xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 
8 #define ICE_PF_RESET_WAIT_COUNT	200
9 
10 #define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
12 	     ((ICE_RX_OPC_MDID << \
13 	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17 
18 #define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
20 	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28 
29 /**
30  * ice_set_mac_type - Sets MAC type
31  * @hw: pointer to the HW structure
32  *
33  * This function sets the MAC type of the adapter based on the
34  * vendor ID and device ID stored in the hw structure.
35  */
36 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37 {
38 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
40 
41 	hw->mac_type = ICE_MAC_GENERIC;
42 	return 0;
43 }
44 
45 /**
46  * ice_dev_onetime_setup - Temporary HW/FW workarounds
47  * @hw: pointer to the HW structure
48  *
49  * This function provides temporary workarounds for certain issues
50  * that are expected to be fixed in the HW/FW.
51  */
52 void ice_dev_onetime_setup(struct ice_hw *hw)
53 {
54 	/* configure Rx - set non pxe mode */
55 	wr32(hw, GLLAN_RCTL_0, 0x1);
56 
57 #define MBX_PF_VT_PFALLOC	0x00231E80
58 	/* set VFs per PF */
59 	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
60 }
61 
62 /**
63  * ice_clear_pf_cfg - Clear PF configuration
64  * @hw: pointer to the hardware structure
65  *
66  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
67  * configuration, flow director filters, etc.).
68  */
69 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
70 {
71 	struct ice_aq_desc desc;
72 
73 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
74 
75 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
76 }
77 
78 /**
79  * ice_aq_manage_mac_read - manage MAC address read command
80  * @hw: pointer to the hw struct
81  * @buf: a virtual buffer to hold the manage MAC read response
82  * @buf_size: Size of the virtual buffer
83  * @cd: pointer to command details structure or NULL
84  *
85  * This function is used to return per PF station MAC address (0x0107).
86  * NOTE: Upon successful completion of this command, MAC address information
87  * is returned in user specified buffer. Please interpret user specified
88  * buffer as "manage_mac_read" response.
89  * Response such as various MAC addresses are stored in HW struct (port.mac)
90  * ice_aq_discover_caps is expected to be called before this function is called.
91  */
92 static enum ice_status
93 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
94 		       struct ice_sq_cd *cd)
95 {
96 	struct ice_aqc_manage_mac_read_resp *resp;
97 	struct ice_aqc_manage_mac_read *cmd;
98 	struct ice_aq_desc desc;
99 	enum ice_status status;
100 	u16 flags;
101 	u8 i;
102 
103 	cmd = &desc.params.mac_read;
104 
105 	if (buf_size < sizeof(*resp))
106 		return ICE_ERR_BUF_TOO_SHORT;
107 
108 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
109 
110 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
111 	if (status)
112 		return status;
113 
114 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
115 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
116 
117 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
118 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
119 		return ICE_ERR_CFG;
120 	}
121 
122 	/* A single port can report up to two (LAN and WoL) addresses */
123 	for (i = 0; i < cmd->num_addr; i++)
124 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
125 			ether_addr_copy(hw->port_info->mac.lan_addr,
126 					resp[i].mac_addr);
127 			ether_addr_copy(hw->port_info->mac.perm_addr,
128 					resp[i].mac_addr);
129 			break;
130 		}
131 
132 	return 0;
133 }
134 
135 /**
136  * ice_aq_get_phy_caps - returns PHY capabilities
137  * @pi: port information structure
138  * @qual_mods: report qualified modules
139  * @report_mode: report mode capabilities
140  * @pcaps: structure for PHY capabilities to be filled
141  * @cd: pointer to command details structure or NULL
142  *
143  * Returns the various PHY capabilities supported on the Port (0x0600)
144  */
145 enum ice_status
146 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
147 		    struct ice_aqc_get_phy_caps_data *pcaps,
148 		    struct ice_sq_cd *cd)
149 {
150 	struct ice_aqc_get_phy_caps *cmd;
151 	u16 pcaps_size = sizeof(*pcaps);
152 	struct ice_aq_desc desc;
153 	enum ice_status status;
154 
155 	cmd = &desc.params.get_phy;
156 
157 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 		return ICE_ERR_PARAM;
159 
160 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
161 
162 	if (qual_mods)
163 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
164 
165 	cmd->param0 |= cpu_to_le16(report_mode);
166 	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
167 
168 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
169 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
170 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
171 	}
172 
173 	return status;
174 }
175 
176 /**
177  * ice_get_media_type - Gets media type
178  * @pi: port information structure
179  */
180 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
181 {
182 	struct ice_link_status *hw_link_info;
183 
184 	if (!pi)
185 		return ICE_MEDIA_UNKNOWN;
186 
187 	hw_link_info = &pi->phy.link_info;
188 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
189 		/* If more than one media type is selected, report unknown */
190 		return ICE_MEDIA_UNKNOWN;
191 
192 	if (hw_link_info->phy_type_low) {
193 		switch (hw_link_info->phy_type_low) {
194 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
195 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
196 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
197 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
198 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
199 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
200 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
201 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
202 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
203 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
204 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
205 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
206 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
207 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
208 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
209 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
210 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
211 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
212 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
213 			return ICE_MEDIA_FIBER;
214 		case ICE_PHY_TYPE_LOW_100BASE_TX:
215 		case ICE_PHY_TYPE_LOW_1000BASE_T:
216 		case ICE_PHY_TYPE_LOW_2500BASE_T:
217 		case ICE_PHY_TYPE_LOW_5GBASE_T:
218 		case ICE_PHY_TYPE_LOW_10GBASE_T:
219 		case ICE_PHY_TYPE_LOW_25GBASE_T:
220 			return ICE_MEDIA_BASET;
221 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
222 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
223 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
224 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
225 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
226 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
227 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
228 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
229 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
230 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
231 			return ICE_MEDIA_DA;
232 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
233 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
234 		case ICE_PHY_TYPE_LOW_2500BASE_X:
235 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
236 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
237 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
238 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
239 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
240 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
241 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
242 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
243 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
244 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
245 			return ICE_MEDIA_BACKPLANE;
246 		}
247 	} else {
248 		switch (hw_link_info->phy_type_high) {
249 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
250 			return ICE_MEDIA_BACKPLANE;
251 		}
252 	}
253 	return ICE_MEDIA_UNKNOWN;
254 }
255 
256 /**
257  * ice_aq_get_link_info
258  * @pi: port information structure
259  * @ena_lse: enable/disable LinkStatusEvent reporting
260  * @link: pointer to link status structure - optional
261  * @cd: pointer to command details structure or NULL
262  *
263  * Get Link Status (0x607). Returns the link status of the adapter.
264  */
265 static enum ice_status
266 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
267 		     struct ice_link_status *link, struct ice_sq_cd *cd)
268 {
269 	struct ice_link_status *hw_link_info_old, *hw_link_info;
270 	struct ice_aqc_get_link_status_data link_data = { 0 };
271 	struct ice_aqc_get_link_status *resp;
272 	enum ice_media_type *hw_media_type;
273 	struct ice_fc_info *hw_fc_info;
274 	bool tx_pause, rx_pause;
275 	struct ice_aq_desc desc;
276 	enum ice_status status;
277 	u16 cmd_flags;
278 
279 	if (!pi)
280 		return ICE_ERR_PARAM;
281 	hw_link_info_old = &pi->phy.link_info_old;
282 	hw_media_type = &pi->phy.media_type;
283 	hw_link_info = &pi->phy.link_info;
284 	hw_fc_info = &pi->fc;
285 
286 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
287 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
288 	resp = &desc.params.get_link_status;
289 	resp->cmd_flags = cpu_to_le16(cmd_flags);
290 	resp->lport_num = pi->lport;
291 
292 	status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
293 				 cd);
294 
295 	if (status)
296 		return status;
297 
298 	/* save off old link status information */
299 	*hw_link_info_old = *hw_link_info;
300 
301 	/* update current link status information */
302 	hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
303 	hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
304 	hw_link_info->phy_type_high = le64_to_cpu(link_data.phy_type_high);
305 	*hw_media_type = ice_get_media_type(pi);
306 	hw_link_info->link_info = link_data.link_info;
307 	hw_link_info->an_info = link_data.an_info;
308 	hw_link_info->ext_info = link_data.ext_info;
309 	hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
310 	hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
311 
312 	/* update fc info */
313 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
314 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
315 	if (tx_pause && rx_pause)
316 		hw_fc_info->current_mode = ICE_FC_FULL;
317 	else if (tx_pause)
318 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
319 	else if (rx_pause)
320 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
321 	else
322 		hw_fc_info->current_mode = ICE_FC_NONE;
323 
324 	hw_link_info->lse_ena =
325 		!!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
326 
327 	/* save link status information */
328 	if (link)
329 		*link = *hw_link_info;
330 
331 	/* flag cleared so calling functions don't call AQ again */
332 	pi->phy.get_link_info = false;
333 
334 	return status;
335 }
336 
337 /**
338  * ice_init_flex_flags
339  * @hw: pointer to the hardware structure
340  * @prof_id: Rx Descriptor Builder profile ID
341  *
342  * Function to initialize Rx flex flags
343  */
344 static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
345 {
346 	u8 idx = 0;
347 
348 	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
349 	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
350 	 * flexiflags1[3:0] - Not used for flag programming
351 	 * flexiflags2[7:0] - Tunnel and VLAN types
352 	 * 2 invalid fields in last index
353 	 */
354 	switch (prof_id) {
355 	/* Rx flex flags are currently programmed for the NIC profiles only.
356 	 * Different flag bit programming configurations can be added per
357 	 * profile as needed.
358 	 */
359 	case ICE_RXDID_FLEX_NIC:
360 	case ICE_RXDID_FLEX_NIC_2:
361 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG,
362 				   ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI,
363 				   ICE_RXFLG_FIN, idx++);
364 		/* flex flag 1 is not used for flexi-flag programming, skipping
365 		 * these four FLG64 bits.
