1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_sched.h" 6 #include "ice_adminq_cmd.h" 7 #include "ice_flow.h" 8 #include "ice_ptp_hw.h" 9 #include <linux/packing.h> 10 11 #define ICE_PF_RESET_WAIT_COUNT 300 12 #define ICE_MAX_NETLIST_SIZE 10 13 14 static const char * const ice_link_mode_str_low[] = { 15 [0] = "100BASE_TX", 16 [1] = "100M_SGMII", 17 [2] = "1000BASE_T", 18 [3] = "1000BASE_SX", 19 [4] = "1000BASE_LX", 20 [5] = "1000BASE_KX", 21 [6] = "1G_SGMII", 22 [7] = "2500BASE_T", 23 [8] = "2500BASE_X", 24 [9] = "2500BASE_KX", 25 [10] = "5GBASE_T", 26 [11] = "5GBASE_KR", 27 [12] = "10GBASE_T", 28 [13] = "10G_SFI_DA", 29 [14] = "10GBASE_SR", 30 [15] = "10GBASE_LR", 31 [16] = "10GBASE_KR_CR1", 32 [17] = "10G_SFI_AOC_ACC", 33 [18] = "10G_SFI_C2C", 34 [19] = "25GBASE_T", 35 [20] = "25GBASE_CR", 36 [21] = "25GBASE_CR_S", 37 [22] = "25GBASE_CR1", 38 [23] = "25GBASE_SR", 39 [24] = "25GBASE_LR", 40 [25] = "25GBASE_KR", 41 [26] = "25GBASE_KR_S", 42 [27] = "25GBASE_KR1", 43 [28] = "25G_AUI_AOC_ACC", 44 [29] = "25G_AUI_C2C", 45 [30] = "40GBASE_CR4", 46 [31] = "40GBASE_SR4", 47 [32] = "40GBASE_LR4", 48 [33] = "40GBASE_KR4", 49 [34] = "40G_XLAUI_AOC_ACC", 50 [35] = "40G_XLAUI", 51 [36] = "50GBASE_CR2", 52 [37] = "50GBASE_SR2", 53 [38] = "50GBASE_LR2", 54 [39] = "50GBASE_KR2", 55 [40] = "50G_LAUI2_AOC_ACC", 56 [41] = "50G_LAUI2", 57 [42] = "50G_AUI2_AOC_ACC", 58 [43] = "50G_AUI2", 59 [44] = "50GBASE_CP", 60 [45] = "50GBASE_SR", 61 [46] = "50GBASE_FR", 62 [47] = "50GBASE_LR", 63 [48] = "50GBASE_KR_PAM4", 64 [49] = "50G_AUI1_AOC_ACC", 65 [50] = "50G_AUI1", 66 [51] = "100GBASE_CR4", 67 [52] = "100GBASE_SR4", 68 [53] = "100GBASE_LR4", 69 [54] = "100GBASE_KR4", 70 [55] = "100G_CAUI4_AOC_ACC", 71 [56] = "100G_CAUI4", 72 [57] = "100G_AUI4_AOC_ACC", 73 [58] = "100G_AUI4", 74 [59] = "100GBASE_CR_PAM4", 75 [60] = "100GBASE_KR_PAM4", 76 [61] = "100GBASE_CP2", 77 [62] = "100GBASE_SR2", 78 [63] = "100GBASE_DR", 79 }; 80 81 static const char * const ice_link_mode_str_high[] = { 82 [0] = "100GBASE_KR2_PAM4", 83 [1] = "100G_CAUI2_AOC_ACC", 84 [2] = "100G_CAUI2", 85 [3] = "100G_AUI2_AOC_ACC", 86 [4] = "100G_AUI2", 87 }; 88 89 /** 90 * ice_dump_phy_type - helper function to dump phy_type 91 * @hw: pointer to the HW structure 92 * @low: 64 bit value for phy_type_low 93 * @high: 64 bit value for phy_type_high 94 * @prefix: prefix string to differentiate multiple dumps 95 */ 96 static void 97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix) 98 { 99 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low); 100 101 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) { 102 if (low & BIT_ULL(i)) 103 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", 104 prefix, i, ice_link_mode_str_low[i]); 105 } 106 107 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high); 108 109 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) { 110 if (high & BIT_ULL(i)) 111 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n", 112 prefix, i, ice_link_mode_str_high[i]); 113 } 114 } 115 116 /** 117 * ice_set_mac_type - Sets MAC type 118 * @hw: pointer to the HW structure 119 * 120 * This function sets the MAC type of the adapter based on the 121 * vendor ID and device ID stored in the HW structure. 122 */ 123 static int ice_set_mac_type(struct ice_hw *hw) 124 { 125 if (hw->vendor_id != PCI_VENDOR_ID_INTEL) 126 return -ENODEV; 127 128 switch (hw->device_id) { 129 case ICE_DEV_ID_E810C_BACKPLANE: 130 case ICE_DEV_ID_E810C_QSFP: 131 case ICE_DEV_ID_E810C_SFP: 132 case ICE_DEV_ID_E810_XXV_BACKPLANE: 133 case ICE_DEV_ID_E810_XXV_QSFP: 134 case ICE_DEV_ID_E810_XXV_SFP: 135 hw->mac_type = ICE_MAC_E810; 136 break; 137 case ICE_DEV_ID_E823C_10G_BASE_T: 138 case ICE_DEV_ID_E823C_BACKPLANE: 139 case ICE_DEV_ID_E823C_QSFP: 140 case ICE_DEV_ID_E823C_SFP: 141 case ICE_DEV_ID_E823C_SGMII: 142 case ICE_DEV_ID_E822C_10G_BASE_T: 143 case ICE_DEV_ID_E822C_BACKPLANE: 144 case ICE_DEV_ID_E822C_QSFP: 145 case ICE_DEV_ID_E822C_SFP: 146 case ICE_DEV_ID_E822C_SGMII: 147 case ICE_DEV_ID_E822L_10G_BASE_T: 148 case ICE_DEV_ID_E822L_BACKPLANE: 149 case ICE_DEV_ID_E822L_SFP: 150 case ICE_DEV_ID_E822L_SGMII: 151 case ICE_DEV_ID_E823L_10G_BASE_T: 152 case ICE_DEV_ID_E823L_1GBE: 153 case ICE_DEV_ID_E823L_BACKPLANE: 154 case ICE_DEV_ID_E823L_QSFP: 155 case ICE_DEV_ID_E823L_SFP: 156 hw->mac_type = ICE_MAC_GENERIC; 157 break; 158 case ICE_DEV_ID_E825C_BACKPLANE: 159 case ICE_DEV_ID_E825C_QSFP: 160 case ICE_DEV_ID_E825C_SFP: 161 case ICE_DEV_ID_E825C_SGMII: 162 hw->mac_type = ICE_MAC_GENERIC_3K_E825; 163 break; 164 case ICE_DEV_ID_E830CC_BACKPLANE: 165 case ICE_DEV_ID_E830CC_QSFP56: 166 case ICE_DEV_ID_E830CC_SFP: 167 case ICE_DEV_ID_E830CC_SFP_DD: 168 case ICE_DEV_ID_E830C_BACKPLANE: 169 case ICE_DEV_ID_E830_XXV_BACKPLANE: 170 case ICE_DEV_ID_E830C_QSFP: 171 case ICE_DEV_ID_E830_XXV_QSFP: 172 case ICE_DEV_ID_E830C_SFP: 173 case ICE_DEV_ID_E830_XXV_SFP: 174 hw->mac_type = ICE_MAC_E830; 175 break; 176 default: 177 hw->mac_type = ICE_MAC_UNKNOWN; 178 break; 179 } 180 181 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type); 182 return 0; 183 } 184 185 /** 186 * ice_is_generic_mac - check if device's mac_type is generic 187 * @hw: pointer to the hardware structure 188 * 189 * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise. 190 */ 191 bool ice_is_generic_mac(struct ice_hw *hw) 192 { 193 return (hw->mac_type == ICE_MAC_GENERIC || 194 hw->mac_type == ICE_MAC_GENERIC_3K_E825); 195 } 196 197 /** 198 * ice_is_pf_c827 - check if pf contains c827 phy 199 * @hw: pointer to the hw struct 200 * 201 * Return: true if the device has c827 phy. 202 */ 203 static bool ice_is_pf_c827(struct ice_hw *hw) 204 { 205 struct ice_aqc_get_link_topo cmd = {}; 206 u8 node_part_number; 207 u16 node_handle; 208 int status; 209 210 if (hw->mac_type != ICE_MAC_E810) 211 return false; 212 213 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) 214 return true; 215 216 cmd.addr.topo_params.node_type_ctx = 217 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) | 218 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT); 219 cmd.addr.topo_params.index = 0; 220 221 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number, 222 &node_handle); 223 224 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827) 225 return false; 226 227 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE) 228 return true; 229 230 return false; 231 } 232 233 /** 234 * ice_clear_pf_cfg - Clear PF configuration 235 * @hw: pointer to the hardware structure 236 * 237 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port 238 * configuration, flow director filters, etc.). 239 */ 240 int ice_clear_pf_cfg(struct ice_hw *hw) 241 { 242 struct ice_aq_desc desc; 243 244 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); 245 246 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 247 } 248 249 /** 250 * ice_aq_manage_mac_read - manage MAC address read command 251 * @hw: pointer to the HW struct 252 * @buf: a virtual buffer to hold the manage MAC read response 253 * @buf_size: Size of the virtual buffer 254 * @cd: pointer to command details structure or NULL 255 * 256 * This function is used to return per PF station MAC address (0x0107). 257 * NOTE: Upon successful completion of this command, MAC address information 258 * is returned in user specified buffer. Please interpret user specified 259 * buffer as "manage_mac_read" response. 260 * Response such as various MAC addresses are stored in HW struct (port.mac) 261 * ice_discover_dev_caps is expected to be called before this function is 262 * called. 263 */ 264 static int 265 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, 266 struct ice_sq_cd *cd) 267 { 268 struct ice_aqc_manage_mac_read_resp *resp; 269 struct ice_aqc_manage_mac_read *cmd; 270 struct ice_aq_desc desc; 271 int status; 272 u16 flags; 273 u8 i; 274 275 cmd = &desc.params.mac_read; 276 277 if (buf_size < sizeof(*resp)) 278 return -EINVAL; 279 280 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); 281 282 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 283 if (status) 284 return status; 285 286 resp = buf; 287 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; 288 289 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { 290 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); 291 return -EIO; 292 } 293 294 /* A single port can report up to two (LAN and WoL) addresses */ 295 for (i = 0; i < cmd->num_addr; i++) 296 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { 297 ether_addr_copy(hw->port_info->mac.lan_addr, 298 resp[i].mac_addr); 299 ether_addr_copy(hw->port_info->mac.perm_addr, 300 resp[i].mac_addr); 301 break; 302 } 303 304 return 0; 305 } 306 307 /** 308 * ice_aq_get_phy_caps - returns PHY capabilities 309 * @pi: port information structure 310 * @qual_mods: report qualified modules 311 * @report_mode: report mode capabilities 312 * @pcaps: structure for PHY capabilities to be filled 313 * @cd: pointer to command details structure or NULL 314 * 315 * Returns the various PHY capabilities supported on the Port (0x0600) 316 */ 317 int 318 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, 319 struct ice_aqc_get_phy_caps_data *pcaps, 320 struct ice_sq_cd *cd) 321 { 322 struct ice_aqc_get_phy_caps *cmd; 323 u16 pcaps_size = sizeof(*pcaps); 324 struct ice_aq_desc desc; 325 const char *prefix; 326 struct ice_hw *hw; 327 int status; 328 329 cmd = &desc.params.get_phy; 330 331 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) 332 return -EINVAL; 333 hw = pi->hw; 334 335 if (report_mode == ICE_AQC_REPORT_DFLT_CFG && 336 !ice_fw_supports_report_dflt_cfg(hw)) 337 return -EINVAL; 338 339 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); 340 341 if (qual_mods) 342 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); 343 344 cmd->param0 |= cpu_to_le16(report_mode); 345 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd); 346 347 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n"); 348 349 switch (report_mode) { 350 case ICE_AQC_REPORT_TOPO_CAP_MEDIA: 351 prefix = "phy_caps_media"; 352 break; 353 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA: 354 prefix = "phy_caps_no_media"; 355 break; 356 case ICE_AQC_REPORT_ACTIVE_CFG: 357 prefix = "phy_caps_active"; 358 break; 359 case ICE_AQC_REPORT_DFLT_CFG: 360 prefix = "phy_caps_default"; 361 break; 362 default: 363 prefix = "phy_caps_invalid"; 364 } 365 366 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low), 367 le64_to_cpu(pcaps->phy_type_high), prefix); 368 369 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n", 370 prefix, report_mode); 371 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps); 372 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix, 373 pcaps->low_power_ctrl_an); 374 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix, 375 pcaps->eee_cap); 376 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix, 377 pcaps->eeer_value); 378 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix, 379 pcaps->link_fec_options); 380 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n", 381 prefix, pcaps->module_compliance_enforcement); 382 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n", 383 prefix, pcaps->extended_compliance_code); 384 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix, 385 pcaps->module_type[0]); 386 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix, 387 pcaps->module_type[1]); 388 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix, 389 pcaps->module_type[2]); 390 391 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) { 392 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 393 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 394 memcpy(pi->phy.link_info.module_type, &pcaps->module_type, 395 sizeof(pi->phy.link_info.module_type)); 396 } 397 398 return status; 399 } 400 401 /** 402 * ice_aq_get_link_topo_handle - get link topology node return status 403 * @pi: port information structure 404 * @node_type: requested node type 405 * @cd: pointer to command details structure or NULL 406 * 407 * Get link topology node return status for specified node type (0x06E0) 408 * 409 * Node type cage can be used to determine if cage is present. If AQC 410 * returns error (ENOENT), then no cage present. If no cage present, then 411 * connection type is backplane or BASE-T. 412 */ 413 static int 414 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type, 415 struct ice_sq_cd *cd) 416 { 417 struct ice_aqc_get_link_topo *cmd; 418 struct ice_aq_desc desc; 419 420 cmd = &desc.params.get_link_topo; 421 422 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 423 424 cmd->addr.topo_params.node_type_ctx = 425 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT << 426 ICE_AQC_LINK_TOPO_NODE_CTX_S); 427 428 /* set node type */ 429 cmd->addr.topo_params.node_type_ctx |= 430 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type); 431 432 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 433 } 434 435 /** 436 * ice_aq_get_netlist_node 437 * @hw: pointer to the hw struct 438 * @cmd: get_link_topo AQ structure 439 * @node_part_number: output node part number if node found 440 * @node_handle: output node handle parameter if node found 441 * 442 * Get netlist node handle. 443 */ 444 int 445 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd, 446 u8 *node_part_number, u16 *node_handle) 447 { 448 struct ice_aq_desc desc; 449 450 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 451 desc.params.get_link_topo = *cmd; 452 453 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL)) 454 return -EINTR; 455 456 if (node_handle) 457 *node_handle = 458 le16_to_cpu(desc.params.get_link_topo.addr.handle); 459 if (node_part_number) 460 *node_part_number = desc.params.get_link_topo.node_part_num; 461 462 return 0; 463 } 464 465 /** 466 * ice_find_netlist_node 467 * @hw: pointer to the hw struct 468 * @node_type: type of netlist node to look for 469 * @ctx: context of the search 470 * @node_part_number: node part number to look for 471 * @node_handle: output parameter if node found - optional 472 * 473 * Scan the netlist for a node handle of the given node type and part number. 474 * 475 * If node_handle is non-NULL it will be modified on function exit. It is only 476 * valid if the function returns zero, and should be ignored on any non-zero 477 * return value. 478 * 479 * Return: 480 * * 0 if the node is found, 481 * * -ENOENT if no handle was found, 482 * * negative error code on failure to access the AQ. 483 */ 484 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx, 485 u8 node_part_number, u16 *node_handle) 486 { 487 u8 idx; 488 489 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) { 490 struct ice_aqc_get_link_topo cmd = {}; 491 u8 rec_node_part_number; 492 int status; 493 494 cmd.addr.topo_params.node_type_ctx = 495 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) | 496 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx); 497 cmd.addr.topo_params.index = idx; 498 499 status = ice_aq_get_netlist_node(hw, &cmd, 500 &rec_node_part_number, 501 node_handle); 502 if (status) 503 return status; 504 505 if (rec_node_part_number == node_part_number) 506 return 0; 507 } 508 509 return -ENOENT; 510 } 511 512 /** 513 * ice_is_media_cage_present 514 * @pi: port information structure 515 * 516 * Returns true if media cage is present, else false. If no cage, then 517 * media type is backplane or BASE-T. 518 */ 519 static bool ice_is_media_cage_present(struct ice_port_info *pi) 520 { 521 /* Node type cage can be used to determine if cage is present. If AQC 522 * returns error (ENOENT), then no cage present. If no cage present then 523 * connection type is backplane or BASE-T. 524 */ 525 return !ice_aq_get_link_topo_handle(pi, 526 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE, 527 NULL); 528 } 529 530 /** 531 * ice_get_media_type - Gets media type 532 * @pi: port information structure 533 */ 534 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) 535 { 536 struct ice_link_status *hw_link_info; 537 538 if (!pi) 539 return ICE_MEDIA_UNKNOWN; 540 541 hw_link_info = &pi->phy.link_info; 542 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 543 /* If more than one media type is selected, report unknown */ 544 return ICE_MEDIA_UNKNOWN; 545 546 if (hw_link_info->phy_type_low) { 547 /* 1G SGMII is a special case where some DA cable PHYs 548 * may show this as an option when it really shouldn't 549 * be since SGMII is meant to be between a MAC and a PHY 550 * in a backplane. Try to detect this case and handle it 551 */ 552 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII && 553 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 554 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || 555 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 556 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) 557 return ICE_MEDIA_DA; 558 559 switch (hw_link_info->phy_type_low) { 560 case ICE_PHY_TYPE_LOW_1000BASE_SX: 561 case ICE_PHY_TYPE_LOW_1000BASE_LX: 562 case ICE_PHY_TYPE_LOW_10GBASE_SR: 563 case ICE_PHY_TYPE_LOW_10GBASE_LR: 564 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 565 case ICE_PHY_TYPE_LOW_25GBASE_SR: 566 case ICE_PHY_TYPE_LOW_25GBASE_LR: 567 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 568 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 569 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 570 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 571 case ICE_PHY_TYPE_LOW_50GBASE_SR: 572 case ICE_PHY_TYPE_LOW_50GBASE_FR: 573 case ICE_PHY_TYPE_LOW_50GBASE_LR: 574 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 575 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 576 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 577 case ICE_PHY_TYPE_LOW_100GBASE_DR: 578 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 579 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 580 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 581 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 582 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 583 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 584 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 585 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 586 return ICE_MEDIA_FIBER; 587 case ICE_PHY_TYPE_LOW_100BASE_TX: 588 case ICE_PHY_TYPE_LOW_1000BASE_T: 589 case ICE_PHY_TYPE_LOW_2500BASE_T: 590 case ICE_PHY_TYPE_LOW_5GBASE_T: 591 case ICE_PHY_TYPE_LOW_10GBASE_T: 592 case ICE_PHY_TYPE_LOW_25GBASE_T: 593 return ICE_MEDIA_BASET; 594 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 595 case ICE_PHY_TYPE_LOW_25GBASE_CR: 596 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 597 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 598 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 599 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 600 case ICE_PHY_TYPE_LOW_50GBASE_CP: 601 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 602 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 603 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 604 return ICE_MEDIA_DA; 605 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 606 case ICE_PHY_TYPE_LOW_40G_XLAUI: 607 case ICE_PHY_TYPE_LOW_50G_LAUI2: 608 case ICE_PHY_TYPE_LOW_50G_AUI2: 609 case ICE_PHY_TYPE_LOW_50G_AUI1: 610 case ICE_PHY_TYPE_LOW_100G_AUI4: 611 case ICE_PHY_TYPE_LOW_100G_CAUI4: 612 if (ice_is_media_cage_present(pi)) 613 return ICE_MEDIA_DA; 614 fallthrough; 615 case ICE_PHY_TYPE_LOW_1000BASE_KX: 616 case ICE_PHY_TYPE_LOW_2500BASE_KX: 617 case ICE_PHY_TYPE_LOW_2500BASE_X: 618 case ICE_PHY_TYPE_LOW_5GBASE_KR: 619 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 620 case ICE_PHY_TYPE_LOW_25GBASE_KR: 621 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 622 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 623 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 624 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 625 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 626 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 627 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 628 return ICE_MEDIA_BACKPLANE; 629 } 630 } else { 631 switch (hw_link_info->phy_type_high) { 632 case ICE_PHY_TYPE_HIGH_100G_AUI2: 633 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 634 if (ice_is_media_cage_present(pi)) 635 return ICE_MEDIA_DA; 636 fallthrough; 637 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 638 return ICE_MEDIA_BACKPLANE; 639 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 640 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 641 return ICE_MEDIA_FIBER; 642 } 643 } 644 return ICE_MEDIA_UNKNOWN; 645 } 646 647 /** 648 * ice_get_link_status_datalen 649 * @hw: pointer to the HW struct 650 * 651 * Returns datalength for the Get Link Status AQ command, which is bigger for 652 * newer adapter families handled by ice driver. 