xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 2887af4d22f90bcddd3ff9a6eb93ecdaab3acd94)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	case ICE_DEV_ID_E825C_BACKPLANE:
158 	case ICE_DEV_ID_E825C_QSFP:
159 	case ICE_DEV_ID_E825C_SFP:
160 	case ICE_DEV_ID_E825C_SGMII:
161 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 		break;
163 	case ICE_DEV_ID_E830_BACKPLANE:
164 	case ICE_DEV_ID_E830_QSFP56:
165 	case ICE_DEV_ID_E830_SFP:
166 	case ICE_DEV_ID_E830_SFP_DD:
167 		hw->mac_type = ICE_MAC_E830;
168 		break;
169 	default:
170 		hw->mac_type = ICE_MAC_UNKNOWN;
171 		break;
172 	}
173 
174 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
175 	return 0;
176 }
177 
178 /**
179  * ice_is_generic_mac - check if device's mac_type is generic
180  * @hw: pointer to the hardware structure
181  *
182  * Return: true if mac_type is generic (with SBQ support), false if not
183  */
184 bool ice_is_generic_mac(struct ice_hw *hw)
185 {
186 	return (hw->mac_type == ICE_MAC_GENERIC ||
187 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
188 }
189 
190 /**
191  * ice_is_e810
192  * @hw: pointer to the hardware structure
193  *
194  * returns true if the device is E810 based, false if not.
195  */
196 bool ice_is_e810(struct ice_hw *hw)
197 {
198 	return hw->mac_type == ICE_MAC_E810;
199 }
200 
201 /**
202  * ice_is_e810t
203  * @hw: pointer to the hardware structure
204  *
205  * returns true if the device is E810T based, false if not.
206  */
207 bool ice_is_e810t(struct ice_hw *hw)
208 {
209 	switch (hw->device_id) {
210 	case ICE_DEV_ID_E810C_SFP:
211 		switch (hw->subsystem_device_id) {
212 		case ICE_SUBDEV_ID_E810T:
213 		case ICE_SUBDEV_ID_E810T2:
214 		case ICE_SUBDEV_ID_E810T3:
215 		case ICE_SUBDEV_ID_E810T4:
216 		case ICE_SUBDEV_ID_E810T6:
217 		case ICE_SUBDEV_ID_E810T7:
218 			return true;
219 		}
220 		break;
221 	case ICE_DEV_ID_E810C_QSFP:
222 		switch (hw->subsystem_device_id) {
223 		case ICE_SUBDEV_ID_E810T2:
224 		case ICE_SUBDEV_ID_E810T3:
225 		case ICE_SUBDEV_ID_E810T5:
226 			return true;
227 		}
228 		break;
229 	default:
230 		break;
231 	}
232 
233 	return false;
234 }
235 
236 /**
237  * ice_is_e823
238  * @hw: pointer to the hardware structure
239  *
240  * returns true if the device is E823-L or E823-C based, false if not.
241  */
242 bool ice_is_e823(struct ice_hw *hw)
243 {
244 	switch (hw->device_id) {
245 	case ICE_DEV_ID_E823L_BACKPLANE:
246 	case ICE_DEV_ID_E823L_SFP:
247 	case ICE_DEV_ID_E823L_10G_BASE_T:
248 	case ICE_DEV_ID_E823L_1GBE:
249 	case ICE_DEV_ID_E823L_QSFP:
250 	case ICE_DEV_ID_E823C_BACKPLANE:
251 	case ICE_DEV_ID_E823C_QSFP:
252 	case ICE_DEV_ID_E823C_SFP:
253 	case ICE_DEV_ID_E823C_10G_BASE_T:
254 	case ICE_DEV_ID_E823C_SGMII:
255 		return true;
256 	default:
257 		return false;
258 	}
259 }
260 
261 /**
262  * ice_is_e825c - Check if a device is E825C family device
263  * @hw: pointer to the hardware structure
264  *
265  * Return: true if the device is E825-C based, false if not.
266  */
267 bool ice_is_e825c(struct ice_hw *hw)
268 {
269 	switch (hw->device_id) {
270 	case ICE_DEV_ID_E825C_BACKPLANE:
271 	case ICE_DEV_ID_E825C_QSFP:
272 	case ICE_DEV_ID_E825C_SFP:
273 	case ICE_DEV_ID_E825C_SGMII:
274 		return true;
275 	default:
276 		return false;
277 	}
278 }
279 
280 /**
281  * ice_clear_pf_cfg - Clear PF configuration
282  * @hw: pointer to the hardware structure
283  *
284  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
285  * configuration, flow director filters, etc.).
286  */
287 int ice_clear_pf_cfg(struct ice_hw *hw)
288 {
289 	struct ice_aq_desc desc;
290 
291 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
292 
293 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
294 }
295 
296 /**
297  * ice_aq_manage_mac_read - manage MAC address read command
298  * @hw: pointer to the HW struct
299  * @buf: a virtual buffer to hold the manage MAC read response
300  * @buf_size: Size of the virtual buffer
301  * @cd: pointer to command details structure or NULL
302  *
303  * This function is used to return per PF station MAC address (0x0107).
304  * NOTE: Upon successful completion of this command, MAC address information
305  * is returned in user specified buffer. Please interpret user specified
306  * buffer as "manage_mac_read" response.
307  * Response such as various MAC addresses are stored in HW struct (port.mac)
308  * ice_discover_dev_caps is expected to be called before this function is
309  * called.
310  */
311 static int
312 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
313 		       struct ice_sq_cd *cd)
314 {
315 	struct ice_aqc_manage_mac_read_resp *resp;
316 	struct ice_aqc_manage_mac_read *cmd;
317 	struct ice_aq_desc desc;
318 	int status;
319 	u16 flags;
320 	u8 i;
321 
322 	cmd = &desc.params.mac_read;
323 
324 	if (buf_size < sizeof(*resp))
325 		return -EINVAL;
326 
327 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
328 
329 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
330 	if (status)
331 		return status;
332 
333 	resp = buf;
334 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
335 
336 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
337 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
338 		return -EIO;
339 	}
340 
341 	/* A single port can report up to two (LAN and WoL) addresses */
342 	for (i = 0; i < cmd->num_addr; i++)
343 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
344 			ether_addr_copy(hw->port_info->mac.lan_addr,
345 					resp[i].mac_addr);
346 			ether_addr_copy(hw->port_info->mac.perm_addr,
347 					resp[i].mac_addr);
348 			break;
349 		}
350 
351 	return 0;
352 }
353 
354 /**
355  * ice_aq_get_phy_caps - returns PHY capabilities
356  * @pi: port information structure
357  * @qual_mods: report qualified modules
358  * @report_mode: report mode capabilities
359  * @pcaps: structure for PHY capabilities to be filled
360  * @cd: pointer to command details structure or NULL
361  *
362  * Returns the various PHY capabilities supported on the Port (0x0600)
363  */
364 int
365 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
366 		    struct ice_aqc_get_phy_caps_data *pcaps,
367 		    struct ice_sq_cd *cd)
368 {
369 	struct ice_aqc_get_phy_caps *cmd;
370 	u16 pcaps_size = sizeof(*pcaps);
371 	struct ice_aq_desc desc;
372 	const char *prefix;
373 	struct ice_hw *hw;
374 	int status;
375 
376 	cmd = &desc.params.get_phy;
377 
378 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
379 		return -EINVAL;
380 	hw = pi->hw;
381 
382 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
383 	    !ice_fw_supports_report_dflt_cfg(hw))
384 		return -EINVAL;
385 
386 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
387 
388 	if (qual_mods)
389 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
390 
391 	cmd->param0 |= cpu_to_le16(report_mode);
392 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
393 
394 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
395 
396 	switch (report_mode) {
397 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
398 		prefix = "phy_caps_media";
399 		break;
400 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
401 		prefix = "phy_caps_no_media";
402 		break;
403 	case ICE_AQC_REPORT_ACTIVE_CFG:
404 		prefix = "phy_caps_active";
405 		break;
406 	case ICE_AQC_REPORT_DFLT_CFG:
407 		prefix = "phy_caps_default";
408 		break;
409 	default:
410 		prefix = "phy_caps_invalid";
411 	}
412 
413 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
414 			  le64_to_cpu(pcaps->phy_type_high), prefix);
415 
416 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
417 		  prefix, report_mode);
418 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
419 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
420 		  pcaps->low_power_ctrl_an);
421 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
422 		  pcaps->eee_cap);
423 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
424 		  pcaps->eeer_value);
425 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
426 		  pcaps->link_fec_options);
427 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
428 		  prefix, pcaps->module_compliance_enforcement);
429 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
430 		  prefix, pcaps->extended_compliance_code);
431 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
432 		  pcaps->module_type[0]);
433 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
434 		  pcaps->module_type[1]);
435 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
436 		  pcaps->module_type[2]);
437 
438 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
439 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
440 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
441 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
442 		       sizeof(pi->phy.link_info.module_type));
443 	}
444 
445 	return status;
446 }
447 
448 /**
449  * ice_aq_get_link_topo_handle - get link topology node return status
450  * @pi: port information structure
451  * @node_type: requested node type
452  * @cd: pointer to command details structure or NULL
453  *
454  * Get link topology node return status for specified node type (0x06E0)
455  *
456  * Node type cage can be used to determine if cage is present. If AQC
457  * returns error (ENOENT), then no cage present. If no cage present, then
458  * connection type is backplane or BASE-T.
459  */
460 static int
461 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
462 			    struct ice_sq_cd *cd)
463 {
464 	struct ice_aqc_get_link_topo *cmd;
465 	struct ice_aq_desc desc;
466 
467 	cmd = &desc.params.get_link_topo;
468 
469 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
470 
471 	cmd->addr.topo_params.node_type_ctx =
472 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
473 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
474 
475 	/* set node type */
476 	cmd->addr.topo_params.node_type_ctx |=
477 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
478 
479 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
480 }
481 
482 /**
483  * ice_aq_get_netlist_node
484  * @hw: pointer to the hw struct
485  * @cmd: get_link_topo AQ structure
486  * @node_part_number: output node part number if node found
487  * @node_handle: output node handle parameter if node found
488  *
489  * Get netlist node handle.
490  */
491 int
492 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
493 			u8 *node_part_number, u16 *node_handle)
494 {
495 	struct ice_aq_desc desc;
496 
497 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
498 	desc.params.get_link_topo = *cmd;
499 
500 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
501 		return -EINTR;
502 
503 	if (node_handle)
504 		*node_handle =
505 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
506 	if (node_part_number)
507 		*node_part_number = desc.params.get_link_topo.node_part_num;
508 
509 	return 0;
510 }
511 
512 /**
513  * ice_find_netlist_node
514  * @hw: pointer to the hw struct
515  * @node_type_ctx: type of netlist node to look for
516  * @node_part_number: node part number to look for
517  * @node_handle: output parameter if node found - optional
518  *
519  * Scan the netlist for a node handle of the given node type and part number.
520  *
521  * If node_handle is non-NULL it will be modified on function exit. It is only
522  * valid if the function returns zero, and should be ignored on any non-zero
523  * return value.
524  *
525  * Returns: 0 if the node is found, -ENOENT if no handle was found, and
526  * a negative error code on failure to access the AQ.
527  */
528 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
529 				 u8 node_part_number, u16 *node_handle)
530 {
531 	u8 idx;
532 
533 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
534 		struct ice_aqc_get_link_topo cmd = {};
535 		u8 rec_node_part_number;
536 		int status;
537 
538 		cmd.addr.topo_params.node_type_ctx =
539 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
540 				   node_type_ctx);
541 		cmd.addr.topo_params.index = idx;
542 
543 		status = ice_aq_get_netlist_node(hw, &cmd,
544 						 &rec_node_part_number,
545 						 node_handle);
546 		if (status)
547 			return status;
548 
549 		if (rec_node_part_number == node_part_number)
550 			return 0;
551 	}
552 
553 	return -ENOENT;
554 }
555 
556 /**
557  * ice_is_media_cage_present
558  * @pi: port information structure
559  *
560  * Returns true if media cage is present, else false. If no cage, then
561  * media type is backplane or BASE-T.
562  */
563 static bool ice_is_media_cage_present(struct ice_port_info *pi)
564 {
565 	/* Node type cage can be used to determine if cage is present. If AQC
566 	 * returns error (ENOENT), then no cage present. If no cage present then
567 	 * connection type is backplane or BASE-T.
568 	 */
569 	return !ice_aq_get_link_topo_handle(pi,
570 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
571 					    NULL);
572 }
573 
574 /**
575  * ice_get_media_type - Gets media type
576  * @pi: port information structure
577  */
578 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
579 {
580 	struct ice_link_status *hw_link_info;
581 
582 	if (!pi)
583 		return ICE_MEDIA_UNKNOWN;
584 
585 	hw_link_info = &pi->phy.link_info;
586 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
587 		/* If more than one media type is selected, report unknown */
588 		return ICE_MEDIA_UNKNOWN;
589 
590 	if (hw_link_info->phy_type_low) {
591 		/* 1G SGMII is a special case where some DA cable PHYs
592 		 * may show this as an option when it really shouldn't
593 		 * be since SGMII is meant to be between a MAC and a PHY
594 		 * in a backplane. Try to detect this case and handle it
595 		 */
596 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
597 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
598 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
599 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
600 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
601 			return ICE_MEDIA_DA;
602 
603 		switch (hw_link_info->phy_type_low) {
604 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
605 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
606 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
607 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
608 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
609 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
610 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
611 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
612 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
613 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
614 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
615 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
616 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
617 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
618 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
619 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
620 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
621 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
622 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
623 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
624 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
625 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
626 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
627 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
628 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
629 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
630 			return ICE_MEDIA_FIBER;
631 		case ICE_PHY_TYPE_LOW_100BASE_TX:
632 		case ICE_PHY_TYPE_LOW_1000BASE_T:
633 		case ICE_PHY_TYPE_LOW_2500BASE_T:
634 		case ICE_PHY_TYPE_LOW_5GBASE_T:
635 		case ICE_PHY_TYPE_LOW_10GBASE_T:
636 		case ICE_PHY_TYPE_LOW_25GBASE_T:
637 			return ICE_MEDIA_BASET;
638 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
639 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
640 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
641 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
642 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
643 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
644 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
645 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
646 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
647 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
648 			return ICE_MEDIA_DA;
649 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
650 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
651 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
652 		case ICE_PHY_TYPE_LOW_50G_AUI2:
653 		case ICE_PHY_TYPE_LOW_50G_AUI1:
654 		case ICE_PHY_TYPE_LOW_100G_AUI4:
655 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
656 			if (ice_is_media_cage_present(pi))
657 				return ICE_MEDIA_DA;
658 			fallthrough;
659 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
660 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
661 		case ICE_PHY_TYPE_LOW_2500BASE_X:
662 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
663 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
664 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
665 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
666 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
667 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
668 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
669 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
670 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
671 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
672 			return ICE_MEDIA_BACKPLANE;
673 		}
674 	} else {
675 		switch (hw_link_info->phy_type_high) {
676 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
677 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
678 			if (ice_is_media_cage_present(pi))
679 				return ICE_MEDIA_DA;
680 			fallthrough;
681 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
682 			return ICE_MEDIA_BACKPLANE;
683 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
684 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
685 			return ICE_MEDIA_FIBER;
686 		}
687 	}
688 	return ICE_MEDIA_UNKNOWN;
689 }
690 
691 /**
692  * ice_get_link_status_datalen
693  * @hw: pointer to the HW struct
694  *
695  * Returns datalength for the Get Link Status AQ command, which is bigger for
696  * newer adapter families handled by ice driver.
697  */
698 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
699 {
700 	switch (hw->mac_type) {
701 	case ICE_MAC_E830:
702 		return ICE_AQC_LS_DATA_SIZE_V2;
703 	case ICE_MAC_E810:
704 	default:
705 		return ICE_AQC_LS_DATA_SIZE_V1;
706 	}
707 }
708 
709 /**
710  * ice_aq_get_link_info
711  * @pi: port information structure
712  * @ena_lse: enable/disable LinkStatusEvent reporting
713  * @link: pointer to link status structure - optional
714  * @cd: pointer to command details structure or NULL
715  *
716  * Get Link Status (0x607). Returns the link status of the adapter.
717  */
718 int
719 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
720 		     struct ice_link_status *link, struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_get_link_status_data link_data = { 0 };
723 	struct ice_aqc_get_link_status *resp;
724 	struct ice_link_status *li_old, *li;
725 	enum ice_media_type *hw_media_type;
726 	struct ice_fc_info *hw_fc_info;
727 	bool tx_pause, rx_pause;
728 	struct ice_aq_desc desc;
729 	struct ice_hw *hw;
730 	u16 cmd_flags;
731 	int status;
732 
733 	if (!pi)
734 		return -EINVAL;
735 	hw = pi->hw;
736 	li_old = &pi->phy.link_info_old;
737 	hw_media_type = &pi->phy.media_type;
738 	li = &pi->phy.link_info;
739 	hw_fc_info = &pi->fc;
740 
741 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
742 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
743 	resp = &desc.params.get_link_status;
744 	resp->cmd_flags = cpu_to_le16(cmd_flags);
745 	resp->lport_num = pi->lport;
746 
747 	status = ice_aq_send_cmd(hw, &desc, &link_data,
748 				 ice_get_link_status_datalen(hw), cd);
749 	if (status)
750 		return status;
751 
752 	/* save off old link status information */
753 	*li_old = *li;
754 
755 	/* update current link status information */
756 	li->link_speed = le16_to_cpu(link_data.link_speed);
757 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
758 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
759 	*hw_media_type = ice_get_media_type(pi);
760 	li->link_info = link_data.link_info;
761 	li->link_cfg_err = link_data.link_cfg_err;
762 	li->an_info = link_data.an_info;
763 	li->ext_info = link_data.ext_info;
764 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
765 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
766 	li->topo_media_conflict = link_data.topo_media_conflict;
767 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
768 				      ICE_AQ_CFG_PACING_TYPE_M);
769 
770 	/* update fc info */
771 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
772 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
773 	if (tx_pause && rx_pause)
774 		hw_fc_info->current_mode = ICE_FC_FULL;
775 	else if (tx_pause)
776 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
777 	else if (rx_pause)
778 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
779 	else
780 		hw_fc_info->current_mode = ICE_FC_NONE;
781 
782 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
783 
784 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
785 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
786 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
787 		  (unsigned long long)li->phy_type_low);
788 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
789 		  (unsigned long long)li->phy_type_high);
790 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
791 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
792 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
793 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
794 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
795 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
796 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
797 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
798 		  li->max_frame_size);
799 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
800 
801 	/* save link status information */
802 	if (link)
803 		*link = *li;
804 
805 	/* flag cleared so calling functions don't call AQ again */
806 	pi->phy.get_link_info = false;
807 
808 	return 0;
809 }
810 
811 /**
812  * ice_fill_tx_timer_and_fc_thresh
813  * @hw: pointer to the HW struct
814  * @cmd: pointer to MAC cfg structure
815  *
816  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
817  * descriptor
818  */
819 static void
820 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
821 				struct ice_aqc_set_mac_cfg *cmd)
822 {
823 	u32 val, fc_thres_m;
824 
825 	/* We read back the transmit timer and FC threshold value of
826 	 * LFC. Thus, we will use index =
827 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
828 	 *
829 	 * Also, because we are operating on transmit timer and FC
830 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
831 	 */
832 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
833 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
834 
835 	if (hw->mac_type == ICE_MAC_E830) {
836 		/* Retrieve the transmit timer */
837 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
838 		cmd->tx_tmr_value =
839 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
840 
841 		/* Retrieve the fc threshold */
842 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
843 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
844 	} else {
845 		/* Retrieve the transmit timer */
846 		val = rd32(hw,
847 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
848 		cmd->tx_tmr_value =
849 			le16_encode_bits(val,
850 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
851 
852 		/* Retrieve the fc threshold */
853 		val = rd32(hw,
854 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
855 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
856 	}
857 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
858 }
859 
860 /**
861  * ice_aq_set_mac_cfg
862  * @hw: pointer to the HW struct
863  * @max_frame_size: Maximum Frame Size to be supported
864  * @cd: pointer to command details structure or NULL
865  *
866  * Set MAC configuration (0x0603)
867  */
868 int
869 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
870 {
871 	struct ice_aqc_set_mac_cfg *cmd;
872 	struct ice_aq_desc desc;
873 
874 	cmd = &desc.params.set_mac_cfg;
875 
876 	if (max_frame_size == 0)
877 		return -EINVAL;
878 
879 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
880 
881 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
882 
883 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
884 
885 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
886 }
887 
888 /**
889  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
890  * @hw: pointer to the HW struct
891  */
892 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
893 {
894 	struct ice_switch_info *sw;
895 	int status;
896 
897 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
898 				       sizeof(*hw->switch_info), GFP_KERNEL);
899 	sw = hw->switch_info;
900 
901 	if (!sw)
902 		return -ENOMEM;
903 
904 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
905 	sw->prof_res_bm_init = 0;
906 
907 	status = ice_init_def_sw_recp(hw);
908 	if (status) {
909 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
910 		return status;
911 	}
912 	return 0;
913 }
914 
915 /**
916  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
917  * @hw: pointer to the HW struct
918  */
919 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
920 {
921 	struct ice_switch_info *sw = hw->switch_info;
922 	struct ice_vsi_list_map_info *v_pos_map;
923 	struct ice_vsi_list_map_info *v_tmp_map;
924 	struct ice_sw_recipe *recps;
925 	u8 i;
926 
927 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
928 				 list_entry) {
929 		list_del(&v_pos_map->list_entry);
930 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
931 	}
932 	recps = sw->recp_list;
933 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
934 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
935 
936 		recps[i].root_rid = i;
937 		list_for_each_entry_safe(rg_entry, tmprg_entry,
938 					 &recps[i].rg_list, l_entry) {
939 			list_del(&rg_entry->l_entry);
940 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
941 		}
942 
943 		if (recps[i].adv_rule) {
944 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
945 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
946 
947 			mutex_destroy(&recps[i].filt_rule_lock);
948 			list_for_each_entry_safe(lst_itr, tmp_entry,
949 						 &recps[i].filt_rules,
950 						 list_entry) {
951 				list_del(&lst_itr->list_entry);
952 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
953 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
954 			}
955 		} else {
956 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
957 
958 			mutex_destroy(&recps[i].filt_rule_lock);
959 			list_for_each_entry_safe(lst_itr, tmp_entry,
960 						 &recps[i].filt_rules,
961 						 list_entry) {
962 				list_del(&lst_itr->list_entry);
963 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
964 			}
965 		}
966 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
967 	}
968 	ice_rm_all_sw_replay_rule_info(hw);
969 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
970 	devm_kfree(ice_hw_to_dev(hw), sw);
971 }
972 
973 /**
974  * ice_get_itr_intrl_gran
975  * @hw: pointer to the HW struct
976  *
977  * Determines the ITR/INTRL granularities based on the maximum aggregate
978  * bandwidth according to the device's configuration during power-on.