366 		 */
367 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST,
368 				   ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
369 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI,
370 				   ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100,
371 				   ICE_RXFLG_EVLAN_x9100, idx++);
372 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100,
373 				   ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC,
374 				   ICE_RXFLG_TNL0, idx++);
375 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
376 				   ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
377 		break;
378 
379 	default:
380 		ice_debug(hw, ICE_DBG_INIT,
381 			  "Flag programming for profile ID %d not supported\n",
382 			  prof_id);
383 	}
384 }
385 
386 /**
387  * ice_init_flex_flds
388  * @hw: pointer to the hardware structure
389  * @prof_id: Rx Descriptor Builder profile ID
390  *
391  * Function to initialize flex descriptors
392  */
393 static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
394 {
395 	enum ice_flex_rx_mdid mdid;
396 
397 	switch (prof_id) {
398 	case ICE_RXDID_FLEX_NIC:
399 	case ICE_RXDID_FLEX_NIC_2:
400 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
401 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
402 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
403 
404 		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
405 			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
406 
407 		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
408 
409 		ice_init_flex_flags(hw, prof_id);
410 		break;
411 
412 	default:
413 		ice_debug(hw, ICE_DBG_INIT,
414 			  "Field init for profile ID %d not supported\n",
415 			  prof_id);
416 	}
417 }
418 
419 /**
420  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
421  * @hw: pointer to the hw struct
422  */
423 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
424 {
425 	struct ice_switch_info *sw;
426 
427 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
428 				       sizeof(*hw->switch_info), GFP_KERNEL);
429 	sw = hw->switch_info;
430 
431 	if (!sw)
432 		return ICE_ERR_NO_MEMORY;
433 
434 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
435 
436 	return ice_init_def_sw_recp(hw);
437 }
438 
439 /**
440  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
441  * @hw: pointer to the hw struct
442  */
443 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
444 {
445 	struct ice_switch_info *sw = hw->switch_info;
446 	struct ice_vsi_list_map_info *v_pos_map;
447 	struct ice_vsi_list_map_info *v_tmp_map;
448 	struct ice_sw_recipe *recps;
449 	u8 i;
450 
451 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
452 				 list_entry) {
453 		list_del(&v_pos_map->list_entry);
454 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
455 	}
456 	recps = hw->switch_info->recp_list;
457 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
458 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
459 
460 		recps[i].root_rid = i;
461 		mutex_destroy(&recps[i].filt_rule_lock);
462 		list_for_each_entry_safe(lst_itr, tmp_entry,
463 					 &recps[i].filt_rules, list_entry) {
464 			list_del(&lst_itr->list_entry);
465 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
466 		}
467 	}
468 	ice_rm_all_sw_replay_rule_info(hw);
469 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
470 	devm_kfree(ice_hw_to_dev(hw), sw);
471 }
472 
473 #define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
474 	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
475 #define ICE_FW_LOG_DESC_SIZE_MAX	\
476 	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
477 
478 /**
479  * ice_cfg_fw_log - configure FW logging
480  * @hw: pointer to the hw struct
481  * @enable: enable certain FW logging events if true, disable all if false
482  *
483  * This function enables/disables the FW logging via Rx CQ events and a UART
484  * port based on predetermined configurations. FW logging via the Rx CQ can be
485  * enabled/disabled for individual PF's. However, FW logging via the UART can
486  * only be enabled/disabled for all PFs on the same device.
487  *
488  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
489  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
490  * before initializing the device.
491  *
492  * When re/configuring FW logging, callers need to update the "cfg" elements of
493  * the hw->fw_log.evnts array with the desired logging event configurations for
494  * modules of interest. When disabling FW logging completely, the callers can
495  * just pass false in the "enable" parameter. On completion, the function will
496  * update the "cur" element of the hw->fw_log.evnts array with the resulting
497  * logging event configurations of the modules that are being re/configured. FW
498  * logging modules that are not part of a reconfiguration operation retain their
499  * previous states.
500  *
501  * Before resetting the device, it is recommended that the driver disables FW
502  * logging before shutting down the control queue. When disabling FW logging
503  * ("enable" = false), the latest configurations of FW logging events stored in
504  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
505  * a device reset.
506  *
507  * When enabling FW logging to emit log messages via the Rx CQ during the
508  * device's initialization phase, a mechanism alternative to interrupt handlers
509  * needs to be used to extract FW log messages from the Rx CQ periodically and
510  * to prevent the Rx CQ from being full and stalling other types of control
511  * messages from FW to SW. Interrupts are typically disabled during the device's
512  * initialization phase.
513  */
514 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
515 {
516 	struct ice_aqc_fw_logging_data *data = NULL;
517 	struct ice_aqc_fw_logging *cmd;
518 	enum ice_status status = 0;
519 	u16 i, chgs = 0, len = 0;
520 	struct ice_aq_desc desc;
521 	u8 actv_evnts = 0;
522 	void *buf = NULL;
523 
524 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
525 		return 0;
526 
527 	/* Disable FW logging only when the control queue is still responsive */
528 	if (!enable &&
529 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
530 		return 0;
531 
532 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
533 	cmd = &desc.params.fw_logging;
534 
535 	/* Indicate which controls are valid */
536 	if (hw->fw_log.cq_en)
537 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
538 
539 	if (hw->fw_log.uart_en)
540 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
541 
542 	if (enable) {
543 		/* Fill in an array of entries with FW logging modules and
544 		 * logging events being reconfigured.
545 		 */
546 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
547 			u16 val;
548 
549 			/* Keep track of enabled event types */
550 			actv_evnts |= hw->fw_log.evnts[i].cfg;
551 
552 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
553 				continue;
554 
555 			if (!data) {
556 				data = devm_kzalloc(ice_hw_to_dev(hw),
557 						    ICE_FW_LOG_DESC_SIZE_MAX,
558 						    GFP_KERNEL);
559 				if (!data)
560 					return ICE_ERR_NO_MEMORY;
561 			}
562 
563 			val = i << ICE_AQC_FW_LOG_ID_S;
564 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
565 			data->entry[chgs++] = cpu_to_le16(val);
566 		}
567 
568 		/* Only enable FW logging if at least one module is specified.
569 		 * If FW logging is currently enabled but all modules are not
570 		 * enabled to emit log messages, disable FW logging altogether.
571 		 */
572 		if (actv_evnts) {
573 			/* Leave if there is effectively no change */
574 			if (!chgs)
575 				goto out;
576 
577 			if (hw->fw_log.cq_en)
578 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
579 
580 			if (hw->fw_log.uart_en)
581 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
582 
583 			buf = data;
584 			len = ICE_FW_LOG_DESC_SIZE(chgs);
585 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
586 		}
587 	}
588 
589 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
590 	if (!status) {
591 		/* Update the current configuration to reflect events enabled.
592 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
593 		 * logging mode is enabled for the device. They do not reflect
594 		 * actual modules being enabled to emit log messages. So, their
595 		 * values remain unchanged even when all modules are disabled.
596 		 */
597 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
598 
599 		hw->fw_log.actv_evnts = actv_evnts;
600 		for (i = 0; i < cnt; i++) {
601 			u16 v, m;
602 
603 			if (!enable) {
604 				/* When disabling all FW logging events as part
605 				 * of device's de-initialization, the original
606 				 * configurations are retained, and can be used
607 				 * to reconfigure FW logging later if the device
608 				 * is re-initialized.
609 				 */
610 				hw->fw_log.evnts[i].cur = 0;
611 				continue;
612 			}
613 
614 			v = le16_to_cpu(data->entry[i]);
615 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
616 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
617 		}
618 	}
619 
620 out:
621 	if (data)
622 		devm_kfree(ice_hw_to_dev(hw), data);
623 
624 	return status;
625 }
626 
627 /**
628  * ice_output_fw_log
629  * @hw: pointer to the hw struct
630  * @desc: pointer to the AQ message descriptor
631  * @buf: pointer to the buffer accompanying the AQ message
632  *
633  * Formats a FW Log message and outputs it via the standard driver logs.
634  */
635 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
636 {
637 	ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n");
638 	ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf,
639 			le16_to_cpu(desc->datalen));
640 	ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n");
641 }
642 
643 /**
644  * ice_get_itr_intrl_gran - determine int/intrl granularity
645  * @hw: pointer to the hw struct
646  *
647  * Determines the itr/intrl granularities based on the maximum aggregate
648  * bandwidth according to the device's configuration during power-on.
649  */
650 static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw)
651 {
652 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
653 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
654 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
655 
656 	switch (max_agg_bw) {
657 	case ICE_MAX_AGG_BW_200G:
658 	case ICE_MAX_AGG_BW_100G:
659 	case ICE_MAX_AGG_BW_50G:
660 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
661 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
662 		break;
663 	case ICE_MAX_AGG_BW_25G:
664 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
665 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
666 		break;
667 	default:
668 		ice_debug(hw, ICE_DBG_INIT,
669 			  "Failed to determine itr/intrl granularity\n");
670 		return ICE_ERR_CFG;
671 	}
672 
673 	return 0;
674 }
675 
676 /**
677  * ice_init_hw - main hardware initialization routine
678  * @hw: pointer to the hardware structure
679  */
680 enum ice_status ice_init_hw(struct ice_hw *hw)
681 {
682 	struct ice_aqc_get_phy_caps_data *pcaps;
683 	enum ice_status status;
684 	u16 mac_buf_len;
685 	void *mac_buf;
686 
687 	/* Set MAC type based on DeviceID */
688 	status = ice_set_mac_type(hw);
689 	if (status)
690 		return status;
691 
692 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
693 			 PF_FUNC_RID_FUNC_NUM_M) >>
694 		PF_FUNC_RID_FUNC_NUM_S;
695 
696 	status = ice_reset(hw, ICE_RESET_PFR);
697 	if (status)
698 		return status;
699 
700 	status = ice_get_itr_intrl_gran(hw);
701 	if (status)
702 		return status;
703 
704 	status = ice_init_all_ctrlq(hw);
705 	if (status)
706 		goto err_unroll_cqinit;
707 
708 	/* Enable FW logging. Not fatal if this fails. */
709 	status = ice_cfg_fw_log(hw, true);
710 	if (status)
711 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
712 
713 	status = ice_clear_pf_cfg(hw);
714 	if (status)
715 		goto err_unroll_cqinit;
716 
717 	ice_clear_pxe_mode(hw);
718 
719 	status = ice_init_nvm(hw);
720 	if (status)
721 		goto err_unroll_cqinit;
722 
723 	status = ice_get_caps(hw);
724 	if (status)
725 		goto err_unroll_cqinit;
726 
727 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
728 				     sizeof(*hw->port_info), GFP_KERNEL);
729 	if (!hw->port_info) {
730 		status = ICE_ERR_NO_MEMORY;
731 		goto err_unroll_cqinit;
732 	}
733 
734 	/* set the back pointer to hw */
735 	hw->port_info->hw = hw;
736 
737 	/* Initialize port_info struct with switch configuration data */
738 	status = ice_get_initial_sw_cfg(hw);
739 	if (status)
740 		goto err_unroll_alloc;
741 
742 	hw->evb_veb = true;
743 
744 	/* Query the allocated resources for Tx scheduler */
745 	status = ice_sched_query_res_alloc(hw);
746 	if (status) {
747 		ice_debug(hw, ICE_DBG_SCHED,
748 			  "Failed to get scheduler allocated resources\n");
749 		goto err_unroll_alloc;
750 	}
751 
752 	/* Initialize port_info struct with scheduler data */
753 	status = ice_sched_init_port(hw->port_info);
754 	if (status)
755 		goto err_unroll_sched;
756 
757 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
758 	if (!pcaps) {
759 		status = ICE_ERR_NO_MEMORY;
760 		goto err_unroll_sched;
761 	}
762 
763 	/* Initialize port_info struct with PHY capabilities */
764 	status = ice_aq_get_phy_caps(hw->port_info, false,
765 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
766 	devm_kfree(ice_hw_to_dev(hw), pcaps);
767 	if (status)
768 		goto err_unroll_sched;
769 
770 	/* Initialize port_info struct with link information */
771 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
772 	if (status)
773 		goto err_unroll_sched;
774 
775 	/* need a valid SW entry point to build a Tx tree */
776 	if (!hw->sw_entry_point_layer) {
777 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
778 		status = ICE_ERR_CFG;
779 		goto err_unroll_sched;
780 	}
781 	INIT_LIST_HEAD(&hw->agg_list);
782 
783 	status = ice_init_fltr_mgmt_struct(hw);
784 	if (status)
785 		goto err_unroll_sched;
786 
787 	ice_dev_onetime_setup(hw);
788 
789 	/* Get MAC information */
790 	/* A single port can report up to two (LAN and WoL) addresses */
791 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
792 			       sizeof(struct ice_aqc_manage_mac_read_resp),
793 			       GFP_KERNEL);
794 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
795 
796 	if (!mac_buf) {
797 		status = ICE_ERR_NO_MEMORY;
798 		goto err_unroll_fltr_mgmt_struct;
799 	}
800 
801 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
802 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
803 
804 	if (status)
805 		goto err_unroll_fltr_mgmt_struct;
806 
807 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
808 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
809 
810 	return 0;
811 
812 err_unroll_fltr_mgmt_struct:
813 	ice_cleanup_fltr_mgmt_struct(hw);
814 err_unroll_sched:
815 	ice_sched_cleanup_all(hw);
816 err_unroll_alloc:
817 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
818 err_unroll_cqinit:
819 	ice_shutdown_all_ctrlq(hw);
820 	return status;
821 }
822 
823 /**
824  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
825  * @hw: pointer to the hardware structure
826  */
827 void ice_deinit_hw(struct ice_hw *hw)
828 {
829 	ice_cleanup_fltr_mgmt_struct(hw);
830 
831 	ice_sched_cleanup_all(hw);
832 	ice_sched_clear_agg(hw);
833 
834 	if (hw->port_info) {
835 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
836 		hw->port_info = NULL;
837 	}
838 
839 	/* Attempt to disable FW logging before shutting down control queues */
840 	ice_cfg_fw_log(hw, false);
841 	ice_shutdown_all_ctrlq(hw);
842 
843 	/* Clear VSI contexts if not already cleared */
844 	ice_clear_all_vsi_ctx(hw);
845 }
846 
847 /**
848  * ice_check_reset - Check to see if a global reset is complete
849  * @hw: pointer to the hardware structure
850  */
851 enum ice_status ice_check_reset(struct ice_hw *hw)
852 {
853 	u32 cnt, reg = 0, grst_delay;
854 
855 	/* Poll for Device Active state in case a recent CORER, GLOBR,
856 	 * or EMPR has occurred. The grst delay value is in 100ms units.
