xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 4d66c56f7efe122d09d06cd3ebfa52a43d51a9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 
8 #define ICE_PF_RESET_WAIT_COUNT	200
9 
10 #define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
12 	     ((ICE_RX_OPC_MDID << \
13 	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17 
18 #define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
20 	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28 
29 /**
30  * ice_set_mac_type - Sets MAC type
31  * @hw: pointer to the HW structure
32  *
33  * This function sets the MAC type of the adapter based on the
34  * vendor ID and device ID stored in the HW structure.
35  */
36 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37 {
38 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
40 
41 	hw->mac_type = ICE_MAC_GENERIC;
42 	return 0;
43 }
44 
45 /**
46  * ice_dev_onetime_setup - Temporary HW/FW workarounds
47  * @hw: pointer to the HW structure
48  *
49  * This function provides temporary workarounds for certain issues
50  * that are expected to be fixed in the HW/FW.
51  */
52 void ice_dev_onetime_setup(struct ice_hw *hw)
53 {
54 #define MBX_PF_VT_PFALLOC	0x00231E80
55 	/* set VFs per PF */
56 	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
57 }
58 
59 /**
60  * ice_clear_pf_cfg - Clear PF configuration
61  * @hw: pointer to the hardware structure
62  *
63  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
64  * configuration, flow director filters, etc.).
65  */
66 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
67 {
68 	struct ice_aq_desc desc;
69 
70 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
71 
72 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
73 }
74 
75 /**
76  * ice_aq_manage_mac_read - manage MAC address read command
77  * @hw: pointer to the HW struct
78  * @buf: a virtual buffer to hold the manage MAC read response
79  * @buf_size: Size of the virtual buffer
80  * @cd: pointer to command details structure or NULL
81  *
82  * This function is used to return per PF station MAC address (0x0107).
83  * NOTE: Upon successful completion of this command, MAC address information
84  * is returned in user specified buffer. Please interpret user specified
85  * buffer as "manage_mac_read" response.
86  * Response such as various MAC addresses are stored in HW struct (port.mac)
87  * ice_aq_discover_caps is expected to be called before this function is called.
88  */
89 static enum ice_status
90 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
91 		       struct ice_sq_cd *cd)
92 {
93 	struct ice_aqc_manage_mac_read_resp *resp;
94 	struct ice_aqc_manage_mac_read *cmd;
95 	struct ice_aq_desc desc;
96 	enum ice_status status;
97 	u16 flags;
98 	u8 i;
99 
100 	cmd = &desc.params.mac_read;
101 
102 	if (buf_size < sizeof(*resp))
103 		return ICE_ERR_BUF_TOO_SHORT;
104 
105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
106 
107 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
108 	if (status)
109 		return status;
110 
111 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
112 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
113 
114 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
115 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
116 		return ICE_ERR_CFG;
117 	}
118 
119 	/* A single port can report up to two (LAN and WoL) addresses */
120 	for (i = 0; i < cmd->num_addr; i++)
121 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
122 			ether_addr_copy(hw->port_info->mac.lan_addr,
123 					resp[i].mac_addr);
124 			ether_addr_copy(hw->port_info->mac.perm_addr,
125 					resp[i].mac_addr);
126 			break;
127 		}
128 
129 	return 0;
130 }
131 
132 /**
133  * ice_aq_get_phy_caps - returns PHY capabilities
134  * @pi: port information structure
135  * @qual_mods: report qualified modules
136  * @report_mode: report mode capabilities
137  * @pcaps: structure for PHY capabilities to be filled
138  * @cd: pointer to command details structure or NULL
139  *
140  * Returns the various PHY capabilities supported on the Port (0x0600)
141  */
142 enum ice_status
143 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
144 		    struct ice_aqc_get_phy_caps_data *pcaps,
145 		    struct ice_sq_cd *cd)
146 {
147 	struct ice_aqc_get_phy_caps *cmd;
148 	u16 pcaps_size = sizeof(*pcaps);
149 	struct ice_aq_desc desc;
150 	enum ice_status status;
151 
152 	cmd = &desc.params.get_phy;
153 
154 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
155 		return ICE_ERR_PARAM;
156 
157 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
158 
159 	if (qual_mods)
160 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
161 
162 	cmd->param0 |= cpu_to_le16(report_mode);
163 	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
164 
165 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
166 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
167 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
168 	}
169 
170 	return status;
171 }
172 
173 /**
174  * ice_get_media_type - Gets media type
175  * @pi: port information structure
176  */
177 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
178 {
179 	struct ice_link_status *hw_link_info;
180 
181 	if (!pi)
182 		return ICE_MEDIA_UNKNOWN;
183 
184 	hw_link_info = &pi->phy.link_info;
185 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
186 		/* If more than one media type is selected, report unknown */
187 		return ICE_MEDIA_UNKNOWN;
188 
189 	if (hw_link_info->phy_type_low) {
190 		switch (hw_link_info->phy_type_low) {
191 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
192 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
193 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
194 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
195 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
196 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
197 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
198 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
199 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
200 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
201 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
202 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
203 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
204 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
205 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
206 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
207 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
208 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
209 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
210 			return ICE_MEDIA_FIBER;
211 		case ICE_PHY_TYPE_LOW_100BASE_TX:
212 		case ICE_PHY_TYPE_LOW_1000BASE_T:
213 		case ICE_PHY_TYPE_LOW_2500BASE_T:
214 		case ICE_PHY_TYPE_LOW_5GBASE_T:
215 		case ICE_PHY_TYPE_LOW_10GBASE_T:
216 		case ICE_PHY_TYPE_LOW_25GBASE_T:
217 			return ICE_MEDIA_BASET;
218 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
219 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
220 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
221 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
222 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
223 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
224 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
225 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
226 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
227 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
228 			return ICE_MEDIA_DA;
229 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
230 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
231 		case ICE_PHY_TYPE_LOW_2500BASE_X:
232 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
233 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
234 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
235 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
236 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
237 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
238 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
239 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
240 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
241 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
242 			return ICE_MEDIA_BACKPLANE;
243 		}
244 	} else {
245 		switch (hw_link_info->phy_type_high) {
246 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
247 			return ICE_MEDIA_BACKPLANE;
248 		}
249 	}
250 	return ICE_MEDIA_UNKNOWN;
251 }
252 
253 /**
254  * ice_aq_get_link_info
255  * @pi: port information structure
256  * @ena_lse: enable/disable LinkStatusEvent reporting
257  * @link: pointer to link status structure - optional
258  * @cd: pointer to command details structure or NULL
259  *
260  * Get Link Status (0x607). Returns the link status of the adapter.
261  */
262 enum ice_status
263 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
264 		     struct ice_link_status *link, struct ice_sq_cd *cd)
265 {
266 	struct ice_aqc_get_link_status_data link_data = { 0 };
267 	struct ice_aqc_get_link_status *resp;
268 	struct ice_link_status *li_old, *li;
269 	enum ice_media_type *hw_media_type;
270 	struct ice_fc_info *hw_fc_info;
271 	bool tx_pause, rx_pause;
272 	struct ice_aq_desc desc;
273 	enum ice_status status;
274 	struct ice_hw *hw;
275 	u16 cmd_flags;
276 
277 	if (!pi)
278 		return ICE_ERR_PARAM;
279 	hw = pi->hw;
280 	li_old = &pi->phy.link_info_old;
281 	hw_media_type = &pi->phy.media_type;
282 	li = &pi->phy.link_info;
283 	hw_fc_info = &pi->fc;
284 
285 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
286 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
287 	resp = &desc.params.get_link_status;
288 	resp->cmd_flags = cpu_to_le16(cmd_flags);
289 	resp->lport_num = pi->lport;
290 
291 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
292 
293 	if (status)
294 		return status;
295 
296 	/* save off old link status information */
297 	*li_old = *li;
298 
299 	/* update current link status information */
300 	li->link_speed = le16_to_cpu(link_data.link_speed);
301 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
302 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
303 	*hw_media_type = ice_get_media_type(pi);
304 	li->link_info = link_data.link_info;
305 	li->an_info = link_data.an_info;
306 	li->ext_info = link_data.ext_info;
307 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
308 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
309 	li->topo_media_conflict = link_data.topo_media_conflict;
310 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
311 				      ICE_AQ_CFG_PACING_TYPE_M);
312 
313 	/* update fc info */
314 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
315 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
316 	if (tx_pause && rx_pause)
317 		hw_fc_info->current_mode = ICE_FC_FULL;
318 	else if (tx_pause)
319 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
320 	else if (rx_pause)
321 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
322 	else
323 		hw_fc_info->current_mode = ICE_FC_NONE;
324 
325 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
326 
327 	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
328 	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
329 		  (unsigned long long)li->phy_type_low);
330 	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
331 		  (unsigned long long)li->phy_type_high);
332 	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
333 	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
334 	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
335 	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
336 	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
337 	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
338 	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
339 
340 	/* save link status information */
341 	if (link)
342 		*link = *li;
343 
344 	/* flag cleared so calling functions don't call AQ again */
345 	pi->phy.get_link_info = false;
346 
347 	return 0;
348 }
349 
350 /**
351  * ice_init_flex_flags
352  * @hw: pointer to the hardware structure
353  * @prof_id: Rx Descriptor Builder profile ID
354  *
355  * Function to initialize Rx flex flags
356  */
357 static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
358 {
359 	u8 idx = 0;
360 
361 	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
362 	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
363 	 * flexiflags1[3:0] - Not used for flag programming
364 	 * flexiflags2[7:0] - Tunnel and VLAN types
365 	 * 2 invalid fields in last index
366 	 */
367 	switch (prof_id) {
368 	/* Rx flex flags are currently programmed for the NIC profiles only.
369 	 * Different flag bit programming configurations can be added per
370 	 * profile as needed.
371 	 */
372 	case ICE_RXDID_FLEX_NIC:
373 	case ICE_RXDID_FLEX_NIC_2:
374 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
375 				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
376 				   ICE_FLG_FIN, idx++);
377 		/* flex flag 1 is not used for flexi-flag programming, skipping
378 		 * these four FLG64 bits.
379 		 */
380 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
381 				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
382 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
383 				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
384 				   ICE_FLG_EVLAN_x9100, idx++);
385 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
386 				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
387 				   ICE_FLG_TNL0, idx++);
388 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
389 				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
390 		break;
391 
392 	default:
393 		ice_debug(hw, ICE_DBG_INIT,
394 			  "Flag programming for profile ID %d not supported\n",
395 			  prof_id);
396 	}
397 }
398 
399 /**
400  * ice_init_flex_flds
401  * @hw: pointer to the hardware structure
402  * @prof_id: Rx Descriptor Builder profile ID
403  *
404  * Function to initialize flex descriptors
405  */
406 static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
407 {
408 	enum ice_flex_rx_mdid mdid;
409 
410 	switch (prof_id) {
411 	case ICE_RXDID_FLEX_NIC:
412 	case ICE_RXDID_FLEX_NIC_2:
413 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
414 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
415 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
416 
417 		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
418 			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
419 
420 		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
421 
422 		ice_init_flex_flags(hw, prof_id);
423 		break;
424 
425 	default:
426 		ice_debug(hw, ICE_DBG_INIT,
427 			  "Field init for profile ID %d not supported\n",
428 			  prof_id);
429 	}
430 }
431 
432 /**
433  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
434  * @hw: pointer to the HW struct
435  */
436 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
437 {
438 	struct ice_switch_info *sw;
439 
440 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
441 				       sizeof(*hw->switch_info), GFP_KERNEL);
442 	sw = hw->switch_info;
443 
444 	if (!sw)
445 		return ICE_ERR_NO_MEMORY;
446 
447 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
448 
449 	return ice_init_def_sw_recp(hw);
450 }
451 
452 /**
453  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
454  * @hw: pointer to the HW struct
455  */
456 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
457 {
458 	struct ice_switch_info *sw = hw->switch_info;
459 	struct ice_vsi_list_map_info *v_pos_map;
460 	struct ice_vsi_list_map_info *v_tmp_map;
461 	struct ice_sw_recipe *recps;
462 	u8 i;
463 
464 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
465 				 list_entry) {
466 		list_del(&v_pos_map->list_entry);
467 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
468 	}
469 	recps = hw->switch_info->recp_list;
470 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
471 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
472 
473 		recps[i].root_rid = i;
474 		mutex_destroy(&recps[i].filt_rule_lock);
475 		list_for_each_entry_safe(lst_itr, tmp_entry,
476 					 &recps[i].filt_rules, list_entry) {
477 			list_del(&lst_itr->list_entry);
478 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
479 		}
480 	}
481 	ice_rm_all_sw_replay_rule_info(hw);
482 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
483 	devm_kfree(ice_hw_to_dev(hw), sw);
484 }
485 
486 #define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
487 	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
488 #define ICE_FW_LOG_DESC_SIZE_MAX	\
489 	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
490 
491 /**
492  * ice_get_fw_log_cfg - get FW logging configuration
493  * @hw: pointer to the HW struct
494  */
495 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
496 {
497 	struct ice_aqc_fw_logging_data *config;
498 	struct ice_aq_desc desc;
499 	enum ice_status status;
500 	u16 size;
501 
502 	size = ICE_FW_LOG_DESC_SIZE_MAX;
503 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
504 	if (!config)
505 		return ICE_ERR_NO_MEMORY;
506 
507 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
508 
509 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
510 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
511 
512 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
513 	if (!status) {
514 		u16 i;
515 
516 		/* Save FW logging information into the HW structure */
517 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
518 			u16 v, m, flgs;
519 
520 			v = le16_to_cpu(config->entry[i]);
521 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
522 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
523 
524 			if (m < ICE_AQC_FW_LOG_ID_MAX)
525 				hw->fw_log.evnts[m].cur = flgs;
526 		}
527 	}
528 
529 	devm_kfree(ice_hw_to_dev(hw), config);
530 
531 	return status;
532 }
533 
534 /**
535  * ice_cfg_fw_log - configure FW logging
536  * @hw: pointer to the HW struct
537  * @enable: enable certain FW logging events if true, disable all if false
538  *
539  * This function enables/disables the FW logging via Rx CQ events and a UART
540  * port based on predetermined configurations. FW logging via the Rx CQ can be
541  * enabled/disabled for individual PF's. However, FW logging via the UART can
542  * only be enabled/disabled for all PFs on the same device.