979  */
980 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
981 {
982 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
983 				  rd32(hw, GL_PWR_MODE_CTL));
984 
985 	switch (max_agg_bw) {
986 	case ICE_MAX_AGG_BW_200G:
987 	case ICE_MAX_AGG_BW_100G:
988 	case ICE_MAX_AGG_BW_50G:
989 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
990 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
991 		break;
992 	case ICE_MAX_AGG_BW_25G:
993 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
994 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
995 		break;
996 	}
997 }
998 
999 /**
1000  * ice_init_hw - main hardware initialization routine
1001  * @hw: pointer to the hardware structure
1002  */
1003 int ice_init_hw(struct ice_hw *hw)
1004 {
1005 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree);
1006 	void *mac_buf __free(kfree);
1007 	u16 mac_buf_len;
1008 	int status;
1009 
1010 	/* Set MAC type based on DeviceID */
1011 	status = ice_set_mac_type(hw);
1012 	if (status)
1013 		return status;
1014 
1015 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1016 
1017 	status = ice_reset(hw, ICE_RESET_PFR);
1018 	if (status)
1019 		return status;
1020 
1021 	ice_get_itr_intrl_gran(hw);
1022 
1023 	status = ice_create_all_ctrlq(hw);
1024 	if (status)
1025 		goto err_unroll_cqinit;
1026 
1027 	status = ice_fwlog_init(hw);
1028 	if (status)
1029 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1030 			  status);
1031 
1032 	status = ice_clear_pf_cfg(hw);
1033 	if (status)
1034 		goto err_unroll_cqinit;
1035 
1036 	/* Set bit to enable Flow Director filters */
1037 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1038 	INIT_LIST_HEAD(&hw->fdir_list_head);
1039 
1040 	ice_clear_pxe_mode(hw);
1041 
1042 	status = ice_init_nvm(hw);
1043 	if (status)
1044 		goto err_unroll_cqinit;
1045 
1046 	status = ice_get_caps(hw);
1047 	if (status)
1048 		goto err_unroll_cqinit;
1049 
1050 	if (!hw->port_info)
1051 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1052 					     sizeof(*hw->port_info),
1053 					     GFP_KERNEL);
1054 	if (!hw->port_info) {
1055 		status = -ENOMEM;
1056 		goto err_unroll_cqinit;
1057 	}
1058 
1059 	/* set the back pointer to HW */
1060 	hw->port_info->hw = hw;
1061 
1062 	/* Initialize port_info struct with switch configuration data */
1063 	status = ice_get_initial_sw_cfg(hw);
1064 	if (status)
1065 		goto err_unroll_alloc;
1066 
1067 	hw->evb_veb = true;
1068 
1069 	/* init xarray for identifying scheduling nodes uniquely */
1070 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1071 
1072 	/* Query the allocated resources for Tx scheduler */
1073 	status = ice_sched_query_res_alloc(hw);
1074 	if (status) {
1075 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1076 		goto err_unroll_alloc;
1077 	}
1078 	ice_sched_get_psm_clk_freq(hw);
1079 
1080 	/* Initialize port_info struct with scheduler data */
1081 	status = ice_sched_init_port(hw->port_info);
1082 	if (status)
1083 		goto err_unroll_sched;
1084 
1085 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1086 	if (!pcaps) {
1087 		status = -ENOMEM;
1088 		goto err_unroll_sched;
1089 	}
1090 
1091 	/* Initialize port_info struct with PHY capabilities */
1092 	status = ice_aq_get_phy_caps(hw->port_info, false,
1093 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1094 				     NULL);
1095 	if (status)
1096 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1097 			 status);
1098 
1099 	/* Initialize port_info struct with link information */
1100 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1101 	if (status)
1102 		goto err_unroll_sched;
1103 
1104 	/* need a valid SW entry point to build a Tx tree */
1105 	if (!hw->sw_entry_point_layer) {
1106 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1107 		status = -EIO;
1108 		goto err_unroll_sched;
1109 	}
1110 	INIT_LIST_HEAD(&hw->agg_list);
1111 	/* Initialize max burst size */
1112 	if (!hw->max_burst_size)
1113 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1114 
1115 	status = ice_init_fltr_mgmt_struct(hw);
1116 	if (status)
1117 		goto err_unroll_sched;
1118 
1119 	/* Get MAC information */
1120 	/* A single port can report up to two (LAN and WoL) addresses */
1121 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1122 			  GFP_KERNEL);
1123 	if (!mac_buf) {
1124 		status = -ENOMEM;
1125 		goto err_unroll_fltr_mgmt_struct;
1126 	}
1127 
1128 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1129 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1130 
1131 	if (status)
1132 		goto err_unroll_fltr_mgmt_struct;
1133 	/* enable jumbo frame support at MAC level */
1134 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1135 	if (status)
1136 		goto err_unroll_fltr_mgmt_struct;
1137 	/* Obtain counter base index which would be used by flow director */
1138 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1139 	if (status)
1140 		goto err_unroll_fltr_mgmt_struct;
1141 	status = ice_init_hw_tbls(hw);
1142 	if (status)
1143 		goto err_unroll_fltr_mgmt_struct;
1144 	mutex_init(&hw->tnl_lock);
1145 	ice_init_chk_recipe_reuse_support(hw);
1146 
1147 	return 0;
1148 
1149 err_unroll_fltr_mgmt_struct:
1150 	ice_cleanup_fltr_mgmt_struct(hw);
1151 err_unroll_sched:
1152 	ice_sched_cleanup_all(hw);
1153 err_unroll_alloc:
1154 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1155 err_unroll_cqinit:
1156 	ice_destroy_all_ctrlq(hw);
1157 	return status;
1158 }
1159 
1160 /**
1161  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1162  * @hw: pointer to the hardware structure
1163  *
1164  * This should be called only during nominal operation, not as a result of
1165  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1166  * applicable initializations if it fails for any reason.
1167  */
1168 void ice_deinit_hw(struct ice_hw *hw)
1169 {
1170 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1171 	ice_cleanup_fltr_mgmt_struct(hw);
1172 
1173 	ice_sched_cleanup_all(hw);
1174 	ice_sched_clear_agg(hw);
1175 	ice_free_seg(hw);
1176 	ice_free_hw_tbls(hw);
1177 	mutex_destroy(&hw->tnl_lock);
1178 
1179 	ice_fwlog_deinit(hw);
1180 	ice_destroy_all_ctrlq(hw);
1181 
1182 	/* Clear VSI contexts if not already cleared */
1183 	ice_clear_all_vsi_ctx(hw);
1184 }
1185 
1186 /**
1187  * ice_check_reset - Check to see if a global reset is complete
1188  * @hw: pointer to the hardware structure
1189  */
1190 int ice_check_reset(struct ice_hw *hw)
1191 {
1192 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1193 
1194 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1195 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1196 	 * Add 1sec for outstanding AQ commands that can take a long time.
1197 	 */
1198 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1199 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1200 
1201 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1202 		mdelay(100);
1203 		reg = rd32(hw, GLGEN_RSTAT);
1204 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1205 			break;
1206 	}
1207 
1208 	if (cnt == grst_timeout) {
1209 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1210 		return -EIO;
1211 	}
1212 
1213 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1214 				 GLNVM_ULD_PCIER_DONE_1_M |\
1215 				 GLNVM_ULD_CORER_DONE_M |\
1216 				 GLNVM_ULD_GLOBR_DONE_M |\
1217 				 GLNVM_ULD_POR_DONE_M |\
1218 				 GLNVM_ULD_POR_DONE_1_M |\
1219 				 GLNVM_ULD_PCIER_DONE_2_M)
1220 
1221 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1222 					  GLNVM_ULD_PE_DONE_M : 0);
1223 
1224 	/* Device is Active; check Global Reset processes are done */
1225 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1226 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1227 		if (reg == uld_mask) {
1228 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1229 			break;
1230 		}
1231 		mdelay(10);
1232 	}
1233 
1234 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1235 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1236 			  reg);
1237 		return -EIO;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  * ice_pf_reset - Reset the PF
1245  * @hw: pointer to the hardware structure
1246  *
1247  * If a global reset has been triggered, this function checks
1248  * for its completion and then issues the PF reset
1249  */
1250 static int ice_pf_reset(struct ice_hw *hw)
1251 {
1252 	u32 cnt, reg;
1253 
1254 	/* If at function entry a global reset was already in progress, i.e.
1255 	 * state is not 'device active' or any of the reset done bits are not
1256 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1257 	 * global reset is done.
1258 	 */
1259 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1260 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1261 		/* poll on global reset currently in progress until done */
1262 		if (ice_check_reset(hw))
1263 			return -EIO;
1264 
1265 		return 0;
1266 	}
1267 
1268 	/* Reset the PF */
1269 	reg = rd32(hw, PFGEN_CTRL);
1270 
1271 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1272 
1273 	/* Wait for the PFR to complete. The wait time is the global config lock
1274 	 * timeout plus the PFR timeout which will account for a possible reset
1275 	 * that is occurring during a download package operation.
1276 	 */
1277 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1278 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1279 		reg = rd32(hw, PFGEN_CTRL);
1280 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1281 			break;
1282 
1283 		mdelay(1);
1284 	}
1285 
1286 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1287 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1288 		return -EIO;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * ice_reset - Perform different types of reset
1296  * @hw: pointer to the hardware structure
1297  * @req: reset request
1298  *
1299  * This function triggers a reset as specified by the req parameter.
1300  *
1301  * Note:
1302  * If anything other than a PF reset is triggered, PXE mode is restored.
1303  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1304  * interface has been restored in the rebuild flow.
1305  */
1306 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1307 {
1308 	u32 val = 0;
1309 
1310 	switch (req) {
1311 	case ICE_RESET_PFR:
1312 		return ice_pf_reset(hw);
1313 	case ICE_RESET_CORER:
1314 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1315 		val = GLGEN_RTRIG_CORER_M;
1316 		break;
1317 	case ICE_RESET_GLOBR:
1318 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1319 		val = GLGEN_RTRIG_GLOBR_M;
1320 		break;
1321 	default:
1322 		return -EINVAL;
1323 	}
1324 
1325 	val |= rd32(hw, GLGEN_RTRIG);
1326 	wr32(hw, GLGEN_RTRIG, val);
1327 	ice_flush(hw);
1328 
1329 	/* wait for the FW to be ready */
1330 	return ice_check_reset(hw);
1331 }
1332 
1333 /**
1334  * ice_copy_rxq_ctx_to_hw
1335  * @hw: pointer to the hardware structure
1336  * @ice_rxq_ctx: pointer to the rxq context
1337  * @rxq_index: the index of the Rx queue
1338  *
1339  * Copies rxq context from dense structure to HW register space
1340  */
1341 static int
1342 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1343 {
1344 	u8 i;
1345 
1346 	if (!ice_rxq_ctx)
1347 		return -EINVAL;
1348 
1349 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1350 		return -EINVAL;
1351 
1352 	/* Copy each dword separately to HW */
1353 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1354 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1355 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1356 
1357 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1358 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 /* LAN Rx Queue Context */
1365 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1366 	/* Field		Width	LSB */
1367 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1368 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1369 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1370 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1371 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1372 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1373 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1374 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1375 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1376 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1377 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1378 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1379 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1380 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1381 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1382 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1383 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1384 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1385 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1386 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1387 	{ 0 }
1388 };
1389 
1390 /**
1391  * ice_write_rxq_ctx
1392  * @hw: pointer to the hardware structure
1393  * @rlan_ctx: pointer to the rxq context
1394  * @rxq_index: the index of the Rx queue
1395  *
1396  * Converts rxq context from sparse to dense structure and then writes
1397  * it to HW register space and enables the hardware to prefetch descriptors
1398  * instead of only fetching them on demand
1399  */
1400 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1401 		      u32 rxq_index)
1402 {
1403 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1404 
1405 	if (!rlan_ctx)
1406 		return -EINVAL;
1407 
1408 	rlan_ctx->prefena = 1;
1409 
1410 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1411 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1412 }
1413 
1414 /* LAN Tx Queue Context */
1415 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1416 				    /* Field			Width	LSB */
1417 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1418 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1419 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1420 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1421 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1422 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1423 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1424 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1425 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1426 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1427 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1428 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1429 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1430 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1431 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1432 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1433 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1434 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1435 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1436 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1437 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1438 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1439 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1440 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1441 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1442 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1443 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1444 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1445 	{ 0 }
1446 };
1447 
1448 /* Sideband Queue command wrappers */
1449 
1450 /**
1451  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1452  * @hw: pointer to the HW struct
1453  * @desc: descriptor describing the command
1454  * @buf: buffer to use for indirect commands (NULL for direct commands)
1455  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1456  * @cd: pointer to command details structure
1457  */
1458 static int
1459 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1460 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1461 {
1462 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1463 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1464 }
1465 
1466 /**
1467  * ice_sbq_rw_reg - Fill Sideband Queue command
1468  * @hw: pointer to the HW struct
1469  * @in: message info to be filled in descriptor
1470  */
1471 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1472 {
1473 	struct ice_sbq_cmd_desc desc = {0};
1474 	struct ice_sbq_msg_req msg = {0};
1475 	u16 msg_len;
1476 	int status;
1477 
1478 	msg_len = sizeof(msg);
1479 
1480 	msg.dest_dev = in->dest_dev;
1481 	msg.opcode = in->opcode;
1482 	msg.flags = ICE_SBQ_MSG_FLAGS;
1483 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1484 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1485 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1486 
1487 	if (in->opcode)
1488 		msg.data = cpu_to_le32(in->data);
1489 	else
1490 		/* data read comes back in completion, so shorten the struct by
1491 		 * sizeof(msg.data)
1492 		 */
1493 		msg_len -= sizeof(msg.data);
1494 
1495 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1496 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1497 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1498 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1499 	if (!status && !in->opcode)
1500 		in->data = le32_to_cpu
1501 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1502 	return status;
1503 }
1504 
1505 /* FW Admin Queue command wrappers */
1506 
1507 /* Software lock/mutex that is meant to be held while the Global Config Lock
1508  * in firmware is acquired by the software to prevent most (but not all) types
1509  * of AQ commands from being sent to FW
1510  */
1511 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1512 
1513 /**
1514  * ice_should_retry_sq_send_cmd
1515  * @opcode: AQ opcode
1516  *
1517  * Decide if we should retry the send command routine for the ATQ, depending
1518  * on the opcode.
1519  */
1520 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1521 {
1522 	switch (opcode) {
1523 	case ice_aqc_opc_get_link_topo:
1524 	case ice_aqc_opc_lldp_stop:
1525 	case ice_aqc_opc_lldp_start:
1526 	case ice_aqc_opc_lldp_filter_ctrl:
1527 		return true;
1528 	}
1529 
1530 	return false;
1531 }
1532 
1533 /**
1534  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1535  * @hw: pointer to the HW struct
1536  * @cq: pointer to the specific Control queue
1537  * @desc: prefilled descriptor describing the command
1538  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1539  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1540  * @cd: pointer to command details structure
1541  *
1542  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1543  * Queue if the EBUSY AQ error is returned.
