @sdp_number: resource number
1793  * @cd: pointer to command details structure or NULL
1794  *
1795  * release common resource using the admin queue commands (0x0009)
1796  */
1797 static int
1798 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1799 		   struct ice_sq_cd *cd)
1800 {
1801 	struct ice_aqc_req_res *cmd;
1802 	struct ice_aq_desc desc;
1803 
1804 	cmd = &desc.params.res_owner;
1805 
1806 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1807 
1808 	cmd->res_id = cpu_to_le16(res);
1809 	cmd->res_number = cpu_to_le32(sdp_number);
1810 
1811 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1812 }
1813 
1814 /**
1815  * ice_acquire_res
1816  * @hw: pointer to the HW structure
1817  * @res: resource ID
1818  * @access: access type (read or write)
1819  * @timeout: timeout in milliseconds
1820  *
1821  * This function will attempt to acquire the ownership of a resource.
1822  */
1823 int
1824 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1825 		enum ice_aq_res_access_type access, u32 timeout)
1826 {
1827 #define ICE_RES_POLLING_DELAY_MS	10
1828 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1829 	u32 time_left = timeout;
1830 	int status;
1831 
1832 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1833 
1834 	/* A return code of -EALREADY means that another driver has
1835 	 * previously acquired the resource and performed any necessary updates;
1836 	 * in this case the caller does not obtain the resource and has no
1837 	 * further work to do.
1838 	 */
1839 	if (status == -EALREADY)
1840 		goto ice_acquire_res_exit;
1841 
1842 	if (status)
1843 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1844 
1845 	/* If necessary, poll until the current lock owner timeouts */
1846 	timeout = time_left;
1847 	while (status && timeout && time_left) {
1848 		mdelay(delay);
1849 		timeout = (timeout > delay) ? timeout - delay : 0;
1850 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1851 
1852 		if (status == -EALREADY)
1853 			/* lock free, but no work to do */
1854 			break;
1855 
1856 		if (!status)
1857 			/* lock acquired */
1858 			break;
1859 	}
1860 	if (status && status != -EALREADY)
1861 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1862 
1863 ice_acquire_res_exit:
1864 	if (status == -EALREADY) {
1865 		if (access == ICE_RES_WRITE)
1866 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1867 		else
1868 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1869 	}
1870 	return status;
1871 }
1872 
1873 /**
1874  * ice_release_res
1875  * @hw: pointer to the HW structure
1876  * @res: resource ID
1877  *
1878  * This function will release a resource using the proper Admin Command.
1879  */
1880 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1881 {
1882 	unsigned long timeout;
1883 	int status;
1884 
1885 	/* there are some rare cases when trying to release the resource
1886 	 * results in an admin queue timeout, so handle them correctly
1887 	 */
1888 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1889 	do {
1890 		status = ice_aq_release_res(hw, res, 0, NULL);
1891 		if (status != -EIO)
1892 			break;
1893 		usleep_range(1000, 2000);
1894 	} while (time_before(jiffies, timeout));
1895 }
1896 
1897 /**
1898  * ice_aq_alloc_free_res - command to allocate/free resources
1899  * @hw: pointer to the HW struct
1900  * @buf: Indirect buffer to hold data parameters and response
1901  * @buf_size: size of buffer for indirect commands
1902  * @opc: pass in the command opcode
1903  *
1904  * Helper function to allocate/free resources using the admin queue commands
1905  */
1906 int ice_aq_alloc_free_res(struct ice_hw *hw,
1907 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1908 			  enum ice_adminq_opc opc)
1909 {
1910 	struct ice_aqc_alloc_free_res_cmd *cmd;
1911 	struct ice_aq_desc desc;
1912 
1913 	cmd = &desc.params.sw_res_ctrl;
1914 
1915 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1916 		return -EINVAL;
1917 
1918 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1919 
1920 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1921 
1922 	cmd->num_entries = cpu_to_le16(1);
1923 
1924 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1925 }
1926 
1927 /**
1928  * ice_alloc_hw_res - allocate resource
1929  * @hw: pointer to the HW struct
1930  * @type: type of resource
1931  * @num: number of resources to allocate
1932  * @btm: allocate from bottom
1933  * @res: pointer to array that will receive the resources
1934  */
1935 int
1936 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1937 {
1938 	struct ice_aqc_alloc_free_res_elem *buf;
1939 	u16 buf_len;
1940 	int status;
1941 
1942 	buf_len = struct_size(buf, elem, num);
1943 	buf = kzalloc(buf_len, GFP_KERNEL);
1944 	if (!buf)
1945 		return -ENOMEM;
1946 
1947 	/* Prepare buffer to allocate resource. */
1948 	buf->num_elems = cpu_to_le16(num);
1949 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1950 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1951 	if (btm)
1952 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1953 
1954 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
1955 	if (status)
1956 		goto ice_alloc_res_exit;
1957 
1958 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1959 
1960 ice_alloc_res_exit:
1961 	kfree(buf);
1962 	return status;
1963 }
1964 
1965 /**
1966  * ice_free_hw_res - free allocated HW resource
1967  * @hw: pointer to the HW struct
1968  * @type: type of resource to free
1969  * @num: number of resources
1970  * @res: pointer to array that contains the resources to free
1971  */
1972 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1973 {
1974 	struct ice_aqc_alloc_free_res_elem *buf;
1975 	u16 buf_len;
1976 	int status;
1977 
1978 	buf_len = struct_size(buf, elem, num);
1979 	buf = kzalloc(buf_len, GFP_KERNEL);
1980 	if (!buf)
1981 		return -ENOMEM;
1982 
1983 	/* Prepare buffer to free resource. */
1984 	buf->num_elems = cpu_to_le16(num);
1985 	buf->res_type = cpu_to_le16(type);
1986 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1987 
1988 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
1989 	if (status)
1990 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1991 
1992 	kfree(buf);
1993 	return status;
1994 }
1995 
1996 /**
1997  * ice_get_num_per_func - determine number of resources per PF
1998  * @hw: pointer to the HW structure
1999  * @max: value to be evenly split between each PF
2000  *
2001  * Determine the number of valid functions by going through the bitmap returned
2002  * from parsing capabilities and use this to calculate the number of resources
2003  * per PF based on the max value passed in.
2004  */
2005 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2006 {
2007 	u8 funcs;
2008 
2009 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2010 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2011 			 ICE_CAPS_VALID_FUNCS_M);
2012 
2013 	if (!funcs)
2014 		return 0;
2015 
2016 	return max / funcs;
2017 }
2018 
2019 /**
2020  * ice_parse_common_caps - parse common device/function capabilities
2021  * @hw: pointer to the HW struct
2022  * @caps: pointer to common capabilities structure
2023  * @elem: the capability element to parse
2024  * @prefix: message prefix for tracing capabilities
2025  *
2026  * Given a capability element, extract relevant details into the common
2027  * capability structure.
2028  *
2029  * Returns: true if the capability matches one of the common capability ids,
2030  * false otherwise.
2031  */
2032 static bool
2033 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2034 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2035 {
2036 	u32 logical_id = le32_to_cpu(elem->logical_id);
2037 	u32 phys_id = le32_to_cpu(elem->phys_id);
2038 	u32 number = le32_to_cpu(elem->number);
2039 	u16 cap = le16_to_cpu(elem->cap);
2040 	bool found = true;
2041 
2042 	switch (cap) {
2043 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2044 		caps->valid_functions = number;
2045 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2046 			  caps->valid_functions);
2047 		break;
2048 	case ICE_AQC_CAPS_SRIOV:
2049 		caps->sr_iov_1_1 = (number == 1);
2050 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2051 			  caps->sr_iov_1_1);
2052 		break;
2053 	case ICE_AQC_CAPS_DCB:
2054 		caps->dcb = (number == 1);
2055 		caps->active_tc_bitmap = logical_id;
2056 		caps->maxtc = phys_id;
2057 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2058 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2059 			  caps->active_tc_bitmap);
2060 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2061 		break;
2062 	case ICE_AQC_CAPS_RSS:
2063 		caps->rss_table_size = number;
2064 		caps->rss_table_entry_width = logical_id;
2065 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2066 			  caps->rss_table_size);
2067 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2068 			  caps->rss_table_entry_width);
2069 		break;
2070 	case ICE_AQC_CAPS_RXQS:
2071 		caps->num_rxq = number;
2072 		caps->rxq_first_id = phys_id;
2073 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2074 			  caps->num_rxq);
2075 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2076 			  caps->rxq_first_id);
2077 		break;
2078 	case ICE_AQC_CAPS_TXQS:
2079 		caps->num_txq = number;
2080 		caps->txq_first_id = phys_id;
2081 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2082 			  caps->num_txq);
2083 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2084 			  caps->txq_first_id);
2085 		break;
2086 	case ICE_AQC_CAPS_MSIX:
2087 		caps->num_msix_vectors = number;
2088 		caps->msix_vector_first_id = phys_id;
2089 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2090 			  caps->num_msix_vectors);
2091 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2092 			  caps->msix_vector_first_id);
2093 		break;
2094 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2095 		caps->nvm_update_pending_nvm = true;
2096 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2097 		break;
2098 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2099 		caps->nvm_update_pending_orom = true;
2100 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2101 		break;
2102 	case ICE_AQC_CAPS_PENDING_NET_VER:
2103 		caps->nvm_update_pending_netlist = true;
2104 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2105 		break;
2106 	case ICE_AQC_CAPS_NVM_MGMT:
2107 		caps->nvm_unified_update =
2108 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2109 			true : false;
2110 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2111 			  caps->nvm_unified_update);
2112 		break;
2113 	case ICE_AQC_CAPS_RDMA:
2114 		caps->rdma = (number == 1);
2115 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2116 		break;
2117 	case ICE_AQC_CAPS_MAX_MTU:
2118 		caps->max_mtu = number;
2119 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2120 			  prefix, caps->max_mtu);
2121 		break;
2122 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2123 		caps->pcie_reset_avoidance = (number > 0);
2124 		ice_debug(hw, ICE_DBG_INIT,
2125 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2126 			  caps->pcie_reset_avoidance);
2127 		break;
2128 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2129 		caps->reset_restrict_support = (number == 1);
2130 		ice_debug(hw, ICE_DBG_INIT,
2131 			  "%s: reset_restrict_support = %d\n", prefix,
2132 			  caps->reset_restrict_support);
2133 		break;
2134 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2135 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2136 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2137 			  prefix, caps->roce_lag);
2138 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2139 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2140 			  prefix, caps->sriov_lag);
2141 		break;
2142 	default:
2143 		/* Not one of the recognized common capabilities */
2144 		found = false;
2145 	}
2146 
2147 	return found;
2148 }
2149 
2150 /**
2151  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2152  * @hw: pointer to the HW structure
2153  * @caps: pointer to capabilities structure to fix
2154  *
2155  * Re-calculate the capabilities that are dependent on the number of physical
2156  * ports; i.e. some features are not supported or function differently on
2157  * devices with more than 4 ports.
2158  */
2159 static void
2160 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2161 {
2162 	/* This assumes device capabilities are always scanned before function
2163 	 * capabilities during the initialization flow.
2164 	 */
2165 	if (hw->dev_caps.num_funcs > 4) {
2166 		/* Max 4 TCs per port */
2167 		caps->maxtc = 4;
2168 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2169 			  caps->maxtc);
2170 		if (caps->rdma) {
2171 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2172 			caps->rdma = 0;
2173 		}
2174 
2175 		/* print message only when processing device capabilities
2176 		 * during initialization.
2177 		 */
2178 		if (caps == &hw->dev_caps.common_cap)
2179 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2180 	}
2181 }
2182 
2183 /**
2184  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2185  * @hw: pointer to the HW struct
2186  * @func_p: pointer to function capabilities structure
2187  * @cap: pointer to the capability element to parse
2188  *
2189  * Extract function capabilities for ICE_AQC_CAPS_VF.
2190  */
2191 static void
2192 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2193 		       struct ice_aqc_list_caps_elem *cap)
2194 {
2195 	u32 logical_id = le32_to_cpu(cap->logical_id);
2196 	u32 number = le32_to_cpu(cap->number);
2197 
2198 	func_p->num_allocd_vfs = number;
2199 	func_p->vf_base_id = logical_id;
2200 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2201 		  func_p->num_allocd_vfs);
2202 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2203 		  func_p->vf_base_id);
2204 }
2205 
2206 /**
2207  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2208  * @hw: pointer to the HW struct
2209  * @func_p: pointer to function capabilities structure
2210  * @cap: pointer to the capability element to parse
2211  *
2212  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2213  */
2214 static void
2215 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2216 			struct ice_aqc_list_caps_elem *cap)
2217 {
2218 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2219 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2220 		  le32_to_cpu(cap->number));
2221 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2222 		  func_p->guar_num_vsi);
2223 }
2224 
2225 /**
2226  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2227  * @hw: pointer to the HW struct
2228  * @func_p: pointer to function capabilities structure
2229  * @cap: pointer to the capability element to parse
2230  *
2231  * Extract function capabilities for ICE_AQC_CAPS_1588.
2232  */
2233 static void
2234 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2235 			 struct ice_aqc_list_caps_elem *cap)
2236 {
2237 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2238 	u32 number = le32_to_cpu(cap->number);
2239 
2240 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2241 	func_p->common_cap.ieee_1588 = info->ena;
2242 
2243 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2244 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2245 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2246 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2247 
2248 	info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2249 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2250 
2251 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2252 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2253 	} else {
2254 		/* Unknown clock frequency, so assume a (probably incorrect)
2255 		 * default to avoid out-of-bounds look ups of frequency
2256 		 * related information.
2257 		 */
2258 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2259 			  info->clk_freq);
2260 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2261 	}
2262 
2263 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2264 		  func_p->common_cap.ieee_1588);
2265 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2266 		  info->src_tmr_owned);
2267 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2268 		  info->tmr_ena);
2269 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2270 		  info->tmr_index_owned);
2271 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2272 		  info->tmr_index_assoc);
2273 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2274 		  info->clk_freq);
2275 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2276 		  info->clk_src);
2277 }
2278 
2279 /**
2280  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2281  * @hw: pointer to the HW struct
2282  * @func_p: pointer to function capabilities structure
2283  *
2284  * Extract function capabilities for ICE_AQC_CAPS_FD.