543  *
544  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
545  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
546  * before initializing the device.
547  *
548  * When re/configuring FW logging, callers need to update the "cfg" elements of
549  * the hw->fw_log.evnts array with the desired logging event configurations for
550  * modules of interest. When disabling FW logging completely, the callers can
551  * just pass false in the "enable" parameter. On completion, the function will
552  * update the "cur" element of the hw->fw_log.evnts array with the resulting
553  * logging event configurations of the modules that are being re/configured. FW
554  * logging modules that are not part of a reconfiguration operation retain their
555  * previous states.
556  *
557  * Before resetting the device, it is recommended that the driver disables FW
558  * logging before shutting down the control queue. When disabling FW logging
559  * ("enable" = false), the latest configurations of FW logging events stored in
560  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
561  * a device reset.
562  *
563  * When enabling FW logging to emit log messages via the Rx CQ during the
564  * device's initialization phase, a mechanism alternative to interrupt handlers
565  * needs to be used to extract FW log messages from the Rx CQ periodically and
566  * to prevent the Rx CQ from being full and stalling other types of control
567  * messages from FW to SW. Interrupts are typically disabled during the device's
568  * initialization phase.
569  */
570 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
571 {
572 	struct ice_aqc_fw_logging_data *data = NULL;
573 	struct ice_aqc_fw_logging *cmd;
574 	enum ice_status status = 0;
575 	u16 i, chgs = 0, len = 0;
576 	struct ice_aq_desc desc;
577 	u8 actv_evnts = 0;
578 	void *buf = NULL;
579 
580 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
581 		return 0;
582 
583 	/* Disable FW logging only when the control queue is still responsive */
584 	if (!enable &&
585 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
586 		return 0;
587 
588 	/* Get current FW log settings */
589 	status = ice_get_fw_log_cfg(hw);
590 	if (status)
591 		return status;
592 
593 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
594 	cmd = &desc.params.fw_logging;
595 
596 	/* Indicate which controls are valid */
597 	if (hw->fw_log.cq_en)
598 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
599 
600 	if (hw->fw_log.uart_en)
601 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
602 
603 	if (enable) {
604 		/* Fill in an array of entries with FW logging modules and
605 		 * logging events being reconfigured.
606 		 */
607 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
608 			u16 val;
609 
610 			/* Keep track of enabled event types */
611 			actv_evnts |= hw->fw_log.evnts[i].cfg;
612 
613 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
614 				continue;
615 
616 			if (!data) {
617 				data = devm_kzalloc(ice_hw_to_dev(hw),
618 						    ICE_FW_LOG_DESC_SIZE_MAX,
619 						    GFP_KERNEL);
620 				if (!data)
621 					return ICE_ERR_NO_MEMORY;
622 			}
623 
624 			val = i << ICE_AQC_FW_LOG_ID_S;
625 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
626 			data->entry[chgs++] = cpu_to_le16(val);
627 		}
628 
629 		/* Only enable FW logging if at least one module is specified.
630 		 * If FW logging is currently enabled but all modules are not
631 		 * enabled to emit log messages, disable FW logging altogether.
632 		 */
633 		if (actv_evnts) {
634 			/* Leave if there is effectively no change */
635 			if (!chgs)
636 				goto out;
637 
638 			if (hw->fw_log.cq_en)
639 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
640 
641 			if (hw->fw_log.uart_en)
642 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
643 
644 			buf = data;
645 			len = ICE_FW_LOG_DESC_SIZE(chgs);
646 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
647 		}
648 	}
649 
650 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
651 	if (!status) {
652 		/* Update the current configuration to reflect events enabled.
653 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
654 		 * logging mode is enabled for the device. They do not reflect
655 		 * actual modules being enabled to emit log messages. So, their
656 		 * values remain unchanged even when all modules are disabled.
657 		 */
658 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
659 
660 		hw->fw_log.actv_evnts = actv_evnts;
661 		for (i = 0; i < cnt; i++) {
662 			u16 v, m;
663 
664 			if (!enable) {
665 				/* When disabling all FW logging events as part
666 				 * of device's de-initialization, the original
667 				 * configurations are retained, and can be used
668 				 * to reconfigure FW logging later if the device
669 				 * is re-initialized.
670 				 */
671 				hw->fw_log.evnts[i].cur = 0;
672 				continue;
673 			}
674 
675 			v = le16_to_cpu(data->entry[i]);
676 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
677 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
678 		}
679 	}
680 
681 out:
682 	if (data)
683 		devm_kfree(ice_hw_to_dev(hw), data);
684 
685 	return status;
686 }
687 
688 /**
689  * ice_output_fw_log
690  * @hw: pointer to the HW struct
691  * @desc: pointer to the AQ message descriptor
692  * @buf: pointer to the buffer accompanying the AQ message
693  *
694  * Formats a FW Log message and outputs it via the standard driver logs.
695  */
696 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
697 {
698 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
699 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
700 			le16_to_cpu(desc->datalen));
701 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
702 }
703 
704 /**
705  * ice_get_itr_intrl_gran - determine int/intrl granularity
706  * @hw: pointer to the HW struct
707  *
708  * Determines the ITR/intrl granularities based on the maximum aggregate
709  * bandwidth according to the device's configuration during power-on.
710  */
711 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
712 {
713 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
714 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
715 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
716 
717 	switch (max_agg_bw) {
718 	case ICE_MAX_AGG_BW_200G:
719 	case ICE_MAX_AGG_BW_100G:
720 	case ICE_MAX_AGG_BW_50G:
721 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
722 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
723 		break;
724 	case ICE_MAX_AGG_BW_25G:
725 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
726 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
727 		break;
728 	}
729 }
730 
731 /**
732  * ice_get_nvm_version - get cached NVM version data
733  * @hw: pointer to the hardware structure
734  * @oem_ver: 8 bit NVM version
735  * @oem_build: 16 bit NVM build number
736  * @oem_patch: 8 NVM patch number
737  * @ver_hi: high 16 bits of the NVM version
738  * @ver_lo: low 16 bits of the NVM version
739  */
740 void
741 ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
742 		    u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
743 {
744 	struct ice_nvm_info *nvm = &hw->nvm;
745 
746 	*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
747 	*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
748 	*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
749 			   ICE_OEM_VER_BUILD_SHIFT);
750 	*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
751 	*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
752 }
753 
754 /**
755  * ice_init_hw - main hardware initialization routine
756  * @hw: pointer to the hardware structure
757  */
758 enum ice_status ice_init_hw(struct ice_hw *hw)
759 {
760 	struct ice_aqc_get_phy_caps_data *pcaps;
761 	enum ice_status status;
762 	u16 mac_buf_len;
763 	void *mac_buf;
764 
765 	/* Set MAC type based on DeviceID */
766 	status = ice_set_mac_type(hw);
767 	if (status)
768 		return status;
769 
770 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
771 			 PF_FUNC_RID_FUNC_NUM_M) >>
772 		PF_FUNC_RID_FUNC_NUM_S;
773 
774 	status = ice_reset(hw, ICE_RESET_PFR);
775 	if (status)
776 		return status;
777 
778 	ice_get_itr_intrl_gran(hw);
779 
780 	status = ice_create_all_ctrlq(hw);
781 	if (status)
782 		goto err_unroll_cqinit;
783 
784 	/* Enable FW logging. Not fatal if this fails. */
785 	status = ice_cfg_fw_log(hw, true);
786 	if (status)
787 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
788 
789 	status = ice_clear_pf_cfg(hw);
790 	if (status)
791 		goto err_unroll_cqinit;
792 
793 	ice_clear_pxe_mode(hw);
794 
795 	status = ice_init_nvm(hw);
796 	if (status)
797 		goto err_unroll_cqinit;
798 
799 	status = ice_get_caps(hw);
800 	if (status)
801 		goto err_unroll_cqinit;
802 
803 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
804 				     sizeof(*hw->port_info), GFP_KERNEL);
805 	if (!hw->port_info) {
806 		status = ICE_ERR_NO_MEMORY;
807 		goto err_unroll_cqinit;
808 	}
809 
810 	/* set the back pointer to HW */
811 	hw->port_info->hw = hw;
812 
813 	/* Initialize port_info struct with switch configuration data */
814 	status = ice_get_initial_sw_cfg(hw);
815 	if (status)
816 		goto err_unroll_alloc;
817 
818 	hw->evb_veb = true;
819 
820 	/* Query the allocated resources for Tx scheduler */
821 	status = ice_sched_query_res_alloc(hw);
822 	if (status) {
823 		ice_debug(hw, ICE_DBG_SCHED,
824 			  "Failed to get scheduler allocated resources\n");
825 		goto err_unroll_alloc;
826 	}
827 
828 	/* Initialize port_info struct with scheduler data */
829 	status = ice_sched_init_port(hw->port_info);
830 	if (status)
831 		goto err_unroll_sched;
832 
833 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
834 	if (!pcaps) {
835 		status = ICE_ERR_NO_MEMORY;
836 		goto err_unroll_sched;
837 	}
838 
839 	/* Initialize port_info struct with PHY capabilities */
840 	status = ice_aq_get_phy_caps(hw->port_info, false,
841 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
842 	devm_kfree(ice_hw_to_dev(hw), pcaps);
843 	if (status)
844 		goto err_unroll_sched;
845 
846 	/* Initialize port_info struct with link information */
847 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
848 	if (status)
849 		goto err_unroll_sched;
850 
851 	/* need a valid SW entry point to build a Tx tree */
852 	if (!hw->sw_entry_point_layer) {
853 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
854 		status = ICE_ERR_CFG;
855 		goto err_unroll_sched;
856 	}
857 	INIT_LIST_HEAD(&hw->agg_list);
858 	/* Initialize max burst size */
859 	if (!hw->max_burst_size)
860 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
861 
862 	status = ice_init_fltr_mgmt_struct(hw);
863 	if (status)
864 		goto err_unroll_sched;
865 
866 	ice_dev_onetime_setup(hw);
867 
868 	/* Get MAC information */
869 	/* A single port can report up to two (LAN and WoL) addresses */
870 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
871 			       sizeof(struct ice_aqc_manage_mac_read_resp),
872 			       GFP_KERNEL);
873 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
874 
875 	if (!mac_buf) {
876 		status = ICE_ERR_NO_MEMORY;
877 		goto err_unroll_fltr_mgmt_struct;
878 	}
879 
880 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
881 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
882 
883 	if (status)
884 		goto err_unroll_fltr_mgmt_struct;
885 
886 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
887 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
888 	status = ice_init_hw_tbls(hw);
889 	if (status)
890 		goto err_unroll_fltr_mgmt_struct;
891 	return 0;
892 
893 err_unroll_fltr_mgmt_struct:
894 	ice_cleanup_fltr_mgmt_struct(hw);
895 err_unroll_sched:
896 	ice_sched_cleanup_all(hw);
897 err_unroll_alloc:
898 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
899 err_unroll_cqinit:
900 	ice_destroy_all_ctrlq(hw);
901 	return status;
902 }
903 
904 /**
905  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
906  * @hw: pointer to the hardware structure
907  *
908  * This should be called only during nominal operation, not as a result of
909  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
910  * applicable initializations if it fails for any reason.
911  */
912 void ice_deinit_hw(struct ice_hw *hw)
913 {
914 	ice_cleanup_fltr_mgmt_struct(hw);
915 
916 	ice_sched_cleanup_all(hw);
917 	ice_sched_clear_agg(hw);
918 	ice_free_seg(hw);
919 	ice_free_hw_tbls(hw);
920 
921 	if (hw->port_info) {
922 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
923 		hw->port_info = NULL;
924 	}
925 
926 	/* Attempt to disable FW logging before shutting down control queues */
927 	ice_cfg_fw_log(hw, false);
928 	ice_destroy_all_ctrlq(hw);
929 
930 	/* Clear VSI contexts if not already cleared */
931 	ice_clear_all_vsi_ctx(hw);
932 }
933 
934 /**
935  * ice_check_reset - Check to see if a global reset is complete
936  * @hw: pointer to the hardware structure
937  */
938 enum ice_status ice_check_reset(struct ice_hw *hw)
939 {
940 	u32 cnt, reg = 0, grst_delay;
941 
942 	/* Poll for Device Active state in case a recent CORER, GLOBR,
943 	 * or EMPR has occurred. The grst delay value is in 100ms units.