857 	 * Add 1sec for outstanding AQ commands that can take a long time.
858 	 */
859 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
860 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
861 
862 	for (cnt = 0; cnt < grst_delay; cnt++) {
863 		mdelay(100);
864 		reg = rd32(hw, GLGEN_RSTAT);
865 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
866 			break;
867 	}
868 
869 	if (cnt == grst_delay) {
870 		ice_debug(hw, ICE_DBG_INIT,
871 			  "Global reset polling failed to complete.\n");
872 		return ICE_ERR_RESET_FAILED;
873 	}
874 
875 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
876 				 GLNVM_ULD_GLOBR_DONE_M)
877 
878 	/* Device is Active; check Global Reset processes are done */
879 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
880 		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
881 		if (reg == ICE_RESET_DONE_MASK) {
882 			ice_debug(hw, ICE_DBG_INIT,
883 				  "Global reset processes done. %d\n", cnt);
884 			break;
885 		}
886 		mdelay(10);
887 	}
888 
889 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
890 		ice_debug(hw, ICE_DBG_INIT,
891 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
892 			  reg);
893 		return ICE_ERR_RESET_FAILED;
894 	}
895 
896 	return 0;
897 }
898 
899 /**
900  * ice_pf_reset - Reset the PF
901  * @hw: pointer to the hardware structure
902  *
903  * If a global reset has been triggered, this function checks
904  * for its completion and then issues the PF reset
905  */
906 static enum ice_status ice_pf_reset(struct ice_hw *hw)
907 {
908 	u32 cnt, reg;
909 
910 	/* If at function entry a global reset was already in progress, i.e.
911 	 * state is not 'device active' or any of the reset done bits are not
912 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
913 	 * global reset is done.
914 	 */
915 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
916 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
917 		/* poll on global reset currently in progress until done */
918 		if (ice_check_reset(hw))
919 			return ICE_ERR_RESET_FAILED;
920 
921 		return 0;
922 	}
923 
924 	/* Reset the PF */
925 	reg = rd32(hw, PFGEN_CTRL);
926 
927 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
928 
929 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
930 		reg = rd32(hw, PFGEN_CTRL);
931 		if (!(reg & PFGEN_CTRL_PFSWR_M))
932 			break;
933 
934 		mdelay(1);
935 	}
936 
937 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
938 		ice_debug(hw, ICE_DBG_INIT,
939 			  "PF reset polling failed to complete.\n");
940 		return ICE_ERR_RESET_FAILED;
941 	}
942 
943 	return 0;
944 }
945 
946 /**
947  * ice_reset - Perform different types of reset
948  * @hw: pointer to the hardware structure
949  * @req: reset request
950  *
951  * This function triggers a reset as specified by the req parameter.
952  *
953  * Note:
954  * If anything other than a PF reset is triggered, PXE mode is restored.
955  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
956  * interface has been restored in the rebuild flow.
957  */
958 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
959 {
960 	u32 val = 0;
961 
962 	switch (req) {
963 	case ICE_RESET_PFR:
964 		return ice_pf_reset(hw);
965 	case ICE_RESET_CORER:
966 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
967 		val = GLGEN_RTRIG_CORER_M;
968 		break;
969 	case ICE_RESET_GLOBR:
970 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
971 		val = GLGEN_RTRIG_GLOBR_M;
972 		break;
973 	default:
974 		return ICE_ERR_PARAM;
975 	}
976 
977 	val |= rd32(hw, GLGEN_RTRIG);
978 	wr32(hw, GLGEN_RTRIG, val);
979 	ice_flush(hw);
980 
981 	/* wait for the FW to be ready */
982 	return ice_check_reset(hw);
983 }
984 
985 /**
986  * ice_copy_rxq_ctx_to_hw
987  * @hw: pointer to the hardware structure
988  * @ice_rxq_ctx: pointer to the rxq context
989  * @rxq_index: the index of the Rx queue
990  *
991  * Copies rxq context from dense structure to hw register space
992  */
993 static enum ice_status
994 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
995 {
996 	u8 i;
997 
998 	if (!ice_rxq_ctx)
999 		return ICE_ERR_BAD_PTR;
1000 
1001 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1002 		return ICE_ERR_PARAM;
1003 
1004 	/* Copy each dword separately to hw */
1005 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1006 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1007 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1008 
1009 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1010 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 /* LAN Rx Queue Context */
1017 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1018 	/* Field		Width	LSB */
1019 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1020 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1021 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1022 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1023 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1024 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1025 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1026 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1027 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1028 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1029 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1030 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1031 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1032 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1033 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1034 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1035 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1036 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1037 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1038 	{ 0 }
1039 };
1040 
1041 /**
1042  * ice_write_rxq_ctx
1043  * @hw: pointer to the hardware structure
1044  * @rlan_ctx: pointer to the rxq context
1045  * @rxq_index: the index of the Rx queue
1046  *
1047  * Converts rxq context from sparse to dense structure and then writes
1048  * it to hw register space
1049  */
1050 enum ice_status
1051 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1052 		  u32 rxq_index)
1053 {
1054 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1055 
1056 	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1057 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1058 }
1059 
1060 /* LAN Tx Queue Context */
1061 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1062 				    /* Field			Width	LSB */
1063 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1064 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1065 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1066 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1067 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1068 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1069 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1070 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1071 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1072 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1073 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1074 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1075 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1076 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1077 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1078 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1079 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1080 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1081 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1082 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1083 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1084 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1085 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1086 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1087 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1088 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1089 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		110,	171),
1090 	{ 0 }
1091 };
1092 
1093 /**
1094  * ice_debug_cq
1095  * @hw: pointer to the hardware structure
1096  * @mask: debug mask
1097  * @desc: pointer to control queue descriptor
1098  * @buf: pointer to command buffer
1099  * @buf_len: max length of buf
1100  *
1101  * Dumps debug log about control command with descriptor contents.
1102  */
1103 void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
1104 		  void *buf, u16 buf_len)
1105 {
1106 	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1107 	u16 len;
1108 
1109 #ifndef CONFIG_DYNAMIC_DEBUG
1110 	if (!(mask & hw->debug_mask))
1111 		return;
1112 #endif
1113 
1114 	if (!desc)
1115 		return;
1116 
1117 	len = le16_to_cpu(cq_desc->datalen);
1118 
1119 	ice_debug(hw, mask,
1120 		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1121 		  le16_to_cpu(cq_desc->opcode),
1122 		  le16_to_cpu(cq_desc->flags),
1123 		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1124 	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1125 		  le32_to_cpu(cq_desc->cookie_high),
1126 		  le32_to_cpu(cq_desc->cookie_low));
1127 	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1128 		  le32_to_cpu(cq_desc->params.generic.param0),
1129 		  le32_to_cpu(cq_desc->params.generic.param1));
1130 	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1131 		  le32_to_cpu(cq_desc->params.generic.addr_high),
1132 		  le32_to_cpu(cq_desc->params.generic.addr_low));
1133 	if (buf && cq_desc->datalen != 0) {
1134 		ice_debug(hw, mask, "Buffer:\n");
1135 		if (buf_len < len)
1136 			len = buf_len;
1137 
1138 		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1139 	}
1140 }
1141 
1142 /* FW Admin Queue command wrappers */
1143 
1144 /**
1145  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1146  * @hw: pointer to the hw struct
1147  * @desc: descriptor describing the command
1148  * @buf: buffer to use for indirect commands (NULL for direct commands)
1149  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1150  * @cd: pointer to command details structure
1151  *
1152  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1153  */
1154 enum ice_status
1155 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1156 		u16 buf_size, struct ice_sq_cd *cd)
1157 {
1158 	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1159 }
1160 
1161 /**
1162  * ice_aq_get_fw_ver
1163  * @hw: pointer to the hw struct
1164  * @cd: pointer to command details structure or NULL
1165  *
1166  * Get the firmware version (0x0001) from the admin queue commands
1167  */
1168 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1169 {
1170 	struct ice_aqc_get_ver *resp;
1171 	struct ice_aq_desc desc;
1172 	enum ice_status status;
1173 
1174 	resp = &desc.params.get_ver;
1175 
1176 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1177 
1178 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1179 
1180 	if (!status) {
1181 		hw->fw_branch = resp->fw_branch;
1182 		hw->fw_maj_ver = resp->fw_major;
1183 		hw->fw_min_ver = resp->fw_minor;
1184 		hw->fw_patch = resp->fw_patch;
1185 		hw->fw_build = le32_to_cpu(resp->fw_build);
1186 		hw->api_branch = resp->api_branch;
1187 		hw->api_maj_ver = resp->api_major;
1188 		hw->api_min_ver = resp->api_minor;
1189 		hw->api_patch = resp->api_patch;
1190 	}
1191 
1192 	return status;
1193 }
1194 
1195 /**
1196  * ice_aq_q_shutdown
1197  * @hw: pointer to the hw struct
1198  * @unloading: is the driver unloading itself
1199  *
1200  * Tell the Firmware that we're shutting down the AdminQ and whether
1201  * or not the driver is unloading as well (0x0003).
1202  */
1203 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1204 {
1205 	struct ice_aqc_q_shutdown *cmd;
1206 	struct ice_aq_desc desc;
1207 
1208 	cmd = &desc.params.q_shutdown;
1209 
1210 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1211 
1212 	if (unloading)
1213 		cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
1214 
1215 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1216 }
1217 
1218 /**
1219  * ice_aq_req_res
1220  * @hw: pointer to the hw struct
1221  * @res: resource id
1222  * @access: access type
1223  * @sdp_number: resource number
1224  * @timeout: the maximum time in ms that the driver may hold the resource
1225  * @cd: pointer to command details structure or NULL
1226  *
1227  * Requests common resource using the admin queue commands (0x0008).