1544  */
1545 static int
1546 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1547 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1548 		      struct ice_sq_cd *cd)
1549 {
1550 	struct ice_aq_desc desc_cpy;
1551 	bool is_cmd_for_retry;
1552 	u8 idx = 0;
1553 	u16 opcode;
1554 	int status;
1555 
1556 	opcode = le16_to_cpu(desc->opcode);
1557 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1558 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1559 
1560 	if (is_cmd_for_retry) {
1561 		/* All retryable cmds are direct, without buf. */
1562 		WARN_ON(buf);
1563 
1564 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1565 	}
1566 
1567 	do {
1568 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1569 
1570 		if (!is_cmd_for_retry || !status ||
1571 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1572 			break;
1573 
1574 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1575 
1576 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1577 
1578 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1579 
1580 	return status;
1581 }
1582 
1583 /**
1584  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1585  * @hw: pointer to the HW struct
1586  * @desc: descriptor describing the command
1587  * @buf: buffer to use for indirect commands (NULL for direct commands)
1588  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1589  * @cd: pointer to command details structure
1590  *
1591  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1592  */
1593 int
1594 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1595 		u16 buf_size, struct ice_sq_cd *cd)
1596 {
1597 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1598 	bool lock_acquired = false;
1599 	int status;
1600 
1601 	/* When a package download is in process (i.e. when the firmware's
1602 	 * Global Configuration Lock resource is held), only the Download
1603 	 * Package, Get Version, Get Package Info List, Upload Section,
1604 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1605 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1606 	 * Recipes to Profile Association, and Release Resource (with resource
1607 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1608 	 * must block until the package download completes and the Global Config
1609 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1610 	 */
1611 	switch (le16_to_cpu(desc->opcode)) {
1612 	case ice_aqc_opc_download_pkg:
1613 	case ice_aqc_opc_get_pkg_info_list:
1614 	case ice_aqc_opc_get_ver:
1615 	case ice_aqc_opc_upload_section:
1616 	case ice_aqc_opc_update_pkg:
1617 	case ice_aqc_opc_set_port_params:
1618 	case ice_aqc_opc_get_vlan_mode_parameters:
1619 	case ice_aqc_opc_set_vlan_mode_parameters:
1620 	case ice_aqc_opc_add_recipe:
1621 	case ice_aqc_opc_recipe_to_profile:
1622 	case ice_aqc_opc_get_recipe:
1623 	case ice_aqc_opc_get_recipe_to_profile:
1624 		break;
1625 	case ice_aqc_opc_release_res:
1626 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1627 			break;
1628 		fallthrough;
1629 	default:
1630 		mutex_lock(&ice_global_cfg_lock_sw);
1631 		lock_acquired = true;
1632 		break;
1633 	}
1634 
1635 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1636 	if (lock_acquired)
1637 		mutex_unlock(&ice_global_cfg_lock_sw);
1638 
1639 	return status;
1640 }
1641 
1642 /**
1643  * ice_aq_get_fw_ver
1644  * @hw: pointer to the HW struct
1645  * @cd: pointer to command details structure or NULL
1646  *
1647  * Get the firmware version (0x0001) from the admin queue commands
1648  */
1649 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1650 {
1651 	struct ice_aqc_get_ver *resp;
1652 	struct ice_aq_desc desc;
1653 	int status;
1654 
1655 	resp = &desc.params.get_ver;
1656 
1657 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1658 
1659 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1660 
1661 	if (!status) {
1662 		hw->fw_branch = resp->fw_branch;
1663 		hw->fw_maj_ver = resp->fw_major;
1664 		hw->fw_min_ver = resp->fw_minor;
1665 		hw->fw_patch = resp->fw_patch;
1666 		hw->fw_build = le32_to_cpu(resp->fw_build);
1667 		hw->api_branch = resp->api_branch;
1668 		hw->api_maj_ver = resp->api_major;
1669 		hw->api_min_ver = resp->api_minor;
1670 		hw->api_patch = resp->api_patch;
1671 	}
1672 
1673 	return status;
1674 }
1675 
1676 /**
1677  * ice_aq_send_driver_ver
1678  * @hw: pointer to the HW struct
1679  * @dv: driver's major, minor version
1680  * @cd: pointer to command details structure or NULL
1681  *
1682  * Send the driver version (0x0002) to the firmware
1683  */
1684 int
1685 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1686 		       struct ice_sq_cd *cd)
1687 {
1688 	struct ice_aqc_driver_ver *cmd;
1689 	struct ice_aq_desc desc;
1690 	u16 len;
1691 
1692 	cmd = &desc.params.driver_ver;
1693 
1694 	if (!dv)
1695 		return -EINVAL;
1696 
1697 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1698 
1699 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1700 	cmd->major_ver = dv->major_ver;
1701 	cmd->minor_ver = dv->minor_ver;
1702 	cmd->build_ver = dv->build_ver;
1703 	cmd->subbuild_ver = dv->subbuild_ver;
1704 
1705 	len = 0;
1706 	while (len < sizeof(dv->driver_string) &&
1707 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1708 		len++;
1709 
1710 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1711 }
1712 
1713 /**
1714  * ice_aq_q_shutdown
1715  * @hw: pointer to the HW struct
1716  * @unloading: is the driver unloading itself
1717  *
1718  * Tell the Firmware that we're shutting down the AdminQ and whether
1719  * or not the driver is unloading as well (0x0003).
1720  */
1721 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1722 {
1723 	struct ice_aqc_q_shutdown *cmd;
1724 	struct ice_aq_desc desc;
1725 
1726 	cmd = &desc.params.q_shutdown;
1727 
1728 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1729 
1730 	if (unloading)
1731 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1732 
1733 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1734 }
1735 
1736 /**
1737  * ice_aq_req_res
1738  * @hw: pointer to the HW struct
1739  * @res: resource ID
1740  * @access: access type
1741  * @sdp_number: resource number
1742  * @timeout: the maximum time in ms that the driver may hold the resource
1743  * @cd: pointer to command details structure or NULL
1744  *
1745  * Requests common resource using the admin queue commands (0x0008).
1746  * When attempting to acquire the Global Config Lock, the driver can
1747  * learn of three states:
1748  *  1) 0 -         acquired lock, and can perform download package
1749  *  2) -EIO -      did not get lock, driver should fail to load
1750  *  3) -EALREADY - did not get lock, but another driver has
1751  *                 successfully downloaded the package; the driver does
1752  *                 not have to download the package and can continue
1753  *                 loading
1754  *
1755  * Note that if the caller is in an acquire lock, perform action, release lock
1756  * phase of operation, it is possible that the FW may detect a timeout and issue
1757  * a CORER. In this case, the driver will receive a CORER interrupt and will
1758  * have to determine its cause. The calling thread that is handling this flow
1759  * will likely get an error propagated back to it indicating the Download
1760  * Package, Update Package or the Release Resource AQ commands timed out.
1761  */
1762 static int
1763 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1764 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1765 	       struct ice_sq_cd *cd)
1766 {
1767 	struct ice_aqc_req_res *cmd_resp;
1768 	struct ice_aq_desc desc;
1769 	int status;
1770 
1771 	cmd_resp = &desc.params.res_owner;
1772 
1773 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1774 
1775 	cmd_resp->res_id = cpu_to_le16(res);
1776 	cmd_resp->access_type = cpu_to_le16(access);
1777 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1778 	cmd_resp->timeout = cpu_to_le32(*timeout);
1779 	*timeout = 0;
1780 
1781 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1782 
1783 	/* The completion specifies the maximum time in ms that the driver
1784 	 * may hold the resource in the Timeout field.
1785 	 */
1786 
1787 	/* Global config lock response utilizes an additional status field.
1788 	 *
1789 	 * If the Global config lock resource is held by some other driver, the
1790 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1791 	 * and the timeout field indicates the maximum time the current owner
1792 	 * of the resource has to free it.
1793 	 */
1794 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1795 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1796 			*timeout = le32_to_cpu(cmd_resp->timeout);
1797 			return 0;
1798 		} else if (le16_to_cpu(cmd_resp->status) ==
1799 			   ICE_AQ_RES_GLBL_IN_PROG) {
1800 			*timeout = le32_to_cpu(cmd_resp->timeout);
1801 			return -EIO;
1802 		} else if (le16_to_cpu(cmd_resp->status) ==
1803 			   ICE_AQ_RES_GLBL_DONE) {
1804 			return -EALREADY;
1805 		}
1806 
1807 		/* invalid FW response, force a timeout immediately */
1808 		*timeout = 0;
1809 		return -EIO;
1810 	}
1811 
1812 	/* If the resource is held by some other driver, the command completes
1813 	 * with a busy return value and the timeout field indicates the maximum
1814 	 * time the current owner of the resource has to free it.
1815 	 */
1816 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1817 		*timeout = le32_to_cpu(cmd_resp->timeout);
1818 
1819 	return status;
1820 }
1821 
1822 /**
1823  * ice_aq_release_res
1824  * @hw: pointer to the HW struct
1825  * @res: resource ID
1826  * @sdp_number: resource number
1827  * @cd: pointer to command details structure or NULL
1828  *
1829  * release common resource using the admin queue commands (0x0009)
1830  */
1831 static int
1832 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1833 		   struct ice_sq_cd *cd)
1834 {
1835 	struct ice_aqc_req_res *cmd;
1836 	struct ice_aq_desc desc;
1837 
1838 	cmd = &desc.params.res_owner;
1839 
1840 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1841 
1842 	cmd->res_id = cpu_to_le16(res);
1843 	cmd->res_number = cpu_to_le32(sdp_number);
1844 
1845 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1846 }
1847 
1848 /**
1849  * ice_acquire_res
1850  * @hw: pointer to the HW structure
1851  * @res: resource ID
1852  * @access: access type (read or write)
1853  * @timeout: timeout in milliseconds
1854  *
1855  * This function will attempt to acquire the ownership of a resource.
1856  */
1857 int
1858 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1859 		enum ice_aq_res_access_type access, u32 timeout)
1860 {
1861 #define ICE_RES_POLLING_DELAY_MS	10
1862 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1863 	u32 time_left = timeout;
1864 	int status;
1865 
1866 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1867 
1868 	/* A return code of -EALREADY means that another driver has
1869 	 * previously acquired the resource and performed any necessary updates;
1870 	 * in this case the caller does not obtain the resource and has no
1871 	 * further work to do.
1872 	 */
1873 	if (status == -EALREADY)
1874 		goto ice_acquire_res_exit;
1875 
1876 	if (status)
1877 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1878 
1879 	/* If necessary, poll until the current lock owner timeouts */
1880 	timeout = time_left;
1881 	while (status && timeout && time_left) {
1882 		mdelay(delay);
1883 		timeout = (timeout > delay) ? timeout - delay : 0;
1884 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1885 
1886 		if (status == -EALREADY)
1887 			/* lock free, but no work to do */
1888 			break;
1889 
1890 		if (!status)
1891 			/* lock acquired */
1892 			break;
1893 	}
1894 	if (status && status != -EALREADY)
1895 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1896 
1897 ice_acquire_res_exit:
1898 	if (status == -EALREADY) {
1899 		if (access == ICE_RES_WRITE)
1900 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1901 		else
1902 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1903 	}
1904 	return status;
1905 }
1906 
1907 /**
1908  * ice_release_res
1909  * @hw: pointer to the HW structure
1910  * @res: resource ID
1911  *
1912  * This function will release a resource using the proper Admin Command.
1913  */
1914 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1915 {
1916 	unsigned long timeout;
1917 	int status;
1918 
1919 	/* there are some rare cases when trying to release the resource
1920 	 * results in an admin queue timeout, so handle them correctly
1921 	 */
1922 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1923 	do {
1924 		status = ice_aq_release_res(hw, res, 0, NULL);
1925 		if (status != -EIO)
1926 			break;
1927 		usleep_range(1000, 2000);
1928 	} while (time_before(jiffies, timeout));
1929 }
1930 
1931 /**
1932  * ice_aq_alloc_free_res - command to allocate/free resources
1933  * @hw: pointer to the HW struct
1934  * @buf: Indirect buffer to hold data parameters and response
1935  * @buf_size: size of buffer for indirect commands
1936  * @opc: pass in the command opcode
1937  *
1938  * Helper function to allocate/free resources using the admin queue commands
1939  */
1940 int ice_aq_alloc_free_res(struct ice_hw *hw,
1941 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1942 			  enum ice_adminq_opc opc)
1943 {
1944 	struct ice_aqc_alloc_free_res_cmd *cmd;
1945 	struct ice_aq_desc desc;
1946 
1947 	cmd = &desc.params.sw_res_ctrl;
1948 
1949 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1950 		return -EINVAL;
1951 
1952 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1953 
1954 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1955 
1956 	cmd->num_entries = cpu_to_le16(1);
1957 
1958 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1959 }
1960 
1961 /**
1962  * ice_alloc_hw_res - allocate resource
1963  * @hw: pointer to the HW struct
1964  * @type: type of resource
1965  * @num: number of resources to allocate
1966  * @btm: allocate from bottom
1967  * @res: pointer to array that will receive the resources
1968  */
1969 int
1970 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1971 {
1972 	struct ice_aqc_alloc_free_res_elem *buf;
1973 	u16 buf_len;
1974 	int status;
1975 
1976 	buf_len = struct_size(buf, elem, num);
1977 	buf = kzalloc(buf_len, GFP_KERNEL);
1978 	if (!buf)
1979 		return -ENOMEM;
1980 
1981 	/* Prepare buffer to allocate resource. */
1982 	buf->num_elems = cpu_to_le16(num);
1983 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1984 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1985 	if (btm)
1986 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1987 
1988 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
1989 	if (status)
1990 		goto ice_alloc_res_exit;
1991 
1992 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1993 
1994 ice_alloc_res_exit:
1995 	kfree(buf);
1996 	return status;
1997 }
1998 
1999 /**
2000  * ice_free_hw_res - free allocated HW resource
2001  * @hw: pointer to the HW struct
2002  * @type: type of resource to free
2003  * @num: number of resources
2004  * @res: pointer to array that contains the resources to free
2005  */
2006 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2007 {
2008 	struct ice_aqc_alloc_free_res_elem *buf;
2009 	u16 buf_len;
2010 	int status;
2011 
2012 	buf_len = struct_size(buf, elem, num);
2013 	buf = kzalloc(buf_len, GFP_KERNEL);
2014 	if (!buf)
2015 		return -ENOMEM;
2016 
2017 	/* Prepare buffer to free resource. */
2018 	buf->num_elems = cpu_to_le16(num);
2019 	buf->res_type = cpu_to_le16(type);
2020 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2021 
2022 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2023 	if (status)
2024 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2025 
2026 	kfree(buf);
2027 	return status;
2028 }
2029 
2030 /**
2031  * ice_get_num_per_func - determine number of resources per PF
2032  * @hw: pointer to the HW structure
2033  * @max: value to be evenly split between each PF
2034  *
2035  * Determine the number of valid functions by going through the bitmap returned
2036  * from parsing capabilities and use this to calculate the number of resources
2037  * per PF based on the max value passed in.
2038  */
2039 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2040 {
2041 	u8 funcs;
2042 
2043 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2044 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2045 			 ICE_CAPS_VALID_FUNCS_M);
2046 
2047 	if (!funcs)
2048 		return 0;
2049 
2050 	return max / funcs;
2051 }
2052 
2053 /**
2054  * ice_parse_common_caps - parse common device/function capabilities
2055  * @hw: pointer to the HW struct
2056  * @caps: pointer to common capabilities structure
2057  * @elem: the capability element to parse
2058  * @prefix: message prefix for tracing capabilities
2059  *
2060  * Given a capability element, extract relevant details into the common
2061  * capability structure.
2062  *
2063  * Returns: true if the capability matches one of the common capability ids,
2064  * false otherwise.
2065  */
2066 static bool
2067 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2068 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2069 {
2070 	u32 logical_id = le32_to_cpu(elem->logical_id);
2071 	u32 phys_id = le32_to_cpu(elem->phys_id);
2072 	u32 number = le32_to_cpu(elem->number);
2073 	u16 cap = le16_to_cpu(elem->cap);
2074 	bool found = true;
2075 
2076 	switch (cap) {
2077 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2078 		caps->valid_functions = number;
2079 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2080 			  caps->valid_functions);
2081 		break;
2082 	case ICE_AQC_CAPS_SRIOV:
2083 		caps->sr_iov_1_1 = (number == 1);
2084 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2085 			  caps->sr_iov_1_1);
2086 		break;
2087 	case ICE_AQC_CAPS_DCB:
2088 		caps->dcb = (number == 1);
2089 		caps->active_tc_bitmap = logical_id;
2090 		caps->maxtc = phys_id;
2091 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2092 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2093 			  caps->active_tc_bitmap);
2094 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2095 		break;
2096 	case ICE_AQC_CAPS_RSS:
2097 		caps->rss_table_size = number;
2098 		caps->rss_table_entry_width = logical_id;
2099 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2100 			  caps->rss_table_size);
2101 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2102 			  caps->rss_table_entry_width);
2103 		break;
2104 	case ICE_AQC_CAPS_RXQS:
2105 		caps->num_rxq = number;
2106 		caps->rxq_first_id = phys_id;
2107 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2108 			  caps->num_rxq);
2109 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2110 			  caps->rxq_first_id);
2111 		break;
2112 	case ICE_AQC_CAPS_TXQS:
2113 		caps->num_txq = number;
2114 		caps->txq_first_id = phys_id;
2115 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2116 			  caps->num_txq);
2117 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2118 			  caps->txq_first_id);
2119 		break;
2120 	case ICE_AQC_CAPS_MSIX:
2121 		caps->num_msix_vectors = number;
2122 		caps->msix_vector_first_id = phys_id;
2123 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2124 			  caps->num_msix_vectors);
2125 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2126 			  caps->msix_vector_first_id);
2127 		break;
2128 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2129 		caps->nvm_update_pending_nvm = true;
2130 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2131 		break;
2132 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2133 		caps->nvm_update_pending_orom = true;
2134 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2135 		break;
2136 	case ICE_AQC_CAPS_PENDING_NET_VER:
2137 		caps->nvm_update_pending_netlist = true;
2138 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2139 		break;
2140 	case ICE_AQC_CAPS_NVM_MGMT:
2141 		caps->nvm_unified_update =
2142 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2143 			true : false;
2144 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2145 			  caps->nvm_unified_update);
2146 		break;
2147 	case ICE_AQC_CAPS_RDMA:
2148 		caps->rdma = (number == 1);
2149 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2150 		break;
2151 	case ICE_AQC_CAPS_MAX_MTU:
2152 		caps->max_mtu = number;
2153 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2154 			  prefix, caps->max_mtu);
2155 		break;
2156 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2157 		caps->pcie_reset_avoidance = (number > 0);
2158 		ice_debug(hw, ICE_DBG_INIT,
2159 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2160 			  caps->pcie_reset_avoidance);
2161 		break;
2162 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2163 		caps->reset_restrict_support = (number == 1);
2164 		ice_debug(hw, ICE_DBG_INIT,
2165 			  "%s: reset_restrict_support = %d\n", prefix,
2166 			  caps->reset_restrict_support);
2167 		break;
2168 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2169 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2170 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2171 			  prefix, caps->roce_lag);
2172 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2173 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2174 			  prefix, caps->sriov_lag);
2175 		break;
2176 	default:
2177 		/* Not one of the recognized common capabilities */
2178 		found = false;
2179 	}
2180 
2181 	return found;
2182 }
2183 
2184 /**
2185  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2186  * @hw: pointer to the HW structure
2187  * @caps: pointer to capabilities structure to fix
2188  *
2189  * Re-calculate the capabilities that are dependent on the number of physical
2190  * ports; i.e. some features are not supported or function differently on
2191  * devices with more than 4 ports.
2192  */
2193 static void
2194 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2195 {
2196 	/* This assumes device capabilities are always scanned before function
2197 	 * capabilities during the initialization flow.
2198 	 */
2199 	if (hw->dev_caps.num_funcs > 4) {
2200 		/* Max 4 TCs per port */
2201 		caps->maxtc = 4;
2202 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2203 			  caps->maxtc);
2204 		if (caps->rdma) {
2205 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2206 			caps->rdma = 0;
2207 		}
2208 
2209 		/* print message only when processing device capabilities
2210 		 * during initialization.
2211 		 */
2212 		if (caps == &hw->dev_caps.common_cap)
2213 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2214 	}
2215 }
2216 
2217 /**
2218  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2219  * @hw: pointer to the HW struct
2220  * @func_p: pointer to function capabilities structure
2221  * @cap: pointer to the capability element to parse
2222  *
2223  * Extract function capabilities for ICE_AQC_CAPS_VF.
2224  */
2225 static void
2226 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2227 		       struct ice_aqc_list_caps_elem *cap)
2228 {
2229 	u32 logical_id = le32_to_cpu(cap->logical_id);
2230 	u32 number = le32_to_cpu(cap->number);
2231 
2232 	func_p->num_allocd_vfs = number;
2233 	func_p->vf_base_id = logical_id;
2234 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2235 		  func_p->num_allocd_vfs);
2236 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2237 		  func_p->vf_base_id);
2238 }
2239 
2240 /**
2241  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2242  * @hw: pointer to the HW struct
2243  * @func_p: pointer to function capabilities structure
2244  * @cap: pointer to the capability element to parse
2245  *
2246  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2247  */
2248 static void
2249 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2250 			struct ice_aqc_list_caps_elem *cap)
2251 {
2252 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2253 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2254 		  le32_to_cpu(cap->number));
2255 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2256 		  func_p->guar_num_vsi);
2257 }
2258 
2259 /**
2260  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2261  * @hw: pointer to the HW struct
2262  * @func_p: pointer to function capabilities structure
2263  * @cap: pointer to the capability element to parse
2264  *
2265  * Extract function capabilities for ICE_AQC_CAPS_1588.
2266  */
2267 static void
2268 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2269 			 struct ice_aqc_list_caps_elem *cap)
2270 {
2271 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2272 	u32 number = le32_to_cpu(cap->number);
2273 
2274 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2275 	func_p->common_cap.ieee_1588 = info->ena;
2276 
2277 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2278 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2279 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2280 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2281 
2282 	info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2283 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2284 
2285 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2286 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2287 	} else {
2288 		/* Unknown clock frequency, so assume a (probably incorrect)
2289 		 * default to avoid out-of-bounds look ups of frequency
2290 		 * related information.