653 */ 654 static u16 ice_get_link_status_datalen(struct ice_hw *hw) 655 { 656 switch (hw->mac_type) { 657 case ICE_MAC_E830: 658 return ICE_AQC_LS_DATA_SIZE_V2; 659 case ICE_MAC_E810: 660 default: 661 return ICE_AQC_LS_DATA_SIZE_V1; 662 } 663 } 664 665 /** 666 * ice_aq_get_link_info 667 * @pi: port information structure 668 * @ena_lse: enable/disable LinkStatusEvent reporting 669 * @link: pointer to link status structure - optional 670 * @cd: pointer to command details structure or NULL 671 * 672 * Get Link Status (0x607). Returns the link status of the adapter. 673 */ 674 int 675 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, 676 struct ice_link_status *link, struct ice_sq_cd *cd) 677 { 678 struct ice_aqc_get_link_status_data link_data = { 0 }; 679 struct ice_aqc_get_link_status *resp; 680 struct ice_link_status *li_old, *li; 681 enum ice_media_type *hw_media_type; 682 struct ice_fc_info *hw_fc_info; 683 bool tx_pause, rx_pause; 684 struct ice_aq_desc desc; 685 struct ice_hw *hw; 686 u16 cmd_flags; 687 int status; 688 689 if (!pi) 690 return -EINVAL; 691 hw = pi->hw; 692 li_old = &pi->phy.link_info_old; 693 hw_media_type = &pi->phy.media_type; 694 li = &pi->phy.link_info; 695 hw_fc_info = &pi->fc; 696 697 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); 698 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; 699 resp = &desc.params.get_link_status; 700 resp->cmd_flags = cpu_to_le16(cmd_flags); 701 resp->lport_num = pi->lport; 702 703 status = ice_aq_send_cmd(hw, &desc, &link_data, 704 ice_get_link_status_datalen(hw), cd); 705 if (status) 706 return status; 707 708 /* save off old link status information */ 709 *li_old = *li; 710 711 /* update current link status information */ 712 li->link_speed = le16_to_cpu(link_data.link_speed); 713 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 714 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 715 *hw_media_type = ice_get_media_type(pi); 716 li->link_info = link_data.link_info; 717 li->link_cfg_err = link_data.link_cfg_err; 718 li->an_info = link_data.an_info; 719 li->ext_info = link_data.ext_info; 720 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 721 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK; 722 li->topo_media_conflict = link_data.topo_media_conflict; 723 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M | 724 ICE_AQ_CFG_PACING_TYPE_M); 725 726 /* update fc info */ 727 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); 728 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); 729 if (tx_pause && rx_pause) 730 hw_fc_info->current_mode = ICE_FC_FULL; 731 else if (tx_pause) 732 hw_fc_info->current_mode = ICE_FC_TX_PAUSE; 733 else if (rx_pause) 734 hw_fc_info->current_mode = ICE_FC_RX_PAUSE; 735 else 736 hw_fc_info->current_mode = ICE_FC_NONE; 737 738 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); 739 740 ice_debug(hw, ICE_DBG_LINK, "get link info\n"); 741 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed); 742 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 743 (unsigned long long)li->phy_type_low); 744 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 745 (unsigned long long)li->phy_type_high); 746 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type); 747 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info); 748 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err); 749 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info); 750 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info); 751 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info); 752 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena); 753 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n", 754 li->max_frame_size); 755 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing); 756 757 /* save link status information */ 758 if (link) 759 *link = *li; 760 761 /* flag cleared so calling functions don't call AQ again */ 762 pi->phy.get_link_info = false; 763 764 return 0; 765 } 766 767 /** 768 * ice_fill_tx_timer_and_fc_thresh 769 * @hw: pointer to the HW struct 770 * @cmd: pointer to MAC cfg structure 771 * 772 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command 773 * descriptor 774 */ 775 static void 776 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw, 777 struct ice_aqc_set_mac_cfg *cmd) 778 { 779 u32 val, fc_thres_m; 780 781 /* We read back the transmit timer and FC threshold value of 782 * LFC. Thus, we will use index = 783 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX. 784 * 785 * Also, because we are operating on transmit timer and FC 786 * threshold of LFC, we don't turn on any bit in tx_tmr_priority 787 */ 788 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX 789 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR 790 791 if (hw->mac_type == ICE_MAC_E830) { 792 /* Retrieve the transmit timer */ 793 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT); 794 cmd->tx_tmr_value = 795 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M); 796 797 /* Retrieve the fc threshold */ 798 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR); 799 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M; 800 } else { 801 /* Retrieve the transmit timer */ 802 val = rd32(hw, 803 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC)); 804 cmd->tx_tmr_value = 805 le16_encode_bits(val, 806 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M); 807 808 /* Retrieve the fc threshold */ 809 val = rd32(hw, 810 E800_REFRESH_TMR(E800_IDX_OF_LFC)); 811 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M; 812 } 813 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m); 814 } 815 816 /** 817 * ice_aq_set_mac_cfg 818 * @hw: pointer to the HW struct 819 * @max_frame_size: Maximum Frame Size to be supported 820 * @cd: pointer to command details structure or NULL 821 * 822 * Set MAC configuration (0x0603) 823 */ 824 int 825 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd) 826 { 827 struct ice_aqc_set_mac_cfg *cmd; 828 struct ice_aq_desc desc; 829 830 cmd = &desc.params.set_mac_cfg; 831 832 if (max_frame_size == 0) 833 return -EINVAL; 834 835 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg); 836 837 cmd->max_frame_size = cpu_to_le16(max_frame_size); 838 839 ice_fill_tx_timer_and_fc_thresh(hw, cmd); 840 841 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 842 } 843 844 /** 845 * ice_init_fltr_mgmt_struct - initializes filter management list and locks 846 * @hw: pointer to the HW struct 847 */ 848 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw) 849 { 850 struct ice_switch_info *sw; 851 int status; 852 853 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), 854 sizeof(*hw->switch_info), GFP_KERNEL); 855 sw = hw->switch_info; 856 857 if (!sw) 858 return -ENOMEM; 859 860 INIT_LIST_HEAD(&sw->vsi_list_map_head); 861 sw->prof_res_bm_init = 0; 862 863 /* Initialize recipe count with default recipes read from NVM */ 864 sw->recp_cnt = ICE_SW_LKUP_LAST; 865 866 status = ice_init_def_sw_recp(hw); 867 if (status) { 868 devm_kfree(ice_hw_to_dev(hw), hw->switch_info); 869 return status; 870 } 871 return 0; 872 } 873 874 /** 875 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks 876 * @hw: pointer to the HW struct 877 */ 878 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) 879 { 880 struct ice_switch_info *sw = hw->switch_info; 881 struct ice_vsi_list_map_info *v_pos_map; 882 struct ice_vsi_list_map_info *v_tmp_map; 883 struct ice_sw_recipe *recps; 884 u8 i; 885 886 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, 887 list_entry) { 888 list_del(&v_pos_map->list_entry); 889 devm_kfree(ice_hw_to_dev(hw), v_pos_map); 890 } 891 recps = sw->recp_list; 892 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 893 recps[i].root_rid = i; 894 895 if (recps[i].adv_rule) { 896 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 897 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 898 899 mutex_destroy(&recps[i].filt_rule_lock); 900 list_for_each_entry_safe(lst_itr, tmp_entry, 901 &recps[i].filt_rules, 902 list_entry) { 903 list_del(&lst_itr->list_entry); 904 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 905 devm_kfree(ice_hw_to_dev(hw), lst_itr); 906 } 907 } else { 908 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; 909 910 mutex_destroy(&recps[i].filt_rule_lock); 911 list_for_each_entry_safe(lst_itr, tmp_entry, 912 &recps[i].filt_rules, 913 list_entry) { 914 list_del(&lst_itr->list_entry); 915 devm_kfree(ice_hw_to_dev(hw), lst_itr); 916 } 917 } 918 } 919 ice_rm_all_sw_replay_rule_info(hw); 920 devm_kfree(ice_hw_to_dev(hw), sw->recp_list); 921 devm_kfree(ice_hw_to_dev(hw), sw); 922 } 923 924 /** 925 * ice_get_itr_intrl_gran 926 * @hw: pointer to the HW struct 927 * 928 * Determines the ITR/INTRL granularities based on the maximum aggregate 929 * bandwidth according to the device's configuration during power-on. 930 */ 931 static void ice_get_itr_intrl_gran(struct ice_hw *hw) 932 { 933 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M, 934 rd32(hw, GL_PWR_MODE_CTL)); 935 936 switch (max_agg_bw) { 937 case ICE_MAX_AGG_BW_200G: 938 case ICE_MAX_AGG_BW_100G: 939 case ICE_MAX_AGG_BW_50G: 940 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; 941 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; 942 break; 943 case ICE_MAX_AGG_BW_25G: 944 hw->itr_gran = ICE_ITR_GRAN_MAX_25; 945 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; 946 break; 947 } 948 } 949 950 /** 951 * ice_wait_for_fw - wait for full FW readiness 952 * @hw: pointer to the hardware structure 953 * @timeout: milliseconds that can elapse before timing out 954 * 955 * Return: 0 on success, -ETIMEDOUT on timeout. 956 */ 957 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 958 { 959 int fw_loading; 960 u32 elapsed = 0; 961 962 while (elapsed <= timeout) { 963 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 964 965 /* firmware was not yet loaded, we have to wait more */ 966 if (fw_loading) { 967 elapsed += 100; 968 msleep(100); 969 continue; 970 } 971 return 0; 972 } 973 974 return -ETIMEDOUT; 975 } 976 977 /** 978 * ice_init_hw - main hardware initialization routine 979 * @hw: pointer to the hardware structure 980 */ 981 int ice_init_hw(struct ice_hw *hw) 982 { 983 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 984 void *mac_buf __free(kfree) = NULL; 985 u16 mac_buf_len; 986 int status; 987 988 /* Set MAC type based on DeviceID */ 989 status = ice_set_mac_type(hw); 990 if (status) 991 return status; 992 993 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID)); 994 995 status = ice_reset(hw, ICE_RESET_PFR); 996 if (status) 997 return status; 998 999 ice_get_itr_intrl_gran(hw); 1000 1001 status = ice_create_all_ctrlq(hw); 1002 if (status) 1003 goto err_unroll_cqinit; 1004 1005 status = ice_fwlog_init(hw); 1006 if (status) 1007 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n", 1008 status); 1009 1010 status = ice_clear_pf_cfg(hw); 1011 if (status) 1012 goto err_unroll_cqinit; 1013 1014 /* Set bit to enable Flow Director filters */ 1015 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 1016 INIT_LIST_HEAD(&hw->fdir_list_head); 1017 1018 ice_clear_pxe_mode(hw); 1019 1020 status = ice_init_nvm(hw); 1021 if (status) 1022 goto err_unroll_cqinit; 1023 1024 status = ice_get_caps(hw); 1025 if (status) 1026 goto err_unroll_cqinit; 1027 1028 if (!hw->port_info) 1029 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), 1030 sizeof(*hw->port_info), 1031 GFP_KERNEL); 1032 if (!hw->port_info) { 1033 status = -ENOMEM; 1034 goto err_unroll_cqinit; 1035 } 1036 1037 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED; 1038 /* set the back pointer to HW */ 1039 hw->port_info->hw = hw; 1040 1041 /* Initialize port_info struct with switch configuration data */ 1042 status = ice_get_initial_sw_cfg(hw); 1043 if (status) 1044 goto err_unroll_alloc; 1045 1046 hw->evb_veb = true; 1047 1048 /* init xarray for identifying scheduling nodes uniquely */ 1049 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC); 1050 1051 /* Query the allocated resources for Tx scheduler */ 1052 status = ice_sched_query_res_alloc(hw); 1053 if (status) { 1054 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n"); 1055 goto err_unroll_alloc; 1056 } 1057 ice_sched_get_psm_clk_freq(hw); 1058 1059 /* Initialize port_info struct with scheduler data */ 1060 status = ice_sched_init_port(hw->port_info); 1061 if (status) 1062 goto err_unroll_sched; 1063 1064 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1065 if (!pcaps) { 1066 status = -ENOMEM; 1067 goto err_unroll_sched; 1068 } 1069 1070 /* Initialize port_info struct with PHY capabilities */ 1071 status = ice_aq_get_phy_caps(hw->port_info, false, 1072 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, 1073 NULL); 1074 if (status) 1075 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n", 1076 status); 1077 1078 /* Initialize port_info struct with link information */ 1079 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); 1080 if (status) 1081 goto err_unroll_sched; 1082 1083 /* need a valid SW entry point to build a Tx tree */ 1084 if (!hw->sw_entry_point_layer) { 1085 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); 1086 status = -EIO; 1087 goto err_unroll_sched; 1088 } 1089 INIT_LIST_HEAD(&hw->agg_list); 1090 /* Initialize max burst size */ 1091 if (!hw->max_burst_size) 1092 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE); 1093 1094 status = ice_init_fltr_mgmt_struct(hw); 1095 if (status) 1096 goto err_unroll_sched; 1097 1098 /* Get MAC information */ 1099 /* A single port can report up to two (LAN and WoL) addresses */ 1100 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp), 1101 GFP_KERNEL); 1102 if (!mac_buf) { 1103 status = -ENOMEM; 1104 goto err_unroll_fltr_mgmt_struct; 1105 } 1106 1107 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); 1108 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); 1109 1110 if (status) 1111 goto err_unroll_fltr_mgmt_struct; 1112 /* enable jumbo frame support at MAC level */ 1113 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 1114 if (status) 1115 goto err_unroll_fltr_mgmt_struct; 1116 /* Obtain counter base index which would be used by flow director */ 1117 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base); 1118 if (status) 1119 goto err_unroll_fltr_mgmt_struct; 1120 status = ice_init_hw_tbls(hw); 1121 if (status) 1122 goto err_unroll_fltr_mgmt_struct; 1123 mutex_init(&hw->tnl_lock); 1124 ice_init_chk_recipe_reuse_support(hw); 1125 1126 /* Some cards require longer initialization times 1127 * due to necessity of loading FW from an external source. 1128 * This can take even half a minute. 1129 */ 1130 if (ice_is_pf_c827(hw)) { 1131 status = ice_wait_for_fw(hw, 30000); 1132 if (status) { 1133 dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out"); 1134 goto err_unroll_fltr_mgmt_struct; 1135 } 1136 } 1137 1138 hw->lane_num = ice_get_phy_lane_number(hw); 1139 1140 return 0; 1141 err_unroll_fltr_mgmt_struct: 1142 ice_cleanup_fltr_mgmt_struct(hw); 1143 err_unroll_sched: 1144 ice_sched_cleanup_all(hw); 1145 err_unroll_alloc: 1146 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 1147 err_unroll_cqinit: 1148 ice_destroy_all_ctrlq(hw); 1149 return status; 1150 } 1151 1152 /** 1153 * ice_deinit_hw - unroll initialization operations done by ice_init_hw 1154 * @hw: pointer to the hardware structure 1155 * 1156 * This should be called only during nominal operation, not as a result of 1157 * ice_init_hw() failing since ice_init_hw() will take care of unrolling 1158 * applicable initializations if it fails for any reason. 1159 */ 1160 void ice_deinit_hw(struct ice_hw *hw) 1161 { 1162 ice_free_fd_res_cntr(hw, hw->fd_ctr_base); 1163 ice_cleanup_fltr_mgmt_struct(hw); 1164 1165 ice_sched_cleanup_all(hw); 1166 ice_sched_clear_agg(hw); 1167 ice_free_seg(hw); 1168 ice_free_hw_tbls(hw); 1169 mutex_destroy(&hw->tnl_lock); 1170 1171 ice_fwlog_deinit(hw); 1172 ice_destroy_all_ctrlq(hw); 1173 1174 /* Clear VSI contexts if not already cleared */ 1175 ice_clear_all_vsi_ctx(hw); 1176 } 1177 1178 /** 1179 * ice_check_reset - Check to see if a global reset is complete 1180 * @hw: pointer to the hardware structure 1181 */ 1182 int ice_check_reset(struct ice_hw *hw) 1183 { 1184 u32 cnt, reg = 0, grst_timeout, uld_mask; 1185 1186 /* Poll for Device Active state in case a recent CORER, GLOBR, 1187 * or EMPR has occurred. The grst delay value is in 100ms units. 1188 * Add 1sec for outstanding AQ commands that can take a long time. 1189 */ 1190 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M, 1191 rd32(hw, GLGEN_RSTCTL)) + 10; 1192 1193 for (cnt = 0; cnt < grst_timeout; cnt++) { 1194 mdelay(100); 1195 reg = rd32(hw, GLGEN_RSTAT); 1196 if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) 1197 break; 1198 } 1199 1200 if (cnt == grst_timeout) { 1201 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n"); 1202 return -EIO; 1203 } 1204 1205 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\ 1206 GLNVM_ULD_PCIER_DONE_1_M |\ 1207 GLNVM_ULD_CORER_DONE_M |\ 1208 GLNVM_ULD_GLOBR_DONE_M |\ 1209 GLNVM_ULD_POR_DONE_M |\ 1210 GLNVM_ULD_POR_DONE_1_M |\ 1211 GLNVM_ULD_PCIER_DONE_2_M) 1212 1213 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ? 1214 GLNVM_ULD_PE_DONE_M : 0); 1215 1216 /* Device is Active; check Global Reset processes are done */ 1217 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 1218 reg = rd32(hw, GLNVM_ULD) & uld_mask; 1219 if (reg == uld_mask) { 1220 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt); 1221 break; 1222 } 1223 mdelay(10); 1224 } 1225 1226 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1227 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", 1228 reg); 1229 return -EIO; 1230 } 1231 1232 return 0; 1233 } 1234 1235 /** 1236 * ice_pf_reset - Reset the PF 1237 * @hw: pointer to the hardware structure 1238 * 1239 * If a global reset has been triggered, this function checks 1240 * for its completion and then issues the PF reset 1241 */ 1242 static int ice_pf_reset(struct ice_hw *hw) 1243 { 1244 u32 cnt, reg; 1245 1246 /* If at function entry a global reset was already in progress, i.e. 1247 * state is not 'device active' or any of the reset done bits are not 1248 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the 1249 * global reset is done. 1250 */ 1251 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || 1252 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { 1253 /* poll on global reset currently in progress until done */ 1254 if (ice_check_reset(hw)) 1255 return -EIO; 1256 1257 return 0; 1258 } 1259 1260 /* Reset the PF */ 1261 reg = rd32(hw, PFGEN_CTRL); 1262 1263 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); 1264 1265 /* Wait for the PFR to complete. The wait time is the global config lock 1266 * timeout plus the PFR timeout which will account for a possible reset 1267 * that is occurring during a download package operation. 