2285  */
2286 static void
2287 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2288 {
2289 	u32 reg_val, gsize, bsize;
2290 
2291 	reg_val = rd32(hw, GLQF_FD_SIZE);
2292 	switch (hw->mac_type) {
2293 	case ICE_MAC_E830:
2294 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2295 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2296 		break;
2297 	case ICE_MAC_E810:
2298 	default:
2299 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2300 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2301 	}
2302 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2303 	func_p->fd_fltr_best_effort = bsize;
2304 
2305 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2306 		  func_p->fd_fltr_guar);
2307 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2308 		  func_p->fd_fltr_best_effort);
2309 }
2310 
2311 /**
2312  * ice_parse_func_caps - Parse function capabilities
2313  * @hw: pointer to the HW struct
2314  * @func_p: pointer to function capabilities structure
2315  * @buf: buffer containing the function capability records
2316  * @cap_count: the number of capabilities
2317  *
2318  * Helper function to parse function (0x000A) capabilities list. For
2319  * capabilities shared between device and function, this relies on
2320  * ice_parse_common_caps.
2321  *
2322  * Loop through the list of provided capabilities and extract the relevant
2323  * data into the function capabilities structured.
2324  */
2325 static void
2326 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2327 		    void *buf, u32 cap_count)
2328 {
2329 	struct ice_aqc_list_caps_elem *cap_resp;
2330 	u32 i;
2331 
2332 	cap_resp = buf;
2333 
2334 	memset(func_p, 0, sizeof(*func_p));
2335 
2336 	for (i = 0; i < cap_count; i++) {
2337 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2338 		bool found;
2339 
2340 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2341 					      &cap_resp[i], "func caps");
2342 
2343 		switch (cap) {
2344 		case ICE_AQC_CAPS_VF:
2345 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2346 			break;
2347 		case ICE_AQC_CAPS_VSI:
2348 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2349 			break;
2350 		case ICE_AQC_CAPS_1588:
2351 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2352 			break;
2353 		case ICE_AQC_CAPS_FD:
2354 			ice_parse_fdir_func_caps(hw, func_p);
2355 			break;
2356 		default:
2357 			/* Don't list common capabilities as unknown */
2358 			if (!found)
2359 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2360 					  i, cap);
2361 			break;
2362 		}
2363 	}
2364 
2365 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2366 }
2367 
2368 /**
2369  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2370  * @hw: pointer to the HW struct
2371  * @dev_p: pointer to device capabilities structure
2372  * @cap: capability element to parse
2373  *
2374  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2375  */
2376 static void
2377 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2378 			      struct ice_aqc_list_caps_elem *cap)
2379 {
2380 	u32 number = le32_to_cpu(cap->number);
2381 
2382 	dev_p->num_funcs = hweight32(number);
2383 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2384 		  dev_p->num_funcs);
2385 }
2386 
2387 /**
2388  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2389  * @hw: pointer to the HW struct
2390  * @dev_p: pointer to device capabilities structure
2391  * @cap: capability element to parse
2392  *
2393  * Parse ICE_AQC_CAPS_VF for device capabilities.
2394  */
2395 static void
2396 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2397 		      struct ice_aqc_list_caps_elem *cap)
2398 {
2399 	u32 number = le32_to_cpu(cap->number);
2400 
2401 	dev_p->num_vfs_exposed = number;
2402 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2403 		  dev_p->num_vfs_exposed);
2404 }
2405 
2406 /**
2407  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2408  * @hw: pointer to the HW struct
2409  * @dev_p: pointer to device capabilities structure
2410  * @cap: capability element to parse
2411  *
2412  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2413  */
2414 static void
2415 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2416 		       struct ice_aqc_list_caps_elem *cap)
2417 {
2418 	u32 number = le32_to_cpu(cap->number);
2419 
2420 	dev_p->num_vsi_allocd_to_host = number;
2421 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2422 		  dev_p->num_vsi_allocd_to_host);
2423 }
2424 
2425 /**
2426  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2427  * @hw: pointer to the HW struct
2428  * @dev_p: pointer to device capabilities structure
2429  * @cap: capability element to parse
2430  *
2431  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2432  */
2433 static void
2434 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2435 			struct ice_aqc_list_caps_elem *cap)
2436 {
2437 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2438 	u32 logical_id = le32_to_cpu(cap->logical_id);
2439 	u32 phys_id = le32_to_cpu(cap->phys_id);
2440 	u32 number = le32_to_cpu(cap->number);
2441 
2442 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2443 	dev_p->common_cap.ieee_1588 = info->ena;
2444 
2445 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2446 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2447 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2448 
2449 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2450 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2451 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2452 
2453 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2454 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2455 
2456 	info->ena_ports = logical_id;
2457 	info->tmr_own_map = phys_id;
2458 
2459 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2460 		  dev_p->common_cap.ieee_1588);
2461 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2462 		  info->tmr0_owner);
2463 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2464 		  info->tmr0_owned);
2465 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2466 		  info->tmr0_ena);
2467 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2468 		  info->tmr1_owner);
2469 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2470 		  info->tmr1_owned);
2471 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2472 		  info->tmr1_ena);
2473 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2474 		  info->ts_ll_read);
2475 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2476 		  info->ts_ll_int_read);
2477 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2478 		  info->ena_ports);
2479 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2480 		  info->tmr_own_map);
2481 }
2482 
2483 /**
2484  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2485  * @hw: pointer to the HW struct
2486  * @dev_p: pointer to device capabilities structure
2487  * @cap: capability element to parse
2488  *
2489  * Parse ICE_AQC_CAPS_FD for device capabilities.
2490  */
2491 static void
2492 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2493 			struct ice_aqc_list_caps_elem *cap)
2494 {
2495 	u32 number = le32_to_cpu(cap->number);
2496 
2497 	dev_p->num_flow_director_fltr = number;
2498 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2499 		  dev_p->num_flow_director_fltr);
2500 }
2501 
2502 /**
2503  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2504  * @hw: pointer to the HW struct
2505  * @dev_p: pointer to device capabilities structure
2506  * @cap: capability element to parse
2507  *
2508  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2509  * enabled sensors.
2510  */
2511 static void
2512 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2513 			     struct ice_aqc_list_caps_elem *cap)
2514 {
2515 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2516 
2517 	ice_debug(hw, ICE_DBG_INIT,
2518 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2519 		  dev_p->supported_sensors);
2520 }
2521 
2522 /**
2523  * ice_parse_dev_caps - Parse device capabilities
2524  * @hw: pointer to the HW struct
2525  * @dev_p: pointer to device capabilities structure
2526  * @buf: buffer containing the device capability records
2527  * @cap_count: the number of capabilities
2528  *
2529  * Helper device to parse device (0x000B) capabilities list. For
2530  * capabilities shared between device and function, this relies on
2531  * ice_parse_common_caps.
2532  *
2533  * Loop through the list of provided capabilities and extract the relevant
2534  * data into the device capabilities structured.
2535  */
2536 static void
2537 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2538 		   void *buf, u32 cap_count)
2539 {
2540 	struct ice_aqc_list_caps_elem *cap_resp;
2541 	u32 i;
2542 
2543 	cap_resp = buf;
2544 
2545 	memset(dev_p, 0, sizeof(*dev_p));
2546 
2547 	for (i = 0; i < cap_count; i++) {
2548 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2549 		bool found;
2550 
2551 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2552 					      &cap_resp[i], "dev caps");
2553 
2554 		switch (cap) {
2555 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2556 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2557 			break;
2558 		case ICE_AQC_CAPS_VF:
2559 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2560 			break;
2561 		case ICE_AQC_CAPS_VSI:
2562 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2563 			break;
2564 		case ICE_AQC_CAPS_1588:
2565 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2566 			break;
2567 		case ICE_AQC_CAPS_FD:
2568 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2569 			break;
2570 		case ICE_AQC_CAPS_SENSOR_READING:
2571 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2572 			break;
2573 		default:
2574 			/* Don't list common capabilities as unknown */
2575 			if (!found)
2576 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2577 					  i, cap);
2578 			break;
2579 		}
2580 	}
2581 
2582 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2583 }
2584 
2585 /**
2586  * ice_is_pf_c827 - check if pf contains c827 phy
2587  * @hw: pointer to the hw struct
2588  */
2589 bool ice_is_pf_c827(struct ice_hw *hw)
2590 {
2591 	struct ice_aqc_get_link_topo cmd = {};
2592 	u8 node_part_number;
2593 	u16 node_handle;
2594 	int status;
2595 
2596 	if (hw->mac_type != ICE_MAC_E810)
2597 		return false;
2598 
2599 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2600 		return true;
2601 
2602 	cmd.addr.topo_params.node_type_ctx =
2603 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2604 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2605 	cmd.addr.topo_params.index = 0;
2606 
2607 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2608 					 &node_handle);
2609 
2610 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2611 		return false;
2612 
2613 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2614 		return true;
2615 
2616 	return false;
2617 }
2618 
2619 /**
2620  * ice_is_phy_rclk_in_netlist
2621  * @hw: pointer to the hw struct
2622  *
2623  * Check if the PHY Recovered Clock device is present in the netlist
2624  */
2625 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2626 {
2627 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2628 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2629 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2630 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2631 		return false;
2632 
2633 	return true;
2634 }
2635 
2636 /**
2637  * ice_is_clock_mux_in_netlist
2638  * @hw: pointer to the hw struct
2639  *
2640  * Check if the Clock Multiplexer device is present in the netlist
2641  */
2642 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2643 {
2644 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2645 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2646 				  NULL))
2647 		return false;
2648 
2649 	return true;
2650 }
2651 
2652 /**
2653  * ice_is_cgu_in_netlist - check for CGU presence
2654  * @hw: pointer to the hw struct
2655  *
2656  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2657  * Save the CGU part number in the hw structure for later use.
2658  * Return:
2659  * * true - cgu is present
2660  * * false - cgu is not present
2661  */
2662 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2663 {
2664 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2665 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2666 				   NULL)) {
2667 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2668 		return true;
2669 	} else if (!ice_find_netlist_node(hw,
2670 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2671 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2672 					  NULL)) {
2673 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2674 		return true;
2675 	}
2676 
2677 	return false;
2678 }
2679 
2680 /**
2681  * ice_is_gps_in_netlist
2682  * @hw: pointer to the hw struct
2683  *
2684  * Check if the GPS generic device is present in the netlist
2685  */
2686 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2687 {
2688 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2689 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2690 		return false;
2691 
2692 	return true;
2693 }
2694 
2695 /**
2696  * ice_aq_list_caps - query function/device capabilities
2697  * @hw: pointer to the HW struct
2698  * @buf: a buffer to hold the capabilities
2699  * @buf_size: size of the buffer
2700  * @cap_count: if not NULL, set to the number of capabilities reported
2701  * @opc: capabilities type to discover, device or function
2702  * @cd: pointer to command details structure or NULL
2703  *
2704  * Get the function (0x000A) or device (0x000B) capabilities description from
2705  * firmware and store it in the buffer.
2706  *
2707  * If the cap_count pointer is not NULL, then it is set to the number of
2708  * capabilities firmware will report. Note that if the buffer size is too
2709  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2710  * cap_count will still be updated in this case. It is recommended that the
2711  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2712  * firmware could return) to avoid this.
2713  */
2714 int
2715 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2716 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2717 {
2718 	struct ice_aqc_list_caps *cmd;
2719 	struct ice_aq_desc desc;
2720 	int status;
2721 
2722 	cmd = &desc.params.get_cap;
2723 
2724 	if (opc != ice_aqc_opc_list_func_caps &&
2725 	    opc != ice_aqc_opc_list_dev_caps)
2726 		return -EINVAL;
2727 
2728 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2729 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2730 
2731 	if (cap_count)
2732 		*cap_count = le32_to_cpu(cmd->count);
2733 
2734 	return status;
2735 }
2736 
2737 /**
2738  * ice_discover_dev_caps - Read and extract device capabilities
2739  * @hw: pointer to the hardware structure
2740  * @dev_caps: pointer to device capabilities structure
2741  *
2742  * Read the device capabilities and extract them into the dev_caps structure
2743  * for later use.
2744  */
2745 int
2746 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2747 {
2748 	u32 cap_count = 0;
2749 	void *cbuf;
2750 	int status;
2751 
2752 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2753 	if (!cbuf)
2754 		return -ENOMEM;
2755 
2756 	/* Although the driver doesn't know the number of capabilities the
2757 	 * device will return, we can simply send a 4KB buffer, the maximum
2758 	 * possible size that firmware can return.
2759 	 */
2760 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2761 
2762 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2763 				  ice_aqc_opc_list_dev_caps, NULL);
2764 	if (!status)
2765 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2766 	kfree(cbuf);
2767 
2768 	return status;
2769 }
2770 
2771 /**
2772  * ice_discover_func_caps - Read and extract function capabilities
2773  * @hw: pointer to the hardware structure
2774  * @func_caps: pointer to function capabilities structure
2775  *
2776  * Read the function capabilities and extract them into the func_caps structure
2777  * for later use.
2778  */
2779 static int
2780 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2781 {
2782 	u32 cap_count = 0;
2783 	void *cbuf;
2784 	int status;
2785 
2786 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2787 	if (!cbuf)
2788 		return -ENOMEM;
2789 
2790 	/* Although the driver doesn't know the number of capabilities the
2791 	 * device will return, we can simply send a 4KB buffer, the maximum
2792 	 * possible size that firmware can return.