2291 		 */
2292 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2293 			  info->clk_freq);
2294 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2295 	}
2296 
2297 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2298 		  func_p->common_cap.ieee_1588);
2299 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2300 		  info->src_tmr_owned);
2301 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2302 		  info->tmr_ena);
2303 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2304 		  info->tmr_index_owned);
2305 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2306 		  info->tmr_index_assoc);
2307 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2308 		  info->clk_freq);
2309 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2310 		  info->clk_src);
2311 }
2312 
2313 /**
2314  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2315  * @hw: pointer to the HW struct
2316  * @func_p: pointer to function capabilities structure
2317  *
2318  * Extract function capabilities for ICE_AQC_CAPS_FD.
2319  */
2320 static void
2321 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2322 {
2323 	u32 reg_val, gsize, bsize;
2324 
2325 	reg_val = rd32(hw, GLQF_FD_SIZE);
2326 	switch (hw->mac_type) {
2327 	case ICE_MAC_E830:
2328 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2329 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2330 		break;
2331 	case ICE_MAC_E810:
2332 	default:
2333 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2334 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2335 	}
2336 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2337 	func_p->fd_fltr_best_effort = bsize;
2338 
2339 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2340 		  func_p->fd_fltr_guar);
2341 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2342 		  func_p->fd_fltr_best_effort);
2343 }
2344 
2345 /**
2346  * ice_parse_func_caps - Parse function capabilities
2347  * @hw: pointer to the HW struct
2348  * @func_p: pointer to function capabilities structure
2349  * @buf: buffer containing the function capability records
2350  * @cap_count: the number of capabilities
2351  *
2352  * Helper function to parse function (0x000A) capabilities list. For
2353  * capabilities shared between device and function, this relies on
2354  * ice_parse_common_caps.
2355  *
2356  * Loop through the list of provided capabilities and extract the relevant
2357  * data into the function capabilities structured.
2358  */
2359 static void
2360 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2361 		    void *buf, u32 cap_count)
2362 {
2363 	struct ice_aqc_list_caps_elem *cap_resp;
2364 	u32 i;
2365 
2366 	cap_resp = buf;
2367 
2368 	memset(func_p, 0, sizeof(*func_p));
2369 
2370 	for (i = 0; i < cap_count; i++) {
2371 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2372 		bool found;
2373 
2374 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2375 					      &cap_resp[i], "func caps");
2376 
2377 		switch (cap) {
2378 		case ICE_AQC_CAPS_VF:
2379 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2380 			break;
2381 		case ICE_AQC_CAPS_VSI:
2382 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2383 			break;
2384 		case ICE_AQC_CAPS_1588:
2385 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2386 			break;
2387 		case ICE_AQC_CAPS_FD:
2388 			ice_parse_fdir_func_caps(hw, func_p);
2389 			break;
2390 		default:
2391 			/* Don't list common capabilities as unknown */
2392 			if (!found)
2393 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2394 					  i, cap);
2395 			break;
2396 		}
2397 	}
2398 
2399 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2400 }
2401 
2402 /**
2403  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2404  * @hw: pointer to the HW struct
2405  * @dev_p: pointer to device capabilities structure
2406  * @cap: capability element to parse
2407  *
2408  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2409  */
2410 static void
2411 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2412 			      struct ice_aqc_list_caps_elem *cap)
2413 {
2414 	u32 number = le32_to_cpu(cap->number);
2415 
2416 	dev_p->num_funcs = hweight32(number);
2417 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2418 		  dev_p->num_funcs);
2419 }
2420 
2421 /**
2422  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2423  * @hw: pointer to the HW struct
2424  * @dev_p: pointer to device capabilities structure
2425  * @cap: capability element to parse
2426  *
2427  * Parse ICE_AQC_CAPS_VF for device capabilities.
2428  */
2429 static void
2430 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2431 		      struct ice_aqc_list_caps_elem *cap)
2432 {
2433 	u32 number = le32_to_cpu(cap->number);
2434 
2435 	dev_p->num_vfs_exposed = number;
2436 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2437 		  dev_p->num_vfs_exposed);
2438 }
2439 
2440 /**
2441  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2442  * @hw: pointer to the HW struct
2443  * @dev_p: pointer to device capabilities structure
2444  * @cap: capability element to parse
2445  *
2446  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2447  */
2448 static void
2449 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2450 		       struct ice_aqc_list_caps_elem *cap)
2451 {
2452 	u32 number = le32_to_cpu(cap->number);
2453 
2454 	dev_p->num_vsi_allocd_to_host = number;
2455 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2456 		  dev_p->num_vsi_allocd_to_host);
2457 }
2458 
2459 /**
2460  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2461  * @hw: pointer to the HW struct
2462  * @dev_p: pointer to device capabilities structure
2463  * @cap: capability element to parse
2464  *
2465  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2466  */
2467 static void
2468 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2469 			struct ice_aqc_list_caps_elem *cap)
2470 {
2471 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2472 	u32 logical_id = le32_to_cpu(cap->logical_id);
2473 	u32 phys_id = le32_to_cpu(cap->phys_id);
2474 	u32 number = le32_to_cpu(cap->number);
2475 
2476 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2477 	dev_p->common_cap.ieee_1588 = info->ena;
2478 
2479 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2480 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2481 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2482 
2483 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2484 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2485 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2486 
2487 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2488 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2489 
2490 	info->ena_ports = logical_id;
2491 	info->tmr_own_map = phys_id;
2492 
2493 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2494 		  dev_p->common_cap.ieee_1588);
2495 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2496 		  info->tmr0_owner);
2497 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2498 		  info->tmr0_owned);
2499 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2500 		  info->tmr0_ena);
2501 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2502 		  info->tmr1_owner);
2503 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2504 		  info->tmr1_owned);
2505 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2506 		  info->tmr1_ena);
2507 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2508 		  info->ts_ll_read);
2509 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2510 		  info->ts_ll_int_read);
2511 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2512 		  info->ena_ports);
2513 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2514 		  info->tmr_own_map);
2515 }
2516 
2517 /**
2518  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2519  * @hw: pointer to the HW struct
2520  * @dev_p: pointer to device capabilities structure
2521  * @cap: capability element to parse
2522  *
2523  * Parse ICE_AQC_CAPS_FD for device capabilities.
2524  */
2525 static void
2526 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2527 			struct ice_aqc_list_caps_elem *cap)
2528 {
2529 	u32 number = le32_to_cpu(cap->number);
2530 
2531 	dev_p->num_flow_director_fltr = number;
2532 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2533 		  dev_p->num_flow_director_fltr);
2534 }
2535 
2536 /**
2537  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2538  * @hw: pointer to the HW struct
2539  * @dev_p: pointer to device capabilities structure
2540  * @cap: capability element to parse
2541  *
2542  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2543  * enabled sensors.
2544  */
2545 static void
2546 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2547 			     struct ice_aqc_list_caps_elem *cap)
2548 {
2549 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2550 
2551 	ice_debug(hw, ICE_DBG_INIT,
2552 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2553 		  dev_p->supported_sensors);
2554 }
2555 
2556 /**
2557  * ice_parse_dev_caps - Parse device capabilities
2558  * @hw: pointer to the HW struct
2559  * @dev_p: pointer to device capabilities structure
2560  * @buf: buffer containing the device capability records
2561  * @cap_count: the number of capabilities
2562  *
2563  * Helper device to parse device (0x000B) capabilities list. For
2564  * capabilities shared between device and function, this relies on
2565  * ice_parse_common_caps.
2566  *
2567  * Loop through the list of provided capabilities and extract the relevant
2568  * data into the device capabilities structured.
2569  */
2570 static void
2571 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2572 		   void *buf, u32 cap_count)
2573 {
2574 	struct ice_aqc_list_caps_elem *cap_resp;
2575 	u32 i;
2576 
2577 	cap_resp = buf;
2578 
2579 	memset(dev_p, 0, sizeof(*dev_p));
2580 
2581 	for (i = 0; i < cap_count; i++) {
2582 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2583 		bool found;
2584 
2585 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2586 					      &cap_resp[i], "dev caps");
2587 
2588 		switch (cap) {
2589 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2590 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2591 			break;
2592 		case ICE_AQC_CAPS_VF:
2593 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2594 			break;
2595 		case ICE_AQC_CAPS_VSI:
2596 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2597 			break;
2598 		case ICE_AQC_CAPS_1588:
2599 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2600 			break;
2601 		case ICE_AQC_CAPS_FD:
2602 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2603 			break;
2604 		case ICE_AQC_CAPS_SENSOR_READING:
2605 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2606 			break;
2607 		default:
2608 			/* Don't list common capabilities as unknown */
2609 			if (!found)
2610 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2611 					  i, cap);
2612 			break;
2613 		}
2614 	}
2615 
2616 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2617 }
2618 
2619 /**
2620  * ice_is_pf_c827 - check if pf contains c827 phy
2621  * @hw: pointer to the hw struct
2622  */
2623 bool ice_is_pf_c827(struct ice_hw *hw)
2624 {
2625 	struct ice_aqc_get_link_topo cmd = {};
2626 	u8 node_part_number;
2627 	u16 node_handle;
2628 	int status;
2629 
2630 	if (hw->mac_type != ICE_MAC_E810)
2631 		return false;
2632 
2633 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2634 		return true;
2635 
2636 	cmd.addr.topo_params.node_type_ctx =
2637 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2638 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2639 	cmd.addr.topo_params.index = 0;
2640 
2641 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2642 					 &node_handle);
2643 
2644 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2645 		return false;
2646 
2647 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2648 		return true;
2649 
2650 	return false;
2651 }
2652 
2653 /**
2654  * ice_is_phy_rclk_in_netlist
2655  * @hw: pointer to the hw struct
2656  *
2657  * Check if the PHY Recovered Clock device is present in the netlist
2658  */
2659 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2660 {
2661 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2662 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2663 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2664 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2665 		return false;
2666 
2667 	return true;
2668 }
2669 
2670 /**
2671  * ice_is_clock_mux_in_netlist
2672  * @hw: pointer to the hw struct
2673  *
2674  * Check if the Clock Multiplexer device is present in the netlist
2675  */
2676 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2677 {
2678 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2679 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2680 				  NULL))
2681 		return false;
2682 
2683 	return true;
2684 }
2685 
2686 /**
2687  * ice_is_cgu_in_netlist - check for CGU presence
2688  * @hw: pointer to the hw struct
2689  *
2690  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2691  * Save the CGU part number in the hw structure for later use.
2692  * Return:
2693  * * true - cgu is present
2694  * * false - cgu is not present
2695  */
2696 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2697 {
2698 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2699 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2700 				   NULL)) {
2701 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2702 		return true;
2703 	} else if (!ice_find_netlist_node(hw,
2704 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2705 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2706 					  NULL)) {
2707 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2708 		return true;
2709 	}
2710 
2711 	return false;
2712 }
2713 
2714 /**
2715  * ice_is_gps_in_netlist
2716  * @hw: pointer to the hw struct
2717  *
2718  * Check if the GPS generic device is present in the netlist
2719  */
2720 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2721 {
2722 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2723 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2724 		return false;
2725 
2726 	return true;
2727 }
2728 
2729 /**
2730  * ice_aq_list_caps - query function/device capabilities
2731  * @hw: pointer to the HW struct
2732  * @buf: a buffer to hold the capabilities
2733  * @buf_size: size of the buffer
2734  * @cap_count: if not NULL, set to the number of capabilities reported
2735  * @opc: capabilities type to discover, device or function
2736  * @cd: pointer to command details structure or NULL
2737  *
2738  * Get the function (0x000A) or device (0x000B) capabilities description from
2739  * firmware and store it in the buffer.
2740  *
2741  * If the cap_count pointer is not NULL, then it is set to the number of
2742  * capabilities firmware will report. Note that if the buffer size is too
2743  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2744  * cap_count will still be updated in this case. It is recommended that the
2745  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2746  * firmware could return) to avoid this.
2747  */
2748 int
2749 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2750 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2751 {
2752 	struct ice_aqc_list_caps *cmd;
2753 	struct ice_aq_desc desc;
2754 	int status;
2755 
2756 	cmd = &desc.params.get_cap;
2757 
2758 	if (opc != ice_aqc_opc_list_func_caps &&
2759 	    opc != ice_aqc_opc_list_dev_caps)
2760 		return -EINVAL;
2761 
2762 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2763 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2764 
2765 	if (cap_count)
2766 		*cap_count = le32_to_cpu(cmd->count);
2767 
2768 	return status;
2769 }
2770 
2771 /**
2772  * ice_discover_dev_caps - Read and extract device capabilities
2773  * @hw: pointer to the hardware structure
2774  * @dev_caps: pointer to device capabilities structure
2775  *
2776  * Read the device capabilities and extract them into the dev_caps structure
2777  * for later use.
2778  */
2779 int
2780 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2781 {
2782 	u32 cap_count = 0;
2783 	void *cbuf;
2784 	int status;
2785 
2786 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2787 	if (!cbuf)
2788 		return -ENOMEM;
2789 
2790 	/* Although the driver doesn't know the number of capabilities the
2791 	 * device will return, we can simply send a 4KB buffer, the maximum
2792 	 * possible size that firmware can return.
2793 	 */
2794 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2795 
2796 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2797 				  ice_aqc_opc_list_dev_caps, NULL);
2798 	if (!status)
2799 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2800 	kfree(cbuf);
2801 
2802 	return status;
2803 }
2804 
2805 /**
2806  * ice_discover_func_caps - Read and extract function capabilities
2807  * @hw: pointer to the hardware structure
2808  * @func_caps: pointer to function capabilities structure
2809  *
2810  * Read the function capabilities and extract them into the func_caps structure
2811  * for later use.
2812  */
2813 static int
2814 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2815 {
2816 	u32 cap_count = 0;
2817 	void *cbuf;
2818 	int status;
2819 
2820 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2821 	if (!cbuf)
2822 		return -ENOMEM;
2823 
2824 	/* Although the driver doesn't know the number of capabilities the
2825 	 * device will return, we can simply send a 4KB buffer, the maximum
2826 	 * possible size that firmware can return.
2827 	 */
2828 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2829 
2830 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2831 				  ice_aqc_opc_list_func_caps, NULL);
2832 	if (!status)
2833 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2834 	kfree(cbuf);
2835 
2836 	return status;
2837 }
2838 
2839 /**
2840  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2841  * @hw: pointer to the hardware structure
2842  */
2843 void ice_set_safe_mode_caps(struct ice_hw *hw)
2844 {
2845 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2846 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2847 	struct ice_hw_common_caps cached_caps;
2848 	u32 num_funcs;
2849 
2850 	/* cache some func_caps values that should be restored after memset */
2851 	cached_caps = func_caps->common_cap;
2852 
2853 	/* unset func capabilities */
2854 	memset(func_caps, 0, sizeof(*func_caps));
2855 
2856 #define ICE_RESTORE_FUNC_CAP(name) \
2857 	func_caps->common_cap.name = cached_caps.name
2858 
2859 	/* restore cached values */
2860 	ICE_RESTORE_FUNC_CAP(valid_functions);
2861 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2862 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2863 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2864 	ICE_RESTORE_FUNC_CAP(max_mtu);
2865 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2866 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2867 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2868 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2869 
2870 	/* one Tx and one Rx queue in safe mode */
2871 	func_caps->common_cap.num_rxq = 1;
2872 	func_caps->common_cap.num_txq = 1;
2873 
2874 	/* two MSIX vectors, one for traffic and one for misc causes */
2875 	func_caps->common_cap.num_msix_vectors = 2;
2876 	func_caps->guar_num_vsi = 1;
2877 
2878 	/* cache some dev_caps values that should be restored after memset */
2879 	cached_caps = dev_caps->common_cap;
2880 	num_funcs = dev_caps->num_funcs;
2881 
2882 	/* unset dev capabilities */
2883 	memset(dev_caps, 0, sizeof(*dev_caps));
2884 
2885 #define ICE_RESTORE_DEV_CAP(name) \
2886 	dev_caps->common_cap.name = cached_caps.name
2887 
2888 	/* restore cached values */
2889 	ICE_RESTORE_DEV_CAP(valid_functions);
2890 	ICE_RESTORE_DEV_CAP(txq_first_id);
2891 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2892 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2893 	ICE_RESTORE_DEV_CAP(max_mtu);
2894 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2895 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2896 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2897 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2898 	dev_caps->num_funcs = num_funcs;
2899 
2900 	/* one Tx and one Rx queue per function in safe mode */
2901 	dev_caps->common_cap.num_rxq = num_funcs;
2902 	dev_caps->common_cap.num_txq = num_funcs;
2903 
2904 	/* two MSIX vectors per function */
2905 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2906 }
2907 
2908 /**
2909  * ice_get_caps - get info about the HW
2910  * @hw: pointer to the hardware structure
2911  */
2912 int ice_get_caps(struct ice_hw *hw)
2913 {
2914 	int status;
2915 
2916 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2917 	if (status)
2918 		return status;
2919 
2920 	return ice_discover_func_caps(hw, &hw->func_caps);
2921 }
2922 
2923 /**
2924  * ice_aq_manage_mac_write - manage MAC address write command
2925  * @hw: pointer to the HW struct
2926  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2927  * @flags: flags to control write behavior
2928  * @cd: pointer to command details structure or NULL
2929  *
2930  * This function is used to write MAC address to the NVM (0x0108).
2931  */
2932 int
2933 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2934 			struct ice_sq_cd *cd)
2935 {
2936 	struct ice_aqc_manage_mac_write *cmd;
2937 	struct ice_aq_desc desc;
2938 
2939 	cmd = &desc.params.mac_write;
2940 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2941 
2942 	cmd->flags = flags;
2943 	ether_addr_copy(cmd->mac_addr, mac_addr);
2944 
2945 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2946 }
2947 
2948 /**
2949  * ice_aq_clear_pxe_mode
2950  * @hw: pointer to the HW struct
2951  *
2952  * Tell the firmware that the driver is taking over from PXE (0x0110).
2953  */
2954 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2955 {
2956 	struct ice_aq_desc desc;
2957 
2958 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2959 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2960 
2961 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2962 }
2963 
2964 /**
2965  * ice_clear_pxe_mode - clear pxe operations mode
2966  * @hw: pointer to the HW struct
2967  *
2968  * Make sure all PXE mode settings are cleared, including things
2969  * like descriptor fetch/write-back mode.
2970  */
2971 void ice_clear_pxe_mode(struct ice_hw *hw)
2972 {
2973 	if (ice_check_sq_alive(hw, &hw->adminq))
2974 		ice_aq_clear_pxe_mode(hw);
2975 }
2976 
2977 /**
2978  * ice_aq_set_port_params - set physical port parameters.
2979  * @pi: pointer to the port info struct
2980  * @double_vlan: if set double VLAN is enabled
2981  * @cd: pointer to command details structure or NULL
2982  *
2983  * Set Physical port parameters (0x0203)
2984  */
2985 int
2986 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2987 		       struct ice_sq_cd *cd)
2988 
2989 {
2990 	struct ice_aqc_set_port_params *cmd;
2991 	struct ice_hw *hw = pi->hw;
2992 	struct ice_aq_desc desc;
2993 	u16 cmd_flags = 0;
2994 
2995 	cmd = &desc.params.set_port_params;
2996 
2997 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2998 	if (double_vlan)
2999 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3000 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3001 
3002 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3003 }
3004 
3005 /**
3006  * ice_is_100m_speed_supported
3007  * @hw: pointer to the HW struct
3008  *
3009  * returns true if 100M speeds are supported by the device,
3010  * false otherwise.
3011  */
3012 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3013 {
3014 	switch (hw->device_id) {
3015 	case ICE_DEV_ID_E822C_SGMII:
3016 	case ICE_DEV_ID_E822L_SGMII:
3017 	case ICE_DEV_ID_E823L_1GBE:
3018 	case ICE_DEV_ID_E823C_SGMII:
3019 		return true;
3020 	default:
3021 		return false;
3022 	}
3023 }
3024 
3025 /**
3026  * ice_get_link_speed_based_on_phy_type - returns link speed
3027  * @phy_type_low: lower part of phy_type
3028  * @phy_type_high: higher part of phy_type
3029  *
3030  * This helper function will convert an entry in PHY type structure
3031  * [phy_type_low, phy_type_high] to its corresponding link speed.