1268 */ 1269 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT + 1270 ICE_PF_RESET_WAIT_COUNT; cnt++) { 1271 reg = rd32(hw, PFGEN_CTRL); 1272 if (!(reg & PFGEN_CTRL_PFSWR_M)) 1273 break; 1274 1275 mdelay(1); 1276 } 1277 1278 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1279 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n"); 1280 return -EIO; 1281 } 1282 1283 return 0; 1284 } 1285 1286 /** 1287 * ice_reset - Perform different types of reset 1288 * @hw: pointer to the hardware structure 1289 * @req: reset request 1290 * 1291 * This function triggers a reset as specified by the req parameter. 1292 * 1293 * Note: 1294 * If anything other than a PF reset is triggered, PXE mode is restored. 1295 * This has to be cleared using ice_clear_pxe_mode again, once the AQ 1296 * interface has been restored in the rebuild flow. 1297 */ 1298 int ice_reset(struct ice_hw *hw, enum ice_reset_req req) 1299 { 1300 u32 val = 0; 1301 1302 switch (req) { 1303 case ICE_RESET_PFR: 1304 return ice_pf_reset(hw); 1305 case ICE_RESET_CORER: 1306 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); 1307 val = GLGEN_RTRIG_CORER_M; 1308 break; 1309 case ICE_RESET_GLOBR: 1310 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); 1311 val = GLGEN_RTRIG_GLOBR_M; 1312 break; 1313 default: 1314 return -EINVAL; 1315 } 1316 1317 val |= rd32(hw, GLGEN_RTRIG); 1318 wr32(hw, GLGEN_RTRIG, val); 1319 ice_flush(hw); 1320 1321 /* wait for the FW to be ready */ 1322 return ice_check_reset(hw); 1323 } 1324 1325 /** 1326 * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers 1327 * @hw: pointer to the hardware structure 1328 * @rxq_ctx: pointer to the packed Rx queue context 1329 * @rxq_index: the index of the Rx queue 1330 */ 1331 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, 1332 const ice_rxq_ctx_buf_t *rxq_ctx, 1333 u32 rxq_index) 1334 { 1335 /* Copy each dword separately to HW */ 1336 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { 1337 u32 ctx = ((const u32 *)rxq_ctx)[i]; 1338 1339 wr32(hw, QRX_CONTEXT(i, rxq_index), ctx); 1340 1341 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx); 1342 } 1343 } 1344 1345 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \ 1346 PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field) 1347 1348 /* LAN Rx Queue Context */ 1349 static const struct packed_field_u8 ice_rlan_ctx_fields[] = { 1350 /* Field Width LSB */ 1351 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), 1352 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), 1353 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), 1354 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), 1355 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), 1356 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), 1357 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), 1358 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), 1359 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), 1360 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), 1361 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), 1362 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), 1363 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), 1364 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), 1365 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), 1366 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), 1367 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), 1368 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), 1369 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), 1370 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201), 1371 }; 1372 1373 /** 1374 * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer 1375 * @ctx: the Rx queue context to pack 1376 * @buf: the HW buffer to pack into 1377 * 1378 * Pack the Rx queue context from the CPU-friendly unpacked buffer into its 1379 * bit-packed HW layout. 1380 */ 1381 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx, 1382 ice_rxq_ctx_buf_t *buf) 1383 { 1384 pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields, 1385 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST); 1386 } 1387 1388 /** 1389 * ice_write_rxq_ctx - Write Rx Queue context to hardware 1390 * @hw: pointer to the hardware structure 1391 * @rlan_ctx: pointer to the unpacked Rx queue context 1392 * @rxq_index: the index of the Rx queue 1393 * 1394 * Pack the sparse Rx Queue context into dense hardware format and write it 1395 * into the HW register space. 1396 * 1397 * Return: 0 on success, or -EINVAL if the Rx queue index is invalid. 1398 */ 1399 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, 1400 u32 rxq_index) 1401 { 1402 ice_rxq_ctx_buf_t buf = {}; 1403 1404 if (rxq_index > QRX_CTRL_MAX_INDEX) 1405 return -EINVAL; 1406 1407 ice_pack_rxq_ctx(rlan_ctx, &buf); 1408 ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index); 1409 1410 return 0; 1411 } 1412 1413 /* LAN Tx Queue Context */ 1414 static const struct packed_field_u8 ice_tlan_ctx_fields[] = { 1415 /* Field Width LSB */ 1416 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), 1417 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), 1418 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), 1419 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), 1420 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), 1421 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), 1422 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), 1423 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), 1424 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91), 1425 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), 1426 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), 1427 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), 1428 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), 1429 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), 1430 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), 1431 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), 1432 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), 1433 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), 1434 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), 1435 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), 1436 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), 1437 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), 1438 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), 1439 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), 1440 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), 1441 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), 1442 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), 1443 }; 1444 1445 /** 1446 * ice_pack_txq_ctx - Pack Tx queue context into a HW buffer 1447 * @ctx: the Tx queue context to pack 1448 * @buf: the HW buffer to pack into 1449 * 1450 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its 1451 * bit-packed HW layout. 1452 */ 1453 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf) 1454 { 1455 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields, 1456 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST); 1457 } 1458 1459 /* Sideband Queue command wrappers */ 1460 1461 /** 1462 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue 1463 * @hw: pointer to the HW struct 1464 * @desc: descriptor describing the command 1465 * @buf: buffer to use for indirect commands (NULL for direct commands) 1466 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1467 * @cd: pointer to command details structure 1468 */ 1469 static int 1470 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc, 1471 void *buf, u16 buf_size, struct ice_sq_cd *cd) 1472 { 1473 return ice_sq_send_cmd(hw, ice_get_sbq(hw), 1474 (struct ice_aq_desc *)desc, buf, buf_size, cd); 1475 } 1476 1477 /** 1478 * ice_sbq_rw_reg - Fill Sideband Queue command 1479 * @hw: pointer to the HW struct 1480 * @in: message info to be filled in descriptor 1481 * @flags: control queue descriptor flags 1482 */ 1483 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags) 1484 { 1485 struct ice_sbq_cmd_desc desc = {0}; 1486 struct ice_sbq_msg_req msg = {0}; 1487 u16 msg_len; 1488 int status; 1489 1490 msg_len = sizeof(msg); 1491 1492 msg.dest_dev = in->dest_dev; 1493 msg.opcode = in->opcode; 1494 msg.flags = ICE_SBQ_MSG_FLAGS; 1495 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE; 1496 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low); 1497 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high); 1498 1499 if (in->opcode) 1500 msg.data = cpu_to_le32(in->data); 1501 else 1502 /* data read comes back in completion, so shorten the struct by 1503 * sizeof(msg.data) 1504 */ 1505 msg_len -= sizeof(msg.data); 1506 1507 desc.flags = cpu_to_le16(flags); 1508 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req); 1509 desc.param0.cmd_len = cpu_to_le16(msg_len); 1510 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL); 1511 if (!status && !in->opcode) 1512 in->data = le32_to_cpu 1513 (((struct ice_sbq_msg_cmpl *)&msg)->data); 1514 return status; 1515 } 1516 1517 /* FW Admin Queue command wrappers */ 1518 1519 /* Software lock/mutex that is meant to be held while the Global Config Lock 1520 * in firmware is acquired by the software to prevent most (but not all) types 1521 * of AQ commands from being sent to FW 1522 */ 1523 DEFINE_MUTEX(ice_global_cfg_lock_sw); 1524 1525 /** 1526 * ice_should_retry_sq_send_cmd 1527 * @opcode: AQ opcode 1528 * 1529 * Decide if we should retry the send command routine for the ATQ, depending 1530 * on the opcode. 1531 */ 1532 static bool ice_should_retry_sq_send_cmd(u16 opcode) 1533 { 1534 switch (opcode) { 1535 case ice_aqc_opc_get_link_topo: 1536 case ice_aqc_opc_lldp_stop: 1537 case ice_aqc_opc_lldp_start: 1538 case ice_aqc_opc_lldp_filter_ctrl: 1539 return true; 1540 } 1541 1542 return false; 1543 } 1544 1545 /** 1546 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ) 1547 * @hw: pointer to the HW struct 1548 * @cq: pointer to the specific Control queue 1549 * @desc: prefilled descriptor describing the command 1550 * @buf: buffer to use for indirect commands (or NULL for direct commands) 1551 * @buf_size: size of buffer for indirect commands (or 0 for direct commands) 1552 * @cd: pointer to command details structure 1553 * 1554 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin 1555 * Queue if the EBUSY AQ error is returned. 1556 */ 1557 static int 1558 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq, 1559 struct ice_aq_desc *desc, void *buf, u16 buf_size, 1560 struct ice_sq_cd *cd) 1561 { 1562 struct ice_aq_desc desc_cpy; 1563 bool is_cmd_for_retry; 1564 u8 idx = 0; 1565 u16 opcode; 1566 int status; 1567 1568 opcode = le16_to_cpu(desc->opcode); 1569 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode); 1570 memset(&desc_cpy, 0, sizeof(desc_cpy)); 1571 1572 if (is_cmd_for_retry) { 1573 /* All retryable cmds are direct, without buf. */ 1574 WARN_ON(buf); 1575 1576 memcpy(&desc_cpy, desc, sizeof(desc_cpy)); 1577 } 1578 1579 do { 1580 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd); 1581 1582 if (!is_cmd_for_retry || !status || 1583 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY) 1584 break; 1585 1586 memcpy(desc, &desc_cpy, sizeof(desc_cpy)); 1587 1588 msleep(ICE_SQ_SEND_DELAY_TIME_MS); 1589 1590 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE); 1591 1592 return status; 1593 } 1594 1595 /** 1596 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue 1597 * @hw: pointer to the HW struct 1598 * @desc: descriptor describing the command 1599 * @buf: buffer to use for indirect commands (NULL for direct commands) 1600 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1601 * @cd: pointer to command details structure 1602 * 1603 * Helper function to send FW Admin Queue commands to the FW Admin Queue. 1604 */ 1605 int 1606 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, 1607 u16 buf_size, struct ice_sq_cd *cd) 1608 { 1609 struct ice_aqc_req_res *cmd = &desc->params.res_owner; 1610 bool lock_acquired = false; 1611 int status; 1612 1613 /* When a package download is in process (i.e. when the firmware's 1614 * Global Configuration Lock resource is held), only the Download 1615 * Package, Get Version, Get Package Info List, Upload Section, 1616 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters, 1617 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get 1618 * Recipes to Profile Association, and Release Resource (with resource 1619 * ID set to Global Config Lock) AdminQ commands are allowed; all others 1620 * must block until the package download completes and the Global Config 1621 * Lock is released. See also ice_acquire_global_cfg_lock(). 1622 */ 1623 switch (le16_to_cpu(desc->opcode)) { 1624 case ice_aqc_opc_download_pkg: 1625 case ice_aqc_opc_get_pkg_info_list: 1626 case ice_aqc_opc_get_ver: 1627 case ice_aqc_opc_upload_section: 1628 case ice_aqc_opc_update_pkg: 1629 case ice_aqc_opc_set_port_params: 1630 case ice_aqc_opc_get_vlan_mode_parameters: 1631 case ice_aqc_opc_set_vlan_mode_parameters: 1632 case ice_aqc_opc_set_tx_topo: 1633 case ice_aqc_opc_get_tx_topo: 1634 case ice_aqc_opc_add_recipe: 1635 case ice_aqc_opc_recipe_to_profile: 1636 case ice_aqc_opc_get_recipe: 1637 case ice_aqc_opc_get_recipe_to_profile: 1638 break; 1639 case ice_aqc_opc_release_res: 1640 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK) 1641 break; 1642 fallthrough; 1643 default: 1644 mutex_lock(&ice_global_cfg_lock_sw); 1645 lock_acquired = true; 1646 break; 1647 } 1648 1649 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd); 1650 if (lock_acquired) 1651 mutex_unlock(&ice_global_cfg_lock_sw); 1652 1653 return status; 1654 } 1655 1656 /** 1657 * ice_aq_get_fw_ver 1658 * @hw: pointer to the HW struct 1659 * @cd: pointer to command details structure or NULL 1660 * 1661 * Get the firmware version (0x0001) from the admin queue commands 1662 */ 1663 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) 1664 { 1665 struct ice_aqc_get_ver *resp; 1666 struct ice_aq_desc desc; 1667 int status; 1668 1669 resp = &desc.params.get_ver; 1670 1671 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); 1672 1673 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1674 1675 if (!status) { 1676 hw->fw_branch = resp->fw_branch; 1677 hw->fw_maj_ver = resp->fw_major; 1678 hw->fw_min_ver = resp->fw_minor; 1679 hw->fw_patch = resp->fw_patch; 1680 hw->fw_build = le32_to_cpu(resp->fw_build); 1681 hw->api_branch = resp->api_branch; 1682 hw->api_maj_ver = resp->api_major; 1683 hw->api_min_ver = resp->api_minor; 1684 hw->api_patch = resp->api_patch; 1685 } 1686 1687 return status; 1688 } 1689 1690 /** 1691 * ice_aq_send_driver_ver 1692 * @hw: pointer to the HW struct 1693 * @dv: driver's major, minor version 1694 * @cd: pointer to command details structure or NULL 1695 * 1696 * Send the driver version (0x0002) to the firmware 1697 */ 1698 int 1699 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv, 1700 struct ice_sq_cd *cd) 1701 { 1702 struct ice_aqc_driver_ver *cmd; 1703 struct ice_aq_desc desc; 1704 u16 len; 1705 1706 cmd = &desc.params.driver_ver; 1707 1708 if (!dv) 1709 return -EINVAL; 1710 1711 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver); 1712 1713 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1714 cmd->major_ver = dv->major_ver; 1715 cmd->minor_ver = dv->minor_ver; 1716 cmd->build_ver = dv->build_ver; 1717 cmd->subbuild_ver = dv->subbuild_ver; 1718 1719 len = 0; 1720 while (len < sizeof(dv->driver_string) && 1721 isascii(dv->driver_string[len]) && dv->driver_string[len]) 1722 len++; 1723 1724 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd); 1725 } 1726 1727 /** 1728 * ice_aq_q_shutdown 1729 * @hw: pointer to the HW struct 1730 * @unloading: is the driver unloading itself 1731 * 1732 * Tell the Firmware that we're shutting down the AdminQ and whether 1733 * or not the driver is unloading as well (0x0003). 1734 */ 1735 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) 1736 { 1737 struct ice_aqc_q_shutdown *cmd; 1738 struct ice_aq_desc desc; 1739 1740 cmd = &desc.params.q_shutdown; 1741 1742 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); 1743 1744 if (unloading) 1745 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING; 1746 1747 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1748 } 1749 1750 /** 1751 * ice_aq_req_res 1752 * @hw: pointer to the HW struct 1753 * @res: resource ID 1754 * @access: access type 1755 * @sdp_number: resource number 1756 * @timeout: the maximum time in ms that the driver may hold the resource 1757 * @cd: pointer to command details structure or NULL 1758 * 1759 * Requests common resource using the admin queue commands (0x0008). 1760 * When attempting to acquire the Global Config Lock, the driver can 1761 * learn of three states: 1762 * 1) 0 - acquired lock, and can perform download package 1763 * 2) -EIO - did not get lock, driver should fail to load 1764 * 3) -EALREADY - did not get lock, but another driver has 1765 * successfully downloaded the package; the driver does 1766 * not have to download the package and can continue 1767 * loading 1768 * 1769 * Note that if the caller is in an acquire lock, perform action, release lock 1770 * phase of operation, it is possible that the FW may detect a timeout and issue 1771 * a CORER. In this case, the driver will receive a CORER interrupt and will 1772 * have to determine its cause. The calling thread that is handling this flow 1773 * will likely get an error propagated back to it indicating the Download 1774 * Package, Update Package or the Release Resource AQ commands timed out. 1775 */ 1776 static int 1777 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1778 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, 1779 struct ice_sq_cd *cd) 1780 { 1781 struct ice_aqc_req_res *cmd_resp; 1782 struct ice_aq_desc desc; 1783 int status; 1784 1785 cmd_resp = &desc.params.res_owner; 1786 1787 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); 1788 1789 cmd_resp->res_id = cpu_to_le16(res); 1790 cmd_resp->access_type = cpu_to_le16(access); 1791 cmd_resp->res_number = cpu_to_le32(sdp_number); 1792 cmd_resp->timeout = cpu_to_le32(*timeout); 1793 *timeout = 0; 1794 1795 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1796 1797 /* The completion specifies the maximum time in ms that the driver 1798 * may hold the resource in the Timeout field. 1799 */ 1800 1801 /* Global config lock response utilizes an additional status field. 