944 	 * Add 1sec for outstanding AQ commands that can take a long time.
945 	 */
946 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
947 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
948 
949 	for (cnt = 0; cnt < grst_delay; cnt++) {
950 		mdelay(100);
951 		reg = rd32(hw, GLGEN_RSTAT);
952 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
953 			break;
954 	}
955 
956 	if (cnt == grst_delay) {
957 		ice_debug(hw, ICE_DBG_INIT,
958 			  "Global reset polling failed to complete.\n");
959 		return ICE_ERR_RESET_FAILED;
960 	}
961 
962 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
963 				 GLNVM_ULD_GLOBR_DONE_M)
964 
965 	/* Device is Active; check Global Reset processes are done */
966 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
967 		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
968 		if (reg == ICE_RESET_DONE_MASK) {
969 			ice_debug(hw, ICE_DBG_INIT,
970 				  "Global reset processes done. %d\n", cnt);
971 			break;
972 		}
973 		mdelay(10);
974 	}
975 
976 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
977 		ice_debug(hw, ICE_DBG_INIT,
978 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
979 			  reg);
980 		return ICE_ERR_RESET_FAILED;
981 	}
982 
983 	return 0;
984 }
985 
986 /**
987  * ice_pf_reset - Reset the PF
988  * @hw: pointer to the hardware structure
989  *
990  * If a global reset has been triggered, this function checks
991  * for its completion and then issues the PF reset
992  */
993 static enum ice_status ice_pf_reset(struct ice_hw *hw)
994 {
995 	u32 cnt, reg;
996 
997 	/* If at function entry a global reset was already in progress, i.e.
998 	 * state is not 'device active' or any of the reset done bits are not
999 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1000 	 * global reset is done.
1001 	 */
1002 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1003 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1004 		/* poll on global reset currently in progress until done */
1005 		if (ice_check_reset(hw))
1006 			return ICE_ERR_RESET_FAILED;
1007 
1008 		return 0;
1009 	}
1010 
1011 	/* Reset the PF */
1012 	reg = rd32(hw, PFGEN_CTRL);
1013 
1014 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1015 
1016 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1017 		reg = rd32(hw, PFGEN_CTRL);
1018 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1019 			break;
1020 
1021 		mdelay(1);
1022 	}
1023 
1024 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1025 		ice_debug(hw, ICE_DBG_INIT,
1026 			  "PF reset polling failed to complete.\n");
1027 		return ICE_ERR_RESET_FAILED;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  * ice_reset - Perform different types of reset
1035  * @hw: pointer to the hardware structure
1036  * @req: reset request
1037  *
1038  * This function triggers a reset as specified by the req parameter.
1039  *
1040  * Note:
1041  * If anything other than a PF reset is triggered, PXE mode is restored.
1042  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1043  * interface has been restored in the rebuild flow.
1044  */
1045 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1046 {
1047 	u32 val = 0;
1048 
1049 	switch (req) {
1050 	case ICE_RESET_PFR:
1051 		return ice_pf_reset(hw);
1052 	case ICE_RESET_CORER:
1053 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1054 		val = GLGEN_RTRIG_CORER_M;
1055 		break;
1056 	case ICE_RESET_GLOBR:
1057 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1058 		val = GLGEN_RTRIG_GLOBR_M;
1059 		break;
1060 	default:
1061 		return ICE_ERR_PARAM;
1062 	}
1063 
1064 	val |= rd32(hw, GLGEN_RTRIG);
1065 	wr32(hw, GLGEN_RTRIG, val);
1066 	ice_flush(hw);
1067 
1068 	/* wait for the FW to be ready */
1069 	return ice_check_reset(hw);
1070 }
1071 
1072 /**
1073  * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
1074  * @hw: pointer to hardware structure
1075  * @module_tlv: pointer to module TLV to return
1076  * @module_tlv_len: pointer to module TLV length to return
1077  * @module_type: module type requested
1078  *
1079  * Finds the requested sub module TLV type from the Preserved Field
1080  * Area (PFA) and returns the TLV pointer and length. The caller can
1081  * use these to read the variable length TLV value.
1082  */
1083 enum ice_status
1084 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
1085 		       u16 module_type)
1086 {
1087 	enum ice_status status;
1088 	u16 pfa_len, pfa_ptr;
1089 	u16 next_tlv;
1090 
1091 	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
1092 	if (status) {
1093 		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
1094 		return status;
1095 	}
1096 	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
1097 	if (status) {
1098 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
1099 		return status;
1100 	}
1101 	/* Starting with first TLV after PFA length, iterate through the list
1102 	 * of TLVs to find the requested one.
1103 	 */
1104 	next_tlv = pfa_ptr + 1;
1105 	while (next_tlv < pfa_ptr + pfa_len) {
1106 		u16 tlv_sub_module_type;
1107 		u16 tlv_len;
1108 
1109 		/* Read TLV type */
1110 		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
1111 		if (status) {
1112 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
1113 			break;
1114 		}
1115 		/* Read TLV length */
1116 		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
1117 		if (status) {
1118 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
1119 			break;
1120 		}
1121 		if (tlv_sub_module_type == module_type) {
1122 			if (tlv_len) {
1123 				*module_tlv = next_tlv;
1124 				*module_tlv_len = tlv_len;
1125 				return 0;
1126 			}
1127 			return ICE_ERR_INVAL_SIZE;
1128 		}
1129 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
1130 		 * (for current TLV's type and length)
1131 		 */
1132 		next_tlv = next_tlv + tlv_len + 2;
1133 	}
1134 	/* Module does not exist */
1135 	return ICE_ERR_DOES_NOT_EXIST;
1136 }
1137 
1138 /**
1139  * ice_copy_rxq_ctx_to_hw
1140  * @hw: pointer to the hardware structure
1141  * @ice_rxq_ctx: pointer to the rxq context
1142  * @rxq_index: the index of the Rx queue
1143  *
1144  * Copies rxq context from dense structure to HW register space
1145  */
1146 static enum ice_status
1147 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1148 {
1149 	u8 i;
1150 
1151 	if (!ice_rxq_ctx)
1152 		return ICE_ERR_BAD_PTR;
1153 
1154 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1155 		return ICE_ERR_PARAM;
1156 
1157 	/* Copy each dword separately to HW */
1158 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1159 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1160 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1161 
1162 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1163 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /* LAN Rx Queue Context */
1170 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1171 	/* Field		Width	LSB */
1172 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1173 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1174 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1175 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1176 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1177 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1178 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1179 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1180 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1181 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1182 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1183 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1184 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1185 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1186 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1187 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1188 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1189 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1190 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1191 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1192 	{ 0 }
1193 };
1194 
1195 /**
1196  * ice_write_rxq_ctx
1197  * @hw: pointer to the hardware structure
1198  * @rlan_ctx: pointer to the rxq context
1199  * @rxq_index: the index of the Rx queue
1200  *
1201  * Converts rxq context from sparse to dense structure and then writes
1202  * it to HW register space and enables the hardware to prefetch descriptors
1203  * instead of only fetching them on demand
1204  */
1205 enum ice_status
1206 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1207 		  u32 rxq_index)
1208 {
1209 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1210 
1211 	if (!rlan_ctx)
1212 		return ICE_ERR_BAD_PTR;
1213 
1214 	rlan_ctx->prefena = 1;
1215 
1216 	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1217 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1218 }
1219 
1220 /* LAN Tx Queue Context */
1221 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1222 				    /* Field			Width	LSB */
1223 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1224 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1225 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1226 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1227 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1228 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1229 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1230 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1231 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1232 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1233 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1234 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1235 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1236 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1237 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1238 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1239 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1240 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1241 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1242 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1243 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1244 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1245 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1246 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1247 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1248 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1249 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1250 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1251 	{ 0 }
1252 };
1253 
1254 /* FW Admin Queue command wrappers */
1255 
1256 /* Software lock/mutex that is meant to be held while the Global Config Lock
1257  * in firmware is acquired by the software to prevent most (but not all) types
1258  * of AQ commands from being sent to FW
1259  */
1260 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1261 
1262 /**
1263  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1264  * @hw: pointer to the HW struct
1265  * @desc: descriptor describing the command
1266  * @buf: buffer to use for indirect commands (NULL for direct commands)
1267  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1268  * @cd: pointer to command details structure
1269  *
1270  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1271  */
1272 enum ice_status
1273 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1274 		u16 buf_size, struct ice_sq_cd *cd)
1275 {
1276 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1277 	bool lock_acquired = false;
1278 	enum ice_status status;
1279 
1280 	/* When a package download is in process (i.e. when the firmware's
1281 	 * Global Configuration Lock resource is held), only the Download
1282 	 * Package, Get Version, Get Package Info List and Release Resource
1283 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1284 	 * allowed; all others must block until the package download completes
1285 	 * and the Global Config Lock is released.  See also
1286 	 * ice_acquire_global_cfg_lock().
1287 	 */
1288 	switch (le16_to_cpu(desc->opcode)) {
1289 	case ice_aqc_opc_download_pkg:
1290 	case ice_aqc_opc_get_pkg_info_list:
1291 	case ice_aqc_opc_get_ver:
1292 		break;
1293 	case ice_aqc_opc_release_res:
1294 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1295 			break;
1296 		/* fall-through */
1297 	default:
1298 		mutex_lock(&ice_global_cfg_lock_sw);
1299 		lock_acquired = true;
1300 		break;
1301 	}
1302 
1303 	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1304 	if (lock_acquired)
1305 		mutex_unlock(&ice_global_cfg_lock_sw);
1306 
1307 	return status;
1308 }
1309 
1310 /**
1311  * ice_aq_get_fw_ver
1312  * @hw: pointer to the HW struct
1313  * @cd: pointer to command details structure or NULL
1314  *
1315  * Get the firmware version (0x0001) from the admin queue commands
1316  */
1317 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1318 {
1319 	struct ice_aqc_get_ver *resp;
1320 	struct ice_aq_desc desc;
1321 	enum ice_status status;
1322 
1323 	resp = &desc.params.get_ver;
1324 
1325 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1326 
1327 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1328 
1329 	if (!status) {
1330 		hw->fw_branch = resp->fw_branch;
1331 		hw->fw_maj_ver = resp->fw_major;
1332 		hw->fw_min_ver = resp->fw_minor;
1333 		hw->fw_patch = resp->fw_patch;
1334 		hw->fw_build = le32_to_cpu(resp->fw_build);
1335 		hw->api_branch = resp->api_branch;
1336 		hw->api_maj_ver = resp->api_major;
1337 		hw->api_min_ver = resp->api_minor;
1338 		hw->api_patch = resp->api_patch;
1339 	}
1340 
1341 	return status;
1342 }
1343 
1344 /**
1345  * ice_aq_send_driver_ver
1346  * @hw: pointer to the HW struct
1347  * @dv: driver's major, minor version
1348  * @cd: pointer to command details structure or NULL
1349  *
1350  * Send the driver version (0x0002) to the firmware
1351  */
1352 enum ice_status
1353 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1354 		       struct ice_sq_cd *cd)
1355 {
1356 	struct ice_aqc_driver_ver *cmd;
1357 	struct ice_aq_desc desc;
1358 	u16 len;
1359 
1360 	cmd = &desc.params.driver_ver;
1361 
1362 	if (!dv)
1363 		return ICE_ERR_PARAM;
1364 
1365 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1366 
1367 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1368 	cmd->major_ver = dv->major_ver;
1369 	cmd->minor_ver = dv->minor_ver;
1370 	cmd->build_ver = dv->build_ver;
1371 	cmd->subbuild_ver = dv->subbuild_ver;
1372 
1373 	len = 0;
1374 	while (len < sizeof(dv->driver_string) &&
1375 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1376 		len++;
1377 
1378 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1379 }
1380 
1381 /**
1382  * ice_aq_q_shutdown
1383  * @hw: pointer to the HW struct
1384  * @unloading: is the driver unloading itself
1385  *
1386  * Tell the Firmware that we're shutting down the AdminQ and whether
1387  * or not the driver is unloading as well (0x0003).
1388  */
1389 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1390 {
1391 	struct ice_aqc_q_shutdown *cmd;
1392 	struct ice_aq_desc desc;
1393 
1394 	cmd = &desc.params.q_shutdown;
1395 
1396 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1397 
1398 	if (unloading)
1399 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1400 
1401 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1402 }
1403 
1404 /**
1405  * ice_aq_req_res
1406  * @hw: pointer to the HW struct
1407  * @res: resource ID
1408  * @access: access type
1409  * @sdp_number: resource number
1410  * @timeout: the maximum time in ms that the driver may hold the resource
1411  * @cd: pointer to command details structure or NULL
1412  *
1413  * Requests common resource using the admin queue commands (0x0008).
1414  * When attempting to acquire the Global Config Lock, the driver can
1415  * learn of three states:
1416  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1417  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1418  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1419  *                          successfully downloaded the package; the driver does
1420  *                          not have to download the package and can continue
1421  *                          loading
1422  *
1423  * Note that if the caller is in an acquire lock, perform action, release lock
1424  * phase of operation, it is possible that the FW may detect a timeout and issue
1425  * a CORER. In this case, the driver will receive a CORER interrupt and will
1426  * have to determine its cause. The calling thread that is handling this flow
1427  * will likely get an error propagated back to it indicating the Download
1428  * Package, Update Package or the Release Resource AQ commands timed out.
