xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 515c0ead788f4118a91b3ae55fe51f95543553ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10 
11 #define ICE_PF_RESET_WAIT_COUNT	300
12 #define ICE_MAX_NETLIST_SIZE	10
13 
14 static const char * const ice_link_mode_str_low[] = {
15 	[0] = "100BASE_TX",
16 	[1] = "100M_SGMII",
17 	[2] = "1000BASE_T",
18 	[3] = "1000BASE_SX",
19 	[4] = "1000BASE_LX",
20 	[5] = "1000BASE_KX",
21 	[6] = "1G_SGMII",
22 	[7] = "2500BASE_T",
23 	[8] = "2500BASE_X",
24 	[9] = "2500BASE_KX",
25 	[10] = "5GBASE_T",
26 	[11] = "5GBASE_KR",
27 	[12] = "10GBASE_T",
28 	[13] = "10G_SFI_DA",
29 	[14] = "10GBASE_SR",
30 	[15] = "10GBASE_LR",
31 	[16] = "10GBASE_KR_CR1",
32 	[17] = "10G_SFI_AOC_ACC",
33 	[18] = "10G_SFI_C2C",
34 	[19] = "25GBASE_T",
35 	[20] = "25GBASE_CR",
36 	[21] = "25GBASE_CR_S",
37 	[22] = "25GBASE_CR1",
38 	[23] = "25GBASE_SR",
39 	[24] = "25GBASE_LR",
40 	[25] = "25GBASE_KR",
41 	[26] = "25GBASE_KR_S",
42 	[27] = "25GBASE_KR1",
43 	[28] = "25G_AUI_AOC_ACC",
44 	[29] = "25G_AUI_C2C",
45 	[30] = "40GBASE_CR4",
46 	[31] = "40GBASE_SR4",
47 	[32] = "40GBASE_LR4",
48 	[33] = "40GBASE_KR4",
49 	[34] = "40G_XLAUI_AOC_ACC",
50 	[35] = "40G_XLAUI",
51 	[36] = "50GBASE_CR2",
52 	[37] = "50GBASE_SR2",
53 	[38] = "50GBASE_LR2",
54 	[39] = "50GBASE_KR2",
55 	[40] = "50G_LAUI2_AOC_ACC",
56 	[41] = "50G_LAUI2",
57 	[42] = "50G_AUI2_AOC_ACC",
58 	[43] = "50G_AUI2",
59 	[44] = "50GBASE_CP",
60 	[45] = "50GBASE_SR",
61 	[46] = "50GBASE_FR",
62 	[47] = "50GBASE_LR",
63 	[48] = "50GBASE_KR_PAM4",
64 	[49] = "50G_AUI1_AOC_ACC",
65 	[50] = "50G_AUI1",
66 	[51] = "100GBASE_CR4",
67 	[52] = "100GBASE_SR4",
68 	[53] = "100GBASE_LR4",
69 	[54] = "100GBASE_KR4",
70 	[55] = "100G_CAUI4_AOC_ACC",
71 	[56] = "100G_CAUI4",
72 	[57] = "100G_AUI4_AOC_ACC",
73 	[58] = "100G_AUI4",
74 	[59] = "100GBASE_CR_PAM4",
75 	[60] = "100GBASE_KR_PAM4",
76 	[61] = "100GBASE_CP2",
77 	[62] = "100GBASE_SR2",
78 	[63] = "100GBASE_DR",
79 };
80 
81 static const char * const ice_link_mode_str_high[] = {
82 	[0] = "100GBASE_KR2_PAM4",
83 	[1] = "100G_CAUI2_AOC_ACC",
84 	[2] = "100G_CAUI2",
85 	[3] = "100G_AUI2_AOC_ACC",
86 	[4] = "100G_AUI2",
87 };
88 
89 /**
90  * ice_dump_phy_type - helper function to dump phy_type
91  * @hw: pointer to the HW structure
92  * @low: 64 bit value for phy_type_low
93  * @high: 64 bit value for phy_type_high
94  * @prefix: prefix string to differentiate multiple dumps
95  */
96 static void
97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100 
101 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 		if (low & BIT_ULL(i))
103 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
104 				  prefix, i, ice_link_mode_str_low[i]);
105 	}
106 
107 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108 
109 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 		if (high & BIT_ULL(i))
111 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
112 				  prefix, i, ice_link_mode_str_high[i]);
113 	}
114 }
115 
116 /**
117  * ice_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the MAC type of the adapter based on the
121  * vendor ID and device ID stored in the HW structure.
122  */
123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 		return -ENODEV;
127 
128 	switch (hw->device_id) {
129 	case ICE_DEV_ID_E810C_BACKPLANE:
130 	case ICE_DEV_ID_E810C_QSFP:
131 	case ICE_DEV_ID_E810C_SFP:
132 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 	case ICE_DEV_ID_E810_XXV_QSFP:
134 	case ICE_DEV_ID_E810_XXV_SFP:
135 		hw->mac_type = ICE_MAC_E810;
136 		break;
137 	case ICE_DEV_ID_E823C_10G_BASE_T:
138 	case ICE_DEV_ID_E823C_BACKPLANE:
139 	case ICE_DEV_ID_E823C_QSFP:
140 	case ICE_DEV_ID_E823C_SFP:
141 	case ICE_DEV_ID_E823C_SGMII:
142 	case ICE_DEV_ID_E822C_10G_BASE_T:
143 	case ICE_DEV_ID_E822C_BACKPLANE:
144 	case ICE_DEV_ID_E822C_QSFP:
145 	case ICE_DEV_ID_E822C_SFP:
146 	case ICE_DEV_ID_E822C_SGMII:
147 	case ICE_DEV_ID_E822L_10G_BASE_T:
148 	case ICE_DEV_ID_E822L_BACKPLANE:
149 	case ICE_DEV_ID_E822L_SFP:
150 	case ICE_DEV_ID_E822L_SGMII:
151 	case ICE_DEV_ID_E823L_10G_BASE_T:
152 	case ICE_DEV_ID_E823L_1GBE:
153 	case ICE_DEV_ID_E823L_BACKPLANE:
154 	case ICE_DEV_ID_E823L_QSFP:
155 	case ICE_DEV_ID_E823L_SFP:
156 		hw->mac_type = ICE_MAC_GENERIC;
157 		break;
158 	case ICE_DEV_ID_E825C_BACKPLANE:
159 	case ICE_DEV_ID_E825C_QSFP:
160 	case ICE_DEV_ID_E825C_SFP:
161 	case ICE_DEV_ID_E825C_SGMII:
162 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 		break;
164 	case ICE_DEV_ID_E830CC_BACKPLANE:
165 	case ICE_DEV_ID_E830CC_QSFP56:
166 	case ICE_DEV_ID_E830CC_SFP:
167 	case ICE_DEV_ID_E830CC_SFP_DD:
168 	case ICE_DEV_ID_E830C_BACKPLANE:
169 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 	case ICE_DEV_ID_E830C_QSFP:
171 	case ICE_DEV_ID_E830_XXV_QSFP:
172 	case ICE_DEV_ID_E830C_SFP:
173 	case ICE_DEV_ID_E830_XXV_SFP:
174 	case ICE_DEV_ID_E835CC_BACKPLANE:
175 	case ICE_DEV_ID_E835CC_QSFP56:
176 	case ICE_DEV_ID_E835CC_SFP:
177 	case ICE_DEV_ID_E835C_BACKPLANE:
178 	case ICE_DEV_ID_E835C_QSFP:
179 	case ICE_DEV_ID_E835C_SFP:
180 	case ICE_DEV_ID_E835_L_BACKPLANE:
181 	case ICE_DEV_ID_E835_L_QSFP:
182 	case ICE_DEV_ID_E835_L_SFP:
183 		hw->mac_type = ICE_MAC_E830;
184 		break;
185 	default:
186 		hw->mac_type = ICE_MAC_UNKNOWN;
187 		break;
188 	}
189 
190 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 	return 0;
192 }
193 
194 /**
195  * ice_is_generic_mac - check if device's mac_type is generic
196  * @hw: pointer to the hardware structure
197  *
198  * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199  */
200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 	return (hw->mac_type == ICE_MAC_GENERIC ||
203 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205 
206 /**
207  * ice_is_pf_c827 - check if pf contains c827 phy
208  * @hw: pointer to the hw struct
209  *
210  * Return: true if the device has c827 phy.
211  */
212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 	struct ice_aqc_get_link_topo cmd = {};
215 	u8 node_part_number;
216 	u16 node_handle;
217 	int status;
218 
219 	if (hw->mac_type != ICE_MAC_E810)
220 		return false;
221 
222 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 		return true;
224 
225 	cmd.addr.topo_params.node_type_ctx =
226 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 	cmd.addr.topo_params.index = 0;
229 
230 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 					 &node_handle);
232 
233 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 		return false;
235 
236 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 		return true;
238 
239 	return false;
240 }
241 
242 /**
243  * ice_clear_pf_cfg - Clear PF configuration
244  * @hw: pointer to the hardware structure
245  *
246  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247  * configuration, flow director filters, etc.).
248  */
249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 	struct libie_aq_desc desc;
252 
253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254 
255 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257 
258 /**
259  * ice_aq_manage_mac_read - manage MAC address read command
260  * @hw: pointer to the HW struct
261  * @buf: a virtual buffer to hold the manage MAC read response
262  * @buf_size: Size of the virtual buffer
263  * @cd: pointer to command details structure or NULL
264  *
265  * This function is used to return per PF station MAC address (0x0107).
266  * NOTE: Upon successful completion of this command, MAC address information
267  * is returned in user specified buffer. Please interpret user specified
268  * buffer as "manage_mac_read" response.
269  * Response such as various MAC addresses are stored in HW struct (port.mac)
270  * ice_discover_dev_caps is expected to be called before this function is
271  * called.
272  */
273 static int
274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 		       struct ice_sq_cd *cd)
276 {
277 	struct ice_aqc_manage_mac_read_resp *resp;
278 	struct ice_aqc_manage_mac_read *cmd;
279 	struct libie_aq_desc desc;
280 	int status;
281 	u16 flags;
282 	u8 i;
283 
284 	cmd = libie_aq_raw(&desc);
285 
286 	if (buf_size < sizeof(*resp))
287 		return -EINVAL;
288 
289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290 
291 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 	if (status)
293 		return status;
294 
295 	resp = buf;
296 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297 
298 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 		return -EIO;
301 	}
302 
303 	/* A single port can report up to two (LAN and WoL) addresses */
304 	for (i = 0; i < cmd->num_addr; i++)
305 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 			ether_addr_copy(hw->port_info->mac.lan_addr,
307 					resp[i].mac_addr);
308 			ether_addr_copy(hw->port_info->mac.perm_addr,
309 					resp[i].mac_addr);
310 			break;
311 		}
312 
313 	return 0;
314 }
315 
316 /**
317  * ice_aq_get_phy_caps - returns PHY capabilities
318  * @pi: port information structure
319  * @qual_mods: report qualified modules
320  * @report_mode: report mode capabilities
321  * @pcaps: structure for PHY capabilities to be filled
322  * @cd: pointer to command details structure or NULL
323  *
324  * Returns the various PHY capabilities supported on the Port (0x0600)
325  */
326 int
327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 		    struct ice_aqc_get_phy_caps_data *pcaps,
329 		    struct ice_sq_cd *cd)
330 {
331 	struct ice_aqc_get_phy_caps *cmd;
332 	u16 pcaps_size = sizeof(*pcaps);
333 	struct libie_aq_desc desc;
334 	const char *prefix;
335 	struct ice_hw *hw;
336 	int status;
337 
338 	cmd = libie_aq_raw(&desc);
339 
340 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 		return -EINVAL;
342 	hw = pi->hw;
343 
344 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 	    !ice_fw_supports_report_dflt_cfg(hw))
346 		return -EINVAL;
347 
348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349 
350 	if (qual_mods)
351 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352 
353 	cmd->param0 |= cpu_to_le16(report_mode);
354 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355 
356 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357 
358 	switch (report_mode) {
359 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 		prefix = "phy_caps_media";
361 		break;
362 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 		prefix = "phy_caps_no_media";
364 		break;
365 	case ICE_AQC_REPORT_ACTIVE_CFG:
366 		prefix = "phy_caps_active";
367 		break;
368 	case ICE_AQC_REPORT_DFLT_CFG:
369 		prefix = "phy_caps_default";
370 		break;
371 	default:
372 		prefix = "phy_caps_invalid";
373 	}
374 
375 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 			  le64_to_cpu(pcaps->phy_type_high), prefix);
377 
378 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 		  prefix, report_mode);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 		  pcaps->low_power_ctrl_an);
383 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 		  pcaps->eee_cap);
385 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 		  pcaps->eeer_value);
387 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 		  pcaps->link_fec_options);
389 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 		  prefix, pcaps->module_compliance_enforcement);
391 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 		  prefix, pcaps->extended_compliance_code);
393 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 		  pcaps->module_type[0]);
395 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 		  pcaps->module_type[1]);
397 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 		  pcaps->module_type[2]);
399 
400 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 		       sizeof(pi->phy.link_info.module_type));
405 	}
406 
407 	return status;
408 }
409 
410 /**
411  * ice_aq_get_link_topo_handle - get link topology node return status
412  * @pi: port information structure
413  * @node_type: requested node type
414  * @cd: pointer to command details structure or NULL
415  *
416  * Get link topology node return status for specified node type (0x06E0)
417  *
418  * Node type cage can be used to determine if cage is present. If AQC
419  * returns error (ENOENT), then no cage present. If no cage present, then
420  * connection type is backplane or BASE-T.
421  */
422 static int
423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 			    struct ice_sq_cd *cd)
425 {
426 	struct ice_aqc_get_link_topo *cmd;
427 	struct libie_aq_desc desc;
428 
429 	cmd = libie_aq_raw(&desc);
430 
431 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432 
433 	cmd->addr.topo_params.node_type_ctx =
434 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436 
437 	/* set node type */
438 	cmd->addr.topo_params.node_type_ctx |=
439 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440 
441 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443 
444 /**
445  * ice_aq_get_netlist_node
446  * @hw: pointer to the hw struct
447  * @cmd: get_link_topo AQ structure
448  * @node_part_number: output node part number if node found
449  * @node_handle: output node handle parameter if node found
450  *
451  * Get netlist node handle.
452  */
453 int
454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 			u8 *node_part_number, u16 *node_handle)
456 {
457 	struct ice_aqc_get_link_topo *resp;
458 	struct libie_aq_desc desc;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 	resp = libie_aq_raw(&desc);
462 	*resp = *cmd;
463 
464 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 		return -EINTR;
466 
467 	if (node_handle)
468 		*node_handle = le16_to_cpu(resp->addr.handle);
469 	if (node_part_number)
470 		*node_part_number = resp->node_part_num;
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_find_netlist_node
477  * @hw: pointer to the hw struct
478  * @node_type: type of netlist node to look for
479  * @ctx: context of the search
480  * @node_part_number: node part number to look for
481  * @node_handle: output parameter if node found - optional
482  *
483  * Scan the netlist for a node handle of the given node type and part number.
484  *
485  * If node_handle is non-NULL it will be modified on function exit. It is only
486  * valid if the function returns zero, and should be ignored on any non-zero
487  * return value.
488  *
489  * Return:
490  * * 0 if the node is found,
491  * * -ENOENT if no handle was found,
492  * * negative error code on failure to access the AQ.
493  */
494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 				 u8 node_part_number, u16 *node_handle)
496 {
497 	u8 idx;
498 
499 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 		struct ice_aqc_get_link_topo cmd = {};
501 		u8 rec_node_part_number;
502 		int status;
503 
504 		cmd.addr.topo_params.node_type_ctx =
505 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 		cmd.addr.topo_params.index = idx;
508 
509 		status = ice_aq_get_netlist_node(hw, &cmd,
510 						 &rec_node_part_number,
511 						 node_handle);
512 		if (status)
513 			return status;
514 
515 		if (rec_node_part_number == node_part_number)
516 			return 0;
517 	}
518 
519 	return -ENOENT;
520 }
521 
522 /**
523  * ice_is_media_cage_present
524  * @pi: port information structure
525  *
526  * Returns true if media cage is present, else false. If no cage, then
527  * media type is backplane or BASE-T.
528  */
529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 	/* Node type cage can be used to determine if cage is present. If AQC
532 	 * returns error (ENOENT), then no cage present. If no cage present then
533 	 * connection type is backplane or BASE-T.
534 	 */
535 	return !ice_aq_get_link_topo_handle(pi,
536 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 					    NULL);
538 }
539 
540 /**
541  * ice_get_media_type - Gets media type
542  * @pi: port information structure
543  */
544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 	struct ice_link_status *hw_link_info;
547 
548 	if (!pi)
549 		return ICE_MEDIA_UNKNOWN;
550 
551 	hw_link_info = &pi->phy.link_info;
552 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 		/* If more than one media type is selected, report unknown */
554 		return ICE_MEDIA_UNKNOWN;
555 
556 	if (hw_link_info->phy_type_low) {
557 		/* 1G SGMII is a special case where some DA cable PHYs
558 		 * may show this as an option when it really shouldn't
559 		 * be since SGMII is meant to be between a MAC and a PHY
560 		 * in a backplane. Try to detect this case and handle it
561 		 */
562 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 			return ICE_MEDIA_DA;
568 
569 		switch (hw_link_info->phy_type_low) {
570 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 			return ICE_MEDIA_FIBER;
597 		case ICE_PHY_TYPE_LOW_100BASE_TX:
598 		case ICE_PHY_TYPE_LOW_1000BASE_T:
599 		case ICE_PHY_TYPE_LOW_2500BASE_T:
600 		case ICE_PHY_TYPE_LOW_5GBASE_T:
601 		case ICE_PHY_TYPE_LOW_10GBASE_T:
602 		case ICE_PHY_TYPE_LOW_25GBASE_T:
603 			return ICE_MEDIA_BASET;
604 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 			return ICE_MEDIA_DA;
615 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 		case ICE_PHY_TYPE_LOW_50G_AUI2:
619 		case ICE_PHY_TYPE_LOW_50G_AUI1:
620 		case ICE_PHY_TYPE_LOW_100G_AUI4:
621 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 			if (ice_is_media_cage_present(pi))
623 				return ICE_MEDIA_DA;
624 			fallthrough;
625 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 		case ICE_PHY_TYPE_LOW_2500BASE_X:
628 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 			return ICE_MEDIA_BACKPLANE;
639 		}
640 	} else {
641 		switch (hw_link_info->phy_type_high) {
642 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 			if (ice_is_media_cage_present(pi))
645 				return ICE_MEDIA_DA;
646 			fallthrough;
647 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 			return ICE_MEDIA_BACKPLANE;
649 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 			return ICE_MEDIA_FIBER;
652 		}
653 	}
654 	return ICE_MEDIA_UNKNOWN;
655 }
656 
657 /**
658  * ice_get_link_status_datalen
659  * @hw: pointer to the HW struct
660  *
661  * Returns datalength for the Get Link Status AQ command, which is bigger for
662  * newer adapter families handled by ice driver.
663  */
664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 	switch (hw->mac_type) {
667 	case ICE_MAC_E830:
668 		return ICE_AQC_LS_DATA_SIZE_V2;
669 	case ICE_MAC_E810:
670 	default:
671 		return ICE_AQC_LS_DATA_SIZE_V1;
672 	}
673 }
674 
675 /**
676  * ice_aq_get_link_info
677  * @pi: port information structure
678  * @ena_lse: enable/disable LinkStatusEvent reporting
679  * @link: pointer to link status structure - optional
680  * @cd: pointer to command details structure or NULL
681  *
682  * Get Link Status (0x607). Returns the link status of the adapter.