1802 * 1803 * If the Global config lock resource is held by some other driver, the 1804 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field 1805 * and the timeout field indicates the maximum time the current owner 1806 * of the resource has to free it. 1807 */ 1808 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { 1809 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { 1810 *timeout = le32_to_cpu(cmd_resp->timeout); 1811 return 0; 1812 } else if (le16_to_cpu(cmd_resp->status) == 1813 ICE_AQ_RES_GLBL_IN_PROG) { 1814 *timeout = le32_to_cpu(cmd_resp->timeout); 1815 return -EIO; 1816 } else if (le16_to_cpu(cmd_resp->status) == 1817 ICE_AQ_RES_GLBL_DONE) { 1818 return -EALREADY; 1819 } 1820 1821 /* invalid FW response, force a timeout immediately */ 1822 *timeout = 0; 1823 return -EIO; 1824 } 1825 1826 /* If the resource is held by some other driver, the command completes 1827 * with a busy return value and the timeout field indicates the maximum 1828 * time the current owner of the resource has to free it. 1829 */ 1830 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) 1831 *timeout = le32_to_cpu(cmd_resp->timeout); 1832 1833 return status; 1834 } 1835 1836 /** 1837 * ice_aq_release_res 1838 * @hw: pointer to the HW struct 1839 * @res: resource ID 1840 * @sdp_number: resource number 1841 * @cd: pointer to command details structure or NULL 1842 * 1843 * release common resource using the admin queue commands (0x0009) 1844 */ 1845 static int 1846 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, 1847 struct ice_sq_cd *cd) 1848 { 1849 struct ice_aqc_req_res *cmd; 1850 struct ice_aq_desc desc; 1851 1852 cmd = &desc.params.res_owner; 1853 1854 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); 1855 1856 cmd->res_id = cpu_to_le16(res); 1857 cmd->res_number = cpu_to_le32(sdp_number); 1858 1859 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1860 } 1861 1862 /** 1863 * ice_acquire_res 1864 * @hw: pointer to the HW structure 1865 * @res: resource ID 1866 * @access: access type (read or write) 1867 * @timeout: timeout in milliseconds 1868 * 1869 * This function will attempt to acquire the ownership of a resource. 1870 */ 1871 int 1872 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1873 enum ice_aq_res_access_type access, u32 timeout) 1874 { 1875 #define ICE_RES_POLLING_DELAY_MS 10 1876 u32 delay = ICE_RES_POLLING_DELAY_MS; 1877 u32 time_left = timeout; 1878 int status; 1879 1880 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1881 1882 /* A return code of -EALREADY means that another driver has 1883 * previously acquired the resource and performed any necessary updates; 1884 * in this case the caller does not obtain the resource and has no 1885 * further work to do. 1886 */ 1887 if (status == -EALREADY) 1888 goto ice_acquire_res_exit; 1889 1890 if (status) 1891 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access); 1892 1893 /* If necessary, poll until the current lock owner timeouts */ 1894 timeout = time_left; 1895 while (status && timeout && time_left) { 1896 mdelay(delay); 1897 timeout = (timeout > delay) ? timeout - delay : 0; 1898 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1899 1900 if (status == -EALREADY) 1901 /* lock free, but no work to do */ 1902 break; 1903 1904 if (!status) 1905 /* lock acquired */ 1906 break; 1907 } 1908 if (status && status != -EALREADY) 1909 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); 1910 1911 ice_acquire_res_exit: 1912 if (status == -EALREADY) { 1913 if (access == ICE_RES_WRITE) 1914 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n"); 1915 else 1916 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n"); 1917 } 1918 return status; 1919 } 1920 1921 /** 1922 * ice_release_res 1923 * @hw: pointer to the HW structure 1924 * @res: resource ID 1925 * 1926 * This function will release a resource using the proper Admin Command. 1927 */ 1928 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) 1929 { 1930 unsigned long timeout; 1931 int status; 1932 1933 /* there are some rare cases when trying to release the resource 1934 * results in an admin queue timeout, so handle them correctly 1935 */ 1936 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT; 1937 do { 1938 status = ice_aq_release_res(hw, res, 0, NULL); 1939 if (status != -EIO) 1940 break; 1941 usleep_range(1000, 2000); 1942 } while (time_before(jiffies, timeout)); 1943 } 1944 1945 /** 1946 * ice_aq_alloc_free_res - command to allocate/free resources 1947 * @hw: pointer to the HW struct 1948 * @buf: Indirect buffer to hold data parameters and response 1949 * @buf_size: size of buffer for indirect commands 1950 * @opc: pass in the command opcode 1951 * 1952 * Helper function to allocate/free resources using the admin queue commands 1953 */ 1954 int ice_aq_alloc_free_res(struct ice_hw *hw, 1955 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 1956 enum ice_adminq_opc opc) 1957 { 1958 struct ice_aqc_alloc_free_res_cmd *cmd; 1959 struct ice_aq_desc desc; 1960 1961 cmd = &desc.params.sw_res_ctrl; 1962 1963 if (!buf || buf_size < flex_array_size(buf, elem, 1)) 1964 return -EINVAL; 1965 1966 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1967 1968 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1969 1970 cmd->num_entries = cpu_to_le16(1); 1971 1972 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL); 1973 } 1974 1975 /** 1976 * ice_alloc_hw_res - allocate resource 1977 * @hw: pointer to the HW struct 1978 * @type: type of resource 1979 * @num: number of resources to allocate 1980 * @btm: allocate from bottom 1981 * @res: pointer to array that will receive the resources 1982 */ 1983 int 1984 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res) 1985 { 1986 struct ice_aqc_alloc_free_res_elem *buf; 1987 u16 buf_len; 1988 int status; 1989 1990 buf_len = struct_size(buf, elem, num); 1991 buf = kzalloc(buf_len, GFP_KERNEL); 1992 if (!buf) 1993 return -ENOMEM; 1994 1995 /* Prepare buffer to allocate resource. */ 1996 buf->num_elems = cpu_to_le16(num); 1997 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED | 1998 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX); 1999 if (btm) 2000 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM); 2001 2002 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res); 2003 if (status) 2004 goto ice_alloc_res_exit; 2005 2006 memcpy(res, buf->elem, sizeof(*buf->elem) * num); 2007 2008 ice_alloc_res_exit: 2009 kfree(buf); 2010 return status; 2011 } 2012 2013 /** 2014 * ice_free_hw_res - free allocated HW resource 2015 * @hw: pointer to the HW struct 2016 * @type: type of resource to free 2017 * @num: number of resources 2018 * @res: pointer to array that contains the resources to free 2019 */ 2020 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res) 2021 { 2022 struct ice_aqc_alloc_free_res_elem *buf; 2023 u16 buf_len; 2024 int status; 2025 2026 buf_len = struct_size(buf, elem, num); 2027 buf = kzalloc(buf_len, GFP_KERNEL); 2028 if (!buf) 2029 return -ENOMEM; 2030 2031 /* Prepare buffer to free resource. */ 2032 buf->num_elems = cpu_to_le16(num); 2033 buf->res_type = cpu_to_le16(type); 2034 memcpy(buf->elem, res, sizeof(*buf->elem) * num); 2035 2036 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res); 2037 if (status) 2038 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); 2039 2040 kfree(buf); 2041 return status; 2042 } 2043 2044 /** 2045 * ice_get_num_per_func - determine number of resources per PF 2046 * @hw: pointer to the HW structure 2047 * @max: value to be evenly split between each PF 2048 * 2049 * Determine the number of valid functions by going through the bitmap returned 2050 * from parsing capabilities and use this to calculate the number of resources 2051 * per PF based on the max value passed in. 2052 */ 2053 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) 2054 { 2055 u8 funcs; 2056 2057 #define ICE_CAPS_VALID_FUNCS_M 0xFF 2058 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 2059 ICE_CAPS_VALID_FUNCS_M); 2060 2061 if (!funcs) 2062 return 0; 2063 2064 return max / funcs; 2065 } 2066 2067 /** 2068 * ice_parse_common_caps - parse common device/function capabilities 2069 * @hw: pointer to the HW struct 2070 * @caps: pointer to common capabilities structure 2071 * @elem: the capability element to parse 2072 * @prefix: message prefix for tracing capabilities 2073 * 2074 * Given a capability element, extract relevant details into the common 2075 * capability structure. 2076 * 2077 * Returns: true if the capability matches one of the common capability ids, 2078 * false otherwise. 2079 */ 2080 static bool 2081 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps, 2082 struct ice_aqc_list_caps_elem *elem, const char *prefix) 2083 { 2084 u32 logical_id = le32_to_cpu(elem->logical_id); 2085 u32 phys_id = le32_to_cpu(elem->phys_id); 2086 u32 number = le32_to_cpu(elem->number); 2087 u16 cap = le16_to_cpu(elem->cap); 2088 bool found = true; 2089 2090 switch (cap) { 2091 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2092 caps->valid_functions = number; 2093 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix, 2094 caps->valid_functions); 2095 break; 2096 case ICE_AQC_CAPS_SRIOV: 2097 caps->sr_iov_1_1 = (number == 1); 2098 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix, 2099 caps->sr_iov_1_1); 2100 break; 2101 case ICE_AQC_CAPS_DCB: 2102 caps->dcb = (number == 1); 2103 caps->active_tc_bitmap = logical_id; 2104 caps->maxtc = phys_id; 2105 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb); 2106 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix, 2107 caps->active_tc_bitmap); 2108 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc); 2109 break; 2110 case ICE_AQC_CAPS_RSS: 2111 caps->rss_table_size = number; 2112 caps->rss_table_entry_width = logical_id; 2113 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix, 2114 caps->rss_table_size); 2115 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix, 2116 caps->rss_table_entry_width); 2117 break; 2118 case ICE_AQC_CAPS_RXQS: 2119 caps->num_rxq = number; 2120 caps->rxq_first_id = phys_id; 2121 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix, 2122 caps->num_rxq); 2123 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix, 2124 caps->rxq_first_id); 2125 break; 2126 case ICE_AQC_CAPS_TXQS: 2127 caps->num_txq = number; 2128 caps->txq_first_id = phys_id; 2129 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix, 2130 caps->num_txq); 2131 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix, 2132 caps->txq_first_id); 2133 break; 2134 case ICE_AQC_CAPS_MSIX: 2135 caps->num_msix_vectors = number; 2136 caps->msix_vector_first_id = phys_id; 2137 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix, 2138 caps->num_msix_vectors); 2139 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix, 2140 caps->msix_vector_first_id); 2141 break; 2142 case ICE_AQC_CAPS_PENDING_NVM_VER: 2143 caps->nvm_update_pending_nvm = true; 2144 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix); 2145 break; 2146 case ICE_AQC_CAPS_PENDING_OROM_VER: 2147 caps->nvm_update_pending_orom = true; 2148 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix); 2149 break; 2150 case ICE_AQC_CAPS_PENDING_NET_VER: 2151 caps->nvm_update_pending_netlist = true; 2152 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix); 2153 break; 2154 case ICE_AQC_CAPS_NVM_MGMT: 2155 caps->nvm_unified_update = 2156 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ? 2157 true : false; 2158 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix, 2159 caps->nvm_unified_update); 2160 break; 2161 case ICE_AQC_CAPS_RDMA: 2162 if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA)) 2163 caps->rdma = (number == 1); 2164 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma); 2165 break; 2166 case ICE_AQC_CAPS_MAX_MTU: 2167 caps->max_mtu = number; 2168 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n", 2169 prefix, caps->max_mtu); 2170 break; 2171 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE: 2172 caps->pcie_reset_avoidance = (number > 0); 2173 ice_debug(hw, ICE_DBG_INIT, 2174 "%s: pcie_reset_avoidance = %d\n", prefix, 2175 caps->pcie_reset_avoidance); 2176 break; 2177 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT: 2178 caps->reset_restrict_support = (number == 1); 2179 ice_debug(hw, ICE_DBG_INIT, 2180 "%s: reset_restrict_support = %d\n", prefix, 2181 caps->reset_restrict_support); 2182 break; 2183 case ICE_AQC_CAPS_FW_LAG_SUPPORT: 2184 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG); 2185 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n", 2186 prefix, caps->roce_lag); 2187 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG); 2188 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n", 2189 prefix, caps->sriov_lag); 2190 break; 2191 case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE: 2192 caps->tx_sched_topo_comp_mode_en = (number == 1); 2193 break; 2194 default: 2195 /* Not one of the recognized common capabilities */ 2196 found = false; 2197 } 2198 2199 return found; 2200 } 2201 2202 /** 2203 * ice_recalc_port_limited_caps - Recalculate port limited capabilities 2204 * @hw: pointer to the HW structure 2205 * @caps: pointer to capabilities structure to fix 2206 * 2207 * Re-calculate the capabilities that are dependent on the number of physical 2208 * ports; i.e. some features are not supported or function differently on 2209 * devices with more than 4 ports. 2210 */ 2211 static void 2212 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps) 2213 { 2214 /* This assumes device capabilities are always scanned before function 2215 * capabilities during the initialization flow. 2216 */ 2217 if (hw->dev_caps.num_funcs > 4) { 2218 /* Max 4 TCs per port */ 2219 caps->maxtc = 4; 2220 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n", 2221 caps->maxtc); 2222 if (caps->rdma) { 2223 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n"); 2224 caps->rdma = 0; 2225 } 2226 2227 /* print message only when processing device capabilities 2228 * during initialization. 2229 */ 2230 if (caps == &hw->dev_caps.common_cap) 2231 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n"); 2232 } 2233 } 2234 2235 /** 2236 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps 2237 * @hw: pointer to the HW struct 2238 * @func_p: pointer to function capabilities structure 2239 * @cap: pointer to the capability element to parse 2240 * 2241 * Extract function capabilities for ICE_AQC_CAPS_VF. 2242 */ 2243 static void 2244 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2245 struct ice_aqc_list_caps_elem *cap) 2246 { 2247 u32 logical_id = le32_to_cpu(cap->logical_id); 2248 u32 number = le32_to_cpu(cap->number); 2249 2250 func_p->num_allocd_vfs = number; 2251 func_p->vf_base_id = logical_id; 2252 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n", 2253 func_p->num_allocd_vfs); 2254 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n", 2255 func_p->vf_base_id); 2256 } 2257 2258 /** 2259 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps 2260 * @hw: pointer to the HW struct 2261 * @func_p: pointer to function capabilities structure 2262 * @cap: pointer to the capability element to parse 2263 * 2264 * Extract function capabilities for ICE_AQC_CAPS_VSI. 2265 */ 2266 static void 2267 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2268 struct ice_aqc_list_caps_elem *cap) 2269 { 2270 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI); 2271 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n", 2272 le32_to_cpu(cap->number)); 2273 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n", 2274 func_p->guar_num_vsi); 2275 } 2276 2277 /** 2278 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps 2279 * @hw: pointer to the HW struct 2280 * @func_p: pointer to function capabilities structure 2281 * @cap: pointer to the capability element to parse 2282 * 2283 * Extract function capabilities for ICE_AQC_CAPS_1588. 2284 */ 2285 static void 2286 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2287 struct ice_aqc_list_caps_elem *cap) 2288 { 2289 struct ice_ts_func_info *info = &func_p->ts_func_info; 2290 u32 number = le32_to_cpu(cap->number); 2291 2292 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0); 2293 func_p->common_cap.ieee_1588 = info->ena; 2294 2295 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0); 2296 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0); 2297 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0); 2298 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0); 2299 2300 if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) { 2301 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number); 2302 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0); 2303 } else { 2304 info->clk_freq = ICE_TSPLL_FREQ_156_250; 2305 info->clk_src = ICE_CLK_SRC_TIME_REF; 2306 } 2307 2308 if (info->clk_freq < NUM_ICE_TSPLL_FREQ) { 2309 info->time_ref = (enum ice_tspll_freq)info->clk_freq; 2310 } else { 2311 /* Unknown clock frequency, so assume a (probably incorrect) 2312 * default to avoid out-of-bounds look ups of frequency 2313 * related information. 2314 */ 2315 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n", 2316 info->clk_freq); 2317 info->time_ref = ICE_TSPLL_FREQ_25_000; 2318 } 2319 2320 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n", 2321 func_p->common_cap.ieee_1588); 2322 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n", 2323 info->src_tmr_owned); 2324 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n", 2325 info->tmr_ena); 2326 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n", 2327 info->tmr_index_owned); 2328 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n", 2329 info->tmr_index_assoc); 2330 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n", 2331 info->clk_freq); 2332 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n", 2333 info->clk_src); 2334 } 2335 2336 /** 2337 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps 2338 * @hw: pointer to the HW struct 2339 * @func_p: pointer to function capabilities structure 2340 * 2341 * Extract function capabilities for ICE_AQC_CAPS_FD. 2342 */ 2343 static void 2344 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p) 2345 { 2346 u32 reg_val, gsize, bsize; 2347 2348 reg_val = rd32(hw, GLQF_FD_SIZE); 2349 switch (hw->mac_type) { 2350 case ICE_MAC_E830: 2351 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val); 2352 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val); 2353 break; 2354 case ICE_MAC_E810: 2355 default: 2356 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val); 2357 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val); 2358 } 2359 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize); 2360 func_p->fd_fltr_best_effort = bsize; 2361 2362 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n", 2363 func_p->fd_fltr_guar); 2364 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n", 2365 func_p->fd_fltr_best_effort); 2366 } 2367 2368 /** 2369 * ice_parse_func_caps - Parse function capabilities 2370 * @hw: pointer to the HW struct 2371 * @func_p: pointer to function capabilities structure 2372 * @buf: buffer containing the function capability records 2373 * @cap_count: the number of capabilities 2374 * 2375 * Helper function to parse function (0x000A) capabilities list. For 2376 * capabilities shared between device and function, this relies on 2377 * ice_parse_common_caps. 2378 * 2379 * Loop through the list of provided capabilities and extract the relevant 2380 * data into the function capabilities structured. 