1429  */
1430 static enum ice_status
1431 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1432 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1433 	       struct ice_sq_cd *cd)
1434 {
1435 	struct ice_aqc_req_res *cmd_resp;
1436 	struct ice_aq_desc desc;
1437 	enum ice_status status;
1438 
1439 	cmd_resp = &desc.params.res_owner;
1440 
1441 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1442 
1443 	cmd_resp->res_id = cpu_to_le16(res);
1444 	cmd_resp->access_type = cpu_to_le16(access);
1445 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1446 	cmd_resp->timeout = cpu_to_le32(*timeout);
1447 	*timeout = 0;
1448 
1449 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1450 
1451 	/* The completion specifies the maximum time in ms that the driver
1452 	 * may hold the resource in the Timeout field.
1453 	 */
1454 
1455 	/* Global config lock response utilizes an additional status field.
1456 	 *
1457 	 * If the Global config lock resource is held by some other driver, the
1458 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1459 	 * and the timeout field indicates the maximum time the current owner
1460 	 * of the resource has to free it.
1461 	 */
1462 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1463 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1464 			*timeout = le32_to_cpu(cmd_resp->timeout);
1465 			return 0;
1466 		} else if (le16_to_cpu(cmd_resp->status) ==
1467 			   ICE_AQ_RES_GLBL_IN_PROG) {
1468 			*timeout = le32_to_cpu(cmd_resp->timeout);
1469 			return ICE_ERR_AQ_ERROR;
1470 		} else if (le16_to_cpu(cmd_resp->status) ==
1471 			   ICE_AQ_RES_GLBL_DONE) {
1472 			return ICE_ERR_AQ_NO_WORK;
1473 		}
1474 
1475 		/* invalid FW response, force a timeout immediately */
1476 		*timeout = 0;
1477 		return ICE_ERR_AQ_ERROR;
1478 	}
1479 
1480 	/* If the resource is held by some other driver, the command completes
1481 	 * with a busy return value and the timeout field indicates the maximum
1482 	 * time the current owner of the resource has to free it.
1483 	 */
1484 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1485 		*timeout = le32_to_cpu(cmd_resp->timeout);
1486 
1487 	return status;
1488 }
1489 
1490 /**
1491  * ice_aq_release_res
1492  * @hw: pointer to the HW struct
1493  * @res: resource ID
1494  * @sdp_number: resource number
1495  * @cd: pointer to command details structure or NULL
1496  *
1497  * release common resource using the admin queue commands (0x0009)
1498  */
1499 static enum ice_status
1500 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1501 		   struct ice_sq_cd *cd)
1502 {
1503 	struct ice_aqc_req_res *cmd;
1504 	struct ice_aq_desc desc;
1505 
1506 	cmd = &desc.params.res_owner;
1507 
1508 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1509 
1510 	cmd->res_id = cpu_to_le16(res);
1511 	cmd->res_number = cpu_to_le32(sdp_number);
1512 
1513 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1514 }
1515 
1516 /**
1517  * ice_acquire_res
1518  * @hw: pointer to the HW structure
1519  * @res: resource ID
1520  * @access: access type (read or write)
1521  * @timeout: timeout in milliseconds
1522  *
1523  * This function will attempt to acquire the ownership of a resource.
1524  */
1525 enum ice_status
1526 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1527 		enum ice_aq_res_access_type access, u32 timeout)
1528 {
1529 #define ICE_RES_POLLING_DELAY_MS	10
1530 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1531 	u32 time_left = timeout;
1532 	enum ice_status status;
1533 
1534 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1535 
1536 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1537 	 * previously acquired the resource and performed any necessary updates;
1538 	 * in this case the caller does not obtain the resource and has no
1539 	 * further work to do.
1540 	 */
1541 	if (status == ICE_ERR_AQ_NO_WORK)
1542 		goto ice_acquire_res_exit;
1543 
1544 	if (status)
1545 		ice_debug(hw, ICE_DBG_RES,
1546 			  "resource %d acquire type %d failed.\n", res, access);
1547 
1548 	/* If necessary, poll until the current lock owner timeouts */
1549 	timeout = time_left;
1550 	while (status && timeout && time_left) {
1551 		mdelay(delay);
1552 		timeout = (timeout > delay) ? timeout - delay : 0;
1553 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1554 
1555 		if (status == ICE_ERR_AQ_NO_WORK)
1556 			/* lock free, but no work to do */
1557 			break;
1558 
1559 		if (!status)
1560 			/* lock acquired */
1561 			break;
1562 	}
1563 	if (status && status != ICE_ERR_AQ_NO_WORK)
1564 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1565 
1566 ice_acquire_res_exit:
1567 	if (status == ICE_ERR_AQ_NO_WORK) {
1568 		if (access == ICE_RES_WRITE)
1569 			ice_debug(hw, ICE_DBG_RES,
1570 				  "resource indicates no work to do.\n");
1571 		else
1572 			ice_debug(hw, ICE_DBG_RES,
1573 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1574 	}
1575 	return status;
1576 }
1577 
1578 /**
1579  * ice_release_res
1580  * @hw: pointer to the HW structure
1581  * @res: resource ID
1582  *
1583  * This function will release a resource using the proper Admin Command.
1584  */
1585 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1586 {
1587 	enum ice_status status;
1588 	u32 total_delay = 0;
1589 
1590 	status = ice_aq_release_res(hw, res, 0, NULL);
1591 
1592 	/* there are some rare cases when trying to release the resource
1593 	 * results in an admin queue timeout, so handle them correctly
1594 	 */
1595 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1596 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1597 		mdelay(1);
1598 		status = ice_aq_release_res(hw, res, 0, NULL);
1599 		total_delay++;
1600 	}
1601 }
1602 
1603 /**
1604  * ice_get_num_per_func - determine number of resources per PF
1605  * @hw: pointer to the HW structure
1606  * @max: value to be evenly split between each PF
1607  *
1608  * Determine the number of valid functions by going through the bitmap returned
1609  * from parsing capabilities and use this to calculate the number of resources
1610  * per PF based on the max value passed in.
1611  */
1612 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1613 {
1614 	u8 funcs;
1615 
1616 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1617 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1618 			 ICE_CAPS_VALID_FUNCS_M);
1619 
1620 	if (!funcs)
1621 		return 0;
1622 
1623 	return max / funcs;
1624 }
1625 
1626 /**
1627  * ice_parse_caps - parse function/device capabilities
1628  * @hw: pointer to the HW struct
1629  * @buf: pointer to a buffer containing function/device capability records
1630  * @cap_count: number of capability records in the list
1631  * @opc: type of capabilities list to parse
1632  *
1633  * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1634  */
1635 static void
1636 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1637 	       enum ice_adminq_opc opc)
1638 {
1639 	struct ice_aqc_list_caps_elem *cap_resp;
1640 	struct ice_hw_func_caps *func_p = NULL;
1641 	struct ice_hw_dev_caps *dev_p = NULL;
1642 	struct ice_hw_common_caps *caps;
1643 	char const *prefix;
1644 	u32 i;
1645 
1646 	if (!buf)
1647 		return;
1648 
1649 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1650 
1651 	if (opc == ice_aqc_opc_list_dev_caps) {
1652 		dev_p = &hw->dev_caps;
1653 		caps = &dev_p->common_cap;
1654 		prefix = "dev cap";
1655 	} else if (opc == ice_aqc_opc_list_func_caps) {
1656 		func_p = &hw->func_caps;
1657 		caps = &func_p->common_cap;
1658 		prefix = "func cap";
1659 	} else {
1660 		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1661 		return;
1662 	}
1663 
1664 	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1665 		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1666 		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1667 		u32 number = le32_to_cpu(cap_resp->number);
1668 		u16 cap = le16_to_cpu(cap_resp->cap);
1669 
1670 		switch (cap) {
1671 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1672 			caps->valid_functions = number;
1673 			ice_debug(hw, ICE_DBG_INIT,
1674 				  "%s: valid_functions (bitmap) = %d\n", prefix,
1675 				  caps->valid_functions);
1676 			break;
1677 		case ICE_AQC_CAPS_SRIOV:
1678 			caps->sr_iov_1_1 = (number == 1);
1679 			ice_debug(hw, ICE_DBG_INIT,
1680 				  "%s: sr_iov_1_1 = %d\n", prefix,
1681 				  caps->sr_iov_1_1);
1682 			break;
1683 		case ICE_AQC_CAPS_VF:
1684 			if (dev_p) {
1685 				dev_p->num_vfs_exposed = number;
1686 				ice_debug(hw, ICE_DBG_INIT,
1687 					  "%s: num_vfs_exposed = %d\n", prefix,
1688 					  dev_p->num_vfs_exposed);
1689 			} else if (func_p) {
1690 				func_p->num_allocd_vfs = number;
1691 				func_p->vf_base_id = logical_id;
1692 				ice_debug(hw, ICE_DBG_INIT,
1693 					  "%s: num_allocd_vfs = %d\n", prefix,
1694 					  func_p->num_allocd_vfs);
1695 				ice_debug(hw, ICE_DBG_INIT,
1696 					  "%s: vf_base_id = %d\n", prefix,
1697 					  func_p->vf_base_id);
1698 			}
1699 			break;
1700 		case ICE_AQC_CAPS_VSI:
1701 			if (dev_p) {
1702 				dev_p->num_vsi_allocd_to_host = number;
1703 				ice_debug(hw, ICE_DBG_INIT,
1704 					  "%s: num_vsi_allocd_to_host = %d\n",
1705 					  prefix,
1706 					  dev_p->num_vsi_allocd_to_host);
1707 			} else if (func_p) {
1708 				func_p->guar_num_vsi =
1709 					ice_get_num_per_func(hw, ICE_MAX_VSI);
1710 				ice_debug(hw, ICE_DBG_INIT,
1711 					  "%s: guar_num_vsi (fw) = %d\n",
1712 					  prefix, number);
1713 				ice_debug(hw, ICE_DBG_INIT,
1714 					  "%s: guar_num_vsi = %d\n",
1715 					  prefix, func_p->guar_num_vsi);
1716 			}
1717 			break;
1718 		case ICE_AQC_CAPS_DCB:
1719 			caps->dcb = (number == 1);
1720 			caps->active_tc_bitmap = logical_id;
1721 			caps->maxtc = phys_id;
1722 			ice_debug(hw, ICE_DBG_INIT,
1723 				  "%s: dcb = %d\n", prefix, caps->dcb);
1724 			ice_debug(hw, ICE_DBG_INIT,
1725 				  "%s: active_tc_bitmap = %d\n", prefix,
1726 				  caps->active_tc_bitmap);
1727 			ice_debug(hw, ICE_DBG_INIT,
1728 				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1729 			break;
1730 		case ICE_AQC_CAPS_RSS:
1731 			caps->rss_table_size = number;
1732 			caps->rss_table_entry_width = logical_id;
1733 			ice_debug(hw, ICE_DBG_INIT,
1734 				  "%s: rss_table_size = %d\n", prefix,
1735 				  caps->rss_table_size);
1736 			ice_debug(hw, ICE_DBG_INIT,
1737 				  "%s: rss_table_entry_width = %d\n", prefix,
1738 				  caps->rss_table_entry_width);
1739 			break;
1740 		case ICE_AQC_CAPS_RXQS:
1741 			caps->num_rxq = number;
1742 			caps->rxq_first_id = phys_id;
1743 			ice_debug(hw, ICE_DBG_INIT,
1744 				  "%s: num_rxq = %d\n", prefix,
1745 				  caps->num_rxq);
1746 			ice_debug(hw, ICE_DBG_INIT,
1747 				  "%s: rxq_first_id = %d\n", prefix,
1748 				  caps->rxq_first_id);
1749 			break;
1750 		case ICE_AQC_CAPS_TXQS:
1751 			caps->num_txq = number;
1752 			caps->txq_first_id = phys_id;
1753 			ice_debug(hw, ICE_DBG_INIT,
1754 				  "%s: num_txq = %d\n", prefix,
1755 				  caps->num_txq);
1756 			ice_debug(hw, ICE_DBG_INIT,
1757 				  "%s: txq_first_id = %d\n", prefix,
1758 				  caps->txq_first_id);
1759 			break;
1760 		case ICE_AQC_CAPS_MSIX:
1761 			caps->num_msix_vectors = number;
1762 			caps->msix_vector_first_id = phys_id;
1763 			ice_debug(hw, ICE_DBG_INIT,
1764 				  "%s: num_msix_vectors = %d\n", prefix,
1765 				  caps->num_msix_vectors);
1766 			ice_debug(hw, ICE_DBG_INIT,
1767 				  "%s: msix_vector_first_id = %d\n", prefix,
1768 				  caps->msix_vector_first_id);
1769 			break;
1770 		case ICE_AQC_CAPS_MAX_MTU:
1771 			caps->max_mtu = number;
1772 			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1773 				  prefix, caps->max_mtu);
1774 			break;
1775 		default:
1776 			ice_debug(hw, ICE_DBG_INIT,
1777 				  "%s: unknown capability[%d]: 0x%x\n", prefix,
1778 				  i, cap);
1779 			break;
1780 		}
1781 	}
1782 }
1783 
1784 /**
1785  * ice_aq_discover_caps - query function/device capabilities
1786  * @hw: pointer to the HW struct
1787  * @buf: a virtual buffer to hold the capabilities
1788  * @buf_size: Size of the virtual buffer
1789  * @cap_count: cap count needed if AQ err==ENOMEM
1790  * @opc: capabilities type to discover - pass in the command opcode
1791  * @cd: pointer to command details structure or NULL
1792  *
1793  * Get the function(0x000a)/device(0x000b) capabilities description from
1794  * the firmware.