683  */
684 int
685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 		     struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 	struct ice_aqc_get_link_status_data link_data = { 0 };
689 	struct ice_aqc_get_link_status *resp;
690 	struct ice_link_status *li_old, *li;
691 	enum ice_media_type *hw_media_type;
692 	struct ice_fc_info *hw_fc_info;
693 	struct libie_aq_desc desc;
694 	bool tx_pause, rx_pause;
695 	struct ice_hw *hw;
696 	u16 cmd_flags;
697 	int status;
698 
699 	if (!pi)
700 		return -EINVAL;
701 	hw = pi->hw;
702 	li_old = &pi->phy.link_info_old;
703 	hw_media_type = &pi->phy.media_type;
704 	li = &pi->phy.link_info;
705 	hw_fc_info = &pi->fc;
706 
707 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 	resp = libie_aq_raw(&desc);
710 	resp->cmd_flags = cpu_to_le16(cmd_flags);
711 	resp->lport_num = pi->lport;
712 
713 	status = ice_aq_send_cmd(hw, &desc, &link_data,
714 				 ice_get_link_status_datalen(hw), cd);
715 	if (status)
716 		return status;
717 
718 	/* save off old link status information */
719 	*li_old = *li;
720 
721 	/* update current link status information */
722 	li->link_speed = le16_to_cpu(link_data.link_speed);
723 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 	*hw_media_type = ice_get_media_type(pi);
726 	li->link_info = link_data.link_info;
727 	li->link_cfg_err = link_data.link_cfg_err;
728 	li->an_info = link_data.an_info;
729 	li->ext_info = link_data.ext_info;
730 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 	li->topo_media_conflict = link_data.topo_media_conflict;
733 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 				      ICE_AQ_CFG_PACING_TYPE_M);
735 
736 	/* update fc info */
737 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 	if (tx_pause && rx_pause)
740 		hw_fc_info->current_mode = ICE_FC_FULL;
741 	else if (tx_pause)
742 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 	else if (rx_pause)
744 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 	else
746 		hw_fc_info->current_mode = ICE_FC_NONE;
747 
748 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749 
750 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
752 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
753 		  (unsigned long long)li->phy_type_low);
754 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
755 		  (unsigned long long)li->phy_type_high);
756 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
757 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
758 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
759 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
760 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
761 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
762 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
763 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
764 		  li->max_frame_size);
765 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
766 
767 	/* save link status information */
768 	if (link)
769 		*link = *li;
770 
771 	/* flag cleared so calling functions don't call AQ again */
772 	pi->phy.get_link_info = false;
773 
774 	return 0;
775 }
776 
777 /**
778  * ice_fill_tx_timer_and_fc_thresh
779  * @hw: pointer to the HW struct
780  * @cmd: pointer to MAC cfg structure
781  *
782  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783  * descriptor
784  */
785 static void
786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 				struct ice_aqc_set_mac_cfg *cmd)
788 {
789 	u32 val, fc_thres_m;
790 
791 	/* We read back the transmit timer and FC threshold value of
792 	 * LFC. Thus, we will use index =
793 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 	 *
795 	 * Also, because we are operating on transmit timer and FC
796 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 	 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800 
801 	if (hw->mac_type == ICE_MAC_E830) {
802 		/* Retrieve the transmit timer */
803 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 		cmd->tx_tmr_value =
805 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806 
807 		/* Retrieve the fc threshold */
808 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 	} else {
811 		/* Retrieve the transmit timer */
812 		val = rd32(hw,
813 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 		cmd->tx_tmr_value =
815 			le16_encode_bits(val,
816 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817 
818 		/* Retrieve the fc threshold */
819 		val = rd32(hw,
820 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 	}
823 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825 
826 /**
827  * ice_aq_set_mac_cfg
828  * @hw: pointer to the HW struct
829  * @max_frame_size: Maximum Frame Size to be supported
830  * @cd: pointer to command details structure or NULL
831  *
832  * Set MAC configuration (0x0603)
833  */
834 int
835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 	struct ice_aqc_set_mac_cfg *cmd;
838 	struct libie_aq_desc desc;
839 
840 	cmd = libie_aq_raw(&desc);
841 
842 	if (max_frame_size == 0)
843 		return -EINVAL;
844 
845 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846 
847 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
848 
849 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850 
851 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853 
854 /**
855  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856  * @hw: pointer to the HW struct
857  */
858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 	struct ice_switch_info *sw;
861 	int status;
862 
863 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 				       sizeof(*hw->switch_info), GFP_KERNEL);
865 	sw = hw->switch_info;
866 
867 	if (!sw)
868 		return -ENOMEM;
869 
870 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 	sw->prof_res_bm_init = 0;
872 
873 	/* Initialize recipe count with default recipes read from NVM */
874 	sw->recp_cnt = ICE_SW_LKUP_LAST;
875 
876 	status = ice_init_def_sw_recp(hw);
877 	if (status) {
878 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 		return status;
880 	}
881 	return 0;
882 }
883 
884 /**
885  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886  * @hw: pointer to the HW struct
887  */
888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 	struct ice_switch_info *sw = hw->switch_info;
891 	struct ice_vsi_list_map_info *v_pos_map;
892 	struct ice_vsi_list_map_info *v_tmp_map;
893 	struct ice_sw_recipe *recps;
894 	u8 i;
895 
896 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 				 list_entry) {
898 		list_del(&v_pos_map->list_entry);
899 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 	}
901 	recps = sw->recp_list;
902 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 		recps[i].root_rid = i;
904 
905 		if (recps[i].adv_rule) {
906 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908 
909 			mutex_destroy(&recps[i].filt_rule_lock);
910 			list_for_each_entry_safe(lst_itr, tmp_entry,
911 						 &recps[i].filt_rules,
912 						 list_entry) {
913 				list_del(&lst_itr->list_entry);
914 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 			}
917 		} else {
918 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919 
920 			mutex_destroy(&recps[i].filt_rule_lock);
921 			list_for_each_entry_safe(lst_itr, tmp_entry,
922 						 &recps[i].filt_rules,
923 						 list_entry) {
924 				list_del(&lst_itr->list_entry);
925 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 			}
927 		}
928 	}
929 	ice_rm_all_sw_replay_rule_info(hw);
930 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 	devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933 
934 /**
935  * ice_get_itr_intrl_gran
936  * @hw: pointer to the HW struct
937  *
938  * Determines the ITR/INTRL granularities based on the maximum aggregate
939  * bandwidth according to the device's configuration during power-on.
940  */
941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 				  rd32(hw, GL_PWR_MODE_CTL));
945 
946 	switch (max_agg_bw) {
947 	case ICE_MAX_AGG_BW_200G:
948 	case ICE_MAX_AGG_BW_100G:
949 	case ICE_MAX_AGG_BW_50G:
950 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 		break;
953 	case ICE_MAX_AGG_BW_25G:
954 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 		break;
957 	}
958 }
959 
960 /**
961  * ice_wait_for_fw - wait for full FW readiness
962  * @hw: pointer to the hardware structure
963  * @timeout: milliseconds that can elapse before timing out
964  *
965  * Return: 0 on success, -ETIMEDOUT on timeout.
966  */
967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 	int fw_loading;
970 	u32 elapsed = 0;
971 
972 	while (elapsed <= timeout) {
973 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974 
975 		/* firmware was not yet loaded, we have to wait more */
976 		if (fw_loading) {
977 			elapsed += 100;
978 			msleep(100);
979 			continue;
980 		}
981 		return 0;
982 	}
983 
984 	return -ETIMEDOUT;
985 }
986 
987 static int __fwlog_send_cmd(void *priv, struct libie_aq_desc *desc, void *buf,
988 			    u16 size)
989 {
990 	struct ice_hw *hw = priv;
991 
992 	return ice_aq_send_cmd(hw, desc, buf, size, NULL);
993 }
994 
995 static int __fwlog_init(struct ice_hw *hw)
996 {
997 	struct ice_pf *pf = hw->back;
998 	struct libie_fwlog_api api = {
999 		.pdev = pf->pdev,
1000 		.send_cmd = __fwlog_send_cmd,
1001 		.priv = hw,
1002 	};
1003 	int err;
1004 
1005 	/* only support fw log commands on PF 0 */
1006 	if (hw->bus.func)
1007 		return -EINVAL;
1008 
1009 	err = ice_debugfs_pf_init(pf);
1010 	if (err)
1011 		return err;
1012 
1013 	api.debugfs_root = pf->ice_debugfs_pf;
1014 
1015 	return libie_fwlog_init(&hw->fwlog, &api);
1016 }
1017 
1018 /**
1019  * ice_init_hw - main hardware initialization routine
1020  * @hw: pointer to the hardware structure
1021  */
1022 int ice_init_hw(struct ice_hw *hw)
1023 {
1024 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1025 	void *mac_buf __free(kfree) = NULL;
1026 	u16 mac_buf_len;
1027 	int status;
1028 
1029 	/* Set MAC type based on DeviceID */
1030 	status = ice_set_mac_type(hw);
1031 	if (status)
1032 		return status;
1033 
1034 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1035 
1036 	status = ice_reset(hw, ICE_RESET_PFR);
1037 	if (status)
1038 		return status;
1039 
1040 	ice_get_itr_intrl_gran(hw);
1041 
1042 	status = ice_create_all_ctrlq(hw);
1043 	if (status)
1044 		goto err_unroll_cqinit;
1045 
1046 	status = __fwlog_init(hw);
1047 	if (status)
1048 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1049 			  status);
1050 
1051 	status = ice_clear_pf_cfg(hw);
1052 	if (status)
1053 		goto err_unroll_cqinit;
1054 
1055 	/* Set bit to enable Flow Director filters */
1056 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1057 	INIT_LIST_HEAD(&hw->fdir_list_head);
1058 
1059 	ice_clear_pxe_mode(hw);
1060 
1061 	status = ice_init_nvm(hw);
1062 	if (status)
1063 		goto err_unroll_cqinit;
1064 
1065 	status = ice_get_caps(hw);
1066 	if (status)
1067 		goto err_unroll_cqinit;
1068 
1069 	if (!hw->port_info)
1070 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1071 					     sizeof(*hw->port_info),
1072 					     GFP_KERNEL);
1073 	if (!hw->port_info) {
1074 		status = -ENOMEM;
1075 		goto err_unroll_cqinit;
1076 	}
1077 
1078 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1079 	/* set the back pointer to HW */
1080 	hw->port_info->hw = hw;
1081 
1082 	/* Initialize port_info struct with switch configuration data */
1083 	status = ice_get_initial_sw_cfg(hw);
1084 	if (status)
1085 		goto err_unroll_alloc;
1086 
1087 	hw->evb_veb = true;
1088 
1089 	/* init xarray for identifying scheduling nodes uniquely */
1090 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1091 
1092 	/* Query the allocated resources for Tx scheduler */
1093 	status = ice_sched_query_res_alloc(hw);
1094 	if (status) {
1095 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1096 		goto err_unroll_alloc;
1097 	}
1098 	ice_sched_get_psm_clk_freq(hw);
1099 
1100 	/* Initialize port_info struct with scheduler data */
1101 	status = ice_sched_init_port(hw->port_info);
1102 	if (status)
1103 		goto err_unroll_sched;
1104 
1105 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1106 	if (!pcaps) {
1107 		status = -ENOMEM;
1108 		goto err_unroll_sched;
1109 	}
1110 
1111 	/* Initialize port_info struct with PHY capabilities */
1112 	status = ice_aq_get_phy_caps(hw->port_info, false,
1113 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1114 				     NULL);
1115 	if (status)
1116 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1117 			 status);
1118 
1119 	/* Initialize port_info struct with link information */
1120 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1121 	if (status)
1122 		goto err_unroll_sched;
1123 
1124 	/* need a valid SW entry point to build a Tx tree */
1125 	if (!hw->sw_entry_point_layer) {
1126 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1127 		status = -EIO;
1128 		goto err_unroll_sched;
1129 	}
1130 	INIT_LIST_HEAD(&hw->agg_list);
1131 	/* Initialize max burst size */
1132 	if (!hw->max_burst_size)
1133 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1134 
1135 	status = ice_init_fltr_mgmt_struct(hw);
1136 	if (status)
1137 		goto err_unroll_sched;
1138 
1139 	/* Get MAC information */
1140 	/* A single port can report up to two (LAN and WoL) addresses */
1141 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1142 			  GFP_KERNEL);
1143 	if (!mac_buf) {
1144 		status = -ENOMEM;
1145 		goto err_unroll_fltr_mgmt_struct;
1146 	}
1147 
1148 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1149 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1150 
1151 	if (status)
1152 		goto err_unroll_fltr_mgmt_struct;
1153 	/* enable jumbo frame support at MAC level */
1154 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1155 	if (status)
1156 		goto err_unroll_fltr_mgmt_struct;
1157 	/* Obtain counter base index which would be used by flow director */
1158 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1159 	if (status)
1160 		goto err_unroll_fltr_mgmt_struct;
1161 	status = ice_init_hw_tbls(hw);
1162 	if (status)
1163 		goto err_unroll_fltr_mgmt_struct;
1164 	mutex_init(&hw->tnl_lock);
1165 	ice_init_chk_recipe_reuse_support(hw);
1166 
1167 	/* Some cards require longer initialization times
1168 	 * due to necessity of loading FW from an external source.
1169 	 * This can take even half a minute.
1170 	 */
1171 	if (ice_is_pf_c827(hw)) {
1172 		status = ice_wait_for_fw(hw, 30000);
1173 		if (status) {
1174 			dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1175 			goto err_unroll_fltr_mgmt_struct;
1176 		}
1177 	}
1178 
1179 	hw->lane_num = ice_get_phy_lane_number(hw);
1180 
1181 	return 0;
1182 err_unroll_fltr_mgmt_struct:
1183 	ice_cleanup_fltr_mgmt_struct(hw);
1184 err_unroll_sched:
1185 	ice_sched_cleanup_all(hw);
1186 err_unroll_alloc:
1187 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1188 err_unroll_cqinit:
1189 	ice_destroy_all_ctrlq(hw);
1190 	return status;
1191 }
1192 
1193 static void __fwlog_deinit(struct ice_hw *hw)
1194 {
1195 	/* only support fw log commands on PF 0 */
1196 	if (hw->bus.func)
1197 		return;
1198 
1199 	ice_debugfs_pf_deinit(hw->back);
1200 	libie_fwlog_deinit(&hw->fwlog);
1201 }
1202 
1203 /**
1204  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1205  * @hw: pointer to the hardware structure
1206  *
1207  * This should be called only during nominal operation, not as a result of
1208  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1209  * applicable initializations if it fails for any reason.
1210  */
1211 void ice_deinit_hw(struct ice_hw *hw)
1212 {
1213 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1214 	ice_cleanup_fltr_mgmt_struct(hw);
1215 
1216 	ice_sched_cleanup_all(hw);
1217 	ice_sched_clear_agg(hw);
1218 	ice_free_seg(hw);
1219 	ice_free_hw_tbls(hw);
1220 	mutex_destroy(&hw->tnl_lock);
1221 	__fwlog_deinit(hw);
1222 	ice_destroy_all_ctrlq(hw);
1223 
1224 	/* Clear VSI contexts if not already cleared */
1225 	ice_clear_all_vsi_ctx(hw);
1226 }
1227 
1228 /**
1229  * ice_check_reset - Check to see if a global reset is complete
1230  * @hw: pointer to the hardware structure
1231  */
1232 int ice_check_reset(struct ice_hw *hw)
1233 {
1234 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1235 
1236 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1237 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1238 	 * Add 1sec for outstanding AQ commands that can take a long time.
1239 	 */
1240 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1241 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1242 
1243 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1244 		mdelay(100);
1245 		reg = rd32(hw, GLGEN_RSTAT);
1246 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1247 			break;
1248 	}
1249 
1250 	if (cnt == grst_timeout) {
1251 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1252 		return -EIO;
1253 	}
1254 
1255 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1256 				 GLNVM_ULD_PCIER_DONE_1_M |\
1257 				 GLNVM_ULD_CORER_DONE_M |\
1258 				 GLNVM_ULD_GLOBR_DONE_M |\
1259 				 GLNVM_ULD_POR_DONE_M |\
1260 				 GLNVM_ULD_POR_DONE_1_M |\
1261 				 GLNVM_ULD_PCIER_DONE_2_M)
1262 
1263 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1264 					  GLNVM_ULD_PE_DONE_M : 0);
1265 
1266 	/* Device is Active; check Global Reset processes are done */
1267 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1268 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1269 		if (reg == uld_mask) {
1270 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1271 			break;
1272 		}
1273 		mdelay(10);
1274 	}
1275 
1276 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1277 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1278 			  reg);
1279 		return -EIO;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 /**
1286  * ice_pf_reset - Reset the PF
1287  * @hw: pointer to the hardware structure
1288  *
1289  * If a global reset has been triggered, this function checks
1290  * for its completion and then issues the PF reset
1291  */
1292 static int ice_pf_reset(struct ice_hw *hw)
1293 {
1294 	u32 cnt, reg;
1295 
1296 	/* If at function entry a global reset was already in progress, i.e.
1297 	 * state is not 'device active' or any of the reset done bits are not
1298 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1299 	 * global reset is done.
1300 	 */
1301 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1302 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1303 		/* poll on global reset currently in progress until done */
1304 		if (ice_check_reset(hw))
1305 			return -EIO;
1306 
1307 		return 0;
1308 	}
1309 
1310 	/* Reset the PF */
1311 	reg = rd32(hw, PFGEN_CTRL);
1312 
1313 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1314 
1315 	/* Wait for the PFR to complete. The wait time is the global config lock
1316 	 * timeout plus the PFR timeout which will account for a possible reset
1317 	 * that is occurring during a download package operation.
1318 	 */
1319 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1320 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1321 		reg = rd32(hw, PFGEN_CTRL);
1322 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1323 			break;
1324 
1325 		mdelay(1);
1326 	}
1327 
1328 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1329 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1330 		return -EIO;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * ice_reset - Perform different types of reset
1338  * @hw: pointer to the hardware structure
1339  * @req: reset request
1340  *
1341  * This function triggers a reset as specified by the req parameter.
1342  *
1343  * Note:
1344  * If anything other than a PF reset is triggered, PXE mode is restored.
1345  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1346  * interface has been restored in the rebuild flow.
1347  */
1348 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1349 {
1350 	u32 val = 0;
1351 
1352 	switch (req) {
1353 	case ICE_RESET_PFR:
1354 		return ice_pf_reset(hw);
1355 	case ICE_RESET_CORER:
1356 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1357 		val = GLGEN_RTRIG_CORER_M;
1358 		break;
1359 	case ICE_RESET_GLOBR:
1360 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1361 		val = GLGEN_RTRIG_GLOBR_M;
1362 		break;
1363 	default:
1364 		return -EINVAL;
1365 	}
1366 
1367 	val |= rd32(hw, GLGEN_RTRIG);
1368 	wr32(hw, GLGEN_RTRIG, val);
1369 	ice_flush(hw);
1370 
1371 	/* wait for the FW to be ready */
1372 	return ice_check_reset(hw);
1373 }
1374 
1375 /**
1376  * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1377  * @hw: pointer to the hardware structure
1378  * @rxq_ctx: pointer to the packed Rx queue context
1379  * @rxq_index: the index of the Rx queue
1380  */
1381 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1382 				   const ice_rxq_ctx_buf_t *rxq_ctx,
1383 				   u32 rxq_index)
1384 {
1385 	/* Copy each dword separately to HW */
1386 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1387 		u32 ctx = ((const u32 *)rxq_ctx)[i];
1388 
1389 		wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1390 
1391 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1392 	}
1393 }
1394 
1395 /**
1396  * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1397  * @hw: pointer to the hardware structure
1398  * @rxq_ctx: pointer to the packed Rx queue context
1399  * @rxq_index: the index of the Rx queue
1400  */
1401 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1402 				     ice_rxq_ctx_buf_t *rxq_ctx,
1403 				     u32 rxq_index)
1404 {
1405 	u32 *ctx = (u32 *)rxq_ctx;
1406 
1407 	/* Copy each dword separately from HW */
1408 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1409 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1410 
1411 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1412 	}
1413 }
1414 
1415 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1416 	PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1417 
1418 /* LAN Rx Queue Context */
1419 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1420 				 /* Field		Width	LSB */
1421 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1422 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1423 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1424 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1425 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1426 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1427 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1428 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1429 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1430 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1431 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1432 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1433 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1434 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1435 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1436 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1437 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1438 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1439 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1440 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1441 };
1442 
1443 /**
1444  * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1445  * @ctx: the Rx queue context to pack
1446  * @buf: the HW buffer to pack into
1447  *
1448  * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1449  * bit-packed HW layout.
1450  */
1451 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1452 			     ice_rxq_ctx_buf_t *buf)
1453 {
1454 	pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1455 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1456 }
1457 
1458 /**
1459  * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1460  * @buf: the HW buffer to unpack from
1461  * @ctx: the Rx queue context to unpack
1462  *
1463  * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1464  * structure.
1465  */
1466 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1467 			       struct ice_rlan_ctx *ctx)
1468 {
1469 	unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1470 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1471 }
1472 
1473 /**
1474  * ice_write_rxq_ctx - Write Rx Queue context to hardware
1475  * @hw: pointer to the hardware structure
1476  * @rlan_ctx: pointer to the unpacked Rx queue context
1477  * @rxq_index: the index of the Rx queue
1478  *
1479  * Pack the sparse Rx Queue context into dense hardware format and write it
1480  * into the HW register space.
1481  *
1482  * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1483  */
1484 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1485 		      u32 rxq_index)
1486 {
1487 	ice_rxq_ctx_buf_t buf = {};
1488 
1489 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1490 		return -EINVAL;
1491 
1492 	ice_pack_rxq_ctx(rlan_ctx, &buf);
1493 	ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * ice_read_rxq_ctx - Read Rx queue context from HW
1500  * @hw: pointer to the hardware structure
1501  * @rlan_ctx: pointer to the Rx queue context
1502  * @rxq_index: the index of the Rx queue
1503  *
1504  * Read the Rx queue context from the hardware registers, and unpack it into
1505  * the sparse Rx queue context structure.
1506  *
1507  * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1508  */
1509 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1510 		     u32 rxq_index)
1511 {
1512 	ice_rxq_ctx_buf_t buf = {};
1513 
1514 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1515 		return -EINVAL;
1516 
1517 	ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1518 	ice_unpack_rxq_ctx(&buf, rlan_ctx);
1519 
1520 	return 0;
1521 }
1522 
1523 /* LAN Tx Queue Context */
1524 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1525 				    /* Field			Width	LSB */
1526 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1527 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1528 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1529 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1530 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1531 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1532 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1533 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1534 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1535 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1536 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1537 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1538 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1539 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1540 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1541 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1542 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1543 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1544 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1545 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1546 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1547 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1548 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1549 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1550 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1551 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1552 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1553 };
1554 
1555 /**
1556  * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1557  * @ctx: the Tx queue context to pack
1558  * @buf: the Admin Queue HW buffer to pack into
1559  *
1560  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1561  * bit-packed Admin Queue layout.
1562  */
1563 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1564 {
1565 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1566 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1567 }
1568 
1569 /**
1570  * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1571  * @ctx: the Tx queue context to pack
1572  * @buf: the HW buffer to pack into
1573  *
1574  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1575  * bit-packed HW layout, including the internal data portion.
1576  */
1577 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1578 				  ice_txq_ctx_buf_full_t *buf)
1579 {
1580 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1581 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1582 }
1583 
1584 /**
1585  * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1586  * @buf: the HW buffer to unpack from
1587  * @ctx: the Tx queue context to unpack
1588  *
1589  * Unpack the Tx queue context from the HW buffer (including the full internal
1590  * state) into the CPU-friendly structure.
1591  */
1592 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1593 				    struct ice_tlan_ctx *ctx)
1594 {
1595 	unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1596 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1597 }
1598 
1599 /**
1600  * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1601  * @hw: pointer to the hardware structure
1602  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1603  * @txq_index: the index of the Tx queue
1604  *
1605  * Copy Tx Queue context from HW register space to dense structure
1606  */
1607 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1608 				     ice_txq_ctx_buf_full_t *txq_ctx,
1609 				     u32 txq_index)
1610 {
1611 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1612 	u32 *ctx = (u32 *)txq_ctx;
1613 	u32 txq_base, reg;
1614 
1615 	/* Get Tx queue base within card space */
1616 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1617 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1618 
1619 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1620 			 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1621 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1622 			 txq_base + txq_index) |
1623 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1624 
1625 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1626 	 * context interface concurrently.
1627 	 */
1628 	spin_lock(&pf->adapter->txq_ctx_lock);
1629 
1630 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1631 	ice_flush(hw);
1632 
1633 	/* Copy each dword separately from HW */
1634 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1635 		*ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1636 
1637 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1638 	}
1639 
1640 	spin_unlock(&pf->adapter->txq_ctx_lock);
1641 }
1642 
1643 /**
1644  * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1645  * @hw: pointer to the hardware structure
1646  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1647  * @txq_index: the index of the Tx queue
1648  */
1649 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1650 				   const ice_txq_ctx_buf_full_t *txq_ctx,
1651 				   u32 txq_index)
1652 {
1653 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1654 	u32 txq_base, reg;
1655 
1656 	/* Get Tx queue base within card space */
1657 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1658 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1659 
1660 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1661 			 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1662 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1663 			 txq_base + txq_index) |
1664 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1665 
1666 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1667 	 * context interface concurrently.