2381 */ 2382 static void 2383 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2384 void *buf, u32 cap_count) 2385 { 2386 struct ice_aqc_list_caps_elem *cap_resp; 2387 u32 i; 2388 2389 cap_resp = buf; 2390 2391 memset(func_p, 0, sizeof(*func_p)); 2392 2393 for (i = 0; i < cap_count; i++) { 2394 u16 cap = le16_to_cpu(cap_resp[i].cap); 2395 bool found; 2396 2397 found = ice_parse_common_caps(hw, &func_p->common_cap, 2398 &cap_resp[i], "func caps"); 2399 2400 switch (cap) { 2401 case ICE_AQC_CAPS_VF: 2402 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]); 2403 break; 2404 case ICE_AQC_CAPS_VSI: 2405 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); 2406 break; 2407 case ICE_AQC_CAPS_1588: 2408 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]); 2409 break; 2410 case ICE_AQC_CAPS_FD: 2411 ice_parse_fdir_func_caps(hw, func_p); 2412 break; 2413 default: 2414 /* Don't list common capabilities as unknown */ 2415 if (!found) 2416 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n", 2417 i, cap); 2418 break; 2419 } 2420 } 2421 2422 ice_recalc_port_limited_caps(hw, &func_p->common_cap); 2423 } 2424 2425 /** 2426 * ice_func_id_to_logical_id - map from function id to logical pf id 2427 * @active_function_bitmap: active function bitmap 2428 * @pf_id: function number of device 2429 * 2430 * Return: logical PF ID. 2431 */ 2432 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id) 2433 { 2434 u8 logical_id = 0; 2435 u8 i; 2436 2437 for (i = 0; i < pf_id; i++) 2438 if (active_function_bitmap & BIT(i)) 2439 logical_id++; 2440 2441 return logical_id; 2442 } 2443 2444 /** 2445 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps 2446 * @hw: pointer to the HW struct 2447 * @dev_p: pointer to device capabilities structure 2448 * @cap: capability element to parse 2449 * 2450 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities. 2451 */ 2452 static void 2453 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2454 struct ice_aqc_list_caps_elem *cap) 2455 { 2456 u32 number = le32_to_cpu(cap->number); 2457 2458 dev_p->num_funcs = hweight32(number); 2459 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n", 2460 dev_p->num_funcs); 2461 2462 hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id); 2463 } 2464 2465 /** 2466 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps 2467 * @hw: pointer to the HW struct 2468 * @dev_p: pointer to device capabilities structure 2469 * @cap: capability element to parse 2470 * 2471 * Parse ICE_AQC_CAPS_VF for device capabilities. 2472 */ 2473 static void 2474 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2475 struct ice_aqc_list_caps_elem *cap) 2476 { 2477 u32 number = le32_to_cpu(cap->number); 2478 2479 dev_p->num_vfs_exposed = number; 2480 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n", 2481 dev_p->num_vfs_exposed); 2482 } 2483 2484 /** 2485 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps 2486 * @hw: pointer to the HW struct 2487 * @dev_p: pointer to device capabilities structure 2488 * @cap: capability element to parse 2489 * 2490 * Parse ICE_AQC_CAPS_VSI for device capabilities. 2491 */ 2492 static void 2493 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2494 struct ice_aqc_list_caps_elem *cap) 2495 { 2496 u32 number = le32_to_cpu(cap->number); 2497 2498 dev_p->num_vsi_allocd_to_host = number; 2499 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n", 2500 dev_p->num_vsi_allocd_to_host); 2501 } 2502 2503 /** 2504 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps 2505 * @hw: pointer to the HW struct 2506 * @dev_p: pointer to device capabilities structure 2507 * @cap: capability element to parse 2508 * 2509 * Parse ICE_AQC_CAPS_1588 for device capabilities. 2510 */ 2511 static void 2512 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2513 struct ice_aqc_list_caps_elem *cap) 2514 { 2515 struct ice_ts_dev_info *info = &dev_p->ts_dev_info; 2516 u32 logical_id = le32_to_cpu(cap->logical_id); 2517 u32 phys_id = le32_to_cpu(cap->phys_id); 2518 u32 number = le32_to_cpu(cap->number); 2519 2520 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0); 2521 dev_p->common_cap.ieee_1588 = info->ena; 2522 2523 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M; 2524 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0); 2525 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0); 2526 2527 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number); 2528 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0); 2529 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0); 2530 2531 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0); 2532 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0); 2533 info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0); 2534 2535 info->ena_ports = logical_id; 2536 info->tmr_own_map = phys_id; 2537 2538 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n", 2539 dev_p->common_cap.ieee_1588); 2540 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n", 2541 info->tmr0_owner); 2542 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n", 2543 info->tmr0_owned); 2544 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n", 2545 info->tmr0_ena); 2546 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n", 2547 info->tmr1_owner); 2548 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n", 2549 info->tmr1_owned); 2550 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n", 2551 info->tmr1_ena); 2552 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n", 2553 info->ts_ll_read); 2554 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n", 2555 info->ts_ll_int_read); 2556 ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n", 2557 info->ll_phy_tmr_update); 2558 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n", 2559 info->ena_ports); 2560 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n", 2561 info->tmr_own_map); 2562 } 2563 2564 /** 2565 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps 2566 * @hw: pointer to the HW struct 2567 * @dev_p: pointer to device capabilities structure 2568 * @cap: capability element to parse 2569 * 2570 * Parse ICE_AQC_CAPS_FD for device capabilities. 2571 */ 2572 static void 2573 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2574 struct ice_aqc_list_caps_elem *cap) 2575 { 2576 u32 number = le32_to_cpu(cap->number); 2577 2578 dev_p->num_flow_director_fltr = number; 2579 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n", 2580 dev_p->num_flow_director_fltr); 2581 } 2582 2583 /** 2584 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap 2585 * @hw: pointer to the HW struct 2586 * @dev_p: pointer to device capabilities structure 2587 * @cap: capability element to parse 2588 * 2589 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading 2590 * enabled sensors. 2591 */ 2592 static void 2593 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2594 struct ice_aqc_list_caps_elem *cap) 2595 { 2596 dev_p->supported_sensors = le32_to_cpu(cap->number); 2597 2598 ice_debug(hw, ICE_DBG_INIT, 2599 "dev caps: supported sensors (bitmap) = 0x%x\n", 2600 dev_p->supported_sensors); 2601 } 2602 2603 /** 2604 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap 2605 * @hw: pointer to the HW struct 2606 * @dev_p: pointer to device capabilities structure 2607 * @cap: capability element to parse 2608 * 2609 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities. 2610 */ 2611 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw, 2612 struct ice_hw_dev_caps *dev_p, 2613 struct ice_aqc_list_caps_elem *cap) 2614 { 2615 dev_p->nac_topo.mode = le32_to_cpu(cap->number); 2616 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M; 2617 2618 dev_info(ice_hw_to_dev(hw), 2619 "PF is configured in %s mode with IP instance ID %d\n", 2620 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ? 2621 "primary" : "secondary", dev_p->nac_topo.id); 2622 2623 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n", 2624 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M)); 2625 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n", 2626 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M)); 2627 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n", 2628 dev_p->nac_topo.id); 2629 } 2630 2631 /** 2632 * ice_parse_dev_caps - Parse device capabilities 2633 * @hw: pointer to the HW struct 2634 * @dev_p: pointer to device capabilities structure 2635 * @buf: buffer containing the device capability records 2636 * @cap_count: the number of capabilities 2637 * 2638 * Helper device to parse device (0x000B) capabilities list. For 2639 * capabilities shared between device and function, this relies on 2640 * ice_parse_common_caps. 2641 * 2642 * Loop through the list of provided capabilities and extract the relevant 2643 * data into the device capabilities structured. 2644 */ 2645 static void 2646 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2647 void *buf, u32 cap_count) 2648 { 2649 struct ice_aqc_list_caps_elem *cap_resp; 2650 u32 i; 2651 2652 cap_resp = buf; 2653 2654 memset(dev_p, 0, sizeof(*dev_p)); 2655 2656 for (i = 0; i < cap_count; i++) { 2657 u16 cap = le16_to_cpu(cap_resp[i].cap); 2658 bool found; 2659 2660 found = ice_parse_common_caps(hw, &dev_p->common_cap, 2661 &cap_resp[i], "dev caps"); 2662 2663 switch (cap) { 2664 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2665 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]); 2666 break; 2667 case ICE_AQC_CAPS_VF: 2668 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); 2669 break; 2670 case ICE_AQC_CAPS_VSI: 2671 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); 2672 break; 2673 case ICE_AQC_CAPS_1588: 2674 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]); 2675 break; 2676 case ICE_AQC_CAPS_FD: 2677 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); 2678 break; 2679 case ICE_AQC_CAPS_SENSOR_READING: 2680 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]); 2681 break; 2682 case ICE_AQC_CAPS_NAC_TOPOLOGY: 2683 ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]); 2684 break; 2685 default: 2686 /* Don't list common capabilities as unknown */ 2687 if (!found) 2688 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n", 2689 i, cap); 2690 break; 2691 } 2692 } 2693 2694 ice_recalc_port_limited_caps(hw, &dev_p->common_cap); 2695 } 2696 2697 /** 2698 * ice_is_phy_rclk_in_netlist 2699 * @hw: pointer to the hw struct 2700 * 2701 * Check if the PHY Recovered Clock device is present in the netlist 2702 */ 2703 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw) 2704 { 2705 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY, 2706 ICE_AQC_LINK_TOPO_NODE_CTX_PORT, 2707 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) && 2708 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY, 2709 ICE_AQC_LINK_TOPO_NODE_CTX_PORT, 2710 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL)) 2711 return false; 2712 2713 return true; 2714 } 2715 2716 /** 2717 * ice_is_clock_mux_in_netlist 2718 * @hw: pointer to the hw struct 2719 * 2720 * Check if the Clock Multiplexer device is present in the netlist 2721 */ 2722 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw) 2723 { 2724 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX, 2725 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL, 2726 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX, 2727 NULL)) 2728 return false; 2729 2730 return true; 2731 } 2732 2733 /** 2734 * ice_is_cgu_in_netlist - check for CGU presence 2735 * @hw: pointer to the hw struct 2736 * 2737 * Check if the Clock Generation Unit (CGU) device is present in the netlist. 2738 * Save the CGU part number in the hw structure for later use. 2739 * Return: 2740 * * true - cgu is present 2741 * * false - cgu is not present 2742 */ 2743 bool ice_is_cgu_in_netlist(struct ice_hw *hw) 2744 { 2745 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL, 2746 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL, 2747 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032, 2748 NULL)) { 2749 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032; 2750 return true; 2751 } else if (!ice_find_netlist_node(hw, 2752 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL, 2753 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL, 2754 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384, 2755 NULL)) { 2756 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384; 2757 return true; 2758 } 2759 2760 return false; 2761 } 2762 2763 /** 2764 * ice_is_gps_in_netlist 2765 * @hw: pointer to the hw struct 2766 * 2767 * Check if the GPS generic device is present in the netlist 2768 */ 2769 bool ice_is_gps_in_netlist(struct ice_hw *hw) 2770 { 2771 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS, 2772 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL, 2773 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL)) 2774 return false; 2775 2776 return true; 2777 } 2778 2779 /** 2780 * ice_aq_list_caps - query function/device capabilities 2781 * @hw: pointer to the HW struct 2782 * @buf: a buffer to hold the capabilities 2783 * @buf_size: size of the buffer 2784 * @cap_count: if not NULL, set to the number of capabilities reported 2785 * @opc: capabilities type to discover, device or function 2786 * @cd: pointer to command details structure or NULL 2787 * 2788 * Get the function (0x000A) or device (0x000B) capabilities description from 2789 * firmware and store it in the buffer. 2790 * 2791 * If the cap_count pointer is not NULL, then it is set to the number of 2792 * capabilities firmware will report. Note that if the buffer size is too 2793 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The 2794 * cap_count will still be updated in this case. It is recommended that the 2795 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that 2796 * firmware could return) to avoid this. 2797 */ 2798 int 2799 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, 2800 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 2801 { 2802 struct ice_aqc_list_caps *cmd; 2803 struct ice_aq_desc desc; 2804 int status; 2805 2806 cmd = &desc.params.get_cap; 2807 2808 if (opc != ice_aqc_opc_list_func_caps && 2809 opc != ice_aqc_opc_list_dev_caps) 2810 return -EINVAL; 2811 2812 ice_fill_dflt_direct_cmd_desc(&desc, opc); 2813 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 2814 2815 if (cap_count) 2816 *cap_count = le32_to_cpu(cmd->count); 2817 2818 return status; 2819 } 2820 2821 /** 2822 * ice_discover_dev_caps - Read and extract device capabilities 2823 * @hw: pointer to the hardware structure 2824 * @dev_caps: pointer to device capabilities structure 2825 * 2826 * Read the device capabilities and extract them into the dev_caps structure 2827 * for later use. 2828 */ 2829 int 2830 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps) 2831 { 2832 u32 cap_count = 0; 2833 void *cbuf; 2834 int status; 2835 2836 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2837 if (!cbuf) 2838 return -ENOMEM; 2839 2840 /* Although the driver doesn't know the number of capabilities the 2841 * device will return, we can simply send a 4KB buffer, the maximum 2842 * possible size that firmware can return. 2843 */ 2844 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2845 2846 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2847 ice_aqc_opc_list_dev_caps, NULL); 2848 if (!status) 2849 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count); 2850 kfree(cbuf); 2851 2852 return status; 2853 } 2854 2855 /** 2856 * ice_discover_func_caps - Read and extract function capabilities 2857 * @hw: pointer to the hardware structure 2858 * @func_caps: pointer to function capabilities structure 2859 * 2860 * Read the function capabilities and extract them into the func_caps structure 2861 * for later use. 2862 */ 2863 static int 2864 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps) 2865 { 2866 u32 cap_count = 0; 2867 void *cbuf; 2868 int status; 2869 2870 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2871 if (!cbuf) 2872 return -ENOMEM; 2873 2874 /* Although the driver doesn't know the number of capabilities the 2875 * device will return, we can simply send a 4KB buffer, the maximum 2876 * possible size that firmware can return. 2877 */ 2878 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2879 2880 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2881 ice_aqc_opc_list_func_caps, NULL); 2882 if (!status) 2883 ice_parse_func_caps(hw, func_caps, cbuf, cap_count); 2884 kfree(cbuf); 2885 2886 return status; 2887 } 2888 2889 /** 2890 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode 2891 * @hw: pointer to the hardware structure 2892 */ 2893 void ice_set_safe_mode_caps(struct ice_hw *hw) 2894 { 2895 struct ice_hw_func_caps *func_caps = &hw->func_caps; 2896 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps; 2897 struct ice_hw_common_caps cached_caps; 2898 u32 num_funcs; 2899 2900 /* cache some func_caps values that should be restored after memset */ 2901 cached_caps = func_caps->common_cap; 2902 2903 /* unset func capabilities */ 2904 memset(func_caps, 0, sizeof(*func_caps)); 2905 2906 #define ICE_RESTORE_FUNC_CAP(name) \ 2907 func_caps->common_cap.name = cached_caps.name 2908 2909 /* restore cached values */ 2910 ICE_RESTORE_FUNC_CAP(valid_functions); 2911 ICE_RESTORE_FUNC_CAP(txq_first_id); 2912 ICE_RESTORE_FUNC_CAP(rxq_first_id); 2913 ICE_RESTORE_FUNC_CAP(msix_vector_first_id); 2914 ICE_RESTORE_FUNC_CAP(max_mtu); 2915 ICE_RESTORE_FUNC_CAP(nvm_unified_update); 2916 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm); 2917 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom); 2918 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist); 2919 2920 /* one Tx and one Rx queue in safe mode */ 2921 func_caps->common_cap.num_rxq = 1; 2922 func_caps->common_cap.num_txq = 1; 2923 2924 /* two MSIX vectors, one for traffic and one for misc causes */ 2925 func_caps->common_cap.num_msix_vectors = 2; 2926 func_caps->guar_num_vsi = 1; 2927 2928 /* cache some dev_caps values that should be restored after memset */ 2929 cached_caps = dev_caps->common_cap; 2930 num_funcs = dev_caps->num_funcs; 2931 2932 /* unset dev capabilities */ 2933 memset(dev_caps, 0, sizeof(*dev_caps)); 2934 2935 #define ICE_RESTORE_DEV_CAP(name) \ 2936 dev_caps->common_cap.name = cached_caps.name 2937 2938 /* restore cached values */ 2939 ICE_RESTORE_DEV_CAP(valid_functions); 2940 ICE_RESTORE_DEV_CAP(txq_first_id); 2941 ICE_RESTORE_DEV_CAP(rxq_first_id); 2942 ICE_RESTORE_DEV_CAP(msix_vector_first_id); 2943 ICE_RESTORE_DEV_CAP(max_mtu); 2944 ICE_RESTORE_DEV_CAP(nvm_unified_update); 2945 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm); 2946 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom); 2947 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist); 2948 dev_caps->num_funcs = num_funcs; 2949 2950 /* one Tx and one Rx queue per function in safe mode */ 2951 dev_caps->common_cap.num_rxq = num_funcs; 2952 dev_caps->common_cap.num_txq = num_funcs; 2953 2954 /* two MSIX vectors per function */ 2955 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs; 2956 } 2957 2958 /** 2959 * ice_get_caps - get info about the HW 2960 * @hw: pointer to the hardware structure 2961 */ 2962 int ice_get_caps(struct ice_hw *hw) 2963 { 2964 int status; 2965 2966 status = ice_discover_dev_caps(hw, &hw->dev_caps); 2967 if (status) 2968 return status; 2969 2970 return ice_discover_func_caps(hw, &hw->func_caps); 2971 } 2972 2973 /** 2974 * ice_aq_manage_mac_write - manage MAC address write command 2975 * @hw: pointer to the HW struct 2976 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address 2977 * @flags: flags to control write behavior 2978 * @cd: pointer to command details structure or NULL 2979 * 2980 * This function is used to write MAC address to the NVM (0x0108). 2981 */ 2982 int 2983 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, 2984 struct ice_sq_cd *cd) 2985 { 2986 struct ice_aqc_manage_mac_write *cmd; 2987 struct ice_aq_desc desc; 2988 2989 cmd = &desc.params.mac_write; 2990 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); 2991 2992 cmd->flags = flags; 2993 ether_addr_copy(cmd->mac_addr, mac_addr); 2994 2995 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2996 } 2997 2998 /** 2999 * ice_aq_clear_pxe_mode 3000 * @hw: pointer to the HW struct 3001 * 3002 * Tell the firmware that the driver is taking over from PXE (0x0110). 