1795  */
1796 static enum ice_status
1797 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1798 		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1799 {
1800 	struct ice_aqc_list_caps *cmd;
1801 	struct ice_aq_desc desc;
1802 	enum ice_status status;
1803 
1804 	cmd = &desc.params.get_cap;
1805 
1806 	if (opc != ice_aqc_opc_list_func_caps &&
1807 	    opc != ice_aqc_opc_list_dev_caps)
1808 		return ICE_ERR_PARAM;
1809 
1810 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1811 
1812 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1813 	if (!status)
1814 		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1815 	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1816 		*cap_count = le32_to_cpu(cmd->count);
1817 	return status;
1818 }
1819 
1820 /**
1821  * ice_discover_caps - get info about the HW
1822  * @hw: pointer to the hardware structure
1823  * @opc: capabilities type to discover - pass in the command opcode
1824  */
1825 static enum ice_status
1826 ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1827 {
1828 	enum ice_status status;
1829 	u32 cap_count;
1830 	u16 cbuf_len;
1831 	u8 retries;
1832 
1833 	/* The driver doesn't know how many capabilities the device will return
1834 	 * so the buffer size required isn't known ahead of time. The driver
1835 	 * starts with cbuf_len and if this turns out to be insufficient, the
1836 	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1837 	 * The driver then allocates the buffer based on the count and retries
1838 	 * the operation. So it follows that the retry count is 2.
1839 	 */
1840 #define ICE_GET_CAP_BUF_COUNT	40
1841 #define ICE_GET_CAP_RETRY_COUNT	2
1842 
1843 	cap_count = ICE_GET_CAP_BUF_COUNT;
1844 	retries = ICE_GET_CAP_RETRY_COUNT;
1845 
1846 	do {
1847 		void *cbuf;
1848 
1849 		cbuf_len = (u16)(cap_count *
1850 				 sizeof(struct ice_aqc_list_caps_elem));
1851 		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1852 		if (!cbuf)
1853 			return ICE_ERR_NO_MEMORY;
1854 
1855 		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1856 					      opc, NULL);
1857 		devm_kfree(ice_hw_to_dev(hw), cbuf);
1858 
1859 		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1860 			break;
1861 
1862 		/* If ENOMEM is returned, try again with bigger buffer */
1863 	} while (--retries);
1864 
1865 	return status;
1866 }
1867 
1868 /**
1869  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
1870  * @hw: pointer to the hardware structure
1871  */
1872 void ice_set_safe_mode_caps(struct ice_hw *hw)
1873 {
1874 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
1875 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
1876 	u32 valid_func, rxq_first_id, txq_first_id;
1877 	u32 msix_vector_first_id, max_mtu;
1878 	u32 num_func = 0;
1879 	u8 i;
1880 
1881 	/* cache some func_caps values that should be restored after memset */
1882 	valid_func = func_caps->common_cap.valid_functions;
1883 	txq_first_id = func_caps->common_cap.txq_first_id;
1884 	rxq_first_id = func_caps->common_cap.rxq_first_id;
1885 	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
1886 	max_mtu = func_caps->common_cap.max_mtu;
1887 
1888 	/* unset func capabilities */
1889 	memset(func_caps, 0, sizeof(*func_caps));
1890 
1891 	/* restore cached values */
1892 	func_caps->common_cap.valid_functions = valid_func;
1893 	func_caps->common_cap.txq_first_id = txq_first_id;
1894 	func_caps->common_cap.rxq_first_id = rxq_first_id;
1895 	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1896 	func_caps->common_cap.max_mtu = max_mtu;
1897 
1898 	/* one Tx and one Rx queue in safe mode */
1899 	func_caps->common_cap.num_rxq = 1;
1900 	func_caps->common_cap.num_txq = 1;
1901 
1902 	/* two MSIX vectors, one for traffic and one for misc causes */
1903 	func_caps->common_cap.num_msix_vectors = 2;
1904 	func_caps->guar_num_vsi = 1;
1905 
1906 	/* cache some dev_caps values that should be restored after memset */
1907 	valid_func = dev_caps->common_cap.valid_functions;
1908 	txq_first_id = dev_caps->common_cap.txq_first_id;
1909 	rxq_first_id = dev_caps->common_cap.rxq_first_id;
1910 	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
1911 	max_mtu = dev_caps->common_cap.max_mtu;
1912 
1913 	/* unset dev capabilities */
1914 	memset(dev_caps, 0, sizeof(*dev_caps));
1915 
1916 	/* restore cached values */
1917 	dev_caps->common_cap.valid_functions = valid_func;
1918 	dev_caps->common_cap.txq_first_id = txq_first_id;
1919 	dev_caps->common_cap.rxq_first_id = rxq_first_id;
1920 	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1921 	dev_caps->common_cap.max_mtu = max_mtu;
1922 
1923 	/* valid_func is a bitmap. get number of functions */
1924 #define ICE_MAX_FUNCS 8
1925 	for (i = 0; i < ICE_MAX_FUNCS; i++)
1926 		if (valid_func & BIT(i))
1927 			num_func++;
1928 
1929 	/* one Tx and one Rx queue per function in safe mode */
1930 	dev_caps->common_cap.num_rxq = num_func;
1931 	dev_caps->common_cap.num_txq = num_func;
1932 
1933 	/* two MSIX vectors per function */
1934 	dev_caps->common_cap.num_msix_vectors = 2 * num_func;
1935 }
1936 
1937 /**
1938  * ice_get_caps - get info about the HW
1939  * @hw: pointer to the hardware structure
1940  */
1941 enum ice_status ice_get_caps(struct ice_hw *hw)
1942 {
1943 	enum ice_status status;
1944 
1945 	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1946 	if (!status)
1947 		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1948 
1949 	return status;
1950 }
1951 
1952 /**
1953  * ice_aq_manage_mac_write - manage MAC address write command
1954  * @hw: pointer to the HW struct
1955  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1956  * @flags: flags to control write behavior
1957  * @cd: pointer to command details structure or NULL
1958  *
1959  * This function is used to write MAC address to the NVM (0x0108).
1960  */
1961 enum ice_status
1962 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1963 			struct ice_sq_cd *cd)
1964 {
1965 	struct ice_aqc_manage_mac_write *cmd;
1966 	struct ice_aq_desc desc;
1967 
1968 	cmd = &desc.params.mac_write;
1969 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1970 
1971 	cmd->flags = flags;
1972 
1973 	/* Prep values for flags, sah, sal */
1974 	cmd->sah = htons(*((const u16 *)mac_addr));
1975 	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1976 
1977 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1978 }
1979 
1980 /**
1981  * ice_aq_clear_pxe_mode
1982  * @hw: pointer to the HW struct
1983  *
1984  * Tell the firmware that the driver is taking over from PXE (0x0110).
1985  */
1986 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1987 {
1988 	struct ice_aq_desc desc;
1989 
1990 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1991 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1992 
1993 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1994 }
1995 
1996 /**
1997  * ice_clear_pxe_mode - clear pxe operations mode
1998  * @hw: pointer to the HW struct
1999  *
2000  * Make sure all PXE mode settings are cleared, including things
2001  * like descriptor fetch/write-back mode.
2002  */
2003 void ice_clear_pxe_mode(struct ice_hw *hw)
2004 {
2005 	if (ice_check_sq_alive(hw, &hw->adminq))
2006 		ice_aq_clear_pxe_mode(hw);
2007 }
2008 
2009 /**
2010  * ice_get_link_speed_based_on_phy_type - returns link speed
2011  * @phy_type_low: lower part of phy_type
2012  * @phy_type_high: higher part of phy_type
2013  *
2014  * This helper function will convert an entry in PHY type structure
2015  * [phy_type_low, phy_type_high] to its corresponding link speed.
2016  * Note: In the structure of [phy_type_low, phy_type_high], there should
2017  * be one bit set, as this function will convert one PHY type to its
2018  * speed.
2019  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2020  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2021  */
2022 static u16
2023 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2024 {
2025 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2026 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2027 
2028 	switch (phy_type_low) {
2029 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2030 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2031 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2032 		break;
2033 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2034 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2035 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2036 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2037 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2038 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2039 		break;
2040 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2041 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2042 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2043 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2044 		break;
2045 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2046 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2047 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2048 		break;
2049 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2050 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2051 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2052 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2053 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2054 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2055 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2056 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2057 		break;
2058 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2059 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2060 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2061 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2062 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2063 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2064 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2065 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2066 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2067 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2068 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2069 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2070 		break;
2071 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2072 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2073 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2074 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2075 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2076 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2077 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2078 		break;
2079 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2080 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2081 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2082 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2083 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2084 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2085 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2086 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2087 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2088 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2089 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2090 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2091 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2092 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2093 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2094 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2095 		break;
2096 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2097 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2098 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2099 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2100 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2101 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2102 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2103 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2104 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2105 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2106 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2107 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2108 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2109 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2110 		break;
2111 	default:
2112 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2113 		break;
2114 	}
2115 
2116 	switch (phy_type_high) {
2117 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2118 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2119 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2120 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2121 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2122 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2123 		break;
2124 	default:
2125 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2126 		break;
2127 	}
2128 
2129 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2130 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2131 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2132 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2133 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2134 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2135 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2136 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2137 		return speed_phy_type_low;
2138 	else
2139 		return speed_phy_type_high;
2140 }
2141 
2142 /**
2143  * ice_update_phy_type
2144  * @phy_type_low: pointer to the lower part of phy_type
2145  * @phy_type_high: pointer to the higher part of phy_type
2146  * @link_speeds_bitmap: targeted link speeds bitmap
2147  *
2148  * Note: For the link_speeds_bitmap structure, you can check it at
2149  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2150  * link_speeds_bitmap include multiple speeds.
2151  *
2152  * Each entry in this [phy_type_low, phy_type_high] structure will
2153  * present a certain link speed. This helper function will turn on bits
2154  * in [phy_type_low, phy_type_high] structure based on the value of
2155  * link_speeds_bitmap input parameter.
2156  */
2157 void
2158 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2159 		    u16 link_speeds_bitmap)
2160 {
2161 	u64 pt_high;
2162 	u64 pt_low;
2163 	int index;
2164 	u16 speed;
2165 
2166 	/* We first check with low part of phy_type */
2167 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2168 		pt_low = BIT_ULL(index);
2169 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2170 
2171 		if (link_speeds_bitmap & speed)
2172 			*phy_type_low |= BIT_ULL(index);
2173 	}
2174 
2175 	/* We then check with high part of phy_type */
2176 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2177 		pt_high = BIT_ULL(index);
2178 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2179 
2180 		if (link_speeds_bitmap & speed)
2181 			*phy_type_high |= BIT_ULL(index);
2182 	}
2183 }
2184 
2185 /**
2186  * ice_aq_set_phy_cfg
2187  * @hw: pointer to the HW struct
2188  * @lport: logical port number
2189  * @cfg: structure with PHY configuration data to be set
2190  * @cd: pointer to command details structure or NULL
2191  *
2192  * Set the various PHY configuration parameters supported on the Port.
2193  * One or more of the Set PHY config parameters may be ignored in an MFP
2194  * mode as the PF may not have the privilege to set some of the PHY Config
2195  * parameters. This status will be indicated by the command response (0x0601).
2196  */
2197 enum ice_status
2198 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
2199 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2200 {
2201 	struct ice_aq_desc desc;
2202 
2203 	if (!cfg)
2204 		return ICE_ERR_PARAM;
2205 
2206 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2207 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2208 		ice_debug(hw, ICE_DBG_PHY,
2209 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2210 			  cfg->caps);
2211 
2212 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2213 	}
2214 
2215 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2216 	desc.params.set_phy.lport_num = lport;
2217 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2218 
2219 	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
2220 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2221 	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
2222 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2223 	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
2224 	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
2225 		  cfg->low_power_ctrl);
2226 	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
2227 	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
2228 	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
2229 
2230 	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2231 }
2232 
2233 /**
2234  * ice_update_link_info - update status of the HW network link
2235  * @pi: port info structure of the interested logical port
2236  */
2237 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2238 {
2239 	struct ice_link_status *li;
2240 	enum ice_status status;
2241 
2242 	if (!pi)
2243 		return ICE_ERR_PARAM;
2244 
2245 	li = &pi->phy.link_info;
2246 
2247 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2248 	if (status)
2249 		return status;
2250 
2251 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2252 		struct ice_aqc_get_phy_caps_data *pcaps;
2253 		struct ice_hw *hw;
2254 
2255 		hw = pi->hw;
2256 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2257 				     GFP_KERNEL);
2258 		if (!pcaps)
2259 			return ICE_ERR_NO_MEMORY;
2260 
2261 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2262 					     pcaps, NULL);
2263 		if (!status)
2264 			memcpy(li->module_type, &pcaps->module_type,
2265 			       sizeof(li->module_type));
2266 
2267 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2268 	}
2269 
2270 	return status;
2271 }
2272 
2273 /**
2274  * ice_set_fc
2275  * @pi: port information structure
2276  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2277  * @ena_auto_link_update: enable automatic link update
2278  *
2279  * Set the requested flow control mode.