3032  * Note: In the structure of [phy_type_low, phy_type_high], there should
3033  * be one bit set, as this function will convert one PHY type to its
3034  * speed.
3035  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3036  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3037  */
3038 static u16
3039 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3040 {
3041 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3042 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3043 
3044 	switch (phy_type_low) {
3045 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3046 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3047 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3048 		break;
3049 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3050 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3051 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3052 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3053 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3054 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3055 		break;
3056 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3057 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3058 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3059 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3060 		break;
3061 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3062 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3063 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3064 		break;
3065 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3066 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3067 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3068 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3069 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3070 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3071 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3072 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3073 		break;
3074 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3075 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3076 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3077 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3078 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3079 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3080 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3081 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3082 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3083 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3084 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3085 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3086 		break;
3087 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3088 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3089 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3090 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3091 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3092 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3093 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3094 		break;
3095 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3096 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3097 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3098 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3099 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3100 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3101 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3102 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3103 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3104 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3105 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3106 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3107 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3108 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3109 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3110 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3111 		break;
3112 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3113 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3114 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3115 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3116 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3117 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3118 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3119 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3120 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3121 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3122 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3123 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3124 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3125 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3126 		break;
3127 	default:
3128 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3129 		break;
3130 	}
3131 
3132 	switch (phy_type_high) {
3133 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3134 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3135 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3136 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3137 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3138 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3139 		break;
3140 	default:
3141 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3142 		break;
3143 	}
3144 
3145 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3146 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3147 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3148 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3149 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3150 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3151 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3152 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3153 		return speed_phy_type_low;
3154 	else
3155 		return speed_phy_type_high;
3156 }
3157 
3158 /**
3159  * ice_update_phy_type
3160  * @phy_type_low: pointer to the lower part of phy_type
3161  * @phy_type_high: pointer to the higher part of phy_type
3162  * @link_speeds_bitmap: targeted link speeds bitmap
3163  *
3164  * Note: For the link_speeds_bitmap structure, you can check it at
3165  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3166  * link_speeds_bitmap include multiple speeds.
3167  *
3168  * Each entry in this [phy_type_low, phy_type_high] structure will
3169  * present a certain link speed. This helper function will turn on bits
3170  * in [phy_type_low, phy_type_high] structure based on the value of
3171  * link_speeds_bitmap input parameter.
3172  */
3173 void
3174 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3175 		    u16 link_speeds_bitmap)
3176 {
3177 	u64 pt_high;
3178 	u64 pt_low;
3179 	int index;
3180 	u16 speed;
3181 
3182 	/* We first check with low part of phy_type */
3183 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3184 		pt_low = BIT_ULL(index);
3185 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3186 
3187 		if (link_speeds_bitmap & speed)
3188 			*phy_type_low |= BIT_ULL(index);
3189 	}
3190 
3191 	/* We then check with high part of phy_type */
3192 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3193 		pt_high = BIT_ULL(index);
3194 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3195 
3196 		if (link_speeds_bitmap & speed)
3197 			*phy_type_high |= BIT_ULL(index);
3198 	}
3199 }
3200 
3201 /**
3202  * ice_aq_set_phy_cfg
3203  * @hw: pointer to the HW struct
3204  * @pi: port info structure of the interested logical port
3205  * @cfg: structure with PHY configuration data to be set
3206  * @cd: pointer to command details structure or NULL
3207  *
3208  * Set the various PHY configuration parameters supported on the Port.
3209  * One or more of the Set PHY config parameters may be ignored in an MFP
3210  * mode as the PF may not have the privilege to set some of the PHY Config
3211  * parameters. This status will be indicated by the command response (0x0601).
3212  */
3213 int
3214 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3215 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3216 {
3217 	struct ice_aq_desc desc;
3218 	int status;
3219 
3220 	if (!cfg)
3221 		return -EINVAL;
3222 
3223 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3224 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3225 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3226 			  cfg->caps);
3227 
3228 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3229 	}
3230 
3231 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3232 	desc.params.set_phy.lport_num = pi->lport;
3233 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3234 
3235 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3236 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3237 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3238 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3239 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3240 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3241 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3242 		  cfg->low_power_ctrl_an);
3243 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3244 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3245 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3246 		  cfg->link_fec_opt);
3247 
3248 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3249 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3250 		status = 0;
3251 
3252 	if (!status)
3253 		pi->phy.curr_user_phy_cfg = *cfg;
3254 
3255 	return status;
3256 }
3257 
3258 /**
3259  * ice_update_link_info - update status of the HW network link
3260  * @pi: port info structure of the interested logical port
3261  */
3262 int ice_update_link_info(struct ice_port_info *pi)
3263 {
3264 	struct ice_link_status *li;
3265 	int status;
3266 
3267 	if (!pi)
3268 		return -EINVAL;
3269 
3270 	li = &pi->phy.link_info;
3271 
3272 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3273 	if (status)
3274 		return status;
3275 
3276 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3277 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree);
3278 
3279 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3280 		if (!pcaps)
3281 			return -ENOMEM;
3282 
3283 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3284 					     pcaps, NULL);
3285 	}
3286 
3287 	return status;
3288 }
3289 
3290 /**
3291  * ice_cache_phy_user_req
3292  * @pi: port information structure
3293  * @cache_data: PHY logging data
3294  * @cache_mode: PHY logging mode
3295  *
3296  * Log the user request on (FC, FEC, SPEED) for later use.
3297  */
3298 static void
3299 ice_cache_phy_user_req(struct ice_port_info *pi,
3300 		       struct ice_phy_cache_mode_data cache_data,
3301 		       enum ice_phy_cache_mode cache_mode)
3302 {
3303 	if (!pi)
3304 		return;
3305 
3306 	switch (cache_mode) {
3307 	case ICE_FC_MODE:
3308 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3309 		break;
3310 	case ICE_SPEED_MODE:
3311 		pi->phy.curr_user_speed_req =
3312 			cache_data.data.curr_user_speed_req;
3313 		break;
3314 	case ICE_FEC_MODE:
3315 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3316 		break;
3317 	default:
3318 		break;
3319 	}
3320 }
3321 
3322 /**
3323  * ice_caps_to_fc_mode
3324  * @caps: PHY capabilities
3325  *
3326  * Convert PHY FC capabilities to ice FC mode
3327  */
3328 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3329 {
3330 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3331 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3332 		return ICE_FC_FULL;
3333 
3334 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3335 		return ICE_FC_TX_PAUSE;
3336 
3337 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3338 		return ICE_FC_RX_PAUSE;
3339 
3340 	return ICE_FC_NONE;
3341 }
3342 
3343 /**
3344  * ice_caps_to_fec_mode
3345  * @caps: PHY capabilities
3346  * @fec_options: Link FEC options
3347  *
3348  * Convert PHY FEC capabilities to ice FEC mode
3349  */
3350 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3351 {
3352 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3353 		return ICE_FEC_AUTO;
3354 
3355 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3356 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3357 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3358 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3359 		return ICE_FEC_BASER;
3360 
3361 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3362 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3363 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3364 		return ICE_FEC_RS;
3365 
3366 	return ICE_FEC_NONE;
3367 }
3368 
3369 /**
3370  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3371  * @pi: port information structure
3372  * @cfg: PHY configuration data to set FC mode
3373  * @req_mode: FC mode to configure
3374  */
3375 int
3376 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3377 	       enum ice_fc_mode req_mode)
3378 {
3379 	struct ice_phy_cache_mode_data cache_data;
3380 	u8 pause_mask = 0x0;
3381 
3382 	if (!pi || !cfg)
3383 		return -EINVAL;
3384 
3385 	switch (req_mode) {
3386 	case ICE_FC_FULL:
3387 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3388 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3389 		break;
3390 	case ICE_FC_RX_PAUSE:
3391 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3392 		break;
3393 	case ICE_FC_TX_PAUSE:
3394 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3395 		break;
3396 	default:
3397 		break;
3398 	}
3399 
3400 	/* clear the old pause settings */
3401 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3402 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3403 
3404 	/* set the new capabilities */
3405 	cfg->caps |= pause_mask;
3406 
3407 	/* Cache user FC request */
3408 	cache_data.data.curr_user_fc_req = req_mode;
3409 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3410 
3411 	return 0;
3412 }
3413 
3414 /**
3415  * ice_set_fc
3416  * @pi: port information structure
3417  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3418  * @ena_auto_link_update: enable automatic link update
3419  *
3420  * Set the requested flow control mode.
3421  */
3422 int
3423 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3424 {
3425 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree);
3426 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3427 	struct ice_hw *hw;
3428 	int status;
3429 
3430 	if (!pi || !aq_failures)
3431 		return -EINVAL;
3432 
3433 	*aq_failures = 0;
3434 	hw = pi->hw;
3435 
3436 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3437 	if (!pcaps)
3438 		return -ENOMEM;
3439 
3440 	/* Get the current PHY config */
3441 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3442 				     pcaps, NULL);
3443 	if (status) {
3444 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3445 		goto out;
3446 	}
3447 
3448 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3449 
3450 	/* Configure the set PHY data */
3451 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3452 	if (status)
3453 		goto out;
3454 
3455 	/* If the capabilities have changed, then set the new config */
3456 	if (cfg.caps != pcaps->caps) {
3457 		int retry_count, retry_max = 10;
3458 
3459 		/* Auto restart link so settings take effect */
3460 		if (ena_auto_link_update)
3461 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3462 
3463 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3464 		if (status) {
3465 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3466 			goto out;
3467 		}
3468 
3469 		/* Update the link info
3470 		 * It sometimes takes a really long time for link to
3471 		 * come back from the atomic reset. Thus, we wait a
3472 		 * little bit.
3473 		 */
3474 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3475 			status = ice_update_link_info(pi);
3476 
3477 			if (!status)
3478 				break;
3479 
3480 			mdelay(100);
3481 		}
3482 
3483 		if (status)
3484 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3485 	}
3486 
3487 out:
3488 	return status;
3489 }
3490 
3491 /**
3492  * ice_phy_caps_equals_cfg
3493  * @phy_caps: PHY capabilities
3494  * @phy_cfg: PHY configuration
3495  *
3496  * Helper function to determine if PHY capabilities matches PHY
3497  * configuration
3498  */
3499 bool
3500 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3501 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3502 {
3503 	u8 caps_mask, cfg_mask;
3504 
3505 	if (!phy_caps || !phy_cfg)
3506 		return false;
3507 
3508 	/* These bits are not common between capabilities and configuration.
3509 	 * Do not use them to determine equality.
3510 	 */
3511 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3512 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3513 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3514 
3515 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3516 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3517 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3518 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3519 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3520 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3521 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3522 		return false;
3523 
3524 	return true;
3525 }
3526 
3527 /**
3528  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3529  * @pi: port information structure
3530  * @caps: PHY ability structure to copy date from
3531  * @cfg: PHY configuration structure to copy data to
3532  *
3533  * Helper function to copy AQC PHY get ability data to PHY set configuration
3534  * data structure
3535  */
3536 void
3537 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3538 			 struct ice_aqc_get_phy_caps_data *caps,
3539 			 struct ice_aqc_set_phy_cfg_data *cfg)
3540 {
3541 	if (!pi || !caps || !cfg)
3542 		return;
3543 
3544 	memset(cfg, 0, sizeof(*cfg));
3545 	cfg->phy_type_low = caps->phy_type_low;
3546 	cfg->phy_type_high = caps->phy_type_high;
3547 	cfg->caps = caps->caps;
3548 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3549 	cfg->eee_cap = caps->eee_cap;
3550 	cfg->eeer_value = caps->eeer_value;
3551 	cfg->link_fec_opt = caps->link_fec_options;
3552 	cfg->module_compliance_enforcement =
3553 		caps->module_compliance_enforcement;
3554 }
3555 
3556 /**
3557  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3558  * @pi: port information structure
3559  * @cfg: PHY configuration data to set FEC mode
3560  * @fec: FEC mode to configure
3561  */
3562 int
3563 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3564 		enum ice_fec_mode fec)
3565 {
3566 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree);
3567 	struct ice_hw *hw;
3568 	int status;
3569 
3570 	if (!pi || !cfg)
3571 		return -EINVAL;
3572 
3573 	hw = pi->hw;
3574 
3575 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3576 	if (!pcaps)
3577 		return -ENOMEM;
3578 
3579 	status = ice_aq_get_phy_caps(pi, false,
3580 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3581 				      ICE_AQC_REPORT_DFLT_CFG :
3582 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3583 	if (status)
3584 		goto out;
3585 
3586 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3587 	cfg->link_fec_opt = pcaps->link_fec_options;
3588 
3589 	switch (fec) {
3590 	case ICE_FEC_BASER:
3591 		/* Clear RS bits, and AND BASE-R ability
3592 		 * bits and OR request bits.
3593 		 */
3594 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3595 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3596 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3597 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3598 		break;
3599 	case ICE_FEC_RS:
3600 		/* Clear BASE-R bits, and AND RS ability
3601 		 * bits and OR request bits.
3602 		 */
3603 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3604 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3605 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3606 		break;
3607 	case ICE_FEC_NONE:
3608 		/* Clear all FEC option bits. */
3609 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3610 		break;
3611 	case ICE_FEC_AUTO:
3612 		/* AND auto FEC bit, and all caps bits. */
3613 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3614 		cfg->link_fec_opt |= pcaps->link_fec_options;
3615 		break;
3616 	default:
3617 		status = -EINVAL;
3618 		break;
3619 	}
3620 
3621 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3622 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3623 		struct ice_link_default_override_tlv tlv = { 0 };
3624 
3625 		status = ice_get_link_default_override(&tlv, pi);
3626 		if (status)
3627 			goto out;
3628 
3629 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3630 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3631 			cfg->link_fec_opt = tlv.fec_options;
3632 	}
3633 
3634 out:
3635 	return status;
3636 }
3637 
3638 /**
3639  * ice_get_link_status - get status of the HW network link
3640  * @pi: port information structure
3641  * @link_up: pointer to bool (true/false = linkup/linkdown)
3642  *
3643  * Variable link_up is true if link is up, false if link is down.
3644  * The variable link_up is invalid if status is non zero. As a
3645  * result of this call, link status reporting becomes enabled
3646  */
3647 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3648 {
3649 	struct ice_phy_info *phy_info;
3650 	int status = 0;
3651 
3652 	if (!pi || !link_up)
3653 		return -EINVAL;
3654 
3655 	phy_info = &pi->phy;
3656 
3657 	if (phy_info->get_link_info) {
3658 		status = ice_update_link_info(pi);
3659 
3660 		if (status)
3661 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3662 				  status);
3663 	}
3664 
3665 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3666 
3667 	return status;
3668 }
3669 
3670 /**
3671  * ice_aq_set_link_restart_an
3672  * @pi: pointer to the port information structure
3673  * @ena_link: if true: enable link, if false: disable link
3674  * @cd: pointer to command details structure or NULL
3675  *
3676  * Sets up the link and restarts the Auto-Negotiation over the link.
3677  */
3678 int
3679 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3680 			   struct ice_sq_cd *cd)
3681 {
3682 	struct ice_aqc_restart_an *cmd;
3683 	struct ice_aq_desc desc;
3684 
3685 	cmd = &desc.params.restart_an;
3686 
3687 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3688 
3689 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3690 	cmd->lport_num = pi->lport;
3691 	if (ena_link)
3692 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3693 	else
3694 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3695 
3696 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3697 }
3698 
3699 /**
3700  * ice_aq_set_event_mask
3701  * @hw: pointer to the HW struct
3702  * @port_num: port number of the physical function
3703  * @mask: event mask to be set
3704  * @cd: pointer to command details structure or NULL
3705  *
3706  * Set event mask (0x0613)
3707  */
3708 int
3709 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3710 		      struct ice_sq_cd *cd)
3711 {
3712 	struct ice_aqc_set_event_mask *cmd;
3713 	struct ice_aq_desc desc;
3714 
3715 	cmd = &desc.params.set_event_mask;
3716 
3717 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3718 
3719 	cmd->lport_num = port_num;
3720 
3721 	cmd->event_mask = cpu_to_le16(mask);
3722 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3723 }
3724 
3725 /**
3726  * ice_aq_set_mac_loopback
3727  * @hw: pointer to the HW struct
3728  * @ena_lpbk: Enable or Disable loopback
3729  * @cd: pointer to command details structure or NULL
3730  *
3731  * Enable/disable loopback on a given port
3732  */
3733 int
3734 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3735 {
3736 	struct ice_aqc_set_mac_lb *cmd;
3737 	struct ice_aq_desc desc;
3738 
3739 	cmd = &desc.params.set_mac_lb;
3740 
3741 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3742 	if (ena_lpbk)
3743 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3744 
3745 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3746 }
3747 
3748 /**
3749  * ice_aq_set_port_id_led
3750  * @pi: pointer to the port information
3751  * @is_orig_mode: is this LED set to original mode (by the net-list)
3752  * @cd: pointer to command details structure or NULL
3753  *
3754  * Set LED value for the given port (0x06e9)
3755  */
3756 int
3757 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3758 		       struct ice_sq_cd *cd)
3759 {
3760 	struct ice_aqc_set_port_id_led *cmd;
3761 	struct ice_hw *hw = pi->hw;
3762 	struct ice_aq_desc desc;
3763 
3764 	cmd = &desc.params.set_port_id_led;
3765 
3766 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3767 
3768 	if (is_orig_mode)
3769 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3770 	else
3771 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3772 
3773 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3774 }
3775 
3776 /**
3777  * ice_aq_get_port_options
3778  * @hw: pointer to the HW struct
3779  * @options: buffer for the resultant port options
3780  * @option_count: input - size of the buffer in port options structures,
3781  *                output - number of returned port options
3782  * @lport: logical port to call the command with (optional)
3783  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3784  *               when PF owns more than 1 port it must be true
3785  * @active_option_idx: index of active port option in returned buffer
3786  * @active_option_valid: active option in returned buffer is valid
3787  * @pending_option_idx: index of pending port option in returned buffer
3788  * @pending_option_valid: pending option in returned buffer is valid
3789  *
3790  * Calls Get Port Options AQC (0x06ea) and verifies result.
3791  */
3792 int
3793 ice_aq_get_port_options(struct ice_hw *hw,
3794 			struct ice_aqc_get_port_options_elem *options,
3795 			u8 *option_count, u8 lport, bool lport_valid,
3796 			u8 *active_option_idx, bool *active_option_valid,
3797 			u8 *pending_option_idx, bool *pending_option_valid)
3798 {
3799 	struct ice_aqc_get_port_options *cmd;
3800 	struct ice_aq_desc desc;
3801 	int status;
3802 	u8 i;
3803 
3804 	/* options buffer shall be able to hold max returned options */
3805 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3806 		return -EINVAL;
3807 
3808 	cmd = &desc.params.get_port_options;
3809 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3810 
3811 	if (lport_valid)
3812 		cmd->lport_num = lport;
3813 	cmd->lport_num_valid = lport_valid;
3814 
3815 	status = ice_aq_send_cmd(hw, &desc, options,
3816 				 *option_count * sizeof(*options), NULL);
3817 	if (status)
3818 		return status;
3819 
3820 	/* verify direct FW response & set output parameters */
3821 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3822 				  cmd->port_options_count);
3823 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3824 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3825 					 cmd->port_options);
3826 	if (*active_option_valid) {
3827 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3828 					       cmd->port_options);
3829 		if (*active_option_idx > (*option_count - 1))
3830 			return -EIO;
3831 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3832 			  *active_option_idx);
3833 	}
3834 
3835 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3836 					  cmd->pending_port_option_status);
3837 	if (*pending_option_valid) {
3838 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3839 						cmd->pending_port_option_status);
3840 		if (*pending_option_idx > (*option_count - 1))
3841 			return -EIO;
3842 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3843 			  *pending_option_idx);
3844 	}
3845 
3846 	/* mask output options fields */
3847 	for (i = 0; i < *option_count; i++) {
3848 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3849 					   options[i].pmd);
3850 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3851 						      options[i].max_lane_speed);
3852 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3853 			  options[i].pmd, options[i].max_lane_speed);
3854 	}
3855 
3856 	return 0;
3857 }
3858 
3859 /**
3860  * ice_aq_set_port_option
3861  * @hw: pointer to the HW struct
3862  * @lport: logical port to call the command with
3863  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3864  *               when PF owns more than 1 port it must be true
3865  * @new_option: new port option to be written
3866  *
3867  * Calls Set Port Options AQC (0x06eb).