3003 */ 3004 static int ice_aq_clear_pxe_mode(struct ice_hw *hw) 3005 { 3006 struct ice_aq_desc desc; 3007 3008 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); 3009 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; 3010 3011 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 3012 } 3013 3014 /** 3015 * ice_clear_pxe_mode - clear pxe operations mode 3016 * @hw: pointer to the HW struct 3017 * 3018 * Make sure all PXE mode settings are cleared, including things 3019 * like descriptor fetch/write-back mode. 3020 */ 3021 void ice_clear_pxe_mode(struct ice_hw *hw) 3022 { 3023 if (ice_check_sq_alive(hw, &hw->adminq)) 3024 ice_aq_clear_pxe_mode(hw); 3025 } 3026 3027 /** 3028 * ice_aq_set_port_params - set physical port parameters. 3029 * @pi: pointer to the port info struct 3030 * @double_vlan: if set double VLAN is enabled 3031 * @cd: pointer to command details structure or NULL 3032 * 3033 * Set Physical port parameters (0x0203) 3034 */ 3035 int 3036 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan, 3037 struct ice_sq_cd *cd) 3038 3039 { 3040 struct ice_aqc_set_port_params *cmd; 3041 struct ice_hw *hw = pi->hw; 3042 struct ice_aq_desc desc; 3043 u16 cmd_flags = 0; 3044 3045 cmd = &desc.params.set_port_params; 3046 3047 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params); 3048 if (double_vlan) 3049 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA; 3050 cmd->cmd_flags = cpu_to_le16(cmd_flags); 3051 3052 cmd->local_fwd_mode = pi->local_fwd_mode | 3053 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID; 3054 3055 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3056 } 3057 3058 /** 3059 * ice_is_100m_speed_supported 3060 * @hw: pointer to the HW struct 3061 * 3062 * returns true if 100M speeds are supported by the device, 3063 * false otherwise. 3064 */ 3065 bool ice_is_100m_speed_supported(struct ice_hw *hw) 3066 { 3067 switch (hw->device_id) { 3068 case ICE_DEV_ID_E822C_SGMII: 3069 case ICE_DEV_ID_E822L_SGMII: 3070 case ICE_DEV_ID_E823L_1GBE: 3071 case ICE_DEV_ID_E823C_SGMII: 3072 return true; 3073 default: 3074 return false; 3075 } 3076 } 3077 3078 /** 3079 * ice_get_link_speed_based_on_phy_type - returns link speed 3080 * @phy_type_low: lower part of phy_type 3081 * @phy_type_high: higher part of phy_type 3082 * 3083 * This helper function will convert an entry in PHY type structure 3084 * [phy_type_low, phy_type_high] to its corresponding link speed. 3085 * Note: In the structure of [phy_type_low, phy_type_high], there should 3086 * be one bit set, as this function will convert one PHY type to its 3087 * speed. 3088 * 3089 * Return: 3090 * * PHY speed for recognized PHY type 3091 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned 3092 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned 3093 */ 3094 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) 3095 { 3096 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 3097 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 3098 3099 switch (phy_type_low) { 3100 case ICE_PHY_TYPE_LOW_100BASE_TX: 3101 case ICE_PHY_TYPE_LOW_100M_SGMII: 3102 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; 3103 break; 3104 case ICE_PHY_TYPE_LOW_1000BASE_T: 3105 case ICE_PHY_TYPE_LOW_1000BASE_SX: 3106 case ICE_PHY_TYPE_LOW_1000BASE_LX: 3107 case ICE_PHY_TYPE_LOW_1000BASE_KX: 3108 case ICE_PHY_TYPE_LOW_1G_SGMII: 3109 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; 3110 break; 3111 case ICE_PHY_TYPE_LOW_2500BASE_T: 3112 case ICE_PHY_TYPE_LOW_2500BASE_X: 3113 case ICE_PHY_TYPE_LOW_2500BASE_KX: 3114 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; 3115 break; 3116 case ICE_PHY_TYPE_LOW_5GBASE_T: 3117 case ICE_PHY_TYPE_LOW_5GBASE_KR: 3118 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; 3119 break; 3120 case ICE_PHY_TYPE_LOW_10GBASE_T: 3121 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 3122 case ICE_PHY_TYPE_LOW_10GBASE_SR: 3123 case ICE_PHY_TYPE_LOW_10GBASE_LR: 3124 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 3125 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 3126 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 3127 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; 3128 break; 3129 case ICE_PHY_TYPE_LOW_25GBASE_T: 3130 case ICE_PHY_TYPE_LOW_25GBASE_CR: 3131 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 3132 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 3133 case ICE_PHY_TYPE_LOW_25GBASE_SR: 3134 case ICE_PHY_TYPE_LOW_25GBASE_LR: 3135 case ICE_PHY_TYPE_LOW_25GBASE_KR: 3136 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 3137 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 3138 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 3139 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 3140 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; 3141 break; 3142 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 3143 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 3144 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 3145 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 3146 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 3147 case ICE_PHY_TYPE_LOW_40G_XLAUI: 3148 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; 3149 break; 3150 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 3151 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 3152 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 3153 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 3154 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 3155 case ICE_PHY_TYPE_LOW_50G_LAUI2: 3156 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 3157 case ICE_PHY_TYPE_LOW_50G_AUI2: 3158 case ICE_PHY_TYPE_LOW_50GBASE_CP: 3159 case ICE_PHY_TYPE_LOW_50GBASE_SR: 3160 case ICE_PHY_TYPE_LOW_50GBASE_FR: 3161 case ICE_PHY_TYPE_LOW_50GBASE_LR: 3162 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 3163 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 3164 case ICE_PHY_TYPE_LOW_50G_AUI1: 3165 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; 3166 break; 3167 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 3168 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 3169 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 3170 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 3171 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 3172 case ICE_PHY_TYPE_LOW_100G_CAUI4: 3173 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 3174 case ICE_PHY_TYPE_LOW_100G_AUI4: 3175 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 3176 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 3177 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 3178 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 3179 case ICE_PHY_TYPE_LOW_100GBASE_DR: 3180 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; 3181 break; 3182 default: 3183 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 3184 break; 3185 } 3186 3187 switch (phy_type_high) { 3188 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 3189 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 3190 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 3191 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 3192 case ICE_PHY_TYPE_HIGH_100G_AUI2: 3193 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; 3194 break; 3195 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4: 3196 case ICE_PHY_TYPE_HIGH_200G_SR4: 3197 case ICE_PHY_TYPE_HIGH_200G_FR4: 3198 case ICE_PHY_TYPE_HIGH_200G_LR4: 3199 case ICE_PHY_TYPE_HIGH_200G_DR4: 3200 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4: 3201 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC: 3202 case ICE_PHY_TYPE_HIGH_200G_AUI4: 3203 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB; 3204 break; 3205 default: 3206 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 3207 break; 3208 } 3209 3210 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && 3211 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 3212 return ICE_AQ_LINK_SPEED_UNKNOWN; 3213 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 3214 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) 3215 return ICE_AQ_LINK_SPEED_UNKNOWN; 3216 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 3217 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 3218 return speed_phy_type_low; 3219 else 3220 return speed_phy_type_high; 3221 } 3222 3223 /** 3224 * ice_update_phy_type 3225 * @phy_type_low: pointer to the lower part of phy_type 3226 * @phy_type_high: pointer to the higher part of phy_type 3227 * @link_speeds_bitmap: targeted link speeds bitmap 3228 * 3229 * Note: For the link_speeds_bitmap structure, you can check it at 3230 * [ice_aqc_get_link_status->link_speed]. Caller can pass in 3231 * link_speeds_bitmap include multiple speeds. 3232 * 3233 * Each entry in this [phy_type_low, phy_type_high] structure will 3234 * present a certain link speed. This helper function will turn on bits 3235 * in [phy_type_low, phy_type_high] structure based on the value of 3236 * link_speeds_bitmap input parameter. 3237 */ 3238 void 3239 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, 3240 u16 link_speeds_bitmap) 3241 { 3242 u64 pt_high; 3243 u64 pt_low; 3244 int index; 3245 u16 speed; 3246 3247 /* We first check with low part of phy_type */ 3248 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { 3249 pt_low = BIT_ULL(index); 3250 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); 3251 3252 if (link_speeds_bitmap & speed) 3253 *phy_type_low |= BIT_ULL(index); 3254 } 3255 3256 /* We then check with high part of phy_type */ 3257 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { 3258 pt_high = BIT_ULL(index); 3259 speed = ice_get_link_speed_based_on_phy_type(0, pt_high); 3260 3261 if (link_speeds_bitmap & speed) 3262 *phy_type_high |= BIT_ULL(index); 3263 } 3264 } 3265 3266 /** 3267 * ice_aq_set_phy_cfg 3268 * @hw: pointer to the HW struct 3269 * @pi: port info structure of the interested logical port 3270 * @cfg: structure with PHY configuration data to be set 3271 * @cd: pointer to command details structure or NULL 3272 * 3273 * Set the various PHY configuration parameters supported on the Port. 3274 * One or more of the Set PHY config parameters may be ignored in an MFP 3275 * mode as the PF may not have the privilege to set some of the PHY Config 3276 * parameters. This status will be indicated by the command response (0x0601). 3277 */ 3278 int 3279 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi, 3280 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) 3281 { 3282 struct ice_aq_desc desc; 3283 int status; 3284 3285 if (!cfg) 3286 return -EINVAL; 3287 3288 /* Ensure that only valid bits of cfg->caps can be turned on. */ 3289 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { 3290 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", 3291 cfg->caps); 3292 3293 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; 3294 } 3295 3296 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); 3297 desc.params.set_phy.lport_num = pi->lport; 3298 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3299 3300 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n"); 3301 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 3302 (unsigned long long)le64_to_cpu(cfg->phy_type_low)); 3303 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 3304 (unsigned long long)le64_to_cpu(cfg->phy_type_high)); 3305 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps); 3306 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", 3307 cfg->low_power_ctrl_an); 3308 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap); 3309 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value); 3310 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n", 3311 cfg->link_fec_opt); 3312 3313 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); 3314 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3315 status = 0; 3316 3317 if (!status) 3318 pi->phy.curr_user_phy_cfg = *cfg; 3319 3320 return status; 3321 } 3322 3323 /** 3324 * ice_update_link_info - update status of the HW network link 3325 * @pi: port info structure of the interested logical port 3326 */ 3327 int ice_update_link_info(struct ice_port_info *pi) 3328 { 3329 struct ice_link_status *li; 3330 int status; 3331 3332 if (!pi) 3333 return -EINVAL; 3334 3335 li = &pi->phy.link_info; 3336 3337 status = ice_aq_get_link_info(pi, true, NULL, NULL); 3338 if (status) 3339 return status; 3340 3341 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) { 3342 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 3343 3344 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3345 if (!pcaps) 3346 return -ENOMEM; 3347 3348 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 3349 pcaps, NULL); 3350 } 3351 3352 return status; 3353 } 3354 3355 /** 3356 * ice_aq_get_phy_equalization - function to read serdes equaliser 3357 * value from firmware using admin queue command. 3358 * @hw: pointer to the HW struct 3359 * @data_in: represents the serdes equalization parameter requested 3360 * @op_code: represents the serdes number and flag to represent tx or rx 3361 * @serdes_num: represents the serdes number 3362 * @output: pointer to the caller-supplied buffer to return serdes equaliser 3363 * 3364 * Return: non-zero status on error and 0 on success. 3365 */ 3366 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code, 3367 u8 serdes_num, int *output) 3368 { 3369 struct ice_aqc_dnl_call_command *cmd; 3370 struct ice_aqc_dnl_call buf = {}; 3371 struct ice_aq_desc desc; 3372 int err; 3373 3374 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in); 3375 buf.sto.txrx_equa_reqs.op_code_serdes_sel = 3376 cpu_to_le16(op_code | (serdes_num & 0xF)); 3377 cmd = &desc.params.dnl_call; 3378 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call); 3379 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF | 3380 ICE_AQ_FLAG_RD | 3381 ICE_AQ_FLAG_SI); 3382 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call)); 3383 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL); 3384 3385 err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call), 3386 NULL); 3387 *output = err ? 0 : buf.sto.txrx_equa_resp.val; 3388 3389 return err; 3390 } 3391 3392 #define FEC_REG_PORT(port) { \ 3393 FEC_CORR_LOW_REG_PORT##port, \ 3394 FEC_CORR_HIGH_REG_PORT##port, \ 3395 FEC_UNCORR_LOW_REG_PORT##port, \ 3396 FEC_UNCORR_HIGH_REG_PORT##port, \ 3397 } 3398 3399 static const u32 fec_reg[][ICE_FEC_MAX] = { 3400 FEC_REG_PORT(0), 3401 FEC_REG_PORT(1), 3402 FEC_REG_PORT(2), 3403 FEC_REG_PORT(3) 3404 }; 3405 3406 /** 3407 * ice_aq_get_fec_stats - reads fec stats from phy 3408 * @hw: pointer to the HW struct 3409 * @pcs_quad: represents pcsquad of user input serdes 3410 * @pcs_port: represents the pcs port number part of above pcs quad 3411 * @fec_type: represents FEC stats type 3412 * @output: pointer to the caller-supplied buffer to return requested fec stats 3413 * 3414 * Return: non-zero status on error and 0 on success. 3415 */ 3416 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port, 3417 enum ice_fec_stats_types fec_type, u32 *output) 3418 { 3419 u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI); 3420 struct ice_sbq_msg_input msg = {}; 3421 u32 receiver_id, reg_offset; 3422 int err; 3423 3424 if (pcs_port > 3) 3425 return -EINVAL; 3426 3427 reg_offset = fec_reg[pcs_port][fec_type]; 3428 3429 if (pcs_quad == 0) 3430 receiver_id = FEC_RECEIVER_ID_PCS0; 3431 else if (pcs_quad == 1) 3432 receiver_id = FEC_RECEIVER_ID_PCS1; 3433 else 3434 return -EINVAL; 3435 3436 msg.msg_addr_low = lower_16_bits(reg_offset); 3437 msg.msg_addr_high = receiver_id; 3438 msg.opcode = ice_sbq_msg_rd; 3439 msg.dest_dev = ice_sbq_dev_phy_0; 3440 3441 err = ice_sbq_rw_reg(hw, &msg, flag); 3442 if (err) 3443 return err; 3444 3445 *output = msg.data; 3446 return 0; 3447 } 3448 3449 /** 3450 * ice_cache_phy_user_req 3451 * @pi: port information structure 3452 * @cache_data: PHY logging data 3453 * @cache_mode: PHY logging mode 3454 * 3455 * Log the user request on (FC, FEC, SPEED) for later use. 3456 */ 3457 static void 3458 ice_cache_phy_user_req(struct ice_port_info *pi, 3459 struct ice_phy_cache_mode_data cache_data, 3460 enum ice_phy_cache_mode cache_mode) 3461 { 3462 if (!pi) 3463 return; 3464 3465 switch (cache_mode) { 3466 case ICE_FC_MODE: 3467 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req; 3468 break; 3469 case ICE_SPEED_MODE: 3470 pi->phy.curr_user_speed_req = 3471 cache_data.data.curr_user_speed_req; 3472 break; 3473 case ICE_FEC_MODE: 3474 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req; 3475 break; 3476 default: 3477 break; 3478 } 3479 } 3480 3481 /** 3482 * ice_caps_to_fc_mode 3483 * @caps: PHY capabilities 3484 * 3485 * Convert PHY FC capabilities to ice FC mode 3486 */ 3487 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps) 3488 { 3489 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE && 3490 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3491 return ICE_FC_FULL; 3492 3493 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3494 return ICE_FC_TX_PAUSE; 3495 3496 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3497 return ICE_FC_RX_PAUSE; 3498 3499 return ICE_FC_NONE; 3500 } 3501 3502 /** 3503 * ice_caps_to_fec_mode 3504 * @caps: PHY capabilities 3505 * @fec_options: Link FEC options 3506 * 3507 * Convert PHY FEC capabilities to ice FEC mode 3508 */ 3509 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options) 3510 { 3511 if (caps & ICE_AQC_PHY_EN_AUTO_FEC) 3512 return ICE_FEC_AUTO; 3513 3514 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3515 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3516 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN | 3517 ICE_AQC_PHY_FEC_25G_KR_REQ)) 3518 return ICE_FEC_BASER; 3519 3520 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3521 ICE_AQC_PHY_FEC_25G_RS_544_REQ | 3522 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)) 3523 return ICE_FEC_RS; 3524 3525 return ICE_FEC_NONE; 3526 } 3527 3528 /** 3529 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode 3530 * @pi: port information structure 3531 * @cfg: PHY configuration data to set FC mode 3532 * @req_mode: FC mode to configure 3533 */ 3534 int 3535 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3536 enum ice_fc_mode req_mode) 3537 { 3538 struct ice_phy_cache_mode_data cache_data; 3539 u8 pause_mask = 0x0; 3540 3541 if (!pi || !cfg) 3542 return -EINVAL; 3543 3544 switch (req_mode) { 3545 case ICE_FC_FULL: 3546 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3547 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3548 break; 3549 case ICE_FC_RX_PAUSE: 3550 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3551 break; 3552 case ICE_FC_TX_PAUSE: 3553 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3554 break; 3555 default: 3556 break; 3557 } 3558 3559 /* clear the old pause settings */ 3560 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | 3561 ICE_AQC_PHY_EN_RX_LINK_PAUSE); 3562 3563 /* set the new capabilities */ 3564 cfg->caps |= pause_mask; 3565 3566 /* Cache user FC request */ 3567 cache_data.data.curr_user_fc_req = req_mode; 3568 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE); 3569 3570 return 0; 3571 } 3572 3573 /** 3574 * ice_set_fc 3575 * @pi: port information structure 3576 * @aq_failures: pointer to status code, specific to ice_set_fc routine 3577 * @ena_auto_link_update: enable automatic link update 3578 * 3579 * Set the requested flow control mode. 3580 */ 3581 int 3582 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) 3583 { 3584 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 3585 struct ice_aqc_set_phy_cfg_data cfg = { 0 }; 3586 struct ice_hw *hw; 3587 int status; 3588 3589 if (!pi || !aq_failures) 3590 return -EINVAL; 3591 3592 *aq_failures = 0; 3593 hw = pi->hw; 3594 3595 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3596 if (!pcaps) 3597 return -ENOMEM; 3598 3599 /* Get the current PHY config */ 3600 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, 3601 pcaps, NULL); 3602 if (status) { 3603 *aq_failures = ICE_SET_FC_AQ_FAIL_GET; 3604 goto out; 3605 } 3606 3607 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg); 3608 3609 /* Configure the set PHY data */ 3610 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode); 3611 if (status) 3612 goto out; 3613 3614 /* If the capabilities have changed, then set the new config */ 3615 if (cfg.caps != pcaps->caps) { 3616 int retry_count, retry_max = 10; 3617 3618 /* Auto restart link so settings take effect */ 3619 if (ena_auto_link_update) 3620 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3621 3622 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL); 3623 if (status) { 3624 *aq_failures = ICE_SET_FC_AQ_FAIL_SET; 3625 goto out; 3626 } 3627 3628 /* Update the link info 3629 * It sometimes takes a really long time for link to 3630 * come back from the atomic reset. Thus, we wait a 3631 * little bit. 3632 */ 3633 for (retry_count = 0; retry_count < retry_max; retry_count++) { 3634 status = ice_update_link_info(pi); 3635 3636 if (!status) 3637 break; 3638 3639 mdelay(100); 3640 } 3641 3642 if (status) 3643 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; 3644 } 3645 3646 out: 3647 return status; 3648 } 3649 3650 /** 3651 * ice_phy_caps_equals_cfg 3652 * @phy_caps: PHY capabilities 3653 * @phy_cfg: PHY configuration 3654 * 3655 * Helper function to determine if PHY capabilities matches PHY 3656 * configuration 3657 */ 3658 bool 3659 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps, 3660 struct ice_aqc_set_phy_cfg_data *phy_cfg) 3661 { 3662 u8 caps_mask, cfg_mask; 3663 3664 if (!phy_caps || !phy_cfg) 3665 return false; 3666 3667 /* These bits are not common between capabilities and configuration. 