xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_lib.h"
6 #include "ice_sched.h"
7 #include "ice_adminq_cmd.h"
8 #include "ice_flow.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 
12 /**
13  * ice_set_mac_type - Sets MAC type
14  * @hw: pointer to the HW structure
15  *
16  * This function sets the MAC type of the adapter based on the
17  * vendor ID and device ID stored in the HW structure.
18  */
19 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
20 {
21 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
22 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
23 
24 	switch (hw->device_id) {
25 	case ICE_DEV_ID_E810C_BACKPLANE:
26 	case ICE_DEV_ID_E810C_QSFP:
27 	case ICE_DEV_ID_E810C_SFP:
28 	case ICE_DEV_ID_E810_XXV_SFP:
29 		hw->mac_type = ICE_MAC_E810;
30 		break;
31 	case ICE_DEV_ID_E823C_10G_BASE_T:
32 	case ICE_DEV_ID_E823C_BACKPLANE:
33 	case ICE_DEV_ID_E823C_QSFP:
34 	case ICE_DEV_ID_E823C_SFP:
35 	case ICE_DEV_ID_E823C_SGMII:
36 	case ICE_DEV_ID_E822C_10G_BASE_T:
37 	case ICE_DEV_ID_E822C_BACKPLANE:
38 	case ICE_DEV_ID_E822C_QSFP:
39 	case ICE_DEV_ID_E822C_SFP:
40 	case ICE_DEV_ID_E822C_SGMII:
41 	case ICE_DEV_ID_E822L_10G_BASE_T:
42 	case ICE_DEV_ID_E822L_BACKPLANE:
43 	case ICE_DEV_ID_E822L_SFP:
44 	case ICE_DEV_ID_E822L_SGMII:
45 	case ICE_DEV_ID_E823L_10G_BASE_T:
46 	case ICE_DEV_ID_E823L_1GBE:
47 	case ICE_DEV_ID_E823L_BACKPLANE:
48 	case ICE_DEV_ID_E823L_QSFP:
49 	case ICE_DEV_ID_E823L_SFP:
50 		hw->mac_type = ICE_MAC_GENERIC;
51 		break;
52 	default:
53 		hw->mac_type = ICE_MAC_UNKNOWN;
54 		break;
55 	}
56 
57 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
58 	return 0;
59 }
60 
61 /**
62  * ice_is_e810
63  * @hw: pointer to the hardware structure
64  *
65  * returns true if the device is E810 based, false if not.
66  */
67 bool ice_is_e810(struct ice_hw *hw)
68 {
69 	return hw->mac_type == ICE_MAC_E810;
70 }
71 
72 /**
73  * ice_clear_pf_cfg - Clear PF configuration
74  * @hw: pointer to the hardware structure
75  *
76  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
77  * configuration, flow director filters, etc.).
78  */
79 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
80 {
81 	struct ice_aq_desc desc;
82 
83 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
84 
85 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
86 }
87 
88 /**
89  * ice_aq_manage_mac_read - manage MAC address read command
90  * @hw: pointer to the HW struct
91  * @buf: a virtual buffer to hold the manage MAC read response
92  * @buf_size: Size of the virtual buffer
93  * @cd: pointer to command details structure or NULL
94  *
95  * This function is used to return per PF station MAC address (0x0107).
96  * NOTE: Upon successful completion of this command, MAC address information
97  * is returned in user specified buffer. Please interpret user specified
98  * buffer as "manage_mac_read" response.
99  * Response such as various MAC addresses are stored in HW struct (port.mac)
100  * ice_discover_dev_caps is expected to be called before this function is
101  * called.
102  */
103 static enum ice_status
104 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
105 		       struct ice_sq_cd *cd)
106 {
107 	struct ice_aqc_manage_mac_read_resp *resp;
108 	struct ice_aqc_manage_mac_read *cmd;
109 	struct ice_aq_desc desc;
110 	enum ice_status status;
111 	u16 flags;
112 	u8 i;
113 
114 	cmd = &desc.params.mac_read;
115 
116 	if (buf_size < sizeof(*resp))
117 		return ICE_ERR_BUF_TOO_SHORT;
118 
119 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
120 
121 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
122 	if (status)
123 		return status;
124 
125 	resp = buf;
126 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
127 
128 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
129 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
130 		return ICE_ERR_CFG;
131 	}
132 
133 	/* A single port can report up to two (LAN and WoL) addresses */
134 	for (i = 0; i < cmd->num_addr; i++)
135 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
136 			ether_addr_copy(hw->port_info->mac.lan_addr,
137 					resp[i].mac_addr);
138 			ether_addr_copy(hw->port_info->mac.perm_addr,
139 					resp[i].mac_addr);
140 			break;
141 		}
142 
143 	return 0;
144 }
145 
146 /**
147  * ice_aq_get_phy_caps - returns PHY capabilities
148  * @pi: port information structure
149  * @qual_mods: report qualified modules
150  * @report_mode: report mode capabilities
151  * @pcaps: structure for PHY capabilities to be filled
152  * @cd: pointer to command details structure or NULL
153  *
154  * Returns the various PHY capabilities supported on the Port (0x0600)
155  */
156 enum ice_status
157 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
158 		    struct ice_aqc_get_phy_caps_data *pcaps,
159 		    struct ice_sq_cd *cd)
160 {
161 	struct ice_aqc_get_phy_caps *cmd;
162 	u16 pcaps_size = sizeof(*pcaps);
163 	struct ice_aq_desc desc;
164 	enum ice_status status;
165 	struct ice_hw *hw;
166 
167 	cmd = &desc.params.get_phy;
168 
169 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
170 		return ICE_ERR_PARAM;
171 	hw = pi->hw;
172 
173 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
174 	    !ice_fw_supports_report_dflt_cfg(hw))
175 		return ICE_ERR_PARAM;
176 
177 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
178 
179 	if (qual_mods)
180 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
181 
182 	cmd->param0 |= cpu_to_le16(report_mode);
183 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
184 
185 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
186 		  report_mode);
187 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
188 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
189 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
190 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
191 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
192 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
193 		  pcaps->low_power_ctrl_an);
194 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
195 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
196 		  pcaps->eeer_value);
197 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
198 		  pcaps->link_fec_options);
199 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
200 		  pcaps->module_compliance_enforcement);
201 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
202 		  pcaps->extended_compliance_code);
203 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
204 		  pcaps->module_type[0]);
205 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
206 		  pcaps->module_type[1]);
207 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
208 		  pcaps->module_type[2]);
209 
210 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
211 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
212 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
213 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
214 		       sizeof(pi->phy.link_info.module_type));
215 	}
216 
217 	return status;
218 }
219 
220 /**
221  * ice_aq_get_link_topo_handle - get link topology node return status
222  * @pi: port information structure
223  * @node_type: requested node type
224  * @cd: pointer to command details structure or NULL
225  *
226  * Get link topology node return status for specified node type (0x06E0)
227  *
228  * Node type cage can be used to determine if cage is present. If AQC
229  * returns error (ENOENT), then no cage present. If no cage present, then
230  * connection type is backplane or BASE-T.
231  */
232 static enum ice_status
233 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
234 			    struct ice_sq_cd *cd)
235 {
236 	struct ice_aqc_get_link_topo *cmd;
237 	struct ice_aq_desc desc;
238 
239 	cmd = &desc.params.get_link_topo;
240 
241 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
242 
243 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
244 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
245 
246 	/* set node type */
247 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
248 
249 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
250 }
251 
252 /**
253  * ice_is_media_cage_present
254  * @pi: port information structure
255  *
256  * Returns true if media cage is present, else false. If no cage, then
257  * media type is backplane or BASE-T.
258  */
259 static bool ice_is_media_cage_present(struct ice_port_info *pi)
260 {
261 	/* Node type cage can be used to determine if cage is present. If AQC
262 	 * returns error (ENOENT), then no cage present. If no cage present then
263 	 * connection type is backplane or BASE-T.
264 	 */
265 	return !ice_aq_get_link_topo_handle(pi,
266 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
267 					    NULL);
268 }
269 
270 /**
271  * ice_get_media_type - Gets media type
272  * @pi: port information structure
273  */
274 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
275 {
276 	struct ice_link_status *hw_link_info;
277 
278 	if (!pi)
279 		return ICE_MEDIA_UNKNOWN;
280 
281 	hw_link_info = &pi->phy.link_info;
282 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
283 		/* If more than one media type is selected, report unknown */
284 		return ICE_MEDIA_UNKNOWN;
285 
286 	if (hw_link_info->phy_type_low) {
287 		/* 1G SGMII is a special case where some DA cable PHYs
288 		 * may show this as an option when it really shouldn't
289 		 * be since SGMII is meant to be between a MAC and a PHY
290 		 * in a backplane. Try to detect this case and handle it
291 		 */
292 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
293 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
294 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
295 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
296 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
297 			return ICE_MEDIA_DA;
298 
299 		switch (hw_link_info->phy_type_low) {
300 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
301 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
302 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
303 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
304 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
305 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
306 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
307 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
308 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
309 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
310 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
311 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
312 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
313 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
314 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
315 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
316 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
317 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
318 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
319 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
320 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
321 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
322 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
323 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
324 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
325 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
326 			return ICE_MEDIA_FIBER;
327 		case ICE_PHY_TYPE_LOW_100BASE_TX:
328 		case ICE_PHY_TYPE_LOW_1000BASE_T:
329 		case ICE_PHY_TYPE_LOW_2500BASE_T:
330 		case ICE_PHY_TYPE_LOW_5GBASE_T:
331 		case ICE_PHY_TYPE_LOW_10GBASE_T:
332 		case ICE_PHY_TYPE_LOW_25GBASE_T:
333 			return ICE_MEDIA_BASET;
334 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
335 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
336 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
337 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
338 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
339 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
340 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
341 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
342 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
343 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
344 			return ICE_MEDIA_DA;
345 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
346 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
347 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
348 		case ICE_PHY_TYPE_LOW_50G_AUI2:
349 		case ICE_PHY_TYPE_LOW_50G_AUI1:
350 		case ICE_PHY_TYPE_LOW_100G_AUI4:
351 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
352 			if (ice_is_media_cage_present(pi))
353 				return ICE_MEDIA_DA;
354 			fallthrough;
355 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
356 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
357 		case ICE_PHY_TYPE_LOW_2500BASE_X:
358 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
359 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
360 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
361 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
362 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
363 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
364 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
365 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
366 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
367 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
368 			return ICE_MEDIA_BACKPLANE;
369 		}
370 	} else {
371 		switch (hw_link_info->phy_type_high) {
372 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
373 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
374 			if (ice_is_media_cage_present(pi))
375 				return ICE_MEDIA_DA;
376 			fallthrough;
377 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
378 			return ICE_MEDIA_BACKPLANE;
379 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
380 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
381 			return ICE_MEDIA_FIBER;
382 		}
383 	}
384 	return ICE_MEDIA_UNKNOWN;
385 }
386 
387 /**
388  * ice_aq_get_link_info
389  * @pi: port information structure
390  * @ena_lse: enable/disable LinkStatusEvent reporting
391  * @link: pointer to link status structure - optional
392  * @cd: pointer to command details structure or NULL
393  *
394  * Get Link Status (0x607). Returns the link status of the adapter.
395  */
396 enum ice_status
397 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
398 		     struct ice_link_status *link, struct ice_sq_cd *cd)
399 {
400 	struct ice_aqc_get_link_status_data link_data = { 0 };
401 	struct ice_aqc_get_link_status *resp;
402 	struct ice_link_status *li_old, *li;
403 	enum ice_media_type *hw_media_type;
404 	struct ice_fc_info *hw_fc_info;
405 	bool tx_pause, rx_pause;
406 	struct ice_aq_desc desc;
407 	enum ice_status status;
408 	struct ice_hw *hw;
409 	u16 cmd_flags;
410 
411 	if (!pi)
412 		return ICE_ERR_PARAM;
413 	hw = pi->hw;
414 	li_old = &pi->phy.link_info_old;
415 	hw_media_type = &pi->phy.media_type;
416 	li = &pi->phy.link_info;
417 	hw_fc_info = &pi->fc;
418 
419 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
420 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
421 	resp = &desc.params.get_link_status;
422 	resp->cmd_flags = cpu_to_le16(cmd_flags);
423 	resp->lport_num = pi->lport;
424 
425 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
426 
427 	if (status)
428 		return status;
429 
430 	/* save off old link status information */
431 	*li_old = *li;
432 
433 	/* update current link status information */
434 	li->link_speed = le16_to_cpu(link_data.link_speed);
435 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
436 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
437 	*hw_media_type = ice_get_media_type(pi);
438 	li->link_info = link_data.link_info;
439 	li->link_cfg_err = link_data.link_cfg_err;
440 	li->an_info = link_data.an_info;
441 	li->ext_info = link_data.ext_info;
442 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
443 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
444 	li->topo_media_conflict = link_data.topo_media_conflict;
445 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
446 				      ICE_AQ_CFG_PACING_TYPE_M);
447 
448 	/* update fc info */
449 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
450 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
451 	if (tx_pause && rx_pause)
452 		hw_fc_info->current_mode = ICE_FC_FULL;
453 	else if (tx_pause)
454 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
455 	else if (rx_pause)
456 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
457 	else
458 		hw_fc_info->current_mode = ICE_FC_NONE;
459 
460 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
461 
462 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
463 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
464 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
465 		  (unsigned long long)li->phy_type_low);
466 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
467 		  (unsigned long long)li->phy_type_high);
468 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
469 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
470 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
471 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
472 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
473 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
474 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
475 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
476 		  li->max_frame_size);
477 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
478 
479 	/* save link status information */
480 	if (link)
481 		*link = *li;
482 
483 	/* flag cleared so calling functions don't call AQ again */
484 	pi->phy.get_link_info = false;
485 
486 	return 0;
487 }
488 
489 /**
490  * ice_fill_tx_timer_and_fc_thresh
491  * @hw: pointer to the HW struct
492  * @cmd: pointer to MAC cfg structure
493  *
494  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
495  * descriptor
496  */
497 static void
498 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
499 				struct ice_aqc_set_mac_cfg *cmd)
500 {
501 	u16 fc_thres_val, tx_timer_val;
502 	u32 val;
503 
504 	/* We read back the transmit timer and FC threshold value of
505 	 * LFC. Thus, we will use index =
506 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
507 	 *
508 	 * Also, because we are operating on transmit timer and FC
509 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
510 	 */
511 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
512 
513 	/* Retrieve the transmit timer */
514 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
515 	tx_timer_val = val &
516 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
517 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
518 
519 	/* Retrieve the FC threshold */
520 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
521 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
522 
523 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
524 }
525 
526 /**
527  * ice_aq_set_mac_cfg
528  * @hw: pointer to the HW struct
529  * @max_frame_size: Maximum Frame Size to be supported
530  * @cd: pointer to command details structure or NULL
531  *
532  * Set MAC configuration (0x0603)
533  */
534 enum ice_status
535 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
536 {
537 	struct ice_aqc_set_mac_cfg *cmd;
538 	struct ice_aq_desc desc;
539 
540 	cmd = &desc.params.set_mac_cfg;
541 
542 	if (max_frame_size == 0)
543 		return ICE_ERR_PARAM;
544 
545 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
546 
547 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
548 
549 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
550 
551 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
552 }
553 
554 /**
555  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
556  * @hw: pointer to the HW struct
557  */
558 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
559 {
560 	struct ice_switch_info *sw;
561 	enum ice_status status;
562 
563 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
564 				       sizeof(*hw->switch_info), GFP_KERNEL);
565 	sw = hw->switch_info;
566 
567 	if (!sw)
568 		return ICE_ERR_NO_MEMORY;
569 
570 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
571 
572 	status = ice_init_def_sw_recp(hw);
573 	if (status) {
574 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
575 		return status;
576 	}
577 	return 0;
578 }
579 
580 /**
581  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
582  * @hw: pointer to the HW struct
583  */
584 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
585 {
586 	struct ice_switch_info *sw = hw->switch_info;
587 	struct ice_vsi_list_map_info *v_pos_map;
588 	struct ice_vsi_list_map_info *v_tmp_map;
589 	struct ice_sw_recipe *recps;
590 	u8 i;
591 
592 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
593 				 list_entry) {
594 		list_del(&v_pos_map->list_entry);
595 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
596 	}
597 	recps = hw->switch_info->recp_list;
598 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
599 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
600 
601 		recps[i].root_rid = i;
602 		mutex_destroy(&recps[i].filt_rule_lock);
603 		list_for_each_entry_safe(lst_itr, tmp_entry,
604 					 &recps[i].filt_rules, list_entry) {
605 			list_del(&lst_itr->list_entry);
606 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
607 		}
608 	}
609 	ice_rm_all_sw_replay_rule_info(hw);
610 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
611 	devm_kfree(ice_hw_to_dev(hw), sw);
612 }
613 
614 /**
615  * ice_get_fw_log_cfg - get FW logging configuration
616  * @hw: pointer to the HW struct
617  */
618 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
619 {
620 	struct ice_aq_desc desc;
621 	enum ice_status status;
622 	__le16 *config;
623 	u16 size;
624 
625 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
626 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
627 	if (!config)
628 		return ICE_ERR_NO_MEMORY;
629 
630 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
631 
632 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
633 	if (!status) {
634 		u16 i;
635 
636 		/* Save FW logging information into the HW structure */
637 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
638 			u16 v, m, flgs;
639 
640 			v = le16_to_cpu(config[i]);
641 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
642 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
643 
644 			if (m < ICE_AQC_FW_LOG_ID_MAX)
645 				hw->fw_log.evnts[m].cur = flgs;
646 		}
647 	}
648 
649 	devm_kfree(ice_hw_to_dev(hw), config);
650 
651 	return status;
652 }
653 
654 /**
655  * ice_cfg_fw_log - configure FW logging
656  * @hw: pointer to the HW struct
657  * @enable: enable certain FW logging events if true, disable all if false
658  *
659  * This function enables/disables the FW logging via Rx CQ events and a UART
660  * port based on predetermined configurations. FW logging via the Rx CQ can be
661  * enabled/disabled for individual PF's. However, FW logging via the UART can
662  * only be enabled/disabled for all PFs on the same device.
