xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision a6a6a98094116b60e5523a571d9443c53325f5b1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	case ICE_DEV_ID_E825C_BACKPLANE:
158 	case ICE_DEV_ID_E825C_QSFP:
159 	case ICE_DEV_ID_E825C_SFP:
160 	case ICE_DEV_ID_E825C_SGMII:
161 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 		break;
163 	case ICE_DEV_ID_E830CC_BACKPLANE:
164 	case ICE_DEV_ID_E830CC_QSFP56:
165 	case ICE_DEV_ID_E830CC_SFP:
166 	case ICE_DEV_ID_E830CC_SFP_DD:
167 	case ICE_DEV_ID_E830C_BACKPLANE:
168 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
169 	case ICE_DEV_ID_E830C_QSFP:
170 	case ICE_DEV_ID_E830_XXV_QSFP:
171 	case ICE_DEV_ID_E830C_SFP:
172 	case ICE_DEV_ID_E830_XXV_SFP:
173 		hw->mac_type = ICE_MAC_E830;
174 		break;
175 	default:
176 		hw->mac_type = ICE_MAC_UNKNOWN;
177 		break;
178 	}
179 
180 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
181 	return 0;
182 }
183 
184 /**
185  * ice_is_generic_mac - check if device's mac_type is generic
186  * @hw: pointer to the hardware structure
187  *
188  * Return: true if mac_type is generic (with SBQ support), false if not
189  */
190 bool ice_is_generic_mac(struct ice_hw *hw)
191 {
192 	return (hw->mac_type == ICE_MAC_GENERIC ||
193 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
194 }
195 
196 /**
197  * ice_is_e810
198  * @hw: pointer to the hardware structure
199  *
200  * returns true if the device is E810 based, false if not.
201  */
202 bool ice_is_e810(struct ice_hw *hw)
203 {
204 	return hw->mac_type == ICE_MAC_E810;
205 }
206 
207 /**
208  * ice_is_e810t
209  * @hw: pointer to the hardware structure
210  *
211  * returns true if the device is E810T based, false if not.
212  */
213 bool ice_is_e810t(struct ice_hw *hw)
214 {
215 	switch (hw->device_id) {
216 	case ICE_DEV_ID_E810C_SFP:
217 		switch (hw->subsystem_device_id) {
218 		case ICE_SUBDEV_ID_E810T:
219 		case ICE_SUBDEV_ID_E810T2:
220 		case ICE_SUBDEV_ID_E810T3:
221 		case ICE_SUBDEV_ID_E810T4:
222 		case ICE_SUBDEV_ID_E810T6:
223 		case ICE_SUBDEV_ID_E810T7:
224 			return true;
225 		}
226 		break;
227 	case ICE_DEV_ID_E810C_QSFP:
228 		switch (hw->subsystem_device_id) {
229 		case ICE_SUBDEV_ID_E810T2:
230 		case ICE_SUBDEV_ID_E810T3:
231 		case ICE_SUBDEV_ID_E810T5:
232 			return true;
233 		}
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	return false;
240 }
241 
242 /**
243  * ice_is_e822 - Check if a device is E822 family device
244  * @hw: pointer to the hardware structure
245  *
246  * Return: true if the device is E822 based, false if not.
247  */
248 bool ice_is_e822(struct ice_hw *hw)
249 {
250 	switch (hw->device_id) {
251 	case ICE_DEV_ID_E822C_BACKPLANE:
252 	case ICE_DEV_ID_E822C_QSFP:
253 	case ICE_DEV_ID_E822C_SFP:
254 	case ICE_DEV_ID_E822C_10G_BASE_T:
255 	case ICE_DEV_ID_E822C_SGMII:
256 	case ICE_DEV_ID_E822L_BACKPLANE:
257 	case ICE_DEV_ID_E822L_SFP:
258 	case ICE_DEV_ID_E822L_10G_BASE_T:
259 	case ICE_DEV_ID_E822L_SGMII:
260 		return true;
261 	default:
262 		return false;
263 	}
264 }
265 
266 /**
267  * ice_is_e823
268  * @hw: pointer to the hardware structure
269  *
270  * returns true if the device is E823-L or E823-C based, false if not.
271  */
272 bool ice_is_e823(struct ice_hw *hw)
273 {
274 	switch (hw->device_id) {
275 	case ICE_DEV_ID_E823L_BACKPLANE:
276 	case ICE_DEV_ID_E823L_SFP:
277 	case ICE_DEV_ID_E823L_10G_BASE_T:
278 	case ICE_DEV_ID_E823L_1GBE:
279 	case ICE_DEV_ID_E823L_QSFP:
280 	case ICE_DEV_ID_E823C_BACKPLANE:
281 	case ICE_DEV_ID_E823C_QSFP:
282 	case ICE_DEV_ID_E823C_SFP:
283 	case ICE_DEV_ID_E823C_10G_BASE_T:
284 	case ICE_DEV_ID_E823C_SGMII:
285 		return true;
286 	default:
287 		return false;
288 	}
289 }
290 
291 /**
292  * ice_is_e825c - Check if a device is E825C family device
293  * @hw: pointer to the hardware structure
294  *
295  * Return: true if the device is E825-C based, false if not.
296  */
297 bool ice_is_e825c(struct ice_hw *hw)
298 {
299 	switch (hw->device_id) {
300 	case ICE_DEV_ID_E825C_BACKPLANE:
301 	case ICE_DEV_ID_E825C_QSFP:
302 	case ICE_DEV_ID_E825C_SFP:
303 	case ICE_DEV_ID_E825C_SGMII:
304 		return true;
305 	default:
306 		return false;
307 	}
308 }
309 
310 /**
311  * ice_clear_pf_cfg - Clear PF configuration
312  * @hw: pointer to the hardware structure
313  *
314  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
315  * configuration, flow director filters, etc.).
316  */
317 int ice_clear_pf_cfg(struct ice_hw *hw)
318 {
319 	struct ice_aq_desc desc;
320 
321 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
322 
323 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
324 }
325 
326 /**
327  * ice_aq_manage_mac_read - manage MAC address read command
328  * @hw: pointer to the HW struct
329  * @buf: a virtual buffer to hold the manage MAC read response
330  * @buf_size: Size of the virtual buffer
331  * @cd: pointer to command details structure or NULL
332  *
333  * This function is used to return per PF station MAC address (0x0107).
334  * NOTE: Upon successful completion of this command, MAC address information
335  * is returned in user specified buffer. Please interpret user specified
336  * buffer as "manage_mac_read" response.
337  * Response such as various MAC addresses are stored in HW struct (port.mac)
338  * ice_discover_dev_caps is expected to be called before this function is
339  * called.
340  */
341 static int
342 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
343 		       struct ice_sq_cd *cd)
344 {
345 	struct ice_aqc_manage_mac_read_resp *resp;
346 	struct ice_aqc_manage_mac_read *cmd;
347 	struct ice_aq_desc desc;
348 	int status;
349 	u16 flags;
350 	u8 i;
351 
352 	cmd = &desc.params.mac_read;
353 
354 	if (buf_size < sizeof(*resp))
355 		return -EINVAL;
356 
357 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
358 
359 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
360 	if (status)
361 		return status;
362 
363 	resp = buf;
364 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
365 
366 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
367 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
368 		return -EIO;
369 	}
370 
371 	/* A single port can report up to two (LAN and WoL) addresses */
372 	for (i = 0; i < cmd->num_addr; i++)
373 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
374 			ether_addr_copy(hw->port_info->mac.lan_addr,
375 					resp[i].mac_addr);
376 			ether_addr_copy(hw->port_info->mac.perm_addr,
377 					resp[i].mac_addr);
378 			break;
379 		}
380 
381 	return 0;
382 }
383 
384 /**
385  * ice_aq_get_phy_caps - returns PHY capabilities
386  * @pi: port information structure
387  * @qual_mods: report qualified modules
388  * @report_mode: report mode capabilities
389  * @pcaps: structure for PHY capabilities to be filled
390  * @cd: pointer to command details structure or NULL
391  *
392  * Returns the various PHY capabilities supported on the Port (0x0600)
393  */
394 int
395 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
396 		    struct ice_aqc_get_phy_caps_data *pcaps,
397 		    struct ice_sq_cd *cd)
398 {
399 	struct ice_aqc_get_phy_caps *cmd;
400 	u16 pcaps_size = sizeof(*pcaps);
401 	struct ice_aq_desc desc;
402 	const char *prefix;
403 	struct ice_hw *hw;
404 	int status;
405 
406 	cmd = &desc.params.get_phy;
407 
408 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
409 		return -EINVAL;
410 	hw = pi->hw;
411 
412 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
413 	    !ice_fw_supports_report_dflt_cfg(hw))
414 		return -EINVAL;
415 
416 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
417 
418 	if (qual_mods)
419 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
420 
421 	cmd->param0 |= cpu_to_le16(report_mode);
422 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
423 
424 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
425 
426 	switch (report_mode) {
427 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
428 		prefix = "phy_caps_media";
429 		break;
430 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
431 		prefix = "phy_caps_no_media";
432 		break;
433 	case ICE_AQC_REPORT_ACTIVE_CFG:
434 		prefix = "phy_caps_active";
435 		break;
436 	case ICE_AQC_REPORT_DFLT_CFG:
437 		prefix = "phy_caps_default";
438 		break;
439 	default:
440 		prefix = "phy_caps_invalid";
441 	}
442 
443 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
444 			  le64_to_cpu(pcaps->phy_type_high), prefix);
445 
446 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
447 		  prefix, report_mode);
448 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
449 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
450 		  pcaps->low_power_ctrl_an);
451 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
452 		  pcaps->eee_cap);
453 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
454 		  pcaps->eeer_value);
455 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
456 		  pcaps->link_fec_options);
457 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
458 		  prefix, pcaps->module_compliance_enforcement);
459 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
460 		  prefix, pcaps->extended_compliance_code);
461 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
462 		  pcaps->module_type[0]);
463 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
464 		  pcaps->module_type[1]);
465 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
466 		  pcaps->module_type[2]);
467 
468 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
469 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
470 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
471 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
472 		       sizeof(pi->phy.link_info.module_type));
473 	}
474 
475 	return status;
476 }
477 
478 /**
479  * ice_aq_get_link_topo_handle - get link topology node return status
480  * @pi: port information structure
481  * @node_type: requested node type
482  * @cd: pointer to command details structure or NULL
483  *
484  * Get link topology node return status for specified node type (0x06E0)
485  *
486  * Node type cage can be used to determine if cage is present. If AQC
487  * returns error (ENOENT), then no cage present. If no cage present, then
488  * connection type is backplane or BASE-T.
489  */
490 static int
491 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
492 			    struct ice_sq_cd *cd)
493 {
494 	struct ice_aqc_get_link_topo *cmd;
495 	struct ice_aq_desc desc;
496 
497 	cmd = &desc.params.get_link_topo;
498 
499 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
500 
501 	cmd->addr.topo_params.node_type_ctx =
502 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
503 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
504 
505 	/* set node type */
506 	cmd->addr.topo_params.node_type_ctx |=
507 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
508 
509 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
510 }
511 
512 /**
513  * ice_aq_get_netlist_node
514  * @hw: pointer to the hw struct
515  * @cmd: get_link_topo AQ structure
516  * @node_part_number: output node part number if node found
517  * @node_handle: output node handle parameter if node found
518  *
519  * Get netlist node handle.
520  */
521 int
522 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
523 			u8 *node_part_number, u16 *node_handle)
524 {
525 	struct ice_aq_desc desc;
526 
527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
528 	desc.params.get_link_topo = *cmd;
529 
530 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
531 		return -EINTR;
532 
533 	if (node_handle)
534 		*node_handle =
535 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
536 	if (node_part_number)
537 		*node_part_number = desc.params.get_link_topo.node_part_num;
538 
539 	return 0;
540 }
541 
542 /**
543  * ice_find_netlist_node
544  * @hw: pointer to the hw struct
545  * @node_type_ctx: type of netlist node to look for
546  * @node_part_number: node part number to look for
547  * @node_handle: output parameter if node found - optional
548  *
549  * Scan the netlist for a node handle of the given node type and part number.
550  *
551  * If node_handle is non-NULL it will be modified on function exit. It is only
552  * valid if the function returns zero, and should be ignored on any non-zero
553  * return value.
554  *
555  * Returns: 0 if the node is found, -ENOENT if no handle was found, and
556  * a negative error code on failure to access the AQ.
557  */
558 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
559 				 u8 node_part_number, u16 *node_handle)
560 {
561 	u8 idx;
562 
563 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
564 		struct ice_aqc_get_link_topo cmd = {};
565 		u8 rec_node_part_number;
566 		int status;
567 
568 		cmd.addr.topo_params.node_type_ctx =
569 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
570 				   node_type_ctx);
571 		cmd.addr.topo_params.index = idx;
572 
573 		status = ice_aq_get_netlist_node(hw, &cmd,
574 						 &rec_node_part_number,
575 						 node_handle);
576 		if (status)
577 			return status;
578 
579 		if (rec_node_part_number == node_part_number)
580 			return 0;
581 	}
582 
583 	return -ENOENT;
584 }
585 
586 /**
587  * ice_is_media_cage_present
588  * @pi: port information structure
589  *
590  * Returns true if media cage is present, else false. If no cage, then
591  * media type is backplane or BASE-T.
592  */
593 static bool ice_is_media_cage_present(struct ice_port_info *pi)
594 {
595 	/* Node type cage can be used to determine if cage is present. If AQC
596 	 * returns error (ENOENT), then no cage present. If no cage present then
597 	 * connection type is backplane or BASE-T.
598 	 */
599 	return !ice_aq_get_link_topo_handle(pi,
600 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
601 					    NULL);
602 }
603 
604 /**
605  * ice_get_media_type - Gets media type
606  * @pi: port information structure
607  */
608 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
609 {
610 	struct ice_link_status *hw_link_info;
611 
612 	if (!pi)
613 		return ICE_MEDIA_UNKNOWN;
614 
615 	hw_link_info = &pi->phy.link_info;
616 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
617 		/* If more than one media type is selected, report unknown */
618 		return ICE_MEDIA_UNKNOWN;
619 
620 	if (hw_link_info->phy_type_low) {
621 		/* 1G SGMII is a special case where some DA cable PHYs
622 		 * may show this as an option when it really shouldn't
623 		 * be since SGMII is meant to be between a MAC and a PHY
624 		 * in a backplane. Try to detect this case and handle it
625 		 */
626 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
627 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
628 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
629 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
630 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
631 			return ICE_MEDIA_DA;
632 
633 		switch (hw_link_info->phy_type_low) {
634 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
635 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
636 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
637 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
638 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
639 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
640 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
641 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
642 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
643 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
644 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
645 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
646 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
647 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
648 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
649 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
650 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
651 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
652 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
653 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
654 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
655 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
656 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
657 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
658 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
659 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
660 			return ICE_MEDIA_FIBER;
661 		case ICE_PHY_TYPE_LOW_100BASE_TX:
662 		case ICE_PHY_TYPE_LOW_1000BASE_T:
663 		case ICE_PHY_TYPE_LOW_2500BASE_T:
664 		case ICE_PHY_TYPE_LOW_5GBASE_T:
665 		case ICE_PHY_TYPE_LOW_10GBASE_T:
666 		case ICE_PHY_TYPE_LOW_25GBASE_T:
667 			return ICE_MEDIA_BASET;
668 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
669 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
670 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
671 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
672 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
673 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
674 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
675 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
676 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
677 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
678 			return ICE_MEDIA_DA;
679 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
680 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
681 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
682 		case ICE_PHY_TYPE_LOW_50G_AUI2:
683 		case ICE_PHY_TYPE_LOW_50G_AUI1:
684 		case ICE_PHY_TYPE_LOW_100G_AUI4:
685 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
686 			if (ice_is_media_cage_present(pi))
687 				return ICE_MEDIA_DA;
688 			fallthrough;
689 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
690 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
691 		case ICE_PHY_TYPE_LOW_2500BASE_X:
692 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
693 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
694 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
695 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
696 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
697 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
698 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
699 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
700 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
701 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
702 			return ICE_MEDIA_BACKPLANE;
703 		}
704 	} else {
705 		switch (hw_link_info->phy_type_high) {
706 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
707 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
708 			if (ice_is_media_cage_present(pi))
709 				return ICE_MEDIA_DA;
710 			fallthrough;
711 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
712 			return ICE_MEDIA_BACKPLANE;
713 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
714 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
715 			return ICE_MEDIA_FIBER;
716 		}
717 	}
718 	return ICE_MEDIA_UNKNOWN;
719 }
720 
721 /**
722  * ice_get_link_status_datalen
723  * @hw: pointer to the HW struct
724  *
725  * Returns datalength for the Get Link Status AQ command, which is bigger for
726  * newer adapter families handled by ice driver.
727  */
728 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
729 {
730 	switch (hw->mac_type) {
731 	case ICE_MAC_E830:
732 		return ICE_AQC_LS_DATA_SIZE_V2;
733 	case ICE_MAC_E810:
734 	default:
735 		return ICE_AQC_LS_DATA_SIZE_V1;
736 	}
737 }
738 
739 /**
740  * ice_aq_get_link_info
741  * @pi: port information structure
742  * @ena_lse: enable/disable LinkStatusEvent reporting
743  * @link: pointer to link status structure - optional
744  * @cd: pointer to command details structure or NULL
745  *
746  * Get Link Status (0x607). Returns the link status of the adapter.