2793 	 */
2794 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2795 
2796 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2797 				  ice_aqc_opc_list_func_caps, NULL);
2798 	if (!status)
2799 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2800 	kfree(cbuf);
2801 
2802 	return status;
2803 }
2804 
2805 /**
2806  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2807  * @hw: pointer to the hardware structure
2808  */
2809 void ice_set_safe_mode_caps(struct ice_hw *hw)
2810 {
2811 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2812 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2813 	struct ice_hw_common_caps cached_caps;
2814 	u32 num_funcs;
2815 
2816 	/* cache some func_caps values that should be restored after memset */
2817 	cached_caps = func_caps->common_cap;
2818 
2819 	/* unset func capabilities */
2820 	memset(func_caps, 0, sizeof(*func_caps));
2821 
2822 #define ICE_RESTORE_FUNC_CAP(name) \
2823 	func_caps->common_cap.name = cached_caps.name
2824 
2825 	/* restore cached values */
2826 	ICE_RESTORE_FUNC_CAP(valid_functions);
2827 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2828 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2829 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2830 	ICE_RESTORE_FUNC_CAP(max_mtu);
2831 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2832 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2833 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2834 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2835 
2836 	/* one Tx and one Rx queue in safe mode */
2837 	func_caps->common_cap.num_rxq = 1;
2838 	func_caps->common_cap.num_txq = 1;
2839 
2840 	/* two MSIX vectors, one for traffic and one for misc causes */
2841 	func_caps->common_cap.num_msix_vectors = 2;
2842 	func_caps->guar_num_vsi = 1;
2843 
2844 	/* cache some dev_caps values that should be restored after memset */
2845 	cached_caps = dev_caps->common_cap;
2846 	num_funcs = dev_caps->num_funcs;
2847 
2848 	/* unset dev capabilities */
2849 	memset(dev_caps, 0, sizeof(*dev_caps));
2850 
2851 #define ICE_RESTORE_DEV_CAP(name) \
2852 	dev_caps->common_cap.name = cached_caps.name
2853 
2854 	/* restore cached values */
2855 	ICE_RESTORE_DEV_CAP(valid_functions);
2856 	ICE_RESTORE_DEV_CAP(txq_first_id);
2857 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2858 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2859 	ICE_RESTORE_DEV_CAP(max_mtu);
2860 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2861 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2862 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2863 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2864 	dev_caps->num_funcs = num_funcs;
2865 
2866 	/* one Tx and one Rx queue per function in safe mode */
2867 	dev_caps->common_cap.num_rxq = num_funcs;
2868 	dev_caps->common_cap.num_txq = num_funcs;
2869 
2870 	/* two MSIX vectors per function */
2871 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2872 }
2873 
2874 /**
2875  * ice_get_caps - get info about the HW
2876  * @hw: pointer to the hardware structure
2877  */
2878 int ice_get_caps(struct ice_hw *hw)
2879 {
2880 	int status;
2881 
2882 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2883 	if (status)
2884 		return status;
2885 
2886 	return ice_discover_func_caps(hw, &hw->func_caps);
2887 }
2888 
2889 /**
2890  * ice_aq_manage_mac_write - manage MAC address write command
2891  * @hw: pointer to the HW struct
2892  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2893  * @flags: flags to control write behavior
2894  * @cd: pointer to command details structure or NULL
2895  *
2896  * This function is used to write MAC address to the NVM (0x0108).
2897  */
2898 int
2899 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2900 			struct ice_sq_cd *cd)
2901 {
2902 	struct ice_aqc_manage_mac_write *cmd;
2903 	struct ice_aq_desc desc;
2904 
2905 	cmd = &desc.params.mac_write;
2906 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2907 
2908 	cmd->flags = flags;
2909 	ether_addr_copy(cmd->mac_addr, mac_addr);
2910 
2911 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2912 }
2913 
2914 /**
2915  * ice_aq_clear_pxe_mode
2916  * @hw: pointer to the HW struct
2917  *
2918  * Tell the firmware that the driver is taking over from PXE (0x0110).
2919  */
2920 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2921 {
2922 	struct ice_aq_desc desc;
2923 
2924 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2925 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2926 
2927 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2928 }
2929 
2930 /**
2931  * ice_clear_pxe_mode - clear pxe operations mode
2932  * @hw: pointer to the HW struct
2933  *
2934  * Make sure all PXE mode settings are cleared, including things
2935  * like descriptor fetch/write-back mode.
2936  */
2937 void ice_clear_pxe_mode(struct ice_hw *hw)
2938 {
2939 	if (ice_check_sq_alive(hw, &hw->adminq))
2940 		ice_aq_clear_pxe_mode(hw);
2941 }
2942 
2943 /**
2944  * ice_aq_set_port_params - set physical port parameters.
2945  * @pi: pointer to the port info struct
2946  * @double_vlan: if set double VLAN is enabled
2947  * @cd: pointer to command details structure or NULL
2948  *
2949  * Set Physical port parameters (0x0203)
2950  */
2951 int
2952 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2953 		       struct ice_sq_cd *cd)
2954 
2955 {
2956 	struct ice_aqc_set_port_params *cmd;
2957 	struct ice_hw *hw = pi->hw;
2958 	struct ice_aq_desc desc;
2959 	u16 cmd_flags = 0;
2960 
2961 	cmd = &desc.params.set_port_params;
2962 
2963 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2964 	if (double_vlan)
2965 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2966 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2967 
2968 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2969 }
2970 
2971 /**
2972  * ice_is_100m_speed_supported
2973  * @hw: pointer to the HW struct
2974  *
2975  * returns true if 100M speeds are supported by the device,
2976  * false otherwise.
2977  */
2978 bool ice_is_100m_speed_supported(struct ice_hw *hw)
2979 {
2980 	switch (hw->device_id) {
2981 	case ICE_DEV_ID_E822C_SGMII:
2982 	case ICE_DEV_ID_E822L_SGMII:
2983 	case ICE_DEV_ID_E823L_1GBE:
2984 	case ICE_DEV_ID_E823C_SGMII:
2985 		return true;
2986 	default:
2987 		return false;
2988 	}
2989 }
2990 
2991 /**
2992  * ice_get_link_speed_based_on_phy_type - returns link speed
2993  * @phy_type_low: lower part of phy_type
2994  * @phy_type_high: higher part of phy_type
2995  *
2996  * This helper function will convert an entry in PHY type structure
2997  * [phy_type_low, phy_type_high] to its corresponding link speed.
2998  * Note: In the structure of [phy_type_low, phy_type_high], there should
2999  * be one bit set, as this function will convert one PHY type to its
3000  * speed.
3001  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3002  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3003  */
3004 static u16
3005 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3006 {
3007 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3008 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3009 
3010 	switch (phy_type_low) {
3011 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3012 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3013 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3014 		break;
3015 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3016 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3017 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3018 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3019 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3020 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3021 		break;
3022 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3023 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3024 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3025 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3026 		break;
3027 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3028 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3029 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3030 		break;
3031 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3032 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3033 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3034 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3035 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3036 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3037 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3038 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3039 		break;
3040 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3041 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3042 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3043 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3044 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3045 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3046 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3047 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3048 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3049 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3050 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3051 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3052 		break;
3053 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3054 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3055 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3056 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3057 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3058 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3059 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3060 		break;
3061 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3062 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3063 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3064 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3065 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3066 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3067 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3068 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3069 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3070 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3071 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3072 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3073 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3074 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3075 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3076 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3077 		break;
3078 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3079 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3080 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3081 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3082 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3083 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3084 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3085 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3086 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3087 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3088 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3089 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3090 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3091 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3092 		break;
3093 	default:
3094 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3095 		break;
3096 	}
3097 
3098 	switch (phy_type_high) {
3099 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3100 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3101 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3102 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3103 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3104 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3105 		break;
3106 	default:
3107 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3108 		break;
3109 	}
3110 
3111 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3112 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3113 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3114 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3115 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3116 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3117 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3118 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3119 		return speed_phy_type_low;
3120 	else
3121 		return speed_phy_type_high;
3122 }
3123 
3124 /**
3125  * ice_update_phy_type
3126  * @phy_type_low: pointer to the lower part of phy_type
3127  * @phy_type_high: pointer to the higher part of phy_type
3128  * @link_speeds_bitmap: targeted link speeds bitmap
3129  *
3130  * Note: For the link_speeds_bitmap structure, you can check it at
3131  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3132  * link_speeds_bitmap include multiple speeds.
3133  *
3134  * Each entry in this [phy_type_low, phy_type_high] structure will
3135  * present a certain link speed. This helper function will turn on bits
3136  * in [phy_type_low, phy_type_high] structure based on the value of
3137  * link_speeds_bitmap input parameter.
3138  */
3139 void
3140 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3141 		    u16 link_speeds_bitmap)
3142 {
3143 	u64 pt_high;
3144 	u64 pt_low;
3145 	int index;
3146 	u16 speed;
3147 
3148 	/* We first check with low part of phy_type */
3149 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3150 		pt_low = BIT_ULL(index);
3151 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3152 
3153 		if (link_speeds_bitmap & speed)
3154 			*phy_type_low |= BIT_ULL(index);
3155 	}
3156 
3157 	/* We then check with high part of phy_type */
3158 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3159 		pt_high = BIT_ULL(index);
3160 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3161 
3162 		if (link_speeds_bitmap & speed)
3163 			*phy_type_high |= BIT_ULL(index);
3164 	}
3165 }
3166 
3167 /**
3168  * ice_aq_set_phy_cfg
3169  * @hw: pointer to the HW struct
3170  * @pi: port info structure of the interested logical port
3171  * @cfg: structure with PHY configuration data to be set
3172  * @cd: pointer to command details structure or NULL
3173  *
3174  * Set the various PHY configuration parameters supported on the Port.
3175  * One or more of the Set PHY config parameters may be ignored in an MFP
3176  * mode as the PF may not have the privilege to set some of the PHY Config
3177  * parameters. This status will be indicated by the command response (0x0601).
3178  */
3179 int
3180 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3181 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3182 {
3183 	struct ice_aq_desc desc;
3184 	int status;
3185 
3186 	if (!cfg)
3187 		return -EINVAL;
3188 
3189 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3190 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3191 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3192 			  cfg->caps);
3193 
3194 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3195 	}
3196 
3197 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3198 	desc.params.set_phy.lport_num = pi->lport;
3199 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3200 
3201 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3202 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3203 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3204 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3205 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3206 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3207 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3208 		  cfg->low_power_ctrl_an);
3209 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3210 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3211 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3212 		  cfg->link_fec_opt);
3213 
3214 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3215 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3216 		status = 0;
3217 
3218 	if (!status)
3219 		pi->phy.curr_user_phy_cfg = *cfg;
3220 
3221 	return status;
3222 }
3223 
3224 /**
3225  * ice_update_link_info - update status of the HW network link
3226  * @pi: port info structure of the interested logical port
3227  */
3228 int ice_update_link_info(struct ice_port_info *pi)
3229 {
3230 	struct ice_link_status *li;
3231 	int status;
3232 
3233 	if (!pi)
3234 		return -EINVAL;
3235 
3236 	li = &pi->phy.link_info;
3237 
3238 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3239 	if (status)
3240 		return status;
3241 
3242 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3243 		struct ice_aqc_get_phy_caps_data *pcaps;
3244 		struct ice_hw *hw;
3245 
3246 		hw = pi->hw;
3247 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3248 				     GFP_KERNEL);
3249 		if (!pcaps)
3250 			return -ENOMEM;
3251 
3252 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3253 					     pcaps, NULL);
3254 
3255 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3256 	}
3257 
3258 	return status;
3259 }
3260 
3261 /**
3262  * ice_cache_phy_user_req
3263  * @pi: port information structure
3264  * @cache_data: PHY logging data
3265  * @cache_mode: PHY logging mode
3266  *
3267  * Log the user request on (FC, FEC, SPEED) for later use.
3268  */
3269 static void
3270 ice_cache_phy_user_req(struct ice_port_info *pi,
3271 		       struct ice_phy_cache_mode_data cache_data,
3272 		       enum ice_phy_cache_mode cache_mode)
3273 {
3274 	if (!pi)
3275 		return;
3276 
3277 	switch (cache_mode) {
3278 	case ICE_FC_MODE:
3279 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3280 		break;
3281 	case ICE_SPEED_MODE:
3282 		pi->phy.curr_user_speed_req =
3283 			cache_data.data.curr_user_speed_req;
3284 		break;
3285 	case ICE_FEC_MODE:
3286 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3287 		break;
3288 	default:
3289 		break;
3290 	}
3291 }
3292 
3293 /**
3294  * ice_caps_to_fc_mode
3295  * @caps: PHY capabilities
3296  *
3297  * Convert PHY FC capabilities to ice FC mode
3298  */
3299 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3300 {
3301 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3302 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3303 		return ICE_FC_FULL;
3304 
3305 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3306 		return ICE_FC_TX_PAUSE;
3307 
3308 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3309 		return ICE_FC_RX_PAUSE;
3310 
3311 	return ICE_FC_NONE;
3312 }
3313 
3314 /**
3315  * ice_caps_to_fec_mode
3316  * @caps: PHY capabilities
3317  * @fec_options: Link FEC options
3318  *
3319  * Convert PHY FEC capabilities to ice FEC mode
3320  */
3321 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3322 {
3323 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3324 		return ICE_FEC_AUTO;
3325 
3326 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3327 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3328 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3329 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3330 		return ICE_FEC_BASER;
3331 
3332 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3333 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3334 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3335 		return ICE_FEC_RS;
3336 
3337 	return ICE_FEC_NONE;
3338 }
3339 
3340 /**
3341  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3342  * @pi: port information structure
3343  * @cfg: PHY configuration data to set FC mode
3344  * @req_mode: FC mode to configure
3345  */
3346 int
3347 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3348 	       enum ice_fc_mode req_mode)
3349 {
3350 	struct ice_phy_cache_mode_data cache_data;
3351 	u8 pause_mask = 0x0;
3352 
3353 	if (!pi || !cfg)
3354 		return -EINVAL;
3355 
3356 	switch (req_mode) {
3357 	case ICE_FC_FULL:
3358 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3359 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3360 		break;
3361 	case ICE_FC_RX_PAUSE:
3362 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3363 		break;
3364 	case ICE_FC_TX_PAUSE:
3365 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3366 		break;
3367 	default:
3368 		break;
3369 	}
3370 
3371 	/* clear the old pause settings */
3372 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3373 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3374 
3375 	/* set the new capabilities */
3376 	cfg->caps |= pause_mask;
3377 
3378 	/* Cache user FC request */
3379 	cache_data.data.curr_user_fc_req = req_mode;
3380 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3381 
3382 	return 0;
3383 }
3384 
3385 /**
3386  * ice_set_fc
3387  * @pi: port information structure
3388  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3389  * @ena_auto_link_update: enable automatic link update
3390  *
3391  * Set the requested flow control mode.
3392  */
3393 int
3394 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3395 {
3396 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3397 	struct ice_aqc_get_phy_caps_data *pcaps;
3398 	struct ice_hw *hw;
3399 	int status;
3400 
3401 	if (!pi || !aq_failures)
3402 		return -EINVAL;
3403 
3404 	*aq_failures = 0;
3405 	hw = pi->hw;
3406 
3407 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3408 	if (!pcaps)
3409 		return -ENOMEM;
3410 
3411 	/* Get the current PHY config */
3412 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3413 				     pcaps, NULL);
3414 	if (status) {
3415 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3416 		goto out;
3417 	}
3418 
3419 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3420 
3421 	/* Configure the set PHY data */
3422 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3423 	if (status)
3424 		goto out;
3425 
3426 	/* If the capabilities have changed, then set the new config */
3427 	if (cfg.caps != pcaps->caps) {
3428 		int retry_count, retry_max = 10;
3429 
3430 		/* Auto restart link so settings take effect */
3431 		if (ena_auto_link_update)
3432 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3433 
3434 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3435 		if (status) {
3436 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3437 			goto out;
3438 		}
3439 
3440 		/* Update the link info
3441 		 * It sometimes takes a really long time for link to
3442 		 * come back from the atomic reset. Thus, we wait a
3443 		 * little bit.