663  *
664  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
665  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
666  * before initializing the device.
667  *
668  * When re/configuring FW logging, callers need to update the "cfg" elements of
669  * the hw->fw_log.evnts array with the desired logging event configurations for
670  * modules of interest. When disabling FW logging completely, the callers can
671  * just pass false in the "enable" parameter. On completion, the function will
672  * update the "cur" element of the hw->fw_log.evnts array with the resulting
673  * logging event configurations of the modules that are being re/configured. FW
674  * logging modules that are not part of a reconfiguration operation retain their
675  * previous states.
676  *
677  * Before resetting the device, it is recommended that the driver disables FW
678  * logging before shutting down the control queue. When disabling FW logging
679  * ("enable" = false), the latest configurations of FW logging events stored in
680  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
681  * a device reset.
682  *
683  * When enabling FW logging to emit log messages via the Rx CQ during the
684  * device's initialization phase, a mechanism alternative to interrupt handlers
685  * needs to be used to extract FW log messages from the Rx CQ periodically and
686  * to prevent the Rx CQ from being full and stalling other types of control
687  * messages from FW to SW. Interrupts are typically disabled during the device's
688  * initialization phase.
689  */
690 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
691 {
692 	struct ice_aqc_fw_logging *cmd;
693 	enum ice_status status = 0;
694 	u16 i, chgs = 0, len = 0;
695 	struct ice_aq_desc desc;
696 	__le16 *data = NULL;
697 	u8 actv_evnts = 0;
698 	void *buf = NULL;
699 
700 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
701 		return 0;
702 
703 	/* Disable FW logging only when the control queue is still responsive */
704 	if (!enable &&
705 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
706 		return 0;
707 
708 	/* Get current FW log settings */
709 	status = ice_get_fw_log_cfg(hw);
710 	if (status)
711 		return status;
712 
713 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
714 	cmd = &desc.params.fw_logging;
715 
716 	/* Indicate which controls are valid */
717 	if (hw->fw_log.cq_en)
718 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
719 
720 	if (hw->fw_log.uart_en)
721 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
722 
723 	if (enable) {
724 		/* Fill in an array of entries with FW logging modules and
725 		 * logging events being reconfigured.
726 		 */
727 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
728 			u16 val;
729 
730 			/* Keep track of enabled event types */
731 			actv_evnts |= hw->fw_log.evnts[i].cfg;
732 
733 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
734 				continue;
735 
736 			if (!data) {
737 				data = devm_kcalloc(ice_hw_to_dev(hw),
738 						    ICE_AQC_FW_LOG_ID_MAX,
739 						    sizeof(*data),
740 						    GFP_KERNEL);
741 				if (!data)
742 					return ICE_ERR_NO_MEMORY;
743 			}
744 
745 			val = i << ICE_AQC_FW_LOG_ID_S;
746 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
747 			data[chgs++] = cpu_to_le16(val);
748 		}
749 
750 		/* Only enable FW logging if at least one module is specified.
751 		 * If FW logging is currently enabled but all modules are not
752 		 * enabled to emit log messages, disable FW logging altogether.
753 		 */
754 		if (actv_evnts) {
755 			/* Leave if there is effectively no change */
756 			if (!chgs)
757 				goto out;
758 
759 			if (hw->fw_log.cq_en)
760 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
761 
762 			if (hw->fw_log.uart_en)
763 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
764 
765 			buf = data;
766 			len = sizeof(*data) * chgs;
767 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
768 		}
769 	}
770 
771 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
772 	if (!status) {
773 		/* Update the current configuration to reflect events enabled.
774 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
775 		 * logging mode is enabled for the device. They do not reflect
776 		 * actual modules being enabled to emit log messages. So, their
777 		 * values remain unchanged even when all modules are disabled.
778 		 */
779 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
780 
781 		hw->fw_log.actv_evnts = actv_evnts;
782 		for (i = 0; i < cnt; i++) {
783 			u16 v, m;
784 
785 			if (!enable) {
786 				/* When disabling all FW logging events as part
787 				 * of device's de-initialization, the original
788 				 * configurations are retained, and can be used
789 				 * to reconfigure FW logging later if the device
790 				 * is re-initialized.
791 				 */
792 				hw->fw_log.evnts[i].cur = 0;
793 				continue;
794 			}
795 
796 			v = le16_to_cpu(data[i]);
797 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
798 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
799 		}
800 	}
801 
802 out:
803 	if (data)
804 		devm_kfree(ice_hw_to_dev(hw), data);
805 
806 	return status;
807 }
808 
809 /**
810  * ice_output_fw_log
811  * @hw: pointer to the HW struct
812  * @desc: pointer to the AQ message descriptor
813  * @buf: pointer to the buffer accompanying the AQ message
814  *
815  * Formats a FW Log message and outputs it via the standard driver logs.
816  */
817 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
818 {
819 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
820 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
821 			le16_to_cpu(desc->datalen));
822 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
823 }
824 
825 /**
826  * ice_get_itr_intrl_gran
827  * @hw: pointer to the HW struct
828  *
829  * Determines the ITR/INTRL granularities based on the maximum aggregate
830  * bandwidth according to the device's configuration during power-on.
831  */
832 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
833 {
834 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
835 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
836 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
837 
838 	switch (max_agg_bw) {
839 	case ICE_MAX_AGG_BW_200G:
840 	case ICE_MAX_AGG_BW_100G:
841 	case ICE_MAX_AGG_BW_50G:
842 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
843 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
844 		break;
845 	case ICE_MAX_AGG_BW_25G:
846 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
847 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
848 		break;
849 	}
850 }
851 
852 /**
853  * ice_init_hw - main hardware initialization routine
854  * @hw: pointer to the hardware structure
855  */
856 enum ice_status ice_init_hw(struct ice_hw *hw)
857 {
858 	struct ice_aqc_get_phy_caps_data *pcaps;
859 	enum ice_status status;
860 	u16 mac_buf_len;
861 	void *mac_buf;
862 
863 	/* Set MAC type based on DeviceID */
864 	status = ice_set_mac_type(hw);
865 	if (status)
866 		return status;
867 
868 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
869 			 PF_FUNC_RID_FUNC_NUM_M) >>
870 		PF_FUNC_RID_FUNC_NUM_S;
871 
872 	status = ice_reset(hw, ICE_RESET_PFR);
873 	if (status)
874 		return status;
875 
876 	ice_get_itr_intrl_gran(hw);
877 
878 	status = ice_create_all_ctrlq(hw);
879 	if (status)
880 		goto err_unroll_cqinit;
881 
882 	/* Enable FW logging. Not fatal if this fails. */
883 	status = ice_cfg_fw_log(hw, true);
884 	if (status)
885 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
886 
887 	status = ice_clear_pf_cfg(hw);
888 	if (status)
889 		goto err_unroll_cqinit;
890 
891 	/* Set bit to enable Flow Director filters */
892 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
893 	INIT_LIST_HEAD(&hw->fdir_list_head);
894 
895 	ice_clear_pxe_mode(hw);
896 
897 	status = ice_init_nvm(hw);
898 	if (status)
899 		goto err_unroll_cqinit;
900 
901 	status = ice_get_caps(hw);
902 	if (status)
903 		goto err_unroll_cqinit;
904 
905 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
906 				     sizeof(*hw->port_info), GFP_KERNEL);
907 	if (!hw->port_info) {
908 		status = ICE_ERR_NO_MEMORY;
909 		goto err_unroll_cqinit;
910 	}
911 
912 	/* set the back pointer to HW */
913 	hw->port_info->hw = hw;
914 
915 	/* Initialize port_info struct with switch configuration data */
916 	status = ice_get_initial_sw_cfg(hw);
917 	if (status)
918 		goto err_unroll_alloc;
919 
920 	hw->evb_veb = true;
921 
922 	/* Query the allocated resources for Tx scheduler */
923 	status = ice_sched_query_res_alloc(hw);
924 	if (status) {
925 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
926 		goto err_unroll_alloc;
927 	}
928 	ice_sched_get_psm_clk_freq(hw);
929 
930 	/* Initialize port_info struct with scheduler data */
931 	status = ice_sched_init_port(hw->port_info);
932 	if (status)
933 		goto err_unroll_sched;
934 
935 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
936 	if (!pcaps) {
937 		status = ICE_ERR_NO_MEMORY;
938 		goto err_unroll_sched;
939 	}
940 
941 	/* Initialize port_info struct with PHY capabilities */
942 	status = ice_aq_get_phy_caps(hw->port_info, false,
943 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
944 				     NULL);
945 	devm_kfree(ice_hw_to_dev(hw), pcaps);
946 	if (status)
947 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
948 			 status);
949 
950 	/* Initialize port_info struct with link information */
951 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
952 	if (status)
953 		goto err_unroll_sched;
954 
955 	/* need a valid SW entry point to build a Tx tree */
956 	if (!hw->sw_entry_point_layer) {
957 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
958 		status = ICE_ERR_CFG;
959 		goto err_unroll_sched;
960 	}
961 	INIT_LIST_HEAD(&hw->agg_list);
962 	/* Initialize max burst size */
963 	if (!hw->max_burst_size)
964 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
965 
966 	status = ice_init_fltr_mgmt_struct(hw);
967 	if (status)
968 		goto err_unroll_sched;
969 
970 	/* Get MAC information */
971 	/* A single port can report up to two (LAN and WoL) addresses */
972 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
973 			       sizeof(struct ice_aqc_manage_mac_read_resp),
974 			       GFP_KERNEL);
975 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
976 
977 	if (!mac_buf) {
978 		status = ICE_ERR_NO_MEMORY;
979 		goto err_unroll_fltr_mgmt_struct;
980 	}
981 
982 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
983 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
984 
985 	if (status)
986 		goto err_unroll_fltr_mgmt_struct;
987 	/* enable jumbo frame support at MAC level */
988 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
989 	if (status)
990 		goto err_unroll_fltr_mgmt_struct;
991 	/* Obtain counter base index which would be used by flow director */
992 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
993 	if (status)
994 		goto err_unroll_fltr_mgmt_struct;
995 	status = ice_init_hw_tbls(hw);
996 	if (status)
997 		goto err_unroll_fltr_mgmt_struct;
998 	mutex_init(&hw->tnl_lock);
999 	return 0;
1000 
1001 err_unroll_fltr_mgmt_struct:
1002 	ice_cleanup_fltr_mgmt_struct(hw);
1003 err_unroll_sched:
1004 	ice_sched_cleanup_all(hw);
1005 err_unroll_alloc:
1006 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1007 err_unroll_cqinit:
1008 	ice_destroy_all_ctrlq(hw);
1009 	return status;
1010 }
1011 
1012 /**
1013  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1014  * @hw: pointer to the hardware structure
1015  *
1016  * This should be called only during nominal operation, not as a result of
1017  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1018  * applicable initializations if it fails for any reason.
1019  */
1020 void ice_deinit_hw(struct ice_hw *hw)
1021 {
1022 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1023 	ice_cleanup_fltr_mgmt_struct(hw);
1024 
1025 	ice_sched_cleanup_all(hw);
1026 	ice_sched_clear_agg(hw);
1027 	ice_free_seg(hw);
1028 	ice_free_hw_tbls(hw);
1029 	mutex_destroy(&hw->tnl_lock);
1030 
1031 	if (hw->port_info) {
1032 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1033 		hw->port_info = NULL;
1034 	}
1035 
1036 	/* Attempt to disable FW logging before shutting down control queues */
1037 	ice_cfg_fw_log(hw, false);
1038 	ice_destroy_all_ctrlq(hw);
1039 
1040 	/* Clear VSI contexts if not already cleared */
1041 	ice_clear_all_vsi_ctx(hw);
1042 }
1043 
1044 /**
1045  * ice_check_reset - Check to see if a global reset is complete
1046  * @hw: pointer to the hardware structure
1047  */
1048 enum ice_status ice_check_reset(struct ice_hw *hw)
1049 {
1050 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1051 
1052 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1053 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1054 	 * Add 1sec for outstanding AQ commands that can take a long time.
1055 	 */
1056 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1057 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1058 
1059 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1060 		mdelay(100);
1061 		reg = rd32(hw, GLGEN_RSTAT);
1062 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1063 			break;
1064 	}
1065 
1066 	if (cnt == grst_timeout) {
1067 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1068 		return ICE_ERR_RESET_FAILED;
1069 	}
1070 
1071 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1072 				 GLNVM_ULD_PCIER_DONE_1_M |\
1073 				 GLNVM_ULD_CORER_DONE_M |\
1074 				 GLNVM_ULD_GLOBR_DONE_M |\
1075 				 GLNVM_ULD_POR_DONE_M |\
1076 				 GLNVM_ULD_POR_DONE_1_M |\
1077 				 GLNVM_ULD_PCIER_DONE_2_M)
1078 
1079 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1080 					  GLNVM_ULD_PE_DONE_M : 0);
1081 
1082 	/* Device is Active; check Global Reset processes are done */
1083 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1084 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1085 		if (reg == uld_mask) {
1086 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1087 			break;
1088 		}
1089 		mdelay(10);
1090 	}
1091 
1092 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1093 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1094 			  reg);
1095 		return ICE_ERR_RESET_FAILED;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  * ice_pf_reset - Reset the PF
1103  * @hw: pointer to the hardware structure
1104  *
1105  * If a global reset has been triggered, this function checks
1106  * for its completion and then issues the PF reset
1107  */
1108 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1109 {
1110 	u32 cnt, reg;
1111 
1112 	/* If at function entry a global reset was already in progress, i.e.
1113 	 * state is not 'device active' or any of the reset done bits are not
1114 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1115 	 * global reset is done.
1116 	 */
1117 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1118 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1119 		/* poll on global reset currently in progress until done */
1120 		if (ice_check_reset(hw))
1121 			return ICE_ERR_RESET_FAILED;
1122 
1123 		return 0;
1124 	}
1125 
1126 	/* Reset the PF */
1127 	reg = rd32(hw, PFGEN_CTRL);
1128 
1129 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1130 
1131 	/* Wait for the PFR to complete. The wait time is the global config lock
1132 	 * timeout plus the PFR timeout which will account for a possible reset
1133 	 * that is occurring during a download package operation.
1134 	 */
1135 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1136 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1137 		reg = rd32(hw, PFGEN_CTRL);
1138 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1139 			break;
1140 
1141 		mdelay(1);
1142 	}
1143 
1144 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1145 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1146 		return ICE_ERR_RESET_FAILED;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * ice_reset - Perform different types of reset
1154  * @hw: pointer to the hardware structure
1155  * @req: reset request
1156  *
1157  * This function triggers a reset as specified by the req parameter.
1158  *
1159  * Note:
1160  * If anything other than a PF reset is triggered, PXE mode is restored.
1161  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1162  * interface has been restored in the rebuild flow.