1668 	 */
1669 	spin_lock(&pf->adapter->txq_ctx_lock);
1670 
1671 	/* Copy each dword separately to HW */
1672 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1673 		u32 ctx = ((const u32 *)txq_ctx)[i];
1674 
1675 		wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1676 
1677 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1678 	}
1679 
1680 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1681 	ice_flush(hw);
1682 
1683 	spin_unlock(&pf->adapter->txq_ctx_lock);
1684 }
1685 
1686 /**
1687  * ice_read_txq_ctx - Read Tx queue context from HW
1688  * @hw: pointer to the hardware structure
1689  * @tlan_ctx: pointer to the Tx queue context
1690  * @txq_index: the index of the Tx queue
1691  *
1692  * Read the Tx queue context from the HW registers, then unpack it into the
1693  * ice_tlan_ctx structure for use.
1694  *
1695  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1696  */
1697 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1698 		     u32 txq_index)
1699 {
1700 	ice_txq_ctx_buf_full_t buf = {};
1701 
1702 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1703 		return -EINVAL;
1704 
1705 	ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1706 	ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1707 
1708 	return 0;
1709 }
1710 
1711 /**
1712  * ice_write_txq_ctx - Write Tx queue context to HW
1713  * @hw: pointer to the hardware structure
1714  * @tlan_ctx: pointer to the Tx queue context
1715  * @txq_index: the index of the Tx queue
1716  *
1717  * Pack the Tx queue context into the dense HW layout, then write it into the
1718  * HW registers.
1719  *
1720  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1721  */
1722 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1723 		      u32 txq_index)
1724 {
1725 	ice_txq_ctx_buf_full_t buf = {};
1726 
1727 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1728 		return -EINVAL;
1729 
1730 	ice_pack_txq_ctx_full(tlan_ctx, &buf);
1731 	ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1732 
1733 	return 0;
1734 }
1735 
1736 /* Sideband Queue command wrappers */
1737 
1738 /**
1739  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1740  * @hw: pointer to the HW struct
1741  * @desc: descriptor describing the command
1742  * @buf: buffer to use for indirect commands (NULL for direct commands)
1743  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1744  * @cd: pointer to command details structure
1745  */
1746 static int
1747 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1748 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1749 {
1750 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1751 			       (struct libie_aq_desc *)desc, buf, buf_size, cd);
1752 }
1753 
1754 /**
1755  * ice_sbq_rw_reg - Fill Sideband Queue command
1756  * @hw: pointer to the HW struct
1757  * @in: message info to be filled in descriptor
1758  * @flags: control queue descriptor flags
1759  */
1760 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1761 {
1762 	struct ice_sbq_cmd_desc desc = {0};
1763 	struct ice_sbq_msg_req msg = {0};
1764 	u16 msg_len;
1765 	int status;
1766 
1767 	msg_len = sizeof(msg);
1768 
1769 	msg.dest_dev = in->dest_dev;
1770 	msg.opcode = in->opcode;
1771 	msg.flags = ICE_SBQ_MSG_FLAGS;
1772 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1773 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1774 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1775 
1776 	if (in->opcode)
1777 		msg.data = cpu_to_le32(in->data);
1778 	else
1779 		/* data read comes back in completion, so shorten the struct by
1780 		 * sizeof(msg.data)
1781 		 */
1782 		msg_len -= sizeof(msg.data);
1783 
1784 	desc.flags = cpu_to_le16(flags);
1785 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1786 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1787 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1788 	if (!status && !in->opcode)
1789 		in->data = le32_to_cpu
1790 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1791 	return status;
1792 }
1793 
1794 /* FW Admin Queue command wrappers */
1795 
1796 /* Software lock/mutex that is meant to be held while the Global Config Lock
1797  * in firmware is acquired by the software to prevent most (but not all) types
1798  * of AQ commands from being sent to FW
1799  */
1800 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1801 
1802 /**
1803  * ice_should_retry_sq_send_cmd
1804  * @opcode: AQ opcode
1805  *
1806  * Decide if we should retry the send command routine for the ATQ, depending
1807  * on the opcode.
1808  */
1809 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1810 {
1811 	switch (opcode) {
1812 	case ice_aqc_opc_get_link_topo:
1813 	case ice_aqc_opc_lldp_stop:
1814 	case ice_aqc_opc_lldp_start:
1815 	case ice_aqc_opc_lldp_filter_ctrl:
1816 		return true;
1817 	}
1818 
1819 	return false;
1820 }
1821 
1822 /**
1823  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1824  * @hw: pointer to the HW struct
1825  * @cq: pointer to the specific Control queue
1826  * @desc: prefilled descriptor describing the command
1827  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1828  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1829  * @cd: pointer to command details structure
1830  *
1831  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1832  * Queue if the EBUSY AQ error is returned.
1833  */
1834 static int
1835 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1836 		      struct libie_aq_desc *desc, void *buf, u16 buf_size,
1837 		      struct ice_sq_cd *cd)
1838 {
1839 	struct libie_aq_desc desc_cpy;
1840 	bool is_cmd_for_retry;
1841 	u8 idx = 0;
1842 	u16 opcode;
1843 	int status;
1844 
1845 	opcode = le16_to_cpu(desc->opcode);
1846 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1847 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1848 
1849 	if (is_cmd_for_retry) {
1850 		/* All retryable cmds are direct, without buf. */
1851 		WARN_ON(buf);
1852 
1853 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1854 	}
1855 
1856 	do {
1857 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1858 
1859 		if (!is_cmd_for_retry || !status ||
1860 		    hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1861 			break;
1862 
1863 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1864 
1865 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1866 
1867 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1868 
1869 	return status;
1870 }
1871 
1872 /**
1873  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1874  * @hw: pointer to the HW struct
1875  * @desc: descriptor describing the command
1876  * @buf: buffer to use for indirect commands (NULL for direct commands)
1877  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1878  * @cd: pointer to command details structure
1879  *
1880  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1881  */
1882 int
1883 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1884 		u16 buf_size, struct ice_sq_cd *cd)
1885 {
1886 	struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1887 	bool lock_acquired = false;
1888 	int status;
1889 
1890 	/* When a package download is in process (i.e. when the firmware's
1891 	 * Global Configuration Lock resource is held), only the Download
1892 	 * Package, Get Version, Get Package Info List, Upload Section,
1893 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1894 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1895 	 * Recipes to Profile Association, and Release Resource (with resource
1896 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1897 	 * must block until the package download completes and the Global Config
1898 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1899 	 */
1900 	switch (le16_to_cpu(desc->opcode)) {
1901 	case ice_aqc_opc_download_pkg:
1902 	case ice_aqc_opc_get_pkg_info_list:
1903 	case ice_aqc_opc_get_ver:
1904 	case ice_aqc_opc_upload_section:
1905 	case ice_aqc_opc_update_pkg:
1906 	case ice_aqc_opc_set_port_params:
1907 	case ice_aqc_opc_get_vlan_mode_parameters:
1908 	case ice_aqc_opc_set_vlan_mode_parameters:
1909 	case ice_aqc_opc_set_tx_topo:
1910 	case ice_aqc_opc_get_tx_topo:
1911 	case ice_aqc_opc_add_recipe:
1912 	case ice_aqc_opc_recipe_to_profile:
1913 	case ice_aqc_opc_get_recipe:
1914 	case ice_aqc_opc_get_recipe_to_profile:
1915 		break;
1916 	case ice_aqc_opc_release_res:
1917 		if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1918 			break;
1919 		fallthrough;
1920 	default:
1921 		mutex_lock(&ice_global_cfg_lock_sw);
1922 		lock_acquired = true;
1923 		break;
1924 	}
1925 
1926 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1927 	if (lock_acquired)
1928 		mutex_unlock(&ice_global_cfg_lock_sw);
1929 
1930 	return status;
1931 }
1932 
1933 /**
1934  * ice_aq_get_fw_ver
1935  * @hw: pointer to the HW struct
1936  * @cd: pointer to command details structure or NULL
1937  *
1938  * Get the firmware version (0x0001) from the admin queue commands
1939  */
1940 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1941 {
1942 	struct libie_aqc_get_ver *resp;
1943 	struct libie_aq_desc desc;
1944 	int status;
1945 
1946 	resp = &desc.params.get_ver;
1947 
1948 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1949 
1950 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1951 
1952 	if (!status) {
1953 		hw->fw_branch = resp->fw_branch;
1954 		hw->fw_maj_ver = resp->fw_major;
1955 		hw->fw_min_ver = resp->fw_minor;
1956 		hw->fw_patch = resp->fw_patch;
1957 		hw->fw_build = le32_to_cpu(resp->fw_build);
1958 		hw->api_branch = resp->api_branch;
1959 		hw->api_maj_ver = resp->api_major;
1960 		hw->api_min_ver = resp->api_minor;
1961 		hw->api_patch = resp->api_patch;
1962 	}
1963 
1964 	return status;
1965 }
1966 
1967 /**
1968  * ice_aq_send_driver_ver
1969  * @hw: pointer to the HW struct
1970  * @dv: driver's major, minor version
1971  * @cd: pointer to command details structure or NULL
1972  *
1973  * Send the driver version (0x0002) to the firmware
1974  */
1975 int
1976 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1977 		       struct ice_sq_cd *cd)
1978 {
1979 	struct libie_aqc_driver_ver *cmd;
1980 	struct libie_aq_desc desc;
1981 	u16 len;
1982 
1983 	cmd = &desc.params.driver_ver;
1984 
1985 	if (!dv)
1986 		return -EINVAL;
1987 
1988 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1989 
1990 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
1991 	cmd->major_ver = dv->major_ver;
1992 	cmd->minor_ver = dv->minor_ver;
1993 	cmd->build_ver = dv->build_ver;
1994 	cmd->subbuild_ver = dv->subbuild_ver;
1995 
1996 	len = 0;
1997 	while (len < sizeof(dv->driver_string) &&
1998 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1999 		len++;
2000 
2001 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
2002 }
2003 
2004 /**
2005  * ice_aq_q_shutdown
2006  * @hw: pointer to the HW struct
2007  * @unloading: is the driver unloading itself
2008  *
2009  * Tell the Firmware that we're shutting down the AdminQ and whether
2010  * or not the driver is unloading as well (0x0003).
2011  */
2012 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
2013 {
2014 	struct ice_aqc_q_shutdown *cmd;
2015 	struct libie_aq_desc desc;
2016 
2017 	cmd = libie_aq_raw(&desc);
2018 
2019 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
2020 
2021 	if (unloading)
2022 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
2023 
2024 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2025 }
2026 
2027 /**
2028  * ice_aq_req_res
2029  * @hw: pointer to the HW struct
2030  * @res: resource ID
2031  * @access: access type
2032  * @sdp_number: resource number
2033  * @timeout: the maximum time in ms that the driver may hold the resource
2034  * @cd: pointer to command details structure or NULL
2035  *
2036  * Requests common resource using the admin queue commands (0x0008).
2037  * When attempting to acquire the Global Config Lock, the driver can
2038  * learn of three states:
2039  *  1) 0 -         acquired lock, and can perform download package
2040  *  2) -EIO -      did not get lock, driver should fail to load
2041  *  3) -EALREADY - did not get lock, but another driver has
2042  *                 successfully downloaded the package; the driver does
2043  *                 not have to download the package and can continue
2044  *                 loading
2045  *
2046  * Note that if the caller is in an acquire lock, perform action, release lock
2047  * phase of operation, it is possible that the FW may detect a timeout and issue
2048  * a CORER. In this case, the driver will receive a CORER interrupt and will
2049  * have to determine its cause. The calling thread that is handling this flow
2050  * will likely get an error propagated back to it indicating the Download
2051  * Package, Update Package or the Release Resource AQ commands timed out.
2052  */
2053 static int
2054 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2055 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2056 	       struct ice_sq_cd *cd)
2057 {
2058 	struct libie_aqc_req_res *cmd_resp;
2059 	struct libie_aq_desc desc;
2060 	int status;
2061 
2062 	cmd_resp = &desc.params.res_owner;
2063 
2064 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2065 
2066 	cmd_resp->res_id = cpu_to_le16(res);
2067 	cmd_resp->access_type = cpu_to_le16(access);
2068 	cmd_resp->res_number = cpu_to_le32(sdp_number);
2069 	cmd_resp->timeout = cpu_to_le32(*timeout);
2070 	*timeout = 0;
2071 
2072 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2073 
2074 	/* The completion specifies the maximum time in ms that the driver
2075 	 * may hold the resource in the Timeout field.
2076 	 */
2077 
2078 	/* Global config lock response utilizes an additional status field.
2079 	 *
2080 	 * If the Global config lock resource is held by some other driver, the
2081 	 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2082 	 * and the timeout field indicates the maximum time the current owner
2083 	 * of the resource has to free it.
2084 	 */
2085 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2086 		if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2087 			*timeout = le32_to_cpu(cmd_resp->timeout);
2088 			return 0;
2089 		} else if (le16_to_cpu(cmd_resp->status) ==
2090 			   LIBIE_AQ_RES_GLBL_IN_PROG) {
2091 			*timeout = le32_to_cpu(cmd_resp->timeout);
2092 			return -EIO;
2093 		} else if (le16_to_cpu(cmd_resp->status) ==
2094 			   LIBIE_AQ_RES_GLBL_DONE) {
2095 			return -EALREADY;
2096 		}
2097 
2098 		/* invalid FW response, force a timeout immediately */
2099 		*timeout = 0;
2100 		return -EIO;
2101 	}
2102 
2103 	/* If the resource is held by some other driver, the command completes
2104 	 * with a busy return value and the timeout field indicates the maximum
2105 	 * time the current owner of the resource has to free it.
2106 	 */
2107 	if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2108 		*timeout = le32_to_cpu(cmd_resp->timeout);
2109 
2110 	return status;
2111 }
2112 
2113 /**
2114  * ice_aq_release_res
2115  * @hw: pointer to the HW struct
2116  * @res: resource ID
2117  * @sdp_number: resource number
2118  * @cd: pointer to command details structure or NULL
2119  *
2120  * release common resource using the admin queue commands (0x0009)
2121  */
2122 static int
2123 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2124 		   struct ice_sq_cd *cd)
2125 {
2126 	struct libie_aqc_req_res *cmd;
2127 	struct libie_aq_desc desc;
2128 
2129 	cmd = &desc.params.res_owner;
2130 
2131 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2132 
2133 	cmd->res_id = cpu_to_le16(res);
2134 	cmd->res_number = cpu_to_le32(sdp_number);
2135 
2136 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2137 }
2138 
2139 /**
2140  * ice_acquire_res
2141  * @hw: pointer to the HW structure
2142  * @res: resource ID
2143  * @access: access type (read or write)
2144  * @timeout: timeout in milliseconds
2145  *
2146  * This function will attempt to acquire the ownership of a resource.
2147  */
2148 int
2149 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2150 		enum ice_aq_res_access_type access, u32 timeout)
2151 {
2152 #define ICE_RES_POLLING_DELAY_MS	10
2153 	u32 delay = ICE_RES_POLLING_DELAY_MS;
2154 	u32 time_left = timeout;
2155 	int status;
2156 
2157 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2158 
2159 	/* A return code of -EALREADY means that another driver has
2160 	 * previously acquired the resource and performed any necessary updates;
2161 	 * in this case the caller does not obtain the resource and has no
2162 	 * further work to do.
2163 	 */
2164 	if (status == -EALREADY)
2165 		goto ice_acquire_res_exit;
2166 
2167 	if (status)
2168 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2169 
2170 	/* If necessary, poll until the current lock owner timeouts */
2171 	timeout = time_left;
2172 	while (status && timeout && time_left) {
2173 		mdelay(delay);
2174 		timeout = (timeout > delay) ? timeout - delay : 0;
2175 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2176 
2177 		if (status == -EALREADY)
2178 			/* lock free, but no work to do */
2179 			break;
2180 
2181 		if (!status)
2182 			/* lock acquired */
2183 			break;
2184 	}
2185 	if (status && status != -EALREADY)
2186 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2187 
2188 ice_acquire_res_exit:
2189 	if (status == -EALREADY) {
2190 		if (access == ICE_RES_WRITE)
2191 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2192 		else
2193 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2194 	}
2195 	return status;
2196 }
2197 
2198 /**
2199  * ice_release_res
2200  * @hw: pointer to the HW structure
2201  * @res: resource ID
2202  *
2203  * This function will release a resource using the proper Admin Command.
2204  */
2205 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2206 {
2207 	unsigned long timeout;
2208 	int status;
2209 
2210 	/* there are some rare cases when trying to release the resource
2211 	 * results in an admin queue timeout, so handle them correctly
2212 	 */
2213 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2214 	do {
2215 		status = ice_aq_release_res(hw, res, 0, NULL);
2216 		if (status != -EIO)
2217 			break;
2218 		usleep_range(1000, 2000);
2219 	} while (time_before(jiffies, timeout));
2220 }
2221 
2222 /**
2223  * ice_aq_alloc_free_res - command to allocate/free resources
2224  * @hw: pointer to the HW struct
2225  * @buf: Indirect buffer to hold data parameters and response
2226  * @buf_size: size of buffer for indirect commands
2227  * @opc: pass in the command opcode
2228  *
2229  * Helper function to allocate/free resources using the admin queue commands
2230  */
2231 int ice_aq_alloc_free_res(struct ice_hw *hw,
2232 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2233 			  enum ice_adminq_opc opc)
2234 {
2235 	struct ice_aqc_alloc_free_res_cmd *cmd;
2236 	struct libie_aq_desc desc;
2237 
2238 	cmd = libie_aq_raw(&desc);
2239 
2240 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2241 		return -EINVAL;
2242 
2243 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2244 
2245 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2246 
2247 	cmd->num_entries = cpu_to_le16(1);
2248 
2249 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2250 }
2251 
2252 /**
2253  * ice_alloc_hw_res - allocate resource
2254  * @hw: pointer to the HW struct
2255  * @type: type of resource
2256  * @num: number of resources to allocate
2257  * @btm: allocate from bottom
2258  * @res: pointer to array that will receive the resources
2259  */
2260 int
2261 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2262 {
2263 	struct ice_aqc_alloc_free_res_elem *buf;
2264 	u16 buf_len;
2265 	int status;
2266 
2267 	buf_len = struct_size(buf, elem, num);
2268 	buf = kzalloc(buf_len, GFP_KERNEL);
2269 	if (!buf)
2270 		return -ENOMEM;
2271 
2272 	/* Prepare buffer to allocate resource. */
2273 	buf->num_elems = cpu_to_le16(num);
2274 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2275 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2276 	if (btm)
2277 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2278 
2279 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2280 	if (status)
2281 		goto ice_alloc_res_exit;
2282 
2283 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2284 
2285 ice_alloc_res_exit:
2286 	kfree(buf);
2287 	return status;
2288 }
2289 
2290 /**
2291  * ice_free_hw_res - free allocated HW resource
2292  * @hw: pointer to the HW struct
2293  * @type: type of resource to free
2294  * @num: number of resources
2295  * @res: pointer to array that contains the resources to free
2296  */
2297 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2298 {
2299 	struct ice_aqc_alloc_free_res_elem *buf;
2300 	u16 buf_len;
2301 	int status;
2302 
2303 	buf_len = struct_size(buf, elem, num);
2304 	buf = kzalloc(buf_len, GFP_KERNEL);
2305 	if (!buf)
2306 		return -ENOMEM;
2307 
2308 	/* Prepare buffer to free resource. */
2309 	buf->num_elems = cpu_to_le16(num);
2310 	buf->res_type = cpu_to_le16(type);
2311 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2312 
2313 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2314 	if (status)
2315 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2316 
2317 	kfree(buf);
2318 	return status;
2319 }
2320 
2321 /**
2322  * ice_get_num_per_func - determine number of resources per PF
2323  * @hw: pointer to the HW structure
2324  * @max: value to be evenly split between each PF
2325  *
2326  * Determine the number of valid functions by going through the bitmap returned
2327  * from parsing capabilities and use this to calculate the number of resources
2328  * per PF based on the max value passed in.
2329  */
2330 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2331 {
2332 	u8 funcs;
2333 
2334 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2335 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2336 			 ICE_CAPS_VALID_FUNCS_M);
2337 
2338 	if (!funcs)
2339 		return 0;
2340 
2341 	return max / funcs;
2342 }
2343 
2344 /**
2345  * ice_parse_common_caps - parse common device/function capabilities
2346  * @hw: pointer to the HW struct
2347  * @caps: pointer to common capabilities structure
2348  * @elem: the capability element to parse
2349  * @prefix: message prefix for tracing capabilities
2350  *
2351  * Given a capability element, extract relevant details into the common
2352  * capability structure.
2353  *
2354  * Returns: true if the capability matches one of the common capability ids,
2355  * false otherwise.