3444 		 */
3445 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3446 			status = ice_update_link_info(pi);
3447 
3448 			if (!status)
3449 				break;
3450 
3451 			mdelay(100);
3452 		}
3453 
3454 		if (status)
3455 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3456 	}
3457 
3458 out:
3459 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3460 	return status;
3461 }
3462 
3463 /**
3464  * ice_phy_caps_equals_cfg
3465  * @phy_caps: PHY capabilities
3466  * @phy_cfg: PHY configuration
3467  *
3468  * Helper function to determine if PHY capabilities matches PHY
3469  * configuration
3470  */
3471 bool
3472 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3473 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3474 {
3475 	u8 caps_mask, cfg_mask;
3476 
3477 	if (!phy_caps || !phy_cfg)
3478 		return false;
3479 
3480 	/* These bits are not common between capabilities and configuration.
3481 	 * Do not use them to determine equality.
3482 	 */
3483 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3484 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3485 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3486 
3487 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3488 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3489 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3490 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3491 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3492 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3493 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3494 		return false;
3495 
3496 	return true;
3497 }
3498 
3499 /**
3500  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3501  * @pi: port information structure
3502  * @caps: PHY ability structure to copy date from
3503  * @cfg: PHY configuration structure to copy data to
3504  *
3505  * Helper function to copy AQC PHY get ability data to PHY set configuration
3506  * data structure
3507  */
3508 void
3509 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3510 			 struct ice_aqc_get_phy_caps_data *caps,
3511 			 struct ice_aqc_set_phy_cfg_data *cfg)
3512 {
3513 	if (!pi || !caps || !cfg)
3514 		return;
3515 
3516 	memset(cfg, 0, sizeof(*cfg));
3517 	cfg->phy_type_low = caps->phy_type_low;
3518 	cfg->phy_type_high = caps->phy_type_high;
3519 	cfg->caps = caps->caps;
3520 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3521 	cfg->eee_cap = caps->eee_cap;
3522 	cfg->eeer_value = caps->eeer_value;
3523 	cfg->link_fec_opt = caps->link_fec_options;
3524 	cfg->module_compliance_enforcement =
3525 		caps->module_compliance_enforcement;
3526 }
3527 
3528 /**
3529  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3530  * @pi: port information structure
3531  * @cfg: PHY configuration data to set FEC mode
3532  * @fec: FEC mode to configure
3533  */
3534 int
3535 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3536 		enum ice_fec_mode fec)
3537 {
3538 	struct ice_aqc_get_phy_caps_data *pcaps;
3539 	struct ice_hw *hw;
3540 	int status;
3541 
3542 	if (!pi || !cfg)
3543 		return -EINVAL;
3544 
3545 	hw = pi->hw;
3546 
3547 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3548 	if (!pcaps)
3549 		return -ENOMEM;
3550 
3551 	status = ice_aq_get_phy_caps(pi, false,
3552 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3553 				      ICE_AQC_REPORT_DFLT_CFG :
3554 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3555 	if (status)
3556 		goto out;
3557 
3558 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3559 	cfg->link_fec_opt = pcaps->link_fec_options;
3560 
3561 	switch (fec) {
3562 	case ICE_FEC_BASER:
3563 		/* Clear RS bits, and AND BASE-R ability
3564 		 * bits and OR request bits.
3565 		 */
3566 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3567 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3568 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3569 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3570 		break;
3571 	case ICE_FEC_RS:
3572 		/* Clear BASE-R bits, and AND RS ability
3573 		 * bits and OR request bits.
3574 		 */
3575 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3576 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3577 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3578 		break;
3579 	case ICE_FEC_NONE:
3580 		/* Clear all FEC option bits. */
3581 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3582 		break;
3583 	case ICE_FEC_AUTO:
3584 		/* AND auto FEC bit, and all caps bits. */
3585 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3586 		cfg->link_fec_opt |= pcaps->link_fec_options;
3587 		break;
3588 	default:
3589 		status = -EINVAL;
3590 		break;
3591 	}
3592 
3593 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3594 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3595 		struct ice_link_default_override_tlv tlv = { 0 };
3596 
3597 		status = ice_get_link_default_override(&tlv, pi);
3598 		if (status)
3599 			goto out;
3600 
3601 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3602 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3603 			cfg->link_fec_opt = tlv.fec_options;
3604 	}
3605 
3606 out:
3607 	kfree(pcaps);
3608 
3609 	return status;
3610 }
3611 
3612 /**
3613  * ice_get_link_status - get status of the HW network link
3614  * @pi: port information structure
3615  * @link_up: pointer to bool (true/false = linkup/linkdown)
3616  *
3617  * Variable link_up is true if link is up, false if link is down.
3618  * The variable link_up is invalid if status is non zero. As a
3619  * result of this call, link status reporting becomes enabled
3620  */
3621 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3622 {
3623 	struct ice_phy_info *phy_info;
3624 	int status = 0;
3625 
3626 	if (!pi || !link_up)
3627 		return -EINVAL;
3628 
3629 	phy_info = &pi->phy;
3630 
3631 	if (phy_info->get_link_info) {
3632 		status = ice_update_link_info(pi);
3633 
3634 		if (status)
3635 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3636 				  status);
3637 	}
3638 
3639 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3640 
3641 	return status;
3642 }
3643 
3644 /**
3645  * ice_aq_set_link_restart_an
3646  * @pi: pointer to the port information structure
3647  * @ena_link: if true: enable link, if false: disable link
3648  * @cd: pointer to command details structure or NULL
3649  *
3650  * Sets up the link and restarts the Auto-Negotiation over the link.
3651  */
3652 int
3653 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3654 			   struct ice_sq_cd *cd)
3655 {
3656 	struct ice_aqc_restart_an *cmd;
3657 	struct ice_aq_desc desc;
3658 
3659 	cmd = &desc.params.restart_an;
3660 
3661 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3662 
3663 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3664 	cmd->lport_num = pi->lport;
3665 	if (ena_link)
3666 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3667 	else
3668 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3669 
3670 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3671 }
3672 
3673 /**
3674  * ice_aq_set_event_mask
3675  * @hw: pointer to the HW struct
3676  * @port_num: port number of the physical function
3677  * @mask: event mask to be set
3678  * @cd: pointer to command details structure or NULL
3679  *
3680  * Set event mask (0x0613)
3681  */
3682 int
3683 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3684 		      struct ice_sq_cd *cd)
3685 {
3686 	struct ice_aqc_set_event_mask *cmd;
3687 	struct ice_aq_desc desc;
3688 
3689 	cmd = &desc.params.set_event_mask;
3690 
3691 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3692 
3693 	cmd->lport_num = port_num;
3694 
3695 	cmd->event_mask = cpu_to_le16(mask);
3696 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3697 }
3698 
3699 /**
3700  * ice_aq_set_mac_loopback
3701  * @hw: pointer to the HW struct
3702  * @ena_lpbk: Enable or Disable loopback
3703  * @cd: pointer to command details structure or NULL
3704  *
3705  * Enable/disable loopback on a given port
3706  */
3707 int
3708 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3709 {
3710 	struct ice_aqc_set_mac_lb *cmd;
3711 	struct ice_aq_desc desc;
3712 
3713 	cmd = &desc.params.set_mac_lb;
3714 
3715 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3716 	if (ena_lpbk)
3717 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3718 
3719 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3720 }
3721 
3722 /**
3723  * ice_aq_set_port_id_led
3724  * @pi: pointer to the port information
3725  * @is_orig_mode: is this LED set to original mode (by the net-list)
3726  * @cd: pointer to command details structure or NULL
3727  *
3728  * Set LED value for the given port (0x06e9)
3729  */
3730 int
3731 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3732 		       struct ice_sq_cd *cd)
3733 {
3734 	struct ice_aqc_set_port_id_led *cmd;
3735 	struct ice_hw *hw = pi->hw;
3736 	struct ice_aq_desc desc;
3737 
3738 	cmd = &desc.params.set_port_id_led;
3739 
3740 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3741 
3742 	if (is_orig_mode)
3743 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3744 	else
3745 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3746 
3747 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3748 }
3749 
3750 /**
3751  * ice_aq_get_port_options
3752  * @hw: pointer to the HW struct
3753  * @options: buffer for the resultant port options
3754  * @option_count: input - size of the buffer in port options structures,
3755  *                output - number of returned port options
3756  * @lport: logical port to call the command with (optional)
3757  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3758  *               when PF owns more than 1 port it must be true
3759  * @active_option_idx: index of active port option in returned buffer
3760  * @active_option_valid: active option in returned buffer is valid
3761  * @pending_option_idx: index of pending port option in returned buffer
3762  * @pending_option_valid: pending option in returned buffer is valid
3763  *
3764  * Calls Get Port Options AQC (0x06ea) and verifies result.
3765  */
3766 int
3767 ice_aq_get_port_options(struct ice_hw *hw,
3768 			struct ice_aqc_get_port_options_elem *options,
3769 			u8 *option_count, u8 lport, bool lport_valid,
3770 			u8 *active_option_idx, bool *active_option_valid,
3771 			u8 *pending_option_idx, bool *pending_option_valid)
3772 {
3773 	struct ice_aqc_get_port_options *cmd;
3774 	struct ice_aq_desc desc;
3775 	int status;
3776 	u8 i;
3777 
3778 	/* options buffer shall be able to hold max returned options */
3779 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3780 		return -EINVAL;
3781 
3782 	cmd = &desc.params.get_port_options;
3783 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3784 
3785 	if (lport_valid)
3786 		cmd->lport_num = lport;
3787 	cmd->lport_num_valid = lport_valid;
3788 
3789 	status = ice_aq_send_cmd(hw, &desc, options,
3790 				 *option_count * sizeof(*options), NULL);
3791 	if (status)
3792 		return status;
3793 
3794 	/* verify direct FW response & set output parameters */
3795 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3796 				  cmd->port_options_count);
3797 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3798 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3799 					 cmd->port_options);
3800 	if (*active_option_valid) {
3801 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3802 					       cmd->port_options);
3803 		if (*active_option_idx > (*option_count - 1))
3804 			return -EIO;
3805 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3806 			  *active_option_idx);
3807 	}
3808 
3809 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3810 					  cmd->pending_port_option_status);
3811 	if (*pending_option_valid) {
3812 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3813 						cmd->pending_port_option_status);
3814 		if (*pending_option_idx > (*option_count - 1))
3815 			return -EIO;
3816 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3817 			  *pending_option_idx);
3818 	}
3819 
3820 	/* mask output options fields */
3821 	for (i = 0; i < *option_count; i++) {
3822 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3823 					   options[i].pmd);
3824 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3825 						      options[i].max_lane_speed);
3826 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3827 			  options[i].pmd, options[i].max_lane_speed);
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 /**
3834  * ice_aq_set_port_option
3835  * @hw: pointer to the HW struct
3836  * @lport: logical port to call the command with
3837  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3838  *               when PF owns more than 1 port it must be true
3839  * @new_option: new port option to be written
3840  *
3841  * Calls Set Port Options AQC (0x06eb).
3842  */
3843 int
3844 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3845 		       u8 new_option)
3846 {
3847 	struct ice_aqc_set_port_option *cmd;
3848 	struct ice_aq_desc desc;
3849 
3850 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3851 		return -EINVAL;
3852 
3853 	cmd = &desc.params.set_port_option;
3854 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3855 
3856 	if (lport_valid)
3857 		cmd->lport_num = lport;
3858 
3859 	cmd->lport_num_valid = lport_valid;
3860 	cmd->selected_port_option = new_option;
3861 
3862 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3863 }
3864 
3865 /**
3866  * ice_aq_sff_eeprom
3867  * @hw: pointer to the HW struct
3868  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3869  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3870  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3871  * @page: QSFP page
3872  * @set_page: set or ignore the page
3873  * @data: pointer to data buffer to be read/written to the I2C device.
3874  * @length: 1-16 for read, 1 for write.
3875  * @write: 0 read, 1 for write.