1228  * When attempting to acquire the Global Config Lock, the driver can
1229  * learn of three states:
1230  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1231  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1232  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1233  *                          successfully downloaded the package; the driver does
1234  *                          not have to download the package and can continue
1235  *                          loading
1236  *
1237  * Note that if the caller is in an acquire lock, perform action, release lock
1238  * phase of operation, it is possible that the FW may detect a timeout and issue
1239  * a CORER. In this case, the driver will receive a CORER interrupt and will
1240  * have to determine its cause. The calling thread that is handling this flow
1241  * will likely get an error propagated back to it indicating the Download
1242  * Package, Update Package or the Release Resource AQ commands timed out.
1243  */
1244 static enum ice_status
1245 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1246 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1247 	       struct ice_sq_cd *cd)
1248 {
1249 	struct ice_aqc_req_res *cmd_resp;
1250 	struct ice_aq_desc desc;
1251 	enum ice_status status;
1252 
1253 	cmd_resp = &desc.params.res_owner;
1254 
1255 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1256 
1257 	cmd_resp->res_id = cpu_to_le16(res);
1258 	cmd_resp->access_type = cpu_to_le16(access);
1259 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1260 	cmd_resp->timeout = cpu_to_le32(*timeout);
1261 	*timeout = 0;
1262 
1263 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1264 
1265 	/* The completion specifies the maximum time in ms that the driver
1266 	 * may hold the resource in the Timeout field.
1267 	 */
1268 
1269 	/* Global config lock response utilizes an additional status field.
1270 	 *
1271 	 * If the Global config lock resource is held by some other driver, the
1272 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1273 	 * and the timeout field indicates the maximum time the current owner
1274 	 * of the resource has to free it.
1275 	 */
1276 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1277 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1278 			*timeout = le32_to_cpu(cmd_resp->timeout);
1279 			return 0;
1280 		} else if (le16_to_cpu(cmd_resp->status) ==
1281 			   ICE_AQ_RES_GLBL_IN_PROG) {
1282 			*timeout = le32_to_cpu(cmd_resp->timeout);
1283 			return ICE_ERR_AQ_ERROR;
1284 		} else if (le16_to_cpu(cmd_resp->status) ==
1285 			   ICE_AQ_RES_GLBL_DONE) {
1286 			return ICE_ERR_AQ_NO_WORK;
1287 		}
1288 
1289 		/* invalid FW response, force a timeout immediately */
1290 		*timeout = 0;
1291 		return ICE_ERR_AQ_ERROR;
1292 	}
1293 
1294 	/* If the resource is held by some other driver, the command completes
1295 	 * with a busy return value and the timeout field indicates the maximum
1296 	 * time the current owner of the resource has to free it.
1297 	 */
1298 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1299 		*timeout = le32_to_cpu(cmd_resp->timeout);
1300 
1301 	return status;
1302 }
1303 
1304 /**
1305  * ice_aq_release_res
1306  * @hw: pointer to the hw struct
1307  * @res: resource id
1308  * @sdp_number: resource number
1309  * @cd: pointer to command details structure or NULL
1310  *
1311  * release common resource using the admin queue commands (0x0009)
1312  */
1313 static enum ice_status
1314 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1315 		   struct ice_sq_cd *cd)
1316 {
1317 	struct ice_aqc_req_res *cmd;
1318 	struct ice_aq_desc desc;
1319 
1320 	cmd = &desc.params.res_owner;
1321 
1322 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1323 
1324 	cmd->res_id = cpu_to_le16(res);
1325 	cmd->res_number = cpu_to_le32(sdp_number);
1326 
1327 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1328 }
1329 
1330 /**
1331  * ice_acquire_res
1332  * @hw: pointer to the HW structure
1333  * @res: resource id
1334  * @access: access type (read or write)
1335  * @timeout: timeout in milliseconds
1336  *
1337  * This function will attempt to acquire the ownership of a resource.
1338  */
1339 enum ice_status
1340 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1341 		enum ice_aq_res_access_type access, u32 timeout)
1342 {
1343 #define ICE_RES_POLLING_DELAY_MS	10
1344 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1345 	u32 time_left = timeout;
1346 	enum ice_status status;
1347 
1348 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1349 
1350 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1351 	 * previously acquired the resource and performed any necessary updates;
1352 	 * in this case the caller does not obtain the resource and has no
1353 	 * further work to do.
1354 	 */
1355 	if (status == ICE_ERR_AQ_NO_WORK)
1356 		goto ice_acquire_res_exit;
1357 
1358 	if (status)
1359 		ice_debug(hw, ICE_DBG_RES,
1360 			  "resource %d acquire type %d failed.\n", res, access);
1361 
1362 	/* If necessary, poll until the current lock owner timeouts */
1363 	timeout = time_left;
1364 	while (status && timeout && time_left) {
1365 		mdelay(delay);
1366 		timeout = (timeout > delay) ? timeout - delay : 0;
1367 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1368 
1369 		if (status == ICE_ERR_AQ_NO_WORK)
1370 			/* lock free, but no work to do */
1371 			break;
1372 
1373 		if (!status)
1374 			/* lock acquired */
1375 			break;
1376 	}
1377 	if (status && status != ICE_ERR_AQ_NO_WORK)
1378 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1379 
1380 ice_acquire_res_exit:
1381 	if (status == ICE_ERR_AQ_NO_WORK) {
1382 		if (access == ICE_RES_WRITE)
1383 			ice_debug(hw, ICE_DBG_RES,
1384 				  "resource indicates no work to do.\n");
1385 		else
1386 			ice_debug(hw, ICE_DBG_RES,
1387 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1388 	}
1389 	return status;
1390 }
1391 
1392 /**
1393  * ice_release_res
1394  * @hw: pointer to the HW structure
1395  * @res: resource id
1396  *
1397  * This function will release a resource using the proper Admin Command.
1398  */
1399 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1400 {
1401 	enum ice_status status;
1402 	u32 total_delay = 0;
1403 
1404 	status = ice_aq_release_res(hw, res, 0, NULL);
1405 
1406 	/* there are some rare cases when trying to release the resource
1407 	 * results in an admin Q timeout, so handle them correctly
1408 	 */
1409 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1410 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1411 		mdelay(1);
1412 		status = ice_aq_release_res(hw, res, 0, NULL);
1413 		total_delay++;
1414 	}
1415 }
1416 
1417 /**
1418  * ice_get_guar_num_vsi - determine number of guar VSI for a PF
1419  * @hw: pointer to the hw structure
1420  *
1421  * Determine the number of valid functions by going through the bitmap returned
1422  * from parsing capabilities and use this to calculate the number of VSI per PF.
1423  */
1424 static u32 ice_get_guar_num_vsi(struct ice_hw *hw)
1425 {
1426 	u8 funcs;
1427 
1428 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1429 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1430 			 ICE_CAPS_VALID_FUNCS_M);
1431 
1432 	if (!funcs)
1433 		return 0;
1434 
1435 	return ICE_MAX_VSI / funcs;
1436 }
1437 
1438 /**
1439  * ice_parse_caps - parse function/device capabilities
1440  * @hw: pointer to the hw struct
1441  * @buf: pointer to a buffer containing function/device capability records
1442  * @cap_count: number of capability records in the list
1443  * @opc: type of capabilities list to parse
1444  *
1445  * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1446  */
1447 static void
1448 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1449 	       enum ice_adminq_opc opc)
1450 {
1451 	struct ice_aqc_list_caps_elem *cap_resp;
1452 	struct ice_hw_func_caps *func_p = NULL;
1453 	struct ice_hw_dev_caps *dev_p = NULL;
1454 	struct ice_hw_common_caps *caps;
1455 	u32 i;
1456 
1457 	if (!buf)
1458 		return;
1459 
1460 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1461 
1462 	if (opc == ice_aqc_opc_list_dev_caps) {
1463 		dev_p = &hw->dev_caps;
1464 		caps = &dev_p->common_cap;
1465 	} else if (opc == ice_aqc_opc_list_func_caps) {
1466 		func_p = &hw->func_caps;
1467 		caps = &func_p->common_cap;
1468 	} else {
1469 		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1470 		return;
1471 	}
1472 
1473 	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1474 		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1475 		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1476 		u32 number = le32_to_cpu(cap_resp->number);
1477 		u16 cap = le16_to_cpu(cap_resp->cap);
1478 
1479 		switch (cap) {
1480 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1481 			caps->valid_functions = number;
1482 			ice_debug(hw, ICE_DBG_INIT,
1483 				  "HW caps: Valid Functions = %d\n",
1484 				  caps->valid_functions);
1485 			break;
1486 		case ICE_AQC_CAPS_SRIOV:
1487 			caps->sr_iov_1_1 = (number == 1);
1488 			ice_debug(hw, ICE_DBG_INIT,
1489 				  "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1);
1490 			break;
1491 		case ICE_AQC_CAPS_VF:
1492 			if (dev_p) {
1493 				dev_p->num_vfs_exposed = number;
1494 				ice_debug(hw, ICE_DBG_INIT,
1495 					  "HW caps: VFs exposed = %d\n",
1496 					  dev_p->num_vfs_exposed);
1497 			} else if (func_p) {
1498 				func_p->num_allocd_vfs = number;
1499 				func_p->vf_base_id = logical_id;
1500 				ice_debug(hw, ICE_DBG_INIT,
1501 					  "HW caps: VFs allocated = %d\n",
1502 					  func_p->num_allocd_vfs);
1503 				ice_debug(hw, ICE_DBG_INIT,
1504 					  "HW caps: VF base_id = %d\n",
1505 					  func_p->vf_base_id);
1506 			}
1507 			break;
1508 		case ICE_AQC_CAPS_VSI:
1509 			if (dev_p) {
1510 				dev_p->num_vsi_allocd_to_host = number;
1511 				ice_debug(hw, ICE_DBG_INIT,
1512 					  "HW caps: Dev.VSI cnt = %d\n",
1513 					  dev_p->num_vsi_allocd_to_host);
1514 			} else if (func_p) {
1515 				func_p->guar_num_vsi = ice_get_guar_num_vsi(hw);
1516 				ice_debug(hw, ICE_DBG_INIT,
1517 					  "HW caps: Func.VSI cnt = %d\n",
1518 					  number);
1519 			}
1520 			break;
1521 		case ICE_AQC_CAPS_RSS:
1522 			caps->rss_table_size = number;
1523 			caps->rss_table_entry_width = logical_id;
1524 			ice_debug(hw, ICE_DBG_INIT,
1525 				  "HW caps: RSS table size = %d\n",
1526 				  caps->rss_table_size);
1527 			ice_debug(hw, ICE_DBG_INIT,
1528 				  "HW caps: RSS table width = %d\n",
1529 				  caps->rss_table_entry_width);
1530 			break;
1531 		case ICE_AQC_CAPS_RXQS:
1532 			caps->num_rxq = number;
1533 			caps->rxq_first_id = phys_id;
1534 			ice_debug(hw, ICE_DBG_INIT,
1535 				  "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1536 			ice_debug(hw, ICE_DBG_INIT,
1537 				  "HW caps: Rx first queue ID = %d\n",
1538 				  caps->rxq_first_id);
1539 			break;
1540 		case ICE_AQC_CAPS_TXQS:
1541 			caps->num_txq = number;
1542 			caps->txq_first_id = phys_id;
1543 			ice_debug(hw, ICE_DBG_INIT,
1544 				  "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1545 			ice_debug(hw, ICE_DBG_INIT,
1546 				  "HW caps: Tx first queue ID = %d\n",
1547 				  caps->txq_first_id);
1548 			break;
1549 		case ICE_AQC_CAPS_MSIX:
1550 			caps->num_msix_vectors = number;
1551 			caps->msix_vector_first_id = phys_id;
1552 			ice_debug(hw, ICE_DBG_INIT,
1553 				  "HW caps: MSIX vector count = %d\n",
1554 				  caps->num_msix_vectors);
1555 			ice_debug(hw, ICE_DBG_INIT,
1556 				  "HW caps: MSIX first vector index = %d\n",
1557 				  caps->msix_vector_first_id);
1558 			break;
1559 		case ICE_AQC_CAPS_MAX_MTU:
1560 			caps->max_mtu = number;
1561 			if (dev_p)
1562 				ice_debug(hw, ICE_DBG_INIT,
1563 					  "HW caps: Dev.MaxMTU = %d\n",
1564 					  caps->max_mtu);
1565 			else if (func_p)
1566 				ice_debug(hw, ICE_DBG_INIT,
1567 					  "HW caps: func.MaxMTU = %d\n",
1568 					  caps->max_mtu);
1569 			break;
1570 		default:
1571 			ice_debug(hw, ICE_DBG_INIT,
1572 				  "HW caps: Unknown capability[%d]: 0x%x\n", i,
1573 				  cap);
1574 			break;
1575 		}
1576 	}
1577 }
1578 
1579 /**
1580  * ice_aq_discover_caps - query function/device capabilities
1581  * @hw: pointer to the hw struct
1582  * @buf: a virtual buffer to hold the capabilities
1583  * @buf_size: Size of the virtual buffer
1584  * @cap_count: cap count needed if AQ err==ENOMEM
1585  * @opc: capabilities type to discover - pass in the command opcode
1586  * @cd: pointer to command details structure or NULL
1587  *
1588  * Get the function(0x000a)/device(0x000b) capabilities description from
1589  * the firmware.