2356  */
2357 static bool
2358 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2359 		      struct libie_aqc_list_caps_elem *elem, const char *prefix)
2360 {
2361 	u32 logical_id = le32_to_cpu(elem->logical_id);
2362 	u32 phys_id = le32_to_cpu(elem->phys_id);
2363 	u32 number = le32_to_cpu(elem->number);
2364 	u16 cap = le16_to_cpu(elem->cap);
2365 	bool found = true;
2366 
2367 	switch (cap) {
2368 	case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2369 		caps->valid_functions = number;
2370 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2371 			  caps->valid_functions);
2372 		break;
2373 	case LIBIE_AQC_CAPS_SRIOV:
2374 		caps->sr_iov_1_1 = (number == 1);
2375 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2376 			  caps->sr_iov_1_1);
2377 		break;
2378 	case LIBIE_AQC_CAPS_DCB:
2379 		caps->dcb = (number == 1);
2380 		caps->active_tc_bitmap = logical_id;
2381 		caps->maxtc = phys_id;
2382 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2383 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2384 			  caps->active_tc_bitmap);
2385 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2386 		break;
2387 	case LIBIE_AQC_CAPS_RSS:
2388 		caps->rss_table_size = number;
2389 		caps->rss_table_entry_width = logical_id;
2390 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2391 			  caps->rss_table_size);
2392 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2393 			  caps->rss_table_entry_width);
2394 		break;
2395 	case LIBIE_AQC_CAPS_RXQS:
2396 		caps->num_rxq = number;
2397 		caps->rxq_first_id = phys_id;
2398 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2399 			  caps->num_rxq);
2400 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2401 			  caps->rxq_first_id);
2402 		break;
2403 	case LIBIE_AQC_CAPS_TXQS:
2404 		caps->num_txq = number;
2405 		caps->txq_first_id = phys_id;
2406 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2407 			  caps->num_txq);
2408 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2409 			  caps->txq_first_id);
2410 		break;
2411 	case LIBIE_AQC_CAPS_MSIX:
2412 		caps->num_msix_vectors = number;
2413 		caps->msix_vector_first_id = phys_id;
2414 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2415 			  caps->num_msix_vectors);
2416 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2417 			  caps->msix_vector_first_id);
2418 		break;
2419 	case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2420 		caps->nvm_update_pending_nvm = true;
2421 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2422 		break;
2423 	case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2424 		caps->nvm_update_pending_orom = true;
2425 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2426 		break;
2427 	case LIBIE_AQC_CAPS_PENDING_NET_VER:
2428 		caps->nvm_update_pending_netlist = true;
2429 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2430 		break;
2431 	case LIBIE_AQC_CAPS_NVM_MGMT:
2432 		caps->nvm_unified_update =
2433 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2434 			true : false;
2435 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2436 			  caps->nvm_unified_update);
2437 		break;
2438 	case LIBIE_AQC_CAPS_RDMA:
2439 		if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2440 			caps->rdma = (number == 1);
2441 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2442 		break;
2443 	case LIBIE_AQC_CAPS_MAX_MTU:
2444 		caps->max_mtu = number;
2445 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2446 			  prefix, caps->max_mtu);
2447 		break;
2448 	case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2449 		caps->pcie_reset_avoidance = (number > 0);
2450 		ice_debug(hw, ICE_DBG_INIT,
2451 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2452 			  caps->pcie_reset_avoidance);
2453 		break;
2454 	case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2455 		caps->reset_restrict_support = (number == 1);
2456 		ice_debug(hw, ICE_DBG_INIT,
2457 			  "%s: reset_restrict_support = %d\n", prefix,
2458 			  caps->reset_restrict_support);
2459 		break;
2460 	case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2461 		caps->roce_lag = number & LIBIE_AQC_BIT_ROCEV2_LAG;
2462 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2463 			  prefix, caps->roce_lag);
2464 		caps->sriov_lag = number & LIBIE_AQC_BIT_SRIOV_LAG;
2465 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2466 			  prefix, caps->sriov_lag);
2467 		caps->sriov_aa_lag = number & LIBIE_AQC_BIT_SRIOV_AA_LAG;
2468 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_aa_lag = %u\n",
2469 			  prefix, caps->sriov_aa_lag);
2470 		break;
2471 	case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2472 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2473 		break;
2474 	default:
2475 		/* Not one of the recognized common capabilities */
2476 		found = false;
2477 	}
2478 
2479 	return found;
2480 }
2481 
2482 /**
2483  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2484  * @hw: pointer to the HW structure
2485  * @caps: pointer to capabilities structure to fix
2486  *
2487  * Re-calculate the capabilities that are dependent on the number of physical
2488  * ports; i.e. some features are not supported or function differently on
2489  * devices with more than 4 ports.
2490  */
2491 static void
2492 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2493 {
2494 	/* This assumes device capabilities are always scanned before function
2495 	 * capabilities during the initialization flow.
2496 	 */
2497 	if (hw->dev_caps.num_funcs > 4) {
2498 		/* Max 4 TCs per port */
2499 		caps->maxtc = 4;
2500 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2501 			  caps->maxtc);
2502 		if (caps->rdma) {
2503 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2504 			caps->rdma = 0;
2505 		}
2506 
2507 		/* print message only when processing device capabilities
2508 		 * during initialization.
2509 		 */
2510 		if (caps == &hw->dev_caps.common_cap)
2511 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2512 	}
2513 }
2514 
2515 /**
2516  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2517  * @hw: pointer to the HW struct
2518  * @func_p: pointer to function capabilities structure
2519  * @cap: pointer to the capability element to parse
2520  *
2521  * Extract function capabilities for ICE_AQC_CAPS_VF.
2522  */
2523 static void
2524 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2525 		       struct libie_aqc_list_caps_elem *cap)
2526 {
2527 	u32 logical_id = le32_to_cpu(cap->logical_id);
2528 	u32 number = le32_to_cpu(cap->number);
2529 
2530 	func_p->num_allocd_vfs = number;
2531 	func_p->vf_base_id = logical_id;
2532 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2533 		  func_p->num_allocd_vfs);
2534 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2535 		  func_p->vf_base_id);
2536 }
2537 
2538 /**
2539  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2540  * @hw: pointer to the HW struct
2541  * @func_p: pointer to function capabilities structure
2542  * @cap: pointer to the capability element to parse
2543  *
2544  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2545  */
2546 static void
2547 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2548 			struct libie_aqc_list_caps_elem *cap)
2549 {
2550 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2551 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2552 		  le32_to_cpu(cap->number));
2553 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2554 		  func_p->guar_num_vsi);
2555 }
2556 
2557 /**
2558  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2559  * @hw: pointer to the HW struct
2560  * @func_p: pointer to function capabilities structure
2561  * @cap: pointer to the capability element to parse
2562  *
2563  * Extract function capabilities for ICE_AQC_CAPS_1588.
2564  */
2565 static void
2566 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2567 			 struct libie_aqc_list_caps_elem *cap)
2568 {
2569 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2570 	u32 number = le32_to_cpu(cap->number);
2571 
2572 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2573 	func_p->common_cap.ieee_1588 = info->ena;
2574 
2575 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2576 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2577 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2578 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2579 
2580 	if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2581 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2582 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2583 	} else {
2584 		info->clk_freq = ICE_TSPLL_FREQ_156_250;
2585 		info->clk_src = ICE_CLK_SRC_TIME_REF;
2586 	}
2587 
2588 	if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2589 		info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2590 	} else {
2591 		/* Unknown clock frequency, so assume a (probably incorrect)
2592 		 * default to avoid out-of-bounds look ups of frequency
2593 		 * related information.
2594 		 */
2595 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2596 			  info->clk_freq);
2597 		info->time_ref = ICE_TSPLL_FREQ_25_000;
2598 	}
2599 
2600 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2601 		  func_p->common_cap.ieee_1588);
2602 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2603 		  info->src_tmr_owned);
2604 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2605 		  info->tmr_ena);
2606 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2607 		  info->tmr_index_owned);
2608 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2609 		  info->tmr_index_assoc);
2610 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2611 		  info->clk_freq);
2612 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2613 		  info->clk_src);
2614 }
2615 
2616 /**
2617  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2618  * @hw: pointer to the HW struct
2619  * @func_p: pointer to function capabilities structure
2620  *
2621  * Extract function capabilities for ICE_AQC_CAPS_FD.
2622  */
2623 static void
2624 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2625 {
2626 	u32 reg_val, gsize, bsize;
2627 
2628 	reg_val = rd32(hw, GLQF_FD_SIZE);
2629 	switch (hw->mac_type) {
2630 	case ICE_MAC_E830:
2631 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2632 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2633 		break;
2634 	case ICE_MAC_E810:
2635 	default:
2636 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2637 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2638 	}
2639 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2640 	func_p->fd_fltr_best_effort = bsize;
2641 
2642 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2643 		  func_p->fd_fltr_guar);
2644 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2645 		  func_p->fd_fltr_best_effort);
2646 }
2647 
2648 /**
2649  * ice_parse_func_caps - Parse function capabilities
2650  * @hw: pointer to the HW struct
2651  * @func_p: pointer to function capabilities structure
2652  * @buf: buffer containing the function capability records
2653  * @cap_count: the number of capabilities
2654  *
2655  * Helper function to parse function (0x000A) capabilities list. For
2656  * capabilities shared between device and function, this relies on
2657  * ice_parse_common_caps.
2658  *
2659  * Loop through the list of provided capabilities and extract the relevant
2660  * data into the function capabilities structured.
2661  */
2662 static void
2663 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2664 		    void *buf, u32 cap_count)
2665 {
2666 	struct libie_aqc_list_caps_elem *cap_resp;
2667 	u32 i;
2668 
2669 	cap_resp = buf;
2670 
2671 	memset(func_p, 0, sizeof(*func_p));
2672 
2673 	for (i = 0; i < cap_count; i++) {
2674 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2675 		bool found;
2676 
2677 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2678 					      &cap_resp[i], "func caps");
2679 
2680 		switch (cap) {
2681 		case LIBIE_AQC_CAPS_VF:
2682 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2683 			break;
2684 		case LIBIE_AQC_CAPS_VSI:
2685 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2686 			break;
2687 		case LIBIE_AQC_CAPS_1588:
2688 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2689 			break;
2690 		case LIBIE_AQC_CAPS_FD:
2691 			ice_parse_fdir_func_caps(hw, func_p);
2692 			break;
2693 		default:
2694 			/* Don't list common capabilities as unknown */
2695 			if (!found)
2696 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2697 					  i, cap);
2698 			break;
2699 		}
2700 	}
2701 
2702 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2703 }
2704 
2705 /**
2706  * ice_func_id_to_logical_id - map from function id to logical pf id
2707  * @active_function_bitmap: active function bitmap
2708  * @pf_id: function number of device
2709  *
2710  * Return: logical PF ID.
2711  */
2712 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2713 {
2714 	u8 logical_id = 0;
2715 	u8 i;
2716 
2717 	for (i = 0; i < pf_id; i++)
2718 		if (active_function_bitmap & BIT(i))
2719 			logical_id++;
2720 
2721 	return logical_id;
2722 }
2723 
2724 /**
2725  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2726  * @hw: pointer to the HW struct
2727  * @dev_p: pointer to device capabilities structure
2728  * @cap: capability element to parse
2729  *
2730  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2731  */
2732 static void
2733 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2734 			      struct libie_aqc_list_caps_elem *cap)
2735 {
2736 	u32 number = le32_to_cpu(cap->number);
2737 
2738 	dev_p->num_funcs = hweight32(number);
2739 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2740 		  dev_p->num_funcs);
2741 
2742 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2743 }
2744 
2745 /**
2746  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2747  * @hw: pointer to the HW struct
2748  * @dev_p: pointer to device capabilities structure
2749  * @cap: capability element to parse
2750  *
2751  * Parse ICE_AQC_CAPS_VF for device capabilities.
2752  */
2753 static void
2754 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2755 		      struct libie_aqc_list_caps_elem *cap)
2756 {
2757 	u32 number = le32_to_cpu(cap->number);
2758 
2759 	dev_p->num_vfs_exposed = number;
2760 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2761 		  dev_p->num_vfs_exposed);
2762 }
2763 
2764 /**
2765  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2766  * @hw: pointer to the HW struct
2767  * @dev_p: pointer to device capabilities structure
2768  * @cap: capability element to parse
2769  *
2770  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2771  */
2772 static void
2773 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2774 		       struct libie_aqc_list_caps_elem *cap)
2775 {
2776 	u32 number = le32_to_cpu(cap->number);
2777 
2778 	dev_p->num_vsi_allocd_to_host = number;
2779 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2780 		  dev_p->num_vsi_allocd_to_host);
2781 }
2782 
2783 /**
2784  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2785  * @hw: pointer to the HW struct
2786  * @dev_p: pointer to device capabilities structure
2787  * @cap: capability element to parse
2788  *
2789  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2790  */
2791 static void
2792 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2793 			struct libie_aqc_list_caps_elem *cap)
2794 {
2795 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2796 	u32 logical_id = le32_to_cpu(cap->logical_id);
2797 	u32 phys_id = le32_to_cpu(cap->phys_id);
2798 	u32 number = le32_to_cpu(cap->number);
2799 
2800 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2801 	dev_p->common_cap.ieee_1588 = info->ena;
2802 
2803 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2804 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2805 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2806 
2807 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2808 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2809 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2810 
2811 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2812 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2813 	info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2814 
2815 	info->ena_ports = logical_id;
2816 	info->tmr_own_map = phys_id;
2817 
2818 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2819 		  dev_p->common_cap.ieee_1588);
2820 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2821 		  info->tmr0_owner);
2822 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2823 		  info->tmr0_owned);
2824 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2825 		  info->tmr0_ena);
2826 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2827 		  info->tmr1_owner);
2828 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2829 		  info->tmr1_owned);
2830 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2831 		  info->tmr1_ena);
2832 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2833 		  info->ts_ll_read);
2834 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2835 		  info->ts_ll_int_read);
2836 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2837 		  info->ll_phy_tmr_update);
2838 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2839 		  info->ena_ports);
2840 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2841 		  info->tmr_own_map);
2842 }
2843 
2844 /**
2845  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2846  * @hw: pointer to the HW struct
2847  * @dev_p: pointer to device capabilities structure
2848  * @cap: capability element to parse
2849  *
2850  * Parse ICE_AQC_CAPS_FD for device capabilities.
2851  */
2852 static void
2853 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2854 			struct libie_aqc_list_caps_elem *cap)
2855 {
2856 	u32 number = le32_to_cpu(cap->number);
2857 
2858 	dev_p->num_flow_director_fltr = number;
2859 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2860 		  dev_p->num_flow_director_fltr);
2861 }
2862 
2863 /**
2864  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2865  * @hw: pointer to the HW struct
2866  * @dev_p: pointer to device capabilities structure
2867  * @cap: capability element to parse
2868  *
2869  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2870  * enabled sensors.
2871  */
2872 static void
2873 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2874 			     struct libie_aqc_list_caps_elem *cap)
2875 {
2876 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2877 
2878 	ice_debug(hw, ICE_DBG_INIT,
2879 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2880 		  dev_p->supported_sensors);
2881 }
2882 
2883 /**
2884  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2885  * @hw: pointer to the HW struct
2886  * @dev_p: pointer to device capabilities structure
2887  * @cap: capability element to parse
2888  *
2889  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2890  */
2891 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2892 					struct ice_hw_dev_caps *dev_p,
2893 					struct libie_aqc_list_caps_elem *cap)
2894 {
2895 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2896 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2897 
2898 	dev_info(ice_hw_to_dev(hw),
2899 		 "PF is configured in %s mode with IP instance ID %d\n",
2900 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2901 		 "primary" : "secondary", dev_p->nac_topo.id);
2902 
2903 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2904 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2905 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2906 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2907 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2908 		  dev_p->nac_topo.id);
2909 }
2910 
2911 /**
2912  * ice_parse_dev_caps - Parse device capabilities
2913  * @hw: pointer to the HW struct
2914  * @dev_p: pointer to device capabilities structure
2915  * @buf: buffer containing the device capability records
2916  * @cap_count: the number of capabilities
2917  *
2918  * Helper device to parse device (0x000B) capabilities list. For
2919  * capabilities shared between device and function, this relies on
2920  * ice_parse_common_caps.
2921  *
2922  * Loop through the list of provided capabilities and extract the relevant
2923  * data into the device capabilities structured.
2924  */
2925 static void
2926 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2927 		   void *buf, u32 cap_count)
2928 {
2929 	struct libie_aqc_list_caps_elem *cap_resp;
2930 	u32 i;
2931 
2932 	cap_resp = buf;
2933 
2934 	memset(dev_p, 0, sizeof(*dev_p));
2935 
2936 	for (i = 0; i < cap_count; i++) {
2937 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2938 		bool found;
2939 
2940 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2941 					      &cap_resp[i], "dev caps");
2942 
2943 		switch (cap) {
2944 		case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2945 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2946 			break;
2947 		case LIBIE_AQC_CAPS_VF:
2948 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2949 			break;
2950 		case LIBIE_AQC_CAPS_VSI:
2951 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2952 			break;
2953 		case LIBIE_AQC_CAPS_1588:
2954 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2955 			break;
2956 		case LIBIE_AQC_CAPS_FD:
2957 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2958 			break;
2959 		case LIBIE_AQC_CAPS_SENSOR_READING:
2960 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2961 			break;
2962 		case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
2963 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2964 			break;
2965 		default:
2966 			/* Don't list common capabilities as unknown */
2967 			if (!found)
2968 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2969 					  i, cap);
2970 			break;
2971 		}
2972 	}
2973 
2974 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2975 }
2976 
2977 /**
2978  * ice_is_phy_rclk_in_netlist
2979  * @hw: pointer to the hw struct
2980  *
2981  * Check if the PHY Recovered Clock device is present in the netlist
2982  */
2983 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2984 {
2985 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2986 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2987 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2988 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2989 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2990 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2991 		return false;
2992 
2993 	return true;
2994 }
2995 
2996 /**
2997  * ice_is_clock_mux_in_netlist
2998  * @hw: pointer to the hw struct
2999  *
3000  * Check if the Clock Multiplexer device is present in the netlist
3001  */
3002 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
3003 {
3004 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
3005 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3006 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
3007 				  NULL))
3008 		return false;
3009 
3010 	return true;
3011 }
3012 
3013 /**
3014  * ice_is_cgu_in_netlist - check for CGU presence
3015  * @hw: pointer to the hw struct
3016  *
3017  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
3018  * Save the CGU part number in the hw structure for later use.
3019  * Return:
3020  * * true - cgu is present
3021  * * false - cgu is not present
3022  */
3023 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
3024 {
3025 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3026 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3027 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
3028 				   NULL)) {
3029 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
3030 		return true;
3031 	} else if (!ice_find_netlist_node(hw,
3032 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3033 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3034 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
3035 					  NULL)) {
3036 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
3037 		return true;
3038 	}
3039 
3040 	return false;
3041 }
3042 
3043 /**
3044  * ice_is_gps_in_netlist
3045  * @hw: pointer to the hw struct
3046  *
3047  * Check if the GPS generic device is present in the netlist
3048  */
3049 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3050 {
3051 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3052 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3053 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3054 		return false;
3055 
3056 	return true;
3057 }
3058 
3059 /**
3060  * ice_aq_list_caps - query function/device capabilities
3061  * @hw: pointer to the HW struct
3062  * @buf: a buffer to hold the capabilities
3063  * @buf_size: size of the buffer
3064  * @cap_count: if not NULL, set to the number of capabilities reported
3065  * @opc: capabilities type to discover, device or function
3066  * @cd: pointer to command details structure or NULL
3067  *
3068  * Get the function (0x000A) or device (0x000B) capabilities description from
3069  * firmware and store it in the buffer.
3070  *
3071  * If the cap_count pointer is not NULL, then it is set to the number of
3072  * capabilities firmware will report. Note that if the buffer size is too
3073  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3074  * cap_count will still be updated in this case. It is recommended that the
3075  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3076  * firmware could return) to avoid this.
3077  */
3078 int
3079 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3080 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3081 {
3082 	struct libie_aqc_list_caps *cmd;
3083 	struct libie_aq_desc desc;
3084 	int status;
3085 
3086 	cmd = &desc.params.get_cap;
3087 
3088 	if (opc != ice_aqc_opc_list_func_caps &&
3089 	    opc != ice_aqc_opc_list_dev_caps)
3090 		return -EINVAL;
3091 
3092 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
3093 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3094 
3095 	if (cap_count)
3096 		*cap_count = le32_to_cpu(cmd->count);
3097 
3098 	return status;
3099 }
3100 
3101 /**
3102  * ice_discover_dev_caps - Read and extract device capabilities
3103  * @hw: pointer to the hardware structure
3104  * @dev_caps: pointer to device capabilities structure
3105  *
3106  * Read the device capabilities and extract them into the dev_caps structure
3107  * for later use.
3108  */
3109 int
3110 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3111 {
3112 	u32 cap_count = 0;
3113 	void *cbuf;
3114 	int status;
3115 
3116 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3117 	if (!cbuf)
3118 		return -ENOMEM;
3119 
3120 	/* Although the driver doesn't know the number of capabilities the
3121 	 * device will return, we can simply send a 4KB buffer, the maximum
3122 	 * possible size that firmware can return.
3123 	 */
3124 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3125 
3126 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3127 				  ice_aqc_opc_list_dev_caps, NULL);
3128 	if (!status)
3129 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3130 	kfree(cbuf);
3131 
3132 	return status;
3133 }
3134 
3135 /**
3136  * ice_discover_func_caps - Read and extract function capabilities
3137  * @hw: pointer to the hardware structure
3138  * @func_caps: pointer to function capabilities structure
3139  *
3140  * Read the function capabilities and extract them into the func_caps structure
3141  * for later use.
3142  */
3143 static int
3144 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3145 {
3146 	u32 cap_count = 0;
3147 	void *cbuf;
3148 	int status;
3149 
3150 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3151 	if (!cbuf)
3152 		return -ENOMEM;
3153 
3154 	/* Although the driver doesn't know the number of capabilities the
3155 	 * device will return, we can simply send a 4KB buffer, the maximum
3156 	 * possible size that firmware can return.
3157 	 */
3158 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3159 
3160 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3161 				  ice_aqc_opc_list_func_caps, NULL);
3162 	if (!status)
3163 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3164 	kfree(cbuf);
3165 
3166 	return status;
3167 }
3168 
3169 /**
3170  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3171  * @hw: pointer to the hardware structure
3172  */
3173 void ice_set_safe_mode_caps(struct ice_hw *hw)
3174 {
3175 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
3176 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3177 	struct ice_hw_common_caps cached_caps;
3178 	u32 num_funcs;
3179 
3180 	/* cache some func_caps values that should be restored after memset */
3181 	cached_caps = func_caps->common_cap;
3182 
3183 	/* unset func capabilities */
3184 	memset(func_caps, 0, sizeof(*func_caps));
3185 
3186 #define ICE_RESTORE_FUNC_CAP(name) \
3187 	func_caps->common_cap.name = cached_caps.name
3188 
3189 	/* restore cached values */
3190 	ICE_RESTORE_FUNC_CAP(valid_functions);
3191 	ICE_RESTORE_FUNC_CAP(txq_first_id);
3192 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
3193 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3194 	ICE_RESTORE_FUNC_CAP(max_mtu);
3195 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3196 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3197 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3198 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3199 
3200 	/* one Tx and one Rx queue in safe mode */
3201 	func_caps->common_cap.num_rxq = 1;
3202 	func_caps->common_cap.num_txq = 1;
3203 
3204 	/* two MSIX vectors, one for traffic and one for misc causes */
3205 	func_caps->common_cap.num_msix_vectors = 2;
3206 	func_caps->guar_num_vsi = 1;
3207 
3208 	/* cache some dev_caps values that should be restored after memset */
3209 	cached_caps = dev_caps->common_cap;
3210 	num_funcs = dev_caps->num_funcs;
3211 
3212 	/* unset dev capabilities */
3213 	memset(dev_caps, 0, sizeof(*dev_caps));
3214 
3215 #define ICE_RESTORE_DEV_CAP(name) \
3216 	dev_caps->common_cap.name = cached_caps.name
3217 
3218 	/* restore cached values */
3219 	ICE_RESTORE_DEV_CAP(valid_functions);
3220 	ICE_RESTORE_DEV_CAP(txq_first_id);
3221 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3222 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3223 	ICE_RESTORE_DEV_CAP(max_mtu);
3224 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3225 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3226 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3227 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3228 	dev_caps->num_funcs = num_funcs;
3229 
3230 	/* one Tx and one Rx queue per function in safe mode */
3231 	dev_caps->common_cap.num_rxq = num_funcs;
3232 	dev_caps->common_cap.num_txq = num_funcs;
3233 
3234 	/* two MSIX vectors per function */
3235 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3236 }
3237 
3238 /**
3239  * ice_get_caps - get info about the HW
3240  * @hw: pointer to the hardware structure
3241  */
3242 int ice_get_caps(struct ice_hw *hw)
3243 {
3244 	int status;
3245 
3246 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3247 	if (status)
3248 		return status;
3249 
3250 	return ice_discover_func_caps(hw, &hw->func_caps);
3251 }
3252 
3253 /**
3254  * ice_aq_manage_mac_write - manage MAC address write command
3255  * @hw: pointer to the HW struct
3256  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3257  * @flags: flags to control write behavior
3258  * @cd: pointer to command details structure or NULL
3259  *
3260  * This function is used to write MAC address to the NVM (0x0108).