3876  * @cd: pointer to command details structure or NULL
3877  *
3878  * Read/Write SFF EEPROM (0x06EE)
3879  */
3880 int
3881 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3882 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3883 		  bool write, struct ice_sq_cd *cd)
3884 {
3885 	struct ice_aqc_sff_eeprom *cmd;
3886 	struct ice_aq_desc desc;
3887 	u16 i2c_bus_addr;
3888 	int status;
3889 
3890 	if (!data || (mem_addr & 0xff00))
3891 		return -EINVAL;
3892 
3893 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3894 	cmd = &desc.params.read_write_sff_param;
3895 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3896 	cmd->lport_num = (u8)(lport & 0xff);
3897 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3898 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3899 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3900 	if (write)
3901 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3902 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3903 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3904 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
3905 
3906 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3907 	return status;
3908 }
3909 
3910 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3911 {
3912 	switch (type) {
3913 	case ICE_LUT_VSI:
3914 		return ICE_LUT_VSI_SIZE;
3915 	case ICE_LUT_GLOBAL:
3916 		return ICE_LUT_GLOBAL_SIZE;
3917 	case ICE_LUT_PF:
3918 		return ICE_LUT_PF_SIZE;
3919 	}
3920 	WARN_ONCE(1, "incorrect type passed");
3921 	return ICE_LUT_VSI_SIZE;
3922 }
3923 
3924 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3925 {
3926 	switch (size) {
3927 	case ICE_LUT_VSI_SIZE:
3928 		return ICE_AQC_LUT_SIZE_SMALL;
3929 	case ICE_LUT_GLOBAL_SIZE:
3930 		return ICE_AQC_LUT_SIZE_512;
3931 	case ICE_LUT_PF_SIZE:
3932 		return ICE_AQC_LUT_SIZE_2K;
3933 	}
3934 	WARN_ONCE(1, "incorrect size passed");
3935 	return 0;
3936 }
3937 
3938 /**
3939  * __ice_aq_get_set_rss_lut
3940  * @hw: pointer to the hardware structure
3941  * @params: RSS LUT parameters
3942  * @set: set true to set the table, false to get the table
3943  *
3944  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3945  */
3946 static int
3947 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
3948 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
3949 {
3950 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3951 	enum ice_lut_type lut_type = params->lut_type;
3952 	struct ice_aqc_get_set_rss_lut *desc_params;
3953 	enum ice_aqc_lut_flags flags;
3954 	enum ice_lut_size lut_size;
3955 	struct ice_aq_desc desc;
3956 	u8 *lut = params->lut;
3957 
3958 
3959 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3960 		return -EINVAL;
3961 
3962 	lut_size = ice_lut_type_to_size(lut_type);
3963 	if (lut_size > params->lut_size)
3964 		return -EINVAL;
3965 	else if (set && lut_size != params->lut_size)
3966 		return -EINVAL;
3967 
3968 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
3969 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
3970 	if (set)
3971 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3972 
3973 	desc_params = &desc.params.get_set_rss_lut;
3974 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3975 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
3976 
3977 	if (lut_type == ICE_LUT_GLOBAL)
3978 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
3979 					  params->global_lut_id);
3980 
3981 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
3982 	desc_params->flags = cpu_to_le16(flags);
3983 
3984 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3985 }
3986 
3987 /**
3988  * ice_aq_get_rss_lut
3989  * @hw: pointer to the hardware structure
3990  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3991  *
3992  * get the RSS lookup table, PF or VSI type
3993  */
3994 int
3995 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3996 {
3997 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3998 }
3999 
4000 /**
4001  * ice_aq_set_rss_lut
4002  * @hw: pointer to the hardware structure
4003  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4004  *
4005  * set the RSS lookup table, PF or VSI type
4006  */
4007 int
4008 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4009 {
4010 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4011 }
4012 
4013 /**
4014  * __ice_aq_get_set_rss_key
4015  * @hw: pointer to the HW struct
4016  * @vsi_id: VSI FW index
4017  * @key: pointer to key info struct
4018  * @set: set true to set the key, false to get the key
4019  *
4020  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4021  */
4022 static int
4023 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4024 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4025 {
4026 	struct ice_aqc_get_set_rss_key *desc_params;
4027 	u16 key_size = sizeof(*key);
4028 	struct ice_aq_desc desc;
4029 
4030 	if (set) {
4031 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4032 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4033 	} else {
4034 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4035 	}
4036 
4037 	desc_params = &desc.params.get_set_rss_key;
4038 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4039 
4040 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4041 }
4042 
4043 /**
4044  * ice_aq_get_rss_key
4045  * @hw: pointer to the HW struct
4046  * @vsi_handle: software VSI handle
4047  * @key: pointer to key info struct
4048  *
4049  * get the RSS key per VSI
4050  */
4051 int
4052 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4053 		   struct ice_aqc_get_set_rss_keys *key)
4054 {
4055 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4056 		return -EINVAL;
4057 
4058 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4059 					key, false);
4060 }
4061 
4062 /**
4063  * ice_aq_set_rss_key
4064  * @hw: pointer to the HW struct
4065  * @vsi_handle: software VSI handle
4066  * @keys: pointer to key info struct
4067  *
4068  * set the RSS key per VSI
4069  */
4070 int
4071 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4072 		   struct ice_aqc_get_set_rss_keys *keys)
4073 {
4074 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4075 		return -EINVAL;
4076 
4077 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4078 					keys, true);
4079 }
4080 
4081 /**
4082  * ice_aq_add_lan_txq
4083  * @hw: pointer to the hardware structure
4084  * @num_qgrps: Number of added queue groups
4085  * @qg_list: list of queue groups to be added
4086  * @buf_size: size of buffer for indirect command
4087  * @cd: pointer to command details structure or NULL
4088  *
4089  * Add Tx LAN queue (0x0C30)
4090  *
4091  * NOTE:
4092  * Prior to calling add Tx LAN queue:
4093  * Initialize the following as part of the Tx queue context:
4094  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4095  * Cache profile and Packet shaper profile.
4096  *
4097  * After add Tx LAN queue AQ command is completed:
4098  * Interrupts should be associated with specific queues,
4099  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4100  * flow.
4101  */
4102 static int
4103 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4104 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4105 		   struct ice_sq_cd *cd)
4106 {
4107 	struct ice_aqc_add_tx_qgrp *list;
4108 	struct ice_aqc_add_txqs *cmd;
4109 	struct ice_aq_desc desc;
4110 	u16 i, sum_size = 0;
4111 
4112 	cmd = &desc.params.add_txqs;
4113 
4114 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4115 
4116 	if (!qg_list)
4117 		return -EINVAL;
4118 
4119 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4120 		return -EINVAL;
4121 
4122 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4123 		sum_size += struct_size(list, txqs, list->num_txqs);
4124 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4125 						      list->num_txqs);
4126 	}
4127 
4128 	if (buf_size != sum_size)
4129 		return -EINVAL;
4130 
4131 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4132 
4133 	cmd->num_qgrps = num_qgrps;
4134 
4135 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4136 }
4137 
4138 /**
4139  * ice_aq_dis_lan_txq
4140  * @hw: pointer to the hardware structure
4141  * @num_qgrps: number of groups in the list
4142  * @qg_list: the list of groups to disable
4143  * @buf_size: the total size of the qg_list buffer in bytes
4144  * @rst_src: if called due to reset, specifies the reset source
4145  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4146  * @cd: pointer to command details structure or NULL
4147  *
4148  * Disable LAN Tx queue (0x0C31)
4149  */
4150 static int
4151 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4152 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4153 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4154 		   struct ice_sq_cd *cd)
4155 {
4156 	struct ice_aqc_dis_txq_item *item;
4157 	struct ice_aqc_dis_txqs *cmd;
4158 	struct ice_aq_desc desc;
4159 	u16 vmvf_and_timeout;
4160 	u16 i, sz = 0;
4161 	int status;
4162 
4163 	cmd = &desc.params.dis_txqs;
4164 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4165 
4166 	/* qg_list can be NULL only in VM/VF reset flow */
4167 	if (!qg_list && !rst_src)
4168 		return -EINVAL;
4169 
4170 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4171 		return -EINVAL;
4172 
4173 	cmd->num_entries = num_qgrps;
4174 
4175 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4176 
4177 	switch (rst_src) {
4178 	case ICE_VM_RESET:
4179 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4180 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4181 		break;
4182 	case ICE_VF_RESET:
4183 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4184 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4185 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4186 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4187 		break;
4188 	case ICE_NO_RESET:
4189 	default:
4190 		break;
4191 	}
4192 
4193 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4194 
4195 	/* flush pipe on time out */
4196 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4197 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4198 	if (!qg_list)
4199 		goto do_aq;
4200 
4201 	/* set RD bit to indicate that command buffer is provided by the driver
4202 	 * and it needs to be read by the firmware
4203 	 */
4204 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4205 
4206 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4207 		u16 item_size = struct_size(item, q_id, item->num_qs);
4208 
4209 		/* If the num of queues is even, add 2 bytes of padding */
4210 		if ((item->num_qs % 2) == 0)
4211 			item_size += 2;
4212 
4213 		sz += item_size;
4214 
4215 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4216 	}
4217 
4218 	if (buf_size != sz)
4219 		return -EINVAL;
4220 
4221 do_aq:
4222 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4223 	if (status) {
4224 		if (!qg_list)
4225 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4226 				  vmvf_num, hw->adminq.sq_last_status);
4227 		else
4228 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4229 				  le16_to_cpu(qg_list[0].q_id[0]),
4230 				  hw->adminq.sq_last_status);
4231 	}
4232 	return status;
4233 }
4234 
4235 /**
4236  * ice_aq_cfg_lan_txq
4237  * @hw: pointer to the hardware structure
4238  * @buf: buffer for command
4239  * @buf_size: size of buffer in bytes
4240  * @num_qs: number of queues being configured
4241  * @oldport: origination lport
4242  * @newport: destination lport
4243  * @cd: pointer to command details structure or NULL
4244  *
4245  * Move/Configure LAN Tx queue (0x0C32)
4246  *
4247  * There is a better AQ command to use for moving nodes, so only coding
4248  * this one for configuring the node.
4249  */
4250 int
4251 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4252 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4253 		   struct ice_sq_cd *cd)
4254 {
4255 	struct ice_aqc_cfg_txqs *cmd;
4256 	struct ice_aq_desc desc;
4257 	int status;
4258 
4259 	cmd = &desc.params.cfg_txqs;
4260 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4261 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4262 
4263 	if (!buf)
4264 		return -EINVAL;
4265 
4266 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4267 	cmd->num_qs = num_qs;
4268 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4269 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4270 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4271 	cmd->blocked_cgds = 0;
4272 
4273 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4274 	if (status)
4275 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4276 			  hw->adminq.sq_last_status);
4277 	return status;
4278 }
4279 
4280 /**
4281  * ice_aq_add_rdma_qsets
4282  * @hw: pointer to the hardware structure
4283  * @num_qset_grps: Number of RDMA Qset groups
4284  * @qset_list: list of Qset groups to be added
4285  * @buf_size: size of buffer for indirect command
4286  * @cd: pointer to command details structure or NULL
4287  *
4288  * Add Tx RDMA Qsets (0x0C33)
4289  */
4290 static int
4291 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4292 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4293 		      u16 buf_size, struct ice_sq_cd *cd)
4294 {
4295 	struct ice_aqc_add_rdma_qset_data *list;
4296 	struct ice_aqc_add_rdma_qset *cmd;
4297 	struct ice_aq_desc desc;
4298 	u16 i, sum_size = 0;
4299 
4300 	cmd = &desc.params.add_rdma_qset;
4301 
4302 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4303 
4304 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4305 		return -EINVAL;
4306 
4307 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4308 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4309 
4310 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4311 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4312 							     num_qsets);
4313 	}
4314 
4315 	if (buf_size != sum_size)
4316 		return -EINVAL;
4317 
4318 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4319 
4320 	cmd->num_qset_grps = num_qset_grps;
4321 
4322 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4323 }
4324 
4325 /* End of FW Admin Queue command wrappers */
4326 
4327 /**
4328  * ice_write_byte - write a byte to a packed context structure
4329  * @src_ctx:  the context structure to read from
4330  * @dest_ctx: the context to be written to
4331  * @ce_info:  a description of the struct to be filled
4332  */
4333 static void
4334 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4335 {
4336 	u8 src_byte, dest_byte, mask;
4337 	u8 *from, *dest;
4338 	u16 shift_width;
4339 
4340 	/* copy from the next struct field */
4341 	from = src_ctx + ce_info->offset;
4342 
4343 	/* prepare the bits and mask */
4344 	shift_width = ce_info->lsb % 8;
4345 	mask = (u8)(BIT(ce_info->width) - 1);
4346 
4347 	src_byte = *from;
4348 	src_byte &= mask;
4349 
4350 	/* shift to correct alignment */
4351 	mask <<= shift_width;
4352 	src_byte <<= shift_width;
4353 
4354 	/* get the current bits from the target bit string */
4355 	dest = dest_ctx + (ce_info->lsb / 8);
4356 
4357 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4358 
4359 	dest_byte &= ~mask;	/* get the bits not changing */
4360 	dest_byte |= src_byte;	/* add in the new bits */
4361 
4362 	/* put it all back */
4363 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4364 }
4365 
4366 /**
4367  * ice_write_word - write a word to a packed context structure
4368  * @src_ctx:  the context structure to read from
4369  * @dest_ctx: the context to be written to
4370  * @ce_info:  a description of the struct to be filled
4371  */
4372 static void
4373 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4374 {
4375 	u16 src_word, mask;
4376 	__le16 dest_word;
4377 	u8 *from, *dest;
4378 	u16 shift_width;
4379 
4380 	/* copy from the next struct field */
4381 	from = src_ctx + ce_info->offset;
4382 
4383 	/* prepare the bits and mask */
4384 	shift_width = ce_info->lsb % 8;
4385 	mask = BIT(ce_info->width) - 1;
4386 
4387 	/* don't swizzle the bits until after the mask because the mask bits
4388 	 * will be in a different bit position on big endian machines
4389 	 */
4390 	src_word = *(u16 *)from;
4391 	src_word &= mask;
4392 
4393 	/* shift to correct alignment */
4394 	mask <<= shift_width;
4395 	src_word <<= shift_width;
4396 
4397 	/* get the current bits from the target bit string */
4398 	dest = dest_ctx + (ce_info->lsb / 8);
4399 
4400 	memcpy(&dest_word, dest, sizeof(dest_word));
4401 
4402 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4403 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4404 
4405 	/* put it all back */
4406 	memcpy(dest, &dest_word, sizeof(dest_word));
4407 }
4408 
4409 /**
4410  * ice_write_dword - write a dword to a packed context structure
4411  * @src_ctx:  the context structure to read from
4412  * @dest_ctx: the context to be written to
4413  * @ce_info:  a description of the struct to be filled
4414  */
4415 static void
4416 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4417 {
4418 	u32 src_dword, mask;
4419 	__le32 dest_dword;
4420 	u8 *from, *dest;
4421 	u16 shift_width;
4422 
4423 	/* copy from the next struct field */
4424 	from = src_ctx + ce_info->offset;
4425 
4426 	/* prepare the bits and mask */
4427 	shift_width = ce_info->lsb % 8;
4428 
4429 	/* if the field width is exactly 32 on an x86 machine, then the shift
4430 	 * operation will not work because the SHL instructions count is masked
4431 	 * to 5 bits so the shift will do nothing
4432 	 */
4433 	if (ce_info->width < 32)
4434 		mask = BIT(ce_info->width) - 1;
4435 	else
4436 		mask = (u32)~0;
4437 
4438 	/* don't swizzle the bits until after the mask because the mask bits
4439 	 * will be in a different bit position on big endian machines
4440 	 */
4441 	src_dword = *(u32 *)from;
4442 	src_dword &= mask;
4443 
4444 	/* shift to correct alignment */
4445 	mask <<= shift_width;
4446 	src_dword <<= shift_width;
4447 
4448 	/* get the current bits from the target bit string */
4449 	dest = dest_ctx + (ce_info->lsb / 8);
4450 
4451 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4452 
4453 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4454 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4455 
4456 	/* put it all back */
4457 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4458 }
4459 
4460 /**
4461  * ice_write_qword - write a qword to a packed context structure
4462  * @src_ctx:  the context structure to read from
4463  * @dest_ctx: the context to be written to
4464  * @ce_info:  a description of the struct to be filled
4465  */
4466 static void
4467 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4468 {
4469 	u64 src_qword, mask;
4470 	__le64 dest_qword;
4471 	u8 *from, *dest;
4472 	u16 shift_width;
4473 
4474 	/* copy from the next struct field */
4475 	from = src_ctx + ce_info->offset;
4476 
4477 	/* prepare the bits and mask */
4478 	shift_width = ce_info->lsb % 8;
4479 
4480 	/* if the field width is exactly 64 on an x86 machine, then the shift
4481 	 * operation will not work because the SHL instructions count is masked
4482 	 * to 6 bits so the shift will do nothing
4483 	 */
4484 	if (ce_info->width < 64)
4485 		mask = BIT_ULL(ce_info->width) - 1;
4486 	else
4487 		mask = (u64)~0;
4488 
4489 	/* don't swizzle the bits until after the mask because the mask bits
4490 	 * will be in a different bit position on big endian machines
4491 	 */
4492 	src_qword = *(u64 *)from;
4493 	src_qword &= mask;
4494 
4495 	/* shift to correct alignment */
4496 	mask <<= shift_width;
4497 	src_qword <<= shift_width;
4498 
4499 	/* get the current bits from the target bit string */
4500 	dest = dest_ctx + (ce_info->lsb / 8);
4501 
4502 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4503 
4504 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4505 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4506 
4507 	/* put it all back */
4508 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4509 }
4510 
4511 /**
4512  * ice_set_ctx - set context bits in packed structure
4513  * @hw: pointer to the hardware structure
4514  * @src_ctx:  pointer to a generic non-packed context structure
4515  * @dest_ctx: pointer to memory for the packed structure
4516  * @ce_info:  a description of the structure to be transformed
4517  */
4518 int
4519 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4520 	    const struct ice_ctx_ele *ce_info)
4521 {
4522 	int f;
4523 
4524 	for (f = 0; ce_info[f].width; f++) {
4525 		/* We have to deal with each element of the FW response
4526 		 * using the correct size so that we are correct regardless
4527 		 * of the endianness of the machine.