1590  */
1591 static enum ice_status
1592 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1593 		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1594 {
1595 	struct ice_aqc_list_caps *cmd;
1596 	struct ice_aq_desc desc;
1597 	enum ice_status status;
1598 
1599 	cmd = &desc.params.get_cap;
1600 
1601 	if (opc != ice_aqc_opc_list_func_caps &&
1602 	    opc != ice_aqc_opc_list_dev_caps)
1603 		return ICE_ERR_PARAM;
1604 
1605 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1606 
1607 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1608 	if (!status)
1609 		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1610 	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1611 		*cap_count = le32_to_cpu(cmd->count);
1612 	return status;
1613 }
1614 
1615 /**
1616  * ice_discover_caps - get info about the HW
1617  * @hw: pointer to the hardware structure
1618  * @opc: capabilities type to discover - pass in the command opcode
1619  */
1620 static enum ice_status ice_discover_caps(struct ice_hw *hw,
1621 					 enum ice_adminq_opc opc)
1622 {
1623 	enum ice_status status;
1624 	u32 cap_count;
1625 	u16 cbuf_len;
1626 	u8 retries;
1627 
1628 	/* The driver doesn't know how many capabilities the device will return
1629 	 * so the buffer size required isn't known ahead of time. The driver
1630 	 * starts with cbuf_len and if this turns out to be insufficient, the
1631 	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1632 	 * The driver then allocates the buffer based on the count and retries
1633 	 * the operation. So it follows that the retry count is 2.
1634 	 */
1635 #define ICE_GET_CAP_BUF_COUNT	40
1636 #define ICE_GET_CAP_RETRY_COUNT	2
1637 
1638 	cap_count = ICE_GET_CAP_BUF_COUNT;
1639 	retries = ICE_GET_CAP_RETRY_COUNT;
1640 
1641 	do {
1642 		void *cbuf;
1643 
1644 		cbuf_len = (u16)(cap_count *
1645 				 sizeof(struct ice_aqc_list_caps_elem));
1646 		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1647 		if (!cbuf)
1648 			return ICE_ERR_NO_MEMORY;
1649 
1650 		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1651 					      opc, NULL);
1652 		devm_kfree(ice_hw_to_dev(hw), cbuf);
1653 
1654 		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1655 			break;
1656 
1657 		/* If ENOMEM is returned, try again with bigger buffer */
1658 	} while (--retries);
1659 
1660 	return status;
1661 }
1662 
1663 /**
1664  * ice_get_caps - get info about the HW
1665  * @hw: pointer to the hardware structure
1666  */
1667 enum ice_status ice_get_caps(struct ice_hw *hw)
1668 {
1669 	enum ice_status status;
1670 
1671 	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1672 	if (!status)
1673 		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1674 
1675 	return status;
1676 }
1677 
1678 /**
1679  * ice_aq_manage_mac_write - manage MAC address write command
1680  * @hw: pointer to the hw struct
1681  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1682  * @flags: flags to control write behavior
1683  * @cd: pointer to command details structure or NULL
1684  *
1685  * This function is used to write MAC address to the NVM (0x0108).
1686  */
1687 enum ice_status
1688 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1689 			struct ice_sq_cd *cd)
1690 {
1691 	struct ice_aqc_manage_mac_write *cmd;
1692 	struct ice_aq_desc desc;
1693 
1694 	cmd = &desc.params.mac_write;
1695 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1696 
1697 	cmd->flags = flags;
1698 
1699 	/* Prep values for flags, sah, sal */
1700 	cmd->sah = htons(*((const u16 *)mac_addr));
1701 	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1702 
1703 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1704 }
1705 
1706 /**
1707  * ice_aq_clear_pxe_mode
1708  * @hw: pointer to the hw struct
1709  *
1710  * Tell the firmware that the driver is taking over from PXE (0x0110).
1711  */
1712 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1713 {
1714 	struct ice_aq_desc desc;
1715 
1716 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1717 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1718 
1719 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1720 }
1721 
1722 /**
1723  * ice_clear_pxe_mode - clear pxe operations mode
1724  * @hw: pointer to the hw struct
1725  *
1726  * Make sure all PXE mode settings are cleared, including things
1727  * like descriptor fetch/write-back mode.
1728  */
1729 void ice_clear_pxe_mode(struct ice_hw *hw)
1730 {
1731 	if (ice_check_sq_alive(hw, &hw->adminq))
1732 		ice_aq_clear_pxe_mode(hw);
1733 }
1734 
1735 /**
1736  * ice_get_link_speed_based_on_phy_type - returns link speed
1737  * @phy_type_low: lower part of phy_type
1738  * @phy_type_high: higher part of phy_type
1739  *
1740  * This helper function will convert an entry in phy type structure
1741  * [phy_type_low, phy_type_high] to its corresponding link speed.
1742  * Note: In the structure of [phy_type_low, phy_type_high], there should
1743  * be one bit set, as this function will convert one phy type to its
1744  * speed.
1745  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1746  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
1747  */
1748 static u16
1749 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
1750 {
1751 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
1752 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1753 
1754 	switch (phy_type_low) {
1755 	case ICE_PHY_TYPE_LOW_100BASE_TX:
1756 	case ICE_PHY_TYPE_LOW_100M_SGMII:
1757 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
1758 		break;
1759 	case ICE_PHY_TYPE_LOW_1000BASE_T:
1760 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
1761 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
1762 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
1763 	case ICE_PHY_TYPE_LOW_1G_SGMII:
1764 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
1765 		break;
1766 	case ICE_PHY_TYPE_LOW_2500BASE_T:
1767 	case ICE_PHY_TYPE_LOW_2500BASE_X:
1768 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
1769 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
1770 		break;
1771 	case ICE_PHY_TYPE_LOW_5GBASE_T:
1772 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
1773 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
1774 		break;
1775 	case ICE_PHY_TYPE_LOW_10GBASE_T:
1776 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1777 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
1778 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
1779 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1780 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1781 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1782 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
1783 		break;
1784 	case ICE_PHY_TYPE_LOW_25GBASE_T:
1785 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
1786 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1787 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1788 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
1789 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
1790 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
1791 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1792 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1793 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1794 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1795 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
1796 		break;
1797 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1798 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1799 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1800 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1801 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1802 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
1803 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
1804 		break;
1805 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
1806 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
1807 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
1808 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
1809 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
1810 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
1811 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
1812 	case ICE_PHY_TYPE_LOW_50G_AUI2:
1813 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
1814 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
1815 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
1816 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
1817 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1818 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1819 	case ICE_PHY_TYPE_LOW_50G_AUI1:
1820 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
1821 		break;
1822 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
1823 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
1824 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
1825 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
1826 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
1827 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
1828 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
1829 	case ICE_PHY_TYPE_LOW_100G_AUI4:
1830 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
1831 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
1832 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
1833 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
1834 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
1835 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
1836 		break;
1837 	default:
1838 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
1839 		break;
1840 	}
1841 
1842 	switch (phy_type_high) {
1843 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
1844 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
1845 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
1846 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
1847 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
1848 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
1849 		break;
1850 	default:
1851 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
1852 		break;
1853 	}
1854 
1855 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
1856 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1857 		return ICE_AQ_LINK_SPEED_UNKNOWN;
1858 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1859 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
1860 		return ICE_AQ_LINK_SPEED_UNKNOWN;
1861 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
1862 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
1863 		return speed_phy_type_low;
1864 	else
1865 		return speed_phy_type_high;
1866 }
1867 
1868 /**
1869  * ice_update_phy_type
1870  * @phy_type_low: pointer to the lower part of phy_type
1871  * @phy_type_high: pointer to the higher part of phy_type
1872  * @link_speeds_bitmap: targeted link speeds bitmap
1873  *
1874  * Note: For the link_speeds_bitmap structure, you can check it at
1875  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
1876  * link_speeds_bitmap include multiple speeds.
1877  *
1878  * Each entry in this [phy_type_low, phy_type_high] structure will
1879  * present a certain link speed. This helper function will turn on bits
1880  * in [phy_type_low, phy_type_high] structure based on the value of
1881  * link_speeds_bitmap input parameter.
1882  */
1883 void
1884 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
1885 		    u16 link_speeds_bitmap)
1886 {
1887 	u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN;
1888 	u64 pt_high;
1889 	u64 pt_low;
1890 	int index;
1891 
1892 	/* We first check with low part of phy_type */
1893 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
1894 		pt_low = BIT_ULL(index);
1895 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
1896 
1897 		if (link_speeds_bitmap & speed)
1898 			*phy_type_low |= BIT_ULL(index);
1899 	}
1900 
1901 	/* We then check with high part of phy_type */
1902 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
1903 		pt_high = BIT_ULL(index);
1904 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
1905 
1906 		if (link_speeds_bitmap & speed)
1907 			*phy_type_high |= BIT_ULL(index);
1908 	}
1909 }
1910 
1911 /**
1912  * ice_aq_set_phy_cfg
1913  * @hw: pointer to the hw struct
1914  * @lport: logical port number
1915  * @cfg: structure with PHY configuration data to be set
1916  * @cd: pointer to command details structure or NULL
1917  *
1918  * Set the various PHY configuration parameters supported on the Port.
1919  * One or more of the Set PHY config parameters may be ignored in an MFP
1920  * mode as the PF may not have the privilege to set some of the PHY Config
1921  * parameters. This status will be indicated by the command response (0x0601).