3261  */
3262 int
3263 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3264 			struct ice_sq_cd *cd)
3265 {
3266 	struct ice_aqc_manage_mac_write *cmd;
3267 	struct libie_aq_desc desc;
3268 
3269 	cmd = libie_aq_raw(&desc);
3270 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3271 
3272 	cmd->flags = flags;
3273 	ether_addr_copy(cmd->mac_addr, mac_addr);
3274 
3275 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3276 }
3277 
3278 /**
3279  * ice_aq_clear_pxe_mode
3280  * @hw: pointer to the HW struct
3281  *
3282  * Tell the firmware that the driver is taking over from PXE (0x0110).
3283  */
3284 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3285 {
3286 	struct ice_aqc_clear_pxe *cmd;
3287 	struct libie_aq_desc desc;
3288 
3289 	cmd = libie_aq_raw(&desc);
3290 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3291 	cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3292 
3293 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3294 }
3295 
3296 /**
3297  * ice_clear_pxe_mode - clear pxe operations mode
3298  * @hw: pointer to the HW struct
3299  *
3300  * Make sure all PXE mode settings are cleared, including things
3301  * like descriptor fetch/write-back mode.
3302  */
3303 void ice_clear_pxe_mode(struct ice_hw *hw)
3304 {
3305 	if (ice_check_sq_alive(hw, &hw->adminq))
3306 		ice_aq_clear_pxe_mode(hw);
3307 }
3308 
3309 /**
3310  * ice_aq_set_port_params - set physical port parameters.
3311  * @pi: pointer to the port info struct
3312  * @double_vlan: if set double VLAN is enabled
3313  * @cd: pointer to command details structure or NULL
3314  *
3315  * Set Physical port parameters (0x0203)
3316  */
3317 int
3318 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3319 		       struct ice_sq_cd *cd)
3320 
3321 {
3322 	struct ice_aqc_set_port_params *cmd;
3323 	struct ice_hw *hw = pi->hw;
3324 	struct libie_aq_desc desc;
3325 	u16 cmd_flags = 0;
3326 
3327 	cmd = libie_aq_raw(&desc);
3328 
3329 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3330 	if (double_vlan)
3331 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3332 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3333 
3334 	cmd->local_fwd_mode = pi->local_fwd_mode |
3335 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3336 
3337 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3338 }
3339 
3340 /**
3341  * ice_is_100m_speed_supported
3342  * @hw: pointer to the HW struct
3343  *
3344  * returns true if 100M speeds are supported by the device,
3345  * false otherwise.
3346  */
3347 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3348 {
3349 	switch (hw->device_id) {
3350 	case ICE_DEV_ID_E822C_SGMII:
3351 	case ICE_DEV_ID_E822L_SGMII:
3352 	case ICE_DEV_ID_E823L_1GBE:
3353 	case ICE_DEV_ID_E823C_SGMII:
3354 		return true;
3355 	default:
3356 		return false;
3357 	}
3358 }
3359 
3360 /**
3361  * ice_get_link_speed_based_on_phy_type - returns link speed
3362  * @phy_type_low: lower part of phy_type
3363  * @phy_type_high: higher part of phy_type
3364  *
3365  * This helper function will convert an entry in PHY type structure
3366  * [phy_type_low, phy_type_high] to its corresponding link speed.
3367  * Note: In the structure of [phy_type_low, phy_type_high], there should
3368  * be one bit set, as this function will convert one PHY type to its
3369  * speed.
3370  *
3371  * Return:
3372  * * PHY speed for recognized PHY type
3373  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3374  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3375  */
3376 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3377 {
3378 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3379 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3380 
3381 	switch (phy_type_low) {
3382 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3383 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3384 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3385 		break;
3386 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3387 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3388 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3389 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3390 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3391 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3392 		break;
3393 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3394 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3395 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3396 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3397 		break;
3398 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3399 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3400 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3401 		break;
3402 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3403 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3404 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3405 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3406 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3407 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3408 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3409 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3410 		break;
3411 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3412 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3413 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3414 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3415 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3416 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3417 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3418 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3419 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3420 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3421 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3422 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3423 		break;
3424 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3425 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3426 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3427 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3428 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3429 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3430 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3431 		break;
3432 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3433 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3434 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3435 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3436 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3437 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3438 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3439 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3440 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3441 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3442 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3443 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3444 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3445 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3446 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3447 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3448 		break;
3449 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3450 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3451 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3452 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3453 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3454 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3455 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3456 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3457 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3458 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3459 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3460 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3461 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3462 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3463 		break;
3464 	default:
3465 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3466 		break;
3467 	}
3468 
3469 	switch (phy_type_high) {
3470 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3471 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3472 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3473 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3474 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3475 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3476 		break;
3477 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3478 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3479 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3480 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3481 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3482 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3483 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3484 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3485 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3486 		break;
3487 	default:
3488 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3489 		break;
3490 	}
3491 
3492 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3493 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3494 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3495 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3496 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3497 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3498 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3499 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3500 		return speed_phy_type_low;
3501 	else
3502 		return speed_phy_type_high;
3503 }
3504 
3505 /**
3506  * ice_update_phy_type
3507  * @phy_type_low: pointer to the lower part of phy_type
3508  * @phy_type_high: pointer to the higher part of phy_type
3509  * @link_speeds_bitmap: targeted link speeds bitmap
3510  *
3511  * Note: For the link_speeds_bitmap structure, you can check it at
3512  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3513  * link_speeds_bitmap include multiple speeds.
3514  *
3515  * Each entry in this [phy_type_low, phy_type_high] structure will
3516  * present a certain link speed. This helper function will turn on bits
3517  * in [phy_type_low, phy_type_high] structure based on the value of
3518  * link_speeds_bitmap input parameter.
3519  */
3520 void
3521 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3522 		    u16 link_speeds_bitmap)
3523 {
3524 	u64 pt_high;
3525 	u64 pt_low;
3526 	int index;
3527 	u16 speed;
3528 
3529 	/* We first check with low part of phy_type */
3530 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3531 		pt_low = BIT_ULL(index);
3532 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3533 
3534 		if (link_speeds_bitmap & speed)
3535 			*phy_type_low |= BIT_ULL(index);
3536 	}
3537 
3538 	/* We then check with high part of phy_type */
3539 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3540 		pt_high = BIT_ULL(index);
3541 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3542 
3543 		if (link_speeds_bitmap & speed)
3544 			*phy_type_high |= BIT_ULL(index);
3545 	}
3546 }
3547 
3548 /**
3549  * ice_aq_set_phy_cfg
3550  * @hw: pointer to the HW struct
3551  * @pi: port info structure of the interested logical port
3552  * @cfg: structure with PHY configuration data to be set
3553  * @cd: pointer to command details structure or NULL
3554  *
3555  * Set the various PHY configuration parameters supported on the Port.
3556  * One or more of the Set PHY config parameters may be ignored in an MFP
3557  * mode as the PF may not have the privilege to set some of the PHY Config
3558  * parameters. This status will be indicated by the command response (0x0601).
3559  */
3560 int
3561 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3562 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3563 {
3564 	struct ice_aqc_set_phy_cfg *cmd;
3565 	struct libie_aq_desc desc;
3566 	int status;
3567 
3568 	if (!cfg)
3569 		return -EINVAL;
3570 
3571 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3572 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3573 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3574 			  cfg->caps);
3575 
3576 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3577 	}
3578 
3579 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3580 	cmd = libie_aq_raw(&desc);
3581 	cmd->lport_num = pi->lport;
3582 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3583 
3584 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3585 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3586 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3587 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3588 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3589 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3590 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3591 		  cfg->low_power_ctrl_an);
3592 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3593 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3594 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3595 		  cfg->link_fec_opt);
3596 
3597 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3598 	if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3599 		status = 0;
3600 
3601 	if (!status)
3602 		pi->phy.curr_user_phy_cfg = *cfg;
3603 
3604 	return status;
3605 }
3606 
3607 /**
3608  * ice_update_link_info - update status of the HW network link
3609  * @pi: port info structure of the interested logical port
3610  */
3611 int ice_update_link_info(struct ice_port_info *pi)
3612 {
3613 	struct ice_link_status *li;
3614 	int status;
3615 
3616 	if (!pi)
3617 		return -EINVAL;
3618 
3619 	li = &pi->phy.link_info;
3620 
3621 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3622 	if (status)
3623 		return status;
3624 
3625 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3626 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3627 
3628 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3629 		if (!pcaps)
3630 			return -ENOMEM;
3631 
3632 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3633 					     pcaps, NULL);
3634 	}
3635 
3636 	return status;
3637 }
3638 
3639 /**
3640  * ice_aq_get_phy_equalization - function to read serdes equaliser
3641  * value from firmware using admin queue command.
3642  * @hw: pointer to the HW struct
3643  * @data_in: represents the serdes equalization parameter requested
3644  * @op_code: represents the serdes number and flag to represent tx or rx
3645  * @serdes_num: represents the serdes number
3646  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3647  *
3648  * Return: non-zero status on error and 0 on success.
3649  */
3650 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3651 				u8 serdes_num, int *output)
3652 {
3653 	struct ice_aqc_dnl_call_command *cmd;
3654 	struct ice_aqc_dnl_call buf = {};
3655 	struct libie_aq_desc desc;
3656 	int err;
3657 
3658 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3659 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3660 		cpu_to_le16(op_code | (serdes_num & 0xF));
3661 	cmd = libie_aq_raw(&desc);
3662 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3663 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3664 				  LIBIE_AQ_FLAG_RD |
3665 				  LIBIE_AQ_FLAG_SI);
3666 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3667 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3668 
3669 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3670 			      NULL);
3671 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3672 
3673 	return err;
3674 }
3675 
3676 #define FEC_REG_PORT(port) {	\
3677 	FEC_CORR_LOW_REG_PORT##port,		\
3678 	FEC_CORR_HIGH_REG_PORT##port,	\
3679 	FEC_UNCORR_LOW_REG_PORT##port,	\
3680 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3681 }
3682 
3683 static const u32 fec_reg[][ICE_FEC_MAX] = {
3684 	FEC_REG_PORT(0),
3685 	FEC_REG_PORT(1),
3686 	FEC_REG_PORT(2),
3687 	FEC_REG_PORT(3)
3688 };
3689 
3690 /**
3691  * ice_aq_get_fec_stats - reads fec stats from phy
3692  * @hw: pointer to the HW struct
3693  * @pcs_quad: represents pcsquad of user input serdes
3694  * @pcs_port: represents the pcs port number part of above pcs quad
3695  * @fec_type: represents FEC stats type
3696  * @output: pointer to the caller-supplied buffer to return requested fec stats
3697  *
3698  * Return: non-zero status on error and 0 on success.
3699  */
3700 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3701 			 enum ice_fec_stats_types fec_type, u32 *output)
3702 {
3703 	u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3704 	struct ice_sbq_msg_input msg = {};
3705 	u32 receiver_id, reg_offset;
3706 	int err;
3707 
3708 	if (pcs_port > 3)
3709 		return -EINVAL;
3710 
3711 	reg_offset = fec_reg[pcs_port][fec_type];
3712 
3713 	if (pcs_quad == 0)
3714 		receiver_id = FEC_RECEIVER_ID_PCS0;
3715 	else if (pcs_quad == 1)
3716 		receiver_id = FEC_RECEIVER_ID_PCS1;
3717 	else
3718 		return -EINVAL;
3719 
3720 	msg.msg_addr_low = lower_16_bits(reg_offset);
3721 	msg.msg_addr_high = receiver_id;
3722 	msg.opcode = ice_sbq_msg_rd;
3723 	msg.dest_dev = ice_sbq_dev_phy_0;
3724 
3725 	err = ice_sbq_rw_reg(hw, &msg, flag);
3726 	if (err)
3727 		return err;
3728 
3729 	*output = msg.data;
3730 	return 0;
3731 }
3732 
3733 /**
3734  * ice_cache_phy_user_req
3735  * @pi: port information structure
3736  * @cache_data: PHY logging data
3737  * @cache_mode: PHY logging mode
3738  *
3739  * Log the user request on (FC, FEC, SPEED) for later use.
3740  */
3741 static void
3742 ice_cache_phy_user_req(struct ice_port_info *pi,
3743 		       struct ice_phy_cache_mode_data cache_data,
3744 		       enum ice_phy_cache_mode cache_mode)
3745 {
3746 	if (!pi)
3747 		return;
3748 
3749 	switch (cache_mode) {
3750 	case ICE_FC_MODE:
3751 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3752 		break;
3753 	case ICE_SPEED_MODE:
3754 		pi->phy.curr_user_speed_req =
3755 			cache_data.data.curr_user_speed_req;
3756 		break;
3757 	case ICE_FEC_MODE:
3758 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3759 		break;
3760 	default:
3761 		break;
3762 	}
3763 }
3764 
3765 /**
3766  * ice_caps_to_fc_mode
3767  * @caps: PHY capabilities
3768  *
3769  * Convert PHY FC capabilities to ice FC mode
3770  */
3771 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3772 {
3773 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3774 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3775 		return ICE_FC_FULL;
3776 
3777 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3778 		return ICE_FC_TX_PAUSE;
3779 
3780 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3781 		return ICE_FC_RX_PAUSE;
3782 
3783 	return ICE_FC_NONE;
3784 }
3785 
3786 /**
3787  * ice_caps_to_fec_mode
3788  * @caps: PHY capabilities
3789  * @fec_options: Link FEC options
3790  *
3791  * Convert PHY FEC capabilities to ice FEC mode
3792  */
3793 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3794 {
3795 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3796 		return ICE_FEC_AUTO;
3797 
3798 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3799 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3800 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3801 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3802 		return ICE_FEC_BASER;
3803 
3804 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3805 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3806 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3807 		return ICE_FEC_RS;
3808 
3809 	return ICE_FEC_NONE;
3810 }
3811 
3812 /**
3813  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3814  * @pi: port information structure
3815  * @cfg: PHY configuration data to set FC mode
3816  * @req_mode: FC mode to configure
3817  */
3818 int
3819 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3820 	       enum ice_fc_mode req_mode)
3821 {
3822 	struct ice_phy_cache_mode_data cache_data;
3823 	u8 pause_mask = 0x0;
3824 
3825 	if (!pi || !cfg)
3826 		return -EINVAL;
3827 
3828 	switch (req_mode) {
3829 	case ICE_FC_FULL:
3830 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3831 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3832 		break;
3833 	case ICE_FC_RX_PAUSE:
3834 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3835 		break;
3836 	case ICE_FC_TX_PAUSE:
3837 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3838 		break;
3839 	default:
3840 		break;
3841 	}
3842 
3843 	/* clear the old pause settings */
3844 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3845 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3846 
3847 	/* set the new capabilities */
3848 	cfg->caps |= pause_mask;
3849 
3850 	/* Cache user FC request */
3851 	cache_data.data.curr_user_fc_req = req_mode;
3852 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3853 
3854 	return 0;
3855 }
3856 
3857 /**
3858  * ice_set_fc
3859  * @pi: port information structure
3860  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3861  * @ena_auto_link_update: enable automatic link update
3862  *
3863  * Set the requested flow control mode.
3864  */
3865 int
3866 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3867 {
3868 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3869 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3870 	struct ice_hw *hw;
3871 	int status;
3872 
3873 	if (!pi || !aq_failures)
3874 		return -EINVAL;
3875 
3876 	*aq_failures = 0;
3877 	hw = pi->hw;
3878 
3879 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3880 	if (!pcaps)
3881 		return -ENOMEM;
3882 
3883 	/* Get the current PHY config */
3884 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3885 				     pcaps, NULL);
3886 	if (status) {
3887 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3888 		goto out;
3889 	}
3890 
3891 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3892 
3893 	/* Configure the set PHY data */
3894 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3895 	if (status)
3896 		goto out;
3897 
3898 	/* If the capabilities have changed, then set the new config */
3899 	if (cfg.caps != pcaps->caps) {
3900 		int retry_count, retry_max = 10;
3901 
3902 		/* Auto restart link so settings take effect */
3903 		if (ena_auto_link_update)
3904 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3905 
3906 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3907 		if (status) {
3908 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3909 			goto out;
3910 		}
3911 
3912 		/* Update the link info
3913 		 * It sometimes takes a really long time for link to
3914 		 * come back from the atomic reset. Thus, we wait a
3915 		 * little bit.
3916 		 */
3917 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3918 			status = ice_update_link_info(pi);
3919 
3920 			if (!status)
3921 				break;
3922 
3923 			mdelay(100);
3924 		}
3925 
3926 		if (status)
3927 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3928 	}
3929 
3930 out:
3931 	return status;
3932 }
3933 
3934 /**
3935  * ice_phy_caps_equals_cfg
3936  * @phy_caps: PHY capabilities
3937  * @phy_cfg: PHY configuration
3938  *
3939  * Helper function to determine if PHY capabilities matches PHY
3940  * configuration
3941  */
3942 bool
3943 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3944 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3945 {
3946 	u8 caps_mask, cfg_mask;
3947 
3948 	if (!phy_caps || !phy_cfg)
3949 		return false;
3950 
3951 	/* These bits are not common between capabilities and configuration.
3952 	 * Do not use them to determine equality.
3953 	 */
3954 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3955 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3956 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3957 
3958 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3959 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3960 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3961 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3962 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3963 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3964 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3965 		return false;
3966 
3967 	return true;
3968 }
3969 
3970 /**
3971  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3972  * @pi: port information structure
3973  * @caps: PHY ability structure to copy date from
3974  * @cfg: PHY configuration structure to copy data to
3975  *
3976  * Helper function to copy AQC PHY get ability data to PHY set configuration
3977  * data structure
3978  */
3979 void
3980 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3981 			 struct ice_aqc_get_phy_caps_data *caps,
3982 			 struct ice_aqc_set_phy_cfg_data *cfg)
3983 {
3984 	if (!pi || !caps || !cfg)
3985 		return;
3986 
3987 	memset(cfg, 0, sizeof(*cfg));
3988 	cfg->phy_type_low = caps->phy_type_low;
3989 	cfg->phy_type_high = caps->phy_type_high;
3990 	cfg->caps = caps->caps;
3991 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3992 	cfg->eee_cap = caps->eee_cap;
3993 	cfg->eeer_value = caps->eeer_value;
3994 	cfg->link_fec_opt = caps->link_fec_options;
3995 	cfg->module_compliance_enforcement =
3996 		caps->module_compliance_enforcement;
3997 }
3998 
3999 /**
4000  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
4001  * @pi: port information structure
4002  * @cfg: PHY configuration data to set FEC mode
4003  * @fec: FEC mode to configure
4004  */
4005 int
4006 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
4007 		enum ice_fec_mode fec)
4008 {
4009 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
4010 	struct ice_hw *hw;
4011 	int status;
4012 
4013 	if (!pi || !cfg)
4014 		return -EINVAL;
4015 
4016 	hw = pi->hw;
4017 
4018 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
4019 	if (!pcaps)
4020 		return -ENOMEM;
4021 
4022 	status = ice_aq_get_phy_caps(pi, false,
4023 				     (ice_fw_supports_report_dflt_cfg(hw) ?
4024 				      ICE_AQC_REPORT_DFLT_CFG :
4025 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
4026 	if (status)
4027 		goto out;
4028 
4029 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
4030 	cfg->link_fec_opt = pcaps->link_fec_options;
4031 
4032 	switch (fec) {
4033 	case ICE_FEC_BASER:
4034 		/* Clear RS bits, and AND BASE-R ability
4035 		 * bits and OR request bits.
4036 		 */
4037 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
4038 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
4039 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4040 			ICE_AQC_PHY_FEC_25G_KR_REQ;
4041 		break;
4042 	case ICE_FEC_RS:
4043 		/* Clear BASE-R bits, and AND RS ability
4044 		 * bits and OR request bits.
4045 		 */
4046 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4047 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4048 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4049 		break;
4050 	case ICE_FEC_NONE:
4051 		/* Clear all FEC option bits. */
4052 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4053 		break;
4054 	case ICE_FEC_AUTO:
4055 		/* AND auto FEC bit, and all caps bits. */
4056 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4057 		cfg->link_fec_opt |= pcaps->link_fec_options;
4058 		break;
4059 	default:
4060 		status = -EINVAL;
4061 		break;
4062 	}
4063 
4064 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4065 	    !ice_fw_supports_report_dflt_cfg(hw)) {
4066 		struct ice_link_default_override_tlv tlv = { 0 };
4067 
4068 		status = ice_get_link_default_override(&tlv, pi);
4069 		if (status)
4070 			goto out;
4071 
4072 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4073 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
4074 			cfg->link_fec_opt = tlv.fec_options;
4075 	}
4076 
4077 out:
4078 	return status;
4079 }
4080 
4081 /**
4082  * ice_get_link_status - get status of the HW network link
4083  * @pi: port information structure
4084  * @link_up: pointer to bool (true/false = linkup/linkdown)
4085  *
4086  * Variable link_up is true if link is up, false if link is down.
4087  * The variable link_up is invalid if status is non zero. As a
4088  * result of this call, link status reporting becomes enabled
4089  */
4090 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4091 {
4092 	struct ice_phy_info *phy_info;
4093 	int status = 0;
4094 
4095 	if (!pi || !link_up)
4096 		return -EINVAL;
4097 
4098 	phy_info = &pi->phy;
4099 
4100 	if (phy_info->get_link_info) {
4101 		status = ice_update_link_info(pi);
4102 
4103 		if (status)
4104 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4105 				  status);
4106 	}
4107 
4108 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4109 
4110 	return status;
4111 }
4112 
4113 /**
4114  * ice_aq_set_link_restart_an
4115  * @pi: pointer to the port information structure
4116  * @ena_link: if true: enable link, if false: disable link
4117  * @cd: pointer to command details structure or NULL
4118  *
4119  * Sets up the link and restarts the Auto-Negotiation over the link.