747  */
748 int
749 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
750 		     struct ice_link_status *link, struct ice_sq_cd *cd)
751 {
752 	struct ice_aqc_get_link_status_data link_data = { 0 };
753 	struct ice_aqc_get_link_status *resp;
754 	struct ice_link_status *li_old, *li;
755 	enum ice_media_type *hw_media_type;
756 	struct ice_fc_info *hw_fc_info;
757 	bool tx_pause, rx_pause;
758 	struct ice_aq_desc desc;
759 	struct ice_hw *hw;
760 	u16 cmd_flags;
761 	int status;
762 
763 	if (!pi)
764 		return -EINVAL;
765 	hw = pi->hw;
766 	li_old = &pi->phy.link_info_old;
767 	hw_media_type = &pi->phy.media_type;
768 	li = &pi->phy.link_info;
769 	hw_fc_info = &pi->fc;
770 
771 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
772 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
773 	resp = &desc.params.get_link_status;
774 	resp->cmd_flags = cpu_to_le16(cmd_flags);
775 	resp->lport_num = pi->lport;
776 
777 	status = ice_aq_send_cmd(hw, &desc, &link_data,
778 				 ice_get_link_status_datalen(hw), cd);
779 	if (status)
780 		return status;
781 
782 	/* save off old link status information */
783 	*li_old = *li;
784 
785 	/* update current link status information */
786 	li->link_speed = le16_to_cpu(link_data.link_speed);
787 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
788 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
789 	*hw_media_type = ice_get_media_type(pi);
790 	li->link_info = link_data.link_info;
791 	li->link_cfg_err = link_data.link_cfg_err;
792 	li->an_info = link_data.an_info;
793 	li->ext_info = link_data.ext_info;
794 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
795 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
796 	li->topo_media_conflict = link_data.topo_media_conflict;
797 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
798 				      ICE_AQ_CFG_PACING_TYPE_M);
799 
800 	/* update fc info */
801 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
802 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
803 	if (tx_pause && rx_pause)
804 		hw_fc_info->current_mode = ICE_FC_FULL;
805 	else if (tx_pause)
806 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
807 	else if (rx_pause)
808 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
809 	else
810 		hw_fc_info->current_mode = ICE_FC_NONE;
811 
812 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
813 
814 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
815 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
816 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
817 		  (unsigned long long)li->phy_type_low);
818 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
819 		  (unsigned long long)li->phy_type_high);
820 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
821 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
822 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
823 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
824 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
825 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
826 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
827 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
828 		  li->max_frame_size);
829 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
830 
831 	/* save link status information */
832 	if (link)
833 		*link = *li;
834 
835 	/* flag cleared so calling functions don't call AQ again */
836 	pi->phy.get_link_info = false;
837 
838 	return 0;
839 }
840 
841 /**
842  * ice_fill_tx_timer_and_fc_thresh
843  * @hw: pointer to the HW struct
844  * @cmd: pointer to MAC cfg structure
845  *
846  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
847  * descriptor
848  */
849 static void
850 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
851 				struct ice_aqc_set_mac_cfg *cmd)
852 {
853 	u32 val, fc_thres_m;
854 
855 	/* We read back the transmit timer and FC threshold value of
856 	 * LFC. Thus, we will use index =
857 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
858 	 *
859 	 * Also, because we are operating on transmit timer and FC
860 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
861 	 */
862 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
863 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
864 
865 	if (hw->mac_type == ICE_MAC_E830) {
866 		/* Retrieve the transmit timer */
867 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
868 		cmd->tx_tmr_value =
869 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
870 
871 		/* Retrieve the fc threshold */
872 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
873 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
874 	} else {
875 		/* Retrieve the transmit timer */
876 		val = rd32(hw,
877 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
878 		cmd->tx_tmr_value =
879 			le16_encode_bits(val,
880 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
881 
882 		/* Retrieve the fc threshold */
883 		val = rd32(hw,
884 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
885 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
886 	}
887 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
888 }
889 
890 /**
891  * ice_aq_set_mac_cfg
892  * @hw: pointer to the HW struct
893  * @max_frame_size: Maximum Frame Size to be supported
894  * @cd: pointer to command details structure or NULL
895  *
896  * Set MAC configuration (0x0603)
897  */
898 int
899 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
900 {
901 	struct ice_aqc_set_mac_cfg *cmd;
902 	struct ice_aq_desc desc;
903 
904 	cmd = &desc.params.set_mac_cfg;
905 
906 	if (max_frame_size == 0)
907 		return -EINVAL;
908 
909 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
910 
911 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
912 
913 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
914 
915 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
916 }
917 
918 /**
919  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
920  * @hw: pointer to the HW struct
921  */
922 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
923 {
924 	struct ice_switch_info *sw;
925 	int status;
926 
927 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
928 				       sizeof(*hw->switch_info), GFP_KERNEL);
929 	sw = hw->switch_info;
930 
931 	if (!sw)
932 		return -ENOMEM;
933 
934 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
935 	sw->prof_res_bm_init = 0;
936 
937 	status = ice_init_def_sw_recp(hw);
938 	if (status) {
939 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
940 		return status;
941 	}
942 	return 0;
943 }
944 
945 /**
946  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
947  * @hw: pointer to the HW struct
948  */
949 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
950 {
951 	struct ice_switch_info *sw = hw->switch_info;
952 	struct ice_vsi_list_map_info *v_pos_map;
953 	struct ice_vsi_list_map_info *v_tmp_map;
954 	struct ice_sw_recipe *recps;
955 	u8 i;
956 
957 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
958 				 list_entry) {
959 		list_del(&v_pos_map->list_entry);
960 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
961 	}
962 	recps = sw->recp_list;
963 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
964 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
965 
966 		recps[i].root_rid = i;
967 		list_for_each_entry_safe(rg_entry, tmprg_entry,
968 					 &recps[i].rg_list, l_entry) {
969 			list_del(&rg_entry->l_entry);
970 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
971 		}
972 
973 		if (recps[i].adv_rule) {
974 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
975 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
976 
977 			mutex_destroy(&recps[i].filt_rule_lock);
978 			list_for_each_entry_safe(lst_itr, tmp_entry,
979 						 &recps[i].filt_rules,
980 						 list_entry) {
981 				list_del(&lst_itr->list_entry);
982 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
983 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
984 			}
985 		} else {
986 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
987 
988 			mutex_destroy(&recps[i].filt_rule_lock);
989 			list_for_each_entry_safe(lst_itr, tmp_entry,
990 						 &recps[i].filt_rules,
991 						 list_entry) {
992 				list_del(&lst_itr->list_entry);
993 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
994 			}
995 		}
996 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
997 	}
998 	ice_rm_all_sw_replay_rule_info(hw);
999 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
1000 	devm_kfree(ice_hw_to_dev(hw), sw);
1001 }
1002 
1003 /**
1004  * ice_get_itr_intrl_gran
1005  * @hw: pointer to the HW struct
1006  *
1007  * Determines the ITR/INTRL granularities based on the maximum aggregate
1008  * bandwidth according to the device's configuration during power-on.
1009  */
1010 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1011 {
1012 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1013 				  rd32(hw, GL_PWR_MODE_CTL));
1014 
1015 	switch (max_agg_bw) {
1016 	case ICE_MAX_AGG_BW_200G:
1017 	case ICE_MAX_AGG_BW_100G:
1018 	case ICE_MAX_AGG_BW_50G:
1019 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1020 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1021 		break;
1022 	case ICE_MAX_AGG_BW_25G:
1023 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1024 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1025 		break;
1026 	}
1027 }
1028 
1029 /**
1030  * ice_init_hw - main hardware initialization routine
1031  * @hw: pointer to the hardware structure
1032  */
1033 int ice_init_hw(struct ice_hw *hw)
1034 {
1035 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1036 	void *mac_buf __free(kfree) = NULL;
1037 	u16 mac_buf_len;
1038 	int status;
1039 
1040 	/* Set MAC type based on DeviceID */
1041 	status = ice_set_mac_type(hw);
1042 	if (status)
1043 		return status;
1044 
1045 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1046 
1047 	status = ice_reset(hw, ICE_RESET_PFR);
1048 	if (status)
1049 		return status;
1050 
1051 	ice_get_itr_intrl_gran(hw);
1052 
1053 	status = ice_create_all_ctrlq(hw);
1054 	if (status)
1055 		goto err_unroll_cqinit;
1056 
1057 	status = ice_fwlog_init(hw);
1058 	if (status)
1059 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1060 			  status);
1061 
1062 	status = ice_clear_pf_cfg(hw);
1063 	if (status)
1064 		goto err_unroll_cqinit;
1065 
1066 	/* Set bit to enable Flow Director filters */
1067 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1068 	INIT_LIST_HEAD(&hw->fdir_list_head);
1069 
1070 	ice_clear_pxe_mode(hw);
1071 
1072 	status = ice_init_nvm(hw);
1073 	if (status)
1074 		goto err_unroll_cqinit;
1075 
1076 	status = ice_get_caps(hw);
1077 	if (status)
1078 		goto err_unroll_cqinit;
1079 
1080 	if (!hw->port_info)
1081 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1082 					     sizeof(*hw->port_info),
1083 					     GFP_KERNEL);
1084 	if (!hw->port_info) {
1085 		status = -ENOMEM;
1086 		goto err_unroll_cqinit;
1087 	}
1088 
1089 	/* set the back pointer to HW */
1090 	hw->port_info->hw = hw;
1091 
1092 	/* Initialize port_info struct with switch configuration data */
1093 	status = ice_get_initial_sw_cfg(hw);
1094 	if (status)
1095 		goto err_unroll_alloc;
1096 
1097 	hw->evb_veb = true;
1098 
1099 	/* init xarray for identifying scheduling nodes uniquely */
1100 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1101 
1102 	/* Query the allocated resources for Tx scheduler */
1103 	status = ice_sched_query_res_alloc(hw);
1104 	if (status) {
1105 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1106 		goto err_unroll_alloc;
1107 	}
1108 	ice_sched_get_psm_clk_freq(hw);
1109 
1110 	/* Initialize port_info struct with scheduler data */
1111 	status = ice_sched_init_port(hw->port_info);
1112 	if (status)
1113 		goto err_unroll_sched;
1114 
1115 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1116 	if (!pcaps) {
1117 		status = -ENOMEM;
1118 		goto err_unroll_sched;
1119 	}
1120 
1121 	/* Initialize port_info struct with PHY capabilities */
1122 	status = ice_aq_get_phy_caps(hw->port_info, false,
1123 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1124 				     NULL);
1125 	if (status)
1126 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1127 			 status);
1128 
1129 	/* Initialize port_info struct with link information */
1130 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1131 	if (status)
1132 		goto err_unroll_sched;
1133 
1134 	/* need a valid SW entry point to build a Tx tree */
1135 	if (!hw->sw_entry_point_layer) {
1136 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1137 		status = -EIO;
1138 		goto err_unroll_sched;
1139 	}
1140 	INIT_LIST_HEAD(&hw->agg_list);
1141 	/* Initialize max burst size */
1142 	if (!hw->max_burst_size)
1143 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1144 
1145 	status = ice_init_fltr_mgmt_struct(hw);
1146 	if (status)
1147 		goto err_unroll_sched;
1148 
1149 	/* Get MAC information */
1150 	/* A single port can report up to two (LAN and WoL) addresses */
1151 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1152 			  GFP_KERNEL);
1153 	if (!mac_buf) {
1154 		status = -ENOMEM;
1155 		goto err_unroll_fltr_mgmt_struct;
1156 	}
1157 
1158 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1159 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1160 
1161 	if (status)
1162 		goto err_unroll_fltr_mgmt_struct;
1163 	/* enable jumbo frame support at MAC level */
1164 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1165 	if (status)
1166 		goto err_unroll_fltr_mgmt_struct;
1167 	/* Obtain counter base index which would be used by flow director */
1168 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1169 	if (status)
1170 		goto err_unroll_fltr_mgmt_struct;
1171 	status = ice_init_hw_tbls(hw);
1172 	if (status)
1173 		goto err_unroll_fltr_mgmt_struct;
1174 	mutex_init(&hw->tnl_lock);
1175 	ice_init_chk_recipe_reuse_support(hw);
1176 
1177 	return 0;
1178 
1179 err_unroll_fltr_mgmt_struct:
1180 	ice_cleanup_fltr_mgmt_struct(hw);
1181 err_unroll_sched:
1182 	ice_sched_cleanup_all(hw);
1183 err_unroll_alloc:
1184 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1185 err_unroll_cqinit:
1186 	ice_destroy_all_ctrlq(hw);
1187 	return status;
1188 }
1189 
1190 /**
1191  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1192  * @hw: pointer to the hardware structure
1193  *
1194  * This should be called only during nominal operation, not as a result of
1195  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1196  * applicable initializations if it fails for any reason.
1197  */
1198 void ice_deinit_hw(struct ice_hw *hw)
1199 {
1200 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1201 	ice_cleanup_fltr_mgmt_struct(hw);
1202 
1203 	ice_sched_cleanup_all(hw);
1204 	ice_sched_clear_agg(hw);
1205 	ice_free_seg(hw);
1206 	ice_free_hw_tbls(hw);
1207 	mutex_destroy(&hw->tnl_lock);
1208 
1209 	ice_fwlog_deinit(hw);
1210 	ice_destroy_all_ctrlq(hw);
1211 
1212 	/* Clear VSI contexts if not already cleared */
1213 	ice_clear_all_vsi_ctx(hw);
1214 }
1215 
1216 /**
1217  * ice_check_reset - Check to see if a global reset is complete
1218  * @hw: pointer to the hardware structure
1219  */
1220 int ice_check_reset(struct ice_hw *hw)
1221 {
1222 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1223 
1224 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1225 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1226 	 * Add 1sec for outstanding AQ commands that can take a long time.
1227 	 */
1228 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1229 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1230 
1231 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1232 		mdelay(100);
1233 		reg = rd32(hw, GLGEN_RSTAT);
1234 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1235 			break;
1236 	}
1237 
1238 	if (cnt == grst_timeout) {
1239 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1240 		return -EIO;
1241 	}
1242 
1243 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1244 				 GLNVM_ULD_PCIER_DONE_1_M |\
1245 				 GLNVM_ULD_CORER_DONE_M |\
1246 				 GLNVM_ULD_GLOBR_DONE_M |\
1247 				 GLNVM_ULD_POR_DONE_M |\
1248 				 GLNVM_ULD_POR_DONE_1_M |\
1249 				 GLNVM_ULD_PCIER_DONE_2_M)
1250 
1251 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1252 					  GLNVM_ULD_PE_DONE_M : 0);
1253 
1254 	/* Device is Active; check Global Reset processes are done */
1255 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1256 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1257 		if (reg == uld_mask) {
1258 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1259 			break;
1260 		}
1261 		mdelay(10);
1262 	}
1263 
1264 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1265 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1266 			  reg);
1267 		return -EIO;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * ice_pf_reset - Reset the PF
1275  * @hw: pointer to the hardware structure
1276  *
1277  * If a global reset has been triggered, this function checks
1278  * for its completion and then issues the PF reset
1279  */
1280 static int ice_pf_reset(struct ice_hw *hw)
1281 {
1282 	u32 cnt, reg;
1283 
1284 	/* If at function entry a global reset was already in progress, i.e.
1285 	 * state is not 'device active' or any of the reset done bits are not
1286 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1287 	 * global reset is done.
1288 	 */
1289 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1290 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1291 		/* poll on global reset currently in progress until done */
1292 		if (ice_check_reset(hw))
1293 			return -EIO;
1294 
1295 		return 0;
1296 	}
1297 
1298 	/* Reset the PF */
1299 	reg = rd32(hw, PFGEN_CTRL);
1300 
1301 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1302 
1303 	/* Wait for the PFR to complete. The wait time is the global config lock
1304 	 * timeout plus the PFR timeout which will account for a possible reset
1305 	 * that is occurring during a download package operation.
1306 	 */
1307 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1308 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1309 		reg = rd32(hw, PFGEN_CTRL);
1310 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1311 			break;
1312 
1313 		mdelay(1);
1314 	}
1315 
1316 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1317 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1318 		return -EIO;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * ice_reset - Perform different types of reset
1326  * @hw: pointer to the hardware structure
1327  * @req: reset request
1328  *
1329  * This function triggers a reset as specified by the req parameter.
1330  *
1331  * Note:
1332  * If anything other than a PF reset is triggered, PXE mode is restored.
1333  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1334  * interface has been restored in the rebuild flow.
1335  */
1336 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1337 {
1338 	u32 val = 0;
1339 
1340 	switch (req) {
1341 	case ICE_RESET_PFR:
1342 		return ice_pf_reset(hw);
1343 	case ICE_RESET_CORER:
1344 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1345 		val = GLGEN_RTRIG_CORER_M;
1346 		break;
1347 	case ICE_RESET_GLOBR:
1348 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1349 		val = GLGEN_RTRIG_GLOBR_M;
1350 		break;
1351 	default:
1352 		return -EINVAL;
1353 	}
1354 
1355 	val |= rd32(hw, GLGEN_RTRIG);
1356 	wr32(hw, GLGEN_RTRIG, val);
1357 	ice_flush(hw);
1358 
1359 	/* wait for the FW to be ready */
1360 	return ice_check_reset(hw);
1361 }
1362 
1363 /**
1364  * ice_copy_rxq_ctx_to_hw
1365  * @hw: pointer to the hardware structure
1366  * @ice_rxq_ctx: pointer to the rxq context
1367  * @rxq_index: the index of the Rx queue
1368  *
1369  * Copies rxq context from dense structure to HW register space
1370  */
1371 static int
1372 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1373 {
1374 	u8 i;
1375 
1376 	if (!ice_rxq_ctx)
1377 		return -EINVAL;
1378 
1379 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1380 		return -EINVAL;
1381 
1382 	/* Copy each dword separately to HW */
1383 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1384 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1385 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1386 
1387 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1388 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 /* LAN Rx Queue Context */
1395 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1396 	/* Field		Width	LSB */
1397 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1398 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1399 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1400 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1401 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1402 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1403 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1404 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1405 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1406 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1407 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1408 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1409 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1410 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1411 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1412 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1413 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1414 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1415 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1416 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1417 	{ 0 }
1418 };
1419 
1420 /**
1421  * ice_write_rxq_ctx
1422  * @hw: pointer to the hardware structure
1423  * @rlan_ctx: pointer to the rxq context
1424  * @rxq_index: the index of the Rx queue
1425  *
1426  * Converts rxq context from sparse to dense structure and then writes
1427  * it to HW register space and enables the hardware to prefetch descriptors
1428  * instead of only fetching them on demand
1429  */
1430 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1431 		      u32 rxq_index)
1432 {
1433 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1434 
1435 	if (!rlan_ctx)
1436 		return -EINVAL;
1437 
1438 	rlan_ctx->prefena = 1;
1439 
1440 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1441 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1442 }
1443 
1444 /* LAN Tx Queue Context */
1445 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1446 				    /* Field			Width	LSB */
1447 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1448 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1449 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1450 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1451 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1452 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1453 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1454 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1455 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1456 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1457 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1458 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1459 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1460 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1461 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1462 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1463 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1464 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1465 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1466 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1467 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1468 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1469 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1470 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1471 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1472 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1473 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1474 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1475 	{ 0 }
1476 };
1477 
1478 /* Sideband Queue command wrappers */
1479 
1480 /**
1481  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1482  * @hw: pointer to the HW struct
1483  * @desc: descriptor describing the command
1484  * @buf: buffer to use for indirect commands (NULL for direct commands)
1485  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1486  * @cd: pointer to command details structure
1487  */
1488 static int
1489 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1490 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1491 {
1492 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1493 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1494 }
1495 
1496 /**
1497  * ice_sbq_rw_reg - Fill Sideband Queue command
1498  * @hw: pointer to the HW struct
1499  * @in: message info to be filled in descriptor
1500  */
1501 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1502 {
1503 	struct ice_sbq_cmd_desc desc = {0};
1504 	struct ice_sbq_msg_req msg = {0};
1505 	u16 msg_len;
1506 	int status;
1507 
1508 	msg_len = sizeof(msg);
1509 
1510 	msg.dest_dev = in->dest_dev;
1511 	msg.opcode = in->opcode;
1512 	msg.flags = ICE_SBQ_MSG_FLAGS;
1513 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1514 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1515 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1516 
1517 	if (in->opcode)
1518 		msg.data = cpu_to_le32(in->data);
1519 	else
1520 		/* data read comes back in completion, so shorten the struct by
1521 		 * sizeof(msg.data)
1522 		 */
1523 		msg_len -= sizeof(msg.data);
1524 
1525 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1526 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1527 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1528 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1529 	if (!status && !in->opcode)
1530 		in->data = le32_to_cpu
1531 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1532 	return status;
1533 }
1534 
1535 /* FW Admin Queue command wrappers */
1536 
1537 /* Software lock/mutex that is meant to be held while the Global Config Lock
1538  * in firmware is acquired by the software to prevent most (but not all) types
1539  * of AQ commands from being sent to FW
1540  */
1541 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1542 
1543 /**
1544  * ice_should_retry_sq_send_cmd
1545  * @opcode: AQ opcode
1546  *
1547  * Decide if we should retry the send command routine for the ATQ, depending
1548  * on the opcode.
1549  */
1550 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1551 {
1552 	switch (opcode) {
1553 	case ice_aqc_opc_get_link_topo:
1554 	case ice_aqc_opc_lldp_stop:
1555 	case ice_aqc_opc_lldp_start:
1556 	case ice_aqc_opc_lldp_filter_ctrl:
1557 		return true;
1558 	}
1559 
1560 	return false;
1561 }
1562 
1563 /**
1564  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1565  * @hw: pointer to the HW struct
1566  * @cq: pointer to the specific Control queue
1567  * @desc: prefilled descriptor describing the command
1568  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1569  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1570  * @cd: pointer to command details structure
1571  *
1572  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1573  * Queue if the EBUSY AQ error is returned.