3868  */
3869 int
3870 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3871 		       u8 new_option)
3872 {
3873 	struct ice_aqc_set_port_option *cmd;
3874 	struct ice_aq_desc desc;
3875 
3876 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3877 		return -EINVAL;
3878 
3879 	cmd = &desc.params.set_port_option;
3880 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3881 
3882 	if (lport_valid)
3883 		cmd->lport_num = lport;
3884 
3885 	cmd->lport_num_valid = lport_valid;
3886 	cmd->selected_port_option = new_option;
3887 
3888 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3889 }
3890 
3891 /**
3892  * ice_aq_sff_eeprom
3893  * @hw: pointer to the HW struct
3894  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3895  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3896  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3897  * @page: QSFP page
3898  * @set_page: set or ignore the page
3899  * @data: pointer to data buffer to be read/written to the I2C device.
3900  * @length: 1-16 for read, 1 for write.
3901  * @write: 0 read, 1 for write.
3902  * @cd: pointer to command details structure or NULL
3903  *
3904  * Read/Write SFF EEPROM (0x06EE)
3905  */
3906 int
3907 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3908 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3909 		  bool write, struct ice_sq_cd *cd)
3910 {
3911 	struct ice_aqc_sff_eeprom *cmd;
3912 	struct ice_aq_desc desc;
3913 	u16 i2c_bus_addr;
3914 	int status;
3915 
3916 	if (!data || (mem_addr & 0xff00))
3917 		return -EINVAL;
3918 
3919 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3920 	cmd = &desc.params.read_write_sff_param;
3921 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3922 	cmd->lport_num = (u8)(lport & 0xff);
3923 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3924 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3925 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3926 	if (write)
3927 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3928 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3929 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3930 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
3931 
3932 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3933 	return status;
3934 }
3935 
3936 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3937 {
3938 	switch (type) {
3939 	case ICE_LUT_VSI:
3940 		return ICE_LUT_VSI_SIZE;
3941 	case ICE_LUT_GLOBAL:
3942 		return ICE_LUT_GLOBAL_SIZE;
3943 	case ICE_LUT_PF:
3944 		return ICE_LUT_PF_SIZE;
3945 	}
3946 	WARN_ONCE(1, "incorrect type passed");
3947 	return ICE_LUT_VSI_SIZE;
3948 }
3949 
3950 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3951 {
3952 	switch (size) {
3953 	case ICE_LUT_VSI_SIZE:
3954 		return ICE_AQC_LUT_SIZE_SMALL;
3955 	case ICE_LUT_GLOBAL_SIZE:
3956 		return ICE_AQC_LUT_SIZE_512;
3957 	case ICE_LUT_PF_SIZE:
3958 		return ICE_AQC_LUT_SIZE_2K;
3959 	}
3960 	WARN_ONCE(1, "incorrect size passed");
3961 	return 0;
3962 }
3963 
3964 /**
3965  * __ice_aq_get_set_rss_lut
3966  * @hw: pointer to the hardware structure
3967  * @params: RSS LUT parameters
3968  * @set: set true to set the table, false to get the table
3969  *
3970  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3971  */
3972 static int
3973 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
3974 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
3975 {
3976 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3977 	enum ice_lut_type lut_type = params->lut_type;
3978 	struct ice_aqc_get_set_rss_lut *desc_params;
3979 	enum ice_aqc_lut_flags flags;
3980 	enum ice_lut_size lut_size;
3981 	struct ice_aq_desc desc;
3982 	u8 *lut = params->lut;
3983 
3984 
3985 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3986 		return -EINVAL;
3987 
3988 	lut_size = ice_lut_type_to_size(lut_type);
3989 	if (lut_size > params->lut_size)
3990 		return -EINVAL;
3991 	else if (set && lut_size != params->lut_size)
3992 		return -EINVAL;
3993 
3994 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
3995 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
3996 	if (set)
3997 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3998 
3999 	desc_params = &desc.params.get_set_rss_lut;
4000 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4001 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4002 
4003 	if (lut_type == ICE_LUT_GLOBAL)
4004 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4005 					  params->global_lut_id);
4006 
4007 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4008 	desc_params->flags = cpu_to_le16(flags);
4009 
4010 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4011 }
4012 
4013 /**
4014  * ice_aq_get_rss_lut
4015  * @hw: pointer to the hardware structure
4016  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4017  *
4018  * get the RSS lookup table, PF or VSI type
4019  */
4020 int
4021 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4022 {
4023 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4024 }
4025 
4026 /**
4027  * ice_aq_set_rss_lut
4028  * @hw: pointer to the hardware structure
4029  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4030  *
4031  * set the RSS lookup table, PF or VSI type
4032  */
4033 int
4034 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4035 {
4036 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4037 }
4038 
4039 /**
4040  * __ice_aq_get_set_rss_key
4041  * @hw: pointer to the HW struct
4042  * @vsi_id: VSI FW index
4043  * @key: pointer to key info struct
4044  * @set: set true to set the key, false to get the key
4045  *
4046  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4047  */
4048 static int
4049 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4050 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4051 {
4052 	struct ice_aqc_get_set_rss_key *desc_params;
4053 	u16 key_size = sizeof(*key);
4054 	struct ice_aq_desc desc;
4055 
4056 	if (set) {
4057 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4058 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4059 	} else {
4060 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4061 	}
4062 
4063 	desc_params = &desc.params.get_set_rss_key;
4064 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4065 
4066 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4067 }
4068 
4069 /**
4070  * ice_aq_get_rss_key
4071  * @hw: pointer to the HW struct
4072  * @vsi_handle: software VSI handle
4073  * @key: pointer to key info struct
4074  *
4075  * get the RSS key per VSI
4076  */
4077 int
4078 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4079 		   struct ice_aqc_get_set_rss_keys *key)
4080 {
4081 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4082 		return -EINVAL;
4083 
4084 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4085 					key, false);
4086 }
4087 
4088 /**
4089  * ice_aq_set_rss_key
4090  * @hw: pointer to the HW struct
4091  * @vsi_handle: software VSI handle
4092  * @keys: pointer to key info struct
4093  *
4094  * set the RSS key per VSI
4095  */
4096 int
4097 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4098 		   struct ice_aqc_get_set_rss_keys *keys)
4099 {
4100 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4101 		return -EINVAL;
4102 
4103 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4104 					keys, true);
4105 }
4106 
4107 /**
4108  * ice_aq_add_lan_txq
4109  * @hw: pointer to the hardware structure
4110  * @num_qgrps: Number of added queue groups
4111  * @qg_list: list of queue groups to be added
4112  * @buf_size: size of buffer for indirect command
4113  * @cd: pointer to command details structure or NULL
4114  *
4115  * Add Tx LAN queue (0x0C30)
4116  *
4117  * NOTE:
4118  * Prior to calling add Tx LAN queue:
4119  * Initialize the following as part of the Tx queue context:
4120  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4121  * Cache profile and Packet shaper profile.
4122  *
4123  * After add Tx LAN queue AQ command is completed:
4124  * Interrupts should be associated with specific queues,
4125  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4126  * flow.
4127  */
4128 static int
4129 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4130 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4131 		   struct ice_sq_cd *cd)
4132 {
4133 	struct ice_aqc_add_tx_qgrp *list;
4134 	struct ice_aqc_add_txqs *cmd;
4135 	struct ice_aq_desc desc;
4136 	u16 i, sum_size = 0;
4137 
4138 	cmd = &desc.params.add_txqs;
4139 
4140 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4141 
4142 	if (!qg_list)
4143 		return -EINVAL;
4144 
4145 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4146 		return -EINVAL;
4147 
4148 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4149 		sum_size += struct_size(list, txqs, list->num_txqs);
4150 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4151 						      list->num_txqs);
4152 	}
4153 
4154 	if (buf_size != sum_size)
4155 		return -EINVAL;
4156 
4157 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4158 
4159 	cmd->num_qgrps = num_qgrps;
4160 
4161 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4162 }
4163 
4164 /**
4165  * ice_aq_dis_lan_txq
4166  * @hw: pointer to the hardware structure
4167  * @num_qgrps: number of groups in the list
4168  * @qg_list: the list of groups to disable
4169  * @buf_size: the total size of the qg_list buffer in bytes
4170  * @rst_src: if called due to reset, specifies the reset source
4171  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4172  * @cd: pointer to command details structure or NULL
4173  *
4174  * Disable LAN Tx queue (0x0C31)
4175  */
4176 static int
4177 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4178 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4179 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4180 		   struct ice_sq_cd *cd)
4181 {
4182 	struct ice_aqc_dis_txq_item *item;
4183 	struct ice_aqc_dis_txqs *cmd;
4184 	struct ice_aq_desc desc;
4185 	u16 vmvf_and_timeout;
4186 	u16 i, sz = 0;
4187 	int status;
4188 
4189 	cmd = &desc.params.dis_txqs;
4190 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4191 
4192 	/* qg_list can be NULL only in VM/VF reset flow */
4193 	if (!qg_list && !rst_src)
4194 		return -EINVAL;
4195 
4196 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4197 		return -EINVAL;
4198 
4199 	cmd->num_entries = num_qgrps;
4200 
4201 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4202 
4203 	switch (rst_src) {
4204 	case ICE_VM_RESET:
4205 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4206 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4207 		break;
4208 	case ICE_VF_RESET:
4209 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4210 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4211 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4212 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4213 		break;
4214 	case ICE_NO_RESET:
4215 	default:
4216 		break;
4217 	}
4218 
4219 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4220 
4221 	/* flush pipe on time out */
4222 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4223 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4224 	if (!qg_list)
4225 		goto do_aq;
4226 
4227 	/* set RD bit to indicate that command buffer is provided by the driver
4228 	 * and it needs to be read by the firmware
4229 	 */
4230 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4231 
4232 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4233 		u16 item_size = struct_size(item, q_id, item->num_qs);
4234 
4235 		/* If the num of queues is even, add 2 bytes of padding */
4236 		if ((item->num_qs % 2) == 0)
4237 			item_size += 2;
4238 
4239 		sz += item_size;
4240 
4241 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4242 	}
4243 
4244 	if (buf_size != sz)
4245 		return -EINVAL;
4246 
4247 do_aq:
4248 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4249 	if (status) {
4250 		if (!qg_list)
4251 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4252 				  vmvf_num, hw->adminq.sq_last_status);
4253 		else
4254 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4255 				  le16_to_cpu(qg_list[0].q_id[0]),
4256 				  hw->adminq.sq_last_status);
4257 	}
4258 	return status;
4259 }
4260 
4261 /**
4262  * ice_aq_cfg_lan_txq
4263  * @hw: pointer to the hardware structure
4264  * @buf: buffer for command
4265  * @buf_size: size of buffer in bytes
4266  * @num_qs: number of queues being configured
4267  * @oldport: origination lport
4268  * @newport: destination lport
4269  * @cd: pointer to command details structure or NULL
4270  *
4271  * Move/Configure LAN Tx queue (0x0C32)
4272  *
4273  * There is a better AQ command to use for moving nodes, so only coding
4274  * this one for configuring the node.
4275  */
4276 int
4277 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4278 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4279 		   struct ice_sq_cd *cd)
4280 {
4281 	struct ice_aqc_cfg_txqs *cmd;
4282 	struct ice_aq_desc desc;
4283 	int status;
4284 
4285 	cmd = &desc.params.cfg_txqs;
4286 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4287 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4288 
4289 	if (!buf)
4290 		return -EINVAL;
4291 
4292 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4293 	cmd->num_qs = num_qs;
4294 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4295 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4296 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4297 	cmd->blocked_cgds = 0;
4298 
4299 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4300 	if (status)
4301 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4302 			  hw->adminq.sq_last_status);
4303 	return status;
4304 }
4305 
4306 /**
4307  * ice_aq_add_rdma_qsets
4308  * @hw: pointer to the hardware structure
4309  * @num_qset_grps: Number of RDMA Qset groups
4310  * @qset_list: list of Qset groups to be added
4311  * @buf_size: size of buffer for indirect command
4312  * @cd: pointer to command details structure or NULL
4313  *
4314  * Add Tx RDMA Qsets (0x0C33)
4315  */
4316 static int
4317 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4318 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4319 		      u16 buf_size, struct ice_sq_cd *cd)
4320 {
4321 	struct ice_aqc_add_rdma_qset_data *list;
4322 	struct ice_aqc_add_rdma_qset *cmd;
4323 	struct ice_aq_desc desc;
4324 	u16 i, sum_size = 0;
4325 
4326 	cmd = &desc.params.add_rdma_qset;
4327 
4328 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4329 
4330 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4331 		return -EINVAL;
4332 
4333 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4334 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4335 
4336 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4337 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4338 							     num_qsets);
4339 	}
4340 
4341 	if (buf_size != sum_size)
4342 		return -EINVAL;
4343 
4344 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4345 
4346 	cmd->num_qset_grps = num_qset_grps;
4347 
4348 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4349 }
4350 
4351 /* End of FW Admin Queue command wrappers */
4352 
4353 /**
4354  * ice_pack_ctx_byte - write a byte to a packed context structure
4355  * @src_ctx: unpacked source context structure
4356  * @dest_ctx: packed destination context data
4357  * @ce_info: context element description
4358  */
4359 static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4360 			      const struct ice_ctx_ele *ce_info)
4361 {
4362 	u8 src_byte, dest_byte, mask;
4363 	u8 *from, *dest;
4364 	u16 shift_width;
4365 
4366 	/* copy from the next struct field */
4367 	from = src_ctx + ce_info->offset;
4368 
4369 	/* prepare the bits and mask */
4370 	shift_width = ce_info->lsb % 8;
4371 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4372 
4373 	src_byte = *from;
4374 	src_byte <<= shift_width;
4375 	src_byte &= mask;
4376 
4377 	/* get the current bits from the target bit string */
4378 	dest = dest_ctx + (ce_info->lsb / 8);
4379 
4380 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4381 
4382 	dest_byte &= ~mask;	/* get the bits not changing */
4383 	dest_byte |= src_byte;	/* add in the new bits */
4384 
4385 	/* put it all back */
4386 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4387 }
4388 
4389 /**
4390  * ice_pack_ctx_word - write a word to a packed context structure
4391  * @src_ctx: unpacked source context structure
4392  * @dest_ctx: packed destination context data
4393  * @ce_info: context element description
4394  */
4395 static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4396 			      const struct ice_ctx_ele *ce_info)
4397 {
4398 	u16 src_word, mask;
4399 	__le16 dest_word;
4400 	u8 *from, *dest;
4401 	u16 shift_width;
4402 
4403 	/* copy from the next struct field */
4404 	from = src_ctx + ce_info->offset;
4405 
4406 	/* prepare the bits and mask */
4407 	shift_width = ce_info->lsb % 8;
4408 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4409 
4410 	/* don't swizzle the bits until after the mask because the mask bits
4411 	 * will be in a different bit position on big endian machines
4412 	 */
4413 	src_word = *(u16 *)from;
4414 	src_word <<= shift_width;
4415 	src_word &= mask;
4416 
4417 	/* get the current bits from the target bit string */
4418 	dest = dest_ctx + (ce_info->lsb / 8);
4419 
4420 	memcpy(&dest_word, dest, sizeof(dest_word));
4421 
4422 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4423 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4424 
4425 	/* put it all back */
4426 	memcpy(dest, &dest_word, sizeof(dest_word));
4427 }
4428 
4429 /**
4430  * ice_pack_ctx_dword - write a dword to a packed context structure
4431  * @src_ctx: unpacked source context structure
4432  * @dest_ctx: packed destination context data
4433  * @ce_info: context element description
4434  */
4435 static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4436 			       const struct ice_ctx_ele *ce_info)
4437 {
4438 	u32 src_dword, mask;
4439 	__le32 dest_dword;
4440 	u8 *from, *dest;
4441 	u16 shift_width;
4442 
4443 	/* copy from the next struct field */
4444 	from = src_ctx + ce_info->offset;
4445 
4446 	/* prepare the bits and mask */
4447 	shift_width = ce_info->lsb % 8;
4448 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4449 
4450 	/* don't swizzle the bits until after the mask because the mask bits
4451 	 * will be in a different bit position on big endian machines
4452 	 */
4453 	src_dword = *(u32 *)from;
4454 	src_dword <<= shift_width;
4455 	src_dword &= mask;
4456 
4457 	/* get the current bits from the target bit string */
4458 	dest = dest_ctx + (ce_info->lsb / 8);
4459 
4460 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4461 
4462 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4463 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4464 
4465 	/* put it all back */
4466 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4467 }
4468 
4469 /**
4470  * ice_pack_ctx_qword - write a qword to a packed context structure
4471  * @src_ctx: unpacked source context structure
4472  * @dest_ctx: packed destination context data
4473  * @ce_info: context element description
4474  */
4475 static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4476 			       const struct ice_ctx_ele *ce_info)
4477 {
4478 	u64 src_qword, mask;
4479 	__le64 dest_qword;
4480 	u8 *from, *dest;
4481 	u16 shift_width;
4482 
4483 	/* copy from the next struct field */
4484 	from = src_ctx + ce_info->offset;
4485 
4486 	/* prepare the bits and mask */
4487 	shift_width = ce_info->lsb % 8;
4488 	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4489 
4490 	/* don't swizzle the bits until after the mask because the mask bits
4491 	 * will be in a different bit position on big endian machines
4492 	 */
4493 	src_qword = *(u64 *)from;
4494 	src_qword <<= shift_width;
4495 	src_qword &= mask;
4496 
4497 	/* get the current bits from the target bit string */
4498 	dest = dest_ctx + (ce_info->lsb / 8);
4499 
4500 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4501 
4502 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4503 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4504 
4505 	/* put it all back */
4506 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4507 }
4508 
4509 /**
4510  * ice_set_ctx - set context bits in packed structure
4511  * @hw: pointer to the hardware structure
4512  * @src_ctx:  pointer to a generic non-packed context structure
4513  * @dest_ctx: pointer to memory for the packed structure
4514  * @ce_info: List of Rx context elements
4515  */
4516 int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4517 		const struct ice_ctx_ele *ce_info)
4518 {
4519 	int f;
4520 
4521 	for (f = 0; ce_info[f].width; f++) {
4522 		/* We have to deal with each element of the FW response
4523 		 * using the correct size so that we are correct regardless
4524 		 * of the endianness of the machine.