1163  */
1164 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1165 {
1166 	u32 val = 0;
1167 
1168 	switch (req) {
1169 	case ICE_RESET_PFR:
1170 		return ice_pf_reset(hw);
1171 	case ICE_RESET_CORER:
1172 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1173 		val = GLGEN_RTRIG_CORER_M;
1174 		break;
1175 	case ICE_RESET_GLOBR:
1176 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1177 		val = GLGEN_RTRIG_GLOBR_M;
1178 		break;
1179 	default:
1180 		return ICE_ERR_PARAM;
1181 	}
1182 
1183 	val |= rd32(hw, GLGEN_RTRIG);
1184 	wr32(hw, GLGEN_RTRIG, val);
1185 	ice_flush(hw);
1186 
1187 	/* wait for the FW to be ready */
1188 	return ice_check_reset(hw);
1189 }
1190 
1191 /**
1192  * ice_copy_rxq_ctx_to_hw
1193  * @hw: pointer to the hardware structure
1194  * @ice_rxq_ctx: pointer to the rxq context
1195  * @rxq_index: the index of the Rx queue
1196  *
1197  * Copies rxq context from dense structure to HW register space
1198  */
1199 static enum ice_status
1200 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1201 {
1202 	u8 i;
1203 
1204 	if (!ice_rxq_ctx)
1205 		return ICE_ERR_BAD_PTR;
1206 
1207 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1208 		return ICE_ERR_PARAM;
1209 
1210 	/* Copy each dword separately to HW */
1211 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1212 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1213 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1214 
1215 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1216 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /* LAN Rx Queue Context */
1223 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1224 	/* Field		Width	LSB */
1225 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1226 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1227 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1228 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1229 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1230 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1231 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1232 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1233 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1234 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1235 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1236 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1237 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1238 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1239 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1240 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1241 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1242 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1243 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1244 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1245 	{ 0 }
1246 };
1247 
1248 /**
1249  * ice_write_rxq_ctx
1250  * @hw: pointer to the hardware structure
1251  * @rlan_ctx: pointer to the rxq context
1252  * @rxq_index: the index of the Rx queue
1253  *
1254  * Converts rxq context from sparse to dense structure and then writes
1255  * it to HW register space and enables the hardware to prefetch descriptors
1256  * instead of only fetching them on demand
1257  */
1258 enum ice_status
1259 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1260 		  u32 rxq_index)
1261 {
1262 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1263 
1264 	if (!rlan_ctx)
1265 		return ICE_ERR_BAD_PTR;
1266 
1267 	rlan_ctx->prefena = 1;
1268 
1269 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1270 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1271 }
1272 
1273 /* LAN Tx Queue Context */
1274 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1275 				    /* Field			Width	LSB */
1276 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1277 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1278 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1279 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1280 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1281 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1282 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1283 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1284 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1285 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1286 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1287 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1288 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1289 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1290 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1291 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1292 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1293 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1294 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1295 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1296 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1297 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1298 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1299 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1300 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1301 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1302 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1303 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1304 	{ 0 }
1305 };
1306 
1307 /* Sideband Queue command wrappers */
1308 
1309 /**
1310  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1311  * @hw: pointer to the HW struct
1312  * @desc: descriptor describing the command
1313  * @buf: buffer to use for indirect commands (NULL for direct commands)
1314  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1315  * @cd: pointer to command details structure
1316  */
1317 static int
1318 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1319 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1320 {
1321 	return ice_status_to_errno(ice_sq_send_cmd(hw, ice_get_sbq(hw),
1322 						   (struct ice_aq_desc *)desc,
1323 						   buf, buf_size, cd));
1324 }
1325 
1326 /**
1327  * ice_sbq_rw_reg - Fill Sideband Queue command
1328  * @hw: pointer to the HW struct
1329  * @in: message info to be filled in descriptor
1330  */
1331 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1332 {
1333 	struct ice_sbq_cmd_desc desc = {0};
1334 	struct ice_sbq_msg_req msg = {0};
1335 	u16 msg_len;
1336 	int status;
1337 
1338 	msg_len = sizeof(msg);
1339 
1340 	msg.dest_dev = in->dest_dev;
1341 	msg.opcode = in->opcode;
1342 	msg.flags = ICE_SBQ_MSG_FLAGS;
1343 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1344 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1345 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1346 
1347 	if (in->opcode)
1348 		msg.data = cpu_to_le32(in->data);
1349 	else
1350 		/* data read comes back in completion, so shorten the struct by
1351 		 * sizeof(msg.data)
1352 		 */
1353 		msg_len -= sizeof(msg.data);
1354 
1355 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1356 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1357 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1358 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1359 	if (!status && !in->opcode)
1360 		in->data = le32_to_cpu
1361 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1362 	return status;
1363 }
1364 
1365 /* FW Admin Queue command wrappers */
1366 
1367 /* Software lock/mutex that is meant to be held while the Global Config Lock
1368  * in firmware is acquired by the software to prevent most (but not all) types
1369  * of AQ commands from being sent to FW
1370  */
1371 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1372 
1373 /**
1374  * ice_should_retry_sq_send_cmd
1375  * @opcode: AQ opcode
1376  *
1377  * Decide if we should retry the send command routine for the ATQ, depending
1378  * on the opcode.
1379  */
1380 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1381 {
1382 	switch (opcode) {
1383 	case ice_aqc_opc_get_link_topo:
1384 	case ice_aqc_opc_lldp_stop:
1385 	case ice_aqc_opc_lldp_start:
1386 	case ice_aqc_opc_lldp_filter_ctrl:
1387 		return true;
1388 	}
1389 
1390 	return false;
1391 }
1392 
1393 /**
1394  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1395  * @hw: pointer to the HW struct
1396  * @cq: pointer to the specific Control queue
1397  * @desc: prefilled descriptor describing the command
1398  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1399  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1400  * @cd: pointer to command details structure
1401  *
1402  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1403  * Queue if the EBUSY AQ error is returned.
1404  */
1405 static enum ice_status
1406 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1407 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1408 		      struct ice_sq_cd *cd)
1409 {
1410 	struct ice_aq_desc desc_cpy;
1411 	enum ice_status status;
1412 	bool is_cmd_for_retry;
1413 	u8 *buf_cpy = NULL;
1414 	u8 idx = 0;
1415 	u16 opcode;
1416 
1417 	opcode = le16_to_cpu(desc->opcode);
1418 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1419 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1420 
1421 	if (is_cmd_for_retry) {
1422 		if (buf) {
1423 			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1424 			if (!buf_cpy)
1425 				return ICE_ERR_NO_MEMORY;
1426 		}
1427 
1428 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1429 	}
1430 
1431 	do {
1432 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1433 
1434 		if (!is_cmd_for_retry || !status ||
1435 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1436 			break;
1437 
1438 		if (buf_cpy)
1439 			memcpy(buf, buf_cpy, buf_size);
1440 
1441 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1442 
1443 		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1444 
1445 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1446 
1447 	kfree(buf_cpy);
1448 
1449 	return status;
1450 }
1451 
1452 /**
1453  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1454  * @hw: pointer to the HW struct
1455  * @desc: descriptor describing the command
1456  * @buf: buffer to use for indirect commands (NULL for direct commands)
1457  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1458  * @cd: pointer to command details structure
1459  *
1460  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1461  */
1462 enum ice_status
1463 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1464 		u16 buf_size, struct ice_sq_cd *cd)
1465 {
1466 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1467 	bool lock_acquired = false;
1468 	enum ice_status status;
1469 
1470 	/* When a package download is in process (i.e. when the firmware's
1471 	 * Global Configuration Lock resource is held), only the Download
1472 	 * Package, Get Version, Get Package Info List and Release Resource
1473 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1474 	 * allowed; all others must block until the package download completes
1475 	 * and the Global Config Lock is released.  See also
1476 	 * ice_acquire_global_cfg_lock().
1477 	 */
1478 	switch (le16_to_cpu(desc->opcode)) {
1479 	case ice_aqc_opc_download_pkg:
1480 	case ice_aqc_opc_get_pkg_info_list:
1481 	case ice_aqc_opc_get_ver:
1482 		break;
1483 	case ice_aqc_opc_release_res:
1484 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1485 			break;
1486 		fallthrough;
1487 	default:
1488 		mutex_lock(&ice_global_cfg_lock_sw);
1489 		lock_acquired = true;
1490 		break;
1491 	}
1492 
1493 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1494 	if (lock_acquired)
1495 		mutex_unlock(&ice_global_cfg_lock_sw);
1496 
1497 	return status;
1498 }
1499 
1500 /**
1501  * ice_aq_get_fw_ver
1502  * @hw: pointer to the HW struct
1503  * @cd: pointer to command details structure or NULL
1504  *
1505  * Get the firmware version (0x0001) from the admin queue commands
1506  */
1507 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1508 {
1509 	struct ice_aqc_get_ver *resp;
1510 	struct ice_aq_desc desc;
1511 	enum ice_status status;
1512 
1513 	resp = &desc.params.get_ver;
1514 
1515 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1516 
1517 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1518 
1519 	if (!status) {
1520 		hw->fw_branch = resp->fw_branch;
1521 		hw->fw_maj_ver = resp->fw_major;
1522 		hw->fw_min_ver = resp->fw_minor;
1523 		hw->fw_patch = resp->fw_patch;
1524 		hw->fw_build = le32_to_cpu(resp->fw_build);
1525 		hw->api_branch = resp->api_branch;
1526 		hw->api_maj_ver = resp->api_major;
1527 		hw->api_min_ver = resp->api_minor;
1528 		hw->api_patch = resp->api_patch;
1529 	}
1530 
1531 	return status;
1532 }
1533 
1534 /**
1535  * ice_aq_send_driver_ver
1536  * @hw: pointer to the HW struct
1537  * @dv: driver's major, minor version
1538  * @cd: pointer to command details structure or NULL
1539  *
1540  * Send the driver version (0x0002) to the firmware
1541  */
1542 enum ice_status
1543 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1544 		       struct ice_sq_cd *cd)
1545 {
1546 	struct ice_aqc_driver_ver *cmd;
1547 	struct ice_aq_desc desc;
1548 	u16 len;
1549 
1550 	cmd = &desc.params.driver_ver;
1551 
1552 	if (!dv)
1553 		return ICE_ERR_PARAM;
1554 
1555 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1556 
1557 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1558 	cmd->major_ver = dv->major_ver;
1559 	cmd->minor_ver = dv->minor_ver;
1560 	cmd->build_ver = dv->build_ver;
1561 	cmd->subbuild_ver = dv->subbuild_ver;
1562 
1563 	len = 0;
1564 	while (len < sizeof(dv->driver_string) &&
1565 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1566 		len++;
1567 
1568 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1569 }
1570 
1571 /**
1572  * ice_aq_q_shutdown
1573  * @hw: pointer to the HW struct
1574  * @unloading: is the driver unloading itself
1575  *
1576  * Tell the Firmware that we're shutting down the AdminQ and whether
1577  * or not the driver is unloading as well (0x0003).
1578  */
1579 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1580 {
1581 	struct ice_aqc_q_shutdown *cmd;
1582 	struct ice_aq_desc desc;
1583 
1584 	cmd = &desc.params.q_shutdown;
1585 
1586 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1587 
1588 	if (unloading)
1589 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1590 
1591 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1592 }
1593 
1594 /**
1595  * ice_aq_req_res
1596  * @hw: pointer to the HW struct
1597  * @res: resource ID
1598  * @access: access type
1599  * @sdp_number: resource number
1600  * @timeout: the maximum time in ms that the driver may hold the resource
1601  * @cd: pointer to command details structure or NULL
1602  *
1603  * Requests common resource using the admin queue commands (0x0008).
1604  * When attempting to acquire the Global Config Lock, the driver can
1605  * learn of three states:
1606  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1607  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1608  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1609  *                          successfully downloaded the package; the driver does
1610  *                          not have to download the package and can continue
1611  *                          loading
1612  *
1613  * Note that if the caller is in an acquire lock, perform action, release lock
1614  * phase of operation, it is possible that the FW may detect a timeout and issue
1615  * a CORER. In this case, the driver will receive a CORER interrupt and will
1616  * have to determine its cause. The calling thread that is handling this flow
1617  * will likely get an error propagated back to it indicating the Download
1618  * Package, Update Package or the Release Resource AQ commands timed out.
1619  */
1620 static enum ice_status
1621 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1622 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1623 	       struct ice_sq_cd *cd)
1624 {
1625 	struct ice_aqc_req_res *cmd_resp;
1626 	struct ice_aq_desc desc;
1627 	enum ice_status status;
1628 
1629 	cmd_resp = &desc.params.res_owner;
1630 
1631 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1632 
1633 	cmd_resp->res_id = cpu_to_le16(res);
1634 	cmd_resp->access_type = cpu_to_le16(access);
1635 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1636 	cmd_resp->timeout = cpu_to_le32(*timeout);
1637 	*timeout = 0;
1638 
1639 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1640 
1641 	/* The completion specifies the maximum time in ms that the driver
1642 	 * may hold the resource in the Timeout field.
1643 	 */
1644 
1645 	/* Global config lock response utilizes an additional status field.
1646 	 *
1647 	 * If the Global config lock resource is held by some other driver, the
1648 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1649 	 * and the timeout field indicates the maximum time the current owner
1650 	 * of the resource has to free it.
1651 	 */
1652 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1653 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1654 			*timeout = le32_to_cpu(cmd_resp->timeout);
1655 			return 0;
1656 		} else if (le16_to_cpu(cmd_resp->status) ==
1657 			   ICE_AQ_RES_GLBL_IN_PROG) {
1658 			*timeout = le32_to_cpu(cmd_resp->timeout);
1659 			return ICE_ERR_AQ_ERROR;
1660 		} else if (le16_to_cpu(cmd_resp->status) ==
1661 			   ICE_AQ_RES_GLBL_DONE) {
1662 			return ICE_ERR_AQ_NO_WORK;
1663 		}
1664 
1665 		/* invalid FW response, force a timeout immediately */
1666 		*timeout = 0;
1667 		return ICE_ERR_AQ_ERROR;
1668 	}
1669 
1670 	/* If the resource is held by some other driver, the command completes
1671 	 * with a busy return value and the timeout field indicates the maximum
1672 	 * time the current owner of the resource has to free it.
1673 	 */
1674 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1675 		*timeout = le32_to_cpu(cmd_resp->timeout);
1676 
1677 	return status;
1678 }
1679 
1680 /**
1681  * ice_aq_release_res
1682  * @hw: pointer to the HW struct
1683  * @res: resource ID
1684  * @sdp_number: resource number
1685  * @cd: pointer to command details structure or NULL
1686  *
1687  * release common resource using the admin queue commands (0x0009)
1688  */
1689 static enum ice_status
1690 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1691 		   struct ice_sq_cd *cd)
1692 {
1693 	struct ice_aqc_req_res *cmd;
1694 	struct ice_aq_desc desc;
1695 
1696 	cmd = &desc.params.res_owner;
1697 
1698 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1699 
1700 	cmd->res_id = cpu_to_le16(res);
1701 	cmd->res_number = cpu_to_le32(sdp_number);
1702 
1703 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1704 }
1705 
1706 /**
1707  * ice_acquire_res
1708  * @hw: pointer to the HW structure
1709  * @res: resource ID
1710  * @access: access type (read or write)
1711  * @timeout: timeout in milliseconds
1712  *
1713  * This function will attempt to acquire the ownership of a resource.
1714  */
1715 enum ice_status
1716 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1717 		enum ice_aq_res_access_type access, u32 timeout)
1718 {
1719 #define ICE_RES_POLLING_DELAY_MS	10
1720 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1721 	u32 time_left = timeout;
1722 	enum ice_status status;
1723 
1724 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1725 
1726 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1727 	 * previously acquired the resource and performed any necessary updates;
1728 	 * in this case the caller does not obtain the resource and has no
1729 	 * further work to do.
1730 	 */
1731 	if (status == ICE_ERR_AQ_NO_WORK)
1732 		goto ice_acquire_res_exit;
1733 
1734 	if (status)
1735 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1736 
1737 	/* If necessary, poll until the current lock owner timeouts */
1738 	timeout = time_left;
1739 	while (status && timeout && time_left) {
1740 		mdelay(delay);
1741 		timeout = (timeout > delay) ? timeout - delay : 0;
1742 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1743 
1744 		if (status == ICE_ERR_AQ_NO_WORK)
1745 			/* lock free, but no work to do */
1746 			break;
1747 
1748 		if (!status)
1749 			/* lock acquired */
1750 			break;
1751 	}
1752 	if (status && status != ICE_ERR_AQ_NO_WORK)
1753 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1754 
1755 ice_acquire_res_exit:
1756 	if (status == ICE_ERR_AQ_NO_WORK) {
1757 		if (access == ICE_RES_WRITE)
1758 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1759 		else
1760 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1761 	}
1762 	return status;
1763 }
1764 
1765 /**
1766  * ice_release_res
1767  * @hw: pointer to the HW structure
1768  * @res: resource ID
1769  *
1770  * This function will release a resource using the proper Admin Command.
1771  */
1772 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1773 {
1774 	enum ice_status status;
1775 	u32 total_delay = 0;
1776 
1777 	status = ice_aq_release_res(hw, res, 0, NULL);
1778 
1779 	/* there are some rare cases when trying to release the resource
1780 	 * results in an admin queue timeout, so handle them correctly
1781 	 */
1782 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1783 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1784 		mdelay(1);
1785 		status = ice_aq_release_res(hw, res, 0, NULL);
1786 		total_delay++;
1787 	}
1788 }
1789 
1790 /**
1791  * ice_aq_alloc_free_res - command to allocate/free resources
1792  * @hw: pointer to the HW struct
1793  * @num_entries: number of resource entries in buffer
1794  * @buf: Indirect buffer to hold data parameters and response
1795  * @buf_size: size of buffer for indirect commands
1796  * @opc: pass in the command opcode
1797  * @cd: pointer to command details structure or NULL
1798  *
1799  * Helper function to allocate/free resources using the admin queue commands
1800  */
1801 enum ice_status
1802 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1803 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1804 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1805 {
1806 	struct ice_aqc_alloc_free_res_cmd *cmd;
1807 	struct ice_aq_desc desc;
1808 
1809 	cmd = &desc.params.sw_res_ctrl;
1810 
1811 	if (!buf)
1812 		return ICE_ERR_PARAM;
1813 
1814 	if (buf_size < flex_array_size(buf, elem, num_entries))
1815 		return ICE_ERR_PARAM;
1816 
1817 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1818 
1819 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1820 
1821 	cmd->num_entries = cpu_to_le16(num_entries);
1822 
1823 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1824 }
1825 
1826 /**
1827  * ice_alloc_hw_res - allocate resource
1828  * @hw: pointer to the HW struct
1829  * @type: type of resource
1830  * @num: number of resources to allocate
1831  * @btm: allocate from bottom
1832  * @res: pointer to array that will receive the resources
1833  */
1834 enum ice_status
1835 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1836 {
1837 	struct ice_aqc_alloc_free_res_elem *buf;
1838 	enum ice_status status;
1839 	u16 buf_len;
1840 
1841 	buf_len = struct_size(buf, elem, num);
1842 	buf = kzalloc(buf_len, GFP_KERNEL);
1843 	if (!buf)
1844 		return ICE_ERR_NO_MEMORY;
1845 
1846 	/* Prepare buffer to allocate resource. */
1847 	buf->num_elems = cpu_to_le16(num);
1848 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1849 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1850 	if (btm)
1851 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1852 
1853 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1854 				       ice_aqc_opc_alloc_res, NULL);
1855 	if (status)
1856 		goto ice_alloc_res_exit;
1857 
1858 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1859 
1860 ice_alloc_res_exit:
1861 	kfree(buf);
1862 	return status;
1863 }
1864 
1865 /**
1866  * ice_free_hw_res - free allocated HW resource
1867  * @hw: pointer to the HW struct
1868  * @type: type of resource to free
1869  * @num: number of resources
1870  * @res: pointer to array that contains the resources to free
1871  */
1872 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1873 {
1874 	struct ice_aqc_alloc_free_res_elem *buf;
1875 	enum ice_status status;
1876 	u16 buf_len;
1877 
1878 	buf_len = struct_size(buf, elem, num);
1879 	buf = kzalloc(buf_len, GFP_KERNEL);
1880 	if (!buf)
1881 		return ICE_ERR_NO_MEMORY;
1882 
1883 	/* Prepare buffer to free resource. */
1884 	buf->num_elems = cpu_to_le16(num);
1885 	buf->res_type = cpu_to_le16(type);
1886 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1887 
1888 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1889 				       ice_aqc_opc_free_res, NULL);
1890 	if (status)
1891 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1892 
1893 	kfree(buf);
1894 	return status;
1895 }
1896 
1897 /**
1898  * ice_get_num_per_func - determine number of resources per PF
1899  * @hw: pointer to the HW structure
1900  * @max: value to be evenly split between each PF
1901  *
1902  * Determine the number of valid functions by going through the bitmap returned
1903  * from parsing capabilities and use this to calculate the number of resources
1904  * per PF based on the max value passed in.