1574  */
1575 static int
1576 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1577 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1578 		      struct ice_sq_cd *cd)
1579 {
1580 	struct ice_aq_desc desc_cpy;
1581 	bool is_cmd_for_retry;
1582 	u8 idx = 0;
1583 	u16 opcode;
1584 	int status;
1585 
1586 	opcode = le16_to_cpu(desc->opcode);
1587 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1588 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1589 
1590 	if (is_cmd_for_retry) {
1591 		/* All retryable cmds are direct, without buf. */
1592 		WARN_ON(buf);
1593 
1594 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1595 	}
1596 
1597 	do {
1598 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1599 
1600 		if (!is_cmd_for_retry || !status ||
1601 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1602 			break;
1603 
1604 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1605 
1606 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1607 
1608 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1609 
1610 	return status;
1611 }
1612 
1613 /**
1614  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1615  * @hw: pointer to the HW struct
1616  * @desc: descriptor describing the command
1617  * @buf: buffer to use for indirect commands (NULL for direct commands)
1618  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1619  * @cd: pointer to command details structure
1620  *
1621  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1622  */
1623 int
1624 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1625 		u16 buf_size, struct ice_sq_cd *cd)
1626 {
1627 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1628 	bool lock_acquired = false;
1629 	int status;
1630 
1631 	/* When a package download is in process (i.e. when the firmware's
1632 	 * Global Configuration Lock resource is held), only the Download
1633 	 * Package, Get Version, Get Package Info List, Upload Section,
1634 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1635 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1636 	 * Recipes to Profile Association, and Release Resource (with resource
1637 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1638 	 * must block until the package download completes and the Global Config
1639 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1640 	 */
1641 	switch (le16_to_cpu(desc->opcode)) {
1642 	case ice_aqc_opc_download_pkg:
1643 	case ice_aqc_opc_get_pkg_info_list:
1644 	case ice_aqc_opc_get_ver:
1645 	case ice_aqc_opc_upload_section:
1646 	case ice_aqc_opc_update_pkg:
1647 	case ice_aqc_opc_set_port_params:
1648 	case ice_aqc_opc_get_vlan_mode_parameters:
1649 	case ice_aqc_opc_set_vlan_mode_parameters:
1650 	case ice_aqc_opc_set_tx_topo:
1651 	case ice_aqc_opc_get_tx_topo:
1652 	case ice_aqc_opc_add_recipe:
1653 	case ice_aqc_opc_recipe_to_profile:
1654 	case ice_aqc_opc_get_recipe:
1655 	case ice_aqc_opc_get_recipe_to_profile:
1656 		break;
1657 	case ice_aqc_opc_release_res:
1658 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1659 			break;
1660 		fallthrough;
1661 	default:
1662 		mutex_lock(&ice_global_cfg_lock_sw);
1663 		lock_acquired = true;
1664 		break;
1665 	}
1666 
1667 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1668 	if (lock_acquired)
1669 		mutex_unlock(&ice_global_cfg_lock_sw);
1670 
1671 	return status;
1672 }
1673 
1674 /**
1675  * ice_aq_get_fw_ver
1676  * @hw: pointer to the HW struct
1677  * @cd: pointer to command details structure or NULL
1678  *
1679  * Get the firmware version (0x0001) from the admin queue commands
1680  */
1681 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1682 {
1683 	struct ice_aqc_get_ver *resp;
1684 	struct ice_aq_desc desc;
1685 	int status;
1686 
1687 	resp = &desc.params.get_ver;
1688 
1689 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1690 
1691 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1692 
1693 	if (!status) {
1694 		hw->fw_branch = resp->fw_branch;
1695 		hw->fw_maj_ver = resp->fw_major;
1696 		hw->fw_min_ver = resp->fw_minor;
1697 		hw->fw_patch = resp->fw_patch;
1698 		hw->fw_build = le32_to_cpu(resp->fw_build);
1699 		hw->api_branch = resp->api_branch;
1700 		hw->api_maj_ver = resp->api_major;
1701 		hw->api_min_ver = resp->api_minor;
1702 		hw->api_patch = resp->api_patch;
1703 	}
1704 
1705 	return status;
1706 }
1707 
1708 /**
1709  * ice_aq_send_driver_ver
1710  * @hw: pointer to the HW struct
1711  * @dv: driver's major, minor version
1712  * @cd: pointer to command details structure or NULL
1713  *
1714  * Send the driver version (0x0002) to the firmware
1715  */
1716 int
1717 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1718 		       struct ice_sq_cd *cd)
1719 {
1720 	struct ice_aqc_driver_ver *cmd;
1721 	struct ice_aq_desc desc;
1722 	u16 len;
1723 
1724 	cmd = &desc.params.driver_ver;
1725 
1726 	if (!dv)
1727 		return -EINVAL;
1728 
1729 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1730 
1731 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1732 	cmd->major_ver = dv->major_ver;
1733 	cmd->minor_ver = dv->minor_ver;
1734 	cmd->build_ver = dv->build_ver;
1735 	cmd->subbuild_ver = dv->subbuild_ver;
1736 
1737 	len = 0;
1738 	while (len < sizeof(dv->driver_string) &&
1739 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1740 		len++;
1741 
1742 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1743 }
1744 
1745 /**
1746  * ice_aq_q_shutdown
1747  * @hw: pointer to the HW struct
1748  * @unloading: is the driver unloading itself
1749  *
1750  * Tell the Firmware that we're shutting down the AdminQ and whether
1751  * or not the driver is unloading as well (0x0003).
1752  */
1753 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1754 {
1755 	struct ice_aqc_q_shutdown *cmd;
1756 	struct ice_aq_desc desc;
1757 
1758 	cmd = &desc.params.q_shutdown;
1759 
1760 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1761 
1762 	if (unloading)
1763 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1764 
1765 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1766 }
1767 
1768 /**
1769  * ice_aq_req_res
1770  * @hw: pointer to the HW struct
1771  * @res: resource ID
1772  * @access: access type
1773  * @sdp_number: resource number
1774  * @timeout: the maximum time in ms that the driver may hold the resource
1775  * @cd: pointer to command details structure or NULL
1776  *
1777  * Requests common resource using the admin queue commands (0x0008).
1778  * When attempting to acquire the Global Config Lock, the driver can
1779  * learn of three states:
1780  *  1) 0 -         acquired lock, and can perform download package
1781  *  2) -EIO -      did not get lock, driver should fail to load
1782  *  3) -EALREADY - did not get lock, but another driver has
1783  *                 successfully downloaded the package; the driver does
1784  *                 not have to download the package and can continue
1785  *                 loading
1786  *
1787  * Note that if the caller is in an acquire lock, perform action, release lock
1788  * phase of operation, it is possible that the FW may detect a timeout and issue
1789  * a CORER. In this case, the driver will receive a CORER interrupt and will
1790  * have to determine its cause. The calling thread that is handling this flow
1791  * will likely get an error propagated back to it indicating the Download
1792  * Package, Update Package or the Release Resource AQ commands timed out.
1793  */
1794 static int
1795 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1796 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1797 	       struct ice_sq_cd *cd)
1798 {
1799 	struct ice_aqc_req_res *cmd_resp;
1800 	struct ice_aq_desc desc;
1801 	int status;
1802 
1803 	cmd_resp = &desc.params.res_owner;
1804 
1805 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1806 
1807 	cmd_resp->res_id = cpu_to_le16(res);
1808 	cmd_resp->access_type = cpu_to_le16(access);
1809 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1810 	cmd_resp->timeout = cpu_to_le32(*timeout);
1811 	*timeout = 0;
1812 
1813 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1814 
1815 	/* The completion specifies the maximum time in ms that the driver
1816 	 * may hold the resource in the Timeout field.
1817 	 */
1818 
1819 	/* Global config lock response utilizes an additional status field.
1820 	 *
1821 	 * If the Global config lock resource is held by some other driver, the
1822 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1823 	 * and the timeout field indicates the maximum time the current owner
1824 	 * of the resource has to free it.
1825 	 */
1826 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1827 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1828 			*timeout = le32_to_cpu(cmd_resp->timeout);
1829 			return 0;
1830 		} else if (le16_to_cpu(cmd_resp->status) ==
1831 			   ICE_AQ_RES_GLBL_IN_PROG) {
1832 			*timeout = le32_to_cpu(cmd_resp->timeout);
1833 			return -EIO;
1834 		} else if (le16_to_cpu(cmd_resp->status) ==
1835 			   ICE_AQ_RES_GLBL_DONE) {
1836 			return -EALREADY;
1837 		}
1838 
1839 		/* invalid FW response, force a timeout immediately */
1840 		*timeout = 0;
1841 		return -EIO;
1842 	}
1843 
1844 	/* If the resource is held by some other driver, the command completes
1845 	 * with a busy return value and the timeout field indicates the maximum
1846 	 * time the current owner of the resource has to free it.
1847 	 */
1848 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1849 		*timeout = le32_to_cpu(cmd_resp->timeout);
1850 
1851 	return status;
1852 }
1853 
1854 /**
1855  * ice_aq_release_res
1856  * @hw: pointer to the HW struct
1857  * @res: resource ID
1858  * @sdp_number: resource number
1859  * @cd: pointer to command details structure or NULL
1860  *
1861  * release common resource using the admin queue commands (0x0009)
1862  */
1863 static int
1864 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1865 		   struct ice_sq_cd *cd)
1866 {
1867 	struct ice_aqc_req_res *cmd;
1868 	struct ice_aq_desc desc;
1869 
1870 	cmd = &desc.params.res_owner;
1871 
1872 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1873 
1874 	cmd->res_id = cpu_to_le16(res);
1875 	cmd->res_number = cpu_to_le32(sdp_number);
1876 
1877 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1878 }
1879 
1880 /**
1881  * ice_acquire_res
1882  * @hw: pointer to the HW structure
1883  * @res: resource ID
1884  * @access: access type (read or write)
1885  * @timeout: timeout in milliseconds
1886  *
1887  * This function will attempt to acquire the ownership of a resource.
1888  */
1889 int
1890 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1891 		enum ice_aq_res_access_type access, u32 timeout)
1892 {
1893 #define ICE_RES_POLLING_DELAY_MS	10
1894 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1895 	u32 time_left = timeout;
1896 	int status;
1897 
1898 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1899 
1900 	/* A return code of -EALREADY means that another driver has
1901 	 * previously acquired the resource and performed any necessary updates;
1902 	 * in this case the caller does not obtain the resource and has no
1903 	 * further work to do.
1904 	 */
1905 	if (status == -EALREADY)
1906 		goto ice_acquire_res_exit;
1907 
1908 	if (status)
1909 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1910 
1911 	/* If necessary, poll until the current lock owner timeouts */
1912 	timeout = time_left;
1913 	while (status && timeout && time_left) {
1914 		mdelay(delay);
1915 		timeout = (timeout > delay) ? timeout - delay : 0;
1916 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1917 
1918 		if (status == -EALREADY)
1919 			/* lock free, but no work to do */
1920 			break;
1921 
1922 		if (!status)
1923 			/* lock acquired */
1924 			break;
1925 	}
1926 	if (status && status != -EALREADY)
1927 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1928 
1929 ice_acquire_res_exit:
1930 	if (status == -EALREADY) {
1931 		if (access == ICE_RES_WRITE)
1932 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1933 		else
1934 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1935 	}
1936 	return status;
1937 }
1938 
1939 /**
1940  * ice_release_res
1941  * @hw: pointer to the HW structure
1942  * @res: resource ID
1943  *
1944  * This function will release a resource using the proper Admin Command.
1945  */
1946 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1947 {
1948 	unsigned long timeout;
1949 	int status;
1950 
1951 	/* there are some rare cases when trying to release the resource
1952 	 * results in an admin queue timeout, so handle them correctly
1953 	 */
1954 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1955 	do {
1956 		status = ice_aq_release_res(hw, res, 0, NULL);
1957 		if (status != -EIO)
1958 			break;
1959 		usleep_range(1000, 2000);
1960 	} while (time_before(jiffies, timeout));
1961 }
1962 
1963 /**
1964  * ice_aq_alloc_free_res - command to allocate/free resources
1965  * @hw: pointer to the HW struct
1966  * @buf: Indirect buffer to hold data parameters and response
1967  * @buf_size: size of buffer for indirect commands
1968  * @opc: pass in the command opcode
1969  *
1970  * Helper function to allocate/free resources using the admin queue commands
1971  */
1972 int ice_aq_alloc_free_res(struct ice_hw *hw,
1973 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1974 			  enum ice_adminq_opc opc)
1975 {
1976 	struct ice_aqc_alloc_free_res_cmd *cmd;
1977 	struct ice_aq_desc desc;
1978 
1979 	cmd = &desc.params.sw_res_ctrl;
1980 
1981 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1982 		return -EINVAL;
1983 
1984 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1985 
1986 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1987 
1988 	cmd->num_entries = cpu_to_le16(1);
1989 
1990 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1991 }
1992 
1993 /**
1994  * ice_alloc_hw_res - allocate resource
1995  * @hw: pointer to the HW struct
1996  * @type: type of resource
1997  * @num: number of resources to allocate
1998  * @btm: allocate from bottom
1999  * @res: pointer to array that will receive the resources
2000  */
2001 int
2002 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2003 {
2004 	struct ice_aqc_alloc_free_res_elem *buf;
2005 	u16 buf_len;
2006 	int status;
2007 
2008 	buf_len = struct_size(buf, elem, num);
2009 	buf = kzalloc(buf_len, GFP_KERNEL);
2010 	if (!buf)
2011 		return -ENOMEM;
2012 
2013 	/* Prepare buffer to allocate resource. */
2014 	buf->num_elems = cpu_to_le16(num);
2015 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2016 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2017 	if (btm)
2018 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2019 
2020 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2021 	if (status)
2022 		goto ice_alloc_res_exit;
2023 
2024 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2025 
2026 ice_alloc_res_exit:
2027 	kfree(buf);
2028 	return status;
2029 }
2030 
2031 /**
2032  * ice_free_hw_res - free allocated HW resource
2033  * @hw: pointer to the HW struct
2034  * @type: type of resource to free
2035  * @num: number of resources
2036  * @res: pointer to array that contains the resources to free
2037  */
2038 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2039 {
2040 	struct ice_aqc_alloc_free_res_elem *buf;
2041 	u16 buf_len;
2042 	int status;
2043 
2044 	buf_len = struct_size(buf, elem, num);
2045 	buf = kzalloc(buf_len, GFP_KERNEL);
2046 	if (!buf)
2047 		return -ENOMEM;
2048 
2049 	/* Prepare buffer to free resource. */
2050 	buf->num_elems = cpu_to_le16(num);
2051 	buf->res_type = cpu_to_le16(type);
2052 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2053 
2054 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2055 	if (status)
2056 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2057 
2058 	kfree(buf);
2059 	return status;
2060 }
2061 
2062 /**
2063  * ice_get_num_per_func - determine number of resources per PF
2064  * @hw: pointer to the HW structure
2065  * @max: value to be evenly split between each PF
2066  *
2067  * Determine the number of valid functions by going through the bitmap returned
2068  * from parsing capabilities and use this to calculate the number of resources
2069  * per PF based on the max value passed in.
2070  */
2071 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2072 {
2073 	u8 funcs;
2074 
2075 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2076 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2077 			 ICE_CAPS_VALID_FUNCS_M);
2078 
2079 	if (!funcs)
2080 		return 0;
2081 
2082 	return max / funcs;
2083 }
2084 
2085 /**
2086  * ice_parse_common_caps - parse common device/function capabilities
2087  * @hw: pointer to the HW struct
2088  * @caps: pointer to common capabilities structure
2089  * @elem: the capability element to parse
2090  * @prefix: message prefix for tracing capabilities
2091  *
2092  * Given a capability element, extract relevant details into the common
2093  * capability structure.
2094  *
2095  * Returns: true if the capability matches one of the common capability ids,
2096  * false otherwise.
2097  */
2098 static bool
2099 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2100 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2101 {
2102 	u32 logical_id = le32_to_cpu(elem->logical_id);
2103 	u32 phys_id = le32_to_cpu(elem->phys_id);
2104 	u32 number = le32_to_cpu(elem->number);
2105 	u16 cap = le16_to_cpu(elem->cap);
2106 	bool found = true;
2107 
2108 	switch (cap) {
2109 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2110 		caps->valid_functions = number;
2111 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2112 			  caps->valid_functions);
2113 		break;
2114 	case ICE_AQC_CAPS_SRIOV:
2115 		caps->sr_iov_1_1 = (number == 1);
2116 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2117 			  caps->sr_iov_1_1);
2118 		break;
2119 	case ICE_AQC_CAPS_DCB:
2120 		caps->dcb = (number == 1);
2121 		caps->active_tc_bitmap = logical_id;
2122 		caps->maxtc = phys_id;
2123 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2124 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2125 			  caps->active_tc_bitmap);
2126 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2127 		break;
2128 	case ICE_AQC_CAPS_RSS:
2129 		caps->rss_table_size = number;
2130 		caps->rss_table_entry_width = logical_id;
2131 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2132 			  caps->rss_table_size);
2133 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2134 			  caps->rss_table_entry_width);
2135 		break;
2136 	case ICE_AQC_CAPS_RXQS:
2137 		caps->num_rxq = number;
2138 		caps->rxq_first_id = phys_id;
2139 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2140 			  caps->num_rxq);
2141 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2142 			  caps->rxq_first_id);
2143 		break;
2144 	case ICE_AQC_CAPS_TXQS:
2145 		caps->num_txq = number;
2146 		caps->txq_first_id = phys_id;
2147 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2148 			  caps->num_txq);
2149 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2150 			  caps->txq_first_id);
2151 		break;
2152 	case ICE_AQC_CAPS_MSIX:
2153 		caps->num_msix_vectors = number;
2154 		caps->msix_vector_first_id = phys_id;
2155 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2156 			  caps->num_msix_vectors);
2157 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2158 			  caps->msix_vector_first_id);
2159 		break;
2160 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2161 		caps->nvm_update_pending_nvm = true;
2162 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2163 		break;
2164 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2165 		caps->nvm_update_pending_orom = true;
2166 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2167 		break;
2168 	case ICE_AQC_CAPS_PENDING_NET_VER:
2169 		caps->nvm_update_pending_netlist = true;
2170 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2171 		break;
2172 	case ICE_AQC_CAPS_NVM_MGMT:
2173 		caps->nvm_unified_update =
2174 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2175 			true : false;
2176 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2177 			  caps->nvm_unified_update);
2178 		break;
2179 	case ICE_AQC_CAPS_RDMA:
2180 		caps->rdma = (number == 1);
2181 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2182 		break;
2183 	case ICE_AQC_CAPS_MAX_MTU:
2184 		caps->max_mtu = number;
2185 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2186 			  prefix, caps->max_mtu);
2187 		break;
2188 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2189 		caps->pcie_reset_avoidance = (number > 0);
2190 		ice_debug(hw, ICE_DBG_INIT,
2191 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2192 			  caps->pcie_reset_avoidance);
2193 		break;
2194 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2195 		caps->reset_restrict_support = (number == 1);
2196 		ice_debug(hw, ICE_DBG_INIT,
2197 			  "%s: reset_restrict_support = %d\n", prefix,
2198 			  caps->reset_restrict_support);
2199 		break;
2200 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2201 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2202 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2203 			  prefix, caps->roce_lag);
2204 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2205 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2206 			  prefix, caps->sriov_lag);
2207 		break;
2208 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2209 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2210 		break;
2211 	default:
2212 		/* Not one of the recognized common capabilities */
2213 		found = false;
2214 	}
2215 
2216 	return found;
2217 }
2218 
2219 /**
2220  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2221  * @hw: pointer to the HW structure
2222  * @caps: pointer to capabilities structure to fix
2223  *
2224  * Re-calculate the capabilities that are dependent on the number of physical
2225  * ports; i.e. some features are not supported or function differently on
2226  * devices with more than 4 ports.
2227  */
2228 static void
2229 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2230 {
2231 	/* This assumes device capabilities are always scanned before function
2232 	 * capabilities during the initialization flow.
2233 	 */
2234 	if (hw->dev_caps.num_funcs > 4) {
2235 		/* Max 4 TCs per port */
2236 		caps->maxtc = 4;
2237 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2238 			  caps->maxtc);
2239 		if (caps->rdma) {
2240 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2241 			caps->rdma = 0;
2242 		}
2243 
2244 		/* print message only when processing device capabilities
2245 		 * during initialization.
2246 		 */
2247 		if (caps == &hw->dev_caps.common_cap)
2248 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2249 	}
2250 }
2251 
2252 /**
2253  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2254  * @hw: pointer to the HW struct
2255  * @func_p: pointer to function capabilities structure
2256  * @cap: pointer to the capability element to parse
2257  *
2258  * Extract function capabilities for ICE_AQC_CAPS_VF.
2259  */
2260 static void
2261 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2262 		       struct ice_aqc_list_caps_elem *cap)
2263 {
2264 	u32 logical_id = le32_to_cpu(cap->logical_id);
2265 	u32 number = le32_to_cpu(cap->number);
2266 
2267 	func_p->num_allocd_vfs = number;
2268 	func_p->vf_base_id = logical_id;
2269 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2270 		  func_p->num_allocd_vfs);
2271 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2272 		  func_p->vf_base_id);
2273 }
2274 
2275 /**
2276  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2277  * @hw: pointer to the HW struct
2278  * @func_p: pointer to function capabilities structure
2279  * @cap: pointer to the capability element to parse
2280  *
2281  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2282  */
2283 static void
2284 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2285 			struct ice_aqc_list_caps_elem *cap)
2286 {
2287 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2288 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2289 		  le32_to_cpu(cap->number));
2290 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2291 		  func_p->guar_num_vsi);
2292 }
2293 
2294 /**
2295  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2296  * @hw: pointer to the HW struct
2297  * @func_p: pointer to function capabilities structure
2298  * @cap: pointer to the capability element to parse
2299  *
2300  * Extract function capabilities for ICE_AQC_CAPS_1588.