4525 		 */
4526 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4527 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4528 				  f, ce_info[f].width, ce_info[f].size_of);
4529 			continue;
4530 		}
4531 		switch (ce_info[f].size_of) {
4532 		case sizeof(u8):
4533 			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4534 			break;
4535 		case sizeof(u16):
4536 			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4537 			break;
4538 		case sizeof(u32):
4539 			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4540 			break;
4541 		case sizeof(u64):
4542 			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4543 			break;
4544 		default:
4545 			return -EINVAL;
4546 		}
4547 	}
4548 
4549 	return 0;
4550 }
4551 
4552 /**
4553  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4554  * @hw: pointer to the HW struct
4555  * @vsi_handle: software VSI handle
4556  * @tc: TC number
4557  * @q_handle: software queue handle
4558  */
4559 struct ice_q_ctx *
4560 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4561 {
4562 	struct ice_vsi_ctx *vsi;
4563 	struct ice_q_ctx *q_ctx;
4564 
4565 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4566 	if (!vsi)
4567 		return NULL;
4568 	if (q_handle >= vsi->num_lan_q_entries[tc])
4569 		return NULL;
4570 	if (!vsi->lan_q_ctx[tc])
4571 		return NULL;
4572 	q_ctx = vsi->lan_q_ctx[tc];
4573 	return &q_ctx[q_handle];
4574 }
4575 
4576 /**
4577  * ice_ena_vsi_txq
4578  * @pi: port information structure
4579  * @vsi_handle: software VSI handle
4580  * @tc: TC number
4581  * @q_handle: software queue handle
4582  * @num_qgrps: Number of added queue groups
4583  * @buf: list of queue groups to be added
4584  * @buf_size: size of buffer for indirect command
4585  * @cd: pointer to command details structure or NULL
4586  *
4587  * This function adds one LAN queue
4588  */
4589 int
4590 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4591 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4592 		struct ice_sq_cd *cd)
4593 {
4594 	struct ice_aqc_txsched_elem_data node = { 0 };
4595 	struct ice_sched_node *parent;
4596 	struct ice_q_ctx *q_ctx;
4597 	struct ice_hw *hw;
4598 	int status;
4599 
4600 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4601 		return -EIO;
4602 
4603 	if (num_qgrps > 1 || buf->num_txqs > 1)
4604 		return -ENOSPC;
4605 
4606 	hw = pi->hw;
4607 
4608 	if (!ice_is_vsi_valid(hw, vsi_handle))
4609 		return -EINVAL;
4610 
4611 	mutex_lock(&pi->sched_lock);
4612 
4613 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4614 	if (!q_ctx) {
4615 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4616 			  q_handle);
4617 		status = -EINVAL;
4618 		goto ena_txq_exit;
4619 	}
4620 
4621 	/* find a parent node */
4622 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4623 					    ICE_SCHED_NODE_OWNER_LAN);
4624 	if (!parent) {
4625 		status = -EINVAL;
4626 		goto ena_txq_exit;
4627 	}
4628 
4629 	buf->parent_teid = parent->info.node_teid;
4630 	node.parent_teid = parent->info.node_teid;
4631 	/* Mark that the values in the "generic" section as valid. The default
4632 	 * value in the "generic" section is zero. This means that :
4633 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4634 	 * - 0 priority among siblings, indicated by Bit 1-3.
4635 	 * - WFQ, indicated by Bit 4.
4636 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4637 	 * Bit 5-6.
4638 	 * - Bit 7 is reserved.
4639 	 * Without setting the generic section as valid in valid_sections, the
4640 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4641 	 */
4642 	buf->txqs[0].info.valid_sections =
4643 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4644 		ICE_AQC_ELEM_VALID_EIR;
4645 	buf->txqs[0].info.generic = 0;
4646 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4647 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4648 	buf->txqs[0].info.cir_bw.bw_alloc =
4649 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4650 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4651 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4652 	buf->txqs[0].info.eir_bw.bw_alloc =
4653 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4654 
4655 	/* add the LAN queue */
4656 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4657 	if (status) {
4658 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4659 			  le16_to_cpu(buf->txqs[0].txq_id),
4660 			  hw->adminq.sq_last_status);
4661 		goto ena_txq_exit;
4662 	}
4663 
4664 	node.node_teid = buf->txqs[0].q_teid;
4665 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4666 	q_ctx->q_handle = q_handle;
4667 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4668 
4669 	/* add a leaf node into scheduler tree queue layer */
4670 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4671 	if (!status)
4672 		status = ice_sched_replay_q_bw(pi, q_ctx);
4673 
4674 ena_txq_exit:
4675 	mutex_unlock(&pi->sched_lock);
4676 	return status;
4677 }
4678 
4679 /**
4680  * ice_dis_vsi_txq
4681  * @pi: port information structure
4682  * @vsi_handle: software VSI handle
4683  * @tc: TC number
4684  * @num_queues: number of queues
4685  * @q_handles: pointer to software queue handle array
4686  * @q_ids: pointer to the q_id array
4687  * @q_teids: pointer to queue node teids
4688  * @rst_src: if called due to reset, specifies the reset source
4689  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4690  * @cd: pointer to command details structure or NULL
4691  *
4692  * This function removes queues and their corresponding nodes in SW DB
4693  */
4694 int
4695 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4696 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4697 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4698 		struct ice_sq_cd *cd)
4699 {
4700 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4701 	u16 i, buf_size = __struct_size(qg_list);
4702 	struct ice_q_ctx *q_ctx;
4703 	int status = -ENOENT;
4704 	struct ice_hw *hw;
4705 
4706 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4707 		return -EIO;
4708 
4709 	hw = pi->hw;
4710 
4711 	if (!num_queues) {
4712 		/* if queue is disabled already yet the disable queue command
4713 		 * has to be sent to complete the VF reset, then call
4714 		 * ice_aq_dis_lan_txq without any queue information
4715 		 */
4716 		if (rst_src)
4717 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4718 						  vmvf_num, NULL);
4719 		return -EIO;
4720 	}
4721 
4722 	mutex_lock(&pi->sched_lock);
4723 
4724 	for (i = 0; i < num_queues; i++) {
4725 		struct ice_sched_node *node;
4726 
4727 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4728 		if (!node)
4729 			continue;
4730 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4731 		if (!q_ctx) {
4732 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4733 				  q_handles[i]);
4734 			continue;
4735 		}
4736 		if (q_ctx->q_handle != q_handles[i]) {
4737 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4738 				  q_ctx->q_handle, q_handles[i]);
4739 			continue;
4740 		}
4741 		qg_list->parent_teid = node->info.parent_teid;
4742 		qg_list->num_qs = 1;
4743 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4744 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4745 					    vmvf_num, cd);
4746 
4747 		if (status)
4748 			break;
4749 		ice_free_sched_node(pi, node);
4750 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4751 		q_ctx->q_teid = ICE_INVAL_TEID;
4752 	}
4753 	mutex_unlock(&pi->sched_lock);
4754 	return status;
4755 }
4756 
4757 /**
4758  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4759  * @pi: port information structure
4760  * @vsi_handle: software VSI handle
4761  * @tc_bitmap: TC bitmap
4762  * @maxqs: max queues array per TC
4763  * @owner: LAN or RDMA
4764  *
4765  * This function adds/updates the VSI queues per TC.
4766  */
4767 static int
4768 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4769 	       u16 *maxqs, u8 owner)
4770 {
4771 	int status = 0;
4772 	u8 i;
4773 
4774 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4775 		return -EIO;
4776 
4777 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4778 		return -EINVAL;
4779 
4780 	mutex_lock(&pi->sched_lock);
4781 
4782 	ice_for_each_traffic_class(i) {
4783 		/* configuration is possible only if TC node is present */
4784 		if (!ice_sched_get_tc_node(pi, i))
4785 			continue;
4786 
4787 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4788 					   ice_is_tc_ena(tc_bitmap, i));
4789 		if (status)
4790 			break;
4791 	}
4792 
4793 	mutex_unlock(&pi->sched_lock);
4794 	return status;
4795 }
4796 
4797 /**
4798  * ice_cfg_vsi_lan - configure VSI LAN queues
4799  * @pi: port information structure
4800  * @vsi_handle: software VSI handle
4801  * @tc_bitmap: TC bitmap
4802  * @max_lanqs: max LAN queues array per TC
4803  *
4804  * This function adds/updates the VSI LAN queues per TC.
4805  */
4806 int
4807 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4808 		u16 *max_lanqs)
4809 {
4810 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4811 			      ICE_SCHED_NODE_OWNER_LAN);
4812 }
4813 
4814 /**
4815  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4816  * @pi: port information structure
4817  * @vsi_handle: software VSI handle
4818  * @tc_bitmap: TC bitmap
4819  * @max_rdmaqs: max RDMA queues array per TC
4820  *
4821  * This function adds/updates the VSI RDMA queues per TC.
4822  */
4823 int
4824 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4825 		 u16 *max_rdmaqs)
4826 {
4827 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4828 			      ICE_SCHED_NODE_OWNER_RDMA);
4829 }
4830 
4831 /**
4832  * ice_ena_vsi_rdma_qset
4833  * @pi: port information structure
4834  * @vsi_handle: software VSI handle
4835  * @tc: TC number
4836  * @rdma_qset: pointer to RDMA Qset
4837  * @num_qsets: number of RDMA Qsets
4838  * @qset_teid: pointer to Qset node TEIDs
4839  *
4840  * This function adds RDMA Qset
4841  */
4842 int
4843 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4844 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4845 {
4846 	struct ice_aqc_txsched_elem_data node = { 0 };
4847 	struct ice_aqc_add_rdma_qset_data *buf;
4848 	struct ice_sched_node *parent;
4849 	struct ice_hw *hw;
4850 	u16 i, buf_size;
4851 	int ret;
4852 
4853 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4854 		return -EIO;
4855 	hw = pi->hw;
4856 
4857 	if (!ice_is_vsi_valid(hw, vsi_handle))
4858 		return -EINVAL;
4859 
4860 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4861 	buf = kzalloc(buf_size, GFP_KERNEL);
4862 	if (!buf)
4863 		return -ENOMEM;
4864 	mutex_lock(&pi->sched_lock);
4865 
4866 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4867 					    ICE_SCHED_NODE_OWNER_RDMA);
4868 	if (!parent) {
4869 		ret = -EINVAL;
4870 		goto rdma_error_exit;
4871 	}
4872 	buf->parent_teid = parent->info.node_teid;
4873 	node.parent_teid = parent->info.node_teid;
4874 
4875 	buf->num_qsets = cpu_to_le16(num_qsets);
4876 	for (i = 0; i < num_qsets; i++) {
4877 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4878 		buf->rdma_qsets[i].info.valid_sections =
4879 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4880 			ICE_AQC_ELEM_VALID_EIR;
4881 		buf->rdma_qsets[i].info.generic = 0;
4882 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4883 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4884 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4885 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4886 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4887 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4888 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4889 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4890 	}
4891 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4892 	if (ret) {
4893 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4894 		goto rdma_error_exit;
4895 	}
4896 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4897 	for (i = 0; i < num_qsets; i++) {
4898 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4899 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4900 					 &node, NULL);
4901 		if (ret)
4902 			break;
4903 		qset_teid[i] = le32_to_cpu(node.node_teid);
4904 	}
4905 rdma_error_exit:
4906 	mutex_unlock(&pi->sched_lock);
4907 	kfree(buf);
4908 	return ret;
4909 }
4910 
4911 /**
4912  * ice_dis_vsi_rdma_qset - free RDMA resources
4913  * @pi: port_info struct
4914  * @count: number of RDMA Qsets to free
4915  * @qset_teid: TEID of Qset node
4916  * @q_id: list of queue IDs being disabled
4917  */
4918 int
4919 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4920 		      u16 *q_id)
4921 {
4922 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4923 	u16 qg_size = __struct_size(qg_list);
4924 	struct ice_hw *hw;
4925 	int status = 0;
4926 	int i;
4927 
4928 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4929 		return -EIO;
4930 
4931 	hw = pi->hw;
4932 
4933 	mutex_lock(&pi->sched_lock);
4934 
4935 	for (i = 0; i < count; i++) {
4936 		struct ice_sched_node *node;
4937 
4938 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4939 		if (!node)
4940 			continue;
4941 
4942 		qg_list->parent_teid = node->info.parent_teid;
4943 		qg_list->num_qs = 1;
4944 		qg_list->q_id[0] =
4945 			cpu_to_le16(q_id[i] |
4946 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4947 
4948 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4949 					    ICE_NO_RESET, 0, NULL);
4950 		if (status)
4951 			break;
4952 
4953 		ice_free_sched_node(pi, node);
4954 	}
4955 
4956 	mutex_unlock(&pi->sched_lock);
4957 	return status;
4958 }
4959 
4960 /**
4961  * ice_aq_get_cgu_abilities - get cgu abilities
4962  * @hw: pointer to the HW struct
4963  * @abilities: CGU abilities
4964  *
4965  * Get CGU abilities (0x0C61)
4966  * Return: 0 on success or negative value on failure.
4967  */
4968 int
4969 ice_aq_get_cgu_abilities(struct ice_hw *hw,
4970 			 struct ice_aqc_get_cgu_abilities *abilities)
4971 {
4972 	struct ice_aq_desc desc;
4973 
4974 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4975 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4976 }
4977 
4978 /**
4979  * ice_aq_set_input_pin_cfg - set input pin config
4980  * @hw: pointer to the HW struct
4981  * @input_idx: Input index
4982  * @flags1: Input flags
4983  * @flags2: Input flags
4984  * @freq: Frequency in Hz
4985  * @phase_delay: Delay in ps
4986  *
4987  * Set CGU input config (0x0C62)
4988  * Return: 0 on success or negative value on failure.
4989  */
4990 int
4991 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
4992 			 u32 freq, s32 phase_delay)
4993 {
4994 	struct ice_aqc_set_cgu_input_config *cmd;
4995 	struct ice_aq_desc desc;
4996 
4997 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
4998 	cmd = &desc.params.set_cgu_input_config;
4999 	cmd->input_idx = input_idx;
5000 	cmd->flags1 = flags1;
5001 	cmd->flags2 = flags2;
5002 	cmd->freq = cpu_to_le32(freq);
5003 	cmd->phase_delay = cpu_to_le32(phase_delay);
5004 
5005 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5006 }
5007 
5008 /**
5009  * ice_aq_get_input_pin_cfg - get input pin config
5010  * @hw: pointer to the HW struct
5011  * @input_idx: Input index
5012  * @status: Pin status
5013  * @type: Pin type
5014  * @flags1: Input flags
5015  * @flags2: Input flags
5016  * @freq: Frequency in Hz
5017  * @phase_delay: Delay in ps
5018  *
5019  * Get CGU input config (0x0C63)
5020  * Return: 0 on success or negative value on failure.
5021  */
5022 int
5023 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5024 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5025 {
5026 	struct ice_aqc_get_cgu_input_config *cmd;
5027 	struct ice_aq_desc desc;
5028 	int ret;
5029 
5030 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5031 	cmd = &desc.params.get_cgu_input_config;
5032 	cmd->input_idx = input_idx;
5033 
5034 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5035 	if (!ret) {
5036 		if (status)
5037 			*status = cmd->status;
5038 		if (type)
5039 			*type = cmd->type;
5040 		if (flags1)
5041 			*flags1 = cmd->flags1;
5042 		if (flags2)
5043 			*flags2 = cmd->flags2;
5044 		if (freq)
5045 			*freq = le32_to_cpu(cmd->freq);
5046 		if (phase_delay)
5047 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5048 	}
5049 
5050 	return ret;
5051 }
5052 
5053 /**
5054  * ice_aq_set_output_pin_cfg - set output pin config
5055  * @hw: pointer to the HW struct
5056  * @output_idx: Output index
5057  * @flags: Output flags
5058  * @src_sel: Index of DPLL block
5059  * @freq: Output frequency
5060  * @phase_delay: Output phase compensation
5061  *
5062  * Set CGU output config (0x0C64)
5063  * Return: 0 on success or negative value on failure.
5064  */
5065 int
5066 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5067 			  u8 src_sel, u32 freq, s32 phase_delay)
5068 {
5069 	struct ice_aqc_set_cgu_output_config *cmd;
5070 	struct ice_aq_desc desc;
5071 
5072 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5073 	cmd = &desc.params.set_cgu_output_config;
5074 	cmd->output_idx = output_idx;
5075 	cmd->flags = flags;
5076 	cmd->src_sel = src_sel;
5077 	cmd->freq = cpu_to_le32(freq);
5078 	cmd->phase_delay = cpu_to_le32(phase_delay);
5079 
5080 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5081 }
5082 
5083 /**
5084  * ice_aq_get_output_pin_cfg - get output pin config
5085  * @hw: pointer to the HW struct
5086  * @output_idx: Output index
5087  * @flags: Output flags
5088  * @src_sel: Internal DPLL source
5089  * @freq: Output frequency
5090  * @src_freq: Source frequency
5091  *
5092  * Get CGU output config (0x0C65)
5093  * Return: 0 on success or negative value on failure.
5094  */
5095 int
5096 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5097 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5098 {
5099 	struct ice_aqc_get_cgu_output_config *cmd;
5100 	struct ice_aq_desc desc;
5101 	int ret;
5102 
5103 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5104 	cmd = &desc.params.get_cgu_output_config;
5105 	cmd->output_idx = output_idx;
5106 
5107 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5108 	if (!ret) {
5109 		if (flags)
5110 			*flags = cmd->flags;
5111 		if (src_sel)
5112 			*src_sel = cmd->src_sel;
5113 		if (freq)
5114 			*freq = le32_to_cpu(cmd->freq);
5115 		if (src_freq)
5116 			*src_freq = le32_to_cpu(cmd->src_freq);
5117 	}
5118 
5119 	return ret;
5120 }
5121 
5122 /**
5123  * ice_aq_get_cgu_dpll_status - get dpll status
5124  * @hw: pointer to the HW struct
5125  * @dpll_num: DPLL index
5126  * @ref_state: Reference clock state
5127  * @config: current DPLL config
5128  * @dpll_state: current DPLL state
5129  * @phase_offset: Phase offset in ns
5130  * @eec_mode: EEC_mode
5131  *
5132  * Get CGU DPLL status (0x0C66)
5133  * Return: 0 on success or negative value on failure.
5134  */
5135 int
5136 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5137 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5138 			   u8 *eec_mode)
5139 {
5140 	struct ice_aqc_get_cgu_dpll_status *cmd;
5141 	struct ice_aq_desc desc;
5142 	int status;
5143 
5144 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5145 	cmd = &desc.params.get_cgu_dpll_status;
5146 	cmd->dpll_num = dpll_num;
5147 
5148 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5149 	if (!status) {
5150 		*ref_state = cmd->ref_state;
5151 		*dpll_state = cmd->dpll_state;
5152 		*config = cmd->config;
5153 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5154 		*phase_offset <<= 32;
5155 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5156 		*phase_offset = sign_extend64(*phase_offset, 47);
5157 		*eec_mode = cmd->eec_mode;
5158 	}
5159 
5160 	return status;
5161 }
5162 
5163 /**
5164  * ice_aq_set_cgu_dpll_config - set dpll config
5165  * @hw: pointer to the HW struct
5166  * @dpll_num: DPLL index
5167  * @ref_state: Reference clock state
5168  * @config: DPLL config
5169  * @eec_mode: EEC mode
5170  *
5171  * Set CGU DPLL config (0x0C67)
5172  * Return: 0 on success or negative value on failure.
5173  */
5174 int
5175 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5176 			   u8 config, u8 eec_mode)
5177 {
5178 	struct ice_aqc_set_cgu_dpll_config *cmd;
5179 	struct ice_aq_desc desc;
5180 
5181 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5182 	cmd = &desc.params.set_cgu_dpll_config;
5183 	cmd->dpll_num = dpll_num;
5184 	cmd->ref_state = ref_state;
5185 	cmd->config = config;
5186 	cmd->eec_mode = eec_mode;
5187 
5188 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5189 }
5190 
5191 /**
5192  * ice_aq_set_cgu_ref_prio - set input reference priority
5193  * @hw: pointer to the HW struct
5194  * @dpll_num: DPLL index
5195  * @ref_idx: Reference pin index
5196  * @ref_priority: Reference input priority
5197  *
5198  * Set CGU reference priority (0x0C68)
5199  * Return: 0 on success or negative value on failure.
5200  */
5201 int
5202 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5203 			u8 ref_priority)
5204 {
5205 	struct ice_aqc_set_cgu_ref_prio *cmd;
5206 	struct ice_aq_desc desc;
5207 
5208 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5209 	cmd = &desc.params.set_cgu_ref_prio;
5210 	cmd->dpll_num = dpll_num;
5211 	cmd->ref_idx = ref_idx;
5212 	cmd->ref_priority = ref_priority;
5213 
5214 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5215 }
5216 
5217 /**
5218  * ice_aq_get_cgu_ref_prio - get input reference priority
5219  * @hw: pointer to the HW struct
5220  * @dpll_num: DPLL index
5221  * @ref_idx: Reference pin index
5222  * @ref_prio: Reference input priority
5223  *
5224  * Get CGU reference priority (0x0C69)
5225  * Return: 0 on success or negative value on failure.