2280  */
2281 enum ice_status
2282 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2283 {
2284 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2285 	struct ice_aqc_get_phy_caps_data *pcaps;
2286 	enum ice_status status;
2287 	u8 pause_mask = 0x0;
2288 	struct ice_hw *hw;
2289 
2290 	if (!pi)
2291 		return ICE_ERR_PARAM;
2292 	hw = pi->hw;
2293 	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2294 
2295 	switch (pi->fc.req_mode) {
2296 	case ICE_FC_FULL:
2297 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2298 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2299 		break;
2300 	case ICE_FC_RX_PAUSE:
2301 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2302 		break;
2303 	case ICE_FC_TX_PAUSE:
2304 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2305 		break;
2306 	default:
2307 		break;
2308 	}
2309 
2310 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2311 	if (!pcaps)
2312 		return ICE_ERR_NO_MEMORY;
2313 
2314 	/* Get the current PHY config */
2315 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2316 				     NULL);
2317 	if (status) {
2318 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2319 		goto out;
2320 	}
2321 
2322 	/* clear the old pause settings */
2323 	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2324 				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2325 
2326 	/* set the new capabilities */
2327 	cfg.caps |= pause_mask;
2328 
2329 	/* If the capabilities have changed, then set the new config */
2330 	if (cfg.caps != pcaps->caps) {
2331 		int retry_count, retry_max = 10;
2332 
2333 		/* Auto restart link so settings take effect */
2334 		if (ena_auto_link_update)
2335 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2336 		/* Copy over all the old settings */
2337 		cfg.phy_type_high = pcaps->phy_type_high;
2338 		cfg.phy_type_low = pcaps->phy_type_low;
2339 		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2340 		cfg.eee_cap = pcaps->eee_cap;
2341 		cfg.eeer_value = pcaps->eeer_value;
2342 		cfg.link_fec_opt = pcaps->link_fec_options;
2343 
2344 		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2345 		if (status) {
2346 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2347 			goto out;
2348 		}
2349 
2350 		/* Update the link info
2351 		 * It sometimes takes a really long time for link to
2352 		 * come back from the atomic reset. Thus, we wait a
2353 		 * little bit.
2354 		 */
2355 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2356 			status = ice_update_link_info(pi);
2357 
2358 			if (!status)
2359 				break;
2360 
2361 			mdelay(100);
2362 		}
2363 
2364 		if (status)
2365 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2366 	}
2367 
2368 out:
2369 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2370 	return status;
2371 }
2372 
2373 /**
2374  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2375  * @caps: PHY ability structure to copy date from
2376  * @cfg: PHY configuration structure to copy data to
2377  *
2378  * Helper function to copy AQC PHY get ability data to PHY set configuration
2379  * data structure
2380  */
2381 void
2382 ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
2383 			 struct ice_aqc_set_phy_cfg_data *cfg)
2384 {
2385 	if (!caps || !cfg)
2386 		return;
2387 
2388 	cfg->phy_type_low = caps->phy_type_low;
2389 	cfg->phy_type_high = caps->phy_type_high;
2390 	cfg->caps = caps->caps;
2391 	cfg->low_power_ctrl = caps->low_power_ctrl;
2392 	cfg->eee_cap = caps->eee_cap;
2393 	cfg->eeer_value = caps->eeer_value;
2394 	cfg->link_fec_opt = caps->link_fec_options;
2395 }
2396 
2397 /**
2398  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2399  * @cfg: PHY configuration data to set FEC mode
2400  * @fec: FEC mode to configure
2401  *
2402  * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2403  * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2404  * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2405  */
2406 void
2407 ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
2408 {
2409 	switch (fec) {
2410 	case ICE_FEC_BASER:
2411 		/* Clear RS bits, and AND BASE-R ability
2412 		 * bits and OR request bits.
2413 		 */
2414 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2415 				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2416 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2417 				     ICE_AQC_PHY_FEC_25G_KR_REQ;
2418 		break;
2419 	case ICE_FEC_RS:
2420 		/* Clear BASE-R bits, and AND RS ability
2421 		 * bits and OR request bits.
2422 		 */
2423 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2424 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2425 				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2426 		break;
2427 	case ICE_FEC_NONE:
2428 		/* Clear all FEC option bits. */
2429 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2430 		break;
2431 	case ICE_FEC_AUTO:
2432 		/* AND auto FEC bit, and all caps bits. */
2433 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
2434 		break;
2435 	}
2436 }
2437 
2438 /**
2439  * ice_get_link_status - get status of the HW network link
2440  * @pi: port information structure
2441  * @link_up: pointer to bool (true/false = linkup/linkdown)
2442  *
2443  * Variable link_up is true if link is up, false if link is down.
2444  * The variable link_up is invalid if status is non zero. As a
2445  * result of this call, link status reporting becomes enabled
2446  */
2447 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2448 {
2449 	struct ice_phy_info *phy_info;
2450 	enum ice_status status = 0;
2451 
2452 	if (!pi || !link_up)
2453 		return ICE_ERR_PARAM;
2454 
2455 	phy_info = &pi->phy;
2456 
2457 	if (phy_info->get_link_info) {
2458 		status = ice_update_link_info(pi);
2459 
2460 		if (status)
2461 			ice_debug(pi->hw, ICE_DBG_LINK,
2462 				  "get link status error, status = %d\n",
2463 				  status);
2464 	}
2465 
2466 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2467 
2468 	return status;
2469 }
2470 
2471 /**
2472  * ice_aq_set_link_restart_an
2473  * @pi: pointer to the port information structure
2474  * @ena_link: if true: enable link, if false: disable link
2475  * @cd: pointer to command details structure or NULL
2476  *
2477  * Sets up the link and restarts the Auto-Negotiation over the link.
2478  */
2479 enum ice_status
2480 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2481 			   struct ice_sq_cd *cd)
2482 {
2483 	struct ice_aqc_restart_an *cmd;
2484 	struct ice_aq_desc desc;
2485 
2486 	cmd = &desc.params.restart_an;
2487 
2488 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2489 
2490 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2491 	cmd->lport_num = pi->lport;
2492 	if (ena_link)
2493 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2494 	else
2495 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2496 
2497 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2498 }
2499 
2500 /**
2501  * ice_aq_set_event_mask
2502  * @hw: pointer to the HW struct
2503  * @port_num: port number of the physical function
2504  * @mask: event mask to be set
2505  * @cd: pointer to command details structure or NULL
2506  *
2507  * Set event mask (0x0613)
2508  */
2509 enum ice_status
2510 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2511 		      struct ice_sq_cd *cd)
2512 {
2513 	struct ice_aqc_set_event_mask *cmd;
2514 	struct ice_aq_desc desc;
2515 
2516 	cmd = &desc.params.set_event_mask;
2517 
2518 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2519 
2520 	cmd->lport_num = port_num;
2521 
2522 	cmd->event_mask = cpu_to_le16(mask);
2523 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2524 }
2525 
2526 /**
2527  * ice_aq_set_mac_loopback
2528  * @hw: pointer to the HW struct
2529  * @ena_lpbk: Enable or Disable loopback
2530  * @cd: pointer to command details structure or NULL
2531  *
2532  * Enable/disable loopback on a given port
2533  */
2534 enum ice_status
2535 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2536 {
2537 	struct ice_aqc_set_mac_lb *cmd;
2538 	struct ice_aq_desc desc;
2539 
2540 	cmd = &desc.params.set_mac_lb;
2541 
2542 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2543 	if (ena_lpbk)
2544 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2545 
2546 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2547 }
2548 
2549 /**
2550  * ice_aq_set_port_id_led
2551  * @pi: pointer to the port information
2552  * @is_orig_mode: is this LED set to original mode (by the net-list)
2553  * @cd: pointer to command details structure or NULL
2554  *
2555  * Set LED value for the given port (0x06e9)
2556  */
2557 enum ice_status
2558 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2559 		       struct ice_sq_cd *cd)
2560 {
2561 	struct ice_aqc_set_port_id_led *cmd;
2562 	struct ice_hw *hw = pi->hw;
2563 	struct ice_aq_desc desc;
2564 
2565 	cmd = &desc.params.set_port_id_led;
2566 
2567 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2568 
2569 	if (is_orig_mode)
2570 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2571 	else
2572 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2573 
2574 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2575 }
2576 
2577 /**
2578  * ice_aq_sff_eeprom
2579  * @hw: pointer to the HW struct
2580  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
2581  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
2582  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
2583  * @page: QSFP page
2584  * @set_page: set or ignore the page
2585  * @data: pointer to data buffer to be read/written to the I2C device.
2586  * @length: 1-16 for read, 1 for write.
2587  * @write: 0 read, 1 for write.
2588  * @cd: pointer to command details structure or NULL
2589  *
2590  * Read/Write SFF EEPROM (0x06EE)
2591  */
2592 enum ice_status
2593 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
2594 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
2595 		  bool write, struct ice_sq_cd *cd)
2596 {
2597 	struct ice_aqc_sff_eeprom *cmd;
2598 	struct ice_aq_desc desc;
2599 	enum ice_status status;
2600 
2601 	if (!data || (mem_addr & 0xff00))
2602 		return ICE_ERR_PARAM;
2603 
2604 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
2605 	cmd = &desc.params.read_write_sff_param;
2606 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
2607 	cmd->lport_num = (u8)(lport & 0xff);
2608 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
2609 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
2610 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
2611 					((set_page <<
2612 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
2613 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
2614 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
2615 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
2616 	if (write)
2617 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
2618 
2619 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
2620 	return status;
2621 }
2622 
2623 /**
2624  * __ice_aq_get_set_rss_lut
2625  * @hw: pointer to the hardware structure
2626  * @vsi_id: VSI FW index
2627  * @lut_type: LUT table type
2628  * @lut: pointer to the LUT buffer provided by the caller
2629  * @lut_size: size of the LUT buffer
2630  * @glob_lut_idx: global LUT index
2631  * @set: set true to set the table, false to get the table
2632  *
2633  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2634  */
2635 static enum ice_status
2636 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2637 			 u16 lut_size, u8 glob_lut_idx, bool set)
2638 {
2639 	struct ice_aqc_get_set_rss_lut *cmd_resp;
2640 	struct ice_aq_desc desc;
2641 	enum ice_status status;
2642 	u16 flags = 0;
2643 
2644 	cmd_resp = &desc.params.get_set_rss_lut;
2645 
2646 	if (set) {
2647 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2648 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2649 	} else {
2650 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2651 	}
2652 
2653 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2654 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2655 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2656 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2657 
2658 	switch (lut_type) {
2659 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2660 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2661 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2662 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2663 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2664 		break;
2665 	default:
2666 		status = ICE_ERR_PARAM;
2667 		goto ice_aq_get_set_rss_lut_exit;
2668 	}
2669 
2670 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2671 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2672 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2673 
2674 		if (!set)
2675 			goto ice_aq_get_set_rss_lut_send;
2676 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2677 		if (!set)
2678 			goto ice_aq_get_set_rss_lut_send;
2679 	} else {
2680 		goto ice_aq_get_set_rss_lut_send;
2681 	}
2682 
2683 	/* LUT size is only valid for Global and PF table types */
2684 	switch (lut_size) {
2685 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2686 		break;
2687 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2688 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2689 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2690 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2691 		break;
2692 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2693 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2694 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2695 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2696 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2697 			break;
2698 		}
2699 		/* fall-through */
2700 	default:
2701 		status = ICE_ERR_PARAM;
2702 		goto ice_aq_get_set_rss_lut_exit;
2703 	}
2704 
2705 ice_aq_get_set_rss_lut_send:
2706 	cmd_resp->flags = cpu_to_le16(flags);
2707 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2708 
2709 ice_aq_get_set_rss_lut_exit:
2710 	return status;
2711 }
2712 
2713 /**
2714  * ice_aq_get_rss_lut
2715  * @hw: pointer to the hardware structure
2716  * @vsi_handle: software VSI handle
2717  * @lut_type: LUT table type
2718  * @lut: pointer to the LUT buffer provided by the caller
2719  * @lut_size: size of the LUT buffer
2720  *
2721  * get the RSS lookup table, PF or VSI type
2722  */
2723 enum ice_status
2724 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2725 		   u8 *lut, u16 lut_size)
2726 {
2727 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2728 		return ICE_ERR_PARAM;
2729 
2730 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2731 					lut_type, lut, lut_size, 0, false);
2732 }
2733 
2734 /**
2735  * ice_aq_set_rss_lut
2736  * @hw: pointer to the hardware structure
2737  * @vsi_handle: software VSI handle
2738  * @lut_type: LUT table type
2739  * @lut: pointer to the LUT buffer provided by the caller
2740  * @lut_size: size of the LUT buffer
2741  *
2742  * set the RSS lookup table, PF or VSI type
2743  */
2744 enum ice_status
2745 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2746 		   u8 *lut, u16 lut_size)
2747 {
2748 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2749 		return ICE_ERR_PARAM;
2750 
2751 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2752 					lut_type, lut, lut_size, 0, true);
2753 }
2754 
2755 /**
2756  * __ice_aq_get_set_rss_key
2757  * @hw: pointer to the HW struct
2758  * @vsi_id: VSI FW index
2759  * @key: pointer to key info struct
2760  * @set: set true to set the key, false to get the key
2761  *
2762  * get (0x0B04) or set (0x0B02) the RSS key per VSI
2763  */
2764 static enum
2765 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2766 				    struct ice_aqc_get_set_rss_keys *key,
2767 				    bool set)
2768 {
2769 	struct ice_aqc_get_set_rss_key *cmd_resp;
2770 	u16 key_size = sizeof(*key);
2771 	struct ice_aq_desc desc;
2772 
2773 	cmd_resp = &desc.params.get_set_rss_key;
2774 
2775 	if (set) {
2776 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2777 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2778 	} else {
2779 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2780 	}
2781 
2782 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2783 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2784 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2785 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2786 
2787 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2788 }
2789 
2790 /**
2791  * ice_aq_get_rss_key
2792  * @hw: pointer to the HW struct
2793  * @vsi_handle: software VSI handle
2794  * @key: pointer to key info struct
2795  *
2796  * get the RSS key per VSI
2797  */
2798 enum ice_status
2799 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2800 		   struct ice_aqc_get_set_rss_keys *key)
2801 {
2802 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2803 		return ICE_ERR_PARAM;
2804 
2805 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2806 					key, false);
2807 }
2808 
2809 /**
2810  * ice_aq_set_rss_key
2811  * @hw: pointer to the HW struct
2812  * @vsi_handle: software VSI handle
2813  * @keys: pointer to key info struct
2814  *
2815  * set the RSS key per VSI
2816  */
2817 enum ice_status
2818 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2819 		   struct ice_aqc_get_set_rss_keys *keys)
2820 {
2821 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2822 		return ICE_ERR_PARAM;
2823 
2824 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2825 					keys, true);
2826 }
2827 
2828 /**
2829  * ice_aq_add_lan_txq
2830  * @hw: pointer to the hardware structure
2831  * @num_qgrps: Number of added queue groups
2832  * @qg_list: list of queue groups to be added
2833  * @buf_size: size of buffer for indirect command
2834  * @cd: pointer to command details structure or NULL
2835  *
2836  * Add Tx LAN queue (0x0C30)
2837  *
2838  * NOTE:
2839  * Prior to calling add Tx LAN queue:
2840  * Initialize the following as part of the Tx queue context:
2841  * Completion queue ID if the queue uses Completion queue, Quanta profile,
2842  * Cache profile and Packet shaper profile.