2301  */
2302 static void
2303 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2304 			 struct ice_aqc_list_caps_elem *cap)
2305 {
2306 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2307 	u32 number = le32_to_cpu(cap->number);
2308 
2309 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2310 	func_p->common_cap.ieee_1588 = info->ena;
2311 
2312 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2313 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2314 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2315 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2316 
2317 	if (!ice_is_e825c(hw)) {
2318 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2319 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2320 	} else {
2321 		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2322 		info->clk_src = ICE_CLK_SRC_TCXO;
2323 	}
2324 
2325 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2326 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2327 	} else {
2328 		/* Unknown clock frequency, so assume a (probably incorrect)
2329 		 * default to avoid out-of-bounds look ups of frequency
2330 		 * related information.
2331 		 */
2332 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2333 			  info->clk_freq);
2334 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2335 	}
2336 
2337 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2338 		  func_p->common_cap.ieee_1588);
2339 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2340 		  info->src_tmr_owned);
2341 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2342 		  info->tmr_ena);
2343 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2344 		  info->tmr_index_owned);
2345 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2346 		  info->tmr_index_assoc);
2347 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2348 		  info->clk_freq);
2349 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2350 		  info->clk_src);
2351 }
2352 
2353 /**
2354  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2355  * @hw: pointer to the HW struct
2356  * @func_p: pointer to function capabilities structure
2357  *
2358  * Extract function capabilities for ICE_AQC_CAPS_FD.
2359  */
2360 static void
2361 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2362 {
2363 	u32 reg_val, gsize, bsize;
2364 
2365 	reg_val = rd32(hw, GLQF_FD_SIZE);
2366 	switch (hw->mac_type) {
2367 	case ICE_MAC_E830:
2368 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2369 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2370 		break;
2371 	case ICE_MAC_E810:
2372 	default:
2373 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2374 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2375 	}
2376 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2377 	func_p->fd_fltr_best_effort = bsize;
2378 
2379 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2380 		  func_p->fd_fltr_guar);
2381 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2382 		  func_p->fd_fltr_best_effort);
2383 }
2384 
2385 /**
2386  * ice_parse_func_caps - Parse function capabilities
2387  * @hw: pointer to the HW struct
2388  * @func_p: pointer to function capabilities structure
2389  * @buf: buffer containing the function capability records
2390  * @cap_count: the number of capabilities
2391  *
2392  * Helper function to parse function (0x000A) capabilities list. For
2393  * capabilities shared between device and function, this relies on
2394  * ice_parse_common_caps.
2395  *
2396  * Loop through the list of provided capabilities and extract the relevant
2397  * data into the function capabilities structured.
2398  */
2399 static void
2400 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2401 		    void *buf, u32 cap_count)
2402 {
2403 	struct ice_aqc_list_caps_elem *cap_resp;
2404 	u32 i;
2405 
2406 	cap_resp = buf;
2407 
2408 	memset(func_p, 0, sizeof(*func_p));
2409 
2410 	for (i = 0; i < cap_count; i++) {
2411 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2412 		bool found;
2413 
2414 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2415 					      &cap_resp[i], "func caps");
2416 
2417 		switch (cap) {
2418 		case ICE_AQC_CAPS_VF:
2419 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2420 			break;
2421 		case ICE_AQC_CAPS_VSI:
2422 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2423 			break;
2424 		case ICE_AQC_CAPS_1588:
2425 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2426 			break;
2427 		case ICE_AQC_CAPS_FD:
2428 			ice_parse_fdir_func_caps(hw, func_p);
2429 			break;
2430 		default:
2431 			/* Don't list common capabilities as unknown */
2432 			if (!found)
2433 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2434 					  i, cap);
2435 			break;
2436 		}
2437 	}
2438 
2439 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2440 }
2441 
2442 /**
2443  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2444  * @hw: pointer to the HW struct
2445  * @dev_p: pointer to device capabilities structure
2446  * @cap: capability element to parse
2447  *
2448  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2449  */
2450 static void
2451 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2452 			      struct ice_aqc_list_caps_elem *cap)
2453 {
2454 	u32 number = le32_to_cpu(cap->number);
2455 
2456 	dev_p->num_funcs = hweight32(number);
2457 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2458 		  dev_p->num_funcs);
2459 }
2460 
2461 /**
2462  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2463  * @hw: pointer to the HW struct
2464  * @dev_p: pointer to device capabilities structure
2465  * @cap: capability element to parse
2466  *
2467  * Parse ICE_AQC_CAPS_VF for device capabilities.
2468  */
2469 static void
2470 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2471 		      struct ice_aqc_list_caps_elem *cap)
2472 {
2473 	u32 number = le32_to_cpu(cap->number);
2474 
2475 	dev_p->num_vfs_exposed = number;
2476 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2477 		  dev_p->num_vfs_exposed);
2478 }
2479 
2480 /**
2481  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2482  * @hw: pointer to the HW struct
2483  * @dev_p: pointer to device capabilities structure
2484  * @cap: capability element to parse
2485  *
2486  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2487  */
2488 static void
2489 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2490 		       struct ice_aqc_list_caps_elem *cap)
2491 {
2492 	u32 number = le32_to_cpu(cap->number);
2493 
2494 	dev_p->num_vsi_allocd_to_host = number;
2495 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2496 		  dev_p->num_vsi_allocd_to_host);
2497 }
2498 
2499 /**
2500  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2501  * @hw: pointer to the HW struct
2502  * @dev_p: pointer to device capabilities structure
2503  * @cap: capability element to parse
2504  *
2505  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2506  */
2507 static void
2508 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2509 			struct ice_aqc_list_caps_elem *cap)
2510 {
2511 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2512 	u32 logical_id = le32_to_cpu(cap->logical_id);
2513 	u32 phys_id = le32_to_cpu(cap->phys_id);
2514 	u32 number = le32_to_cpu(cap->number);
2515 
2516 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2517 	dev_p->common_cap.ieee_1588 = info->ena;
2518 
2519 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2520 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2521 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2522 
2523 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2524 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2525 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2526 
2527 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2528 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2529 
2530 	info->ena_ports = logical_id;
2531 	info->tmr_own_map = phys_id;
2532 
2533 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2534 		  dev_p->common_cap.ieee_1588);
2535 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2536 		  info->tmr0_owner);
2537 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2538 		  info->tmr0_owned);
2539 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2540 		  info->tmr0_ena);
2541 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2542 		  info->tmr1_owner);
2543 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2544 		  info->tmr1_owned);
2545 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2546 		  info->tmr1_ena);
2547 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2548 		  info->ts_ll_read);
2549 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2550 		  info->ts_ll_int_read);
2551 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2552 		  info->ena_ports);
2553 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2554 		  info->tmr_own_map);
2555 }
2556 
2557 /**
2558  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2559  * @hw: pointer to the HW struct
2560  * @dev_p: pointer to device capabilities structure
2561  * @cap: capability element to parse
2562  *
2563  * Parse ICE_AQC_CAPS_FD for device capabilities.
2564  */
2565 static void
2566 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2567 			struct ice_aqc_list_caps_elem *cap)
2568 {
2569 	u32 number = le32_to_cpu(cap->number);
2570 
2571 	dev_p->num_flow_director_fltr = number;
2572 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2573 		  dev_p->num_flow_director_fltr);
2574 }
2575 
2576 /**
2577  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2578  * @hw: pointer to the HW struct
2579  * @dev_p: pointer to device capabilities structure
2580  * @cap: capability element to parse
2581  *
2582  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2583  * enabled sensors.
2584  */
2585 static void
2586 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2587 			     struct ice_aqc_list_caps_elem *cap)
2588 {
2589 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2590 
2591 	ice_debug(hw, ICE_DBG_INIT,
2592 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2593 		  dev_p->supported_sensors);
2594 }
2595 
2596 /**
2597  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2598  * @hw: pointer to the HW struct
2599  * @dev_p: pointer to device capabilities structure
2600  * @cap: capability element to parse
2601  *
2602  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2603  */
2604 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2605 					struct ice_hw_dev_caps *dev_p,
2606 					struct ice_aqc_list_caps_elem *cap)
2607 {
2608 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2609 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2610 
2611 	dev_info(ice_hw_to_dev(hw),
2612 		 "PF is configured in %s mode with IP instance ID %d\n",
2613 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2614 		 "primary" : "secondary", dev_p->nac_topo.id);
2615 
2616 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2617 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2618 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2619 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2620 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2621 		  dev_p->nac_topo.id);
2622 }
2623 
2624 /**
2625  * ice_parse_dev_caps - Parse device capabilities
2626  * @hw: pointer to the HW struct
2627  * @dev_p: pointer to device capabilities structure
2628  * @buf: buffer containing the device capability records
2629  * @cap_count: the number of capabilities
2630  *
2631  * Helper device to parse device (0x000B) capabilities list. For
2632  * capabilities shared between device and function, this relies on
2633  * ice_parse_common_caps.
2634  *
2635  * Loop through the list of provided capabilities and extract the relevant
2636  * data into the device capabilities structured.
2637  */
2638 static void
2639 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2640 		   void *buf, u32 cap_count)
2641 {
2642 	struct ice_aqc_list_caps_elem *cap_resp;
2643 	u32 i;
2644 
2645 	cap_resp = buf;
2646 
2647 	memset(dev_p, 0, sizeof(*dev_p));
2648 
2649 	for (i = 0; i < cap_count; i++) {
2650 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2651 		bool found;
2652 
2653 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2654 					      &cap_resp[i], "dev caps");
2655 
2656 		switch (cap) {
2657 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2658 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2659 			break;
2660 		case ICE_AQC_CAPS_VF:
2661 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2662 			break;
2663 		case ICE_AQC_CAPS_VSI:
2664 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2665 			break;
2666 		case ICE_AQC_CAPS_1588:
2667 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2668 			break;
2669 		case ICE_AQC_CAPS_FD:
2670 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2671 			break;
2672 		case ICE_AQC_CAPS_SENSOR_READING:
2673 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2674 			break;
2675 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2676 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2677 			break;
2678 		default:
2679 			/* Don't list common capabilities as unknown */
2680 			if (!found)
2681 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2682 					  i, cap);
2683 			break;
2684 		}
2685 	}
2686 
2687 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2688 }
2689 
2690 /**
2691  * ice_is_pf_c827 - check if pf contains c827 phy
2692  * @hw: pointer to the hw struct
2693  */
2694 bool ice_is_pf_c827(struct ice_hw *hw)
2695 {
2696 	struct ice_aqc_get_link_topo cmd = {};
2697 	u8 node_part_number;
2698 	u16 node_handle;
2699 	int status;
2700 
2701 	if (hw->mac_type != ICE_MAC_E810)
2702 		return false;
2703 
2704 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2705 		return true;
2706 
2707 	cmd.addr.topo_params.node_type_ctx =
2708 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2709 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2710 	cmd.addr.topo_params.index = 0;
2711 
2712 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2713 					 &node_handle);
2714 
2715 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2716 		return false;
2717 
2718 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2719 		return true;
2720 
2721 	return false;
2722 }
2723 
2724 /**
2725  * ice_is_phy_rclk_in_netlist
2726  * @hw: pointer to the hw struct
2727  *
2728  * Check if the PHY Recovered Clock device is present in the netlist
2729  */
2730 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2731 {
2732 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2733 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2734 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2735 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2736 		return false;
2737 
2738 	return true;
2739 }
2740 
2741 /**
2742  * ice_is_clock_mux_in_netlist
2743  * @hw: pointer to the hw struct
2744  *
2745  * Check if the Clock Multiplexer device is present in the netlist
2746  */
2747 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2748 {
2749 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2750 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2751 				  NULL))
2752 		return false;
2753 
2754 	return true;
2755 }
2756 
2757 /**
2758  * ice_is_cgu_in_netlist - check for CGU presence
2759  * @hw: pointer to the hw struct
2760  *
2761  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2762  * Save the CGU part number in the hw structure for later use.
2763  * Return:
2764  * * true - cgu is present
2765  * * false - cgu is not present
2766  */
2767 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2768 {
2769 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2770 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2771 				   NULL)) {
2772 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2773 		return true;
2774 	} else if (!ice_find_netlist_node(hw,
2775 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2776 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2777 					  NULL)) {
2778 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2779 		return true;
2780 	}
2781 
2782 	return false;
2783 }
2784 
2785 /**
2786  * ice_is_gps_in_netlist
2787  * @hw: pointer to the hw struct
2788  *
2789  * Check if the GPS generic device is present in the netlist
2790  */
2791 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2792 {
2793 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2794 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2795 		return false;
2796 
2797 	return true;
2798 }
2799 
2800 /**
2801  * ice_aq_list_caps - query function/device capabilities
2802  * @hw: pointer to the HW struct
2803  * @buf: a buffer to hold the capabilities
2804  * @buf_size: size of the buffer
2805  * @cap_count: if not NULL, set to the number of capabilities reported
2806  * @opc: capabilities type to discover, device or function
2807  * @cd: pointer to command details structure or NULL
2808  *
2809  * Get the function (0x000A) or device (0x000B) capabilities description from
2810  * firmware and store it in the buffer.
2811  *
2812  * If the cap_count pointer is not NULL, then it is set to the number of
2813  * capabilities firmware will report. Note that if the buffer size is too
2814  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2815  * cap_count will still be updated in this case. It is recommended that the
2816  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2817  * firmware could return) to avoid this.
2818  */
2819 int
2820 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2821 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2822 {
2823 	struct ice_aqc_list_caps *cmd;
2824 	struct ice_aq_desc desc;
2825 	int status;
2826 
2827 	cmd = &desc.params.get_cap;
2828 
2829 	if (opc != ice_aqc_opc_list_func_caps &&
2830 	    opc != ice_aqc_opc_list_dev_caps)
2831 		return -EINVAL;
2832 
2833 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2834 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2835 
2836 	if (cap_count)
2837 		*cap_count = le32_to_cpu(cmd->count);
2838 
2839 	return status;
2840 }
2841 
2842 /**
2843  * ice_discover_dev_caps - Read and extract device capabilities
2844  * @hw: pointer to the hardware structure
2845  * @dev_caps: pointer to device capabilities structure
2846  *
2847  * Read the device capabilities and extract them into the dev_caps structure
2848  * for later use.
2849  */
2850 int
2851 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2852 {
2853 	u32 cap_count = 0;
2854 	void *cbuf;
2855 	int status;
2856 
2857 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2858 	if (!cbuf)
2859 		return -ENOMEM;
2860 
2861 	/* Although the driver doesn't know the number of capabilities the
2862 	 * device will return, we can simply send a 4KB buffer, the maximum
2863 	 * possible size that firmware can return.
2864 	 */
2865 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2866 
2867 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2868 				  ice_aqc_opc_list_dev_caps, NULL);
2869 	if (!status)
2870 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2871 	kfree(cbuf);
2872 
2873 	return status;
2874 }
2875 
2876 /**
2877  * ice_discover_func_caps - Read and extract function capabilities
2878  * @hw: pointer to the hardware structure
2879  * @func_caps: pointer to function capabilities structure
2880  *
2881  * Read the function capabilities and extract them into the func_caps structure
2882  * for later use.
2883  */
2884 static int
2885 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2886 {
2887 	u32 cap_count = 0;
2888 	void *cbuf;
2889 	int status;
2890 
2891 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2892 	if (!cbuf)
2893 		return -ENOMEM;
2894 
2895 	/* Although the driver doesn't know the number of capabilities the
2896 	 * device will return, we can simply send a 4KB buffer, the maximum
2897 	 * possible size that firmware can return.
2898 	 */
2899 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2900 
2901 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2902 				  ice_aqc_opc_list_func_caps, NULL);
2903 	if (!status)
2904 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2905 	kfree(cbuf);
2906 
2907 	return status;
2908 }
2909 
2910 /**
2911  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2912  * @hw: pointer to the hardware structure
2913  */
2914 void ice_set_safe_mode_caps(struct ice_hw *hw)
2915 {
2916 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2917 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2918 	struct ice_hw_common_caps cached_caps;
2919 	u32 num_funcs;
2920 
2921 	/* cache some func_caps values that should be restored after memset */
2922 	cached_caps = func_caps->common_cap;
2923 
2924 	/* unset func capabilities */
2925 	memset(func_caps, 0, sizeof(*func_caps));
2926 
2927 #define ICE_RESTORE_FUNC_CAP(name) \
2928 	func_caps->common_cap.name = cached_caps.name
2929 
2930 	/* restore cached values */
2931 	ICE_RESTORE_FUNC_CAP(valid_functions);
2932 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2933 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2934 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2935 	ICE_RESTORE_FUNC_CAP(max_mtu);
2936 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2937 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2938 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2939 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2940 
2941 	/* one Tx and one Rx queue in safe mode */
2942 	func_caps->common_cap.num_rxq = 1;
2943 	func_caps->common_cap.num_txq = 1;
2944 
2945 	/* two MSIX vectors, one for traffic and one for misc causes */
2946 	func_caps->common_cap.num_msix_vectors = 2;
2947 	func_caps->guar_num_vsi = 1;
2948 
2949 	/* cache some dev_caps values that should be restored after memset */
2950 	cached_caps = dev_caps->common_cap;
2951 	num_funcs = dev_caps->num_funcs;
2952 
2953 	/* unset dev capabilities */
2954 	memset(dev_caps, 0, sizeof(*dev_caps));
2955 
2956 #define ICE_RESTORE_DEV_CAP(name) \
2957 	dev_caps->common_cap.name = cached_caps.name
2958 
2959 	/* restore cached values */
2960 	ICE_RESTORE_DEV_CAP(valid_functions);
2961 	ICE_RESTORE_DEV_CAP(txq_first_id);
2962 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2963 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2964 	ICE_RESTORE_DEV_CAP(max_mtu);
2965 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2966 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2967 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2968 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2969 	dev_caps->num_funcs = num_funcs;
2970 
2971 	/* one Tx and one Rx queue per function in safe mode */
2972 	dev_caps->common_cap.num_rxq = num_funcs;
2973 	dev_caps->common_cap.num_txq = num_funcs;
2974 
2975 	/* two MSIX vectors per function */
2976 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2977 }
2978 
2979 /**
2980  * ice_get_caps - get info about the HW
2981  * @hw: pointer to the hardware structure
2982  */
2983 int ice_get_caps(struct ice_hw *hw)
2984 {
2985 	int status;
2986 
2987 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2988 	if (status)
2989 		return status;
2990 
2991 	return ice_discover_func_caps(hw, &hw->func_caps);
2992 }
2993 
2994 /**
2995  * ice_aq_manage_mac_write - manage MAC address write command
2996  * @hw: pointer to the HW struct
2997  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2998  * @flags: flags to control write behavior
2999  * @cd: pointer to command details structure or NULL
3000  *
3001  * This function is used to write MAC address to the NVM (0x0108).
3002  */
3003 int
3004 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3005 			struct ice_sq_cd *cd)
3006 {
3007 	struct ice_aqc_manage_mac_write *cmd;
3008 	struct ice_aq_desc desc;
3009 
3010 	cmd = &desc.params.mac_write;
3011 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3012 
3013 	cmd->flags = flags;
3014 	ether_addr_copy(cmd->mac_addr, mac_addr);
3015 
3016 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3017 }
3018 
3019 /**
3020  * ice_aq_clear_pxe_mode
3021  * @hw: pointer to the HW struct
3022  *
3023  * Tell the firmware that the driver is taking over from PXE (0x0110).
3024  */
3025 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3026 {
3027 	struct ice_aq_desc desc;
3028 
3029 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3030 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3031 
3032 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3033 }
3034 
3035 /**
3036  * ice_clear_pxe_mode - clear pxe operations mode
3037  * @hw: pointer to the HW struct
3038  *
3039  * Make sure all PXE mode settings are cleared, including things
3040  * like descriptor fetch/write-back mode.
3041  */
3042 void ice_clear_pxe_mode(struct ice_hw *hw)
3043 {
3044 	if (ice_check_sq_alive(hw, &hw->adminq))
3045 		ice_aq_clear_pxe_mode(hw);
3046 }
3047 
3048 /**
3049  * ice_aq_set_port_params - set physical port parameters.