1922  */
1923 enum ice_status
1924 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1925 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1926 {
1927 	struct ice_aq_desc desc;
1928 
1929 	if (!cfg)
1930 		return ICE_ERR_PARAM;
1931 
1932 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1933 	desc.params.set_phy.lport_num = lport;
1934 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1935 
1936 	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1937 }
1938 
1939 /**
1940  * ice_update_link_info - update status of the HW network link
1941  * @pi: port info structure of the interested logical port
1942  */
1943 enum ice_status ice_update_link_info(struct ice_port_info *pi)
1944 {
1945 	struct ice_aqc_get_phy_caps_data *pcaps;
1946 	struct ice_phy_info *phy_info;
1947 	enum ice_status status;
1948 	struct ice_hw *hw;
1949 
1950 	if (!pi)
1951 		return ICE_ERR_PARAM;
1952 
1953 	hw = pi->hw;
1954 
1955 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1956 	if (!pcaps)
1957 		return ICE_ERR_NO_MEMORY;
1958 
1959 	phy_info = &pi->phy;
1960 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
1961 	if (status)
1962 		goto out;
1963 
1964 	if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1965 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1966 					     pcaps, NULL);
1967 		if (status)
1968 			goto out;
1969 
1970 		memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1971 		       sizeof(phy_info->link_info.module_type));
1972 	}
1973 out:
1974 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1975 	return status;
1976 }
1977 
1978 /**
1979  * ice_set_fc
1980  * @pi: port information structure
1981  * @aq_failures: pointer to status code, specific to ice_set_fc routine
1982  * @ena_auto_link_update: enable automatic link update
1983  *
1984  * Set the requested flow control mode.
1985  */
1986 enum ice_status
1987 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
1988 {
1989 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1990 	struct ice_aqc_get_phy_caps_data *pcaps;
1991 	enum ice_status status;
1992 	u8 pause_mask = 0x0;
1993 	struct ice_hw *hw;
1994 
1995 	if (!pi)
1996 		return ICE_ERR_PARAM;
1997 	hw = pi->hw;
1998 	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1999 
2000 	switch (pi->fc.req_mode) {
2001 	case ICE_FC_FULL:
2002 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2003 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2004 		break;
2005 	case ICE_FC_RX_PAUSE:
2006 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2007 		break;
2008 	case ICE_FC_TX_PAUSE:
2009 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2010 		break;
2011 	default:
2012 		break;
2013 	}
2014 
2015 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2016 	if (!pcaps)
2017 		return ICE_ERR_NO_MEMORY;
2018 
2019 	/* Get the current phy config */
2020 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2021 				     NULL);
2022 	if (status) {
2023 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2024 		goto out;
2025 	}
2026 
2027 	/* clear the old pause settings */
2028 	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2029 				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2030 	/* set the new capabilities */
2031 	cfg.caps |= pause_mask;
2032 	/* If the capabilities have changed, then set the new config */
2033 	if (cfg.caps != pcaps->caps) {
2034 		int retry_count, retry_max = 10;
2035 
2036 		/* Auto restart link so settings take effect */
2037 		if (ena_auto_link_update)
2038 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2039 		/* Copy over all the old settings */
2040 		cfg.phy_type_high = pcaps->phy_type_high;
2041 		cfg.phy_type_low = pcaps->phy_type_low;
2042 		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2043 		cfg.eee_cap = pcaps->eee_cap;
2044 		cfg.eeer_value = pcaps->eeer_value;
2045 		cfg.link_fec_opt = pcaps->link_fec_options;
2046 
2047 		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2048 		if (status) {
2049 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2050 			goto out;
2051 		}
2052 
2053 		/* Update the link info
2054 		 * It sometimes takes a really long time for link to
2055 		 * come back from the atomic reset. Thus, we wait a
2056 		 * little bit.
2057 		 */
2058 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2059 			status = ice_update_link_info(pi);
2060 
2061 			if (!status)
2062 				break;
2063 
2064 			mdelay(100);
2065 		}
2066 
2067 		if (status)
2068 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2069 	}
2070 
2071 out:
2072 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2073 	return status;
2074 }
2075 
2076 /**
2077  * ice_get_link_status - get status of the HW network link
2078  * @pi: port information structure
2079  * @link_up: pointer to bool (true/false = linkup/linkdown)
2080  *
2081  * Variable link_up is true if link is up, false if link is down.
2082  * The variable link_up is invalid if status is non zero. As a
2083  * result of this call, link status reporting becomes enabled
2084  */
2085 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2086 {
2087 	struct ice_phy_info *phy_info;
2088 	enum ice_status status = 0;
2089 
2090 	if (!pi || !link_up)
2091 		return ICE_ERR_PARAM;
2092 
2093 	phy_info = &pi->phy;
2094 
2095 	if (phy_info->get_link_info) {
2096 		status = ice_update_link_info(pi);
2097 
2098 		if (status)
2099 			ice_debug(pi->hw, ICE_DBG_LINK,
2100 				  "get link status error, status = %d\n",
2101 				  status);
2102 	}
2103 
2104 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2105 
2106 	return status;
2107 }
2108 
2109 /**
2110  * ice_aq_set_link_restart_an
2111  * @pi: pointer to the port information structure
2112  * @ena_link: if true: enable link, if false: disable link
2113  * @cd: pointer to command details structure or NULL
2114  *
2115  * Sets up the link and restarts the Auto-Negotiation over the link.
2116  */
2117 enum ice_status
2118 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2119 			   struct ice_sq_cd *cd)
2120 {
2121 	struct ice_aqc_restart_an *cmd;
2122 	struct ice_aq_desc desc;
2123 
2124 	cmd = &desc.params.restart_an;
2125 
2126 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2127 
2128 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2129 	cmd->lport_num = pi->lport;
2130 	if (ena_link)
2131 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2132 	else
2133 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2134 
2135 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2136 }
2137 
2138 /**
2139  * ice_aq_set_port_id_led
2140  * @pi: pointer to the port information
2141  * @is_orig_mode: is this LED set to original mode (by the net-list)
2142  * @cd: pointer to command details structure or NULL
2143  *
2144  * Set LED value for the given port (0x06e9)
2145  */
2146 enum ice_status
2147 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2148 		       struct ice_sq_cd *cd)
2149 {
2150 	struct ice_aqc_set_port_id_led *cmd;
2151 	struct ice_hw *hw = pi->hw;
2152 	struct ice_aq_desc desc;
2153 
2154 	cmd = &desc.params.set_port_id_led;
2155 
2156 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2157 
2158 	if (is_orig_mode)
2159 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2160 	else
2161 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2162 
2163 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2164 }
2165 
2166 /**
2167  * __ice_aq_get_set_rss_lut
2168  * @hw: pointer to the hardware structure
2169  * @vsi_id: VSI FW index
2170  * @lut_type: LUT table type
2171  * @lut: pointer to the LUT buffer provided by the caller
2172  * @lut_size: size of the LUT buffer
2173  * @glob_lut_idx: global LUT index
2174  * @set: set true to set the table, false to get the table
2175  *
2176  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2177  */
2178 static enum ice_status
2179 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2180 			 u16 lut_size, u8 glob_lut_idx, bool set)
2181 {
2182 	struct ice_aqc_get_set_rss_lut *cmd_resp;
2183 	struct ice_aq_desc desc;
2184 	enum ice_status status;
2185 	u16 flags = 0;
2186 
2187 	cmd_resp = &desc.params.get_set_rss_lut;
2188 
2189 	if (set) {
2190 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2191 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2192 	} else {
2193 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2194 	}
2195 
2196 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2197 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2198 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2199 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2200 
2201 	switch (lut_type) {
2202 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2203 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2204 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2205 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2206 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2207 		break;
2208 	default:
2209 		status = ICE_ERR_PARAM;
2210 		goto ice_aq_get_set_rss_lut_exit;
2211 	}
2212 
2213 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2214 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2215 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2216 
2217 		if (!set)
2218 			goto ice_aq_get_set_rss_lut_send;
2219 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2220 		if (!set)
2221 			goto ice_aq_get_set_rss_lut_send;
2222 	} else {
2223 		goto ice_aq_get_set_rss_lut_send;
2224 	}
2225 
2226 	/* LUT size is only valid for Global and PF table types */
2227 	switch (lut_size) {
2228 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2229 		break;
2230 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2231 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2232 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2233 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2234 		break;
2235 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2236 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2237 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2238 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2239 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2240 			break;
2241 		}
2242 		/* fall-through */
2243 	default:
2244 		status = ICE_ERR_PARAM;
2245 		goto ice_aq_get_set_rss_lut_exit;
2246 	}
2247 
2248 ice_aq_get_set_rss_lut_send:
2249 	cmd_resp->flags = cpu_to_le16(flags);
2250 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2251 
2252 ice_aq_get_set_rss_lut_exit:
2253 	return status;
2254 }
2255 
2256 /**
2257  * ice_aq_get_rss_lut
2258  * @hw: pointer to the hardware structure
2259  * @vsi_handle: software VSI handle
2260  * @lut_type: LUT table type
2261  * @lut: pointer to the LUT buffer provided by the caller
2262  * @lut_size: size of the LUT buffer
2263  *
2264  * get the RSS lookup table, PF or VSI type
2265  */
2266 enum ice_status
2267 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2268 		   u8 *lut, u16 lut_size)
2269 {
2270 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2271 		return ICE_ERR_PARAM;
2272 
2273 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2274 					lut_type, lut, lut_size, 0, false);
2275 }
2276 
2277 /**
2278  * ice_aq_set_rss_lut
2279  * @hw: pointer to the hardware structure
2280  * @vsi_handle: software VSI handle
2281  * @lut_type: LUT table type
2282  * @lut: pointer to the LUT buffer provided by the caller
2283  * @lut_size: size of the LUT buffer
2284  *
2285  * set the RSS lookup table, PF or VSI type
2286  */
2287 enum ice_status
2288 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2289 		   u8 *lut, u16 lut_size)
2290 {
2291 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2292 		return ICE_ERR_PARAM;
2293 
2294 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2295 					lut_type, lut, lut_size, 0, true);
2296 }
2297 
2298 /**
2299  * __ice_aq_get_set_rss_key
2300  * @hw: pointer to the hw struct
2301  * @vsi_id: VSI FW index
2302  * @key: pointer to key info struct
2303  * @set: set true to set the key, false to get the key
2304  *
2305  * get (0x0B04) or set (0x0B02) the RSS key per VSI
2306  */
2307 static enum
2308 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2309 				    struct ice_aqc_get_set_rss_keys *key,
2310 				    bool set)
2311 {
2312 	struct ice_aqc_get_set_rss_key *cmd_resp;
2313 	u16 key_size = sizeof(*key);
2314 	struct ice_aq_desc desc;
2315 
2316 	cmd_resp = &desc.params.get_set_rss_key;
2317 
2318 	if (set) {
2319 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2320 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2321 	} else {
2322 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2323 	}
2324 
2325 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2326 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2327 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2328 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2329 
2330 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2331 }
2332 
2333 /**
2334  * ice_aq_get_rss_key
2335  * @hw: pointer to the hw struct
2336  * @vsi_handle: software VSI handle
2337  * @key: pointer to key info struct
2338  *
2339  * get the RSS key per VSI
2340  */
2341 enum ice_status
2342 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2343 		   struct ice_aqc_get_set_rss_keys *key)
2344 {
2345 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2346 		return ICE_ERR_PARAM;
2347 
2348 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2349 					key, false);
2350 }
2351 
2352 /**
2353  * ice_aq_set_rss_key
2354  * @hw: pointer to the hw struct
2355  * @vsi_handle: software VSI handle
2356  * @keys: pointer to key info struct
2357  *
2358  * set the RSS key per VSI
2359  */
2360 enum ice_status
2361 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2362 		   struct ice_aqc_get_set_rss_keys *keys)
2363 {
2364 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2365 		return ICE_ERR_PARAM;
2366 
2367 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2368 					keys, true);
2369 }
2370 
2371 /**
2372  * ice_aq_add_lan_txq
2373  * @hw: pointer to the hardware structure
2374  * @num_qgrps: Number of added queue groups
2375  * @qg_list: list of queue groups to be added
2376  * @buf_size: size of buffer for indirect command
2377  * @cd: pointer to command details structure or NULL
2378  *
2379  * Add Tx LAN queue (0x0C30)
2380  *
2381  * NOTE:
2382  * Prior to calling add Tx LAN queue:
2383  * Initialize the following as part of the Tx queue context:
2384  * Completion queue ID if the queue uses Completion queue, Quanta profile,
2385  * Cache profile and Packet shaper profile.