1905  */
1906 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1907 {
1908 	u8 funcs;
1909 
1910 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1911 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1912 			 ICE_CAPS_VALID_FUNCS_M);
1913 
1914 	if (!funcs)
1915 		return 0;
1916 
1917 	return max / funcs;
1918 }
1919 
1920 /**
1921  * ice_parse_common_caps - parse common device/function capabilities
1922  * @hw: pointer to the HW struct
1923  * @caps: pointer to common capabilities structure
1924  * @elem: the capability element to parse
1925  * @prefix: message prefix for tracing capabilities
1926  *
1927  * Given a capability element, extract relevant details into the common
1928  * capability structure.
1929  *
1930  * Returns: true if the capability matches one of the common capability ids,
1931  * false otherwise.
1932  */
1933 static bool
1934 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1935 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1936 {
1937 	u32 logical_id = le32_to_cpu(elem->logical_id);
1938 	u32 phys_id = le32_to_cpu(elem->phys_id);
1939 	u32 number = le32_to_cpu(elem->number);
1940 	u16 cap = le16_to_cpu(elem->cap);
1941 	bool found = true;
1942 
1943 	switch (cap) {
1944 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1945 		caps->valid_functions = number;
1946 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1947 			  caps->valid_functions);
1948 		break;
1949 	case ICE_AQC_CAPS_SRIOV:
1950 		caps->sr_iov_1_1 = (number == 1);
1951 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1952 			  caps->sr_iov_1_1);
1953 		break;
1954 	case ICE_AQC_CAPS_DCB:
1955 		caps->dcb = (number == 1);
1956 		caps->active_tc_bitmap = logical_id;
1957 		caps->maxtc = phys_id;
1958 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1959 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1960 			  caps->active_tc_bitmap);
1961 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1962 		break;
1963 	case ICE_AQC_CAPS_RSS:
1964 		caps->rss_table_size = number;
1965 		caps->rss_table_entry_width = logical_id;
1966 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1967 			  caps->rss_table_size);
1968 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1969 			  caps->rss_table_entry_width);
1970 		break;
1971 	case ICE_AQC_CAPS_RXQS:
1972 		caps->num_rxq = number;
1973 		caps->rxq_first_id = phys_id;
1974 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1975 			  caps->num_rxq);
1976 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1977 			  caps->rxq_first_id);
1978 		break;
1979 	case ICE_AQC_CAPS_TXQS:
1980 		caps->num_txq = number;
1981 		caps->txq_first_id = phys_id;
1982 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1983 			  caps->num_txq);
1984 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1985 			  caps->txq_first_id);
1986 		break;
1987 	case ICE_AQC_CAPS_MSIX:
1988 		caps->num_msix_vectors = number;
1989 		caps->msix_vector_first_id = phys_id;
1990 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1991 			  caps->num_msix_vectors);
1992 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1993 			  caps->msix_vector_first_id);
1994 		break;
1995 	case ICE_AQC_CAPS_PENDING_NVM_VER:
1996 		caps->nvm_update_pending_nvm = true;
1997 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
1998 		break;
1999 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2000 		caps->nvm_update_pending_orom = true;
2001 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2002 		break;
2003 	case ICE_AQC_CAPS_PENDING_NET_VER:
2004 		caps->nvm_update_pending_netlist = true;
2005 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2006 		break;
2007 	case ICE_AQC_CAPS_NVM_MGMT:
2008 		caps->nvm_unified_update =
2009 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2010 			true : false;
2011 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2012 			  caps->nvm_unified_update);
2013 		break;
2014 	case ICE_AQC_CAPS_RDMA:
2015 		caps->rdma = (number == 1);
2016 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2017 		break;
2018 	case ICE_AQC_CAPS_MAX_MTU:
2019 		caps->max_mtu = number;
2020 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2021 			  prefix, caps->max_mtu);
2022 		break;
2023 	default:
2024 		/* Not one of the recognized common capabilities */
2025 		found = false;
2026 	}
2027 
2028 	return found;
2029 }
2030 
2031 /**
2032  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2033  * @hw: pointer to the HW structure
2034  * @caps: pointer to capabilities structure to fix
2035  *
2036  * Re-calculate the capabilities that are dependent on the number of physical
2037  * ports; i.e. some features are not supported or function differently on
2038  * devices with more than 4 ports.
2039  */
2040 static void
2041 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2042 {
2043 	/* This assumes device capabilities are always scanned before function
2044 	 * capabilities during the initialization flow.
2045 	 */
2046 	if (hw->dev_caps.num_funcs > 4) {
2047 		/* Max 4 TCs per port */
2048 		caps->maxtc = 4;
2049 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2050 			  caps->maxtc);
2051 		if (caps->rdma) {
2052 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2053 			caps->rdma = 0;
2054 		}
2055 
2056 		/* print message only when processing device capabilities
2057 		 * during initialization.
2058 		 */
2059 		if (caps == &hw->dev_caps.common_cap)
2060 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2061 	}
2062 }
2063 
2064 /**
2065  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2066  * @hw: pointer to the HW struct
2067  * @func_p: pointer to function capabilities structure
2068  * @cap: pointer to the capability element to parse
2069  *
2070  * Extract function capabilities for ICE_AQC_CAPS_VF.
2071  */
2072 static void
2073 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2074 		       struct ice_aqc_list_caps_elem *cap)
2075 {
2076 	u32 logical_id = le32_to_cpu(cap->logical_id);
2077 	u32 number = le32_to_cpu(cap->number);
2078 
2079 	func_p->num_allocd_vfs = number;
2080 	func_p->vf_base_id = logical_id;
2081 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2082 		  func_p->num_allocd_vfs);
2083 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2084 		  func_p->vf_base_id);
2085 }
2086 
2087 /**
2088  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2089  * @hw: pointer to the HW struct
2090  * @func_p: pointer to function capabilities structure
2091  * @cap: pointer to the capability element to parse
2092  *
2093  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2094  */
2095 static void
2096 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2097 			struct ice_aqc_list_caps_elem *cap)
2098 {
2099 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2100 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2101 		  le32_to_cpu(cap->number));
2102 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2103 		  func_p->guar_num_vsi);
2104 }
2105 
2106 /**
2107  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2108  * @hw: pointer to the HW struct
2109  * @func_p: pointer to function capabilities structure
2110  * @cap: pointer to the capability element to parse
2111  *
2112  * Extract function capabilities for ICE_AQC_CAPS_1588.
2113  */
2114 static void
2115 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2116 			 struct ice_aqc_list_caps_elem *cap)
2117 {
2118 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2119 	u32 number = le32_to_cpu(cap->number);
2120 
2121 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2122 	func_p->common_cap.ieee_1588 = info->ena;
2123 
2124 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2125 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2126 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2127 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2128 
2129 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2130 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2131 
2132 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2133 		  func_p->common_cap.ieee_1588);
2134 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2135 		  info->src_tmr_owned);
2136 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2137 		  info->tmr_ena);
2138 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2139 		  info->tmr_index_owned);
2140 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2141 		  info->tmr_index_assoc);
2142 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2143 		  info->clk_freq);
2144 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2145 		  info->clk_src);
2146 }
2147 
2148 /**
2149  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2150  * @hw: pointer to the HW struct
2151  * @func_p: pointer to function capabilities structure
2152  *
2153  * Extract function capabilities for ICE_AQC_CAPS_FD.
2154  */
2155 static void
2156 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2157 {
2158 	u32 reg_val, val;
2159 
2160 	reg_val = rd32(hw, GLQF_FD_SIZE);
2161 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2162 		GLQF_FD_SIZE_FD_GSIZE_S;
2163 	func_p->fd_fltr_guar =
2164 		ice_get_num_per_func(hw, val);
2165 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2166 		GLQF_FD_SIZE_FD_BSIZE_S;
2167 	func_p->fd_fltr_best_effort = val;
2168 
2169 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2170 		  func_p->fd_fltr_guar);
2171 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2172 		  func_p->fd_fltr_best_effort);
2173 }
2174 
2175 /**
2176  * ice_parse_func_caps - Parse function capabilities
2177  * @hw: pointer to the HW struct
2178  * @func_p: pointer to function capabilities structure
2179  * @buf: buffer containing the function capability records
2180  * @cap_count: the number of capabilities
2181  *
2182  * Helper function to parse function (0x000A) capabilities list. For
2183  * capabilities shared between device and function, this relies on
2184  * ice_parse_common_caps.
2185  *
2186  * Loop through the list of provided capabilities and extract the relevant
2187  * data into the function capabilities structured.
2188  */
2189 static void
2190 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2191 		    void *buf, u32 cap_count)
2192 {
2193 	struct ice_aqc_list_caps_elem *cap_resp;
2194 	u32 i;
2195 
2196 	cap_resp = buf;
2197 
2198 	memset(func_p, 0, sizeof(*func_p));
2199 
2200 	for (i = 0; i < cap_count; i++) {
2201 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2202 		bool found;
2203 
2204 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2205 					      &cap_resp[i], "func caps");
2206 
2207 		switch (cap) {
2208 		case ICE_AQC_CAPS_VF:
2209 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2210 			break;
2211 		case ICE_AQC_CAPS_VSI:
2212 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2213 			break;
2214 		case ICE_AQC_CAPS_1588:
2215 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2216 			break;
2217 		case ICE_AQC_CAPS_FD:
2218 			ice_parse_fdir_func_caps(hw, func_p);
2219 			break;
2220 		default:
2221 			/* Don't list common capabilities as unknown */
2222 			if (!found)
2223 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2224 					  i, cap);
2225 			break;
2226 		}
2227 	}
2228 
2229 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2230 }
2231 
2232 /**
2233  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2234  * @hw: pointer to the HW struct
2235  * @dev_p: pointer to device capabilities structure
2236  * @cap: capability element to parse
2237  *
2238  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2239  */
2240 static void
2241 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2242 			      struct ice_aqc_list_caps_elem *cap)
2243 {
2244 	u32 number = le32_to_cpu(cap->number);
2245 
2246 	dev_p->num_funcs = hweight32(number);
2247 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2248 		  dev_p->num_funcs);
2249 }
2250 
2251 /**
2252  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2253  * @hw: pointer to the HW struct
2254  * @dev_p: pointer to device capabilities structure
2255  * @cap: capability element to parse
2256  *
2257  * Parse ICE_AQC_CAPS_VF for device capabilities.
2258  */
2259 static void
2260 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2261 		      struct ice_aqc_list_caps_elem *cap)
2262 {
2263 	u32 number = le32_to_cpu(cap->number);
2264 
2265 	dev_p->num_vfs_exposed = number;
2266 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2267 		  dev_p->num_vfs_exposed);
2268 }
2269 
2270 /**
2271  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2272  * @hw: pointer to the HW struct
2273  * @dev_p: pointer to device capabilities structure
2274  * @cap: capability element to parse
2275  *
2276  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2277  */
2278 static void
2279 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2280 		       struct ice_aqc_list_caps_elem *cap)
2281 {
2282 	u32 number = le32_to_cpu(cap->number);
2283 
2284 	dev_p->num_vsi_allocd_to_host = number;
2285 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2286 		  dev_p->num_vsi_allocd_to_host);
2287 }
2288 
2289 /**
2290  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2291  * @hw: pointer to the HW struct
2292  * @dev_p: pointer to device capabilities structure
2293  * @cap: capability element to parse
2294  *
2295  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2296  */
2297 static void
2298 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2299 			struct ice_aqc_list_caps_elem *cap)
2300 {
2301 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2302 	u32 logical_id = le32_to_cpu(cap->logical_id);
2303 	u32 phys_id = le32_to_cpu(cap->phys_id);
2304 	u32 number = le32_to_cpu(cap->number);
2305 
2306 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2307 	dev_p->common_cap.ieee_1588 = info->ena;
2308 
2309 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2310 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2311 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2312 
2313 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2314 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2315 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2316 
2317 	info->ena_ports = logical_id;
2318 	info->tmr_own_map = phys_id;
2319 
2320 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2321 		  dev_p->common_cap.ieee_1588);
2322 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2323 		  info->tmr0_owner);
2324 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2325 		  info->tmr0_owned);
2326 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2327 		  info->tmr0_ena);
2328 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2329 		  info->tmr1_owner);
2330 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2331 		  info->tmr1_owned);
2332 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2333 		  info->tmr1_ena);
2334 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2335 		  info->ena_ports);
2336 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2337 		  info->tmr_own_map);
2338 }
2339 
2340 /**
2341  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2342  * @hw: pointer to the HW struct
2343  * @dev_p: pointer to device capabilities structure
2344  * @cap: capability element to parse
2345  *
2346  * Parse ICE_AQC_CAPS_FD for device capabilities.
2347  */
2348 static void
2349 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2350 			struct ice_aqc_list_caps_elem *cap)
2351 {
2352 	u32 number = le32_to_cpu(cap->number);
2353 
2354 	dev_p->num_flow_director_fltr = number;
2355 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2356 		  dev_p->num_flow_director_fltr);
2357 }
2358 
2359 /**
2360  * ice_parse_dev_caps - Parse device capabilities
2361  * @hw: pointer to the HW struct
2362  * @dev_p: pointer to device capabilities structure
2363  * @buf: buffer containing the device capability records
2364  * @cap_count: the number of capabilities
2365  *
2366  * Helper device to parse device (0x000B) capabilities list. For
2367  * capabilities shared between device and function, this relies on
2368  * ice_parse_common_caps.
2369  *
2370  * Loop through the list of provided capabilities and extract the relevant
2371  * data into the device capabilities structured.
2372  */
2373 static void
2374 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2375 		   void *buf, u32 cap_count)
2376 {
2377 	struct ice_aqc_list_caps_elem *cap_resp;
2378 	u32 i;
2379 
2380 	cap_resp = buf;
2381 
2382 	memset(dev_p, 0, sizeof(*dev_p));
2383 
2384 	for (i = 0; i < cap_count; i++) {
2385 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2386 		bool found;
2387 
2388 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2389 					      &cap_resp[i], "dev caps");
2390 
2391 		switch (cap) {
2392 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2393 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2394 			break;
2395 		case ICE_AQC_CAPS_VF:
2396 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2397 			break;
2398 		case ICE_AQC_CAPS_VSI:
2399 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2400 			break;
2401 		case ICE_AQC_CAPS_1588:
2402 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2403 			break;
2404 		case  ICE_AQC_CAPS_FD:
2405 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2406 			break;
2407 		default:
2408 			/* Don't list common capabilities as unknown */
2409 			if (!found)
2410 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2411 					  i, cap);
2412 			break;
2413 		}
2414 	}
2415 
2416 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2417 }
2418 
2419 /**
2420  * ice_aq_list_caps - query function/device capabilities
2421  * @hw: pointer to the HW struct
2422  * @buf: a buffer to hold the capabilities
2423  * @buf_size: size of the buffer
2424  * @cap_count: if not NULL, set to the number of capabilities reported
2425  * @opc: capabilities type to discover, device or function
2426  * @cd: pointer to command details structure or NULL
2427  *
2428  * Get the function (0x000A) or device (0x000B) capabilities description from
2429  * firmware and store it in the buffer.
2430  *
2431  * If the cap_count pointer is not NULL, then it is set to the number of
2432  * capabilities firmware will report. Note that if the buffer size is too
2433  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2434  * cap_count will still be updated in this case. It is recommended that the
2435  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2436  * firmware could return) to avoid this.