3050  * @pi: pointer to the port info struct
3051  * @double_vlan: if set double VLAN is enabled
3052  * @cd: pointer to command details structure or NULL
3053  *
3054  * Set Physical port parameters (0x0203)
3055  */
3056 int
3057 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3058 		       struct ice_sq_cd *cd)
3059 
3060 {
3061 	struct ice_aqc_set_port_params *cmd;
3062 	struct ice_hw *hw = pi->hw;
3063 	struct ice_aq_desc desc;
3064 	u16 cmd_flags = 0;
3065 
3066 	cmd = &desc.params.set_port_params;
3067 
3068 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3069 	if (double_vlan)
3070 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3071 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3072 
3073 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3074 }
3075 
3076 /**
3077  * ice_is_100m_speed_supported
3078  * @hw: pointer to the HW struct
3079  *
3080  * returns true if 100M speeds are supported by the device,
3081  * false otherwise.
3082  */
3083 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3084 {
3085 	switch (hw->device_id) {
3086 	case ICE_DEV_ID_E822C_SGMII:
3087 	case ICE_DEV_ID_E822L_SGMII:
3088 	case ICE_DEV_ID_E823L_1GBE:
3089 	case ICE_DEV_ID_E823C_SGMII:
3090 		return true;
3091 	default:
3092 		return false;
3093 	}
3094 }
3095 
3096 /**
3097  * ice_get_link_speed_based_on_phy_type - returns link speed
3098  * @phy_type_low: lower part of phy_type
3099  * @phy_type_high: higher part of phy_type
3100  *
3101  * This helper function will convert an entry in PHY type structure
3102  * [phy_type_low, phy_type_high] to its corresponding link speed.
3103  * Note: In the structure of [phy_type_low, phy_type_high], there should
3104  * be one bit set, as this function will convert one PHY type to its
3105  * speed.
3106  *
3107  * Return:
3108  * * PHY speed for recognized PHY type
3109  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3110  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3111  */
3112 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3113 {
3114 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3115 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3116 
3117 	switch (phy_type_low) {
3118 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3119 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3120 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3121 		break;
3122 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3123 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3124 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3125 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3126 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3127 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3128 		break;
3129 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3130 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3131 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3132 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3133 		break;
3134 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3135 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3136 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3137 		break;
3138 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3139 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3140 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3141 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3142 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3143 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3144 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3145 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3146 		break;
3147 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3148 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3149 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3150 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3151 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3152 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3153 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3154 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3155 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3156 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3157 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3158 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3159 		break;
3160 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3161 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3162 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3163 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3164 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3165 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3166 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3167 		break;
3168 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3169 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3170 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3171 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3172 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3173 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3174 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3175 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3176 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3177 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3178 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3179 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3180 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3181 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3182 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3183 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3184 		break;
3185 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3186 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3187 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3188 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3189 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3190 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3191 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3192 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3193 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3194 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3195 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3196 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3197 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3198 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3199 		break;
3200 	default:
3201 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3202 		break;
3203 	}
3204 
3205 	switch (phy_type_high) {
3206 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3207 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3208 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3209 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3210 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3211 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3212 		break;
3213 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3214 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3215 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3216 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3217 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3218 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3219 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3220 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3221 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3222 		break;
3223 	default:
3224 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3225 		break;
3226 	}
3227 
3228 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3229 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3230 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3231 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3232 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3233 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3234 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3235 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3236 		return speed_phy_type_low;
3237 	else
3238 		return speed_phy_type_high;
3239 }
3240 
3241 /**
3242  * ice_update_phy_type
3243  * @phy_type_low: pointer to the lower part of phy_type
3244  * @phy_type_high: pointer to the higher part of phy_type
3245  * @link_speeds_bitmap: targeted link speeds bitmap
3246  *
3247  * Note: For the link_speeds_bitmap structure, you can check it at
3248  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3249  * link_speeds_bitmap include multiple speeds.
3250  *
3251  * Each entry in this [phy_type_low, phy_type_high] structure will
3252  * present a certain link speed. This helper function will turn on bits
3253  * in [phy_type_low, phy_type_high] structure based on the value of
3254  * link_speeds_bitmap input parameter.
3255  */
3256 void
3257 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3258 		    u16 link_speeds_bitmap)
3259 {
3260 	u64 pt_high;
3261 	u64 pt_low;
3262 	int index;
3263 	u16 speed;
3264 
3265 	/* We first check with low part of phy_type */
3266 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3267 		pt_low = BIT_ULL(index);
3268 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3269 
3270 		if (link_speeds_bitmap & speed)
3271 			*phy_type_low |= BIT_ULL(index);
3272 	}
3273 
3274 	/* We then check with high part of phy_type */
3275 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3276 		pt_high = BIT_ULL(index);
3277 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3278 
3279 		if (link_speeds_bitmap & speed)
3280 			*phy_type_high |= BIT_ULL(index);
3281 	}
3282 }
3283 
3284 /**
3285  * ice_aq_set_phy_cfg
3286  * @hw: pointer to the HW struct
3287  * @pi: port info structure of the interested logical port
3288  * @cfg: structure with PHY configuration data to be set
3289  * @cd: pointer to command details structure or NULL
3290  *
3291  * Set the various PHY configuration parameters supported on the Port.
3292  * One or more of the Set PHY config parameters may be ignored in an MFP
3293  * mode as the PF may not have the privilege to set some of the PHY Config
3294  * parameters. This status will be indicated by the command response (0x0601).
3295  */
3296 int
3297 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3298 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3299 {
3300 	struct ice_aq_desc desc;
3301 	int status;
3302 
3303 	if (!cfg)
3304 		return -EINVAL;
3305 
3306 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3307 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3308 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3309 			  cfg->caps);
3310 
3311 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3312 	}
3313 
3314 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3315 	desc.params.set_phy.lport_num = pi->lport;
3316 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3317 
3318 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3319 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3320 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3321 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3322 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3323 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3324 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3325 		  cfg->low_power_ctrl_an);
3326 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3327 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3328 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3329 		  cfg->link_fec_opt);
3330 
3331 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3332 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3333 		status = 0;
3334 
3335 	if (!status)
3336 		pi->phy.curr_user_phy_cfg = *cfg;
3337 
3338 	return status;
3339 }
3340 
3341 /**
3342  * ice_update_link_info - update status of the HW network link
3343  * @pi: port info structure of the interested logical port
3344  */
3345 int ice_update_link_info(struct ice_port_info *pi)
3346 {
3347 	struct ice_link_status *li;
3348 	int status;
3349 
3350 	if (!pi)
3351 		return -EINVAL;
3352 
3353 	li = &pi->phy.link_info;
3354 
3355 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3356 	if (status)
3357 		return status;
3358 
3359 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3360 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3361 
3362 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3363 		if (!pcaps)
3364 			return -ENOMEM;
3365 
3366 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3367 					     pcaps, NULL);
3368 	}
3369 
3370 	return status;
3371 }
3372 
3373 /**
3374  * ice_cache_phy_user_req
3375  * @pi: port information structure
3376  * @cache_data: PHY logging data
3377  * @cache_mode: PHY logging mode
3378  *
3379  * Log the user request on (FC, FEC, SPEED) for later use.
3380  */
3381 static void
3382 ice_cache_phy_user_req(struct ice_port_info *pi,
3383 		       struct ice_phy_cache_mode_data cache_data,
3384 		       enum ice_phy_cache_mode cache_mode)
3385 {
3386 	if (!pi)
3387 		return;
3388 
3389 	switch (cache_mode) {
3390 	case ICE_FC_MODE:
3391 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3392 		break;
3393 	case ICE_SPEED_MODE:
3394 		pi->phy.curr_user_speed_req =
3395 			cache_data.data.curr_user_speed_req;
3396 		break;
3397 	case ICE_FEC_MODE:
3398 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3399 		break;
3400 	default:
3401 		break;
3402 	}
3403 }
3404 
3405 /**
3406  * ice_caps_to_fc_mode
3407  * @caps: PHY capabilities
3408  *
3409  * Convert PHY FC capabilities to ice FC mode
3410  */
3411 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3412 {
3413 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3414 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3415 		return ICE_FC_FULL;
3416 
3417 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3418 		return ICE_FC_TX_PAUSE;
3419 
3420 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3421 		return ICE_FC_RX_PAUSE;
3422 
3423 	return ICE_FC_NONE;
3424 }
3425 
3426 /**
3427  * ice_caps_to_fec_mode
3428  * @caps: PHY capabilities
3429  * @fec_options: Link FEC options
3430  *
3431  * Convert PHY FEC capabilities to ice FEC mode
3432  */
3433 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3434 {
3435 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3436 		return ICE_FEC_AUTO;
3437 
3438 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3439 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3440 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3441 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3442 		return ICE_FEC_BASER;
3443 
3444 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3445 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3446 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3447 		return ICE_FEC_RS;
3448 
3449 	return ICE_FEC_NONE;
3450 }
3451 
3452 /**
3453  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3454  * @pi: port information structure
3455  * @cfg: PHY configuration data to set FC mode
3456  * @req_mode: FC mode to configure
3457  */
3458 int
3459 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3460 	       enum ice_fc_mode req_mode)
3461 {
3462 	struct ice_phy_cache_mode_data cache_data;
3463 	u8 pause_mask = 0x0;
3464 
3465 	if (!pi || !cfg)
3466 		return -EINVAL;
3467 
3468 	switch (req_mode) {
3469 	case ICE_FC_FULL:
3470 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3471 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3472 		break;
3473 	case ICE_FC_RX_PAUSE:
3474 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3475 		break;
3476 	case ICE_FC_TX_PAUSE:
3477 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3478 		break;
3479 	default:
3480 		break;
3481 	}
3482 
3483 	/* clear the old pause settings */
3484 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3485 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3486 
3487 	/* set the new capabilities */
3488 	cfg->caps |= pause_mask;
3489 
3490 	/* Cache user FC request */
3491 	cache_data.data.curr_user_fc_req = req_mode;
3492 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3493 
3494 	return 0;
3495 }
3496 
3497 /**
3498  * ice_set_fc
3499  * @pi: port information structure
3500  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3501  * @ena_auto_link_update: enable automatic link update
3502  *
3503  * Set the requested flow control mode.
3504  */
3505 int
3506 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3507 {
3508 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3509 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3510 	struct ice_hw *hw;
3511 	int status;
3512 
3513 	if (!pi || !aq_failures)
3514 		return -EINVAL;
3515 
3516 	*aq_failures = 0;
3517 	hw = pi->hw;
3518 
3519 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3520 	if (!pcaps)
3521 		return -ENOMEM;
3522 
3523 	/* Get the current PHY config */
3524 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3525 				     pcaps, NULL);
3526 	if (status) {
3527 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3528 		goto out;
3529 	}
3530 
3531 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3532 
3533 	/* Configure the set PHY data */
3534 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3535 	if (status)
3536 		goto out;
3537 
3538 	/* If the capabilities have changed, then set the new config */
3539 	if (cfg.caps != pcaps->caps) {
3540 		int retry_count, retry_max = 10;
3541 
3542 		/* Auto restart link so settings take effect */
3543 		if (ena_auto_link_update)
3544 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3545 
3546 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3547 		if (status) {
3548 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3549 			goto out;
3550 		}
3551 
3552 		/* Update the link info
3553 		 * It sometimes takes a really long time for link to
3554 		 * come back from the atomic reset. Thus, we wait a
3555 		 * little bit.
3556 		 */
3557 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3558 			status = ice_update_link_info(pi);
3559 
3560 			if (!status)
3561 				break;
3562 
3563 			mdelay(100);
3564 		}
3565 
3566 		if (status)
3567 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3568 	}
3569 
3570 out:
3571 	return status;
3572 }
3573 
3574 /**
3575  * ice_phy_caps_equals_cfg
3576  * @phy_caps: PHY capabilities
3577  * @phy_cfg: PHY configuration
3578  *
3579  * Helper function to determine if PHY capabilities matches PHY
3580  * configuration
3581  */
3582 bool
3583 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3584 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3585 {
3586 	u8 caps_mask, cfg_mask;
3587 
3588 	if (!phy_caps || !phy_cfg)
3589 		return false;
3590 
3591 	/* These bits are not common between capabilities and configuration.
3592 	 * Do not use them to determine equality.
3593 	 */
3594 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3595 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3596 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3597 
3598 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3599 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3600 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3601 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3602 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3603 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3604 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3605 		return false;
3606 
3607 	return true;
3608 }
3609 
3610 /**
3611  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3612  * @pi: port information structure
3613  * @caps: PHY ability structure to copy date from
3614  * @cfg: PHY configuration structure to copy data to
3615  *
3616  * Helper function to copy AQC PHY get ability data to PHY set configuration
3617  * data structure
3618  */
3619 void
3620 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3621 			 struct ice_aqc_get_phy_caps_data *caps,
3622 			 struct ice_aqc_set_phy_cfg_data *cfg)
3623 {
3624 	if (!pi || !caps || !cfg)
3625 		return;
3626 
3627 	memset(cfg, 0, sizeof(*cfg));
3628 	cfg->phy_type_low = caps->phy_type_low;
3629 	cfg->phy_type_high = caps->phy_type_high;
3630 	cfg->caps = caps->caps;
3631 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3632 	cfg->eee_cap = caps->eee_cap;
3633 	cfg->eeer_value = caps->eeer_value;
3634 	cfg->link_fec_opt = caps->link_fec_options;
3635 	cfg->module_compliance_enforcement =
3636 		caps->module_compliance_enforcement;
3637 }
3638 
3639 /**
3640  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3641  * @pi: port information structure
3642  * @cfg: PHY configuration data to set FEC mode
3643  * @fec: FEC mode to configure
3644  */
3645 int
3646 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3647 		enum ice_fec_mode fec)
3648 {
3649 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3650 	struct ice_hw *hw;
3651 	int status;
3652 
3653 	if (!pi || !cfg)
3654 		return -EINVAL;
3655 
3656 	hw = pi->hw;
3657 
3658 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3659 	if (!pcaps)
3660 		return -ENOMEM;
3661 
3662 	status = ice_aq_get_phy_caps(pi, false,
3663 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3664 				      ICE_AQC_REPORT_DFLT_CFG :
3665 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3666 	if (status)
3667 		goto out;
3668 
3669 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3670 	cfg->link_fec_opt = pcaps->link_fec_options;
3671 
3672 	switch (fec) {
3673 	case ICE_FEC_BASER:
3674 		/* Clear RS bits, and AND BASE-R ability
3675 		 * bits and OR request bits.
3676 		 */
3677 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3678 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3679 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3680 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3681 		break;
3682 	case ICE_FEC_RS:
3683 		/* Clear BASE-R bits, and AND RS ability
3684 		 * bits and OR request bits.
3685 		 */
3686 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3687 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3688 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3689 		break;
3690 	case ICE_FEC_NONE:
3691 		/* Clear all FEC option bits. */
3692 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3693 		break;
3694 	case ICE_FEC_AUTO:
3695 		/* AND auto FEC bit, and all caps bits. */
3696 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3697 		cfg->link_fec_opt |= pcaps->link_fec_options;
3698 		break;
3699 	default:
3700 		status = -EINVAL;
3701 		break;
3702 	}
3703 
3704 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3705 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3706 		struct ice_link_default_override_tlv tlv = { 0 };
3707 
3708 		status = ice_get_link_default_override(&tlv, pi);
3709 		if (status)
3710 			goto out;
3711 
3712 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3713 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3714 			cfg->link_fec_opt = tlv.fec_options;
3715 	}
3716 
3717 out:
3718 	return status;
3719 }
3720 
3721 /**
3722  * ice_get_link_status - get status of the HW network link
3723  * @pi: port information structure
3724  * @link_up: pointer to bool (true/false = linkup/linkdown)
3725  *
3726  * Variable link_up is true if link is up, false if link is down.
3727  * The variable link_up is invalid if status is non zero. As a
3728  * result of this call, link status reporting becomes enabled
3729  */
3730 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3731 {
3732 	struct ice_phy_info *phy_info;
3733 	int status = 0;
3734 
3735 	if (!pi || !link_up)
3736 		return -EINVAL;
3737 
3738 	phy_info = &pi->phy;
3739 
3740 	if (phy_info->get_link_info) {
3741 		status = ice_update_link_info(pi);
3742 
3743 		if (status)
3744 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3745 				  status);
3746 	}
3747 
3748 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3749 
3750 	return status;
3751 }
3752 
3753 /**
3754  * ice_aq_set_link_restart_an
3755  * @pi: pointer to the port information structure
3756  * @ena_link: if true: enable link, if false: disable link
3757  * @cd: pointer to command details structure or NULL
3758  *
3759  * Sets up the link and restarts the Auto-Negotiation over the link.
3760  */
3761 int
3762 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3763 			   struct ice_sq_cd *cd)
3764 {
3765 	struct ice_aqc_restart_an *cmd;
3766 	struct ice_aq_desc desc;
3767 
3768 	cmd = &desc.params.restart_an;
3769 
3770 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3771 
3772 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3773 	cmd->lport_num = pi->lport;
3774 	if (ena_link)
3775 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3776 	else
3777 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3778 
3779 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3780 }
3781 
3782 /**
3783  * ice_aq_set_event_mask
3784  * @hw: pointer to the HW struct
3785  * @port_num: port number of the physical function
3786  * @mask: event mask to be set
3787  * @cd: pointer to command details structure or NULL
3788  *
3789  * Set event mask (0x0613)
3790  */
3791 int
3792 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3793 		      struct ice_sq_cd *cd)
3794 {
3795 	struct ice_aqc_set_event_mask *cmd;
3796 	struct ice_aq_desc desc;
3797 
3798 	cmd = &desc.params.set_event_mask;
3799 
3800 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3801 
3802 	cmd->lport_num = port_num;
3803 
3804 	cmd->event_mask = cpu_to_le16(mask);
3805 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3806 }
3807 
3808 /**
3809  * ice_aq_set_mac_loopback
3810  * @hw: pointer to the HW struct
3811  * @ena_lpbk: Enable or Disable loopback
3812  * @cd: pointer to command details structure or NULL
3813  *
3814  * Enable/disable loopback on a given port
3815  */
3816 int
3817 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3818 {
3819 	struct ice_aqc_set_mac_lb *cmd;
3820 	struct ice_aq_desc desc;
3821 
3822 	cmd = &desc.params.set_mac_lb;
3823 
3824 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3825 	if (ena_lpbk)
3826 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3827 
3828 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3829 }
3830 
3831 /**
3832  * ice_aq_set_port_id_led
3833  * @pi: pointer to the port information
3834  * @is_orig_mode: is this LED set to original mode (by the net-list)
3835  * @cd: pointer to command details structure or NULL
3836  *
3837  * Set LED value for the given port (0x06e9)
3838  */
3839 int
3840 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3841 		       struct ice_sq_cd *cd)
3842 {
3843 	struct ice_aqc_set_port_id_led *cmd;
3844 	struct ice_hw *hw = pi->hw;
3845 	struct ice_aq_desc desc;
3846 
3847 	cmd = &desc.params.set_port_id_led;
3848 
3849 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3850 
3851 	if (is_orig_mode)
3852 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3853 	else
3854 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3855 
3856 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3857 }
3858 
3859 /**
3860  * ice_aq_get_port_options
3861  * @hw: pointer to the HW struct
3862  * @options: buffer for the resultant port options
3863  * @option_count: input - size of the buffer in port options structures,
3864  *                output - number of returned port options
3865  * @lport: logical port to call the command with (optional)
3866  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3867  *               when PF owns more than 1 port it must be true
3868  * @active_option_idx: index of active port option in returned buffer
3869  * @active_option_valid: active option in returned buffer is valid
3870  * @pending_option_idx: index of pending port option in returned buffer
3871  * @pending_option_valid: pending option in returned buffer is valid
3872  *
3873  * Calls Get Port Options AQC (0x06ea) and verifies result.