2843  *
2844  * After add Tx LAN queue AQ command is completed:
2845  * Interrupts should be associated with specific queues,
2846  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2847  * flow.
2848  */
2849 static enum ice_status
2850 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2851 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2852 		   struct ice_sq_cd *cd)
2853 {
2854 	u16 i, sum_header_size, sum_q_size = 0;
2855 	struct ice_aqc_add_tx_qgrp *list;
2856 	struct ice_aqc_add_txqs *cmd;
2857 	struct ice_aq_desc desc;
2858 
2859 	cmd = &desc.params.add_txqs;
2860 
2861 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2862 
2863 	if (!qg_list)
2864 		return ICE_ERR_PARAM;
2865 
2866 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2867 		return ICE_ERR_PARAM;
2868 
2869 	sum_header_size = num_qgrps *
2870 		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2871 
2872 	list = qg_list;
2873 	for (i = 0; i < num_qgrps; i++) {
2874 		struct ice_aqc_add_txqs_perq *q = list->txqs;
2875 
2876 		sum_q_size += list->num_txqs * sizeof(*q);
2877 		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2878 	}
2879 
2880 	if (buf_size != (sum_header_size + sum_q_size))
2881 		return ICE_ERR_PARAM;
2882 
2883 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2884 
2885 	cmd->num_qgrps = num_qgrps;
2886 
2887 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2888 }
2889 
2890 /**
2891  * ice_aq_dis_lan_txq
2892  * @hw: pointer to the hardware structure
2893  * @num_qgrps: number of groups in the list
2894  * @qg_list: the list of groups to disable
2895  * @buf_size: the total size of the qg_list buffer in bytes
2896  * @rst_src: if called due to reset, specifies the reset source
2897  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2898  * @cd: pointer to command details structure or NULL
2899  *
2900  * Disable LAN Tx queue (0x0C31)
2901  */
2902 static enum ice_status
2903 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2904 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2905 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2906 		   struct ice_sq_cd *cd)
2907 {
2908 	struct ice_aqc_dis_txqs *cmd;
2909 	struct ice_aq_desc desc;
2910 	enum ice_status status;
2911 	u16 i, sz = 0;
2912 
2913 	cmd = &desc.params.dis_txqs;
2914 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2915 
2916 	/* qg_list can be NULL only in VM/VF reset flow */
2917 	if (!qg_list && !rst_src)
2918 		return ICE_ERR_PARAM;
2919 
2920 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2921 		return ICE_ERR_PARAM;
2922 
2923 	cmd->num_entries = num_qgrps;
2924 
2925 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2926 					    ICE_AQC_Q_DIS_TIMEOUT_M);
2927 
2928 	switch (rst_src) {
2929 	case ICE_VM_RESET:
2930 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2931 		cmd->vmvf_and_timeout |=
2932 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2933 		break;
2934 	case ICE_VF_RESET:
2935 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2936 		/* In this case, FW expects vmvf_num to be absolute VF ID */
2937 		cmd->vmvf_and_timeout |=
2938 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2939 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2940 		break;
2941 	case ICE_NO_RESET:
2942 	default:
2943 		break;
2944 	}
2945 
2946 	/* flush pipe on time out */
2947 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2948 	/* If no queue group info, we are in a reset flow. Issue the AQ */
2949 	if (!qg_list)
2950 		goto do_aq;
2951 
2952 	/* set RD bit to indicate that command buffer is provided by the driver
2953 	 * and it needs to be read by the firmware
2954 	 */
2955 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2956 
2957 	for (i = 0; i < num_qgrps; ++i) {
2958 		/* Calculate the size taken up by the queue IDs in this group */
2959 		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2960 
2961 		/* Add the size of the group header */
2962 		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2963 
2964 		/* If the num of queues is even, add 2 bytes of padding */
2965 		if ((qg_list[i].num_qs % 2) == 0)
2966 			sz += 2;
2967 	}
2968 
2969 	if (buf_size != sz)
2970 		return ICE_ERR_PARAM;
2971 
2972 do_aq:
2973 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2974 	if (status) {
2975 		if (!qg_list)
2976 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2977 				  vmvf_num, hw->adminq.sq_last_status);
2978 		else
2979 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
2980 				  le16_to_cpu(qg_list[0].q_id[0]),
2981 				  hw->adminq.sq_last_status);
2982 	}
2983 	return status;
2984 }
2985 
2986 /* End of FW Admin Queue command wrappers */
2987 
2988 /**
2989  * ice_write_byte - write a byte to a packed context structure
2990  * @src_ctx:  the context structure to read from
2991  * @dest_ctx: the context to be written to
2992  * @ce_info:  a description of the struct to be filled
2993  */
2994 static void
2995 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2996 {
2997 	u8 src_byte, dest_byte, mask;
2998 	u8 *from, *dest;
2999 	u16 shift_width;
3000 
3001 	/* copy from the next struct field */
3002 	from = src_ctx + ce_info->offset;
3003 
3004 	/* prepare the bits and mask */
3005 	shift_width = ce_info->lsb % 8;
3006 	mask = (u8)(BIT(ce_info->width) - 1);
3007 
3008 	src_byte = *from;
3009 	src_byte &= mask;
3010 
3011 	/* shift to correct alignment */
3012 	mask <<= shift_width;
3013 	src_byte <<= shift_width;
3014 
3015 	/* get the current bits from the target bit string */
3016 	dest = dest_ctx + (ce_info->lsb / 8);
3017 
3018 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3019 
3020 	dest_byte &= ~mask;	/* get the bits not changing */
3021 	dest_byte |= src_byte;	/* add in the new bits */
3022 
3023 	/* put it all back */
3024 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3025 }
3026 
3027 /**
3028  * ice_write_word - write a word to a packed context structure
3029  * @src_ctx:  the context structure to read from
3030  * @dest_ctx: the context to be written to
3031  * @ce_info:  a description of the struct to be filled
3032  */
3033 static void
3034 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3035 {
3036 	u16 src_word, mask;
3037 	__le16 dest_word;
3038 	u8 *from, *dest;
3039 	u16 shift_width;
3040 
3041 	/* copy from the next struct field */
3042 	from = src_ctx + ce_info->offset;
3043 
3044 	/* prepare the bits and mask */
3045 	shift_width = ce_info->lsb % 8;
3046 	mask = BIT(ce_info->width) - 1;
3047 
3048 	/* don't swizzle the bits until after the mask because the mask bits
3049 	 * will be in a different bit position on big endian machines
3050 	 */
3051 	src_word = *(u16 *)from;
3052 	src_word &= mask;
3053 
3054 	/* shift to correct alignment */
3055 	mask <<= shift_width;
3056 	src_word <<= shift_width;
3057 
3058 	/* get the current bits from the target bit string */
3059 	dest = dest_ctx + (ce_info->lsb / 8);
3060 
3061 	memcpy(&dest_word, dest, sizeof(dest_word));
3062 
3063 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3064 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3065 
3066 	/* put it all back */
3067 	memcpy(dest, &dest_word, sizeof(dest_word));
3068 }
3069 
3070 /**
3071  * ice_write_dword - write a dword to a packed context structure
3072  * @src_ctx:  the context structure to read from
3073  * @dest_ctx: the context to be written to
3074  * @ce_info:  a description of the struct to be filled
3075  */
3076 static void
3077 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3078 {
3079 	u32 src_dword, mask;
3080 	__le32 dest_dword;
3081 	u8 *from, *dest;
3082 	u16 shift_width;
3083 
3084 	/* copy from the next struct field */
3085 	from = src_ctx + ce_info->offset;
3086 
3087 	/* prepare the bits and mask */
3088 	shift_width = ce_info->lsb % 8;
3089 
3090 	/* if the field width is exactly 32 on an x86 machine, then the shift
3091 	 * operation will not work because the SHL instructions count is masked
3092 	 * to 5 bits so the shift will do nothing
3093 	 */
3094 	if (ce_info->width < 32)
3095 		mask = BIT(ce_info->width) - 1;
3096 	else
3097 		mask = (u32)~0;
3098 
3099 	/* don't swizzle the bits until after the mask because the mask bits
3100 	 * will be in a different bit position on big endian machines
3101 	 */
3102 	src_dword = *(u32 *)from;
3103 	src_dword &= mask;
3104 
3105 	/* shift to correct alignment */
3106 	mask <<= shift_width;
3107 	src_dword <<= shift_width;
3108 
3109 	/* get the current bits from the target bit string */
3110 	dest = dest_ctx + (ce_info->lsb / 8);
3111 
3112 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3113 
3114 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3115 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3116 
3117 	/* put it all back */
3118 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3119 }
3120 
3121 /**
3122  * ice_write_qword - write a qword to a packed context structure
3123  * @src_ctx:  the context structure to read from
3124  * @dest_ctx: the context to be written to
3125  * @ce_info:  a description of the struct to be filled
3126  */
3127 static void
3128 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3129 {
3130 	u64 src_qword, mask;
3131 	__le64 dest_qword;
3132 	u8 *from, *dest;
3133 	u16 shift_width;
3134 
3135 	/* copy from the next struct field */
3136 	from = src_ctx + ce_info->offset;
3137 
3138 	/* prepare the bits and mask */
3139 	shift_width = ce_info->lsb % 8;
3140 
3141 	/* if the field width is exactly 64 on an x86 machine, then the shift
3142 	 * operation will not work because the SHL instructions count is masked
3143 	 * to 6 bits so the shift will do nothing
3144 	 */
3145 	if (ce_info->width < 64)
3146 		mask = BIT_ULL(ce_info->width) - 1;
3147 	else
3148 		mask = (u64)~0;
3149 
3150 	/* don't swizzle the bits until after the mask because the mask bits
3151 	 * will be in a different bit position on big endian machines
3152 	 */
3153 	src_qword = *(u64 *)from;
3154 	src_qword &= mask;
3155 
3156 	/* shift to correct alignment */
3157 	mask <<= shift_width;
3158 	src_qword <<= shift_width;
3159 
3160 	/* get the current bits from the target bit string */
3161 	dest = dest_ctx + (ce_info->lsb / 8);
3162 
3163 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3164 
3165 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3166 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3167 
3168 	/* put it all back */
3169 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3170 }
3171 
3172 /**
3173  * ice_set_ctx - set context bits in packed structure
3174  * @src_ctx:  pointer to a generic non-packed context structure
3175  * @dest_ctx: pointer to memory for the packed structure
3176  * @ce_info:  a description of the structure to be transformed
3177  */
3178 enum ice_status
3179 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3180 {
3181 	int f;
3182 
3183 	for (f = 0; ce_info[f].width; f++) {
3184 		/* We have to deal with each element of the FW response
3185 		 * using the correct size so that we are correct regardless
3186 		 * of the endianness of the machine.