4528 		 */
4529 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4530 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4531 				  f, ce_info[f].width, ce_info[f].size_of);
4532 			continue;
4533 		}
4534 		switch (ce_info[f].size_of) {
4535 		case sizeof(u8):
4536 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4537 			break;
4538 		case sizeof(u16):
4539 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4540 			break;
4541 		case sizeof(u32):
4542 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4543 			break;
4544 		case sizeof(u64):
4545 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4546 			break;
4547 		default:
4548 			return -EINVAL;
4549 		}
4550 	}
4551 
4552 	return 0;
4553 }
4554 
4555 /**
4556  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4557  * @hw: pointer to the HW struct
4558  * @vsi_handle: software VSI handle
4559  * @tc: TC number
4560  * @q_handle: software queue handle
4561  */
4562 struct ice_q_ctx *
4563 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4564 {
4565 	struct ice_vsi_ctx *vsi;
4566 	struct ice_q_ctx *q_ctx;
4567 
4568 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4569 	if (!vsi)
4570 		return NULL;
4571 	if (q_handle >= vsi->num_lan_q_entries[tc])
4572 		return NULL;
4573 	if (!vsi->lan_q_ctx[tc])
4574 		return NULL;
4575 	q_ctx = vsi->lan_q_ctx[tc];
4576 	return &q_ctx[q_handle];
4577 }
4578 
4579 /**
4580  * ice_ena_vsi_txq
4581  * @pi: port information structure
4582  * @vsi_handle: software VSI handle
4583  * @tc: TC number
4584  * @q_handle: software queue handle
4585  * @num_qgrps: Number of added queue groups
4586  * @buf: list of queue groups to be added
4587  * @buf_size: size of buffer for indirect command
4588  * @cd: pointer to command details structure or NULL
4589  *
4590  * This function adds one LAN queue
4591  */
4592 int
4593 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4594 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4595 		struct ice_sq_cd *cd)
4596 {
4597 	struct ice_aqc_txsched_elem_data node = { 0 };
4598 	struct ice_sched_node *parent;
4599 	struct ice_q_ctx *q_ctx;
4600 	struct ice_hw *hw;
4601 	int status;
4602 
4603 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4604 		return -EIO;
4605 
4606 	if (num_qgrps > 1 || buf->num_txqs > 1)
4607 		return -ENOSPC;
4608 
4609 	hw = pi->hw;
4610 
4611 	if (!ice_is_vsi_valid(hw, vsi_handle))
4612 		return -EINVAL;
4613 
4614 	mutex_lock(&pi->sched_lock);
4615 
4616 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4617 	if (!q_ctx) {
4618 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4619 			  q_handle);
4620 		status = -EINVAL;
4621 		goto ena_txq_exit;
4622 	}
4623 
4624 	/* find a parent node */
4625 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4626 					    ICE_SCHED_NODE_OWNER_LAN);
4627 	if (!parent) {
4628 		status = -EINVAL;
4629 		goto ena_txq_exit;
4630 	}
4631 
4632 	buf->parent_teid = parent->info.node_teid;
4633 	node.parent_teid = parent->info.node_teid;
4634 	/* Mark that the values in the "generic" section as valid. The default
4635 	 * value in the "generic" section is zero. This means that :
4636 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4637 	 * - 0 priority among siblings, indicated by Bit 1-3.
4638 	 * - WFQ, indicated by Bit 4.
4639 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4640 	 * Bit 5-6.
4641 	 * - Bit 7 is reserved.
4642 	 * Without setting the generic section as valid in valid_sections, the
4643 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4644 	 */
4645 	buf->txqs[0].info.valid_sections =
4646 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4647 		ICE_AQC_ELEM_VALID_EIR;
4648 	buf->txqs[0].info.generic = 0;
4649 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4650 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4651 	buf->txqs[0].info.cir_bw.bw_alloc =
4652 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4653 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4654 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4655 	buf->txqs[0].info.eir_bw.bw_alloc =
4656 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4657 
4658 	/* add the LAN queue */
4659 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4660 	if (status) {
4661 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4662 			  le16_to_cpu(buf->txqs[0].txq_id),
4663 			  hw->adminq.sq_last_status);
4664 		goto ena_txq_exit;
4665 	}
4666 
4667 	node.node_teid = buf->txqs[0].q_teid;
4668 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4669 	q_ctx->q_handle = q_handle;
4670 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4671 
4672 	/* add a leaf node into scheduler tree queue layer */
4673 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4674 	if (!status)
4675 		status = ice_sched_replay_q_bw(pi, q_ctx);
4676 
4677 ena_txq_exit:
4678 	mutex_unlock(&pi->sched_lock);
4679 	return status;
4680 }
4681 
4682 /**
4683  * ice_dis_vsi_txq
4684  * @pi: port information structure
4685  * @vsi_handle: software VSI handle
4686  * @tc: TC number
4687  * @num_queues: number of queues
4688  * @q_handles: pointer to software queue handle array
4689  * @q_ids: pointer to the q_id array
4690  * @q_teids: pointer to queue node teids
4691  * @rst_src: if called due to reset, specifies the reset source
4692  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4693  * @cd: pointer to command details structure or NULL
4694  *
4695  * This function removes queues and their corresponding nodes in SW DB
4696  */
4697 int
4698 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4699 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4700 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4701 		struct ice_sq_cd *cd)
4702 {
4703 	DEFINE_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4704 	u16 i, buf_size = __struct_size(qg_list);
4705 	struct ice_q_ctx *q_ctx;
4706 	int status = -ENOENT;
4707 	struct ice_hw *hw;
4708 
4709 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4710 		return -EIO;
4711 
4712 	hw = pi->hw;
4713 
4714 	if (!num_queues) {
4715 		/* if queue is disabled already yet the disable queue command
4716 		 * has to be sent to complete the VF reset, then call
4717 		 * ice_aq_dis_lan_txq without any queue information
4718 		 */
4719 		if (rst_src)
4720 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4721 						  vmvf_num, NULL);
4722 		return -EIO;
4723 	}
4724 
4725 	mutex_lock(&pi->sched_lock);
4726 
4727 	for (i = 0; i < num_queues; i++) {
4728 		struct ice_sched_node *node;
4729 
4730 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4731 		if (!node)
4732 			continue;
4733 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4734 		if (!q_ctx) {
4735 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4736 				  q_handles[i]);
4737 			continue;
4738 		}
4739 		if (q_ctx->q_handle != q_handles[i]) {
4740 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4741 				  q_ctx->q_handle, q_handles[i]);
4742 			continue;
4743 		}
4744 		qg_list->parent_teid = node->info.parent_teid;
4745 		qg_list->num_qs = 1;
4746 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4747 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4748 					    vmvf_num, cd);
4749 
4750 		if (status)
4751 			break;
4752 		ice_free_sched_node(pi, node);
4753 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4754 		q_ctx->q_teid = ICE_INVAL_TEID;
4755 	}
4756 	mutex_unlock(&pi->sched_lock);
4757 	return status;
4758 }
4759 
4760 /**
4761  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4762  * @pi: port information structure
4763  * @vsi_handle: software VSI handle
4764  * @tc_bitmap: TC bitmap
4765  * @maxqs: max queues array per TC
4766  * @owner: LAN or RDMA
4767  *
4768  * This function adds/updates the VSI queues per TC.
4769  */
4770 static int
4771 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4772 	       u16 *maxqs, u8 owner)
4773 {
4774 	int status = 0;
4775 	u8 i;
4776 
4777 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4778 		return -EIO;
4779 
4780 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4781 		return -EINVAL;
4782 
4783 	mutex_lock(&pi->sched_lock);
4784 
4785 	ice_for_each_traffic_class(i) {
4786 		/* configuration is possible only if TC node is present */
4787 		if (!ice_sched_get_tc_node(pi, i))
4788 			continue;
4789 
4790 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4791 					   ice_is_tc_ena(tc_bitmap, i));
4792 		if (status)
4793 			break;
4794 	}
4795 
4796 	mutex_unlock(&pi->sched_lock);
4797 	return status;
4798 }
4799 
4800 /**
4801  * ice_cfg_vsi_lan - configure VSI LAN queues
4802  * @pi: port information structure
4803  * @vsi_handle: software VSI handle
4804  * @tc_bitmap: TC bitmap
4805  * @max_lanqs: max LAN queues array per TC
4806  *
4807  * This function adds/updates the VSI LAN queues per TC.
4808  */
4809 int
4810 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4811 		u16 *max_lanqs)
4812 {
4813 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4814 			      ICE_SCHED_NODE_OWNER_LAN);
4815 }
4816 
4817 /**
4818  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4819  * @pi: port information structure
4820  * @vsi_handle: software VSI handle
4821  * @tc_bitmap: TC bitmap
4822  * @max_rdmaqs: max RDMA queues array per TC
4823  *
4824  * This function adds/updates the VSI RDMA queues per TC.
4825  */
4826 int
4827 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4828 		 u16 *max_rdmaqs)
4829 {
4830 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4831 			      ICE_SCHED_NODE_OWNER_RDMA);
4832 }
4833 
4834 /**
4835  * ice_ena_vsi_rdma_qset
4836  * @pi: port information structure
4837  * @vsi_handle: software VSI handle
4838  * @tc: TC number
4839  * @rdma_qset: pointer to RDMA Qset
4840  * @num_qsets: number of RDMA Qsets
4841  * @qset_teid: pointer to Qset node TEIDs
4842  *
4843  * This function adds RDMA Qset
4844  */
4845 int
4846 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4847 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4848 {
4849 	struct ice_aqc_txsched_elem_data node = { 0 };
4850 	struct ice_aqc_add_rdma_qset_data *buf;
4851 	struct ice_sched_node *parent;
4852 	struct ice_hw *hw;
4853 	u16 i, buf_size;
4854 	int ret;
4855 
4856 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4857 		return -EIO;
4858 	hw = pi->hw;
4859 
4860 	if (!ice_is_vsi_valid(hw, vsi_handle))
4861 		return -EINVAL;
4862 
4863 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4864 	buf = kzalloc(buf_size, GFP_KERNEL);
4865 	if (!buf)
4866 		return -ENOMEM;
4867 	mutex_lock(&pi->sched_lock);
4868 
4869 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4870 					    ICE_SCHED_NODE_OWNER_RDMA);
4871 	if (!parent) {
4872 		ret = -EINVAL;
4873 		goto rdma_error_exit;
4874 	}
4875 	buf->parent_teid = parent->info.node_teid;
4876 	node.parent_teid = parent->info.node_teid;
4877 
4878 	buf->num_qsets = cpu_to_le16(num_qsets);
4879 	for (i = 0; i < num_qsets; i++) {
4880 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4881 		buf->rdma_qsets[i].info.valid_sections =
4882 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4883 			ICE_AQC_ELEM_VALID_EIR;
4884 		buf->rdma_qsets[i].info.generic = 0;
4885 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4886 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4887 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4888 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4889 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4890 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4891 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4892 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4893 	}
4894 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4895 	if (ret) {
4896 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4897 		goto rdma_error_exit;
4898 	}
4899 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4900 	for (i = 0; i < num_qsets; i++) {
4901 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4902 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4903 					 &node, NULL);
4904 		if (ret)
4905 			break;
4906 		qset_teid[i] = le32_to_cpu(node.node_teid);
4907 	}
4908 rdma_error_exit:
4909 	mutex_unlock(&pi->sched_lock);
4910 	kfree(buf);
4911 	return ret;
4912 }
4913 
4914 /**
4915  * ice_dis_vsi_rdma_qset - free RDMA resources
4916  * @pi: port_info struct
4917  * @count: number of RDMA Qsets to free
4918  * @qset_teid: TEID of Qset node
4919  * @q_id: list of queue IDs being disabled
4920  */
4921 int
4922 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4923 		      u16 *q_id)
4924 {
4925 	DEFINE_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4926 	u16 qg_size = __struct_size(qg_list);
4927 	struct ice_hw *hw;
4928 	int status = 0;
4929 	int i;
4930 
4931 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4932 		return -EIO;
4933 
4934 	hw = pi->hw;
4935 
4936 	mutex_lock(&pi->sched_lock);
4937 
4938 	for (i = 0; i < count; i++) {
4939 		struct ice_sched_node *node;
4940 
4941 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4942 		if (!node)
4943 			continue;
4944 
4945 		qg_list->parent_teid = node->info.parent_teid;
4946 		qg_list->num_qs = 1;
4947 		qg_list->q_id[0] =
4948 			cpu_to_le16(q_id[i] |
4949 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4950 
4951 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4952 					    ICE_NO_RESET, 0, NULL);
4953 		if (status)
4954 			break;
4955 
4956 		ice_free_sched_node(pi, node);
4957 	}
4958 
4959 	mutex_unlock(&pi->sched_lock);
4960 	return status;
4961 }
4962 
4963 /**
4964  * ice_aq_get_cgu_abilities - get cgu abilities
4965  * @hw: pointer to the HW struct
4966  * @abilities: CGU abilities
4967  *
4968  * Get CGU abilities (0x0C61)
4969  * Return: 0 on success or negative value on failure.