3874  */
3875 int
3876 ice_aq_get_port_options(struct ice_hw *hw,
3877 			struct ice_aqc_get_port_options_elem *options,
3878 			u8 *option_count, u8 lport, bool lport_valid,
3879 			u8 *active_option_idx, bool *active_option_valid,
3880 			u8 *pending_option_idx, bool *pending_option_valid)
3881 {
3882 	struct ice_aqc_get_port_options *cmd;
3883 	struct ice_aq_desc desc;
3884 	int status;
3885 	u8 i;
3886 
3887 	/* options buffer shall be able to hold max returned options */
3888 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3889 		return -EINVAL;
3890 
3891 	cmd = &desc.params.get_port_options;
3892 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3893 
3894 	if (lport_valid)
3895 		cmd->lport_num = lport;
3896 	cmd->lport_num_valid = lport_valid;
3897 
3898 	status = ice_aq_send_cmd(hw, &desc, options,
3899 				 *option_count * sizeof(*options), NULL);
3900 	if (status)
3901 		return status;
3902 
3903 	/* verify direct FW response & set output parameters */
3904 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3905 				  cmd->port_options_count);
3906 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3907 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3908 					 cmd->port_options);
3909 	if (*active_option_valid) {
3910 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3911 					       cmd->port_options);
3912 		if (*active_option_idx > (*option_count - 1))
3913 			return -EIO;
3914 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3915 			  *active_option_idx);
3916 	}
3917 
3918 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3919 					  cmd->pending_port_option_status);
3920 	if (*pending_option_valid) {
3921 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3922 						cmd->pending_port_option_status);
3923 		if (*pending_option_idx > (*option_count - 1))
3924 			return -EIO;
3925 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3926 			  *pending_option_idx);
3927 	}
3928 
3929 	/* mask output options fields */
3930 	for (i = 0; i < *option_count; i++) {
3931 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3932 					   options[i].pmd);
3933 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3934 						      options[i].max_lane_speed);
3935 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3936 			  options[i].pmd, options[i].max_lane_speed);
3937 	}
3938 
3939 	return 0;
3940 }
3941 
3942 /**
3943  * ice_aq_set_port_option
3944  * @hw: pointer to the HW struct
3945  * @lport: logical port to call the command with
3946  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3947  *               when PF owns more than 1 port it must be true
3948  * @new_option: new port option to be written
3949  *
3950  * Calls Set Port Options AQC (0x06eb).
3951  */
3952 int
3953 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3954 		       u8 new_option)
3955 {
3956 	struct ice_aqc_set_port_option *cmd;
3957 	struct ice_aq_desc desc;
3958 
3959 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3960 		return -EINVAL;
3961 
3962 	cmd = &desc.params.set_port_option;
3963 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3964 
3965 	if (lport_valid)
3966 		cmd->lport_num = lport;
3967 
3968 	cmd->lport_num_valid = lport_valid;
3969 	cmd->selected_port_option = new_option;
3970 
3971 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3972 }
3973 
3974 /**
3975  * ice_aq_sff_eeprom
3976  * @hw: pointer to the HW struct
3977  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3978  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3979  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3980  * @page: QSFP page
3981  * @set_page: set or ignore the page
3982  * @data: pointer to data buffer to be read/written to the I2C device.
3983  * @length: 1-16 for read, 1 for write.
3984  * @write: 0 read, 1 for write.
3985  * @cd: pointer to command details structure or NULL
3986  *
3987  * Read/Write SFF EEPROM (0x06EE)
3988  */
3989 int
3990 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3991 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3992 		  bool write, struct ice_sq_cd *cd)
3993 {
3994 	struct ice_aqc_sff_eeprom *cmd;
3995 	struct ice_aq_desc desc;
3996 	u16 i2c_bus_addr;
3997 	int status;
3998 
3999 	if (!data || (mem_addr & 0xff00))
4000 		return -EINVAL;
4001 
4002 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4003 	cmd = &desc.params.read_write_sff_param;
4004 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4005 	cmd->lport_num = (u8)(lport & 0xff);
4006 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4007 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4008 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4009 	if (write)
4010 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4011 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4012 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4013 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4014 
4015 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4016 	return status;
4017 }
4018 
4019 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4020 {
4021 	switch (type) {
4022 	case ICE_LUT_VSI:
4023 		return ICE_LUT_VSI_SIZE;
4024 	case ICE_LUT_GLOBAL:
4025 		return ICE_LUT_GLOBAL_SIZE;
4026 	case ICE_LUT_PF:
4027 		return ICE_LUT_PF_SIZE;
4028 	}
4029 	WARN_ONCE(1, "incorrect type passed");
4030 	return ICE_LUT_VSI_SIZE;
4031 }
4032 
4033 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4034 {
4035 	switch (size) {
4036 	case ICE_LUT_VSI_SIZE:
4037 		return ICE_AQC_LUT_SIZE_SMALL;
4038 	case ICE_LUT_GLOBAL_SIZE:
4039 		return ICE_AQC_LUT_SIZE_512;
4040 	case ICE_LUT_PF_SIZE:
4041 		return ICE_AQC_LUT_SIZE_2K;
4042 	}
4043 	WARN_ONCE(1, "incorrect size passed");
4044 	return 0;
4045 }
4046 
4047 /**
4048  * __ice_aq_get_set_rss_lut
4049  * @hw: pointer to the hardware structure
4050  * @params: RSS LUT parameters
4051  * @set: set true to set the table, false to get the table
4052  *
4053  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4054  */
4055 static int
4056 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4057 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4058 {
4059 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4060 	enum ice_lut_type lut_type = params->lut_type;
4061 	struct ice_aqc_get_set_rss_lut *desc_params;
4062 	enum ice_aqc_lut_flags flags;
4063 	enum ice_lut_size lut_size;
4064 	struct ice_aq_desc desc;
4065 	u8 *lut = params->lut;
4066 
4067 
4068 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4069 		return -EINVAL;
4070 
4071 	lut_size = ice_lut_type_to_size(lut_type);
4072 	if (lut_size > params->lut_size)
4073 		return -EINVAL;
4074 	else if (set && lut_size != params->lut_size)
4075 		return -EINVAL;
4076 
4077 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4078 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4079 	if (set)
4080 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4081 
4082 	desc_params = &desc.params.get_set_rss_lut;
4083 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4084 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4085 
4086 	if (lut_type == ICE_LUT_GLOBAL)
4087 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4088 					  params->global_lut_id);
4089 
4090 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4091 	desc_params->flags = cpu_to_le16(flags);
4092 
4093 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4094 }
4095 
4096 /**
4097  * ice_aq_get_rss_lut
4098  * @hw: pointer to the hardware structure
4099  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4100  *
4101  * get the RSS lookup table, PF or VSI type
4102  */
4103 int
4104 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4105 {
4106 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4107 }
4108 
4109 /**
4110  * ice_aq_set_rss_lut
4111  * @hw: pointer to the hardware structure
4112  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4113  *
4114  * set the RSS lookup table, PF or VSI type
4115  */
4116 int
4117 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4118 {
4119 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4120 }
4121 
4122 /**
4123  * __ice_aq_get_set_rss_key
4124  * @hw: pointer to the HW struct
4125  * @vsi_id: VSI FW index
4126  * @key: pointer to key info struct
4127  * @set: set true to set the key, false to get the key
4128  *
4129  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4130  */
4131 static int
4132 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4133 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4134 {
4135 	struct ice_aqc_get_set_rss_key *desc_params;
4136 	u16 key_size = sizeof(*key);
4137 	struct ice_aq_desc desc;
4138 
4139 	if (set) {
4140 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4141 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4142 	} else {
4143 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4144 	}
4145 
4146 	desc_params = &desc.params.get_set_rss_key;
4147 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4148 
4149 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4150 }
4151 
4152 /**
4153  * ice_aq_get_rss_key
4154  * @hw: pointer to the HW struct
4155  * @vsi_handle: software VSI handle
4156  * @key: pointer to key info struct
4157  *
4158  * get the RSS key per VSI
4159  */
4160 int
4161 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4162 		   struct ice_aqc_get_set_rss_keys *key)
4163 {
4164 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4165 		return -EINVAL;
4166 
4167 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4168 					key, false);
4169 }
4170 
4171 /**
4172  * ice_aq_set_rss_key
4173  * @hw: pointer to the HW struct
4174  * @vsi_handle: software VSI handle
4175  * @keys: pointer to key info struct
4176  *
4177  * set the RSS key per VSI
4178  */
4179 int
4180 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4181 		   struct ice_aqc_get_set_rss_keys *keys)
4182 {
4183 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4184 		return -EINVAL;
4185 
4186 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4187 					keys, true);
4188 }
4189 
4190 /**
4191  * ice_aq_add_lan_txq
4192  * @hw: pointer to the hardware structure
4193  * @num_qgrps: Number of added queue groups
4194  * @qg_list: list of queue groups to be added
4195  * @buf_size: size of buffer for indirect command
4196  * @cd: pointer to command details structure or NULL
4197  *
4198  * Add Tx LAN queue (0x0C30)
4199  *
4200  * NOTE:
4201  * Prior to calling add Tx LAN queue:
4202  * Initialize the following as part of the Tx queue context:
4203  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4204  * Cache profile and Packet shaper profile.
4205  *
4206  * After add Tx LAN queue AQ command is completed:
4207  * Interrupts should be associated with specific queues,
4208  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4209  * flow.
4210  */
4211 static int
4212 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4213 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4214 		   struct ice_sq_cd *cd)
4215 {
4216 	struct ice_aqc_add_tx_qgrp *list;
4217 	struct ice_aqc_add_txqs *cmd;
4218 	struct ice_aq_desc desc;
4219 	u16 i, sum_size = 0;
4220 
4221 	cmd = &desc.params.add_txqs;
4222 
4223 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4224 
4225 	if (!qg_list)
4226 		return -EINVAL;
4227 
4228 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4229 		return -EINVAL;
4230 
4231 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4232 		sum_size += struct_size(list, txqs, list->num_txqs);
4233 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4234 						      list->num_txqs);
4235 	}
4236 
4237 	if (buf_size != sum_size)
4238 		return -EINVAL;
4239 
4240 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4241 
4242 	cmd->num_qgrps = num_qgrps;
4243 
4244 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4245 }
4246 
4247 /**
4248  * ice_aq_dis_lan_txq
4249  * @hw: pointer to the hardware structure
4250  * @num_qgrps: number of groups in the list
4251  * @qg_list: the list of groups to disable
4252  * @buf_size: the total size of the qg_list buffer in bytes
4253  * @rst_src: if called due to reset, specifies the reset source
4254  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4255  * @cd: pointer to command details structure or NULL
4256  *
4257  * Disable LAN Tx queue (0x0C31)
4258  */
4259 static int
4260 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4261 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4262 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4263 		   struct ice_sq_cd *cd)
4264 {
4265 	struct ice_aqc_dis_txq_item *item;
4266 	struct ice_aqc_dis_txqs *cmd;
4267 	struct ice_aq_desc desc;
4268 	u16 vmvf_and_timeout;
4269 	u16 i, sz = 0;
4270 	int status;
4271 
4272 	cmd = &desc.params.dis_txqs;
4273 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4274 
4275 	/* qg_list can be NULL only in VM/VF reset flow */
4276 	if (!qg_list && !rst_src)
4277 		return -EINVAL;
4278 
4279 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4280 		return -EINVAL;
4281 
4282 	cmd->num_entries = num_qgrps;
4283 
4284 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4285 
4286 	switch (rst_src) {
4287 	case ICE_VM_RESET:
4288 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4289 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4290 		break;
4291 	case ICE_VF_RESET:
4292 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4293 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4294 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4295 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4296 		break;
4297 	case ICE_NO_RESET:
4298 	default:
4299 		break;
4300 	}
4301 
4302 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4303 
4304 	/* flush pipe on time out */
4305 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4306 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4307 	if (!qg_list)
4308 		goto do_aq;
4309 
4310 	/* set RD bit to indicate that command buffer is provided by the driver
4311 	 * and it needs to be read by the firmware
4312 	 */
4313 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4314 
4315 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4316 		u16 item_size = struct_size(item, q_id, item->num_qs);
4317 
4318 		/* If the num of queues is even, add 2 bytes of padding */
4319 		if ((item->num_qs % 2) == 0)
4320 			item_size += 2;
4321 
4322 		sz += item_size;
4323 
4324 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4325 	}
4326 
4327 	if (buf_size != sz)
4328 		return -EINVAL;
4329 
4330 do_aq:
4331 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4332 	if (status) {
4333 		if (!qg_list)
4334 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4335 				  vmvf_num, hw->adminq.sq_last_status);
4336 		else
4337 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4338 				  le16_to_cpu(qg_list[0].q_id[0]),
4339 				  hw->adminq.sq_last_status);
4340 	}
4341 	return status;
4342 }
4343 
4344 /**
4345  * ice_aq_cfg_lan_txq
4346  * @hw: pointer to the hardware structure
4347  * @buf: buffer for command
4348  * @buf_size: size of buffer in bytes
4349  * @num_qs: number of queues being configured
4350  * @oldport: origination lport
4351  * @newport: destination lport
4352  * @cd: pointer to command details structure or NULL
4353  *
4354  * Move/Configure LAN Tx queue (0x0C32)
4355  *
4356  * There is a better AQ command to use for moving nodes, so only coding
4357  * this one for configuring the node.
4358  */
4359 int
4360 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4361 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4362 		   struct ice_sq_cd *cd)
4363 {
4364 	struct ice_aqc_cfg_txqs *cmd;
4365 	struct ice_aq_desc desc;
4366 	int status;
4367 
4368 	cmd = &desc.params.cfg_txqs;
4369 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4370 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4371 
4372 	if (!buf)
4373 		return -EINVAL;
4374 
4375 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4376 	cmd->num_qs = num_qs;
4377 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4378 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4379 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4380 	cmd->blocked_cgds = 0;
4381 
4382 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4383 	if (status)
4384 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4385 			  hw->adminq.sq_last_status);
4386 	return status;
4387 }
4388 
4389 /**
4390  * ice_aq_add_rdma_qsets
4391  * @hw: pointer to the hardware structure
4392  * @num_qset_grps: Number of RDMA Qset groups
4393  * @qset_list: list of Qset groups to be added
4394  * @buf_size: size of buffer for indirect command
4395  * @cd: pointer to command details structure or NULL
4396  *
4397  * Add Tx RDMA Qsets (0x0C33)
4398  */
4399 static int
4400 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4401 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4402 		      u16 buf_size, struct ice_sq_cd *cd)
4403 {
4404 	struct ice_aqc_add_rdma_qset_data *list;
4405 	struct ice_aqc_add_rdma_qset *cmd;
4406 	struct ice_aq_desc desc;
4407 	u16 i, sum_size = 0;
4408 
4409 	cmd = &desc.params.add_rdma_qset;
4410 
4411 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4412 
4413 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4414 		return -EINVAL;
4415 
4416 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4417 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4418 
4419 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4420 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4421 							     num_qsets);
4422 	}
4423 
4424 	if (buf_size != sum_size)
4425 		return -EINVAL;
4426 
4427 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4428 
4429 	cmd->num_qset_grps = num_qset_grps;
4430 
4431 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4432 }
4433 
4434 /* End of FW Admin Queue command wrappers */
4435 
4436 /**
4437  * ice_pack_ctx_byte - write a byte to a packed context structure
4438  * @src_ctx: unpacked source context structure
4439  * @dest_ctx: packed destination context data
4440  * @ce_info: context element description
4441  */
4442 static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4443 			      const struct ice_ctx_ele *ce_info)
4444 {
4445 	u8 src_byte, dest_byte, mask;
4446 	u8 *from, *dest;
4447 	u16 shift_width;
4448 
4449 	/* copy from the next struct field */
4450 	from = src_ctx + ce_info->offset;
4451 
4452 	/* prepare the bits and mask */
4453 	shift_width = ce_info->lsb % 8;
4454 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4455 
4456 	src_byte = *from;
4457 	src_byte <<= shift_width;
4458 	src_byte &= mask;
4459 
4460 	/* get the current bits from the target bit string */
4461 	dest = dest_ctx + (ce_info->lsb / 8);
4462 
4463 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4464 
4465 	dest_byte &= ~mask;	/* get the bits not changing */
4466 	dest_byte |= src_byte;	/* add in the new bits */
4467 
4468 	/* put it all back */
4469 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4470 }
4471 
4472 /**
4473  * ice_pack_ctx_word - write a word to a packed context structure
4474  * @src_ctx: unpacked source context structure
4475  * @dest_ctx: packed destination context data
4476  * @ce_info: context element description
4477  */
4478 static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4479 			      const struct ice_ctx_ele *ce_info)
4480 {
4481 	u16 src_word, mask;
4482 	__le16 dest_word;
4483 	u8 *from, *dest;
4484 	u16 shift_width;
4485 
4486 	/* copy from the next struct field */
4487 	from = src_ctx + ce_info->offset;
4488 
4489 	/* prepare the bits and mask */
4490 	shift_width = ce_info->lsb % 8;
4491 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4492 
4493 	/* don't swizzle the bits until after the mask because the mask bits
4494 	 * will be in a different bit position on big endian machines
4495 	 */
4496 	src_word = *(u16 *)from;
4497 	src_word <<= shift_width;
4498 	src_word &= mask;
4499 
4500 	/* get the current bits from the target bit string */
4501 	dest = dest_ctx + (ce_info->lsb / 8);
4502 
4503 	memcpy(&dest_word, dest, sizeof(dest_word));
4504 
4505 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4506 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4507 
4508 	/* put it all back */
4509 	memcpy(dest, &dest_word, sizeof(dest_word));
4510 }
4511 
4512 /**
4513  * ice_pack_ctx_dword - write a dword to a packed context structure
4514  * @src_ctx: unpacked source context structure
4515  * @dest_ctx: packed destination context data
4516  * @ce_info: context element description
4517  */
4518 static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4519 			       const struct ice_ctx_ele *ce_info)
4520 {
4521 	u32 src_dword, mask;
4522 	__le32 dest_dword;
4523 	u8 *from, *dest;
4524 	u16 shift_width;
4525 
4526 	/* copy from the next struct field */
4527 	from = src_ctx + ce_info->offset;
4528 
4529 	/* prepare the bits and mask */
4530 	shift_width = ce_info->lsb % 8;
4531 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4532 
4533 	/* don't swizzle the bits until after the mask because the mask bits
4534 	 * will be in a different bit position on big endian machines
4535 	 */
4536 	src_dword = *(u32 *)from;
4537 	src_dword <<= shift_width;
4538 	src_dword &= mask;
4539 
4540 	/* get the current bits from the target bit string */
4541 	dest = dest_ctx + (ce_info->lsb / 8);
4542 
4543 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4544 
4545 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4546 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4547 
4548 	/* put it all back */
4549 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4550 }
4551 
4552 /**
4553  * ice_pack_ctx_qword - write a qword to a packed context structure
4554  * @src_ctx: unpacked source context structure
4555  * @dest_ctx: packed destination context data
4556  * @ce_info: context element description
4557  */
4558 static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4559 			       const struct ice_ctx_ele *ce_info)
4560 {
4561 	u64 src_qword, mask;
4562 	__le64 dest_qword;
4563 	u8 *from, *dest;
4564 	u16 shift_width;
4565 
4566 	/* copy from the next struct field */
4567 	from = src_ctx + ce_info->offset;
4568 
4569 	/* prepare the bits and mask */
4570 	shift_width = ce_info->lsb % 8;
4571 	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4572 
4573 	/* don't swizzle the bits until after the mask because the mask bits
4574 	 * will be in a different bit position on big endian machines
4575 	 */
4576 	src_qword = *(u64 *)from;
4577 	src_qword <<= shift_width;
4578 	src_qword &= mask;
4579 
4580 	/* get the current bits from the target bit string */
4581 	dest = dest_ctx + (ce_info->lsb / 8);
4582 
4583 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4584 
4585 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4586 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4587 
4588 	/* put it all back */
4589 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4590 }
4591 
4592 /**
4593  * ice_set_ctx - set context bits in packed structure
4594  * @hw: pointer to the hardware structure
4595  * @src_ctx:  pointer to a generic non-packed context structure
4596  * @dest_ctx: pointer to memory for the packed structure
4597  * @ce_info: List of Rx context elements
4598  */
4599 int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4600 		const struct ice_ctx_ele *ce_info)
4601 {
4602 	int f;
4603 
4604 	for (f = 0; ce_info[f].width; f++) {
4605 		/* We have to deal with each element of the FW response
4606 		 * using the correct size so that we are correct regardless
4607 		 * of the endianness of the machine.