4120  */
4121 int
4122 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4123 			   struct ice_sq_cd *cd)
4124 {
4125 	struct ice_aqc_restart_an *cmd;
4126 	struct libie_aq_desc desc;
4127 
4128 	cmd = libie_aq_raw(&desc);
4129 
4130 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4131 
4132 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4133 	cmd->lport_num = pi->lport;
4134 	if (ena_link)
4135 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4136 	else
4137 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4138 
4139 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4140 }
4141 
4142 /**
4143  * ice_aq_set_event_mask
4144  * @hw: pointer to the HW struct
4145  * @port_num: port number of the physical function
4146  * @mask: event mask to be set
4147  * @cd: pointer to command details structure or NULL
4148  *
4149  * Set event mask (0x0613)
4150  */
4151 int
4152 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4153 		      struct ice_sq_cd *cd)
4154 {
4155 	struct ice_aqc_set_event_mask *cmd;
4156 	struct libie_aq_desc desc;
4157 
4158 	cmd = libie_aq_raw(&desc);
4159 
4160 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4161 
4162 	cmd->lport_num = port_num;
4163 
4164 	cmd->event_mask = cpu_to_le16(mask);
4165 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4166 }
4167 
4168 /**
4169  * ice_aq_set_mac_loopback
4170  * @hw: pointer to the HW struct
4171  * @ena_lpbk: Enable or Disable loopback
4172  * @cd: pointer to command details structure or NULL
4173  *
4174  * Enable/disable loopback on a given port
4175  */
4176 int
4177 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4178 {
4179 	struct ice_aqc_set_mac_lb *cmd;
4180 	struct libie_aq_desc desc;
4181 
4182 	cmd = libie_aq_raw(&desc);
4183 
4184 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4185 	if (ena_lpbk)
4186 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4187 
4188 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4189 }
4190 
4191 /**
4192  * ice_aq_set_port_id_led
4193  * @pi: pointer to the port information
4194  * @is_orig_mode: is this LED set to original mode (by the net-list)
4195  * @cd: pointer to command details structure or NULL
4196  *
4197  * Set LED value for the given port (0x06e9)
4198  */
4199 int
4200 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4201 		       struct ice_sq_cd *cd)
4202 {
4203 	struct ice_aqc_set_port_id_led *cmd;
4204 	struct ice_hw *hw = pi->hw;
4205 	struct libie_aq_desc desc;
4206 
4207 	cmd = libie_aq_raw(&desc);
4208 
4209 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4210 
4211 	if (is_orig_mode)
4212 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4213 	else
4214 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4215 
4216 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4217 }
4218 
4219 /**
4220  * ice_aq_get_port_options
4221  * @hw: pointer to the HW struct
4222  * @options: buffer for the resultant port options
4223  * @option_count: input - size of the buffer in port options structures,
4224  *                output - number of returned port options
4225  * @lport: logical port to call the command with (optional)
4226  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4227  *               when PF owns more than 1 port it must be true
4228  * @active_option_idx: index of active port option in returned buffer
4229  * @active_option_valid: active option in returned buffer is valid
4230  * @pending_option_idx: index of pending port option in returned buffer
4231  * @pending_option_valid: pending option in returned buffer is valid
4232  *
4233  * Calls Get Port Options AQC (0x06ea) and verifies result.
4234  */
4235 int
4236 ice_aq_get_port_options(struct ice_hw *hw,
4237 			struct ice_aqc_get_port_options_elem *options,
4238 			u8 *option_count, u8 lport, bool lport_valid,
4239 			u8 *active_option_idx, bool *active_option_valid,
4240 			u8 *pending_option_idx, bool *pending_option_valid)
4241 {
4242 	struct ice_aqc_get_port_options *cmd;
4243 	struct libie_aq_desc desc;
4244 	int status;
4245 	u8 i;
4246 
4247 	/* options buffer shall be able to hold max returned options */
4248 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4249 		return -EINVAL;
4250 
4251 	cmd = libie_aq_raw(&desc);
4252 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4253 
4254 	if (lport_valid)
4255 		cmd->lport_num = lport;
4256 	cmd->lport_num_valid = lport_valid;
4257 
4258 	status = ice_aq_send_cmd(hw, &desc, options,
4259 				 *option_count * sizeof(*options), NULL);
4260 	if (status)
4261 		return status;
4262 
4263 	/* verify direct FW response & set output parameters */
4264 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4265 				  cmd->port_options_count);
4266 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4267 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4268 					 cmd->port_options);
4269 	if (*active_option_valid) {
4270 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4271 					       cmd->port_options);
4272 		if (*active_option_idx > (*option_count - 1))
4273 			return -EIO;
4274 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4275 			  *active_option_idx);
4276 	}
4277 
4278 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4279 					  cmd->pending_port_option_status);
4280 	if (*pending_option_valid) {
4281 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4282 						cmd->pending_port_option_status);
4283 		if (*pending_option_idx > (*option_count - 1))
4284 			return -EIO;
4285 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4286 			  *pending_option_idx);
4287 	}
4288 
4289 	/* mask output options fields */
4290 	for (i = 0; i < *option_count; i++) {
4291 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4292 					   options[i].pmd);
4293 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4294 						      options[i].max_lane_speed);
4295 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4296 			  options[i].pmd, options[i].max_lane_speed);
4297 	}
4298 
4299 	return 0;
4300 }
4301 
4302 /**
4303  * ice_aq_set_port_option
4304  * @hw: pointer to the HW struct
4305  * @lport: logical port to call the command with
4306  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4307  *               when PF owns more than 1 port it must be true
4308  * @new_option: new port option to be written
4309  *
4310  * Calls Set Port Options AQC (0x06eb).
4311  */
4312 int
4313 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4314 		       u8 new_option)
4315 {
4316 	struct ice_aqc_set_port_option *cmd;
4317 	struct libie_aq_desc desc;
4318 
4319 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4320 		return -EINVAL;
4321 
4322 	cmd = libie_aq_raw(&desc);
4323 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4324 
4325 	if (lport_valid)
4326 		cmd->lport_num = lport;
4327 
4328 	cmd->lport_num_valid = lport_valid;
4329 	cmd->selected_port_option = new_option;
4330 
4331 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4332 }
4333 
4334 /**
4335  * ice_get_phy_lane_number - Get PHY lane number for current adapter
4336  * @hw: pointer to the hw struct
4337  *
4338  * Return: PHY lane number on success, negative error code otherwise.
4339  */
4340 int ice_get_phy_lane_number(struct ice_hw *hw)
4341 {
4342 	struct ice_aqc_get_port_options_elem *options;
4343 	unsigned int lport = 0;
4344 	unsigned int lane;
4345 	int err;
4346 
4347 	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4348 	if (!options)
4349 		return -ENOMEM;
4350 
4351 	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4352 		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4353 		u8 speed, active_idx, pending_idx;
4354 		bool active_valid, pending_valid;
4355 
4356 		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4357 					      true, &active_idx, &active_valid,
4358 					      &pending_idx, &pending_valid);
4359 		if (err)
4360 			goto err;
4361 
4362 		if (!active_valid)
4363 			continue;
4364 
4365 		speed = options[active_idx].max_lane_speed;
4366 		/* If we don't get speed for this lane, it's unoccupied */
4367 		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4368 			continue;
4369 
4370 		if (hw->pf_id == lport) {
4371 			if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4372 			    ice_is_dual(hw) && !ice_is_primary(hw))
4373 				lane += ICE_PORTS_PER_QUAD;
4374 			kfree(options);
4375 			return lane;
4376 		}
4377 		lport++;
4378 	}
4379 
4380 	/* PHY lane not found */
4381 	err = -ENXIO;
4382 err:
4383 	kfree(options);
4384 	return err;
4385 }
4386 
4387 /**
4388  * ice_aq_sff_eeprom
4389  * @hw: pointer to the HW struct
4390  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4391  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4392  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4393  * @page: QSFP page
4394  * @set_page: set or ignore the page
4395  * @data: pointer to data buffer to be read/written to the I2C device.
4396  * @length: 1-16 for read, 1 for write.
4397  * @write: 0 read, 1 for write.
4398  * @cd: pointer to command details structure or NULL
4399  *
4400  * Read/Write SFF EEPROM (0x06EE)
4401  */
4402 int
4403 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4404 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4405 		  bool write, struct ice_sq_cd *cd)
4406 {
4407 	struct ice_aqc_sff_eeprom *cmd;
4408 	struct libie_aq_desc desc;
4409 	u16 i2c_bus_addr;
4410 	int status;
4411 
4412 	if (!data || (mem_addr & 0xff00))
4413 		return -EINVAL;
4414 
4415 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4416 	cmd = libie_aq_raw(&desc);
4417 	desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4418 	cmd->lport_num = (u8)(lport & 0xff);
4419 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4420 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4421 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4422 	if (write)
4423 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4424 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4425 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4426 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4427 
4428 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4429 	return status;
4430 }
4431 
4432 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4433 {
4434 	switch (type) {
4435 	case ICE_LUT_VSI:
4436 		return ICE_LUT_VSI_SIZE;
4437 	case ICE_LUT_GLOBAL:
4438 		return ICE_LUT_GLOBAL_SIZE;
4439 	case ICE_LUT_PF:
4440 		return ICE_LUT_PF_SIZE;
4441 	}
4442 	WARN_ONCE(1, "incorrect type passed");
4443 	return ICE_LUT_VSI_SIZE;
4444 }
4445 
4446 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4447 {
4448 	switch (size) {
4449 	case ICE_LUT_VSI_SIZE:
4450 		return ICE_AQC_LUT_SIZE_SMALL;
4451 	case ICE_LUT_GLOBAL_SIZE:
4452 		return ICE_AQC_LUT_SIZE_512;
4453 	case ICE_LUT_PF_SIZE:
4454 		return ICE_AQC_LUT_SIZE_2K;
4455 	}
4456 	WARN_ONCE(1, "incorrect size passed");
4457 	return 0;
4458 }
4459 
4460 /**
4461  * __ice_aq_get_set_rss_lut
4462  * @hw: pointer to the hardware structure
4463  * @params: RSS LUT parameters
4464  * @set: set true to set the table, false to get the table
4465  *
4466  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4467  */
4468 static int
4469 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4470 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4471 {
4472 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4473 	enum ice_lut_type lut_type = params->lut_type;
4474 	struct ice_aqc_get_set_rss_lut *desc_params;
4475 	enum ice_aqc_lut_flags flags;
4476 	enum ice_lut_size lut_size;
4477 	struct libie_aq_desc desc;
4478 	u8 *lut = params->lut;
4479 
4480 
4481 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4482 		return -EINVAL;
4483 
4484 	lut_size = ice_lut_type_to_size(lut_type);
4485 	if (lut_size > params->lut_size)
4486 		return -EINVAL;
4487 	else if (set && lut_size != params->lut_size)
4488 		return -EINVAL;
4489 
4490 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4491 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4492 	if (set)
4493 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4494 
4495 	desc_params = libie_aq_raw(&desc);
4496 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4497 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4498 
4499 	if (lut_type == ICE_LUT_GLOBAL)
4500 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4501 					  params->global_lut_id);
4502 
4503 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4504 	desc_params->flags = cpu_to_le16(flags);
4505 
4506 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4507 }
4508 
4509 /**
4510  * ice_aq_get_rss_lut
4511  * @hw: pointer to the hardware structure
4512  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4513  *
4514  * get the RSS lookup table, PF or VSI type
4515  */
4516 int
4517 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4518 {
4519 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4520 }
4521 
4522 /**
4523  * ice_aq_set_rss_lut
4524  * @hw: pointer to the hardware structure
4525  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4526  *
4527  * set the RSS lookup table, PF or VSI type
4528  */
4529 int
4530 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4531 {
4532 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4533 }
4534 
4535 /**
4536  * __ice_aq_get_set_rss_key
4537  * @hw: pointer to the HW struct
4538  * @vsi_id: VSI FW index
4539  * @key: pointer to key info struct
4540  * @set: set true to set the key, false to get the key
4541  *
4542  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4543  */
4544 static int
4545 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4546 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4547 {
4548 	struct ice_aqc_get_set_rss_key *desc_params;
4549 	u16 key_size = sizeof(*key);
4550 	struct libie_aq_desc desc;
4551 
4552 	if (set) {
4553 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4554 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4555 	} else {
4556 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4557 	}
4558 
4559 	desc_params = libie_aq_raw(&desc);
4560 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4561 
4562 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4563 }
4564 
4565 /**
4566  * ice_aq_get_rss_key
4567  * @hw: pointer to the HW struct
4568  * @vsi_handle: software VSI handle
4569  * @key: pointer to key info struct
4570  *
4571  * get the RSS key per VSI
4572  */
4573 int
4574 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4575 		   struct ice_aqc_get_set_rss_keys *key)
4576 {
4577 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4578 		return -EINVAL;
4579 
4580 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4581 					key, false);
4582 }
4583 
4584 /**
4585  * ice_aq_set_rss_key
4586  * @hw: pointer to the HW struct
4587  * @vsi_handle: software VSI handle
4588  * @keys: pointer to key info struct
4589  *
4590  * set the RSS key per VSI
4591  */
4592 int
4593 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4594 		   struct ice_aqc_get_set_rss_keys *keys)
4595 {
4596 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4597 		return -EINVAL;
4598 
4599 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4600 					keys, true);
4601 }
4602 
4603 /**
4604  * ice_aq_add_lan_txq
4605  * @hw: pointer to the hardware structure
4606  * @num_qgrps: Number of added queue groups
4607  * @qg_list: list of queue groups to be added
4608  * @buf_size: size of buffer for indirect command
4609  * @cd: pointer to command details structure or NULL
4610  *
4611  * Add Tx LAN queue (0x0C30)
4612  *
4613  * NOTE:
4614  * Prior to calling add Tx LAN queue:
4615  * Initialize the following as part of the Tx queue context:
4616  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4617  * Cache profile and Packet shaper profile.
4618  *
4619  * After add Tx LAN queue AQ command is completed:
4620  * Interrupts should be associated with specific queues,
4621  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4622  * flow.
4623  */
4624 static int
4625 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4626 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4627 		   struct ice_sq_cd *cd)
4628 {
4629 	struct ice_aqc_add_tx_qgrp *list;
4630 	struct ice_aqc_add_txqs *cmd;
4631 	struct libie_aq_desc desc;
4632 	u16 i, sum_size = 0;
4633 
4634 	cmd = libie_aq_raw(&desc);
4635 
4636 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4637 
4638 	if (!qg_list)
4639 		return -EINVAL;
4640 
4641 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4642 		return -EINVAL;
4643 
4644 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4645 		sum_size += struct_size(list, txqs, list->num_txqs);
4646 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4647 						      list->num_txqs);
4648 	}
4649 
4650 	if (buf_size != sum_size)
4651 		return -EINVAL;
4652 
4653 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4654 
4655 	cmd->num_qgrps = num_qgrps;
4656 
4657 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4658 }
4659 
4660 /**
4661  * ice_aq_dis_lan_txq
4662  * @hw: pointer to the hardware structure
4663  * @num_qgrps: number of groups in the list
4664  * @qg_list: the list of groups to disable
4665  * @buf_size: the total size of the qg_list buffer in bytes
4666  * @rst_src: if called due to reset, specifies the reset source
4667  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4668  * @cd: pointer to command details structure or NULL
4669  *
4670  * Disable LAN Tx queue (0x0C31)
4671  */
4672 static int
4673 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4674 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4675 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4676 		   struct ice_sq_cd *cd)
4677 {
4678 	struct ice_aqc_dis_txq_item *item;
4679 	struct ice_aqc_dis_txqs *cmd;
4680 	struct libie_aq_desc desc;
4681 	u16 vmvf_and_timeout;
4682 	u16 i, sz = 0;
4683 	int status;
4684 
4685 	cmd = libie_aq_raw(&desc);
4686 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4687 
4688 	/* qg_list can be NULL only in VM/VF reset flow */
4689 	if (!qg_list && !rst_src)
4690 		return -EINVAL;
4691 
4692 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4693 		return -EINVAL;
4694 
4695 	cmd->num_entries = num_qgrps;
4696 
4697 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4698 
4699 	switch (rst_src) {
4700 	case ICE_VM_RESET:
4701 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4702 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4703 		break;
4704 	case ICE_VF_RESET:
4705 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4706 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4707 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4708 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4709 		break;
4710 	case ICE_NO_RESET:
4711 	default:
4712 		break;
4713 	}
4714 
4715 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4716 
4717 	/* flush pipe on time out */
4718 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4719 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4720 	if (!qg_list)
4721 		goto do_aq;
4722 
4723 	/* set RD bit to indicate that command buffer is provided by the driver
4724 	 * and it needs to be read by the firmware
4725 	 */
4726 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4727 
4728 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4729 		u16 item_size = struct_size(item, q_id, item->num_qs);
4730 
4731 		/* If the num of queues is even, add 2 bytes of padding */
4732 		if ((item->num_qs % 2) == 0)
4733 			item_size += 2;
4734 
4735 		sz += item_size;
4736 
4737 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4738 	}
4739 
4740 	if (buf_size != sz)
4741 		return -EINVAL;
4742 
4743 do_aq:
4744 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4745 	if (status) {
4746 		if (!qg_list)
4747 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4748 				  vmvf_num, hw->adminq.sq_last_status);
4749 		else
4750 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4751 				  le16_to_cpu(qg_list[0].q_id[0]),
4752 				  hw->adminq.sq_last_status);
4753 	}
4754 	return status;
4755 }
4756 
4757 /**
4758  * ice_aq_cfg_lan_txq - send AQ command 0x0C32 to FW
4759  * @hw: pointer to the hardware structure
4760  * @buf: buffer for command
4761  * @buf_size: size of buffer in bytes
4762  * @num_qs: number of queues being configured
4763  * @oldport: origination lport
4764  * @newport: destination lport
4765  * @mode: cmd_type for move to use
4766  * @cd: pointer to command details structure or NULL
4767  *
4768  * Move/Configure LAN Tx queue (0x0C32)
4769  *
4770  * Return: Zero on success, associated error code on failure.
4771  */
4772 int
4773 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4774 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4775 		   u8 mode, struct ice_sq_cd *cd)
4776 {
4777 	struct ice_aqc_cfg_txqs *cmd;
4778 	struct libie_aq_desc desc;
4779 	int status;
4780 
4781 	cmd = libie_aq_raw(&desc);
4782 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4783 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4784 
4785 	if (!buf)
4786 		return -EINVAL;
4787 
4788 	cmd->cmd_type = mode;
4789 	cmd->num_qs = num_qs;
4790 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4791 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4792 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_MODE_M,
4793 					 ICE_AQC_Q_CFG_MODE_KEEP_OWN);
4794 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4795 	cmd->blocked_cgds = 0;
4796 
4797 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4798 	if (status)
4799 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4800 			  hw->adminq.sq_last_status);
4801 	return status;
4802 }
4803 
4804 /**
4805  * ice_aq_add_rdma_qsets
4806  * @hw: pointer to the hardware structure
4807  * @num_qset_grps: Number of RDMA Qset groups
4808  * @qset_list: list of Qset groups to be added
4809  * @buf_size: size of buffer for indirect command
4810  * @cd: pointer to command details structure or NULL
4811  *
4812  * Add Tx RDMA Qsets (0x0C33)
4813  */
4814 static int
4815 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4816 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4817 		      u16 buf_size, struct ice_sq_cd *cd)
4818 {
4819 	struct ice_aqc_add_rdma_qset_data *list;
4820 	struct ice_aqc_add_rdma_qset *cmd;
4821 	struct libie_aq_desc desc;
4822 	u16 i, sum_size = 0;
4823 
4824 	cmd = libie_aq_raw(&desc);
4825 
4826 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4827 
4828 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4829 		return -EINVAL;
4830 
4831 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4832 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4833 
4834 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4835 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4836 							     num_qsets);
4837 	}
4838 
4839 	if (buf_size != sum_size)
4840 		return -EINVAL;
4841 
4842 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4843 
4844 	cmd->num_qset_grps = num_qset_grps;
4845 
4846 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4847 }
4848 
4849 /* End of FW Admin Queue command wrappers */
4850 
4851 /**
4852  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4853  * @hw: pointer to the HW struct
4854  * @vsi_handle: software VSI handle
4855  * @tc: TC number
4856  * @q_handle: software queue handle
4857  */
4858 struct ice_q_ctx *
4859 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4860 {
4861 	struct ice_vsi_ctx *vsi;
4862 	struct ice_q_ctx *q_ctx;
4863 
4864 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4865 	if (!vsi)
4866 		return NULL;
4867 	if (q_handle >= vsi->num_lan_q_entries[tc])
4868 		return NULL;
4869 	if (!vsi->lan_q_ctx[tc])
4870 		return NULL;
4871 	q_ctx = vsi->lan_q_ctx[tc];
4872 	return &q_ctx[q_handle];
4873 }
4874 
4875 /**
4876  * ice_ena_vsi_txq
4877  * @pi: port information structure
4878  * @vsi_handle: software VSI handle
4879  * @tc: TC number
4880  * @q_handle: software queue handle
4881  * @num_qgrps: Number of added queue groups
4882  * @buf: list of queue groups to be added
4883  * @buf_size: size of buffer for indirect command
4884  * @cd: pointer to command details structure or NULL
4885  *
4886  * This function adds one LAN queue
4887  */
4888 int
4889 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4890 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4891 		struct ice_sq_cd *cd)
4892 {
4893 	struct ice_aqc_txsched_elem_data node = { 0 };
4894 	struct ice_sched_node *parent;
4895 	struct ice_q_ctx *q_ctx;
4896 	struct ice_hw *hw;
4897 	int status;
4898 
4899 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4900 		return -EIO;
4901 
4902 	if (num_qgrps > 1 || buf->num_txqs > 1)
4903 		return -ENOSPC;
4904 
4905 	hw = pi->hw;
4906 
4907 	if (!ice_is_vsi_valid(hw, vsi_handle))
4908 		return -EINVAL;
4909 
4910 	mutex_lock(&pi->sched_lock);
4911 
4912 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4913 	if (!q_ctx) {
4914 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4915 			  q_handle);
4916 		status = -EINVAL;
4917 		goto ena_txq_exit;
4918 	}
4919 
4920 	/* find a parent node */
4921 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4922 					    ICE_SCHED_NODE_OWNER_LAN);
4923 	if (!parent) {
4924 		status = -EINVAL;
4925 		goto ena_txq_exit;
4926 	}
4927 
4928 	buf->parent_teid = parent->info.node_teid;
4929 	node.parent_teid = parent->info.node_teid;
4930 	/* Mark that the values in the "generic" section as valid. The default
4931 	 * value in the "generic" section is zero. This means that :
4932 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4933 	 * - 0 priority among siblings, indicated by Bit 1-3.