4970  */
4971 int
4972 ice_aq_get_cgu_abilities(struct ice_hw *hw,
4973 			 struct ice_aqc_get_cgu_abilities *abilities)
4974 {
4975 	struct ice_aq_desc desc;
4976 
4977 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4978 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4979 }
4980 
4981 /**
4982  * ice_aq_set_input_pin_cfg - set input pin config
4983  * @hw: pointer to the HW struct
4984  * @input_idx: Input index
4985  * @flags1: Input flags
4986  * @flags2: Input flags
4987  * @freq: Frequency in Hz
4988  * @phase_delay: Delay in ps
4989  *
4990  * Set CGU input config (0x0C62)
4991  * Return: 0 on success or negative value on failure.
4992  */
4993 int
4994 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
4995 			 u32 freq, s32 phase_delay)
4996 {
4997 	struct ice_aqc_set_cgu_input_config *cmd;
4998 	struct ice_aq_desc desc;
4999 
5000 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5001 	cmd = &desc.params.set_cgu_input_config;
5002 	cmd->input_idx = input_idx;
5003 	cmd->flags1 = flags1;
5004 	cmd->flags2 = flags2;
5005 	cmd->freq = cpu_to_le32(freq);
5006 	cmd->phase_delay = cpu_to_le32(phase_delay);
5007 
5008 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5009 }
5010 
5011 /**
5012  * ice_aq_get_input_pin_cfg - get input pin config
5013  * @hw: pointer to the HW struct
5014  * @input_idx: Input index
5015  * @status: Pin status
5016  * @type: Pin type
5017  * @flags1: Input flags
5018  * @flags2: Input flags
5019  * @freq: Frequency in Hz
5020  * @phase_delay: Delay in ps
5021  *
5022  * Get CGU input config (0x0C63)
5023  * Return: 0 on success or negative value on failure.
5024  */
5025 int
5026 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5027 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5028 {
5029 	struct ice_aqc_get_cgu_input_config *cmd;
5030 	struct ice_aq_desc desc;
5031 	int ret;
5032 
5033 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5034 	cmd = &desc.params.get_cgu_input_config;
5035 	cmd->input_idx = input_idx;
5036 
5037 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5038 	if (!ret) {
5039 		if (status)
5040 			*status = cmd->status;
5041 		if (type)
5042 			*type = cmd->type;
5043 		if (flags1)
5044 			*flags1 = cmd->flags1;
5045 		if (flags2)
5046 			*flags2 = cmd->flags2;
5047 		if (freq)
5048 			*freq = le32_to_cpu(cmd->freq);
5049 		if (phase_delay)
5050 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5051 	}
5052 
5053 	return ret;
5054 }
5055 
5056 /**
5057  * ice_aq_set_output_pin_cfg - set output pin config
5058  * @hw: pointer to the HW struct
5059  * @output_idx: Output index
5060  * @flags: Output flags
5061  * @src_sel: Index of DPLL block
5062  * @freq: Output frequency
5063  * @phase_delay: Output phase compensation
5064  *
5065  * Set CGU output config (0x0C64)
5066  * Return: 0 on success or negative value on failure.
5067  */
5068 int
5069 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5070 			  u8 src_sel, u32 freq, s32 phase_delay)
5071 {
5072 	struct ice_aqc_set_cgu_output_config *cmd;
5073 	struct ice_aq_desc desc;
5074 
5075 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5076 	cmd = &desc.params.set_cgu_output_config;
5077 	cmd->output_idx = output_idx;
5078 	cmd->flags = flags;
5079 	cmd->src_sel = src_sel;
5080 	cmd->freq = cpu_to_le32(freq);
5081 	cmd->phase_delay = cpu_to_le32(phase_delay);
5082 
5083 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5084 }
5085 
5086 /**
5087  * ice_aq_get_output_pin_cfg - get output pin config
5088  * @hw: pointer to the HW struct
5089  * @output_idx: Output index
5090  * @flags: Output flags
5091  * @src_sel: Internal DPLL source
5092  * @freq: Output frequency
5093  * @src_freq: Source frequency
5094  *
5095  * Get CGU output config (0x0C65)
5096  * Return: 0 on success or negative value on failure.
5097  */
5098 int
5099 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5100 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5101 {
5102 	struct ice_aqc_get_cgu_output_config *cmd;
5103 	struct ice_aq_desc desc;
5104 	int ret;
5105 
5106 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5107 	cmd = &desc.params.get_cgu_output_config;
5108 	cmd->output_idx = output_idx;
5109 
5110 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5111 	if (!ret) {
5112 		if (flags)
5113 			*flags = cmd->flags;
5114 		if (src_sel)
5115 			*src_sel = cmd->src_sel;
5116 		if (freq)
5117 			*freq = le32_to_cpu(cmd->freq);
5118 		if (src_freq)
5119 			*src_freq = le32_to_cpu(cmd->src_freq);
5120 	}
5121 
5122 	return ret;
5123 }
5124 
5125 /**
5126  * ice_aq_get_cgu_dpll_status - get dpll status
5127  * @hw: pointer to the HW struct
5128  * @dpll_num: DPLL index
5129  * @ref_state: Reference clock state
5130  * @config: current DPLL config
5131  * @dpll_state: current DPLL state
5132  * @phase_offset: Phase offset in ns
5133  * @eec_mode: EEC_mode
5134  *
5135  * Get CGU DPLL status (0x0C66)
5136  * Return: 0 on success or negative value on failure.
5137  */
5138 int
5139 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5140 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5141 			   u8 *eec_mode)
5142 {
5143 	struct ice_aqc_get_cgu_dpll_status *cmd;
5144 	struct ice_aq_desc desc;
5145 	int status;
5146 
5147 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5148 	cmd = &desc.params.get_cgu_dpll_status;
5149 	cmd->dpll_num = dpll_num;
5150 
5151 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5152 	if (!status) {
5153 		*ref_state = cmd->ref_state;
5154 		*dpll_state = cmd->dpll_state;
5155 		*config = cmd->config;
5156 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5157 		*phase_offset <<= 32;
5158 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5159 		*phase_offset = sign_extend64(*phase_offset, 47);
5160 		*eec_mode = cmd->eec_mode;
5161 	}
5162 
5163 	return status;
5164 }
5165 
5166 /**
5167  * ice_aq_set_cgu_dpll_config - set dpll config
5168  * @hw: pointer to the HW struct
5169  * @dpll_num: DPLL index
5170  * @ref_state: Reference clock state
5171  * @config: DPLL config
5172  * @eec_mode: EEC mode
5173  *
5174  * Set CGU DPLL config (0x0C67)
5175  * Return: 0 on success or negative value on failure.
5176  */
5177 int
5178 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5179 			   u8 config, u8 eec_mode)
5180 {
5181 	struct ice_aqc_set_cgu_dpll_config *cmd;
5182 	struct ice_aq_desc desc;
5183 
5184 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5185 	cmd = &desc.params.set_cgu_dpll_config;
5186 	cmd->dpll_num = dpll_num;
5187 	cmd->ref_state = ref_state;
5188 	cmd->config = config;
5189 	cmd->eec_mode = eec_mode;
5190 
5191 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5192 }
5193 
5194 /**
5195  * ice_aq_set_cgu_ref_prio - set input reference priority
5196  * @hw: pointer to the HW struct
5197  * @dpll_num: DPLL index
5198  * @ref_idx: Reference pin index
5199  * @ref_priority: Reference input priority
5200  *
5201  * Set CGU reference priority (0x0C68)
5202  * Return: 0 on success or negative value on failure.
5203  */
5204 int
5205 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5206 			u8 ref_priority)
5207 {
5208 	struct ice_aqc_set_cgu_ref_prio *cmd;
5209 	struct ice_aq_desc desc;
5210 
5211 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5212 	cmd = &desc.params.set_cgu_ref_prio;
5213 	cmd->dpll_num = dpll_num;
5214 	cmd->ref_idx = ref_idx;
5215 	cmd->ref_priority = ref_priority;
5216 
5217 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5218 }
5219 
5220 /**
5221  * ice_aq_get_cgu_ref_prio - get input reference priority
5222  * @hw: pointer to the HW struct
5223  * @dpll_num: DPLL index
5224  * @ref_idx: Reference pin index
5225  * @ref_prio: Reference input priority
5226  *
5227  * Get CGU reference priority (0x0C69)
5228  * Return: 0 on success or negative value on failure.
5229  */
5230 int
5231 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5232 			u8 *ref_prio)
5233 {
5234 	struct ice_aqc_get_cgu_ref_prio *cmd;
5235 	struct ice_aq_desc desc;
5236 	int status;
5237 
5238 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5239 	cmd = &desc.params.get_cgu_ref_prio;
5240 	cmd->dpll_num = dpll_num;
5241 	cmd->ref_idx = ref_idx;
5242 
5243 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5244 	if (!status)
5245 		*ref_prio = cmd->ref_priority;
5246 
5247 	return status;
5248 }
5249 
5250 /**
5251  * ice_aq_get_cgu_info - get cgu info
5252  * @hw: pointer to the HW struct
5253  * @cgu_id: CGU ID
5254  * @cgu_cfg_ver: CGU config version
5255  * @cgu_fw_ver: CGU firmware version
5256  *
5257  * Get CGU info (0x0C6A)
5258  * Return: 0 on success or negative value on failure.
5259  */
5260 int
5261 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5262 		    u32 *cgu_fw_ver)
5263 {
5264 	struct ice_aqc_get_cgu_info *cmd;
5265 	struct ice_aq_desc desc;
5266 	int status;
5267 
5268 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5269 	cmd = &desc.params.get_cgu_info;
5270 
5271 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5272 	if (!status) {
5273 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5274 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5275 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5276 	}
5277 
5278 	return status;
5279 }
5280 
5281 /**
5282  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5283  * @hw: pointer to the HW struct
5284  * @phy_output: PHY reference clock output pin
5285  * @enable: GPIO state to be applied
5286  * @freq: PHY output frequency
5287  *
5288  * Set phy recovered clock as reference (0x0630)
5289  * Return: 0 on success or negative value on failure.
5290  */
5291 int
5292 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5293 			   u32 *freq)
5294 {
5295 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5296 	struct ice_aq_desc desc;
5297 	int status;
5298 
5299 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5300 	cmd = &desc.params.set_phy_rec_clk_out;
5301 	cmd->phy_output = phy_output;
5302 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5303 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5304 	cmd->freq = cpu_to_le32(*freq);
5305 
5306 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5307 	if (!status)
5308 		*freq = le32_to_cpu(cmd->freq);
5309 
5310 	return status;
5311 }
5312 
5313 /**
5314  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5315  * @hw: pointer to the HW struct
5316  * @phy_output: PHY reference clock output pin
5317  * @port_num: Port number
5318  * @flags: PHY flags
5319  * @node_handle: PHY output frequency
5320  *
5321  * Get PHY recovered clock output info (0x0631)
5322  * Return: 0 on success or negative value on failure.
5323  */
5324 int
5325 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5326 			   u8 *flags, u16 *node_handle)
5327 {
5328 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5329 	struct ice_aq_desc desc;
5330 	int status;
5331 
5332 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5333 	cmd = &desc.params.get_phy_rec_clk_out;
5334 	cmd->phy_output = *phy_output;
5335 
5336 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5337 	if (!status) {
5338 		*phy_output = cmd->phy_output;
5339 		if (port_num)
5340 			*port_num = cmd->port_num;
5341 		if (flags)
5342 			*flags = cmd->flags;
5343 		if (node_handle)
5344 			*node_handle = le16_to_cpu(cmd->node_handle);
5345 	}
5346 
5347 	return status;
5348 }
5349 
5350 /**
5351  * ice_aq_get_sensor_reading
5352  * @hw: pointer to the HW struct
5353  * @data: pointer to data to be read from the sensor
5354  *
5355  * Get sensor reading (0x0632)
5356  */
5357 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5358 			      struct ice_aqc_get_sensor_reading_resp *data)
5359 {
5360 	struct ice_aqc_get_sensor_reading *cmd;
5361 	struct ice_aq_desc desc;
5362 	int status;
5363 
5364 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5365 	cmd = &desc.params.get_sensor_reading;
5366 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5367 #define ICE_INTERNAL_TEMP_SENSOR	0
5368 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5369 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5370 
5371 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5372 	if (!status)
5373 		memcpy(data, &desc.params.get_sensor_reading_resp,
5374 		       sizeof(*data));
5375 
5376 	return status;
5377 }
5378 
5379 /**
5380  * ice_replay_pre_init - replay pre initialization
5381  * @hw: pointer to the HW struct
5382  *
5383  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5384  */
5385 static int ice_replay_pre_init(struct ice_hw *hw)
5386 {
5387 	struct ice_switch_info *sw = hw->switch_info;
5388 	u8 i;
5389 
5390 	/* Delete old entries from replay filter list head if there is any */
5391 	ice_rm_all_sw_replay_rule_info(hw);
5392 	/* In start of replay, move entries into replay_rules list, it
5393 	 * will allow adding rules entries back to filt_rules list,
5394 	 * which is operational list.
5395 	 */
5396 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5397 		list_replace_init(&sw->recp_list[i].filt_rules,
5398 				  &sw->recp_list[i].filt_replay_rules);
5399 	ice_sched_replay_agg_vsi_preinit(hw);
5400 
5401 	return 0;
5402 }
5403 
5404 /**
5405  * ice_replay_vsi - replay VSI configuration
5406  * @hw: pointer to the HW struct
5407  * @vsi_handle: driver VSI handle
5408  *
5409  * Restore all VSI configuration after reset. It is required to call this
5410  * function with main VSI first.
5411  */
5412 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5413 {
5414 	int status;
5415 
5416 	if (!ice_is_vsi_valid(hw, vsi_handle))
5417 		return -EINVAL;
5418 
5419 	/* Replay pre-initialization if there is any */
5420 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5421 		status = ice_replay_pre_init(hw);
5422 		if (status)
5423 			return status;
5424 	}
5425 	/* Replay per VSI all RSS configurations */
5426 	status = ice_replay_rss_cfg(hw, vsi_handle);
5427 	if (status)
5428 		return status;
5429 	/* Replay per VSI all filters */
5430 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5431 	if (!status)
5432 		status = ice_replay_vsi_agg(hw, vsi_handle);
5433 	return status;
5434 }
5435 
5436 /**
5437  * ice_replay_post - post replay configuration cleanup
5438  * @hw: pointer to the HW struct
5439  *
5440  * Post replay cleanup.