2437  */
2438 enum ice_status
2439 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2440 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2441 {
2442 	struct ice_aqc_list_caps *cmd;
2443 	struct ice_aq_desc desc;
2444 	enum ice_status status;
2445 
2446 	cmd = &desc.params.get_cap;
2447 
2448 	if (opc != ice_aqc_opc_list_func_caps &&
2449 	    opc != ice_aqc_opc_list_dev_caps)
2450 		return ICE_ERR_PARAM;
2451 
2452 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2453 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2454 
2455 	if (cap_count)
2456 		*cap_count = le32_to_cpu(cmd->count);
2457 
2458 	return status;
2459 }
2460 
2461 /**
2462  * ice_discover_dev_caps - Read and extract device capabilities
2463  * @hw: pointer to the hardware structure
2464  * @dev_caps: pointer to device capabilities structure
2465  *
2466  * Read the device capabilities and extract them into the dev_caps structure
2467  * for later use.
2468  */
2469 enum ice_status
2470 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2471 {
2472 	enum ice_status status;
2473 	u32 cap_count = 0;
2474 	void *cbuf;
2475 
2476 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2477 	if (!cbuf)
2478 		return ICE_ERR_NO_MEMORY;
2479 
2480 	/* Although the driver doesn't know the number of capabilities the
2481 	 * device will return, we can simply send a 4KB buffer, the maximum
2482 	 * possible size that firmware can return.
2483 	 */
2484 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2485 
2486 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2487 				  ice_aqc_opc_list_dev_caps, NULL);
2488 	if (!status)
2489 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2490 	kfree(cbuf);
2491 
2492 	return status;
2493 }
2494 
2495 /**
2496  * ice_discover_func_caps - Read and extract function capabilities
2497  * @hw: pointer to the hardware structure
2498  * @func_caps: pointer to function capabilities structure
2499  *
2500  * Read the function capabilities and extract them into the func_caps structure
2501  * for later use.
2502  */
2503 static enum ice_status
2504 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2505 {
2506 	enum ice_status status;
2507 	u32 cap_count = 0;
2508 	void *cbuf;
2509 
2510 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2511 	if (!cbuf)
2512 		return ICE_ERR_NO_MEMORY;
2513 
2514 	/* Although the driver doesn't know the number of capabilities the
2515 	 * device will return, we can simply send a 4KB buffer, the maximum
2516 	 * possible size that firmware can return.
2517 	 */
2518 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2519 
2520 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2521 				  ice_aqc_opc_list_func_caps, NULL);
2522 	if (!status)
2523 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2524 	kfree(cbuf);
2525 
2526 	return status;
2527 }
2528 
2529 /**
2530  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2531  * @hw: pointer to the hardware structure
2532  */
2533 void ice_set_safe_mode_caps(struct ice_hw *hw)
2534 {
2535 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2536 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2537 	struct ice_hw_common_caps cached_caps;
2538 	u32 num_funcs;
2539 
2540 	/* cache some func_caps values that should be restored after memset */
2541 	cached_caps = func_caps->common_cap;
2542 
2543 	/* unset func capabilities */
2544 	memset(func_caps, 0, sizeof(*func_caps));
2545 
2546 #define ICE_RESTORE_FUNC_CAP(name) \
2547 	func_caps->common_cap.name = cached_caps.name
2548 
2549 	/* restore cached values */
2550 	ICE_RESTORE_FUNC_CAP(valid_functions);
2551 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2552 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2553 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2554 	ICE_RESTORE_FUNC_CAP(max_mtu);
2555 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2556 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2557 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2558 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2559 
2560 	/* one Tx and one Rx queue in safe mode */
2561 	func_caps->common_cap.num_rxq = 1;
2562 	func_caps->common_cap.num_txq = 1;
2563 
2564 	/* two MSIX vectors, one for traffic and one for misc causes */
2565 	func_caps->common_cap.num_msix_vectors = 2;
2566 	func_caps->guar_num_vsi = 1;
2567 
2568 	/* cache some dev_caps values that should be restored after memset */
2569 	cached_caps = dev_caps->common_cap;
2570 	num_funcs = dev_caps->num_funcs;
2571 
2572 	/* unset dev capabilities */
2573 	memset(dev_caps, 0, sizeof(*dev_caps));
2574 
2575 #define ICE_RESTORE_DEV_CAP(name) \
2576 	dev_caps->common_cap.name = cached_caps.name
2577 
2578 	/* restore cached values */
2579 	ICE_RESTORE_DEV_CAP(valid_functions);
2580 	ICE_RESTORE_DEV_CAP(txq_first_id);
2581 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2582 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2583 	ICE_RESTORE_DEV_CAP(max_mtu);
2584 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2585 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2586 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2587 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2588 	dev_caps->num_funcs = num_funcs;
2589 
2590 	/* one Tx and one Rx queue per function in safe mode */
2591 	dev_caps->common_cap.num_rxq = num_funcs;
2592 	dev_caps->common_cap.num_txq = num_funcs;
2593 
2594 	/* two MSIX vectors per function */
2595 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2596 }
2597 
2598 /**
2599  * ice_get_caps - get info about the HW
2600  * @hw: pointer to the hardware structure
2601  */
2602 enum ice_status ice_get_caps(struct ice_hw *hw)
2603 {
2604 	enum ice_status status;
2605 
2606 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2607 	if (status)
2608 		return status;
2609 
2610 	return ice_discover_func_caps(hw, &hw->func_caps);
2611 }
2612 
2613 /**
2614  * ice_aq_manage_mac_write - manage MAC address write command
2615  * @hw: pointer to the HW struct
2616  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2617  * @flags: flags to control write behavior
2618  * @cd: pointer to command details structure or NULL
2619  *
2620  * This function is used to write MAC address to the NVM (0x0108).
2621  */
2622 enum ice_status
2623 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2624 			struct ice_sq_cd *cd)
2625 {
2626 	struct ice_aqc_manage_mac_write *cmd;
2627 	struct ice_aq_desc desc;
2628 
2629 	cmd = &desc.params.mac_write;
2630 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2631 
2632 	cmd->flags = flags;
2633 	ether_addr_copy(cmd->mac_addr, mac_addr);
2634 
2635 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2636 }
2637 
2638 /**
2639  * ice_aq_clear_pxe_mode
2640  * @hw: pointer to the HW struct
2641  *
2642  * Tell the firmware that the driver is taking over from PXE (0x0110).
2643  */
2644 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2645 {
2646 	struct ice_aq_desc desc;
2647 
2648 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2649 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2650 
2651 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2652 }
2653 
2654 /**
2655  * ice_clear_pxe_mode - clear pxe operations mode
2656  * @hw: pointer to the HW struct
2657  *
2658  * Make sure all PXE mode settings are cleared, including things
2659  * like descriptor fetch/write-back mode.
2660  */
2661 void ice_clear_pxe_mode(struct ice_hw *hw)
2662 {
2663 	if (ice_check_sq_alive(hw, &hw->adminq))
2664 		ice_aq_clear_pxe_mode(hw);
2665 }
2666 
2667 /**
2668  * ice_get_link_speed_based_on_phy_type - returns link speed
2669  * @phy_type_low: lower part of phy_type
2670  * @phy_type_high: higher part of phy_type
2671  *
2672  * This helper function will convert an entry in PHY type structure
2673  * [phy_type_low, phy_type_high] to its corresponding link speed.
2674  * Note: In the structure of [phy_type_low, phy_type_high], there should
2675  * be one bit set, as this function will convert one PHY type to its
2676  * speed.
2677  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2678  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2679  */
2680 static u16
2681 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2682 {
2683 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2684 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2685 
2686 	switch (phy_type_low) {
2687 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2688 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2689 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2690 		break;
2691 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2692 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2693 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2694 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2695 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2696 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2697 		break;
2698 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2699 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2700 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2701 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2702 		break;
2703 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2704 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2705 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2706 		break;
2707 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2708 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2709 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2710 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2711 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2712 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2713 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2714 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2715 		break;
2716 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2717 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2718 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2719 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2720 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2721 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2722 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2723 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2724 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2725 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2726 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2727 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2728 		break;
2729 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2730 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2731 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2732 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2733 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2734 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2735 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2736 		break;
2737 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2738 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2739 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2740 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2741 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2742 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2743 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2744 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2745 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2746 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2747 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2748 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2749 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2750 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2751 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2752 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2753 		break;
2754 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2755 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2756 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2757 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2758 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2759 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2760 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2761 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2762 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2763 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2764 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2765 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2766 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2767 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2768 		break;
2769 	default:
2770 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2771 		break;
2772 	}
2773 
2774 	switch (phy_type_high) {
2775 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2776 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2777 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2778 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2779 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2780 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2781 		break;
2782 	default:
2783 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2784 		break;
2785 	}
2786 
2787 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2788 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2789 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2790 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2791 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2792 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2793 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2794 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2795 		return speed_phy_type_low;
2796 	else
2797 		return speed_phy_type_high;
2798 }
2799 
2800 /**
2801  * ice_update_phy_type
2802  * @phy_type_low: pointer to the lower part of phy_type
2803  * @phy_type_high: pointer to the higher part of phy_type
2804  * @link_speeds_bitmap: targeted link speeds bitmap
2805  *
2806  * Note: For the link_speeds_bitmap structure, you can check it at
2807  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2808  * link_speeds_bitmap include multiple speeds.
2809  *
2810  * Each entry in this [phy_type_low, phy_type_high] structure will
2811  * present a certain link speed. This helper function will turn on bits
2812  * in [phy_type_low, phy_type_high] structure based on the value of
2813  * link_speeds_bitmap input parameter.
2814  */
2815 void
2816 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2817 		    u16 link_speeds_bitmap)
2818 {
2819 	u64 pt_high;
2820 	u64 pt_low;
2821 	int index;
2822 	u16 speed;
2823 
2824 	/* We first check with low part of phy_type */
2825 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2826 		pt_low = BIT_ULL(index);
2827 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2828 
2829 		if (link_speeds_bitmap & speed)
2830 			*phy_type_low |= BIT_ULL(index);
2831 	}
2832 
2833 	/* We then check with high part of phy_type */
2834 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2835 		pt_high = BIT_ULL(index);
2836 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2837 
2838 		if (link_speeds_bitmap & speed)
2839 			*phy_type_high |= BIT_ULL(index);
2840 	}
2841 }
2842 
2843 /**
2844  * ice_aq_set_phy_cfg
2845  * @hw: pointer to the HW struct
2846  * @pi: port info structure of the interested logical port
2847  * @cfg: structure with PHY configuration data to be set
2848  * @cd: pointer to command details structure or NULL
2849  *
2850  * Set the various PHY configuration parameters supported on the Port.
2851  * One or more of the Set PHY config parameters may be ignored in an MFP
2852  * mode as the PF may not have the privilege to set some of the PHY Config
2853  * parameters. This status will be indicated by the command response (0x0601).
2854  */
2855 enum ice_status
2856 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2857 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2858 {
2859 	struct ice_aq_desc desc;
2860 	enum ice_status status;
2861 
2862 	if (!cfg)
2863 		return ICE_ERR_PARAM;
2864 
2865 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2866 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2867 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2868 			  cfg->caps);
2869 
2870 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2871 	}
2872 
2873 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2874 	desc.params.set_phy.lport_num = pi->lport;
2875 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2876 
2877 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2878 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2879 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2880 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2881 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2882 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2883 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2884 		  cfg->low_power_ctrl_an);
2885 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2886 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2887 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2888 		  cfg->link_fec_opt);
2889 
2890 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2891 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2892 		status = 0;
2893 
2894 	if (!status)
2895 		pi->phy.curr_user_phy_cfg = *cfg;
2896 
2897 	return status;
2898 }
2899 
2900 /**
2901  * ice_update_link_info - update status of the HW network link
2902  * @pi: port info structure of the interested logical port
2903  */
2904 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2905 {
2906 	struct ice_link_status *li;
2907 	enum ice_status status;
2908 
2909 	if (!pi)
2910 		return ICE_ERR_PARAM;
2911 
2912 	li = &pi->phy.link_info;
2913 
2914 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2915 	if (status)
2916 		return status;
2917 
2918 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2919 		struct ice_aqc_get_phy_caps_data *pcaps;
2920 		struct ice_hw *hw;
2921 
2922 		hw = pi->hw;
2923 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2924 				     GFP_KERNEL);
2925 		if (!pcaps)
2926 			return ICE_ERR_NO_MEMORY;
2927 
2928 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2929 					     pcaps, NULL);
2930 
2931 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2932 	}
2933 
2934 	return status;
2935 }
2936 
2937 /**
2938  * ice_cache_phy_user_req
2939  * @pi: port information structure
2940  * @cache_data: PHY logging data
2941  * @cache_mode: PHY logging mode
2942  *
2943  * Log the user request on (FC, FEC, SPEED) for later use.
2944  */
2945 static void
2946 ice_cache_phy_user_req(struct ice_port_info *pi,
2947 		       struct ice_phy_cache_mode_data cache_data,
2948 		       enum ice_phy_cache_mode cache_mode)
2949 {
2950 	if (!pi)
2951 		return;
2952 
2953 	switch (cache_mode) {
2954 	case ICE_FC_MODE:
2955 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2956 		break;
2957 	case ICE_SPEED_MODE:
2958 		pi->phy.curr_user_speed_req =
2959 			cache_data.data.curr_user_speed_req;
2960 		break;
2961 	case ICE_FEC_MODE:
2962 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2963 		break;
2964 	default:
2965 		break;
2966 	}
2967 }
2968 
2969 /**
2970  * ice_caps_to_fc_mode
2971  * @caps: PHY capabilities
2972  *
2973  * Convert PHY FC capabilities to ice FC mode
2974  */
2975 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2976 {
2977 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2978 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2979 		return ICE_FC_FULL;
2980 
2981 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2982 		return ICE_FC_TX_PAUSE;
2983 
2984 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2985 		return ICE_FC_RX_PAUSE;
2986 
2987 	return ICE_FC_NONE;
2988 }
2989 
2990 /**
2991  * ice_caps_to_fec_mode
2992  * @caps: PHY capabilities
2993  * @fec_options: Link FEC options
2994  *
2995  * Convert PHY FEC capabilities to ice FEC mode
2996  */
2997 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2998 {
2999 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3000 		return ICE_FEC_AUTO;
3001 
3002 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3003 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3004 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3005 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3006 		return ICE_FEC_BASER;
3007 
3008 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3009 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3010 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3011 		return ICE_FEC_RS;
3012 
3013 	return ICE_FEC_NONE;
3014 }
3015 
3016 /**
3017  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3018  * @pi: port information structure
3019  * @cfg: PHY configuration data to set FC mode
3020  * @req_mode: FC mode to configure
3021  */
3022 enum ice_status
3023 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3024 	       enum ice_fc_mode req_mode)
3025 {
3026 	struct ice_phy_cache_mode_data cache_data;
3027 	u8 pause_mask = 0x0;
3028 
3029 	if (!pi || !cfg)
3030 		return ICE_ERR_BAD_PTR;
3031 
3032 	switch (req_mode) {
3033 	case ICE_FC_FULL:
3034 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3035 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3036 		break;
3037 	case ICE_FC_RX_PAUSE:
3038 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3039 		break;
3040 	case ICE_FC_TX_PAUSE:
3041 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3042 		break;
3043 	default:
3044 		break;
3045 	}
3046 
3047 	/* clear the old pause settings */
3048 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3049 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3050 
3051 	/* set the new capabilities */
3052 	cfg->caps |= pause_mask;
3053 
3054 	/* Cache user FC request */
3055 	cache_data.data.curr_user_fc_req = req_mode;
3056 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3057 
3058 	return 0;
3059 }
3060 
3061 /**
3062  * ice_set_fc
3063  * @pi: port information structure
3064  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3065  * @ena_auto_link_update: enable automatic link update
3066  *
3067  * Set the requested flow control mode.
3068  */
3069 enum ice_status
3070 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3071 {
3072 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3073 	struct ice_aqc_get_phy_caps_data *pcaps;
3074 	enum ice_status status;
3075 	struct ice_hw *hw;
3076 
3077 	if (!pi || !aq_failures)
3078 		return ICE_ERR_BAD_PTR;
3079 
3080 	*aq_failures = 0;
3081 	hw = pi->hw;
3082 
3083 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3084 	if (!pcaps)
3085 		return ICE_ERR_NO_MEMORY;
3086 
3087 	/* Get the current PHY config */
3088 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3089 				     pcaps, NULL);
3090 	if (status) {
3091 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3092 		goto out;
3093 	}
3094 
3095 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3096 
3097 	/* Configure the set PHY data */
3098 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3099 	if (status)
3100 		goto out;
3101 
3102 	/* If the capabilities have changed, then set the new config */
3103 	if (cfg.caps != pcaps->caps) {
3104 		int retry_count, retry_max = 10;
3105 
3106 		/* Auto restart link so settings take effect */
3107 		if (ena_auto_link_update)
3108 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3109 
3110 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3111 		if (status) {
3112 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3113 			goto out;
3114 		}
3115 
3116 		/* Update the link info
3117 		 * It sometimes takes a really long time for link to
3118 		 * come back from the atomic reset. Thus, we wait a
3119 		 * little bit.