4934 	 * - WFQ, indicated by Bit 4.
4935 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4936 	 * Bit 5-6.
4937 	 * - Bit 7 is reserved.
4938 	 * Without setting the generic section as valid in valid_sections, the
4939 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4940 	 */
4941 	buf->txqs[0].info.valid_sections =
4942 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4943 		ICE_AQC_ELEM_VALID_EIR;
4944 	buf->txqs[0].info.generic = 0;
4945 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4946 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4947 	buf->txqs[0].info.cir_bw.bw_alloc =
4948 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4949 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4950 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4951 	buf->txqs[0].info.eir_bw.bw_alloc =
4952 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4953 
4954 	/* add the LAN queue */
4955 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4956 	if (status) {
4957 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4958 			  le16_to_cpu(buf->txqs[0].txq_id),
4959 			  hw->adminq.sq_last_status);
4960 		goto ena_txq_exit;
4961 	}
4962 
4963 	node.node_teid = buf->txqs[0].q_teid;
4964 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4965 	q_ctx->q_handle = q_handle;
4966 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4967 
4968 	/* add a leaf node into scheduler tree queue layer */
4969 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4970 	if (!status)
4971 		status = ice_sched_replay_q_bw(pi, q_ctx);
4972 
4973 ena_txq_exit:
4974 	mutex_unlock(&pi->sched_lock);
4975 	return status;
4976 }
4977 
4978 /**
4979  * ice_dis_vsi_txq
4980  * @pi: port information structure
4981  * @vsi_handle: software VSI handle
4982  * @tc: TC number
4983  * @num_queues: number of queues
4984  * @q_handles: pointer to software queue handle array
4985  * @q_ids: pointer to the q_id array
4986  * @q_teids: pointer to queue node teids
4987  * @rst_src: if called due to reset, specifies the reset source
4988  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4989  * @cd: pointer to command details structure or NULL
4990  *
4991  * This function removes queues and their corresponding nodes in SW DB
4992  */
4993 int
4994 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4995 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4996 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4997 		struct ice_sq_cd *cd)
4998 {
4999 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5000 	u16 i, buf_size = __struct_size(qg_list);
5001 	struct ice_q_ctx *q_ctx;
5002 	int status = -ENOENT;
5003 	struct ice_hw *hw;
5004 
5005 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5006 		return -EIO;
5007 
5008 	hw = pi->hw;
5009 
5010 	if (!num_queues) {
5011 		/* if queue is disabled already yet the disable queue command
5012 		 * has to be sent to complete the VF reset, then call
5013 		 * ice_aq_dis_lan_txq without any queue information
5014 		 */
5015 		if (rst_src)
5016 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5017 						  vmvf_num, NULL);
5018 		return -EIO;
5019 	}
5020 
5021 	mutex_lock(&pi->sched_lock);
5022 
5023 	for (i = 0; i < num_queues; i++) {
5024 		struct ice_sched_node *node;
5025 
5026 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5027 		if (!node)
5028 			continue;
5029 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5030 		if (!q_ctx) {
5031 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5032 				  q_handles[i]);
5033 			continue;
5034 		}
5035 		if (q_ctx->q_handle != q_handles[i]) {
5036 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5037 				  q_ctx->q_handle, q_handles[i]);
5038 			continue;
5039 		}
5040 		qg_list->parent_teid = node->info.parent_teid;
5041 		qg_list->num_qs = 1;
5042 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5043 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5044 					    vmvf_num, cd);
5045 
5046 		if (status)
5047 			break;
5048 		ice_free_sched_node(pi, node);
5049 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5050 		q_ctx->q_teid = ICE_INVAL_TEID;
5051 	}
5052 	mutex_unlock(&pi->sched_lock);
5053 	return status;
5054 }
5055 
5056 /**
5057  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5058  * @pi: port information structure
5059  * @vsi_handle: software VSI handle
5060  * @tc_bitmap: TC bitmap
5061  * @maxqs: max queues array per TC
5062  * @owner: LAN or RDMA
5063  *
5064  * This function adds/updates the VSI queues per TC.
5065  */
5066 static int
5067 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5068 	       u16 *maxqs, u8 owner)
5069 {
5070 	int status = 0;
5071 	u8 i;
5072 
5073 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5074 		return -EIO;
5075 
5076 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5077 		return -EINVAL;
5078 
5079 	mutex_lock(&pi->sched_lock);
5080 
5081 	ice_for_each_traffic_class(i) {
5082 		/* configuration is possible only if TC node is present */
5083 		if (!ice_sched_get_tc_node(pi, i))
5084 			continue;
5085 
5086 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5087 					   ice_is_tc_ena(tc_bitmap, i));
5088 		if (status)
5089 			break;
5090 	}
5091 
5092 	mutex_unlock(&pi->sched_lock);
5093 	return status;
5094 }
5095 
5096 /**
5097  * ice_cfg_vsi_lan - configure VSI LAN queues
5098  * @pi: port information structure
5099  * @vsi_handle: software VSI handle
5100  * @tc_bitmap: TC bitmap
5101  * @max_lanqs: max LAN queues array per TC
5102  *
5103  * This function adds/updates the VSI LAN queues per TC.
5104  */
5105 int
5106 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5107 		u16 *max_lanqs)
5108 {
5109 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5110 			      ICE_SCHED_NODE_OWNER_LAN);
5111 }
5112 
5113 /**
5114  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5115  * @pi: port information structure
5116  * @vsi_handle: software VSI handle
5117  * @tc_bitmap: TC bitmap
5118  * @max_rdmaqs: max RDMA queues array per TC
5119  *
5120  * This function adds/updates the VSI RDMA queues per TC.
5121  */
5122 int
5123 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5124 		 u16 *max_rdmaqs)
5125 {
5126 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5127 			      ICE_SCHED_NODE_OWNER_RDMA);
5128 }
5129 
5130 /**
5131  * ice_ena_vsi_rdma_qset
5132  * @pi: port information structure
5133  * @vsi_handle: software VSI handle
5134  * @tc: TC number
5135  * @rdma_qset: pointer to RDMA Qset
5136  * @num_qsets: number of RDMA Qsets
5137  * @qset_teid: pointer to Qset node TEIDs
5138  *
5139  * This function adds RDMA Qset
5140  */
5141 int
5142 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5143 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5144 {
5145 	struct ice_aqc_txsched_elem_data node = { 0 };
5146 	struct ice_aqc_add_rdma_qset_data *buf;
5147 	struct ice_sched_node *parent;
5148 	struct ice_hw *hw;
5149 	u16 i, buf_size;
5150 	int ret;
5151 
5152 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5153 		return -EIO;
5154 	hw = pi->hw;
5155 
5156 	if (!ice_is_vsi_valid(hw, vsi_handle))
5157 		return -EINVAL;
5158 
5159 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5160 	buf = kzalloc(buf_size, GFP_KERNEL);
5161 	if (!buf)
5162 		return -ENOMEM;
5163 	mutex_lock(&pi->sched_lock);
5164 
5165 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5166 					    ICE_SCHED_NODE_OWNER_RDMA);
5167 	if (!parent) {
5168 		ret = -EINVAL;
5169 		goto rdma_error_exit;
5170 	}
5171 	buf->parent_teid = parent->info.node_teid;
5172 	node.parent_teid = parent->info.node_teid;
5173 
5174 	buf->num_qsets = cpu_to_le16(num_qsets);
5175 	for (i = 0; i < num_qsets; i++) {
5176 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5177 		buf->rdma_qsets[i].info.valid_sections =
5178 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5179 			ICE_AQC_ELEM_VALID_EIR;
5180 		buf->rdma_qsets[i].info.generic = 0;
5181 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5182 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5183 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5184 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5185 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5186 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5187 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5188 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5189 	}
5190 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5191 	if (ret) {
5192 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5193 		goto rdma_error_exit;
5194 	}
5195 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5196 	for (i = 0; i < num_qsets; i++) {
5197 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5198 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5199 					 &node, NULL);
5200 		if (ret)
5201 			break;
5202 		qset_teid[i] = le32_to_cpu(node.node_teid);
5203 	}
5204 rdma_error_exit:
5205 	mutex_unlock(&pi->sched_lock);
5206 	kfree(buf);
5207 	return ret;
5208 }
5209 
5210 /**
5211  * ice_dis_vsi_rdma_qset - free RDMA resources
5212  * @pi: port_info struct
5213  * @count: number of RDMA Qsets to free
5214  * @qset_teid: TEID of Qset node
5215  * @q_id: list of queue IDs being disabled
5216  */
5217 int
5218 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5219 		      u16 *q_id)
5220 {
5221 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5222 	u16 qg_size = __struct_size(qg_list);
5223 	struct ice_hw *hw;
5224 	int status = 0;
5225 	int i;
5226 
5227 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5228 		return -EIO;
5229 
5230 	hw = pi->hw;
5231 
5232 	mutex_lock(&pi->sched_lock);
5233 
5234 	for (i = 0; i < count; i++) {
5235 		struct ice_sched_node *node;
5236 
5237 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5238 		if (!node)
5239 			continue;
5240 
5241 		qg_list->parent_teid = node->info.parent_teid;
5242 		qg_list->num_qs = 1;
5243 		qg_list->q_id[0] =
5244 			cpu_to_le16(q_id[i] |
5245 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5246 
5247 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5248 					    ICE_NO_RESET, 0, NULL);
5249 		if (status)
5250 			break;
5251 
5252 		ice_free_sched_node(pi, node);
5253 	}
5254 
5255 	mutex_unlock(&pi->sched_lock);
5256 	return status;
5257 }
5258 
5259 /**
5260  * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5261  * @hw: pointer to the HW struct
5262  * @dpll_idx: index of dpll to be measured
5263  * @meas: array to be filled with results
5264  * @meas_num: max number of results array can hold
5265  *
5266  * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5267  * pins on given dpll.
5268  *
5269  * Return: 0 on success or negative value on failure.
5270  */
5271 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5272 				     struct ice_cgu_input_measure *meas,
5273 				     u16 meas_num)
5274 {
5275 	struct ice_aqc_get_cgu_input_measure *cmd;
5276 	struct libie_aq_desc desc;
5277 
5278 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5279 	cmd = libie_aq_raw(&desc);
5280 	cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5281 
5282 	return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5283 }
5284 
5285 /**
5286  * ice_aq_get_cgu_abilities - get cgu abilities
5287  * @hw: pointer to the HW struct
5288  * @abilities: CGU abilities
5289  *
5290  * Get CGU abilities (0x0C61)
5291  * Return: 0 on success or negative value on failure.
5292  */
5293 int
5294 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5295 			 struct ice_aqc_get_cgu_abilities *abilities)
5296 {
5297 	struct libie_aq_desc desc;
5298 
5299 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5300 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5301 }
5302 
5303 /**
5304  * ice_aq_set_input_pin_cfg - set input pin config
5305  * @hw: pointer to the HW struct
5306  * @input_idx: Input index
5307  * @flags1: Input flags
5308  * @flags2: Input flags
5309  * @freq: Frequency in Hz
5310  * @phase_delay: Delay in ps
5311  *
5312  * Set CGU input config (0x0C62)
5313  * Return: 0 on success or negative value on failure.
5314  */
5315 int
5316 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5317 			 u32 freq, s32 phase_delay)
5318 {
5319 	struct ice_aqc_set_cgu_input_config *cmd;
5320 	struct libie_aq_desc desc;
5321 
5322 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5323 	cmd = libie_aq_raw(&desc);
5324 	cmd->input_idx = input_idx;
5325 	cmd->flags1 = flags1;
5326 	cmd->flags2 = flags2;
5327 	cmd->freq = cpu_to_le32(freq);
5328 	cmd->phase_delay = cpu_to_le32(phase_delay);
5329 
5330 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5331 }
5332 
5333 /**
5334  * ice_aq_get_input_pin_cfg - get input pin config
5335  * @hw: pointer to the HW struct
5336  * @input_idx: Input index
5337  * @status: Pin status
5338  * @type: Pin type
5339  * @flags1: Input flags
5340  * @flags2: Input flags
5341  * @freq: Frequency in Hz
5342  * @phase_delay: Delay in ps
5343  *
5344  * Get CGU input config (0x0C63)
5345  * Return: 0 on success or negative value on failure.
5346  */
5347 int
5348 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5349 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5350 {
5351 	struct ice_aqc_get_cgu_input_config *cmd;
5352 	struct libie_aq_desc desc;
5353 	int ret;
5354 
5355 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5356 	cmd = libie_aq_raw(&desc);
5357 	cmd->input_idx = input_idx;
5358 
5359 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5360 	if (!ret) {
5361 		if (status)
5362 			*status = cmd->status;
5363 		if (type)
5364 			*type = cmd->type;
5365 		if (flags1)
5366 			*flags1 = cmd->flags1;
5367 		if (flags2)
5368 			*flags2 = cmd->flags2;
5369 		if (freq)
5370 			*freq = le32_to_cpu(cmd->freq);
5371 		if (phase_delay)
5372 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5373 	}
5374 
5375 	return ret;
5376 }
5377 
5378 /**
5379  * ice_aq_set_output_pin_cfg - set output pin config
5380  * @hw: pointer to the HW struct
5381  * @output_idx: Output index
5382  * @flags: Output flags
5383  * @src_sel: Index of DPLL block
5384  * @freq: Output frequency
5385  * @phase_delay: Output phase compensation
5386  *
5387  * Set CGU output config (0x0C64)
5388  * Return: 0 on success or negative value on failure.
5389  */
5390 int
5391 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5392 			  u8 src_sel, u32 freq, s32 phase_delay)
5393 {
5394 	struct ice_aqc_set_cgu_output_config *cmd;
5395 	struct libie_aq_desc desc;
5396 
5397 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5398 	cmd = libie_aq_raw(&desc);
5399 	cmd->output_idx = output_idx;
5400 	cmd->flags = flags;
5401 	cmd->src_sel = src_sel;
5402 	cmd->freq = cpu_to_le32(freq);
5403 	cmd->phase_delay = cpu_to_le32(phase_delay);
5404 
5405 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5406 }
5407 
5408 /**
5409  * ice_aq_get_output_pin_cfg - get output pin config
5410  * @hw: pointer to the HW struct
5411  * @output_idx: Output index
5412  * @flags: Output flags
5413  * @src_sel: Internal DPLL source
5414  * @freq: Output frequency
5415  * @src_freq: Source frequency
5416  *
5417  * Get CGU output config (0x0C65)
5418  * Return: 0 on success or negative value on failure.
5419  */
5420 int
5421 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5422 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5423 {
5424 	struct ice_aqc_get_cgu_output_config *cmd;
5425 	struct libie_aq_desc desc;
5426 	int ret;
5427 
5428 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5429 	cmd = libie_aq_raw(&desc);
5430 	cmd->output_idx = output_idx;
5431 
5432 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5433 	if (!ret) {
5434 		if (flags)
5435 			*flags = cmd->flags;
5436 		if (src_sel)
5437 			*src_sel = cmd->src_sel;
5438 		if (freq)
5439 			*freq = le32_to_cpu(cmd->freq);
5440 		if (src_freq)
5441 			*src_freq = le32_to_cpu(cmd->src_freq);
5442 	}
5443 
5444 	return ret;
5445 }
5446 
5447 /**
5448  * ice_aq_get_cgu_dpll_status - get dpll status
5449  * @hw: pointer to the HW struct
5450  * @dpll_num: DPLL index
5451  * @ref_state: Reference clock state
5452  * @config: current DPLL config
5453  * @dpll_state: current DPLL state
5454  * @phase_offset: Phase offset in ns
5455  * @eec_mode: EEC_mode
5456  *
5457  * Get CGU DPLL status (0x0C66)
5458  * Return: 0 on success or negative value on failure.
5459  */
5460 int
5461 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5462 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5463 			   u8 *eec_mode)
5464 {
5465 	struct ice_aqc_get_cgu_dpll_status *cmd;
5466 	struct libie_aq_desc desc;
5467 	int status;
5468 
5469 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5470 	cmd = libie_aq_raw(&desc);
5471 	cmd->dpll_num = dpll_num;
5472 
5473 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5474 	if (!status) {
5475 		*ref_state = cmd->ref_state;
5476 		*dpll_state = cmd->dpll_state;
5477 		*config = cmd->config;
5478 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5479 		*phase_offset <<= 32;
5480 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5481 		*phase_offset = sign_extend64(*phase_offset, 47);
5482 		*eec_mode = cmd->eec_mode;
5483 	}
5484 
5485 	return status;
5486 }
5487 
5488 /**
5489  * ice_aq_set_cgu_dpll_config - set dpll config
5490  * @hw: pointer to the HW struct
5491  * @dpll_num: DPLL index
5492  * @ref_state: Reference clock state
5493  * @config: DPLL config
5494  * @eec_mode: EEC mode
5495  *
5496  * Set CGU DPLL config (0x0C67)
5497  * Return: 0 on success or negative value on failure.
5498  */
5499 int
5500 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5501 			   u8 config, u8 eec_mode)
5502 {
5503 	struct ice_aqc_set_cgu_dpll_config *cmd;
5504 	struct libie_aq_desc desc;
5505 
5506 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5507 	cmd = libie_aq_raw(&desc);
5508 	cmd->dpll_num = dpll_num;
5509 	cmd->ref_state = ref_state;
5510 	cmd->config = config;
5511 	cmd->eec_mode = eec_mode;
5512 
5513 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5514 }
5515 
5516 /**
5517  * ice_aq_set_cgu_ref_prio - set input reference priority
5518  * @hw: pointer to the HW struct
5519  * @dpll_num: DPLL index
5520  * @ref_idx: Reference pin index
5521  * @ref_priority: Reference input priority
5522  *
5523  * Set CGU reference priority (0x0C68)
5524  * Return: 0 on success or negative value on failure.
5525  */
5526 int
5527 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5528 			u8 ref_priority)
5529 {
5530 	struct ice_aqc_set_cgu_ref_prio *cmd;
5531 	struct libie_aq_desc desc;
5532 
5533 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5534 	cmd = libie_aq_raw(&desc);
5535 	cmd->dpll_num = dpll_num;
5536 	cmd->ref_idx = ref_idx;
5537 	cmd->ref_priority = ref_priority;
5538 
5539 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5540 }
5541 
5542 /**
5543  * ice_aq_get_cgu_ref_prio - get input reference priority
5544  * @hw: pointer to the HW struct
5545  * @dpll_num: DPLL index
5546  * @ref_idx: Reference pin index
5547  * @ref_prio: Reference input priority
5548  *
5549  * Get CGU reference priority (0x0C69)
5550  * Return: 0 on success or negative value on failure.
5551  */
5552 int
5553 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5554 			u8 *ref_prio)
5555 {
5556 	struct ice_aqc_get_cgu_ref_prio *cmd;
5557 	struct libie_aq_desc desc;
5558 	int status;
5559 
5560 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5561 	cmd = libie_aq_raw(&desc);
5562 	cmd->dpll_num = dpll_num;
5563 	cmd->ref_idx = ref_idx;
5564 
5565 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5566 	if (!status)
5567 		*ref_prio = cmd->ref_priority;
5568 
5569 	return status;
5570 }
5571 
5572 /**
5573  * ice_aq_get_cgu_info - get cgu info
5574  * @hw: pointer to the HW struct
5575  * @cgu_id: CGU ID
5576  * @cgu_cfg_ver: CGU config version
5577  * @cgu_fw_ver: CGU firmware version
5578  *
5579  * Get CGU info (0x0C6A)
5580  * Return: 0 on success or negative value on failure.
5581  */
5582 int
5583 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5584 		    u32 *cgu_fw_ver)
5585 {
5586 	struct ice_aqc_get_cgu_info *cmd;
5587 	struct libie_aq_desc desc;
5588 	int status;
5589 
5590 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5591 	cmd = libie_aq_raw(&desc);
5592 
5593 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5594 	if (!status) {
5595 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5596 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5597 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5598 	}
5599 
5600 	return status;
5601 }
5602 
5603 /**
5604  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5605  * @hw: pointer to the HW struct
5606  * @phy_output: PHY reference clock output pin
5607  * @enable: GPIO state to be applied
5608  * @freq: PHY output frequency
5609  *
5610  * Set phy recovered clock as reference (0x0630)
5611  * Return: 0 on success or negative value on failure.
5612  */
5613 int
5614 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5615 			   u32 *freq)
5616 {
5617 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5618 	struct libie_aq_desc desc;
5619 	int status;
5620 
5621 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5622 	cmd = libie_aq_raw(&desc);
5623 	cmd->phy_output = phy_output;
5624 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5625 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5626 	cmd->freq = cpu_to_le32(*freq);
5627 
5628 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5629 	if (!status)
5630 		*freq = le32_to_cpu(cmd->freq);
5631 
5632 	return status;
5633 }
5634 
5635 /**
5636  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5637  * @hw: pointer to the HW struct
5638  * @phy_output: PHY reference clock output pin
5639  * @port_num: Port number
5640  * @flags: PHY flags
5641  * @node_handle: PHY output frequency
5642  *
5643  * Get PHY recovered clock output info (0x0631)
5644  * Return: 0 on success or negative value on failure.
5645  */
5646 int
5647 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5648 			   u8 *flags, u16 *node_handle)
5649 {
5650 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5651 	struct libie_aq_desc desc;
5652 	int status;
5653 
5654 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5655 	cmd = libie_aq_raw(&desc);
5656 	cmd->phy_output = *phy_output;
5657 
5658 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5659 	if (!status) {
5660 		*phy_output = cmd->phy_output;
5661 		if (port_num)
5662 			*port_num = cmd->port_num;
5663 		if (flags)
5664 			*flags = cmd->flags;
5665 		if (node_handle)
5666 			*node_handle = le16_to_cpu(cmd->node_handle);
5667 	}
5668 
5669 	return status;
5670 }
5671 
5672 /**
5673  * ice_aq_get_sensor_reading
5674  * @hw: pointer to the HW struct
5675  * @data: pointer to data to be read from the sensor
5676  *
5677  * Get sensor reading (0x0632)
5678  */
5679 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5680 			      struct ice_aqc_get_sensor_reading_resp *data)
5681 {
5682 	struct ice_aqc_get_sensor_reading *cmd;
5683 	struct libie_aq_desc desc;
5684 	int status;
5685 
5686 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5687 	cmd = libie_aq_raw(&desc);
5688 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5689 #define ICE_INTERNAL_TEMP_SENSOR	0
5690 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5691 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5692 
5693 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5694 	if (!status)
5695 		memcpy(data, &desc.params.raw,
5696 		       sizeof(*data));
5697 
5698 	return status;
5699 }
5700 
5701 /**
5702  * ice_replay_pre_init - replay pre initialization
5703  * @hw: pointer to the HW struct
5704  *
5705  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5706  */
5707 static int ice_replay_pre_init(struct ice_hw *hw)
5708 {
5709 	struct ice_switch_info *sw = hw->switch_info;
5710 	u8 i;
5711 
5712 	/* Delete old entries from replay filter list head if there is any */
5713 	ice_rm_all_sw_replay_rule_info(hw);
5714 	/* In start of replay, move entries into replay_rules list, it
5715 	 * will allow adding rules entries back to filt_rules list,
5716 	 * which is operational list.