5441  */
5442 void ice_replay_post(struct ice_hw *hw)
5443 {
5444 	/* Delete old entries from replay filter list head */
5445 	ice_rm_all_sw_replay_rule_info(hw);
5446 	ice_sched_replay_agg(hw);
5447 }
5448 
5449 /**
5450  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5451  * @hw: ptr to the hardware info
5452  * @reg: offset of 64 bit HW register to read from
5453  * @prev_stat_loaded: bool to specify if previous stats are loaded
5454  * @prev_stat: ptr to previous loaded stat value
5455  * @cur_stat: ptr to current stat value
5456  */
5457 void
5458 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5459 		  u64 *prev_stat, u64 *cur_stat)
5460 {
5461 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5462 
5463 	/* device stats are not reset at PFR, they likely will not be zeroed
5464 	 * when the driver starts. Thus, save the value from the first read
5465 	 * without adding to the statistic value so that we report stats which
5466 	 * count up from zero.
5467 	 */
5468 	if (!prev_stat_loaded) {
5469 		*prev_stat = new_data;
5470 		return;
5471 	}
5472 
5473 	/* Calculate the difference between the new and old values, and then
5474 	 * add it to the software stat value.
5475 	 */
5476 	if (new_data >= *prev_stat)
5477 		*cur_stat += new_data - *prev_stat;
5478 	else
5479 		/* to manage the potential roll-over */
5480 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5481 
5482 	/* Update the previously stored value to prepare for next read */
5483 	*prev_stat = new_data;
5484 }
5485 
5486 /**
5487  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5488  * @hw: ptr to the hardware info
5489  * @reg: offset of HW register to read from
5490  * @prev_stat_loaded: bool to specify if previous stats are loaded
5491  * @prev_stat: ptr to previous loaded stat value
5492  * @cur_stat: ptr to current stat value
5493  */
5494 void
5495 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5496 		  u64 *prev_stat, u64 *cur_stat)
5497 {
5498 	u32 new_data;
5499 
5500 	new_data = rd32(hw, reg);
5501 
5502 	/* device stats are not reset at PFR, they likely will not be zeroed
5503 	 * when the driver starts. Thus, save the value from the first read
5504 	 * without adding to the statistic value so that we report stats which
5505 	 * count up from zero.
5506 	 */
5507 	if (!prev_stat_loaded) {
5508 		*prev_stat = new_data;
5509 		return;
5510 	}
5511 
5512 	/* Calculate the difference between the new and old values, and then
5513 	 * add it to the software stat value.
5514 	 */
5515 	if (new_data >= *prev_stat)
5516 		*cur_stat += new_data - *prev_stat;
5517 	else
5518 		/* to manage the potential roll-over */
5519 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5520 
5521 	/* Update the previously stored value to prepare for next read */
5522 	*prev_stat = new_data;
5523 }
5524 
5525 /**
5526  * ice_sched_query_elem - query element information from HW
5527  * @hw: pointer to the HW struct
5528  * @node_teid: node TEID to be queried
5529  * @buf: buffer to element information
5530  *
5531  * This function queries HW element information
5532  */
5533 int
5534 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5535 		     struct ice_aqc_txsched_elem_data *buf)
5536 {
5537 	u16 buf_size, num_elem_ret = 0;
5538 	int status;
5539 
5540 	buf_size = sizeof(*buf);
5541 	memset(buf, 0, buf_size);
5542 	buf->node_teid = cpu_to_le32(node_teid);
5543 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5544 					  NULL);
5545 	if (status || num_elem_ret != 1)
5546 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5547 	return status;
5548 }
5549 
5550 /**
5551  * ice_aq_read_i2c
5552  * @hw: pointer to the hw struct
5553  * @topo_addr: topology address for a device to communicate with
5554  * @bus_addr: 7-bit I2C bus address
5555  * @addr: I2C memory address (I2C offset) with up to 16 bits
5556  * @params: I2C parameters: bit [7] - Repeated start,
5557  *			    bits [6:5] data offset size,
5558  *			    bit [4] - I2C address type,
5559  *			    bits [3:0] - data size to read (0-16 bytes)
5560  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5561  * @cd: pointer to command details structure or NULL
5562  *
5563  * Read I2C (0x06E2)
5564  */
5565 int
5566 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5567 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5568 		struct ice_sq_cd *cd)
5569 {
5570 	struct ice_aq_desc desc = { 0 };
5571 	struct ice_aqc_i2c *cmd;
5572 	u8 data_size;
5573 	int status;
5574 
5575 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5576 	cmd = &desc.params.read_write_i2c;
5577 
5578 	if (!data)
5579 		return -EINVAL;
5580 
5581 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5582 
5583 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5584 	cmd->topo_addr = topo_addr;
5585 	cmd->i2c_params = params;
5586 	cmd->i2c_addr = addr;
5587 
5588 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5589 	if (!status) {
5590 		struct ice_aqc_read_i2c_resp *resp;
5591 		u8 i;
5592 
5593 		resp = &desc.params.read_i2c_resp;
5594 		for (i = 0; i < data_size; i++) {
5595 			*data = resp->i2c_data[i];
5596 			data++;
5597 		}
5598 	}
5599 
5600 	return status;
5601 }
5602 
5603 /**
5604  * ice_aq_write_i2c
5605  * @hw: pointer to the hw struct
5606  * @topo_addr: topology address for a device to communicate with
5607  * @bus_addr: 7-bit I2C bus address
5608  * @addr: I2C memory address (I2C offset) with up to 16 bits
5609  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5610  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5611  * @cd: pointer to command details structure or NULL
5612  *
5613  * Write I2C (0x06E3)
5614  *
5615  * * Return:
5616  * * 0             - Successful write to the i2c device
5617  * * -EINVAL       - Data size greater than 4 bytes
5618  * * -EIO          - FW error
5619  */
5620 int
5621 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5622 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5623 		 struct ice_sq_cd *cd)
5624 {
5625 	struct ice_aq_desc desc = { 0 };
5626 	struct ice_aqc_i2c *cmd;
5627 	u8 data_size;
5628 
5629 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5630 	cmd = &desc.params.read_write_i2c;
5631 
5632 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5633 
5634 	/* data_size limited to 4 */
5635 	if (data_size > 4)
5636 		return -EINVAL;
5637 
5638 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5639 	cmd->topo_addr = topo_addr;
5640 	cmd->i2c_params = params;
5641 	cmd->i2c_addr = addr;
5642 
5643 	memcpy(cmd->i2c_data, data, data_size);
5644 
5645 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5646 }
5647 
5648 /**
5649  * ice_aq_set_gpio
5650  * @hw: pointer to the hw struct
5651  * @gpio_ctrl_handle: GPIO controller node handle
5652  * @pin_idx: IO Number of the GPIO that needs to be set
5653  * @value: SW provide IO value to set in the LSB
5654  * @cd: pointer to command details structure or NULL
5655  *
5656  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5657  */
5658 int
5659 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5660 		struct ice_sq_cd *cd)
5661 {
5662 	struct ice_aqc_gpio *cmd;
5663 	struct ice_aq_desc desc;
5664 
5665 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5666 	cmd = &desc.params.read_write_gpio;
5667 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5668 	cmd->gpio_num = pin_idx;
5669 	cmd->gpio_val = value ? 1 : 0;
5670 
5671 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5672 }
5673 
5674 /**
5675  * ice_aq_get_gpio
5676  * @hw: pointer to the hw struct
5677  * @gpio_ctrl_handle: GPIO controller node handle
5678  * @pin_idx: IO Number of the GPIO that needs to be set
5679  * @value: IO value read
5680  * @cd: pointer to command details structure or NULL
5681  *
5682  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5683  * the topology
5684  */
5685 int
5686 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5687 		bool *value, struct ice_sq_cd *cd)
5688 {
5689 	struct ice_aqc_gpio *cmd;
5690 	struct ice_aq_desc desc;
5691 	int status;
5692 
5693 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5694 	cmd = &desc.params.read_write_gpio;
5695 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5696 	cmd->gpio_num = pin_idx;
5697 
5698 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5699 	if (status)
5700 		return status;
5701 
5702 	*value = !!cmd->gpio_val;
5703 	return 0;
5704 }
5705 
5706 /**
5707  * ice_is_fw_api_min_ver
5708  * @hw: pointer to the hardware structure
5709  * @maj: major version
5710  * @min: minor version
5711  * @patch: patch version
5712  *
5713  * Checks if the firmware API is minimum version
5714  */
5715 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5716 {
5717 	if (hw->api_maj_ver == maj) {
5718 		if (hw->api_min_ver > min)
5719 			return true;
5720 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5721 			return true;
5722 	} else if (hw->api_maj_ver > maj) {
5723 		return true;
5724 	}
5725 
5726 	return false;
5727 }
5728 
5729 /**
5730  * ice_fw_supports_link_override
5731  * @hw: pointer to the hardware structure
5732  *
5733  * Checks if the firmware supports link override
5734  */
5735 bool ice_fw_supports_link_override(struct ice_hw *hw)
5736 {
5737 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5738 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5739 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5740 }
5741 
5742 /**
5743  * ice_get_link_default_override
5744  * @ldo: pointer to the link default override struct
5745  * @pi: pointer to the port info struct
5746  *
5747  * Gets the link default override for a port
5748  */
5749 int
5750 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5751 			      struct ice_port_info *pi)
5752 {
5753 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5754 	struct ice_hw *hw = pi->hw;
5755 	int status;
5756 
5757 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5758 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5759 	if (status) {
5760 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5761 		return status;
5762 	}
5763 
5764 	/* Each port has its own config; calculate for our port */
5765 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5766 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5767 
5768 	/* link options first */
5769 	status = ice_read_sr_word(hw, tlv_start, &buf);
5770 	if (status) {
5771 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5772 		return status;
5773 	}
5774 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5775 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5776 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5777 
5778 	/* link PHY config */
5779 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5780 	status = ice_read_sr_word(hw, offset, &buf);
5781 	if (status) {
5782 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5783 		return status;
5784 	}
5785 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5786 
5787 	/* PHY types low */
5788 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5789 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5790 		status = ice_read_sr_word(hw, (offset + i), &buf);
5791 		if (status) {
5792 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5793 			return status;
5794 		}
5795 		/* shift 16 bits at a time to fill 64 bits */
5796 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5797 	}
5798 
5799 	/* PHY types high */
5800 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5801 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5802 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5803 		status = ice_read_sr_word(hw, (offset + i), &buf);
5804 		if (status) {
5805 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5806 			return status;
5807 		}
5808 		/* shift 16 bits at a time to fill 64 bits */
5809 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5810 	}
5811 
5812 	return status;
5813 }
5814 
5815 /**
5816  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5817  * @caps: get PHY capability data
5818  */
5819 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5820 {
5821 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5822 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5823 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5824 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5825 		return true;
5826 
5827 	return false;
5828 }
5829 
5830 /**
5831  * ice_aq_set_lldp_mib - Set the LLDP MIB
5832  * @hw: pointer to the HW struct
5833  * @mib_type: Local, Remote or both Local and Remote MIBs
5834  * @buf: pointer to the caller-supplied buffer to store the MIB block
5835  * @buf_size: size of the buffer (in bytes)
5836  * @cd: pointer to command details structure or NULL
5837  *
5838  * Set the LLDP MIB. (0x0A08)
5839  */
5840 int
5841 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5842 		    struct ice_sq_cd *cd)
5843 {
5844 	struct ice_aqc_lldp_set_local_mib *cmd;
5845 	struct ice_aq_desc desc;
5846 
5847 	cmd = &desc.params.lldp_set_mib;
5848 
5849 	if (buf_size == 0 || !buf)
5850 		return -EINVAL;
5851 
5852 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5853 
5854 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5855 	desc.datalen = cpu_to_le16(buf_size);
5856 
5857 	cmd->type = mib_type;
5858 	cmd->length = cpu_to_le16(buf_size);
5859 
5860 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5861 }
5862 
5863 /**
5864  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5865  * @hw: pointer to HW struct
5866  */
5867 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5868 {
5869 	if (hw->mac_type != ICE_MAC_E810)
5870 		return false;
5871 
5872 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5873 				     ICE_FW_API_LLDP_FLTR_MIN,
5874 				     ICE_FW_API_LLDP_FLTR_PATCH);
5875 }
5876 
5877 /**
5878  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5879  * @hw: pointer to HW struct
5880  * @vsi_num: absolute HW index for VSI
5881  * @add: boolean for if adding or removing a filter
5882  */
5883 int
5884 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5885 {
5886 	struct ice_aqc_lldp_filter_ctrl *cmd;
5887 	struct ice_aq_desc desc;
5888 
5889 	cmd = &desc.params.lldp_filter_ctrl;
5890 
5891 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5892 
5893 	if (add)
5894 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5895 	else
5896 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5897 
5898 	cmd->vsi_num = cpu_to_le16(vsi_num);
5899 
5900 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5901 }
5902 
5903 /**
5904  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5905  * @hw: pointer to HW struct
5906  */
5907 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5908 {
5909 	struct ice_aq_desc desc;
5910 
5911 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5912 
5913 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5914 }
5915 
5916 /**
5917  * ice_fw_supports_report_dflt_cfg
5918  * @hw: pointer to the hardware structure
5919  *
5920  * Checks if the firmware supports report default configuration
5921  */
5922 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5923 {
5924 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5925 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5926 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5927 }
5928 
5929 /* each of the indexes into the following array match the speed of a return
5930  * value from the list of AQ returned speeds like the range:
5931  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5932  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5933  * array. The array is defined as 15 elements long because the link_speed
5934  * returned by the firmware is a 16 bit * value, but is indexed
5935  * by [fls(speed) - 1]
5936  */
5937 static const u32 ice_aq_to_link_speed[] = {
5938 	SPEED_10,	/* BIT(0) */
5939 	SPEED_100,
5940 	SPEED_1000,
5941 	SPEED_2500,
5942 	SPEED_5000,
5943 	SPEED_10000,
5944 	SPEED_20000,
5945 	SPEED_25000,
5946 	SPEED_40000,
5947 	SPEED_50000,
5948 	SPEED_100000,	/* BIT(10) */
5949 	SPEED_200000,
5950 };
5951 
5952 /**
5953  * ice_get_link_speed - get integer speed from table
5954  * @index: array index from fls(aq speed) - 1
5955  *
5956  * Returns: u32 value containing integer speed
5957  */
5958 u32 ice_get_link_speed(u16 index)
5959 {
5960 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5961 		return 0;
5962 
5963 	return ice_aq_to_link_speed[index];
5964 }
5965