3668 * Do not use them to determine equality. 3669 */ 3670 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE | 3671 ICE_AQC_GET_PHY_EN_MOD_QUAL); 3672 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3673 3674 if (phy_caps->phy_type_low != phy_cfg->phy_type_low || 3675 phy_caps->phy_type_high != phy_cfg->phy_type_high || 3676 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) || 3677 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an || 3678 phy_caps->eee_cap != phy_cfg->eee_cap || 3679 phy_caps->eeer_value != phy_cfg->eeer_value || 3680 phy_caps->link_fec_options != phy_cfg->link_fec_opt) 3681 return false; 3682 3683 return true; 3684 } 3685 3686 /** 3687 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 3688 * @pi: port information structure 3689 * @caps: PHY ability structure to copy date from 3690 * @cfg: PHY configuration structure to copy data to 3691 * 3692 * Helper function to copy AQC PHY get ability data to PHY set configuration 3693 * data structure 3694 */ 3695 void 3696 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi, 3697 struct ice_aqc_get_phy_caps_data *caps, 3698 struct ice_aqc_set_phy_cfg_data *cfg) 3699 { 3700 if (!pi || !caps || !cfg) 3701 return; 3702 3703 memset(cfg, 0, sizeof(*cfg)); 3704 cfg->phy_type_low = caps->phy_type_low; 3705 cfg->phy_type_high = caps->phy_type_high; 3706 cfg->caps = caps->caps; 3707 cfg->low_power_ctrl_an = caps->low_power_ctrl_an; 3708 cfg->eee_cap = caps->eee_cap; 3709 cfg->eeer_value = caps->eeer_value; 3710 cfg->link_fec_opt = caps->link_fec_options; 3711 cfg->module_compliance_enforcement = 3712 caps->module_compliance_enforcement; 3713 } 3714 3715 /** 3716 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode 3717 * @pi: port information structure 3718 * @cfg: PHY configuration data to set FEC mode 3719 * @fec: FEC mode to configure 3720 */ 3721 int 3722 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3723 enum ice_fec_mode fec) 3724 { 3725 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL; 3726 struct ice_hw *hw; 3727 int status; 3728 3729 if (!pi || !cfg) 3730 return -EINVAL; 3731 3732 hw = pi->hw; 3733 3734 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3735 if (!pcaps) 3736 return -ENOMEM; 3737 3738 status = ice_aq_get_phy_caps(pi, false, 3739 (ice_fw_supports_report_dflt_cfg(hw) ? 3740 ICE_AQC_REPORT_DFLT_CFG : 3741 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL); 3742 if (status) 3743 goto out; 3744 3745 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 3746 cfg->link_fec_opt = pcaps->link_fec_options; 3747 3748 switch (fec) { 3749 case ICE_FEC_BASER: 3750 /* Clear RS bits, and AND BASE-R ability 3751 * bits and OR request bits. 3752 */ 3753 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3754 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN; 3755 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3756 ICE_AQC_PHY_FEC_25G_KR_REQ; 3757 break; 3758 case ICE_FEC_RS: 3759 /* Clear BASE-R bits, and AND RS ability 3760 * bits and OR request bits. 3761 */ 3762 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN; 3763 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3764 ICE_AQC_PHY_FEC_25G_RS_544_REQ; 3765 break; 3766 case ICE_FEC_NONE: 3767 /* Clear all FEC option bits. */ 3768 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK; 3769 break; 3770 case ICE_FEC_AUTO: 3771 /* AND auto FEC bit, and all caps bits. */ 3772 cfg->caps &= ICE_AQC_PHY_CAPS_MASK; 3773 cfg->link_fec_opt |= pcaps->link_fec_options; 3774 break; 3775 default: 3776 status = -EINVAL; 3777 break; 3778 } 3779 3780 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) && 3781 !ice_fw_supports_report_dflt_cfg(hw)) { 3782 struct ice_link_default_override_tlv tlv = { 0 }; 3783 3784 status = ice_get_link_default_override(&tlv, pi); 3785 if (status) 3786 goto out; 3787 3788 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) && 3789 (tlv.options & ICE_LINK_OVERRIDE_EN)) 3790 cfg->link_fec_opt = tlv.fec_options; 3791 } 3792 3793 out: 3794 return status; 3795 } 3796 3797 /** 3798 * ice_get_link_status - get status of the HW network link 3799 * @pi: port information structure 3800 * @link_up: pointer to bool (true/false = linkup/linkdown) 3801 * 3802 * Variable link_up is true if link is up, false if link is down. 3803 * The variable link_up is invalid if status is non zero. As a 3804 * result of this call, link status reporting becomes enabled 3805 */ 3806 int ice_get_link_status(struct ice_port_info *pi, bool *link_up) 3807 { 3808 struct ice_phy_info *phy_info; 3809 int status = 0; 3810 3811 if (!pi || !link_up) 3812 return -EINVAL; 3813 3814 phy_info = &pi->phy; 3815 3816 if (phy_info->get_link_info) { 3817 status = ice_update_link_info(pi); 3818 3819 if (status) 3820 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n", 3821 status); 3822 } 3823 3824 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; 3825 3826 return status; 3827 } 3828 3829 /** 3830 * ice_aq_set_link_restart_an 3831 * @pi: pointer to the port information structure 3832 * @ena_link: if true: enable link, if false: disable link 3833 * @cd: pointer to command details structure or NULL 3834 * 3835 * Sets up the link and restarts the Auto-Negotiation over the link. 3836 */ 3837 int 3838 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, 3839 struct ice_sq_cd *cd) 3840 { 3841 struct ice_aqc_restart_an *cmd; 3842 struct ice_aq_desc desc; 3843 3844 cmd = &desc.params.restart_an; 3845 3846 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); 3847 3848 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; 3849 cmd->lport_num = pi->lport; 3850 if (ena_link) 3851 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; 3852 else 3853 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; 3854 3855 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 3856 } 3857 3858 /** 3859 * ice_aq_set_event_mask 3860 * @hw: pointer to the HW struct 3861 * @port_num: port number of the physical function 3862 * @mask: event mask to be set 3863 * @cd: pointer to command details structure or NULL 3864 * 3865 * Set event mask (0x0613) 3866 */ 3867 int 3868 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, 3869 struct ice_sq_cd *cd) 3870 { 3871 struct ice_aqc_set_event_mask *cmd; 3872 struct ice_aq_desc desc; 3873 3874 cmd = &desc.params.set_event_mask; 3875 3876 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); 3877 3878 cmd->lport_num = port_num; 3879 3880 cmd->event_mask = cpu_to_le16(mask); 3881 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3882 } 3883 3884 /** 3885 * ice_aq_set_mac_loopback 3886 * @hw: pointer to the HW struct 3887 * @ena_lpbk: Enable or Disable loopback 3888 * @cd: pointer to command details structure or NULL 3889 * 3890 * Enable/disable loopback on a given port 3891 */ 3892 int 3893 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd) 3894 { 3895 struct ice_aqc_set_mac_lb *cmd; 3896 struct ice_aq_desc desc; 3897 3898 cmd = &desc.params.set_mac_lb; 3899 3900 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb); 3901 if (ena_lpbk) 3902 cmd->lb_mode = ICE_AQ_MAC_LB_EN; 3903 3904 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3905 } 3906 3907 /** 3908 * ice_aq_set_port_id_led 3909 * @pi: pointer to the port information 3910 * @is_orig_mode: is this LED set to original mode (by the net-list) 3911 * @cd: pointer to command details structure or NULL 3912 * 3913 * Set LED value for the given port (0x06e9) 3914 */ 3915 int 3916 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, 3917 struct ice_sq_cd *cd) 3918 { 3919 struct ice_aqc_set_port_id_led *cmd; 3920 struct ice_hw *hw = pi->hw; 3921 struct ice_aq_desc desc; 3922 3923 cmd = &desc.params.set_port_id_led; 3924 3925 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); 3926 3927 if (is_orig_mode) 3928 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; 3929 else 3930 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; 3931 3932 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3933 } 3934 3935 /** 3936 * ice_aq_get_port_options 3937 * @hw: pointer to the HW struct 3938 * @options: buffer for the resultant port options 3939 * @option_count: input - size of the buffer in port options structures, 3940 * output - number of returned port options 3941 * @lport: logical port to call the command with (optional) 3942 * @lport_valid: when false, FW uses port owned by the PF instead of lport, 3943 * when PF owns more than 1 port it must be true 3944 * @active_option_idx: index of active port option in returned buffer 3945 * @active_option_valid: active option in returned buffer is valid 3946 * @pending_option_idx: index of pending port option in returned buffer 3947 * @pending_option_valid: pending option in returned buffer is valid 3948 * 3949 * Calls Get Port Options AQC (0x06ea) and verifies result. 3950 */ 3951 int 3952 ice_aq_get_port_options(struct ice_hw *hw, 3953 struct ice_aqc_get_port_options_elem *options, 3954 u8 *option_count, u8 lport, bool lport_valid, 3955 u8 *active_option_idx, bool *active_option_valid, 3956 u8 *pending_option_idx, bool *pending_option_valid) 3957 { 3958 struct ice_aqc_get_port_options *cmd; 3959 struct ice_aq_desc desc; 3960 int status; 3961 u8 i; 3962 3963 /* options buffer shall be able to hold max returned options */ 3964 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M) 3965 return -EINVAL; 3966 3967 cmd = &desc.params.get_port_options; 3968 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options); 3969 3970 if (lport_valid) 3971 cmd->lport_num = lport; 3972 cmd->lport_num_valid = lport_valid; 3973 3974 status = ice_aq_send_cmd(hw, &desc, options, 3975 *option_count * sizeof(*options), NULL); 3976 if (status) 3977 return status; 3978 3979 /* verify direct FW response & set output parameters */ 3980 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M, 3981 cmd->port_options_count); 3982 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count); 3983 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID, 3984 cmd->port_options); 3985 if (*active_option_valid) { 3986 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M, 3987 cmd->port_options); 3988 if (*active_option_idx > (*option_count - 1)) 3989 return -EIO; 3990 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n", 3991 *active_option_idx); 3992 } 3993 3994 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID, 3995 cmd->pending_port_option_status); 3996 if (*pending_option_valid) { 3997 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M, 3998 cmd->pending_port_option_status); 3999 if (*pending_option_idx > (*option_count - 1)) 4000 return -EIO; 4001 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n", 4002 *pending_option_idx); 4003 } 4004 4005 /* mask output options fields */ 4006 for (i = 0; i < *option_count; i++) { 4007 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M, 4008 options[i].pmd); 4009 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M, 4010 options[i].max_lane_speed); 4011 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n", 4012 options[i].pmd, options[i].max_lane_speed); 4013 } 4014 4015 return 0; 4016 } 4017 4018 /** 4019 * ice_aq_set_port_option 4020 * @hw: pointer to the HW struct 4021 * @lport: logical port to call the command with 4022 * @lport_valid: when false, FW uses port owned by the PF instead of lport, 4023 * when PF owns more than 1 port it must be true 4024 * @new_option: new port option to be written 4025 * 4026 * Calls Set Port Options AQC (0x06eb). 4027 */ 4028 int 4029 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid, 4030 u8 new_option) 4031 { 4032 struct ice_aqc_set_port_option *cmd; 4033 struct ice_aq_desc desc; 4034 4035 if (new_option > ICE_AQC_PORT_OPT_COUNT_M) 4036 return -EINVAL; 4037 4038 cmd = &desc.params.set_port_option; 4039 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option); 4040 4041 if (lport_valid) 4042 cmd->lport_num = lport; 4043 4044 cmd->lport_num_valid = lport_valid; 4045 cmd->selected_port_option = new_option; 4046 4047 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 4048 } 4049 4050 /** 4051 * ice_get_phy_lane_number - Get PHY lane number for current adapter 4052 * @hw: pointer to the hw struct 4053 * 4054 * Return: PHY lane number on success, negative error code otherwise. 4055 */ 4056 int ice_get_phy_lane_number(struct ice_hw *hw) 4057 { 4058 struct ice_aqc_get_port_options_elem *options; 4059 unsigned int lport = 0; 4060 unsigned int lane; 4061 int err; 4062 4063 options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL); 4064 if (!options) 4065 return -ENOMEM; 4066 4067 for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) { 4068 u8 options_count = ICE_AQC_PORT_OPT_MAX; 4069 u8 speed, active_idx, pending_idx; 4070 bool active_valid, pending_valid; 4071 4072 err = ice_aq_get_port_options(hw, options, &options_count, lane, 4073 true, &active_idx, &active_valid, 4074 &pending_idx, &pending_valid); 4075 if (err) 4076 goto err; 4077 4078 if (!active_valid) 4079 continue; 4080 4081 speed = options[active_idx].max_lane_speed; 4082 /* If we don't get speed for this lane, it's unoccupied */ 4083 if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G) 4084 continue; 4085 4086 if (hw->pf_id == lport) { 4087 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 && 4088 ice_is_dual(hw) && !ice_is_primary(hw)) 4089 lane += ICE_PORTS_PER_QUAD; 4090 kfree(options); 4091 return lane; 4092 } 4093 lport++; 4094 } 4095 4096 /* PHY lane not found */ 4097 err = -ENXIO; 4098 err: 4099 kfree(options); 4100 return err; 4101 } 4102 4103 /** 4104 * ice_aq_sff_eeprom 4105 * @hw: pointer to the HW struct 4106 * @lport: bits [7:0] = logical port, bit [8] = logical port valid 4107 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default) 4108 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding. 4109 * @page: QSFP page 4110 * @set_page: set or ignore the page 4111 * @data: pointer to data buffer to be read/written to the I2C device. 4112 * @length: 1-16 for read, 1 for write. 4113 * @write: 0 read, 1 for write. 4114 * @cd: pointer to command details structure or NULL 4115 * 4116 * Read/Write SFF EEPROM (0x06EE) 4117 */ 4118 int 4119 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr, 4120 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length, 4121 bool write, struct ice_sq_cd *cd) 4122 { 4123 struct ice_aqc_sff_eeprom *cmd; 4124 struct ice_aq_desc desc; 4125 u16 i2c_bus_addr; 4126 int status; 4127 4128 if (!data || (mem_addr & 0xff00)) 4129 return -EINVAL; 4130 4131 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom); 4132 cmd = &desc.params.read_write_sff_param; 4133 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD); 4134 cmd->lport_num = (u8)(lport & 0xff); 4135 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01); 4136 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) | 4137 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page); 4138 if (write) 4139 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE; 4140 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr); 4141 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff); 4142 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M); 4143 4144 status = ice_aq_send_cmd(hw, &desc, data, length, cd); 4145 return status; 4146 } 4147 4148 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type) 4149 { 4150 switch (type) { 4151 case ICE_LUT_VSI: 4152 return ICE_LUT_VSI_SIZE; 4153 case ICE_LUT_GLOBAL: 4154 return ICE_LUT_GLOBAL_SIZE; 4155 case ICE_LUT_PF: 4156 return ICE_LUT_PF_SIZE; 4157 } 4158 WARN_ONCE(1, "incorrect type passed"); 4159 return ICE_LUT_VSI_SIZE; 4160 } 4161 4162 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size) 4163 { 4164 switch (size) { 4165 case ICE_LUT_VSI_SIZE: 4166 return ICE_AQC_LUT_SIZE_SMALL; 4167 case ICE_LUT_GLOBAL_SIZE: 4168 return ICE_AQC_LUT_SIZE_512; 4169 case ICE_LUT_PF_SIZE: 4170 return ICE_AQC_LUT_SIZE_2K; 4171 } 4172 WARN_ONCE(1, "incorrect size passed"); 4173 return 0; 4174 } 4175 4176 /** 4177 * __ice_aq_get_set_rss_lut 4178 * @hw: pointer to the hardware structure 4179 * @params: RSS LUT parameters 4180 * @set: set true to set the table, false to get the table 4181 * 4182 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table 4183 */ 4184 static int 4185 __ice_aq_get_set_rss_lut(struct ice_hw *hw, 4186 struct ice_aq_get_set_rss_lut_params *params, bool set) 4187 { 4188 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0; 4189 enum ice_lut_type lut_type = params->lut_type; 4190 struct ice_aqc_get_set_rss_lut *desc_params; 4191 enum ice_aqc_lut_flags flags; 4192 enum ice_lut_size lut_size; 4193 struct ice_aq_desc desc; 4194 u8 *lut = params->lut; 4195 4196 4197 if (!lut || !ice_is_vsi_valid(hw, vsi_handle)) 4198 return -EINVAL; 4199 4200 lut_size = ice_lut_type_to_size(lut_type); 4201 if (lut_size > params->lut_size) 4202 return -EINVAL; 4203 else if (set && lut_size != params->lut_size) 4204 return -EINVAL; 4205 4206 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut; 4207 ice_fill_dflt_direct_cmd_desc(&desc, opcode); 4208 if (set) 4209 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4210 4211 desc_params = &desc.params.get_set_rss_lut; 4212 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 4213 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID); 4214 4215 if (lut_type == ICE_LUT_GLOBAL) 4216 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX, 4217 params->global_lut_id); 4218 4219 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size); 4220 desc_params->flags = cpu_to_le16(flags); 4221 4222 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); 