3120 		 */
3121 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3122 			status = ice_update_link_info(pi);
3123 
3124 			if (!status)
3125 				break;
3126 
3127 			mdelay(100);
3128 		}
3129 
3130 		if (status)
3131 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3132 	}
3133 
3134 out:
3135 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3136 	return status;
3137 }
3138 
3139 /**
3140  * ice_phy_caps_equals_cfg
3141  * @phy_caps: PHY capabilities
3142  * @phy_cfg: PHY configuration
3143  *
3144  * Helper function to determine if PHY capabilities matches PHY
3145  * configuration
3146  */
3147 bool
3148 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3149 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3150 {
3151 	u8 caps_mask, cfg_mask;
3152 
3153 	if (!phy_caps || !phy_cfg)
3154 		return false;
3155 
3156 	/* These bits are not common between capabilities and configuration.
3157 	 * Do not use them to determine equality.
3158 	 */
3159 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3160 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3161 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3162 
3163 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3164 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3165 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3166 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3167 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3168 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3169 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3170 		return false;
3171 
3172 	return true;
3173 }
3174 
3175 /**
3176  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3177  * @pi: port information structure
3178  * @caps: PHY ability structure to copy date from
3179  * @cfg: PHY configuration structure to copy data to
3180  *
3181  * Helper function to copy AQC PHY get ability data to PHY set configuration
3182  * data structure
3183  */
3184 void
3185 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3186 			 struct ice_aqc_get_phy_caps_data *caps,
3187 			 struct ice_aqc_set_phy_cfg_data *cfg)
3188 {
3189 	if (!pi || !caps || !cfg)
3190 		return;
3191 
3192 	memset(cfg, 0, sizeof(*cfg));
3193 	cfg->phy_type_low = caps->phy_type_low;
3194 	cfg->phy_type_high = caps->phy_type_high;
3195 	cfg->caps = caps->caps;
3196 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3197 	cfg->eee_cap = caps->eee_cap;
3198 	cfg->eeer_value = caps->eeer_value;
3199 	cfg->link_fec_opt = caps->link_fec_options;
3200 	cfg->module_compliance_enforcement =
3201 		caps->module_compliance_enforcement;
3202 }
3203 
3204 /**
3205  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3206  * @pi: port information structure
3207  * @cfg: PHY configuration data to set FEC mode
3208  * @fec: FEC mode to configure
3209  */
3210 enum ice_status
3211 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3212 		enum ice_fec_mode fec)
3213 {
3214 	struct ice_aqc_get_phy_caps_data *pcaps;
3215 	enum ice_status status;
3216 	struct ice_hw *hw;
3217 
3218 	if (!pi || !cfg)
3219 		return ICE_ERR_BAD_PTR;
3220 
3221 	hw = pi->hw;
3222 
3223 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3224 	if (!pcaps)
3225 		return ICE_ERR_NO_MEMORY;
3226 
3227 	status = ice_aq_get_phy_caps(pi, false,
3228 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3229 				      ICE_AQC_REPORT_DFLT_CFG :
3230 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3231 	if (status)
3232 		goto out;
3233 
3234 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3235 	cfg->link_fec_opt = pcaps->link_fec_options;
3236 
3237 	switch (fec) {
3238 	case ICE_FEC_BASER:
3239 		/* Clear RS bits, and AND BASE-R ability
3240 		 * bits and OR request bits.
3241 		 */
3242 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3243 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3244 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3245 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3246 		break;
3247 	case ICE_FEC_RS:
3248 		/* Clear BASE-R bits, and AND RS ability
3249 		 * bits and OR request bits.
3250 		 */
3251 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3252 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3253 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3254 		break;
3255 	case ICE_FEC_NONE:
3256 		/* Clear all FEC option bits. */
3257 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3258 		break;
3259 	case ICE_FEC_AUTO:
3260 		/* AND auto FEC bit, and all caps bits. */
3261 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3262 		cfg->link_fec_opt |= pcaps->link_fec_options;
3263 		break;
3264 	default:
3265 		status = ICE_ERR_PARAM;
3266 		break;
3267 	}
3268 
3269 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3270 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3271 		struct ice_link_default_override_tlv tlv;
3272 
3273 		if (ice_get_link_default_override(&tlv, pi))
3274 			goto out;
3275 
3276 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3277 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3278 			cfg->link_fec_opt = tlv.fec_options;
3279 	}
3280 
3281 out:
3282 	kfree(pcaps);
3283 
3284 	return status;
3285 }
3286 
3287 /**
3288  * ice_get_link_status - get status of the HW network link
3289  * @pi: port information structure
3290  * @link_up: pointer to bool (true/false = linkup/linkdown)
3291  *
3292  * Variable link_up is true if link is up, false if link is down.
3293  * The variable link_up is invalid if status is non zero. As a
3294  * result of this call, link status reporting becomes enabled
3295  */
3296 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3297 {
3298 	struct ice_phy_info *phy_info;
3299 	enum ice_status status = 0;
3300 
3301 	if (!pi || !link_up)
3302 		return ICE_ERR_PARAM;
3303 
3304 	phy_info = &pi->phy;
3305 
3306 	if (phy_info->get_link_info) {
3307 		status = ice_update_link_info(pi);
3308 
3309 		if (status)
3310 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3311 				  status);
3312 	}
3313 
3314 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3315 
3316 	return status;
3317 }
3318 
3319 /**
3320  * ice_aq_set_link_restart_an
3321  * @pi: pointer to the port information structure
3322  * @ena_link: if true: enable link, if false: disable link
3323  * @cd: pointer to command details structure or NULL
3324  *
3325  * Sets up the link and restarts the Auto-Negotiation over the link.
3326  */
3327 enum ice_status
3328 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3329 			   struct ice_sq_cd *cd)
3330 {
3331 	struct ice_aqc_restart_an *cmd;
3332 	struct ice_aq_desc desc;
3333 
3334 	cmd = &desc.params.restart_an;
3335 
3336 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3337 
3338 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3339 	cmd->lport_num = pi->lport;
3340 	if (ena_link)
3341 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3342 	else
3343 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3344 
3345 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3346 }
3347 
3348 /**
3349  * ice_aq_set_event_mask
3350  * @hw: pointer to the HW struct
3351  * @port_num: port number of the physical function
3352  * @mask: event mask to be set
3353  * @cd: pointer to command details structure or NULL
3354  *
3355  * Set event mask (0x0613)
3356  */
3357 enum ice_status
3358 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3359 		      struct ice_sq_cd *cd)
3360 {
3361 	struct ice_aqc_set_event_mask *cmd;
3362 	struct ice_aq_desc desc;
3363 
3364 	cmd = &desc.params.set_event_mask;
3365 
3366 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3367 
3368 	cmd->lport_num = port_num;
3369 
3370 	cmd->event_mask = cpu_to_le16(mask);
3371 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3372 }
3373 
3374 /**
3375  * ice_aq_set_mac_loopback
3376  * @hw: pointer to the HW struct
3377  * @ena_lpbk: Enable or Disable loopback
3378  * @cd: pointer to command details structure or NULL
3379  *
3380  * Enable/disable loopback on a given port
3381  */
3382 enum ice_status
3383 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3384 {
3385 	struct ice_aqc_set_mac_lb *cmd;
3386 	struct ice_aq_desc desc;
3387 
3388 	cmd = &desc.params.set_mac_lb;
3389 
3390 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3391 	if (ena_lpbk)
3392 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3393 
3394 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3395 }
3396 
3397 /**
3398  * ice_aq_set_port_id_led
3399  * @pi: pointer to the port information
3400  * @is_orig_mode: is this LED set to original mode (by the net-list)
3401  * @cd: pointer to command details structure or NULL
3402  *
3403  * Set LED value for the given port (0x06e9)
3404  */
3405 enum ice_status
3406 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3407 		       struct ice_sq_cd *cd)
3408 {
3409 	struct ice_aqc_set_port_id_led *cmd;
3410 	struct ice_hw *hw = pi->hw;
3411 	struct ice_aq_desc desc;
3412 
3413 	cmd = &desc.params.set_port_id_led;
3414 
3415 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3416 
3417 	if (is_orig_mode)
3418 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3419 	else
3420 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3421 
3422 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3423 }
3424 
3425 /**
3426  * ice_aq_sff_eeprom
3427  * @hw: pointer to the HW struct
3428  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3429  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3430  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3431  * @page: QSFP page
3432  * @set_page: set or ignore the page
3433  * @data: pointer to data buffer to be read/written to the I2C device.
3434  * @length: 1-16 for read, 1 for write.
3435  * @write: 0 read, 1 for write.
3436  * @cd: pointer to command details structure or NULL
3437  *
3438  * Read/Write SFF EEPROM (0x06EE)
3439  */
3440 enum ice_status
3441 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3442 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3443 		  bool write, struct ice_sq_cd *cd)
3444 {
3445 	struct ice_aqc_sff_eeprom *cmd;
3446 	struct ice_aq_desc desc;
3447 	enum ice_status status;
3448 
3449 	if (!data || (mem_addr & 0xff00))
3450 		return ICE_ERR_PARAM;
3451 
3452 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3453 	cmd = &desc.params.read_write_sff_param;
3454 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3455 	cmd->lport_num = (u8)(lport & 0xff);
3456 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3457 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3458 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3459 					((set_page <<
3460 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3461 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3462 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3463 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3464 	if (write)
3465 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3466 
3467 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3468 	return status;
3469 }
3470 
3471 /**
3472  * __ice_aq_get_set_rss_lut
3473  * @hw: pointer to the hardware structure
3474  * @params: RSS LUT parameters
3475  * @set: set true to set the table, false to get the table
3476  *
3477  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3478  */
3479 static enum ice_status
3480 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3481 {
3482 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3483 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3484 	struct ice_aq_desc desc;
3485 	enum ice_status status;
3486 	u8 *lut;
3487 
3488 	if (!params)
3489 		return ICE_ERR_PARAM;
3490 
3491 	vsi_handle = params->vsi_handle;
3492 	lut = params->lut;
3493 
3494 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3495 		return ICE_ERR_PARAM;
3496 
3497 	lut_size = params->lut_size;
3498 	lut_type = params->lut_type;
3499 	glob_lut_idx = params->global_lut_id;
3500 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3501 
3502 	cmd_resp = &desc.params.get_set_rss_lut;
3503 
3504 	if (set) {
3505 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3506 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3507 	} else {
3508 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3509 	}
3510 
3511 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3512 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3513 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3514 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3515 
3516 	switch (lut_type) {
3517 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3518 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3519 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3520 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3521 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3522 		break;
3523 	default:
3524 		status = ICE_ERR_PARAM;
3525 		goto ice_aq_get_set_rss_lut_exit;
3526 	}
3527 
3528 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3529 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3530 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3531 
3532 		if (!set)
3533 			goto ice_aq_get_set_rss_lut_send;
3534 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3535 		if (!set)
3536 			goto ice_aq_get_set_rss_lut_send;
3537 	} else {
3538 		goto ice_aq_get_set_rss_lut_send;
3539 	}
3540 
3541 	/* LUT size is only valid for Global and PF table types */
3542 	switch (lut_size) {
3543 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3544 		break;
3545 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3546 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3547 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3548 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3549 		break;
3550 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3551 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3552 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3553 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3554 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3555 			break;
3556 		}
3557 		fallthrough;
3558 	default:
3559 		status = ICE_ERR_PARAM;
3560 		goto ice_aq_get_set_rss_lut_exit;
3561 	}
3562 
3563 ice_aq_get_set_rss_lut_send:
3564 	cmd_resp->flags = cpu_to_le16(flags);
3565 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3566 
3567 ice_aq_get_set_rss_lut_exit:
3568 	return status;
3569 }
3570 
3571 /**
3572  * ice_aq_get_rss_lut
3573  * @hw: pointer to the hardware structure
3574  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3575  *
3576  * get the RSS lookup table, PF or VSI type
3577  */
3578 enum ice_status
3579 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3580 {
3581 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3582 }
3583 
3584 /**
3585  * ice_aq_set_rss_lut
3586  * @hw: pointer to the hardware structure
3587  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3588  *
3589  * set the RSS lookup table, PF or VSI type
3590  */
3591 enum ice_status
3592 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3593 {
3594 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3595 }
3596 
3597 /**
3598  * __ice_aq_get_set_rss_key
3599  * @hw: pointer to the HW struct
3600  * @vsi_id: VSI FW index
3601  * @key: pointer to key info struct
3602  * @set: set true to set the key, false to get the key
3603  *
3604  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3605  */
3606 static enum
3607 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3608 				    struct ice_aqc_get_set_rss_keys *key,
3609 				    bool set)
3610 {
3611 	struct ice_aqc_get_set_rss_key *cmd_resp;
3612 	u16 key_size = sizeof(*key);
3613 	struct ice_aq_desc desc;
3614 
3615 	cmd_resp = &desc.params.get_set_rss_key;
3616 
3617 	if (set) {
3618 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3619 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3620 	} else {
3621 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3622 	}
3623 
3624 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3625 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3626 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3627 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3628 
3629 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3630 }
3631 
3632 /**
3633  * ice_aq_get_rss_key
3634  * @hw: pointer to the HW struct
3635  * @vsi_handle: software VSI handle
3636  * @key: pointer to key info struct
3637  *
3638  * get the RSS key per VSI
3639  */
3640 enum ice_status
3641 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3642 		   struct ice_aqc_get_set_rss_keys *key)
3643 {
3644 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3645 		return ICE_ERR_PARAM;
3646 
3647 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3648 					key, false);
3649 }
3650 
3651 /**
3652  * ice_aq_set_rss_key
3653  * @hw: pointer to the HW struct
3654  * @vsi_handle: software VSI handle
3655  * @keys: pointer to key info struct
3656  *
3657  * set the RSS key per VSI
3658  */
3659 enum ice_status
3660 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3661 		   struct ice_aqc_get_set_rss_keys *keys)
3662 {
3663 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3664 		return ICE_ERR_PARAM;
3665 
3666 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3667 					keys, true);
3668 }
3669 
3670 /**
3671  * ice_aq_add_lan_txq
3672  * @hw: pointer to the hardware structure
3673  * @num_qgrps: Number of added queue groups
3674  * @qg_list: list of queue groups to be added
3675  * @buf_size: size of buffer for indirect command
3676  * @cd: pointer to command details structure or NULL
3677  *
3678  * Add Tx LAN queue (0x0C30)
3679  *
3680  * NOTE:
3681  * Prior to calling add Tx LAN queue:
3682  * Initialize the following as part of the Tx queue context:
3683  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3684  * Cache profile and Packet shaper profile.
3685  *
3686  * After add Tx LAN queue AQ command is completed:
3687  * Interrupts should be associated with specific queues,
3688  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3689  * flow.