4608 		 */
4609 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4610 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4611 				  f, ce_info[f].width, ce_info[f].size_of);
4612 			continue;
4613 		}
4614 		switch (ce_info[f].size_of) {
4615 		case sizeof(u8):
4616 			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4617 			break;
4618 		case sizeof(u16):
4619 			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4620 			break;
4621 		case sizeof(u32):
4622 			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4623 			break;
4624 		case sizeof(u64):
4625 			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4626 			break;
4627 		default:
4628 			return -EINVAL;
4629 		}
4630 	}
4631 
4632 	return 0;
4633 }
4634 
4635 /**
4636  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4637  * @hw: pointer to the HW struct
4638  * @vsi_handle: software VSI handle
4639  * @tc: TC number
4640  * @q_handle: software queue handle
4641  */
4642 struct ice_q_ctx *
4643 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4644 {
4645 	struct ice_vsi_ctx *vsi;
4646 	struct ice_q_ctx *q_ctx;
4647 
4648 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4649 	if (!vsi)
4650 		return NULL;
4651 	if (q_handle >= vsi->num_lan_q_entries[tc])
4652 		return NULL;
4653 	if (!vsi->lan_q_ctx[tc])
4654 		return NULL;
4655 	q_ctx = vsi->lan_q_ctx[tc];
4656 	return &q_ctx[q_handle];
4657 }
4658 
4659 /**
4660  * ice_ena_vsi_txq
4661  * @pi: port information structure
4662  * @vsi_handle: software VSI handle
4663  * @tc: TC number
4664  * @q_handle: software queue handle
4665  * @num_qgrps: Number of added queue groups
4666  * @buf: list of queue groups to be added
4667  * @buf_size: size of buffer for indirect command
4668  * @cd: pointer to command details structure or NULL
4669  *
4670  * This function adds one LAN queue
4671  */
4672 int
4673 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4674 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4675 		struct ice_sq_cd *cd)
4676 {
4677 	struct ice_aqc_txsched_elem_data node = { 0 };
4678 	struct ice_sched_node *parent;
4679 	struct ice_q_ctx *q_ctx;
4680 	struct ice_hw *hw;
4681 	int status;
4682 
4683 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4684 		return -EIO;
4685 
4686 	if (num_qgrps > 1 || buf->num_txqs > 1)
4687 		return -ENOSPC;
4688 
4689 	hw = pi->hw;
4690 
4691 	if (!ice_is_vsi_valid(hw, vsi_handle))
4692 		return -EINVAL;
4693 
4694 	mutex_lock(&pi->sched_lock);
4695 
4696 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4697 	if (!q_ctx) {
4698 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4699 			  q_handle);
4700 		status = -EINVAL;
4701 		goto ena_txq_exit;
4702 	}
4703 
4704 	/* find a parent node */
4705 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4706 					    ICE_SCHED_NODE_OWNER_LAN);
4707 	if (!parent) {
4708 		status = -EINVAL;
4709 		goto ena_txq_exit;
4710 	}
4711 
4712 	buf->parent_teid = parent->info.node_teid;
4713 	node.parent_teid = parent->info.node_teid;
4714 	/* Mark that the values in the "generic" section as valid. The default
4715 	 * value in the "generic" section is zero. This means that :
4716 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4717 	 * - 0 priority among siblings, indicated by Bit 1-3.
4718 	 * - WFQ, indicated by Bit 4.
4719 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4720 	 * Bit 5-6.
4721 	 * - Bit 7 is reserved.
4722 	 * Without setting the generic section as valid in valid_sections, the
4723 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4724 	 */
4725 	buf->txqs[0].info.valid_sections =
4726 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4727 		ICE_AQC_ELEM_VALID_EIR;
4728 	buf->txqs[0].info.generic = 0;
4729 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4730 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4731 	buf->txqs[0].info.cir_bw.bw_alloc =
4732 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4733 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4734 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4735 	buf->txqs[0].info.eir_bw.bw_alloc =
4736 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4737 
4738 	/* add the LAN queue */
4739 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4740 	if (status) {
4741 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4742 			  le16_to_cpu(buf->txqs[0].txq_id),
4743 			  hw->adminq.sq_last_status);
4744 		goto ena_txq_exit;
4745 	}
4746 
4747 	node.node_teid = buf->txqs[0].q_teid;
4748 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4749 	q_ctx->q_handle = q_handle;
4750 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4751 
4752 	/* add a leaf node into scheduler tree queue layer */
4753 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4754 	if (!status)
4755 		status = ice_sched_replay_q_bw(pi, q_ctx);
4756 
4757 ena_txq_exit:
4758 	mutex_unlock(&pi->sched_lock);
4759 	return status;
4760 }
4761 
4762 /**
4763  * ice_dis_vsi_txq
4764  * @pi: port information structure
4765  * @vsi_handle: software VSI handle
4766  * @tc: TC number
4767  * @num_queues: number of queues
4768  * @q_handles: pointer to software queue handle array
4769  * @q_ids: pointer to the q_id array
4770  * @q_teids: pointer to queue node teids
4771  * @rst_src: if called due to reset, specifies the reset source
4772  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4773  * @cd: pointer to command details structure or NULL
4774  *
4775  * This function removes queues and their corresponding nodes in SW DB
4776  */
4777 int
4778 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4779 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4780 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4781 		struct ice_sq_cd *cd)
4782 {
4783 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4784 	u16 i, buf_size = __struct_size(qg_list);
4785 	struct ice_q_ctx *q_ctx;
4786 	int status = -ENOENT;
4787 	struct ice_hw *hw;
4788 
4789 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4790 		return -EIO;
4791 
4792 	hw = pi->hw;
4793 
4794 	if (!num_queues) {
4795 		/* if queue is disabled already yet the disable queue command
4796 		 * has to be sent to complete the VF reset, then call
4797 		 * ice_aq_dis_lan_txq without any queue information
4798 		 */
4799 		if (rst_src)
4800 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4801 						  vmvf_num, NULL);
4802 		return -EIO;
4803 	}
4804 
4805 	mutex_lock(&pi->sched_lock);
4806 
4807 	for (i = 0; i < num_queues; i++) {
4808 		struct ice_sched_node *node;
4809 
4810 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4811 		if (!node)
4812 			continue;
4813 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4814 		if (!q_ctx) {
4815 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4816 				  q_handles[i]);
4817 			continue;
4818 		}
4819 		if (q_ctx->q_handle != q_handles[i]) {
4820 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4821 				  q_ctx->q_handle, q_handles[i]);
4822 			continue;
4823 		}
4824 		qg_list->parent_teid = node->info.parent_teid;
4825 		qg_list->num_qs = 1;
4826 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4827 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4828 					    vmvf_num, cd);
4829 
4830 		if (status)
4831 			break;
4832 		ice_free_sched_node(pi, node);
4833 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4834 		q_ctx->q_teid = ICE_INVAL_TEID;
4835 	}
4836 	mutex_unlock(&pi->sched_lock);
4837 	return status;
4838 }
4839 
4840 /**
4841  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4842  * @pi: port information structure
4843  * @vsi_handle: software VSI handle
4844  * @tc_bitmap: TC bitmap
4845  * @maxqs: max queues array per TC
4846  * @owner: LAN or RDMA
4847  *
4848  * This function adds/updates the VSI queues per TC.
4849  */
4850 static int
4851 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4852 	       u16 *maxqs, u8 owner)
4853 {
4854 	int status = 0;
4855 	u8 i;
4856 
4857 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4858 		return -EIO;
4859 
4860 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4861 		return -EINVAL;
4862 
4863 	mutex_lock(&pi->sched_lock);
4864 
4865 	ice_for_each_traffic_class(i) {
4866 		/* configuration is possible only if TC node is present */
4867 		if (!ice_sched_get_tc_node(pi, i))
4868 			continue;
4869 
4870 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4871 					   ice_is_tc_ena(tc_bitmap, i));
4872 		if (status)
4873 			break;
4874 	}
4875 
4876 	mutex_unlock(&pi->sched_lock);
4877 	return status;
4878 }
4879 
4880 /**
4881  * ice_cfg_vsi_lan - configure VSI LAN queues
4882  * @pi: port information structure
4883  * @vsi_handle: software VSI handle
4884  * @tc_bitmap: TC bitmap
4885  * @max_lanqs: max LAN queues array per TC
4886  *
4887  * This function adds/updates the VSI LAN queues per TC.
4888  */
4889 int
4890 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4891 		u16 *max_lanqs)
4892 {
4893 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4894 			      ICE_SCHED_NODE_OWNER_LAN);
4895 }
4896 
4897 /**
4898  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4899  * @pi: port information structure
4900  * @vsi_handle: software VSI handle
4901  * @tc_bitmap: TC bitmap
4902  * @max_rdmaqs: max RDMA queues array per TC
4903  *
4904  * This function adds/updates the VSI RDMA queues per TC.
4905  */
4906 int
4907 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4908 		 u16 *max_rdmaqs)
4909 {
4910 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4911 			      ICE_SCHED_NODE_OWNER_RDMA);
4912 }
4913 
4914 /**
4915  * ice_ena_vsi_rdma_qset
4916  * @pi: port information structure
4917  * @vsi_handle: software VSI handle
4918  * @tc: TC number
4919  * @rdma_qset: pointer to RDMA Qset
4920  * @num_qsets: number of RDMA Qsets
4921  * @qset_teid: pointer to Qset node TEIDs
4922  *
4923  * This function adds RDMA Qset
4924  */
4925 int
4926 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4927 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4928 {
4929 	struct ice_aqc_txsched_elem_data node = { 0 };
4930 	struct ice_aqc_add_rdma_qset_data *buf;
4931 	struct ice_sched_node *parent;
4932 	struct ice_hw *hw;
4933 	u16 i, buf_size;
4934 	int ret;
4935 
4936 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4937 		return -EIO;
4938 	hw = pi->hw;
4939 
4940 	if (!ice_is_vsi_valid(hw, vsi_handle))
4941 		return -EINVAL;
4942 
4943 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4944 	buf = kzalloc(buf_size, GFP_KERNEL);
4945 	if (!buf)
4946 		return -ENOMEM;
4947 	mutex_lock(&pi->sched_lock);
4948 
4949 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4950 					    ICE_SCHED_NODE_OWNER_RDMA);
4951 	if (!parent) {
4952 		ret = -EINVAL;
4953 		goto rdma_error_exit;
4954 	}
4955 	buf->parent_teid = parent->info.node_teid;
4956 	node.parent_teid = parent->info.node_teid;
4957 
4958 	buf->num_qsets = cpu_to_le16(num_qsets);
4959 	for (i = 0; i < num_qsets; i++) {
4960 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4961 		buf->rdma_qsets[i].info.valid_sections =
4962 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4963 			ICE_AQC_ELEM_VALID_EIR;
4964 		buf->rdma_qsets[i].info.generic = 0;
4965 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4966 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4967 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4968 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4969 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4970 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4971 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4972 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4973 	}
4974 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4975 	if (ret) {
4976 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4977 		goto rdma_error_exit;
4978 	}
4979 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4980 	for (i = 0; i < num_qsets; i++) {
4981 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4982 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4983 					 &node, NULL);
4984 		if (ret)
4985 			break;
4986 		qset_teid[i] = le32_to_cpu(node.node_teid);
4987 	}
4988 rdma_error_exit:
4989 	mutex_unlock(&pi->sched_lock);
4990 	kfree(buf);
4991 	return ret;
4992 }
4993 
4994 /**
4995  * ice_dis_vsi_rdma_qset - free RDMA resources
4996  * @pi: port_info struct
4997  * @count: number of RDMA Qsets to free
4998  * @qset_teid: TEID of Qset node
4999  * @q_id: list of queue IDs being disabled
5000  */
5001 int
5002 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5003 		      u16 *q_id)
5004 {
5005 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5006 	u16 qg_size = __struct_size(qg_list);
5007 	struct ice_hw *hw;
5008 	int status = 0;
5009 	int i;
5010 
5011 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5012 		return -EIO;
5013 
5014 	hw = pi->hw;
5015 
5016 	mutex_lock(&pi->sched_lock);
5017 
5018 	for (i = 0; i < count; i++) {
5019 		struct ice_sched_node *node;
5020 
5021 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5022 		if (!node)
5023 			continue;
5024 
5025 		qg_list->parent_teid = node->info.parent_teid;
5026 		qg_list->num_qs = 1;
5027 		qg_list->q_id[0] =
5028 			cpu_to_le16(q_id[i] |
5029 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5030 
5031 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5032 					    ICE_NO_RESET, 0, NULL);
5033 		if (status)
5034 			break;
5035 
5036 		ice_free_sched_node(pi, node);
5037 	}
5038 
5039 	mutex_unlock(&pi->sched_lock);
5040 	return status;
5041 }
5042 
5043 /**
5044  * ice_aq_get_cgu_abilities - get cgu abilities
5045  * @hw: pointer to the HW struct
5046  * @abilities: CGU abilities
5047  *
5048  * Get CGU abilities (0x0C61)
5049  * Return: 0 on success or negative value on failure.
5050  */
5051 int
5052 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5053 			 struct ice_aqc_get_cgu_abilities *abilities)
5054 {
5055 	struct ice_aq_desc desc;
5056 
5057 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5058 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5059 }
5060 
5061 /**
5062  * ice_aq_set_input_pin_cfg - set input pin config
5063  * @hw: pointer to the HW struct
5064  * @input_idx: Input index
5065  * @flags1: Input flags
5066  * @flags2: Input flags
5067  * @freq: Frequency in Hz
5068  * @phase_delay: Delay in ps
5069  *
5070  * Set CGU input config (0x0C62)
5071  * Return: 0 on success or negative value on failure.
5072  */
5073 int
5074 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5075 			 u32 freq, s32 phase_delay)
5076 {
5077 	struct ice_aqc_set_cgu_input_config *cmd;
5078 	struct ice_aq_desc desc;
5079 
5080 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5081 	cmd = &desc.params.set_cgu_input_config;
5082 	cmd->input_idx = input_idx;
5083 	cmd->flags1 = flags1;
5084 	cmd->flags2 = flags2;
5085 	cmd->freq = cpu_to_le32(freq);
5086 	cmd->phase_delay = cpu_to_le32(phase_delay);
5087 
5088 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5089 }
5090 
5091 /**
5092  * ice_aq_get_input_pin_cfg - get input pin config
5093  * @hw: pointer to the HW struct
5094  * @input_idx: Input index
5095  * @status: Pin status
5096  * @type: Pin type
5097  * @flags1: Input flags
5098  * @flags2: Input flags
5099  * @freq: Frequency in Hz
5100  * @phase_delay: Delay in ps
5101  *
5102  * Get CGU input config (0x0C63)
5103  * Return: 0 on success or negative value on failure.
5104  */
5105 int
5106 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5107 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5108 {
5109 	struct ice_aqc_get_cgu_input_config *cmd;
5110 	struct ice_aq_desc desc;
5111 	int ret;
5112 
5113 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5114 	cmd = &desc.params.get_cgu_input_config;
5115 	cmd->input_idx = input_idx;
5116 
5117 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5118 	if (!ret) {
5119 		if (status)
5120 			*status = cmd->status;
5121 		if (type)
5122 			*type = cmd->type;
5123 		if (flags1)
5124 			*flags1 = cmd->flags1;
5125 		if (flags2)
5126 			*flags2 = cmd->flags2;
5127 		if (freq)
5128 			*freq = le32_to_cpu(cmd->freq);
5129 		if (phase_delay)
5130 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5131 	}
5132 
5133 	return ret;
5134 }
5135 
5136 /**
5137  * ice_aq_set_output_pin_cfg - set output pin config
5138  * @hw: pointer to the HW struct
5139  * @output_idx: Output index
5140  * @flags: Output flags
5141  * @src_sel: Index of DPLL block
5142  * @freq: Output frequency
5143  * @phase_delay: Output phase compensation
5144  *
5145  * Set CGU output config (0x0C64)
5146  * Return: 0 on success or negative value on failure.
5147  */
5148 int
5149 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5150 			  u8 src_sel, u32 freq, s32 phase_delay)
5151 {
5152 	struct ice_aqc_set_cgu_output_config *cmd;
5153 	struct ice_aq_desc desc;
5154 
5155 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5156 	cmd = &desc.params.set_cgu_output_config;
5157 	cmd->output_idx = output_idx;
5158 	cmd->flags = flags;
5159 	cmd->src_sel = src_sel;
5160 	cmd->freq = cpu_to_le32(freq);
5161 	cmd->phase_delay = cpu_to_le32(phase_delay);
5162 
5163 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5164 }
5165 
5166 /**
5167  * ice_aq_get_output_pin_cfg - get output pin config
5168  * @hw: pointer to the HW struct
5169  * @output_idx: Output index
5170  * @flags: Output flags
5171  * @src_sel: Internal DPLL source
5172  * @freq: Output frequency
5173  * @src_freq: Source frequency
5174  *
5175  * Get CGU output config (0x0C65)
5176  * Return: 0 on success or negative value on failure.
5177  */
5178 int
5179 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5180 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5181 {
5182 	struct ice_aqc_get_cgu_output_config *cmd;
5183 	struct ice_aq_desc desc;
5184 	int ret;
5185 
5186 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5187 	cmd = &desc.params.get_cgu_output_config;
5188 	cmd->output_idx = output_idx;
5189 
5190 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5191 	if (!ret) {
5192 		if (flags)
5193 			*flags = cmd->flags;
5194 		if (src_sel)
5195 			*src_sel = cmd->src_sel;
5196 		if (freq)
5197 			*freq = le32_to_cpu(cmd->freq);
5198 		if (src_freq)
5199 			*src_freq = le32_to_cpu(cmd->src_freq);
5200 	}
5201 
5202 	return ret;
5203 }
5204 
5205 /**
5206  * ice_aq_get_cgu_dpll_status - get dpll status
5207  * @hw: pointer to the HW struct
5208  * @dpll_num: DPLL index
5209  * @ref_state: Reference clock state
5210  * @config: current DPLL config
5211  * @dpll_state: current DPLL state
5212  * @phase_offset: Phase offset in ns
5213  * @eec_mode: EEC_mode
5214  *
5215  * Get CGU DPLL status (0x0C66)
5216  * Return: 0 on success or negative value on failure.
5217  */
5218 int
5219 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5220 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5221 			   u8 *eec_mode)
5222 {
5223 	struct ice_aqc_get_cgu_dpll_status *cmd;
5224 	struct ice_aq_desc desc;
5225 	int status;
5226 
5227 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5228 	cmd = &desc.params.get_cgu_dpll_status;
5229 	cmd->dpll_num = dpll_num;
5230 
5231 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5232 	if (!status) {
5233 		*ref_state = cmd->ref_state;
5234 		*dpll_state = cmd->dpll_state;
5235 		*config = cmd->config;
5236 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5237 		*phase_offset <<= 32;
5238 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5239 		*phase_offset = sign_extend64(*phase_offset, 47);
5240 		*eec_mode = cmd->eec_mode;
5241 	}
5242 
5243 	return status;
5244 }
5245 
5246 /**
5247  * ice_aq_set_cgu_dpll_config - set dpll config
5248  * @hw: pointer to the HW struct
5249  * @dpll_num: DPLL index
5250  * @ref_state: Reference clock state
5251  * @config: DPLL config
5252  * @eec_mode: EEC mode
5253  *
5254  * Set CGU DPLL config (0x0C67)
5255  * Return: 0 on success or negative value on failure.
5256  */
5257 int
5258 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5259 			   u8 config, u8 eec_mode)
5260 {
5261 	struct ice_aqc_set_cgu_dpll_config *cmd;
5262 	struct ice_aq_desc desc;
5263 
5264 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5265 	cmd = &desc.params.set_cgu_dpll_config;
5266 	cmd->dpll_num = dpll_num;
5267 	cmd->ref_state = ref_state;
5268 	cmd->config = config;
5269 	cmd->eec_mode = eec_mode;
5270 
5271 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5272 }
5273 
5274 /**
5275  * ice_aq_set_cgu_ref_prio - set input reference priority
5276  * @hw: pointer to the HW struct
5277  * @dpll_num: DPLL index
5278  * @ref_idx: Reference pin index
5279  * @ref_priority: Reference input priority
5280  *
5281  * Set CGU reference priority (0x0C68)
5282  * Return: 0 on success or negative value on failure.
5283  */
5284 int
5285 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5286 			u8 ref_priority)
5287 {
5288 	struct ice_aqc_set_cgu_ref_prio *cmd;
5289 	struct ice_aq_desc desc;
5290 
5291 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5292 	cmd = &desc.params.set_cgu_ref_prio;
5293 	cmd->dpll_num = dpll_num;
5294 	cmd->ref_idx = ref_idx;
5295 	cmd->ref_priority = ref_priority;
5296 
5297 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5298 }
5299 
5300 /**
5301  * ice_aq_get_cgu_ref_prio - get input reference priority
5302  * @hw: pointer to the HW struct
5303  * @dpll_num: DPLL index
5304  * @ref_idx: Reference pin index
5305  * @ref_prio: Reference input priority
5306  *
5307  * Get CGU reference priority (0x0C69)
5308  * Return: 0 on success or negative value on failure.