5226  */
5227 int
5228 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5229 			u8 *ref_prio)
5230 {
5231 	struct ice_aqc_get_cgu_ref_prio *cmd;
5232 	struct ice_aq_desc desc;
5233 	int status;
5234 
5235 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5236 	cmd = &desc.params.get_cgu_ref_prio;
5237 	cmd->dpll_num = dpll_num;
5238 	cmd->ref_idx = ref_idx;
5239 
5240 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5241 	if (!status)
5242 		*ref_prio = cmd->ref_priority;
5243 
5244 	return status;
5245 }
5246 
5247 /**
5248  * ice_aq_get_cgu_info - get cgu info
5249  * @hw: pointer to the HW struct
5250  * @cgu_id: CGU ID
5251  * @cgu_cfg_ver: CGU config version
5252  * @cgu_fw_ver: CGU firmware version
5253  *
5254  * Get CGU info (0x0C6A)
5255  * Return: 0 on success or negative value on failure.
5256  */
5257 int
5258 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5259 		    u32 *cgu_fw_ver)
5260 {
5261 	struct ice_aqc_get_cgu_info *cmd;
5262 	struct ice_aq_desc desc;
5263 	int status;
5264 
5265 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5266 	cmd = &desc.params.get_cgu_info;
5267 
5268 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5269 	if (!status) {
5270 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5271 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5272 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5273 	}
5274 
5275 	return status;
5276 }
5277 
5278 /**
5279  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5280  * @hw: pointer to the HW struct
5281  * @phy_output: PHY reference clock output pin
5282  * @enable: GPIO state to be applied
5283  * @freq: PHY output frequency
5284  *
5285  * Set phy recovered clock as reference (0x0630)
5286  * Return: 0 on success or negative value on failure.
5287  */
5288 int
5289 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5290 			   u32 *freq)
5291 {
5292 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5293 	struct ice_aq_desc desc;
5294 	int status;
5295 
5296 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5297 	cmd = &desc.params.set_phy_rec_clk_out;
5298 	cmd->phy_output = phy_output;
5299 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5300 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5301 	cmd->freq = cpu_to_le32(*freq);
5302 
5303 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5304 	if (!status)
5305 		*freq = le32_to_cpu(cmd->freq);
5306 
5307 	return status;
5308 }
5309 
5310 /**
5311  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5312  * @hw: pointer to the HW struct
5313  * @phy_output: PHY reference clock output pin
5314  * @port_num: Port number
5315  * @flags: PHY flags
5316  * @node_handle: PHY output frequency
5317  *
5318  * Get PHY recovered clock output info (0x0631)
5319  * Return: 0 on success or negative value on failure.
5320  */
5321 int
5322 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5323 			   u8 *flags, u16 *node_handle)
5324 {
5325 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5326 	struct ice_aq_desc desc;
5327 	int status;
5328 
5329 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5330 	cmd = &desc.params.get_phy_rec_clk_out;
5331 	cmd->phy_output = *phy_output;
5332 
5333 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5334 	if (!status) {
5335 		*phy_output = cmd->phy_output;
5336 		if (port_num)
5337 			*port_num = cmd->port_num;
5338 		if (flags)
5339 			*flags = cmd->flags;
5340 		if (node_handle)
5341 			*node_handle = le16_to_cpu(cmd->node_handle);
5342 	}
5343 
5344 	return status;
5345 }
5346 
5347 /**
5348  * ice_aq_get_sensor_reading
5349  * @hw: pointer to the HW struct
5350  * @data: pointer to data to be read from the sensor
5351  *
5352  * Get sensor reading (0x0632)
5353  */
5354 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5355 			      struct ice_aqc_get_sensor_reading_resp *data)
5356 {
5357 	struct ice_aqc_get_sensor_reading *cmd;
5358 	struct ice_aq_desc desc;
5359 	int status;
5360 
5361 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5362 	cmd = &desc.params.get_sensor_reading;
5363 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5364 #define ICE_INTERNAL_TEMP_SENSOR	0
5365 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5366 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5367 
5368 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5369 	if (!status)
5370 		memcpy(data, &desc.params.get_sensor_reading_resp,
5371 		       sizeof(*data));
5372 
5373 	return status;
5374 }
5375 
5376 /**
5377  * ice_replay_pre_init - replay pre initialization
5378  * @hw: pointer to the HW struct
5379  *
5380  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5381  */
5382 static int ice_replay_pre_init(struct ice_hw *hw)
5383 {
5384 	struct ice_switch_info *sw = hw->switch_info;
5385 	u8 i;
5386 
5387 	/* Delete old entries from replay filter list head if there is any */
5388 	ice_rm_all_sw_replay_rule_info(hw);
5389 	/* In start of replay, move entries into replay_rules list, it
5390 	 * will allow adding rules entries back to filt_rules list,
5391 	 * which is operational list.
5392 	 */
5393 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5394 		list_replace_init(&sw->recp_list[i].filt_rules,
5395 				  &sw->recp_list[i].filt_replay_rules);
5396 	ice_sched_replay_agg_vsi_preinit(hw);
5397 
5398 	return 0;
5399 }
5400 
5401 /**
5402  * ice_replay_vsi - replay VSI configuration
5403  * @hw: pointer to the HW struct
5404  * @vsi_handle: driver VSI handle
5405  *
5406  * Restore all VSI configuration after reset. It is required to call this
5407  * function with main VSI first.
5408  */
5409 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5410 {
5411 	int status;
5412 
5413 	if (!ice_is_vsi_valid(hw, vsi_handle))
5414 		return -EINVAL;
5415 
5416 	/* Replay pre-initialization if there is any */
5417 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5418 		status = ice_replay_pre_init(hw);
5419 		if (status)
5420 			return status;
5421 	}
5422 	/* Replay per VSI all RSS configurations */
5423 	status = ice_replay_rss_cfg(hw, vsi_handle);
5424 	if (status)
5425 		return status;
5426 	/* Replay per VSI all filters */
5427 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5428 	if (!status)
5429 		status = ice_replay_vsi_agg(hw, vsi_handle);
5430 	return status;
5431 }
5432 
5433 /**
5434  * ice_replay_post - post replay configuration cleanup
5435  * @hw: pointer to the HW struct
5436  *
5437  * Post replay cleanup.
5438  */
5439 void ice_replay_post(struct ice_hw *hw)
5440 {
5441 	/* Delete old entries from replay filter list head */
5442 	ice_rm_all_sw_replay_rule_info(hw);
5443 	ice_sched_replay_agg(hw);
5444 }
5445 
5446 /**
5447  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5448  * @hw: ptr to the hardware info
5449  * @reg: offset of 64 bit HW register to read from
5450  * @prev_stat_loaded: bool to specify if previous stats are loaded
5451  * @prev_stat: ptr to previous loaded stat value
5452  * @cur_stat: ptr to current stat value
5453  */
5454 void
5455 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5456 		  u64 *prev_stat, u64 *cur_stat)
5457 {
5458 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5459 
5460 	/* device stats are not reset at PFR, they likely will not be zeroed
5461 	 * when the driver starts. Thus, save the value from the first read
5462 	 * without adding to the statistic value so that we report stats which
5463 	 * count up from zero.
5464 	 */
5465 	if (!prev_stat_loaded) {
5466 		*prev_stat = new_data;
5467 		return;
5468 	}
5469 
5470 	/* Calculate the difference between the new and old values, and then
5471 	 * add it to the software stat value.
5472 	 */
5473 	if (new_data >= *prev_stat)
5474 		*cur_stat += new_data - *prev_stat;
5475 	else
5476 		/* to manage the potential roll-over */
5477 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5478 
5479 	/* Update the previously stored value to prepare for next read */
5480 	*prev_stat = new_data;
5481 }
5482 
5483 /**
5484  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5485  * @hw: ptr to the hardware info
5486  * @reg: offset of HW register to read from
5487  * @prev_stat_loaded: bool to specify if previous stats are loaded
5488  * @prev_stat: ptr to previous loaded stat value
5489  * @cur_stat: ptr to current stat value
5490  */
5491 void
5492 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5493 		  u64 *prev_stat, u64 *cur_stat)
5494 {
5495 	u32 new_data;
5496 
5497 	new_data = rd32(hw, reg);
5498 
5499 	/* device stats are not reset at PFR, they likely will not be zeroed
5500 	 * when the driver starts. Thus, save the value from the first read
5501 	 * without adding to the statistic value so that we report stats which
5502 	 * count up from zero.
5503 	 */
5504 	if (!prev_stat_loaded) {
5505 		*prev_stat = new_data;
5506 		return;
5507 	}
5508 
5509 	/* Calculate the difference between the new and old values, and then
5510 	 * add it to the software stat value.
5511 	 */
5512 	if (new_data >= *prev_stat)
5513 		*cur_stat += new_data - *prev_stat;
5514 	else
5515 		/* to manage the potential roll-over */
5516 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5517 
5518 	/* Update the previously stored value to prepare for next read */
5519 	*prev_stat = new_data;
5520 }
5521 
5522 /**
5523  * ice_sched_query_elem - query element information from HW
5524  * @hw: pointer to the HW struct
5525  * @node_teid: node TEID to be queried
5526  * @buf: buffer to element information
5527  *
5528  * This function queries HW element information
5529  */
5530 int
5531 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5532 		     struct ice_aqc_txsched_elem_data *buf)
5533 {
5534 	u16 buf_size, num_elem_ret = 0;
5535 	int status;
5536 
5537 	buf_size = sizeof(*buf);
5538 	memset(buf, 0, buf_size);
5539 	buf->node_teid = cpu_to_le32(node_teid);
5540 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5541 					  NULL);
5542 	if (status || num_elem_ret != 1)
5543 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5544 	return status;
5545 }
5546 
5547 /**
5548  * ice_aq_read_i2c
5549  * @hw: pointer to the hw struct
5550  * @topo_addr: topology address for a device to communicate with
5551  * @bus_addr: 7-bit I2C bus address
5552  * @addr: I2C memory address (I2C offset) with up to 16 bits
5553  * @params: I2C parameters: bit [7] - Repeated start,
5554  *			    bits [6:5] data offset size,
5555  *			    bit [4] - I2C address type,
5556  *			    bits [3:0] - data size to read (0-16 bytes)
5557  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5558  * @cd: pointer to command details structure or NULL
5559  *
5560  * Read I2C (0x06E2)
5561  */
5562 int
5563 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5564 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5565 		struct ice_sq_cd *cd)
5566 {
5567 	struct ice_aq_desc desc = { 0 };
5568 	struct ice_aqc_i2c *cmd;
5569 	u8 data_size;
5570 	int status;
5571 
5572 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5573 	cmd = &desc.params.read_write_i2c;
5574 
5575 	if (!data)
5576 		return -EINVAL;
5577 
5578 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5579 
5580 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5581 	cmd->topo_addr = topo_addr;
5582 	cmd->i2c_params = params;
5583 	cmd->i2c_addr = addr;
5584 
5585 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5586 	if (!status) {
5587 		struct ice_aqc_read_i2c_resp *resp;
5588 		u8 i;
5589 
5590 		resp = &desc.params.read_i2c_resp;
5591 		for (i = 0; i < data_size; i++) {
5592 			*data = resp->i2c_data[i];
5593 			data++;
5594 		}
5595 	}
5596 
5597 	return status;
5598 }
5599 
5600 /**
5601  * ice_aq_write_i2c
5602  * @hw: pointer to the hw struct
5603  * @topo_addr: topology address for a device to communicate with
5604  * @bus_addr: 7-bit I2C bus address
5605  * @addr: I2C memory address (I2C offset) with up to 16 bits
5606  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5607  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5608  * @cd: pointer to command details structure or NULL
5609  *
5610  * Write I2C (0x06E3)
5611  *
5612  * * Return:
5613  * * 0             - Successful write to the i2c device
5614  * * -EINVAL       - Data size greater than 4 bytes
5615  * * -EIO          - FW error
5616  */
5617 int
5618 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5619 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5620 		 struct ice_sq_cd *cd)
5621 {
5622 	struct ice_aq_desc desc = { 0 };
5623 	struct ice_aqc_i2c *cmd;
5624 	u8 data_size;
5625 
5626 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5627 	cmd = &desc.params.read_write_i2c;
5628 
5629 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5630 
5631 	/* data_size limited to 4 */
5632 	if (data_size > 4)
5633 		return -EINVAL;
5634 
5635 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5636 	cmd->topo_addr = topo_addr;
5637 	cmd->i2c_params = params;
5638 	cmd->i2c_addr = addr;
5639 
5640 	memcpy(cmd->i2c_data, data, data_size);
5641 
5642 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5643 }
5644 
5645 /**
5646  * ice_aq_set_gpio
5647  * @hw: pointer to the hw struct
5648  * @gpio_ctrl_handle: GPIO controller node handle
5649  * @pin_idx: IO Number of the GPIO that needs to be set
5650  * @value: SW provide IO value to set in the LSB
5651  * @cd: pointer to command details structure or NULL
5652  *
5653  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5654  */
5655 int
5656 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5657 		struct ice_sq_cd *cd)
5658 {
5659 	struct ice_aqc_gpio *cmd;
5660 	struct ice_aq_desc desc;
5661 
5662 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5663 	cmd = &desc.params.read_write_gpio;
5664 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5665 	cmd->gpio_num = pin_idx;
5666 	cmd->gpio_val = value ? 1 : 0;
5667 
5668 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5669 }
5670 
5671 /**
5672  * ice_aq_get_gpio
5673  * @hw: pointer to the hw struct
5674  * @gpio_ctrl_handle: GPIO controller node handle
5675  * @pin_idx: IO Number of the GPIO that needs to be set
5676  * @value: IO value read
5677  * @cd: pointer to command details structure or NULL
5678  *
5679  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5680  * the topology
5681  */
5682 int
5683 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5684 		bool *value, struct ice_sq_cd *cd)
5685 {
5686 	struct ice_aqc_gpio *cmd;
5687 	struct ice_aq_desc desc;
5688 	int status;
5689 
5690 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5691 	cmd = &desc.params.read_write_gpio;
5692 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5693 	cmd->gpio_num = pin_idx;
5694 
5695 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5696 	if (status)
5697 		return status;
5698 
5699 	*value = !!cmd->gpio_val;
5700 	return 0;
5701 }
5702 
5703 /**
5704  * ice_is_fw_api_min_ver
5705  * @hw: pointer to the hardware structure
5706  * @maj: major version
5707  * @min: minor version
5708  * @patch: patch version
5709  *
5710  * Checks if the firmware API is minimum version
5711  */
5712 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5713 {
5714 	if (hw->api_maj_ver == maj) {
5715 		if (hw->api_min_ver > min)
5716 			return true;
5717 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5718 			return true;
5719 	} else if (hw->api_maj_ver > maj) {
5720 		return true;
5721 	}
5722 
5723 	return false;
5724 }
5725 
5726 /**
5727  * ice_fw_supports_link_override
5728  * @hw: pointer to the hardware structure
5729  *
5730  * Checks if the firmware supports link override
5731  */
5732 bool ice_fw_supports_link_override(struct ice_hw *hw)
5733 {
5734 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5735 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5736 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5737 }
5738 
5739 /**
5740  * ice_get_link_default_override
5741  * @ldo: pointer to the link default override struct
5742  * @pi: pointer to the port info struct
5743  *
5744  * Gets the link default override for a port
5745  */
5746 int
5747 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5748 			      struct ice_port_info *pi)
5749 {
5750 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5751 	struct ice_hw *hw = pi->hw;
5752 	int status;
5753 
5754 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5755 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5756 	if (status) {
5757 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5758 		return status;
5759 	}
5760 
5761 	/* Each port has its own config; calculate for our port */
5762 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5763 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5764 
5765 	/* link options first */
5766 	status = ice_read_sr_word(hw, tlv_start, &buf);
5767 	if (status) {
5768 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5769 		return status;
5770 	}
5771 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5772 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5773 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5774 
5775 	/* link PHY config */
5776 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5777 	status = ice_read_sr_word(hw, offset, &buf);
5778 	if (status) {
5779 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5780 		return status;
5781 	}
5782 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5783 
5784 	/* PHY types low */
5785 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5786 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5787 		status = ice_read_sr_word(hw, (offset + i), &buf);
5788 		if (status) {
5789 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5790 			return status;
5791 		}
5792 		/* shift 16 bits at a time to fill 64 bits */
5793 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5794 	}
5795 
5796 	/* PHY types high */
5797 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5798 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5799 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5800 		status = ice_read_sr_word(hw, (offset + i), &buf);
5801 		if (status) {
5802 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5803 			return status;
5804 		}
5805 		/* shift 16 bits at a time to fill 64 bits */
5806 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5807 	}
5808 
5809 	return status;
5810 }
5811 
5812 /**
5813  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5814  * @caps: get PHY capability data
5815  */
5816 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5817 {
5818 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5819 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5820 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5821 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5822 		return true;
5823 
5824 	return false;
5825 }
5826 
5827 /**
5828  * ice_aq_set_lldp_mib - Set the LLDP MIB
5829  * @hw: pointer to the HW struct
5830  * @mib_type: Local, Remote or both Local and Remote MIBs
5831  * @buf: pointer to the caller-supplied buffer to store the MIB block
5832  * @buf_size: size of the buffer (in bytes)
5833  * @cd: pointer to command details structure or NULL
5834  *
5835  * Set the LLDP MIB. (0x0A08)
5836  */
5837 int
5838 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5839 		    struct ice_sq_cd *cd)
5840 {
5841 	struct ice_aqc_lldp_set_local_mib *cmd;
5842 	struct ice_aq_desc desc;
5843 
5844 	cmd = &desc.params.lldp_set_mib;
5845 
5846 	if (buf_size == 0 || !buf)
5847 		return -EINVAL;
5848 
5849 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5850 
5851 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5852 	desc.datalen = cpu_to_le16(buf_size);
5853 
5854 	cmd->type = mib_type;
5855 	cmd->length = cpu_to_le16(buf_size);
5856 
5857 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5858 }
5859 
5860 /**
5861  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5862  * @hw: pointer to HW struct
5863  */
5864 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5865 {
5866 	if (hw->mac_type != ICE_MAC_E810)
5867 		return false;
5868 
5869 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5870 				     ICE_FW_API_LLDP_FLTR_MIN,
5871 				     ICE_FW_API_LLDP_FLTR_PATCH);
5872 }
5873 
5874 /**
5875  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5876  * @hw: pointer to HW struct
5877  * @vsi_num: absolute HW index for VSI
5878  * @add: boolean for if adding or removing a filter
5879  */
5880 int
5881 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5882 {
5883 	struct ice_aqc_lldp_filter_ctrl *cmd;
5884 	struct ice_aq_desc desc;
5885 
5886 	cmd = &desc.params.lldp_filter_ctrl;
5887 
5888 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5889 
5890 	if (add)
5891 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5892 	else
5893 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5894 
5895 	cmd->vsi_num = cpu_to_le16(vsi_num);
5896 
5897 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5898 }
5899 
5900 /**
5901  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5902  * @hw: pointer to HW struct
5903  */
5904 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5905 {
5906 	struct ice_aq_desc desc;
5907 
5908 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5909 
5910 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5911 }
5912 
5913 /**
5914  * ice_fw_supports_report_dflt_cfg
5915  * @hw: pointer to the hardware structure
5916  *
5917  * Checks if the firmware supports report default configuration
5918  */
5919 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5920 {
5921 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5922 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5923 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5924 }
5925 
5926 /* each of the indexes into the following array match the speed of a return
5927  * value from the list of AQ returned speeds like the range:
5928  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5929  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5930  * array. The array is defined as 15 elements long because the link_speed
5931  * returned by the firmware is a 16 bit * value, but is indexed
5932  * by [fls(speed) - 1]
5933  */
5934 static const u32 ice_aq_to_link_speed[] = {
5935 	SPEED_10,	/* BIT(0) */
5936 	SPEED_100,
5937 	SPEED_1000,
5938 	SPEED_2500,
5939 	SPEED_5000,
5940 	SPEED_10000,
5941 	SPEED_20000,
5942 	SPEED_25000,
5943 	SPEED_40000,
5944 	SPEED_50000,
5945 	SPEED_100000,	/* BIT(10) */
5946 	SPEED_200000,
5947 };
5948 
5949 /**
5950  * ice_get_link_speed - get integer speed from table
5951  * @index: array index from fls(aq speed) - 1
5952  *
5953  * Returns: u32 value containing integer speed
5954  */
5955 u32 ice_get_link_speed(u16 index)
5956 {
5957 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5958 		return 0;
5959 
5960 	return ice_aq_to_link_speed[index];
5961 }
5962