5717 	 */
5718 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5719 		list_replace_init(&sw->recp_list[i].filt_rules,
5720 				  &sw->recp_list[i].filt_replay_rules);
5721 	ice_sched_replay_agg_vsi_preinit(hw);
5722 
5723 	return 0;
5724 }
5725 
5726 /**
5727  * ice_replay_vsi - replay VSI configuration
5728  * @hw: pointer to the HW struct
5729  * @vsi_handle: driver VSI handle
5730  *
5731  * Restore all VSI configuration after reset. It is required to call this
5732  * function with main VSI first.
5733  */
5734 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5735 {
5736 	int status;
5737 
5738 	if (!ice_is_vsi_valid(hw, vsi_handle))
5739 		return -EINVAL;
5740 
5741 	/* Replay pre-initialization if there is any */
5742 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5743 		status = ice_replay_pre_init(hw);
5744 		if (status)
5745 			return status;
5746 	}
5747 	/* Replay per VSI all RSS configurations */
5748 	status = ice_replay_rss_cfg(hw, vsi_handle);
5749 	if (status)
5750 		return status;
5751 	/* Replay per VSI all filters */
5752 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5753 	if (!status)
5754 		status = ice_replay_vsi_agg(hw, vsi_handle);
5755 	return status;
5756 }
5757 
5758 /**
5759  * ice_replay_post - post replay configuration cleanup
5760  * @hw: pointer to the HW struct
5761  *
5762  * Post replay cleanup.
5763  */
5764 void ice_replay_post(struct ice_hw *hw)
5765 {
5766 	/* Delete old entries from replay filter list head */
5767 	ice_rm_all_sw_replay_rule_info(hw);
5768 	ice_sched_replay_agg(hw);
5769 }
5770 
5771 /**
5772  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5773  * @hw: ptr to the hardware info
5774  * @reg: offset of 64 bit HW register to read from
5775  * @prev_stat_loaded: bool to specify if previous stats are loaded
5776  * @prev_stat: ptr to previous loaded stat value
5777  * @cur_stat: ptr to current stat value
5778  */
5779 void
5780 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5781 		  u64 *prev_stat, u64 *cur_stat)
5782 {
5783 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5784 
5785 	/* device stats are not reset at PFR, they likely will not be zeroed
5786 	 * when the driver starts. Thus, save the value from the first read
5787 	 * without adding to the statistic value so that we report stats which
5788 	 * count up from zero.
5789 	 */
5790 	if (!prev_stat_loaded) {
5791 		*prev_stat = new_data;
5792 		return;
5793 	}
5794 
5795 	/* Calculate the difference between the new and old values, and then
5796 	 * add it to the software stat value.
5797 	 */
5798 	if (new_data >= *prev_stat)
5799 		*cur_stat += new_data - *prev_stat;
5800 	else
5801 		/* to manage the potential roll-over */
5802 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5803 
5804 	/* Update the previously stored value to prepare for next read */
5805 	*prev_stat = new_data;
5806 }
5807 
5808 /**
5809  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5810  * @hw: ptr to the hardware info
5811  * @reg: offset of HW register to read from
5812  * @prev_stat_loaded: bool to specify if previous stats are loaded
5813  * @prev_stat: ptr to previous loaded stat value
5814  * @cur_stat: ptr to current stat value
5815  */
5816 void
5817 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5818 		  u64 *prev_stat, u64 *cur_stat)
5819 {
5820 	u32 new_data;
5821 
5822 	new_data = rd32(hw, reg);
5823 
5824 	/* device stats are not reset at PFR, they likely will not be zeroed
5825 	 * when the driver starts. Thus, save the value from the first read
5826 	 * without adding to the statistic value so that we report stats which
5827 	 * count up from zero.
5828 	 */
5829 	if (!prev_stat_loaded) {
5830 		*prev_stat = new_data;
5831 		return;
5832 	}
5833 
5834 	/* Calculate the difference between the new and old values, and then
5835 	 * add it to the software stat value.
5836 	 */
5837 	if (new_data >= *prev_stat)
5838 		*cur_stat += new_data - *prev_stat;
5839 	else
5840 		/* to manage the potential roll-over */
5841 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5842 
5843 	/* Update the previously stored value to prepare for next read */
5844 	*prev_stat = new_data;
5845 }
5846 
5847 /**
5848  * ice_sched_query_elem - query element information from HW
5849  * @hw: pointer to the HW struct
5850  * @node_teid: node TEID to be queried
5851  * @buf: buffer to element information
5852  *
5853  * This function queries HW element information
5854  */
5855 int
5856 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5857 		     struct ice_aqc_txsched_elem_data *buf)
5858 {
5859 	u16 buf_size, num_elem_ret = 0;
5860 	int status;
5861 
5862 	buf_size = sizeof(*buf);
5863 	memset(buf, 0, buf_size);
5864 	buf->node_teid = cpu_to_le32(node_teid);
5865 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5866 					  NULL);
5867 	if (status || num_elem_ret != 1)
5868 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5869 	return status;
5870 }
5871 
5872 /**
5873  * ice_aq_read_i2c
5874  * @hw: pointer to the hw struct
5875  * @topo_addr: topology address for a device to communicate with
5876  * @bus_addr: 7-bit I2C bus address
5877  * @addr: I2C memory address (I2C offset) with up to 16 bits
5878  * @params: I2C parameters: bit [7] - Repeated start,
5879  *			    bits [6:5] data offset size,
5880  *			    bit [4] - I2C address type,
5881  *			    bits [3:0] - data size to read (0-16 bytes)
5882  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5883  * @cd: pointer to command details structure or NULL
5884  *
5885  * Read I2C (0x06E2)
5886  */
5887 int
5888 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5889 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5890 		struct ice_sq_cd *cd)
5891 {
5892 	struct libie_aq_desc desc = { 0 };
5893 	struct ice_aqc_i2c *cmd;
5894 	u8 data_size;
5895 	int status;
5896 
5897 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5898 	cmd = libie_aq_raw(&desc);
5899 
5900 	if (!data)
5901 		return -EINVAL;
5902 
5903 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5904 
5905 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5906 	cmd->topo_addr = topo_addr;
5907 	cmd->i2c_params = params;
5908 	cmd->i2c_addr = addr;
5909 
5910 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5911 	if (!status) {
5912 		struct ice_aqc_read_i2c_resp *resp;
5913 		u8 i;
5914 
5915 		resp = libie_aq_raw(&desc);
5916 		for (i = 0; i < data_size; i++) {
5917 			*data = resp->i2c_data[i];
5918 			data++;
5919 		}
5920 	}
5921 
5922 	return status;
5923 }
5924 
5925 /**
5926  * ice_aq_write_i2c
5927  * @hw: pointer to the hw struct
5928  * @topo_addr: topology address for a device to communicate with
5929  * @bus_addr: 7-bit I2C bus address
5930  * @addr: I2C memory address (I2C offset) with up to 16 bits
5931  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5932  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5933  * @cd: pointer to command details structure or NULL
5934  *
5935  * Write I2C (0x06E3)
5936  *
5937  * * Return:
5938  * * 0             - Successful write to the i2c device
5939  * * -EINVAL       - Data size greater than 4 bytes
5940  * * -EIO          - FW error
5941  */
5942 int
5943 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5944 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5945 		 struct ice_sq_cd *cd)
5946 {
5947 	struct libie_aq_desc desc = { 0 };
5948 	struct ice_aqc_i2c *cmd;
5949 	u8 data_size;
5950 
5951 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5952 	cmd = libie_aq_raw(&desc);
5953 
5954 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5955 
5956 	/* data_size limited to 4 */
5957 	if (data_size > 4)
5958 		return -EINVAL;
5959 
5960 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5961 	cmd->topo_addr = topo_addr;
5962 	cmd->i2c_params = params;
5963 	cmd->i2c_addr = addr;
5964 
5965 	memcpy(cmd->i2c_data, data, data_size);
5966 
5967 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5968 }
5969 
5970 /**
5971  * ice_get_pca9575_handle - find and return the PCA9575 controller
5972  * @hw: pointer to the hw struct
5973  * @pca9575_handle: GPIO controller's handle
5974  *
5975  * Find and return the GPIO controller's handle in the netlist.
5976  * When found - the value will be cached in the hw structure and following calls
5977  * will return cached value.
5978  *
5979  * Return: 0 on success, -ENXIO when there's no PCA9575 present.
5980  */
5981 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5982 {
5983 	struct ice_aqc_get_link_topo *cmd;
5984 	struct libie_aq_desc desc;
5985 	int err;
5986 	u8 idx;
5987 
5988 	/* If handle was read previously return cached value */
5989 	if (hw->io_expander_handle) {
5990 		*pca9575_handle = hw->io_expander_handle;
5991 		return 0;
5992 	}
5993 
5994 #define SW_PCA9575_SFP_TOPO_IDX		2
5995 #define SW_PCA9575_QSFP_TOPO_IDX	1
5996 
5997 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
5998 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5999 		idx = SW_PCA9575_SFP_TOPO_IDX;
6000 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
6001 		idx = SW_PCA9575_QSFP_TOPO_IDX;
6002 	else
6003 		return -ENXIO;
6004 
6005 	/* If handle was not detected read it from the netlist */
6006 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
6007 	cmd = libie_aq_raw(&desc);
6008 	cmd->addr.topo_params.node_type_ctx =
6009 		ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
6010 	cmd->addr.topo_params.index = idx;
6011 
6012 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6013 	if (err)
6014 		return -ENXIO;
6015 
6016 	/* Verify if we found the right IO expander type */
6017 	if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
6018 		return -ENXIO;
6019 
6020 	/* If present save the handle and return it */
6021 	hw->io_expander_handle =
6022 		le16_to_cpu(cmd->addr.handle);
6023 	*pca9575_handle = hw->io_expander_handle;
6024 
6025 	return 0;
6026 }
6027 
6028 /**
6029  * ice_read_pca9575_reg - read the register from the PCA9575 controller
6030  * @hw: pointer to the hw struct
6031  * @offset: GPIO controller register offset
6032  * @data: pointer to data to be read from the GPIO controller
6033  *
6034  * Return: 0 on success, negative error code otherwise.
6035  */
6036 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
6037 {
6038 	struct ice_aqc_link_topo_addr link_topo;
6039 	__le16 addr;
6040 	u16 handle;
6041 	int err;
6042 
6043 	memset(&link_topo, 0, sizeof(link_topo));
6044 
6045 	err = ice_get_pca9575_handle(hw, &handle);
6046 	if (err)
6047 		return err;
6048 
6049 	link_topo.handle = cpu_to_le16(handle);
6050 	link_topo.topo_params.node_type_ctx =
6051 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6052 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6053 
6054 	addr = cpu_to_le16((u16)offset);
6055 
6056 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6057 }
6058 
6059 /**
6060  * ice_aq_set_gpio
6061  * @hw: pointer to the hw struct
6062  * @gpio_ctrl_handle: GPIO controller node handle
6063  * @pin_idx: IO Number of the GPIO that needs to be set
6064  * @value: SW provide IO value to set in the LSB
6065  * @cd: pointer to command details structure or NULL
6066  *
6067  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6068  */
6069 int
6070 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6071 		struct ice_sq_cd *cd)
6072 {
6073 	struct libie_aq_desc desc;
6074 	struct ice_aqc_gpio *cmd;
6075 
6076 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6077 	cmd = libie_aq_raw(&desc);
6078 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6079 	cmd->gpio_num = pin_idx;
6080 	cmd->gpio_val = value ? 1 : 0;
6081 
6082 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6083 }
6084 
6085 /**
6086  * ice_aq_get_gpio
6087  * @hw: pointer to the hw struct
6088  * @gpio_ctrl_handle: GPIO controller node handle
6089  * @pin_idx: IO Number of the GPIO that needs to be set
6090  * @value: IO value read
6091  * @cd: pointer to command details structure or NULL
6092  *
6093  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6094  * the topology
6095  */
6096 int
6097 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6098 		bool *value, struct ice_sq_cd *cd)
6099 {
6100 	struct libie_aq_desc desc;
6101 	struct ice_aqc_gpio *cmd;
6102 	int status;
6103 
6104 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6105 	cmd = libie_aq_raw(&desc);
6106 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6107 	cmd->gpio_num = pin_idx;
6108 
6109 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6110 	if (status)
6111 		return status;
6112 
6113 	*value = !!cmd->gpio_val;
6114 	return 0;
6115 }
6116 
6117 /**
6118  * ice_is_fw_api_min_ver
6119  * @hw: pointer to the hardware structure
6120  * @maj: major version
6121  * @min: minor version
6122  * @patch: patch version
6123  *
6124  * Checks if the firmware API is minimum version
6125  */
6126 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6127 {
6128 	if (hw->api_maj_ver == maj) {
6129 		if (hw->api_min_ver > min)
6130 			return true;
6131 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6132 			return true;
6133 	} else if (hw->api_maj_ver > maj) {
6134 		return true;
6135 	}
6136 
6137 	return false;
6138 }
6139 
6140 /**
6141  * ice_fw_supports_link_override
6142  * @hw: pointer to the hardware structure
6143  *
6144  * Checks if the firmware supports link override
6145  */
6146 bool ice_fw_supports_link_override(struct ice_hw *hw)
6147 {
6148 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6149 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6150 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6151 }
6152 
6153 /**
6154  * ice_get_link_default_override
6155  * @ldo: pointer to the link default override struct
6156  * @pi: pointer to the port info struct
6157  *
6158  * Gets the link default override for a port
6159  */
6160 int
6161 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6162 			      struct ice_port_info *pi)
6163 {
6164 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6165 	struct ice_hw *hw = pi->hw;
6166 	int status;
6167 
6168 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6169 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6170 	if (status) {
6171 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6172 		return status;
6173 	}
6174 
6175 	/* Each port has its own config; calculate for our port */
6176 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6177 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6178 
6179 	/* link options first */
6180 	status = ice_read_sr_word(hw, tlv_start, &buf);
6181 	if (status) {
6182 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6183 		return status;
6184 	}
6185 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6186 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6187 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6188 
6189 	/* link PHY config */
6190 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6191 	status = ice_read_sr_word(hw, offset, &buf);
6192 	if (status) {
6193 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6194 		return status;
6195 	}
6196 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6197 
6198 	/* PHY types low */
6199 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6200 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6201 		status = ice_read_sr_word(hw, (offset + i), &buf);
6202 		if (status) {
6203 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6204 			return status;
6205 		}
6206 		/* shift 16 bits at a time to fill 64 bits */
6207 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6208 	}
6209 
6210 	/* PHY types high */
6211 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6212 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6213 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6214 		status = ice_read_sr_word(hw, (offset + i), &buf);
6215 		if (status) {
6216 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6217 			return status;
6218 		}
6219 		/* shift 16 bits at a time to fill 64 bits */
6220 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6221 	}
6222 
6223 	return status;
6224 }
6225 
6226 /**
6227  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6228  * @caps: get PHY capability data
6229  */
6230 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6231 {
6232 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6233 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6234 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6235 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6236 		return true;
6237 
6238 	return false;
6239 }
6240 
6241 /**
6242  * ice_is_fw_health_report_supported - checks if firmware supports health events
6243  * @hw: pointer to the hardware structure
6244  *
6245  * Return: true if firmware supports health status reports,
6246  * false otherwise
6247  */
6248 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6249 {
6250 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6251 				     ICE_FW_API_HEALTH_REPORT_MIN,
6252 				     ICE_FW_API_HEALTH_REPORT_PATCH);
6253 }
6254 
6255 /**
6256  * ice_aq_set_health_status_cfg - Configure FW health events
6257  * @hw: pointer to the HW struct
6258  * @event_source: type of diagnostic events to enable
6259  *
6260  * Configure the health status event types that the firmware will send to this
6261  * PF. The supported event types are: PF-specific, all PFs, and global.
6262  *
6263  * Return: 0 on success, negative error code otherwise.
6264  */
6265 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6266 {
6267 	struct ice_aqc_set_health_status_cfg *cmd;
6268 	struct libie_aq_desc desc;
6269 
6270 	cmd = libie_aq_raw(&desc);
6271 
6272 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6273 
6274 	cmd->event_source = event_source;
6275 
6276 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6277 }
6278 
6279 /**
6280  * ice_aq_set_lldp_mib - Set the LLDP MIB
6281  * @hw: pointer to the HW struct
6282  * @mib_type: Local, Remote or both Local and Remote MIBs
6283  * @buf: pointer to the caller-supplied buffer to store the MIB block
6284  * @buf_size: size of the buffer (in bytes)
6285  * @cd: pointer to command details structure or NULL
6286  *
6287  * Set the LLDP MIB. (0x0A08)
6288  */
6289 int
6290 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6291 		    struct ice_sq_cd *cd)
6292 {
6293 	struct ice_aqc_lldp_set_local_mib *cmd;
6294 	struct libie_aq_desc desc;
6295 
6296 	cmd = libie_aq_raw(&desc);
6297 
6298 	if (buf_size == 0 || !buf)
6299 		return -EINVAL;
6300 
6301 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6302 
6303 	desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6304 	desc.datalen = cpu_to_le16(buf_size);
6305 
6306 	cmd->type = mib_type;
6307 	cmd->length = cpu_to_le16(buf_size);
6308 
6309 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6310 }
6311 
6312 /**
6313  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6314  * @hw: pointer to HW struct
6315  */
6316 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6317 {
6318 	if (hw->mac_type != ICE_MAC_E810)
6319 		return false;
6320 
6321 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6322 				     ICE_FW_API_LLDP_FLTR_MIN,
6323 				     ICE_FW_API_LLDP_FLTR_PATCH);
6324 }
6325 
6326 /**
6327  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6328  * @hw: pointer to HW struct
6329  * @vsi: VSI to add the filter to
6330  * @add: boolean for if adding or removing a filter
6331  *
6332  * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6333  *	   with this HW or VSI, otherwise an error corresponding to
6334  *	   the AQ transaction result.
6335  */
6336 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6337 {
6338 	struct ice_aqc_lldp_filter_ctrl *cmd;
6339 	struct libie_aq_desc desc;
6340 
6341 	if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6342 		return -EOPNOTSUPP;
6343 
6344 	cmd = libie_aq_raw(&desc);
6345 
6346 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6347 
6348 	if (add)
6349 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6350 	else
6351 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6352 
6353 	cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6354 
6355 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6356 }
6357 
6358 /**
6359  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6360  * @hw: pointer to HW struct
6361  */
6362 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6363 {
6364 	struct libie_aq_desc desc;
6365 
6366 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6367 
6368 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6369 }
6370 
6371 /**
6372  * ice_fw_supports_report_dflt_cfg
6373  * @hw: pointer to the hardware structure
6374  *
6375  * Checks if the firmware supports report default configuration
6376  */
6377 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6378 {
6379 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6380 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6381 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6382 }
6383 
6384 /* each of the indexes into the following array match the speed of a return
6385  * value from the list of AQ returned speeds like the range:
6386  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6387  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6388  * array. The array is defined as 15 elements long because the link_speed
6389  * returned by the firmware is a 16 bit * value, but is indexed
6390  * by [fls(speed) - 1]
6391  */
6392 static const u32 ice_aq_to_link_speed[] = {
6393 	SPEED_10,	/* BIT(0) */
6394 	SPEED_100,
6395 	SPEED_1000,
6396 	SPEED_2500,
6397 	SPEED_5000,
6398 	SPEED_10000,
6399 	SPEED_20000,
6400 	SPEED_25000,
6401 	SPEED_40000,
6402 	SPEED_50000,
6403 	SPEED_100000,	/* BIT(10) */
6404 	SPEED_200000,
6405 };
6406 
6407 /**
6408  * ice_get_link_speed - get integer speed from table
6409  * @index: array index from fls(aq speed) - 1
6410  *
6411  * Returns: u32 value containing integer speed
6412  */
6413 u32 ice_get_link_speed(u16 index)
6414 {
6415 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6416 		return 0;
6417 
6418 	return ice_aq_to_link_speed[index];
6419 }
6420 
6421 /**
6422  * ice_read_cgu_reg - Read a CGU register
6423  * @hw: Pointer to the HW struct
6424  * @addr: Register address to read
6425  * @val: Storage for register value read
6426  *
6427  * Read the contents of a register of the Clock Generation Unit. Only
6428  * applicable to E82X devices.
6429  *
6430  * Return: 0 on success, other error codes when failed to read from CGU.
6431  */
6432 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6433 {
6434 	struct ice_sbq_msg_input cgu_msg = {
6435 		.opcode = ice_sbq_msg_rd,
6436 		.dest_dev = ice_sbq_dev_cgu,
6437 		.msg_addr_low = addr
6438 	};
6439 	int err;
6440 
6441 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6442 	if (err) {
6443 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6444 			  addr, err);
6445 		return err;
6446 	}
6447 
6448 	*val = cgu_msg.data;
6449 
6450 	return 0;
6451 }
6452 
6453 /**
6454  * ice_write_cgu_reg - Write a CGU register
6455  * @hw: Pointer to the HW struct
6456  * @addr: Register address to write
6457  * @val: Value to write into the register
6458  *
6459  * Write the specified value to a register of the Clock Generation Unit. Only
6460  * applicable to E82X devices.
6461  *
6462  * Return: 0 on success, other error codes when failed to write to CGU.
6463  */
6464 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6465 {
6466 	struct ice_sbq_msg_input cgu_msg = {
6467 		.opcode = ice_sbq_msg_wr,
6468 		.dest_dev = ice_sbq_dev_cgu,
6469 		.msg_addr_low = addr,
6470 		.data = val
6471 	};
6472 	int err;
6473 
6474 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6475 	if (err)
6476 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6477 			  addr, err);
6478 
6479 	return err;
6480 }
6481