3690  */
3691 static enum ice_status
3692 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3693 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3694 		   struct ice_sq_cd *cd)
3695 {
3696 	struct ice_aqc_add_tx_qgrp *list;
3697 	struct ice_aqc_add_txqs *cmd;
3698 	struct ice_aq_desc desc;
3699 	u16 i, sum_size = 0;
3700 
3701 	cmd = &desc.params.add_txqs;
3702 
3703 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3704 
3705 	if (!qg_list)
3706 		return ICE_ERR_PARAM;
3707 
3708 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3709 		return ICE_ERR_PARAM;
3710 
3711 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3712 		sum_size += struct_size(list, txqs, list->num_txqs);
3713 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3714 						      list->num_txqs);
3715 	}
3716 
3717 	if (buf_size != sum_size)
3718 		return ICE_ERR_PARAM;
3719 
3720 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3721 
3722 	cmd->num_qgrps = num_qgrps;
3723 
3724 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3725 }
3726 
3727 /**
3728  * ice_aq_dis_lan_txq
3729  * @hw: pointer to the hardware structure
3730  * @num_qgrps: number of groups in the list
3731  * @qg_list: the list of groups to disable
3732  * @buf_size: the total size of the qg_list buffer in bytes
3733  * @rst_src: if called due to reset, specifies the reset source
3734  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3735  * @cd: pointer to command details structure or NULL
3736  *
3737  * Disable LAN Tx queue (0x0C31)
3738  */
3739 static enum ice_status
3740 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3741 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3742 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3743 		   struct ice_sq_cd *cd)
3744 {
3745 	struct ice_aqc_dis_txq_item *item;
3746 	struct ice_aqc_dis_txqs *cmd;
3747 	struct ice_aq_desc desc;
3748 	enum ice_status status;
3749 	u16 i, sz = 0;
3750 
3751 	cmd = &desc.params.dis_txqs;
3752 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3753 
3754 	/* qg_list can be NULL only in VM/VF reset flow */
3755 	if (!qg_list && !rst_src)
3756 		return ICE_ERR_PARAM;
3757 
3758 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3759 		return ICE_ERR_PARAM;
3760 
3761 	cmd->num_entries = num_qgrps;
3762 
3763 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3764 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3765 
3766 	switch (rst_src) {
3767 	case ICE_VM_RESET:
3768 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3769 		cmd->vmvf_and_timeout |=
3770 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3771 		break;
3772 	case ICE_VF_RESET:
3773 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3774 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3775 		cmd->vmvf_and_timeout |=
3776 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3777 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3778 		break;
3779 	case ICE_NO_RESET:
3780 	default:
3781 		break;
3782 	}
3783 
3784 	/* flush pipe on time out */
3785 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3786 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3787 	if (!qg_list)
3788 		goto do_aq;
3789 
3790 	/* set RD bit to indicate that command buffer is provided by the driver
3791 	 * and it needs to be read by the firmware
3792 	 */
3793 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3794 
3795 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3796 		u16 item_size = struct_size(item, q_id, item->num_qs);
3797 
3798 		/* If the num of queues is even, add 2 bytes of padding */
3799 		if ((item->num_qs % 2) == 0)
3800 			item_size += 2;
3801 
3802 		sz += item_size;
3803 
3804 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3805 	}
3806 
3807 	if (buf_size != sz)
3808 		return ICE_ERR_PARAM;
3809 
3810 do_aq:
3811 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3812 	if (status) {
3813 		if (!qg_list)
3814 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3815 				  vmvf_num, hw->adminq.sq_last_status);
3816 		else
3817 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3818 				  le16_to_cpu(qg_list[0].q_id[0]),
3819 				  hw->adminq.sq_last_status);
3820 	}
3821 	return status;
3822 }
3823 
3824 /**
3825  * ice_aq_add_rdma_qsets
3826  * @hw: pointer to the hardware structure
3827  * @num_qset_grps: Number of RDMA Qset groups
3828  * @qset_list: list of Qset groups to be added
3829  * @buf_size: size of buffer for indirect command
3830  * @cd: pointer to command details structure or NULL
3831  *
3832  * Add Tx RDMA Qsets (0x0C33)
3833  */
3834 static int
3835 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3836 		      struct ice_aqc_add_rdma_qset_data *qset_list,
3837 		      u16 buf_size, struct ice_sq_cd *cd)
3838 {
3839 	struct ice_aqc_add_rdma_qset_data *list;
3840 	struct ice_aqc_add_rdma_qset *cmd;
3841 	struct ice_aq_desc desc;
3842 	u16 i, sum_size = 0;
3843 
3844 	cmd = &desc.params.add_rdma_qset;
3845 
3846 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3847 
3848 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3849 		return -EINVAL;
3850 
3851 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3852 		u16 num_qsets = le16_to_cpu(list->num_qsets);
3853 
3854 		sum_size += struct_size(list, rdma_qsets, num_qsets);
3855 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3856 							     num_qsets);
3857 	}
3858 
3859 	if (buf_size != sum_size)
3860 		return -EINVAL;
3861 
3862 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3863 
3864 	cmd->num_qset_grps = num_qset_grps;
3865 
3866 	return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, qset_list,
3867 						   buf_size, cd));
3868 }
3869 
3870 /* End of FW Admin Queue command wrappers */
3871 
3872 /**
3873  * ice_write_byte - write a byte to a packed context structure
3874  * @src_ctx:  the context structure to read from
3875  * @dest_ctx: the context to be written to
3876  * @ce_info:  a description of the struct to be filled
3877  */
3878 static void
3879 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3880 {
3881 	u8 src_byte, dest_byte, mask;
3882 	u8 *from, *dest;
3883 	u16 shift_width;
3884 
3885 	/* copy from the next struct field */
3886 	from = src_ctx + ce_info->offset;
3887 
3888 	/* prepare the bits and mask */
3889 	shift_width = ce_info->lsb % 8;
3890 	mask = (u8)(BIT(ce_info->width) - 1);
3891 
3892 	src_byte = *from;
3893 	src_byte &= mask;
3894 
3895 	/* shift to correct alignment */
3896 	mask <<= shift_width;
3897 	src_byte <<= shift_width;
3898 
3899 	/* get the current bits from the target bit string */
3900 	dest = dest_ctx + (ce_info->lsb / 8);
3901 
3902 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3903 
3904 	dest_byte &= ~mask;	/* get the bits not changing */
3905 	dest_byte |= src_byte;	/* add in the new bits */
3906 
3907 	/* put it all back */
3908 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3909 }
3910 
3911 /**
3912  * ice_write_word - write a word to a packed context structure
3913  * @src_ctx:  the context structure to read from
3914  * @dest_ctx: the context to be written to
3915  * @ce_info:  a description of the struct to be filled
3916  */
3917 static void
3918 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3919 {
3920 	u16 src_word, mask;
3921 	__le16 dest_word;
3922 	u8 *from, *dest;
3923 	u16 shift_width;
3924 
3925 	/* copy from the next struct field */
3926 	from = src_ctx + ce_info->offset;
3927 
3928 	/* prepare the bits and mask */
3929 	shift_width = ce_info->lsb % 8;
3930 	mask = BIT(ce_info->width) - 1;
3931 
3932 	/* don't swizzle the bits until after the mask because the mask bits
3933 	 * will be in a different bit position on big endian machines
3934 	 */
3935 	src_word = *(u16 *)from;
3936 	src_word &= mask;
3937 
3938 	/* shift to correct alignment */
3939 	mask <<= shift_width;
3940 	src_word <<= shift_width;
3941 
3942 	/* get the current bits from the target bit string */
3943 	dest = dest_ctx + (ce_info->lsb / 8);
3944 
3945 	memcpy(&dest_word, dest, sizeof(dest_word));
3946 
3947 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3948 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3949 
3950 	/* put it all back */
3951 	memcpy(dest, &dest_word, sizeof(dest_word));
3952 }
3953 
3954 /**
3955  * ice_write_dword - write a dword to a packed context structure
3956  * @src_ctx:  the context structure to read from
3957  * @dest_ctx: the context to be written to
3958  * @ce_info:  a description of the struct to be filled
3959  */
3960 static void
3961 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3962 {
3963 	u32 src_dword, mask;
3964 	__le32 dest_dword;
3965 	u8 *from, *dest;
3966 	u16 shift_width;
3967 
3968 	/* copy from the next struct field */
3969 	from = src_ctx + ce_info->offset;
3970 
3971 	/* prepare the bits and mask */
3972 	shift_width = ce_info->lsb % 8;
3973 
3974 	/* if the field width is exactly 32 on an x86 machine, then the shift
3975 	 * operation will not work because the SHL instructions count is masked
3976 	 * to 5 bits so the shift will do nothing
3977 	 */
3978 	if (ce_info->width < 32)
3979 		mask = BIT(ce_info->width) - 1;
3980 	else
3981 		mask = (u32)~0;
3982 
3983 	/* don't swizzle the bits until after the mask because the mask bits
3984 	 * will be in a different bit position on big endian machines
3985 	 */
3986 	src_dword = *(u32 *)from;
3987 	src_dword &= mask;
3988 
3989 	/* shift to correct alignment */
3990 	mask <<= shift_width;
3991 	src_dword <<= shift_width;
3992 
3993 	/* get the current bits from the target bit string */
3994 	dest = dest_ctx + (ce_info->lsb / 8);
3995 
3996 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3997 
3998 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3999 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4000 
4001 	/* put it all back */
4002 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4003 }
4004 
4005 /**
4006  * ice_write_qword - write a qword to a packed context structure
4007  * @src_ctx:  the context structure to read from
4008  * @dest_ctx: the context to be written to
4009  * @ce_info:  a description of the struct to be filled
4010  */
4011 static void
4012 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4013 {
4014 	u64 src_qword, mask;
4015 	__le64 dest_qword;
4016 	u8 *from, *dest;
4017 	u16 shift_width;
4018 
4019 	/* copy from the next struct field */
4020 	from = src_ctx + ce_info->offset;
4021 
4022 	/* prepare the bits and mask */
4023 	shift_width = ce_info->lsb % 8;
4024 
4025 	/* if the field width is exactly 64 on an x86 machine, then the shift
4026 	 * operation will not work because the SHL instructions count is masked
4027 	 * to 6 bits so the shift will do nothing
4028 	 */
4029 	if (ce_info->width < 64)
4030 		mask = BIT_ULL(ce_info->width) - 1;
4031 	else
4032 		mask = (u64)~0;
4033 
4034 	/* don't swizzle the bits until after the mask because the mask bits
4035 	 * will be in a different bit position on big endian machines
4036 	 */
4037 	src_qword = *(u64 *)from;
4038 	src_qword &= mask;
4039 
4040 	/* shift to correct alignment */
4041 	mask <<= shift_width;
4042 	src_qword <<= shift_width;
4043 
4044 	/* get the current bits from the target bit string */
4045 	dest = dest_ctx + (ce_info->lsb / 8);
4046 
4047 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4048 
4049 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4050 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4051 
4052 	/* put it all back */
4053 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4054 }
4055 
4056 /**
4057  * ice_set_ctx - set context bits in packed structure
4058  * @hw: pointer to the hardware structure
4059  * @src_ctx:  pointer to a generic non-packed context structure
4060  * @dest_ctx: pointer to memory for the packed structure
4061  * @ce_info:  a description of the structure to be transformed
4062  */
4063 enum ice_status
4064 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4065 	    const struct ice_ctx_ele *ce_info)
4066 {
4067 	int f;
4068 
4069 	for (f = 0; ce_info[f].width; f++) {
4070 		/* We have to deal with each element of the FW response
4071 		 * using the correct size so that we are correct regardless
4072 		 * of the endianness of the machine.
4073 		 */
4074 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4075 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4076 				  f, ce_info[f].width, ce_info[f].size_of);
4077 			continue;
4078 		}
4079 		switch (ce_info[f].size_of) {
4080 		case sizeof(u8):
4081 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4082 			break;
4083 		case sizeof(u16):
4084 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4085 			break;
4086 		case sizeof(u32):
4087 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4088 			break;
4089 		case sizeof(u64):
4090 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4091 			break;
4092 		default:
4093 			return ICE_ERR_INVAL_SIZE;
4094 		}
4095 	}
4096 
4097 	return 0;
4098 }
4099 
4100 /**
4101  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4102  * @hw: pointer to the HW struct
4103  * @vsi_handle: software VSI handle
4104  * @tc: TC number
4105  * @q_handle: software queue handle
4106  */
4107 struct ice_q_ctx *
4108 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4109 {
4110 	struct ice_vsi_ctx *vsi;
4111 	struct ice_q_ctx *q_ctx;
4112 
4113 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4114 	if (!vsi)
4115 		return NULL;
4116 	if (q_handle >= vsi->num_lan_q_entries[tc])
4117 		return NULL;
4118 	if (!vsi->lan_q_ctx[tc])
4119 		return NULL;
4120 	q_ctx = vsi->lan_q_ctx[tc];
4121 	return &q_ctx[q_handle];
4122 }
4123 
4124 /**
4125  * ice_ena_vsi_txq
4126  * @pi: port information structure
4127  * @vsi_handle: software VSI handle
4128  * @tc: TC number
4129  * @q_handle: software queue handle
4130  * @num_qgrps: Number of added queue groups
4131  * @buf: list of queue groups to be added
4132  * @buf_size: size of buffer for indirect command
4133  * @cd: pointer to command details structure or NULL
4134  *
4135  * This function adds one LAN queue
4136  */
4137 enum ice_status
4138 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4139 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4140 		struct ice_sq_cd *cd)
4141 {
4142 	struct ice_aqc_txsched_elem_data node = { 0 };
4143 	struct ice_sched_node *parent;
4144 	struct ice_q_ctx *q_ctx;
4145 	enum ice_status status;
4146 	struct ice_hw *hw;
4147 
4148 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4149 		return ICE_ERR_CFG;
4150 
4151 	if (num_qgrps > 1 || buf->num_txqs > 1)
4152 		return ICE_ERR_MAX_LIMIT;
4153 
4154 	hw = pi->hw;
4155 
4156 	if (!ice_is_vsi_valid(hw, vsi_handle))
4157 		return ICE_ERR_PARAM;
4158 
4159 	mutex_lock(&pi->sched_lock);
4160 
4161 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4162 	if (!q_ctx) {
4163 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4164 			  q_handle);
4165 		status = ICE_ERR_PARAM;
4166 		goto ena_txq_exit;
4167 	}
4168 
4169 	/* find a parent node */
4170 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4171 					    ICE_SCHED_NODE_OWNER_LAN);
4172 	if (!parent) {
4173 		status = ICE_ERR_PARAM;
4174 		goto ena_txq_exit;
4175 	}
4176 
4177 	buf->parent_teid = parent->info.node_teid;
4178 	node.parent_teid = parent->info.node_teid;
4179 	/* Mark that the values in the "generic" section as valid. The default
4180 	 * value in the "generic" section is zero. This means that :
4181 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4182 	 * - 0 priority among siblings, indicated by Bit 1-3.
4183 	 * - WFQ, indicated by Bit 4.
4184 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4185 	 * Bit 5-6.
4186 	 * - Bit 7 is reserved.
4187 	 * Without setting the generic section as valid in valid_sections, the
4188 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4189 	 */
4190 	buf->txqs[0].info.valid_sections =
4191 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4192 		ICE_AQC_ELEM_VALID_EIR;
4193 	buf->txqs[0].info.generic = 0;
4194 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4195 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4196 	buf->txqs[0].info.cir_bw.bw_alloc =
4197 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4198 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4199 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4200 	buf->txqs[0].info.eir_bw.bw_alloc =
4201 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4202 
4203 	/* add the LAN queue */
4204 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4205 	if (status) {
4206 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4207 			  le16_to_cpu(buf->txqs[0].txq_id),
4208 			  hw->adminq.sq_last_status);
4209 		goto ena_txq_exit;
4210 	}
4211 
4212 	node.node_teid = buf->txqs[0].q_teid;
4213 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4214 	q_ctx->q_handle = q_handle;
4215 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4216 
4217 	/* add a leaf node into scheduler tree queue layer */
4218 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4219 	if (!status)
4220 		status = ice_sched_replay_q_bw(pi, q_ctx);
4221 
4222 ena_txq_exit:
4223 	mutex_unlock(&pi->sched_lock);
4224 	return status;
4225 }
4226 
4227 /**
4228  * ice_dis_vsi_txq
4229  * @pi: port information structure
4230  * @vsi_handle: software VSI handle
4231  * @tc: TC number
4232  * @num_queues: number of queues
4233  * @q_handles: pointer to software queue handle array
4234  * @q_ids: pointer to the q_id array
4235  * @q_teids: pointer to queue node teids
4236  * @rst_src: if called due to reset, specifies the reset source
4237  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4238  * @cd: pointer to command details structure or NULL
4239  *
4240  * This function removes queues and their corresponding nodes in SW DB
4241  */
4242 enum ice_status
4243 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4244 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4245 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4246 		struct ice_sq_cd *cd)
4247 {
4248 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4249 	struct ice_aqc_dis_txq_item *qg_list;
4250 	struct ice_q_ctx *q_ctx;
4251 	struct ice_hw *hw;
4252 	u16 i, buf_size;
4253 
4254 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4255 		return ICE_ERR_CFG;
4256 
4257 	hw = pi->hw;
4258 
4259 	if (!num_queues) {
4260 		/* if queue is disabled already yet the disable queue command
4261 		 * has to be sent to complete the VF reset, then call
4262 		 * ice_aq_dis_lan_txq without any queue information
4263 		 */
4264 		if (rst_src)
4265 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4266 						  vmvf_num, NULL);
4267 		return ICE_ERR_CFG;
4268 	}
4269 
4270 	buf_size = struct_size(qg_list, q_id, 1);
4271 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4272 	if (!qg_list)
4273 		return ICE_ERR_NO_MEMORY;
4274 
4275 	mutex_lock(&pi->sched_lock);
4276 
4277 	for (i = 0; i < num_queues; i++) {
4278 		struct ice_sched_node *node;
4279 
4280 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4281 		if (!node)
4282 			continue;
4283 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4284 		if (!q_ctx) {
4285 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4286 				  q_handles[i]);
4287 			continue;
4288 		}
4289 		if (q_ctx->q_handle != q_handles[i]) {
4290 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4291 				  q_ctx->q_handle, q_handles[i]);
4292 			continue;
4293 		}
4294 		qg_list->parent_teid = node->info.parent_teid;
4295 		qg_list->num_qs = 1;
4296 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4297 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4298 					    vmvf_num, cd);
4299 
4300 		if (status)
4301 			break;
4302 		ice_free_sched_node(pi, node);
4303 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4304 	}
4305 	mutex_unlock(&pi->sched_lock);
4306 	kfree(qg_list);
4307 	return status;
4308 }
4309 
4310 /**
4311  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4312  * @pi: port information structure
4313  * @vsi_handle: software VSI handle
4314  * @tc_bitmap: TC bitmap
4315  * @maxqs: max queues array per TC
4316  * @owner: LAN or RDMA
4317  *
4318  * This function adds/updates the VSI queues per TC.
4319  */
4320 static enum ice_status
4321 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4322 	       u16 *maxqs, u8 owner)
4323 {
4324 	enum ice_status status = 0;
4325 	u8 i;
4326 
4327 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4328 		return ICE_ERR_CFG;
4329 
4330 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4331 		return ICE_ERR_PARAM;
4332 
4333 	mutex_lock(&pi->sched_lock);
4334 
4335 	ice_for_each_traffic_class(i) {
4336 		/* configuration is possible only if TC node is present */
4337 		if (!ice_sched_get_tc_node(pi, i))
4338 			continue;
4339 
4340 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4341 					   ice_is_tc_ena(tc_bitmap, i));
4342 		if (status)
4343 			break;
4344 	}
4345 
4346 	mutex_unlock(&pi->sched_lock);
4347 	return status;
4348 }
4349 
4350 /**
4351  * ice_cfg_vsi_lan - configure VSI LAN queues
4352  * @pi: port information structure
4353  * @vsi_handle: software VSI handle
4354  * @tc_bitmap: TC bitmap
4355  * @max_lanqs: max LAN queues array per TC
4356  *
4357  * This function adds/updates the VSI LAN queues per TC.