2386  *
2387  * After add Tx LAN queue AQ command is completed:
2388  * Interrupts should be associated with specific queues,
2389  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2390  * flow.
2391  */
2392 static enum ice_status
2393 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2394 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2395 		   struct ice_sq_cd *cd)
2396 {
2397 	u16 i, sum_header_size, sum_q_size = 0;
2398 	struct ice_aqc_add_tx_qgrp *list;
2399 	struct ice_aqc_add_txqs *cmd;
2400 	struct ice_aq_desc desc;
2401 
2402 	cmd = &desc.params.add_txqs;
2403 
2404 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2405 
2406 	if (!qg_list)
2407 		return ICE_ERR_PARAM;
2408 
2409 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2410 		return ICE_ERR_PARAM;
2411 
2412 	sum_header_size = num_qgrps *
2413 		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2414 
2415 	list = qg_list;
2416 	for (i = 0; i < num_qgrps; i++) {
2417 		struct ice_aqc_add_txqs_perq *q = list->txqs;
2418 
2419 		sum_q_size += list->num_txqs * sizeof(*q);
2420 		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2421 	}
2422 
2423 	if (buf_size != (sum_header_size + sum_q_size))
2424 		return ICE_ERR_PARAM;
2425 
2426 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2427 
2428 	cmd->num_qgrps = num_qgrps;
2429 
2430 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2431 }
2432 
2433 /**
2434  * ice_aq_dis_lan_txq
2435  * @hw: pointer to the hardware structure
2436  * @num_qgrps: number of groups in the list
2437  * @qg_list: the list of groups to disable
2438  * @buf_size: the total size of the qg_list buffer in bytes
2439  * @rst_src: if called due to reset, specifies the RST source
2440  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2441  * @cd: pointer to command details structure or NULL
2442  *
2443  * Disable LAN Tx queue (0x0C31)
2444  */
2445 static enum ice_status
2446 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2447 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2448 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2449 		   struct ice_sq_cd *cd)
2450 {
2451 	struct ice_aqc_dis_txqs *cmd;
2452 	struct ice_aq_desc desc;
2453 	enum ice_status status;
2454 	u16 i, sz = 0;
2455 
2456 	cmd = &desc.params.dis_txqs;
2457 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2458 
2459 	/* qg_list can be NULL only in VM/VF reset flow */
2460 	if (!qg_list && !rst_src)
2461 		return ICE_ERR_PARAM;
2462 
2463 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2464 		return ICE_ERR_PARAM;
2465 
2466 	cmd->num_entries = num_qgrps;
2467 
2468 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2469 					    ICE_AQC_Q_DIS_TIMEOUT_M);
2470 
2471 	switch (rst_src) {
2472 	case ICE_VM_RESET:
2473 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2474 		cmd->vmvf_and_timeout |=
2475 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2476 		break;
2477 	case ICE_VF_RESET:
2478 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2479 		/* In this case, FW expects vmvf_num to be absolute VF id */
2480 		cmd->vmvf_and_timeout |=
2481 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2482 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2483 		break;
2484 	case ICE_NO_RESET:
2485 	default:
2486 		break;
2487 	}
2488 
2489 	/* flush pipe on time out */
2490 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2491 	/* If no queue group info, we are in a reset flow. Issue the AQ */
2492 	if (!qg_list)
2493 		goto do_aq;
2494 
2495 	/* set RD bit to indicate that command buffer is provided by the driver
2496 	 * and it needs to be read by the firmware
2497 	 */
2498 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2499 
2500 	for (i = 0; i < num_qgrps; ++i) {
2501 		/* Calculate the size taken up by the queue IDs in this group */
2502 		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2503 
2504 		/* Add the size of the group header */
2505 		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2506 
2507 		/* If the num of queues is even, add 2 bytes of padding */
2508 		if ((qg_list[i].num_qs % 2) == 0)
2509 			sz += 2;
2510 	}
2511 
2512 	if (buf_size != sz)
2513 		return ICE_ERR_PARAM;
2514 
2515 do_aq:
2516 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2517 	if (status) {
2518 		if (!qg_list)
2519 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2520 				  vmvf_num, hw->adminq.sq_last_status);
2521 		else
2522 			ice_debug(hw, ICE_DBG_SCHED, "disable Q %d failed %d\n",
2523 				  le16_to_cpu(qg_list[0].q_id[0]),
2524 				  hw->adminq.sq_last_status);
2525 	}
2526 	return status;
2527 }
2528 
2529 /* End of FW Admin Queue command wrappers */
2530 
2531 /**
2532  * ice_write_byte - write a byte to a packed context structure
2533  * @src_ctx:  the context structure to read from
2534  * @dest_ctx: the context to be written to
2535  * @ce_info:  a description of the struct to be filled
2536  */
2537 static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
2538 			   const struct ice_ctx_ele *ce_info)
2539 {
2540 	u8 src_byte, dest_byte, mask;
2541 	u8 *from, *dest;
2542 	u16 shift_width;
2543 
2544 	/* copy from the next struct field */
2545 	from = src_ctx + ce_info->offset;
2546 
2547 	/* prepare the bits and mask */
2548 	shift_width = ce_info->lsb % 8;
2549 	mask = (u8)(BIT(ce_info->width) - 1);
2550 
2551 	src_byte = *from;
2552 	src_byte &= mask;
2553 
2554 	/* shift to correct alignment */
2555 	mask <<= shift_width;
2556 	src_byte <<= shift_width;
2557 
2558 	/* get the current bits from the target bit string */
2559 	dest = dest_ctx + (ce_info->lsb / 8);
2560 
2561 	memcpy(&dest_byte, dest, sizeof(dest_byte));
2562 
2563 	dest_byte &= ~mask;	/* get the bits not changing */
2564 	dest_byte |= src_byte;	/* add in the new bits */
2565 
2566 	/* put it all back */
2567 	memcpy(dest, &dest_byte, sizeof(dest_byte));
2568 }
2569 
2570 /**
2571  * ice_write_word - write a word to a packed context structure
2572  * @src_ctx:  the context structure to read from
2573  * @dest_ctx: the context to be written to
2574  * @ce_info:  a description of the struct to be filled
2575  */
2576 static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
2577 			   const struct ice_ctx_ele *ce_info)
2578 {
2579 	u16 src_word, mask;
2580 	__le16 dest_word;
2581 	u8 *from, *dest;
2582 	u16 shift_width;
2583 
2584 	/* copy from the next struct field */
2585 	from = src_ctx + ce_info->offset;
2586 
2587 	/* prepare the bits and mask */
2588 	shift_width = ce_info->lsb % 8;
2589 	mask = BIT(ce_info->width) - 1;
2590 
2591 	/* don't swizzle the bits until after the mask because the mask bits
2592 	 * will be in a different bit position on big endian machines
2593 	 */
2594 	src_word = *(u16 *)from;
2595 	src_word &= mask;
2596 
2597 	/* shift to correct alignment */
2598 	mask <<= shift_width;
2599 	src_word <<= shift_width;
2600 
2601 	/* get the current bits from the target bit string */
2602 	dest = dest_ctx + (ce_info->lsb / 8);
2603 
2604 	memcpy(&dest_word, dest, sizeof(dest_word));
2605 
2606 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
2607 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
2608 
2609 	/* put it all back */
2610 	memcpy(dest, &dest_word, sizeof(dest_word));
2611 }
2612 
2613 /**
2614  * ice_write_dword - write a dword to a packed context structure
2615  * @src_ctx:  the context structure to read from
2616  * @dest_ctx: the context to be written to
2617  * @ce_info:  a description of the struct to be filled
2618  */
2619 static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
2620 			    const struct ice_ctx_ele *ce_info)
2621 {
2622 	u32 src_dword, mask;
2623 	__le32 dest_dword;
2624 	u8 *from, *dest;
2625 	u16 shift_width;
2626 
2627 	/* copy from the next struct field */
2628 	from = src_ctx + ce_info->offset;
2629 
2630 	/* prepare the bits and mask */
2631 	shift_width = ce_info->lsb % 8;
2632 
2633 	/* if the field width is exactly 32 on an x86 machine, then the shift
2634 	 * operation will not work because the SHL instructions count is masked
2635 	 * to 5 bits so the shift will do nothing
2636 	 */
2637 	if (ce_info->width < 32)
2638 		mask = BIT(ce_info->width) - 1;
2639 	else
2640 		mask = (u32)~0;
2641 
2642 	/* don't swizzle the bits until after the mask because the mask bits
2643 	 * will be in a different bit position on big endian machines
2644 	 */
2645 	src_dword = *(u32 *)from;
2646 	src_dword &= mask;
2647 
2648 	/* shift to correct alignment */
2649 	mask <<= shift_width;
2650 	src_dword <<= shift_width;
2651 
2652 	/* get the current bits from the target bit string */
2653 	dest = dest_ctx + (ce_info->lsb / 8);
2654 
2655 	memcpy(&dest_dword, dest, sizeof(dest_dword));
2656 
2657 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
2658 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
2659 
2660 	/* put it all back */
2661 	memcpy(dest, &dest_dword, sizeof(dest_dword));
2662 }
2663 
2664 /**
2665  * ice_write_qword - write a qword to a packed context structure
2666  * @src_ctx:  the context structure to read from
2667  * @dest_ctx: the context to be written to
2668  * @ce_info:  a description of the struct to be filled
2669  */
2670 static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2671 			    const struct ice_ctx_ele *ce_info)
2672 {
2673 	u64 src_qword, mask;
2674 	__le64 dest_qword;
2675 	u8 *from, *dest;
2676 	u16 shift_width;
2677 
2678 	/* copy from the next struct field */
2679 	from = src_ctx + ce_info->offset;
2680 
2681 	/* prepare the bits and mask */
2682 	shift_width = ce_info->lsb % 8;
2683 
2684 	/* if the field width is exactly 64 on an x86 machine, then the shift
2685 	 * operation will not work because the SHL instructions count is masked
2686 	 * to 6 bits so the shift will do nothing
2687 	 */
2688 	if (ce_info->width < 64)
2689 		mask = BIT_ULL(ce_info->width) - 1;
2690 	else
2691 		mask = (u64)~0;
2692 
2693 	/* don't swizzle the bits until after the mask because the mask bits
2694 	 * will be in a different bit position on big endian machines
2695 	 */
2696 	src_qword = *(u64 *)from;
2697 	src_qword &= mask;
2698 
2699 	/* shift to correct alignment */
2700 	mask <<= shift_width;
2701 	src_qword <<= shift_width;
2702 
2703 	/* get the current bits from the target bit string */
2704 	dest = dest_ctx + (ce_info->lsb / 8);
2705 
2706 	memcpy(&dest_qword, dest, sizeof(dest_qword));
2707 
2708 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
2709 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
2710 
2711 	/* put it all back */
2712 	memcpy(dest, &dest_qword, sizeof(dest_qword));
2713 }
2714 
2715 /**
2716  * ice_set_ctx - set context bits in packed structure
2717  * @src_ctx:  pointer to a generic non-packed context structure
2718  * @dest_ctx: pointer to memory for the packed structure
2719  * @ce_info:  a description of the structure to be transformed
2720  */
2721 enum ice_status
2722 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2723 {
2724 	int f;
2725 
2726 	for (f = 0; ce_info[f].width; f++) {
2727 		/* We have to deal with each element of the FW response
2728 		 * using the correct size so that we are correct regardless
2729 		 * of the endianness of the machine.