3187 		 */
3188 		switch (ce_info[f].size_of) {
3189 		case sizeof(u8):
3190 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3191 			break;
3192 		case sizeof(u16):
3193 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3194 			break;
3195 		case sizeof(u32):
3196 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3197 			break;
3198 		case sizeof(u64):
3199 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3200 			break;
3201 		default:
3202 			return ICE_ERR_INVAL_SIZE;
3203 		}
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 /**
3210  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3211  * @hw: pointer to the HW struct
3212  * @vsi_handle: software VSI handle
3213  * @tc: TC number
3214  * @q_handle: software queue handle
3215  */
3216 struct ice_q_ctx *
3217 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3218 {
3219 	struct ice_vsi_ctx *vsi;
3220 	struct ice_q_ctx *q_ctx;
3221 
3222 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3223 	if (!vsi)
3224 		return NULL;
3225 	if (q_handle >= vsi->num_lan_q_entries[tc])
3226 		return NULL;
3227 	if (!vsi->lan_q_ctx[tc])
3228 		return NULL;
3229 	q_ctx = vsi->lan_q_ctx[tc];
3230 	return &q_ctx[q_handle];
3231 }
3232 
3233 /**
3234  * ice_ena_vsi_txq
3235  * @pi: port information structure
3236  * @vsi_handle: software VSI handle
3237  * @tc: TC number
3238  * @q_handle: software queue handle
3239  * @num_qgrps: Number of added queue groups
3240  * @buf: list of queue groups to be added
3241  * @buf_size: size of buffer for indirect command
3242  * @cd: pointer to command details structure or NULL
3243  *
3244  * This function adds one LAN queue
3245  */
3246 enum ice_status
3247 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3248 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3249 		struct ice_sq_cd *cd)
3250 {
3251 	struct ice_aqc_txsched_elem_data node = { 0 };
3252 	struct ice_sched_node *parent;
3253 	struct ice_q_ctx *q_ctx;
3254 	enum ice_status status;
3255 	struct ice_hw *hw;
3256 
3257 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3258 		return ICE_ERR_CFG;
3259 
3260 	if (num_qgrps > 1 || buf->num_txqs > 1)
3261 		return ICE_ERR_MAX_LIMIT;
3262 
3263 	hw = pi->hw;
3264 
3265 	if (!ice_is_vsi_valid(hw, vsi_handle))
3266 		return ICE_ERR_PARAM;
3267 
3268 	mutex_lock(&pi->sched_lock);
3269 
3270 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3271 	if (!q_ctx) {
3272 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3273 			  q_handle);
3274 		status = ICE_ERR_PARAM;
3275 		goto ena_txq_exit;
3276 	}
3277 
3278 	/* find a parent node */
3279 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3280 					    ICE_SCHED_NODE_OWNER_LAN);
3281 	if (!parent) {
3282 		status = ICE_ERR_PARAM;
3283 		goto ena_txq_exit;
3284 	}
3285 
3286 	buf->parent_teid = parent->info.node_teid;
3287 	node.parent_teid = parent->info.node_teid;
3288 	/* Mark that the values in the "generic" section as valid. The default
3289 	 * value in the "generic" section is zero. This means that :
3290 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3291 	 * - 0 priority among siblings, indicated by Bit 1-3.
3292 	 * - WFQ, indicated by Bit 4.
3293 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3294 	 * Bit 5-6.
3295 	 * - Bit 7 is reserved.
3296 	 * Without setting the generic section as valid in valid_sections, the
3297 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3298 	 */
3299 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
3300 
3301 	/* add the LAN queue */
3302 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3303 	if (status) {
3304 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3305 			  le16_to_cpu(buf->txqs[0].txq_id),
3306 			  hw->adminq.sq_last_status);
3307 		goto ena_txq_exit;
3308 	}
3309 
3310 	node.node_teid = buf->txqs[0].q_teid;
3311 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3312 	q_ctx->q_handle = q_handle;
3313 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3314 
3315 	/* add a leaf node into scheduler tree queue layer */
3316 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3317 	if (!status)
3318 		status = ice_sched_replay_q_bw(pi, q_ctx);
3319 
3320 ena_txq_exit:
3321 	mutex_unlock(&pi->sched_lock);
3322 	return status;
3323 }
3324 
3325 /**
3326  * ice_dis_vsi_txq
3327  * @pi: port information structure
3328  * @vsi_handle: software VSI handle
3329  * @tc: TC number
3330  * @num_queues: number of queues
3331  * @q_handles: pointer to software queue handle array
3332  * @q_ids: pointer to the q_id array
3333  * @q_teids: pointer to queue node teids
3334  * @rst_src: if called due to reset, specifies the reset source
3335  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3336  * @cd: pointer to command details structure or NULL
3337  *
3338  * This function removes queues and their corresponding nodes in SW DB
3339  */
3340 enum ice_status
3341 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3342 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3343 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3344 		struct ice_sq_cd *cd)
3345 {
3346 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3347 	struct ice_aqc_dis_txq_item qg_list;
3348 	struct ice_q_ctx *q_ctx;
3349 	u16 i;
3350 
3351 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3352 		return ICE_ERR_CFG;
3353 
3354 	if (!num_queues) {
3355 		/* if queue is disabled already yet the disable queue command
3356 		 * has to be sent to complete the VF reset, then call
3357 		 * ice_aq_dis_lan_txq without any queue information
3358 		 */
3359 		if (rst_src)
3360 			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3361 						  vmvf_num, NULL);
3362 		return ICE_ERR_CFG;
3363 	}
3364 
3365 	mutex_lock(&pi->sched_lock);
3366 
3367 	for (i = 0; i < num_queues; i++) {
3368 		struct ice_sched_node *node;
3369 
3370 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3371 		if (!node)
3372 			continue;
3373 		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3374 		if (!q_ctx) {
3375 			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3376 				  q_handles[i]);
3377 			continue;
3378 		}
3379 		if (q_ctx->q_handle != q_handles[i]) {
3380 			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3381 				  q_ctx->q_handle, q_handles[i]);
3382 			continue;
3383 		}
3384 		qg_list.parent_teid = node->info.parent_teid;
3385 		qg_list.num_qs = 1;
3386 		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3387 		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3388 					    sizeof(qg_list), rst_src, vmvf_num,
3389 					    cd);
3390 
3391 		if (status)
3392 			break;
3393 		ice_free_sched_node(pi, node);
3394 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3395 	}
3396 	mutex_unlock(&pi->sched_lock);
3397 	return status;
3398 }
3399 
3400 /**
3401  * ice_cfg_vsi_qs - configure the new/existing VSI queues
3402  * @pi: port information structure
3403  * @vsi_handle: software VSI handle
3404  * @tc_bitmap: TC bitmap
3405  * @maxqs: max queues array per TC
3406  * @owner: LAN or RDMA
3407  *
3408  * This function adds/updates the VSI queues per TC.
3409  */
3410 static enum ice_status
3411 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3412 	       u16 *maxqs, u8 owner)
3413 {
3414 	enum ice_status status = 0;
3415 	u8 i;
3416 
3417 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3418 		return ICE_ERR_CFG;
3419 
3420 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3421 		return ICE_ERR_PARAM;
3422 
3423 	mutex_lock(&pi->sched_lock);
3424 
3425 	ice_for_each_traffic_class(i) {
3426 		/* configuration is possible only if TC node is present */
3427 		if (!ice_sched_get_tc_node(pi, i))
3428 			continue;
3429 
3430 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3431 					   ice_is_tc_ena(tc_bitmap, i));
3432 		if (status)
3433 			break;
3434 	}
3435 
3436 	mutex_unlock(&pi->sched_lock);
3437 	return status;
3438 }
3439 
3440 /**
3441  * ice_cfg_vsi_lan - configure VSI LAN queues
3442  * @pi: port information structure
3443  * @vsi_handle: software VSI handle
3444  * @tc_bitmap: TC bitmap
3445  * @max_lanqs: max LAN queues array per TC
3446  *
3447  * This function adds/updates the VSI LAN queues per TC.
3448  */
3449 enum ice_status
3450 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3451 		u16 *max_lanqs)
3452 {
3453 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3454 			      ICE_SCHED_NODE_OWNER_LAN);
3455 }
3456 
3457 /**
3458  * ice_replay_pre_init - replay pre initialization
3459  * @hw: pointer to the HW struct
3460  *
3461  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3462  */
3463 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3464 {
3465 	struct ice_switch_info *sw = hw->switch_info;
3466 	u8 i;
3467 
3468 	/* Delete old entries from replay filter list head if there is any */
3469 	ice_rm_all_sw_replay_rule_info(hw);
3470 	/* In start of replay, move entries into replay_rules list, it
3471 	 * will allow adding rules entries back to filt_rules list,
3472 	 * which is operational list.
3473 	 */
3474 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3475 		list_replace_init(&sw->recp_list[i].filt_rules,
3476 				  &sw->recp_list[i].filt_replay_rules);
3477 
3478 	return 0;
3479 }
3480 
3481 /**
3482  * ice_replay_vsi - replay VSI configuration
3483  * @hw: pointer to the HW struct
3484  * @vsi_handle: driver VSI handle
3485  *
3486  * Restore all VSI configuration after reset. It is required to call this
3487  * function with main VSI first.
3488  */
3489 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3490 {
3491 	enum ice_status status;
3492 
3493 	if (!ice_is_vsi_valid(hw, vsi_handle))
3494 		return ICE_ERR_PARAM;
3495 
3496 	/* Replay pre-initialization if there is any */
3497 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3498 		status = ice_replay_pre_init(hw);
3499 		if (status)
3500 			return status;
3501 	}
3502 
3503 	/* Replay per VSI all filters */
3504 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
3505 	return status;
3506 }
3507 
3508 /**
3509  * ice_replay_post - post replay configuration cleanup
3510  * @hw: pointer to the HW struct
3511  *
3512  * Post replay cleanup.
3513  */
3514 void ice_replay_post(struct ice_hw *hw)
3515 {
3516 	/* Delete old entries from replay filter list head */
3517 	ice_rm_all_sw_replay_rule_info(hw);
3518 }
3519 
3520 /**
3521  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3522  * @hw: ptr to the hardware info
3523  * @reg: offset of 64 bit HW register to read from
3524  * @prev_stat_loaded: bool to specify if previous stats are loaded
3525  * @prev_stat: ptr to previous loaded stat value
3526  * @cur_stat: ptr to current stat value
3527  */
3528 void
3529 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3530 		  u64 *prev_stat, u64 *cur_stat)
3531 {
3532 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3533 
3534 	/* device stats are not reset at PFR, they likely will not be zeroed
3535 	 * when the driver starts. Thus, save the value from the first read
3536 	 * without adding to the statistic value so that we report stats which
3537 	 * count up from zero.
3538 	 */
3539 	if (!prev_stat_loaded) {
3540 		*prev_stat = new_data;
3541 		return;
3542 	}
3543 
3544 	/* Calculate the difference between the new and old values, and then
3545 	 * add it to the software stat value.
3546 	 */
3547 	if (new_data >= *prev_stat)
3548 		*cur_stat += new_data - *prev_stat;
3549 	else
3550 		/* to manage the potential roll-over */
3551 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
3552 
3553 	/* Update the previously stored value to prepare for next read */
3554 	*prev_stat = new_data;
3555 }
3556 
3557 /**
3558  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3559  * @hw: ptr to the hardware info
3560  * @reg: offset of HW register to read from
3561  * @prev_stat_loaded: bool to specify if previous stats are loaded
3562  * @prev_stat: ptr to previous loaded stat value
3563  * @cur_stat: ptr to current stat value
3564  */
3565 void
3566 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3567 		  u64 *prev_stat, u64 *cur_stat)
3568 {
3569 	u32 new_data;
3570 
3571 	new_data = rd32(hw, reg);
3572 
3573 	/* device stats are not reset at PFR, they likely will not be zeroed
3574 	 * when the driver starts. Thus, save the value from the first read
3575 	 * without adding to the statistic value so that we report stats which
3576 	 * count up from zero.
3577 	 */
3578 	if (!prev_stat_loaded) {
3579 		*prev_stat = new_data;
3580 		return;
3581 	}
3582 
3583 	/* Calculate the difference between the new and old values, and then
3584 	 * add it to the software stat value.
3585 	 */
3586 	if (new_data >= *prev_stat)
3587 		*cur_stat += new_data - *prev_stat;
3588 	else
3589 		/* to manage the potential roll-over */
3590 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
3591 
3592 	/* Update the previously stored value to prepare for next read */
3593 	*prev_stat = new_data;
3594 }
3595 
3596 /**
3597  * ice_sched_query_elem - query element information from HW
3598  * @hw: pointer to the HW struct
3599  * @node_teid: node TEID to be queried
3600  * @buf: buffer to element information
3601  *
3602  * This function queries HW element information
3603  */
3604 enum ice_status
3605 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3606 		     struct ice_aqc_get_elem *buf)
3607 {
3608 	u16 buf_size, num_elem_ret = 0;
3609 	enum ice_status status;
3610 
3611 	buf_size = sizeof(*buf);
3612 	memset(buf, 0, buf_size);
3613 	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3614 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3615 					  NULL);
3616 	if (status || num_elem_ret != 1)
3617 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3618 	return status;
3619 }
3620