5309  */
5310 int
5311 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5312 			u8 *ref_prio)
5313 {
5314 	struct ice_aqc_get_cgu_ref_prio *cmd;
5315 	struct ice_aq_desc desc;
5316 	int status;
5317 
5318 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5319 	cmd = &desc.params.get_cgu_ref_prio;
5320 	cmd->dpll_num = dpll_num;
5321 	cmd->ref_idx = ref_idx;
5322 
5323 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5324 	if (!status)
5325 		*ref_prio = cmd->ref_priority;
5326 
5327 	return status;
5328 }
5329 
5330 /**
5331  * ice_aq_get_cgu_info - get cgu info
5332  * @hw: pointer to the HW struct
5333  * @cgu_id: CGU ID
5334  * @cgu_cfg_ver: CGU config version
5335  * @cgu_fw_ver: CGU firmware version
5336  *
5337  * Get CGU info (0x0C6A)
5338  * Return: 0 on success or negative value on failure.
5339  */
5340 int
5341 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5342 		    u32 *cgu_fw_ver)
5343 {
5344 	struct ice_aqc_get_cgu_info *cmd;
5345 	struct ice_aq_desc desc;
5346 	int status;
5347 
5348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5349 	cmd = &desc.params.get_cgu_info;
5350 
5351 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5352 	if (!status) {
5353 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5354 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5355 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5356 	}
5357 
5358 	return status;
5359 }
5360 
5361 /**
5362  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5363  * @hw: pointer to the HW struct
5364  * @phy_output: PHY reference clock output pin
5365  * @enable: GPIO state to be applied
5366  * @freq: PHY output frequency
5367  *
5368  * Set phy recovered clock as reference (0x0630)
5369  * Return: 0 on success or negative value on failure.
5370  */
5371 int
5372 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5373 			   u32 *freq)
5374 {
5375 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5376 	struct ice_aq_desc desc;
5377 	int status;
5378 
5379 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5380 	cmd = &desc.params.set_phy_rec_clk_out;
5381 	cmd->phy_output = phy_output;
5382 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5383 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5384 	cmd->freq = cpu_to_le32(*freq);
5385 
5386 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5387 	if (!status)
5388 		*freq = le32_to_cpu(cmd->freq);
5389 
5390 	return status;
5391 }
5392 
5393 /**
5394  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5395  * @hw: pointer to the HW struct
5396  * @phy_output: PHY reference clock output pin
5397  * @port_num: Port number
5398  * @flags: PHY flags
5399  * @node_handle: PHY output frequency
5400  *
5401  * Get PHY recovered clock output info (0x0631)
5402  * Return: 0 on success or negative value on failure.
5403  */
5404 int
5405 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5406 			   u8 *flags, u16 *node_handle)
5407 {
5408 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5409 	struct ice_aq_desc desc;
5410 	int status;
5411 
5412 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5413 	cmd = &desc.params.get_phy_rec_clk_out;
5414 	cmd->phy_output = *phy_output;
5415 
5416 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5417 	if (!status) {
5418 		*phy_output = cmd->phy_output;
5419 		if (port_num)
5420 			*port_num = cmd->port_num;
5421 		if (flags)
5422 			*flags = cmd->flags;
5423 		if (node_handle)
5424 			*node_handle = le16_to_cpu(cmd->node_handle);
5425 	}
5426 
5427 	return status;
5428 }
5429 
5430 /**
5431  * ice_aq_get_sensor_reading
5432  * @hw: pointer to the HW struct
5433  * @data: pointer to data to be read from the sensor
5434  *
5435  * Get sensor reading (0x0632)
5436  */
5437 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5438 			      struct ice_aqc_get_sensor_reading_resp *data)
5439 {
5440 	struct ice_aqc_get_sensor_reading *cmd;
5441 	struct ice_aq_desc desc;
5442 	int status;
5443 
5444 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5445 	cmd = &desc.params.get_sensor_reading;
5446 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5447 #define ICE_INTERNAL_TEMP_SENSOR	0
5448 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5449 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5450 
5451 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5452 	if (!status)
5453 		memcpy(data, &desc.params.get_sensor_reading_resp,
5454 		       sizeof(*data));
5455 
5456 	return status;
5457 }
5458 
5459 /**
5460  * ice_replay_pre_init - replay pre initialization
5461  * @hw: pointer to the HW struct
5462  *
5463  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5464  */
5465 static int ice_replay_pre_init(struct ice_hw *hw)
5466 {
5467 	struct ice_switch_info *sw = hw->switch_info;
5468 	u8 i;
5469 
5470 	/* Delete old entries from replay filter list head if there is any */
5471 	ice_rm_all_sw_replay_rule_info(hw);
5472 	/* In start of replay, move entries into replay_rules list, it
5473 	 * will allow adding rules entries back to filt_rules list,
5474 	 * which is operational list.
5475 	 */
5476 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5477 		list_replace_init(&sw->recp_list[i].filt_rules,
5478 				  &sw->recp_list[i].filt_replay_rules);
5479 	ice_sched_replay_agg_vsi_preinit(hw);
5480 
5481 	return 0;
5482 }
5483 
5484 /**
5485  * ice_replay_vsi - replay VSI configuration
5486  * @hw: pointer to the HW struct
5487  * @vsi_handle: driver VSI handle
5488  *
5489  * Restore all VSI configuration after reset. It is required to call this
5490  * function with main VSI first.
5491  */
5492 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5493 {
5494 	int status;
5495 
5496 	if (!ice_is_vsi_valid(hw, vsi_handle))
5497 		return -EINVAL;
5498 
5499 	/* Replay pre-initialization if there is any */
5500 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5501 		status = ice_replay_pre_init(hw);
5502 		if (status)
5503 			return status;
5504 	}
5505 	/* Replay per VSI all RSS configurations */
5506 	status = ice_replay_rss_cfg(hw, vsi_handle);
5507 	if (status)
5508 		return status;
5509 	/* Replay per VSI all filters */
5510 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5511 	if (!status)
5512 		status = ice_replay_vsi_agg(hw, vsi_handle);
5513 	return status;
5514 }
5515 
5516 /**
5517  * ice_replay_post - post replay configuration cleanup
5518  * @hw: pointer to the HW struct
5519  *
5520  * Post replay cleanup.
5521  */
5522 void ice_replay_post(struct ice_hw *hw)
5523 {
5524 	/* Delete old entries from replay filter list head */
5525 	ice_rm_all_sw_replay_rule_info(hw);
5526 	ice_sched_replay_agg(hw);
5527 }
5528 
5529 /**
5530  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5531  * @hw: ptr to the hardware info
5532  * @reg: offset of 64 bit HW register to read from
5533  * @prev_stat_loaded: bool to specify if previous stats are loaded
5534  * @prev_stat: ptr to previous loaded stat value
5535  * @cur_stat: ptr to current stat value
5536  */
5537 void
5538 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5539 		  u64 *prev_stat, u64 *cur_stat)
5540 {
5541 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5542 
5543 	/* device stats are not reset at PFR, they likely will not be zeroed
5544 	 * when the driver starts. Thus, save the value from the first read
5545 	 * without adding to the statistic value so that we report stats which
5546 	 * count up from zero.
5547 	 */
5548 	if (!prev_stat_loaded) {
5549 		*prev_stat = new_data;
5550 		return;
5551 	}
5552 
5553 	/* Calculate the difference between the new and old values, and then
5554 	 * add it to the software stat value.
5555 	 */
5556 	if (new_data >= *prev_stat)
5557 		*cur_stat += new_data - *prev_stat;
5558 	else
5559 		/* to manage the potential roll-over */
5560 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5561 
5562 	/* Update the previously stored value to prepare for next read */
5563 	*prev_stat = new_data;
5564 }
5565 
5566 /**
5567  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5568  * @hw: ptr to the hardware info
5569  * @reg: offset of HW register to read from
5570  * @prev_stat_loaded: bool to specify if previous stats are loaded
5571  * @prev_stat: ptr to previous loaded stat value
5572  * @cur_stat: ptr to current stat value
5573  */
5574 void
5575 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5576 		  u64 *prev_stat, u64 *cur_stat)
5577 {
5578 	u32 new_data;
5579 
5580 	new_data = rd32(hw, reg);
5581 
5582 	/* device stats are not reset at PFR, they likely will not be zeroed
5583 	 * when the driver starts. Thus, save the value from the first read
5584 	 * without adding to the statistic value so that we report stats which
5585 	 * count up from zero.
5586 	 */
5587 	if (!prev_stat_loaded) {
5588 		*prev_stat = new_data;
5589 		return;
5590 	}
5591 
5592 	/* Calculate the difference between the new and old values, and then
5593 	 * add it to the software stat value.
5594 	 */
5595 	if (new_data >= *prev_stat)
5596 		*cur_stat += new_data - *prev_stat;
5597 	else
5598 		/* to manage the potential roll-over */
5599 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5600 
5601 	/* Update the previously stored value to prepare for next read */
5602 	*prev_stat = new_data;
5603 }
5604 
5605 /**
5606  * ice_sched_query_elem - query element information from HW
5607  * @hw: pointer to the HW struct
5608  * @node_teid: node TEID to be queried
5609  * @buf: buffer to element information
5610  *
5611  * This function queries HW element information
5612  */
5613 int
5614 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5615 		     struct ice_aqc_txsched_elem_data *buf)
5616 {
5617 	u16 buf_size, num_elem_ret = 0;
5618 	int status;
5619 
5620 	buf_size = sizeof(*buf);
5621 	memset(buf, 0, buf_size);
5622 	buf->node_teid = cpu_to_le32(node_teid);
5623 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5624 					  NULL);
5625 	if (status || num_elem_ret != 1)
5626 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5627 	return status;
5628 }
5629 
5630 /**
5631  * ice_aq_read_i2c
5632  * @hw: pointer to the hw struct
5633  * @topo_addr: topology address for a device to communicate with
5634  * @bus_addr: 7-bit I2C bus address
5635  * @addr: I2C memory address (I2C offset) with up to 16 bits
5636  * @params: I2C parameters: bit [7] - Repeated start,
5637  *			    bits [6:5] data offset size,
5638  *			    bit [4] - I2C address type,
5639  *			    bits [3:0] - data size to read (0-16 bytes)
5640  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5641  * @cd: pointer to command details structure or NULL
5642  *
5643  * Read I2C (0x06E2)
5644  */
5645 int
5646 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5647 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5648 		struct ice_sq_cd *cd)
5649 {
5650 	struct ice_aq_desc desc = { 0 };
5651 	struct ice_aqc_i2c *cmd;
5652 	u8 data_size;
5653 	int status;
5654 
5655 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5656 	cmd = &desc.params.read_write_i2c;
5657 
5658 	if (!data)
5659 		return -EINVAL;
5660 
5661 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5662 
5663 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5664 	cmd->topo_addr = topo_addr;
5665 	cmd->i2c_params = params;
5666 	cmd->i2c_addr = addr;
5667 
5668 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5669 	if (!status) {
5670 		struct ice_aqc_read_i2c_resp *resp;
5671 		u8 i;
5672 
5673 		resp = &desc.params.read_i2c_resp;
5674 		for (i = 0; i < data_size; i++) {
5675 			*data = resp->i2c_data[i];
5676 			data++;
5677 		}
5678 	}
5679 
5680 	return status;
5681 }
5682 
5683 /**
5684  * ice_aq_write_i2c
5685  * @hw: pointer to the hw struct
5686  * @topo_addr: topology address for a device to communicate with
5687  * @bus_addr: 7-bit I2C bus address
5688  * @addr: I2C memory address (I2C offset) with up to 16 bits
5689  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5690  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5691  * @cd: pointer to command details structure or NULL
5692  *
5693  * Write I2C (0x06E3)
5694  *
5695  * * Return:
5696  * * 0             - Successful write to the i2c device
5697  * * -EINVAL       - Data size greater than 4 bytes
5698  * * -EIO          - FW error
5699  */
5700 int
5701 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5702 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5703 		 struct ice_sq_cd *cd)
5704 {
5705 	struct ice_aq_desc desc = { 0 };
5706 	struct ice_aqc_i2c *cmd;
5707 	u8 data_size;
5708 
5709 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5710 	cmd = &desc.params.read_write_i2c;
5711 
5712 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5713 
5714 	/* data_size limited to 4 */
5715 	if (data_size > 4)
5716 		return -EINVAL;
5717 
5718 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5719 	cmd->topo_addr = topo_addr;
5720 	cmd->i2c_params = params;
5721 	cmd->i2c_addr = addr;
5722 
5723 	memcpy(cmd->i2c_data, data, data_size);
5724 
5725 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5726 }
5727 
5728 /**
5729  * ice_aq_set_gpio
5730  * @hw: pointer to the hw struct
5731  * @gpio_ctrl_handle: GPIO controller node handle
5732  * @pin_idx: IO Number of the GPIO that needs to be set
5733  * @value: SW provide IO value to set in the LSB
5734  * @cd: pointer to command details structure or NULL
5735  *
5736  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5737  */
5738 int
5739 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5740 		struct ice_sq_cd *cd)
5741 {
5742 	struct ice_aqc_gpio *cmd;
5743 	struct ice_aq_desc desc;
5744 
5745 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5746 	cmd = &desc.params.read_write_gpio;
5747 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5748 	cmd->gpio_num = pin_idx;
5749 	cmd->gpio_val = value ? 1 : 0;
5750 
5751 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5752 }
5753 
5754 /**
5755  * ice_aq_get_gpio
5756  * @hw: pointer to the hw struct
5757  * @gpio_ctrl_handle: GPIO controller node handle
5758  * @pin_idx: IO Number of the GPIO that needs to be set
5759  * @value: IO value read
5760  * @cd: pointer to command details structure or NULL
5761  *
5762  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5763  * the topology
5764  */
5765 int
5766 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5767 		bool *value, struct ice_sq_cd *cd)
5768 {
5769 	struct ice_aqc_gpio *cmd;
5770 	struct ice_aq_desc desc;
5771 	int status;
5772 
5773 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5774 	cmd = &desc.params.read_write_gpio;
5775 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5776 	cmd->gpio_num = pin_idx;
5777 
5778 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5779 	if (status)
5780 		return status;
5781 
5782 	*value = !!cmd->gpio_val;
5783 	return 0;
5784 }
5785 
5786 /**
5787  * ice_is_fw_api_min_ver
5788  * @hw: pointer to the hardware structure
5789  * @maj: major version
5790  * @min: minor version
5791  * @patch: patch version
5792  *
5793  * Checks if the firmware API is minimum version
5794  */
5795 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5796 {
5797 	if (hw->api_maj_ver == maj) {
5798 		if (hw->api_min_ver > min)
5799 			return true;
5800 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5801 			return true;
5802 	} else if (hw->api_maj_ver > maj) {
5803 		return true;
5804 	}
5805 
5806 	return false;
5807 }
5808 
5809 /**
5810  * ice_fw_supports_link_override
5811  * @hw: pointer to the hardware structure
5812  *
5813  * Checks if the firmware supports link override
5814  */
5815 bool ice_fw_supports_link_override(struct ice_hw *hw)
5816 {
5817 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5818 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5819 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5820 }
5821 
5822 /**
5823  * ice_get_link_default_override
5824  * @ldo: pointer to the link default override struct
5825  * @pi: pointer to the port info struct
5826  *
5827  * Gets the link default override for a port
5828  */
5829 int
5830 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5831 			      struct ice_port_info *pi)
5832 {
5833 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5834 	struct ice_hw *hw = pi->hw;
5835 	int status;
5836 
5837 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5838 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5839 	if (status) {
5840 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5841 		return status;
5842 	}
5843 
5844 	/* Each port has its own config; calculate for our port */
5845 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5846 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5847 
5848 	/* link options first */
5849 	status = ice_read_sr_word(hw, tlv_start, &buf);
5850 	if (status) {
5851 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5852 		return status;
5853 	}
5854 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5855 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5856 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5857 
5858 	/* link PHY config */
5859 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5860 	status = ice_read_sr_word(hw, offset, &buf);
5861 	if (status) {
5862 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5863 		return status;
5864 	}
5865 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5866 
5867 	/* PHY types low */
5868 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5869 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5870 		status = ice_read_sr_word(hw, (offset + i), &buf);
5871 		if (status) {
5872 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5873 			return status;
5874 		}
5875 		/* shift 16 bits at a time to fill 64 bits */
5876 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5877 	}
5878 
5879 	/* PHY types high */
5880 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5881 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5882 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5883 		status = ice_read_sr_word(hw, (offset + i), &buf);
5884 		if (status) {
5885 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5886 			return status;
5887 		}
5888 		/* shift 16 bits at a time to fill 64 bits */
5889 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5890 	}
5891 
5892 	return status;
5893 }
5894 
5895 /**
5896  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5897  * @caps: get PHY capability data
5898  */
5899 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5900 {
5901 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5902 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5903 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5904 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5905 		return true;
5906 
5907 	return false;
5908 }
5909 
5910 /**
5911  * ice_aq_set_lldp_mib - Set the LLDP MIB
5912  * @hw: pointer to the HW struct
5913  * @mib_type: Local, Remote or both Local and Remote MIBs
5914  * @buf: pointer to the caller-supplied buffer to store the MIB block
5915  * @buf_size: size of the buffer (in bytes)
5916  * @cd: pointer to command details structure or NULL
5917  *
5918  * Set the LLDP MIB. (0x0A08)
5919  */
5920 int
5921 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5922 		    struct ice_sq_cd *cd)
5923 {
5924 	struct ice_aqc_lldp_set_local_mib *cmd;
5925 	struct ice_aq_desc desc;
5926 
5927 	cmd = &desc.params.lldp_set_mib;
5928 
5929 	if (buf_size == 0 || !buf)
5930 		return -EINVAL;
5931 
5932 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5933 
5934 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5935 	desc.datalen = cpu_to_le16(buf_size);
5936 
5937 	cmd->type = mib_type;
5938 	cmd->length = cpu_to_le16(buf_size);
5939 
5940 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5941 }
5942 
5943 /**
5944  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5945  * @hw: pointer to HW struct
5946  */
5947 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5948 {
5949 	if (hw->mac_type != ICE_MAC_E810)
5950 		return false;
5951 
5952 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5953 				     ICE_FW_API_LLDP_FLTR_MIN,
5954 				     ICE_FW_API_LLDP_FLTR_PATCH);
5955 }
5956 
5957 /**
5958  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5959  * @hw: pointer to HW struct
5960  * @vsi_num: absolute HW index for VSI
5961  * @add: boolean for if adding or removing a filter
5962  */
5963 int
5964 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5965 {
5966 	struct ice_aqc_lldp_filter_ctrl *cmd;
5967 	struct ice_aq_desc desc;
5968 
5969 	cmd = &desc.params.lldp_filter_ctrl;
5970 
5971 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5972 
5973 	if (add)
5974 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5975 	else
5976 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5977 
5978 	cmd->vsi_num = cpu_to_le16(vsi_num);
5979 
5980 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5981 }
5982 
5983 /**
5984  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5985  * @hw: pointer to HW struct
5986  */
5987 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5988 {
5989 	struct ice_aq_desc desc;
5990 
5991 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5992 
5993 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5994 }
5995 
5996 /**
5997  * ice_fw_supports_report_dflt_cfg
5998  * @hw: pointer to the hardware structure
5999  *
6000  * Checks if the firmware supports report default configuration
6001  */
6002 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6003 {
6004 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6005 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6006 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6007 }
6008 
6009 /* each of the indexes into the following array match the speed of a return
6010  * value from the list of AQ returned speeds like the range:
6011  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6012  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6013  * array. The array is defined as 15 elements long because the link_speed
6014  * returned by the firmware is a 16 bit * value, but is indexed
6015  * by [fls(speed) - 1]
6016  */
6017 static const u32 ice_aq_to_link_speed[] = {
6018 	SPEED_10,	/* BIT(0) */
6019 	SPEED_100,
6020 	SPEED_1000,
6021 	SPEED_2500,
6022 	SPEED_5000,
6023 	SPEED_10000,
6024 	SPEED_20000,
6025 	SPEED_25000,
6026 	SPEED_40000,
6027 	SPEED_50000,
6028 	SPEED_100000,	/* BIT(10) */
6029 	SPEED_200000,
6030 };
6031 
6032 /**
6033  * ice_get_link_speed - get integer speed from table
6034  * @index: array index from fls(aq speed) - 1
6035  *
6036  * Returns: u32 value containing integer speed
6037  */
6038 u32 ice_get_link_speed(u16 index)
6039 {
6040 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6041 		return 0;
6042 
6043 	return ice_aq_to_link_speed[index];
6044 }
6045