2730 		 */
2731 		switch (ce_info[f].size_of) {
2732 		case sizeof(u8):
2733 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2734 			break;
2735 		case sizeof(u16):
2736 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2737 			break;
2738 		case sizeof(u32):
2739 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2740 			break;
2741 		case sizeof(u64):
2742 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2743 			break;
2744 		default:
2745 			return ICE_ERR_INVAL_SIZE;
2746 		}
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 /**
2753  * ice_ena_vsi_txq
2754  * @pi: port information structure
2755  * @vsi_handle: software VSI handle
2756  * @tc: tc number
2757  * @num_qgrps: Number of added queue groups
2758  * @buf: list of queue groups to be added
2759  * @buf_size: size of buffer for indirect command
2760  * @cd: pointer to command details structure or NULL
2761  *
2762  * This function adds one lan q
2763  */
2764 enum ice_status
2765 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
2766 		struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2767 		struct ice_sq_cd *cd)
2768 {
2769 	struct ice_aqc_txsched_elem_data node = { 0 };
2770 	struct ice_sched_node *parent;
2771 	enum ice_status status;
2772 	struct ice_hw *hw;
2773 
2774 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2775 		return ICE_ERR_CFG;
2776 
2777 	if (num_qgrps > 1 || buf->num_txqs > 1)
2778 		return ICE_ERR_MAX_LIMIT;
2779 
2780 	hw = pi->hw;
2781 
2782 	if (!ice_is_vsi_valid(hw, vsi_handle))
2783 		return ICE_ERR_PARAM;
2784 
2785 	mutex_lock(&pi->sched_lock);
2786 
2787 	/* find a parent node */
2788 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
2789 					    ICE_SCHED_NODE_OWNER_LAN);
2790 	if (!parent) {
2791 		status = ICE_ERR_PARAM;
2792 		goto ena_txq_exit;
2793 	}
2794 
2795 	buf->parent_teid = parent->info.node_teid;
2796 	node.parent_teid = parent->info.node_teid;
2797 	/* Mark that the values in the "generic" section as valid. The default
2798 	 * value in the "generic" section is zero. This means that :
2799 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2800 	 * - 0 priority among siblings, indicated by Bit 1-3.
2801 	 * - WFQ, indicated by Bit 4.
2802 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2803 	 * Bit 5-6.
2804 	 * - Bit 7 is reserved.
2805 	 * Without setting the generic section as valid in valid_sections, the
2806 	 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2807 	 */
2808 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2809 
2810 	/* add the lan q */
2811 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2812 	if (status) {
2813 		ice_debug(hw, ICE_DBG_SCHED, "enable Q %d failed %d\n",
2814 			  le16_to_cpu(buf->txqs[0].txq_id),
2815 			  hw->adminq.sq_last_status);
2816 		goto ena_txq_exit;
2817 	}
2818 
2819 	node.node_teid = buf->txqs[0].q_teid;
2820 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2821 
2822 	/* add a leaf node into schduler tree q layer */
2823 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2824 
2825 ena_txq_exit:
2826 	mutex_unlock(&pi->sched_lock);
2827 	return status;
2828 }
2829 
2830 /**
2831  * ice_dis_vsi_txq
2832  * @pi: port information structure
2833  * @num_queues: number of queues
2834  * @q_ids: pointer to the q_id array
2835  * @q_teids: pointer to queue node teids
2836  * @rst_src: if called due to reset, specifies the RST source
2837  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2838  * @cd: pointer to command details structure or NULL
2839  *
2840  * This function removes queues and their corresponding nodes in SW DB
2841  */
2842 enum ice_status
2843 ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
2844 		u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
2845 		struct ice_sq_cd *cd)
2846 {
2847 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2848 	struct ice_aqc_dis_txq_item qg_list;
2849 	u16 i;
2850 
2851 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2852 		return ICE_ERR_CFG;
2853 
2854 	/* if queue is disabled already yet the disable queue command has to be
2855 	 * sent to complete the VF reset, then call ice_aq_dis_lan_txq without
2856 	 * any queue information
2857 	 */
2858 
2859 	if (!num_queues && rst_src)
2860 		return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
2861 					  NULL);
2862 
2863 	mutex_lock(&pi->sched_lock);
2864 
2865 	for (i = 0; i < num_queues; i++) {
2866 		struct ice_sched_node *node;
2867 
2868 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2869 		if (!node)
2870 			continue;
2871 		qg_list.parent_teid = node->info.parent_teid;
2872 		qg_list.num_qs = 1;
2873 		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2874 		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2875 					    sizeof(qg_list), rst_src, vmvf_num,
2876 					    cd);
2877 
2878 		if (status)
2879 			break;
2880 		ice_free_sched_node(pi, node);
2881 	}
2882 	mutex_unlock(&pi->sched_lock);
2883 	return status;
2884 }
2885 
2886 /**
2887  * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2888  * @pi: port information structure
2889  * @vsi_handle: software VSI handle
2890  * @tc_bitmap: TC bitmap
2891  * @maxqs: max queues array per TC
2892  * @owner: lan or rdma
2893  *
2894  * This function adds/updates the VSI queues per TC.
2895  */
2896 static enum ice_status
2897 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2898 	       u16 *maxqs, u8 owner)
2899 {
2900 	enum ice_status status = 0;
2901 	u8 i;
2902 
2903 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2904 		return ICE_ERR_CFG;
2905 
2906 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2907 		return ICE_ERR_PARAM;
2908 
2909 	mutex_lock(&pi->sched_lock);
2910 
2911 	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2912 		/* configuration is possible only if TC node is present */
2913 		if (!ice_sched_get_tc_node(pi, i))
2914 			continue;
2915 
2916 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
2917 					   ice_is_tc_ena(tc_bitmap, i));
2918 		if (status)
2919 			break;
2920 	}
2921 
2922 	mutex_unlock(&pi->sched_lock);
2923 	return status;
2924 }
2925 
2926 /**
2927  * ice_cfg_vsi_lan - configure VSI lan queues
2928  * @pi: port information structure
2929  * @vsi_handle: software VSI handle
2930  * @tc_bitmap: TC bitmap
2931  * @max_lanqs: max lan queues array per TC
2932  *
2933  * This function adds/updates the VSI lan queues per TC.
2934  */
2935 enum ice_status
2936 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
2937 		u16 *max_lanqs)
2938 {
2939 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
2940 			      ICE_SCHED_NODE_OWNER_LAN);
2941 }
2942 
2943 /**
2944  * ice_replay_pre_init - replay pre initialization
2945  * @hw: pointer to the hw struct
2946  *
2947  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
2948  */
2949 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
2950 {
2951 	struct ice_switch_info *sw = hw->switch_info;
2952 	u8 i;
2953 
2954 	/* Delete old entries from replay filter list head if there is any */
2955 	ice_rm_all_sw_replay_rule_info(hw);
2956 	/* In start of replay, move entries into replay_rules list, it
2957 	 * will allow adding rules entries back to filt_rules list,
2958 	 * which is operational list.
2959 	 */
2960 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
2961 		list_replace_init(&sw->recp_list[i].filt_rules,
2962 				  &sw->recp_list[i].filt_replay_rules);
2963 
2964 	return 0;
2965 }
2966 
2967 /**
2968  * ice_replay_vsi - replay VSI configuration
2969  * @hw: pointer to the hw struct
2970  * @vsi_handle: driver VSI handle
2971  *
2972  * Restore all VSI configuration after reset. It is required to call this
2973  * function with main VSI first.
2974  */
2975 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
2976 {
2977 	enum ice_status status;
2978 
2979 	if (!ice_is_vsi_valid(hw, vsi_handle))
2980 		return ICE_ERR_PARAM;
2981 
2982 	/* Replay pre-initialization if there is any */
2983 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
2984 		status = ice_replay_pre_init(hw);
2985 		if (status)
2986 			return status;
2987 	}
2988 
2989 	/* Replay per VSI all filters */
2990 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
2991 	return status;
2992 }
2993 
2994 /**
2995  * ice_replay_post - post replay configuration cleanup
2996  * @hw: pointer to the hw struct
2997  *
2998  * Post replay cleanup.
2999  */
3000 void ice_replay_post(struct ice_hw *hw)
3001 {
3002 	/* Delete old entries from replay filter list head */
3003 	ice_rm_all_sw_replay_rule_info(hw);
3004 }
3005 
3006 /**
3007  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3008  * @hw: ptr to the hardware info
3009  * @hireg: high 32 bit HW register to read from
3010  * @loreg: low 32 bit HW register to read from
3011  * @prev_stat_loaded: bool to specify if previous stats are loaded
3012  * @prev_stat: ptr to previous loaded stat value
3013  * @cur_stat: ptr to current stat value
3014  */
3015 void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
3016 		       bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat)
3017 {
3018 	u64 new_data;
3019 
3020 	new_data = rd32(hw, loreg);
3021 	new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
3022 
3023 	/* device stats are not reset at PFR, they likely will not be zeroed
3024 	 * when the driver starts. So save the first values read and use them as
3025 	 * offsets to be subtracted from the raw values in order to report stats
3026 	 * that count from zero.
3027 	 */
3028 	if (!prev_stat_loaded)
3029 		*prev_stat = new_data;
3030 	if (new_data >= *prev_stat)
3031 		*cur_stat = new_data - *prev_stat;
3032 	else
3033 		/* to manage the potential roll-over */
3034 		*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
3035 	*cur_stat &= 0xFFFFFFFFFFULL;
3036 }
3037 
3038 /**
3039  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3040  * @hw: ptr to the hardware info
3041  * @reg: HW register to read from
3042  * @prev_stat_loaded: bool to specify if previous stats are loaded
3043  * @prev_stat: ptr to previous loaded stat value
3044  * @cur_stat: ptr to current stat value
3045  */
3046 void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3047 		       u64 *prev_stat, u64 *cur_stat)
3048 {
3049 	u32 new_data;
3050 
3051 	new_data = rd32(hw, reg);
3052 
3053 	/* device stats are not reset at PFR, they likely will not be zeroed
3054 	 * when the driver starts. So save the first values read and use them as
3055 	 * offsets to be subtracted from the raw values in order to report stats
3056 	 * that count from zero.
3057 	 */
3058 	if (!prev_stat_loaded)
3059 		*prev_stat = new_data;
3060 	if (new_data >= *prev_stat)
3061 		*cur_stat = new_data - *prev_stat;
3062 	else
3063 		/* to manage the potential roll-over */
3064 		*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
3065 }
3066