4358  */
4359 enum ice_status
4360 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4361 		u16 *max_lanqs)
4362 {
4363 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4364 			      ICE_SCHED_NODE_OWNER_LAN);
4365 }
4366 
4367 /**
4368  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4369  * @pi: port information structure
4370  * @vsi_handle: software VSI handle
4371  * @tc_bitmap: TC bitmap
4372  * @max_rdmaqs: max RDMA queues array per TC
4373  *
4374  * This function adds/updates the VSI RDMA queues per TC.
4375  */
4376 int
4377 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4378 		 u16 *max_rdmaqs)
4379 {
4380 	return ice_status_to_errno(ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap,
4381 						  max_rdmaqs,
4382 						  ICE_SCHED_NODE_OWNER_RDMA));
4383 }
4384 
4385 /**
4386  * ice_ena_vsi_rdma_qset
4387  * @pi: port information structure
4388  * @vsi_handle: software VSI handle
4389  * @tc: TC number
4390  * @rdma_qset: pointer to RDMA Qset
4391  * @num_qsets: number of RDMA Qsets
4392  * @qset_teid: pointer to Qset node TEIDs
4393  *
4394  * This function adds RDMA Qset
4395  */
4396 int
4397 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4398 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4399 {
4400 	struct ice_aqc_txsched_elem_data node = { 0 };
4401 	struct ice_aqc_add_rdma_qset_data *buf;
4402 	struct ice_sched_node *parent;
4403 	enum ice_status status;
4404 	struct ice_hw *hw;
4405 	u16 i, buf_size;
4406 	int ret;
4407 
4408 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4409 		return -EIO;
4410 	hw = pi->hw;
4411 
4412 	if (!ice_is_vsi_valid(hw, vsi_handle))
4413 		return -EINVAL;
4414 
4415 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4416 	buf = kzalloc(buf_size, GFP_KERNEL);
4417 	if (!buf)
4418 		return -ENOMEM;
4419 	mutex_lock(&pi->sched_lock);
4420 
4421 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4422 					    ICE_SCHED_NODE_OWNER_RDMA);
4423 	if (!parent) {
4424 		ret = -EINVAL;
4425 		goto rdma_error_exit;
4426 	}
4427 	buf->parent_teid = parent->info.node_teid;
4428 	node.parent_teid = parent->info.node_teid;
4429 
4430 	buf->num_qsets = cpu_to_le16(num_qsets);
4431 	for (i = 0; i < num_qsets; i++) {
4432 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4433 		buf->rdma_qsets[i].info.valid_sections =
4434 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4435 			ICE_AQC_ELEM_VALID_EIR;
4436 		buf->rdma_qsets[i].info.generic = 0;
4437 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4438 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4439 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4440 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4441 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4442 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4443 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4444 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4445 	}
4446 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4447 	if (ret) {
4448 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4449 		goto rdma_error_exit;
4450 	}
4451 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4452 	for (i = 0; i < num_qsets; i++) {
4453 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4454 		status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4455 					    &node);
4456 		if (status) {
4457 			ret = ice_status_to_errno(status);
4458 			break;
4459 		}
4460 		qset_teid[i] = le32_to_cpu(node.node_teid);
4461 	}
4462 rdma_error_exit:
4463 	mutex_unlock(&pi->sched_lock);
4464 	kfree(buf);
4465 	return ret;
4466 }
4467 
4468 /**
4469  * ice_dis_vsi_rdma_qset - free RDMA resources
4470  * @pi: port_info struct
4471  * @count: number of RDMA Qsets to free
4472  * @qset_teid: TEID of Qset node
4473  * @q_id: list of queue IDs being disabled
4474  */
4475 int
4476 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4477 		      u16 *q_id)
4478 {
4479 	struct ice_aqc_dis_txq_item *qg_list;
4480 	enum ice_status status = 0;
4481 	struct ice_hw *hw;
4482 	u16 qg_size;
4483 	int i;
4484 
4485 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4486 		return -EIO;
4487 
4488 	hw = pi->hw;
4489 
4490 	qg_size = struct_size(qg_list, q_id, 1);
4491 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4492 	if (!qg_list)
4493 		return -ENOMEM;
4494 
4495 	mutex_lock(&pi->sched_lock);
4496 
4497 	for (i = 0; i < count; i++) {
4498 		struct ice_sched_node *node;
4499 
4500 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4501 		if (!node)
4502 			continue;
4503 
4504 		qg_list->parent_teid = node->info.parent_teid;
4505 		qg_list->num_qs = 1;
4506 		qg_list->q_id[0] =
4507 			cpu_to_le16(q_id[i] |
4508 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4509 
4510 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4511 					    ICE_NO_RESET, 0, NULL);
4512 		if (status)
4513 			break;
4514 
4515 		ice_free_sched_node(pi, node);
4516 	}
4517 
4518 	mutex_unlock(&pi->sched_lock);
4519 	kfree(qg_list);
4520 	return ice_status_to_errno(status);
4521 }
4522 
4523 /**
4524  * ice_replay_pre_init - replay pre initialization
4525  * @hw: pointer to the HW struct
4526  *
4527  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4528  */
4529 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4530 {
4531 	struct ice_switch_info *sw = hw->switch_info;
4532 	u8 i;
4533 
4534 	/* Delete old entries from replay filter list head if there is any */
4535 	ice_rm_all_sw_replay_rule_info(hw);
4536 	/* In start of replay, move entries into replay_rules list, it
4537 	 * will allow adding rules entries back to filt_rules list,
4538 	 * which is operational list.
4539 	 */
4540 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4541 		list_replace_init(&sw->recp_list[i].filt_rules,
4542 				  &sw->recp_list[i].filt_replay_rules);
4543 	ice_sched_replay_agg_vsi_preinit(hw);
4544 
4545 	return 0;
4546 }
4547 
4548 /**
4549  * ice_replay_vsi - replay VSI configuration
4550  * @hw: pointer to the HW struct
4551  * @vsi_handle: driver VSI handle
4552  *
4553  * Restore all VSI configuration after reset. It is required to call this
4554  * function with main VSI first.
4555  */
4556 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4557 {
4558 	enum ice_status status;
4559 
4560 	if (!ice_is_vsi_valid(hw, vsi_handle))
4561 		return ICE_ERR_PARAM;
4562 
4563 	/* Replay pre-initialization if there is any */
4564 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4565 		status = ice_replay_pre_init(hw);
4566 		if (status)
4567 			return status;
4568 	}
4569 	/* Replay per VSI all RSS configurations */
4570 	status = ice_replay_rss_cfg(hw, vsi_handle);
4571 	if (status)
4572 		return status;
4573 	/* Replay per VSI all filters */
4574 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4575 	if (!status)
4576 		status = ice_replay_vsi_agg(hw, vsi_handle);
4577 	return status;
4578 }
4579 
4580 /**
4581  * ice_replay_post - post replay configuration cleanup
4582  * @hw: pointer to the HW struct
4583  *
4584  * Post replay cleanup.
4585  */
4586 void ice_replay_post(struct ice_hw *hw)
4587 {
4588 	/* Delete old entries from replay filter list head */
4589 	ice_rm_all_sw_replay_rule_info(hw);
4590 	ice_sched_replay_agg(hw);
4591 }
4592 
4593 /**
4594  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4595  * @hw: ptr to the hardware info
4596  * @reg: offset of 64 bit HW register to read from
4597  * @prev_stat_loaded: bool to specify if previous stats are loaded
4598  * @prev_stat: ptr to previous loaded stat value
4599  * @cur_stat: ptr to current stat value
4600  */
4601 void
4602 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4603 		  u64 *prev_stat, u64 *cur_stat)
4604 {
4605 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4606 
4607 	/* device stats are not reset at PFR, they likely will not be zeroed
4608 	 * when the driver starts. Thus, save the value from the first read
4609 	 * without adding to the statistic value so that we report stats which
4610 	 * count up from zero.
4611 	 */
4612 	if (!prev_stat_loaded) {
4613 		*prev_stat = new_data;
4614 		return;
4615 	}
4616 
4617 	/* Calculate the difference between the new and old values, and then
4618 	 * add it to the software stat value.
4619 	 */
4620 	if (new_data >= *prev_stat)
4621 		*cur_stat += new_data - *prev_stat;
4622 	else
4623 		/* to manage the potential roll-over */
4624 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4625 
4626 	/* Update the previously stored value to prepare for next read */
4627 	*prev_stat = new_data;
4628 }
4629 
4630 /**
4631  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4632  * @hw: ptr to the hardware info
4633  * @reg: offset of HW register to read from
4634  * @prev_stat_loaded: bool to specify if previous stats are loaded
4635  * @prev_stat: ptr to previous loaded stat value
4636  * @cur_stat: ptr to current stat value
4637  */
4638 void
4639 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4640 		  u64 *prev_stat, u64 *cur_stat)
4641 {
4642 	u32 new_data;
4643 
4644 	new_data = rd32(hw, reg);
4645 
4646 	/* device stats are not reset at PFR, they likely will not be zeroed
4647 	 * when the driver starts. Thus, save the value from the first read
4648 	 * without adding to the statistic value so that we report stats which
4649 	 * count up from zero.
4650 	 */
4651 	if (!prev_stat_loaded) {
4652 		*prev_stat = new_data;
4653 		return;
4654 	}
4655 
4656 	/* Calculate the difference between the new and old values, and then
4657 	 * add it to the software stat value.
4658 	 */
4659 	if (new_data >= *prev_stat)
4660 		*cur_stat += new_data - *prev_stat;
4661 	else
4662 		/* to manage the potential roll-over */
4663 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4664 
4665 	/* Update the previously stored value to prepare for next read */
4666 	*prev_stat = new_data;
4667 }
4668 
4669 /**
4670  * ice_sched_query_elem - query element information from HW
4671  * @hw: pointer to the HW struct
4672  * @node_teid: node TEID to be queried
4673  * @buf: buffer to element information
4674  *
4675  * This function queries HW element information
4676  */
4677 enum ice_status
4678 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4679 		     struct ice_aqc_txsched_elem_data *buf)
4680 {
4681 	u16 buf_size, num_elem_ret = 0;
4682 	enum ice_status status;
4683 
4684 	buf_size = sizeof(*buf);
4685 	memset(buf, 0, buf_size);
4686 	buf->node_teid = cpu_to_le32(node_teid);
4687 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4688 					  NULL);
4689 	if (status || num_elem_ret != 1)
4690 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4691 	return status;
4692 }
4693 
4694 /**
4695  * ice_aq_set_driver_param - Set driver parameter to share via firmware
4696  * @hw: pointer to the HW struct
4697  * @idx: parameter index to set
4698  * @value: the value to set the parameter to
4699  * @cd: pointer to command details structure or NULL
4700  *
4701  * Set the value of one of the software defined parameters. All PFs connected
4702  * to this device can read the value using ice_aq_get_driver_param.
4703  *
4704  * Note that firmware provides no synchronization or locking, and will not
4705  * save the parameter value during a device reset. It is expected that
4706  * a single PF will write the parameter value, while all other PFs will only
4707  * read it.
4708  */
4709 int
4710 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4711 			u32 value, struct ice_sq_cd *cd)
4712 {
4713 	struct ice_aqc_driver_shared_params *cmd;
4714 	struct ice_aq_desc desc;
4715 
4716 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4717 		return -EIO;
4718 
4719 	cmd = &desc.params.drv_shared_params;
4720 
4721 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4722 
4723 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4724 	cmd->param_indx = idx;
4725 	cmd->param_val = cpu_to_le32(value);
4726 
4727 	return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, NULL, 0, cd));
4728 }
4729 
4730 /**
4731  * ice_aq_get_driver_param - Get driver parameter shared via firmware
4732  * @hw: pointer to the HW struct
4733  * @idx: parameter index to set
4734  * @value: storage to return the shared parameter
4735  * @cd: pointer to command details structure or NULL
4736  *
4737  * Get the value of one of the software defined parameters.
4738  *
4739  * Note that firmware provides no synchronization or locking. It is expected
4740  * that only a single PF will write a given parameter.
4741  */
4742 int
4743 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4744 			u32 *value, struct ice_sq_cd *cd)
4745 {
4746 	struct ice_aqc_driver_shared_params *cmd;
4747 	struct ice_aq_desc desc;
4748 	enum ice_status status;
4749 
4750 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4751 		return -EIO;
4752 
4753 	cmd = &desc.params.drv_shared_params;
4754 
4755 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4756 
4757 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4758 	cmd->param_indx = idx;
4759 
4760 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4761 	if (status)
4762 		return ice_status_to_errno(status);
4763 
4764 	*value = le32_to_cpu(cmd->param_val);
4765 
4766 	return 0;
4767 }
4768 
4769 /**
4770  * ice_fw_supports_link_override
4771  * @hw: pointer to the hardware structure
4772  *
4773  * Checks if the firmware supports link override
4774  */
4775 bool ice_fw_supports_link_override(struct ice_hw *hw)
4776 {
4777 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4778 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4779 			return true;
4780 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4781 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4782 			return true;
4783 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4784 		return true;
4785 	}
4786 
4787 	return false;
4788 }
4789 
4790 /**
4791  * ice_get_link_default_override
4792  * @ldo: pointer to the link default override struct
4793  * @pi: pointer to the port info struct
4794  *
4795  * Gets the link default override for a port
4796  */
4797 enum ice_status
4798 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4799 			      struct ice_port_info *pi)
4800 {
4801 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
4802 	struct ice_hw *hw = pi->hw;
4803 	enum ice_status status;
4804 
4805 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4806 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4807 	if (status) {
4808 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4809 		return status;
4810 	}
4811 
4812 	/* Each port has its own config; calculate for our port */
4813 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4814 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4815 
4816 	/* link options first */
4817 	status = ice_read_sr_word(hw, tlv_start, &buf);
4818 	if (status) {
4819 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4820 		return status;
4821 	}
4822 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4823 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4824 		ICE_LINK_OVERRIDE_PHY_CFG_S;
4825 
4826 	/* link PHY config */
4827 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4828 	status = ice_read_sr_word(hw, offset, &buf);
4829 	if (status) {
4830 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4831 		return status;
4832 	}
4833 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4834 
4835 	/* PHY types low */
4836 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4837 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4838 		status = ice_read_sr_word(hw, (offset + i), &buf);
4839 		if (status) {
4840 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4841 			return status;
4842 		}
4843 		/* shift 16 bits at a time to fill 64 bits */
4844 		ldo->phy_type_low |= ((u64)buf << (i * 16));
4845 	}
4846 
4847 	/* PHY types high */
4848 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4849 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4850 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4851 		status = ice_read_sr_word(hw, (offset + i), &buf);
4852 		if (status) {
4853 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4854 			return status;
4855 		}
4856 		/* shift 16 bits at a time to fill 64 bits */
4857 		ldo->phy_type_high |= ((u64)buf << (i * 16));
4858 	}
4859 
4860 	return status;
4861 }
4862 
4863 /**
4864  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4865  * @caps: get PHY capability data
4866  */
4867 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4868 {
4869 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4870 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4871 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4872 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
4873 		return true;
4874 
4875 	return false;
4876 }
4877 
4878 /**
4879  * ice_aq_set_lldp_mib - Set the LLDP MIB
4880  * @hw: pointer to the HW struct
4881  * @mib_type: Local, Remote or both Local and Remote MIBs
4882  * @buf: pointer to the caller-supplied buffer to store the MIB block
4883  * @buf_size: size of the buffer (in bytes)
4884  * @cd: pointer to command details structure or NULL
4885  *
4886  * Set the LLDP MIB. (0x0A08)
4887  */
4888 enum ice_status
4889 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4890 		    struct ice_sq_cd *cd)
4891 {
4892 	struct ice_aqc_lldp_set_local_mib *cmd;
4893 	struct ice_aq_desc desc;
4894 
4895 	cmd = &desc.params.lldp_set_mib;
4896 
4897 	if (buf_size == 0 || !buf)
4898 		return ICE_ERR_PARAM;
4899 
4900 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4901 
4902 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4903 	desc.datalen = cpu_to_le16(buf_size);
4904 
4905 	cmd->type = mib_type;
4906 	cmd->length = cpu_to_le16(buf_size);
4907 
4908 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4909 }
4910 
4911 /**
4912  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
4913  * @hw: pointer to HW struct
4914  */
4915 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
4916 {
4917 	if (hw->mac_type != ICE_MAC_E810)
4918 		return false;
4919 
4920 	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
4921 		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
4922 			return true;
4923 		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
4924 		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
4925 			return true;
4926 	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
4927 		return true;
4928 	}
4929 	return false;
4930 }
4931 
4932 /**
4933  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
4934  * @hw: pointer to HW struct
4935  * @vsi_num: absolute HW index for VSI
4936  * @add: boolean for if adding or removing a filter
4937  */
4938 enum ice_status
4939 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
4940 {
4941 	struct ice_aqc_lldp_filter_ctrl *cmd;
4942 	struct ice_aq_desc desc;
4943 
4944 	cmd = &desc.params.lldp_filter_ctrl;
4945 
4946 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
4947 
4948 	if (add)
4949 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
4950 	else
4951 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
4952 
4953 	cmd->vsi_num = cpu_to_le16(vsi_num);
4954 
4955 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4956 }
4957 
4958 /**
4959  * ice_fw_supports_report_dflt_cfg
4960  * @hw: pointer to the hardware structure
4961  *
4962  * Checks if the firmware supports report default configuration
4963  */
4964 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
4965 {
4966 	if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4967 		if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
4968 			return true;
4969 		if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
4970 		    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
4971 			return true;
4972 	} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4973 		return true;
4974 	}
4975 	return false;
4976 }
4977