4223 } 4224 4225 /** 4226 * ice_aq_get_rss_lut 4227 * @hw: pointer to the hardware structure 4228 * @get_params: RSS LUT parameters used to specify which RSS LUT to get 4229 * 4230 * get the RSS lookup table, PF or VSI type 4231 */ 4232 int 4233 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params) 4234 { 4235 return __ice_aq_get_set_rss_lut(hw, get_params, false); 4236 } 4237 4238 /** 4239 * ice_aq_set_rss_lut 4240 * @hw: pointer to the hardware structure 4241 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT 4242 * 4243 * set the RSS lookup table, PF or VSI type 4244 */ 4245 int 4246 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params) 4247 { 4248 return __ice_aq_get_set_rss_lut(hw, set_params, true); 4249 } 4250 4251 /** 4252 * __ice_aq_get_set_rss_key 4253 * @hw: pointer to the HW struct 4254 * @vsi_id: VSI FW index 4255 * @key: pointer to key info struct 4256 * @set: set true to set the key, false to get the key 4257 * 4258 * get (0x0B04) or set (0x0B02) the RSS key per VSI 4259 */ 4260 static int 4261 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, 4262 struct ice_aqc_get_set_rss_keys *key, bool set) 4263 { 4264 struct ice_aqc_get_set_rss_key *desc_params; 4265 u16 key_size = sizeof(*key); 4266 struct ice_aq_desc desc; 4267 4268 if (set) { 4269 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); 4270 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4271 } else { 4272 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); 4273 } 4274 4275 desc_params = &desc.params.get_set_rss_key; 4276 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID); 4277 4278 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); 4279 } 4280 4281 /** 4282 * ice_aq_get_rss_key 4283 * @hw: pointer to the HW struct 4284 * @vsi_handle: software VSI handle 4285 * @key: pointer to key info struct 4286 * 4287 * get the RSS key per VSI 4288 */ 4289 int 4290 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, 4291 struct ice_aqc_get_set_rss_keys *key) 4292 { 4293 if (!ice_is_vsi_valid(hw, vsi_handle) || !key) 4294 return -EINVAL; 4295 4296 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 4297 key, false); 4298 } 4299 4300 /** 4301 * ice_aq_set_rss_key 4302 * @hw: pointer to the HW struct 4303 * @vsi_handle: software VSI handle 4304 * @keys: pointer to key info struct 4305 * 4306 * set the RSS key per VSI 4307 */ 4308 int 4309 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, 4310 struct ice_aqc_get_set_rss_keys *keys) 4311 { 4312 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) 4313 return -EINVAL; 4314 4315 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 4316 keys, true); 4317 } 4318 4319 /** 4320 * ice_aq_add_lan_txq 4321 * @hw: pointer to the hardware structure 4322 * @num_qgrps: Number of added queue groups 4323 * @qg_list: list of queue groups to be added 4324 * @buf_size: size of buffer for indirect command 4325 * @cd: pointer to command details structure or NULL 4326 * 4327 * Add Tx LAN queue (0x0C30) 4328 * 4329 * NOTE: 4330 * Prior to calling add Tx LAN queue: 4331 * Initialize the following as part of the Tx queue context: 4332 * Completion queue ID if the queue uses Completion queue, Quanta profile, 4333 * Cache profile and Packet shaper profile. 4334 * 4335 * After add Tx LAN queue AQ command is completed: 4336 * Interrupts should be associated with specific queues, 4337 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue 4338 * flow. 4339 */ 4340 static int 4341 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, 4342 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, 4343 struct ice_sq_cd *cd) 4344 { 4345 struct ice_aqc_add_tx_qgrp *list; 4346 struct ice_aqc_add_txqs *cmd; 4347 struct ice_aq_desc desc; 4348 u16 i, sum_size = 0; 4349 4350 cmd = &desc.params.add_txqs; 4351 4352 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); 4353 4354 if (!qg_list) 4355 return -EINVAL; 4356 4357 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 4358 return -EINVAL; 4359 4360 for (i = 0, list = qg_list; i < num_qgrps; i++) { 4361 sum_size += struct_size(list, txqs, list->num_txqs); 4362 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs + 4363 list->num_txqs); 4364 } 4365 4366 if (buf_size != sum_size) 4367 return -EINVAL; 4368 4369 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4370 4371 cmd->num_qgrps = num_qgrps; 4372 4373 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 4374 } 4375 4376 /** 4377 * ice_aq_dis_lan_txq 4378 * @hw: pointer to the hardware structure 4379 * @num_qgrps: number of groups in the list 4380 * @qg_list: the list of groups to disable 4381 * @buf_size: the total size of the qg_list buffer in bytes 4382 * @rst_src: if called due to reset, specifies the reset source 4383 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4384 * @cd: pointer to command details structure or NULL 4385 * 4386 * Disable LAN Tx queue (0x0C31) 4387 */ 4388 static int 4389 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, 4390 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, 4391 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4392 struct ice_sq_cd *cd) 4393 { 4394 struct ice_aqc_dis_txq_item *item; 4395 struct ice_aqc_dis_txqs *cmd; 4396 struct ice_aq_desc desc; 4397 u16 vmvf_and_timeout; 4398 u16 i, sz = 0; 4399 int status; 4400 4401 cmd = &desc.params.dis_txqs; 4402 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); 4403 4404 /* qg_list can be NULL only in VM/VF reset flow */ 4405 if (!qg_list && !rst_src) 4406 return -EINVAL; 4407 4408 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 4409 return -EINVAL; 4410 4411 cmd->num_entries = num_qgrps; 4412 4413 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5); 4414 4415 switch (rst_src) { 4416 case ICE_VM_RESET: 4417 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; 4418 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M; 4419 break; 4420 case ICE_VF_RESET: 4421 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; 4422 /* In this case, FW expects vmvf_num to be absolute VF ID */ 4423 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) & 4424 ICE_AQC_Q_DIS_VMVF_NUM_M; 4425 break; 4426 case ICE_NO_RESET: 4427 default: 4428 break; 4429 } 4430 4431 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout); 4432 4433 /* flush pipe on time out */ 4434 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; 4435 /* If no queue group info, we are in a reset flow. Issue the AQ */ 4436 if (!qg_list) 4437 goto do_aq; 4438 4439 /* set RD bit to indicate that command buffer is provided by the driver 4440 * and it needs to be read by the firmware 4441 */ 4442 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4443 4444 for (i = 0, item = qg_list; i < num_qgrps; i++) { 4445 u16 item_size = struct_size(item, q_id, item->num_qs); 4446 4447 /* If the num of queues is even, add 2 bytes of padding */ 4448 if ((item->num_qs % 2) == 0) 4449 item_size += 2; 4450 4451 sz += item_size; 4452 4453 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size); 4454 } 4455 4456 if (buf_size != sz) 4457 return -EINVAL; 4458 4459 do_aq: 4460 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 4461 if (status) { 4462 if (!qg_list) 4463 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", 4464 vmvf_num, hw->adminq.sq_last_status); 4465 else 4466 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n", 4467 le16_to_cpu(qg_list[0].q_id[0]), 4468 hw->adminq.sq_last_status); 4469 } 4470 return status; 4471 } 4472 4473 /** 4474 * ice_aq_cfg_lan_txq 4475 * @hw: pointer to the hardware structure 4476 * @buf: buffer for command 4477 * @buf_size: size of buffer in bytes 4478 * @num_qs: number of queues being configured 4479 * @oldport: origination lport 4480 * @newport: destination lport 4481 * @cd: pointer to command details structure or NULL 4482 * 4483 * Move/Configure LAN Tx queue (0x0C32) 4484 * 4485 * There is a better AQ command to use for moving nodes, so only coding 4486 * this one for configuring the node. 4487 */ 4488 int 4489 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf, 4490 u16 buf_size, u16 num_qs, u8 oldport, u8 newport, 4491 struct ice_sq_cd *cd) 4492 { 4493 struct ice_aqc_cfg_txqs *cmd; 4494 struct ice_aq_desc desc; 4495 int status; 4496 4497 cmd = &desc.params.cfg_txqs; 4498 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs); 4499 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4500 4501 if (!buf) 4502 return -EINVAL; 4503 4504 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG; 4505 cmd->num_qs = num_qs; 4506 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M); 4507 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport); 4508 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5); 4509 cmd->blocked_cgds = 0; 4510 4511 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 4512 if (status) 4513 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n", 4514 hw->adminq.sq_last_status); 4515 return status; 4516 } 4517 4518 /** 4519 * ice_aq_add_rdma_qsets 4520 * @hw: pointer to the hardware structure 4521 * @num_qset_grps: Number of RDMA Qset groups 4522 * @qset_list: list of Qset groups to be added 4523 * @buf_size: size of buffer for indirect command 4524 * @cd: pointer to command details structure or NULL 4525 * 4526 * Add Tx RDMA Qsets (0x0C33) 4527 */ 4528 static int 4529 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps, 4530 struct ice_aqc_add_rdma_qset_data *qset_list, 4531 u16 buf_size, struct ice_sq_cd *cd) 4532 { 4533 struct ice_aqc_add_rdma_qset_data *list; 4534 struct ice_aqc_add_rdma_qset *cmd; 4535 struct ice_aq_desc desc; 4536 u16 i, sum_size = 0; 4537 4538 cmd = &desc.params.add_rdma_qset; 4539 4540 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset); 4541 4542 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS) 4543 return -EINVAL; 4544 4545 for (i = 0, list = qset_list; i < num_qset_grps; i++) { 4546 u16 num_qsets = le16_to_cpu(list->num_qsets); 4547 4548 sum_size += struct_size(list, rdma_qsets, num_qsets); 4549 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets + 4550 num_qsets); 4551 } 4552 4553 if (buf_size != sum_size) 4554 return -EINVAL; 4555 4556 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 4557 4558 cmd->num_qset_grps = num_qset_grps; 4559 4560 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd); 4561 } 4562 4563 /* End of FW Admin Queue command wrappers */ 4564 4565 /** 4566 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC 4567 * @hw: pointer to the HW struct 4568 * @vsi_handle: software VSI handle 4569 * @tc: TC number 4570 * @q_handle: software queue handle 4571 */ 4572 struct ice_q_ctx * 4573 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) 4574 { 4575 struct ice_vsi_ctx *vsi; 4576 struct ice_q_ctx *q_ctx; 4577 4578 vsi = ice_get_vsi_ctx(hw, vsi_handle); 4579 if (!vsi) 4580 return NULL; 4581 if (q_handle >= vsi->num_lan_q_entries[tc]) 4582 return NULL; 4583 if (!vsi->lan_q_ctx[tc]) 4584 return NULL; 4585 q_ctx = vsi->lan_q_ctx[tc]; 4586 return &q_ctx[q_handle]; 4587 } 4588 4589 /** 4590 * ice_ena_vsi_txq 4591 * @pi: port information structure 4592 * @vsi_handle: software VSI handle 4593 * @tc: TC number 4594 * @q_handle: software queue handle 4595 * @num_qgrps: Number of added queue groups 4596 * @buf: list of queue groups to be added 4597 * @buf_size: size of buffer for indirect command 4598 * @cd: pointer to command details structure or NULL 4599 * 4600 * This function adds one LAN queue 4601 */ 4602 int 4603 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, 4604 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, 4605 struct ice_sq_cd *cd) 4606 { 4607 struct ice_aqc_txsched_elem_data node = { 0 }; 4608 struct ice_sched_node *parent; 4609 struct ice_q_ctx *q_ctx; 4610 struct ice_hw *hw; 4611 int status; 4612 4613 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4614 return -EIO; 4615 4616 if (num_qgrps > 1 || buf->num_txqs > 1) 4617 return -ENOSPC; 4618 4619 hw = pi->hw; 4620 4621 if (!ice_is_vsi_valid(hw, vsi_handle)) 4622 return -EINVAL; 4623 4624 mutex_lock(&pi->sched_lock); 4625 4626 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); 4627 if (!q_ctx) { 4628 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", 4629 q_handle); 4630 status = -EINVAL; 4631 goto ena_txq_exit; 4632 } 4633 4634 /* find a parent node */ 4635 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4636 ICE_SCHED_NODE_OWNER_LAN); 4637 if (!parent) { 4638 status = -EINVAL; 4639 goto ena_txq_exit; 4640 } 4641 4642 buf->parent_teid = parent->info.node_teid; 4643 node.parent_teid = parent->info.node_teid; 4644 /* Mark that the values in the "generic" section as valid. The default 4645 * value in the "generic" section is zero. This means that : 4646 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. 4647 * - 0 priority among siblings, indicated by Bit 1-3. 4648 * - WFQ, indicated by Bit 4. 4649 * - 0 Adjustment value is used in PSM credit update flow, indicated by 4650 * Bit 5-6. 4651 * - Bit 7 is reserved. 4652 * Without setting the generic section as valid in valid_sections, the 4653 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. 4654 */ 4655 buf->txqs[0].info.valid_sections = 4656 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4657 ICE_AQC_ELEM_VALID_EIR; 4658 buf->txqs[0].info.generic = 0; 4659 buf->txqs[0].info.cir_bw.bw_profile_idx = 4660 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4661 buf->txqs[0].info.cir_bw.bw_alloc = 4662 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4663 buf->txqs[0].info.eir_bw.bw_profile_idx = 4664 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4665 buf->txqs[0].info.eir_bw.bw_alloc = 4666 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4667 4668 /* add the LAN queue */ 4669 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); 4670 if (status) { 4671 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", 4672 le16_to_cpu(buf->txqs[0].txq_id), 4673 hw->adminq.sq_last_status); 4674 goto ena_txq_exit; 4675 } 4676 4677 node.node_teid = buf->txqs[0].q_teid; 4678 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4679 q_ctx->q_handle = q_handle; 4680 q_ctx->q_teid = le32_to_cpu(node.node_teid); 4681 4682 /* add a leaf node into scheduler tree queue layer */ 4683 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL); 4684 if (!status) 4685 status = ice_sched_replay_q_bw(pi, q_ctx); 4686 4687 ena_txq_exit: 4688 mutex_unlock(&pi->sched_lock); 4689 return status; 4690 } 4691 4692 /** 4693 * ice_dis_vsi_txq 4694 * @pi: port information structure 4695 * @vsi_handle: software VSI handle 4696 * @tc: TC number 4697 * @num_queues: number of queues 4698 * @q_handles: pointer to software queue handle array 4699 * @q_ids: pointer to the q_id array 4700 * @q_teids: pointer to queue node teids 4701 * @rst_src: if called due to reset, specifies the reset source 4702 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4703 * @cd: pointer to command details structure or NULL 4704 * 4705 * This function removes queues and their corresponding nodes in SW DB 4706 */ 4707 int 4708 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, 4709 u16 *q_handles, u16 *q_ids, u32 *q_teids, 4710 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4711 struct ice_sq_cd *cd) 4712 { 4713 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1); 4714 u16 i, buf_size = __struct_size(qg_list); 4715 struct ice_q_ctx *q_ctx; 4716 int status = -ENOENT; 4717 struct ice_hw *hw; 4718 4719 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4720 return -EIO; 4721 4722 hw = pi->hw; 4723 4724 if (!num_queues) { 4725 /* if queue is disabled already yet the disable queue command 4726 * has to be sent to complete the VF reset, then call 4727 * ice_aq_dis_lan_txq without any queue information 4728 */ 4729 if (rst_src) 4730 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src, 4731 vmvf_num, NULL); 4732 return -EIO; 4733 } 4734 4735 mutex_lock(&pi->sched_lock); 4736 4737 for (i = 0; i < num_queues; i++) { 4738 struct ice_sched_node *node; 4739 4740 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); 4741 if (!node) 4742 continue; 4743 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]); 4744 if (!q_ctx) { 4745 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n", 4746 q_handles[i]); 4747 continue; 4748 } 4749 if (q_ctx->q_handle != q_handles[i]) { 4750 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n", 4751 q_ctx->q_handle, q_handles[i]); 4752 continue; 4753 } 4754 qg_list->parent_teid = node->info.parent_teid; 4755 qg_list->num_qs = 1; 4756 qg_list->q_id[0] = cpu_to_le16(q_ids[i]); 4757 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src, 4758 vmvf_num, cd); 4759 4760 if (status) 4761 break; 4762 ice_free_sched_node(pi, node); 4763 q_ctx->q_handle = ICE_INVAL_Q_HANDLE; 4764 q_ctx->q_teid = ICE_INVAL_TEID; 4765 } 4766 mutex_unlock(&pi->sched_lock); 4767 return status; 4768 } 4769 4770 /** 4771 * ice_cfg_vsi_qs - configure the new/existing VSI queues 4772 * @pi: port information structure 4773 * @vsi_handle: software VSI handle 4774 * @tc_bitmap: TC bitmap 4775 * @maxqs: max queues array per TC 4776 * @owner: LAN or RDMA 4777 * 4778 * This function adds/updates the VSI queues per TC. 4779 */ 4780 static int 4781 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4782 u16 *maxqs, u8 owner) 4783 { 4784 int status = 0; 4785 u8 i; 4786 4787 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4788 return -EIO; 4789 4790 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 4791 return -EINVAL; 4792 4793 mutex_lock(&pi->sched_lock); 4794 4795 ice_for_each_traffic_class(i) { 4796 /* configuration is possible only if TC node is present */ 4797 if (!ice_sched_get_tc_node(pi, i)) 4798 continue; 4799 4800 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, 4801 ice_is_tc_ena(tc_bitmap, i)); 4802 if (status) 4803 break; 4804 } 4805 4806 mutex_unlock(&pi->sched_lock); 4807 return status; 4808 } 4809 4810 /** 4811 * ice_cfg_vsi_lan - configure VSI LAN queues 4812 * @pi: port information structure 4813 * @vsi_handle: software VSI handle 4814 * @tc_bitmap: TC bitmap 4815 * @max_lanqs: max LAN queues array per TC 4816 * 4817 * This function adds/updates the VSI LAN queues per TC. 4818 */ 4819 int 4820 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4821 u16 *max_lanqs) 4822 { 4823 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, 4824 ICE_SCHED_NODE_OWNER_LAN); 4825 } 4826 4827 /** 4828 * ice_cfg_vsi_rdma - configure the VSI RDMA queues 4829 * @pi: port information structure 4830 * @vsi_handle: software VSI handle 4831 * @tc_bitmap: TC bitmap 4832 * @max_rdmaqs: max RDMA queues array per TC 4833 * 4834 * This function adds/updates the VSI RDMA queues per TC. 4835 */ 4836 int 4837 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap, 4838 u16 *max_rdmaqs) 4839 { 4840 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs, 4841 ICE_SCHED_NODE_OWNER_RDMA); 4842 } 4843 4844 /** 4845 * ice_ena_vsi_rdma_qset 4846 * @pi: port information structure 4847 * @vsi_handle: software VSI handle 4848 * @tc: TC number 4849 * @rdma_qset: pointer to RDMA Qset 4850 * @num_qsets: number of RDMA Qsets 4851 * @qset_teid: pointer to Qset node TEIDs 4852 * 4853 * This function adds RDMA Qset 4854 */ 4855 int 4856 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4857 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid) 4858 { 4859 struct ice_aqc_txsched_elem_data node = { 0 }; 4860 struct ice_aqc_add_rdma_qset_data *buf; 4861 struct ice_sched_node *parent; 4862 struct ice_hw *hw; 4863 u16 i, buf_size; 4864 int ret; 4865 4866 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4867 return -EIO; 4868 hw = pi->hw; 4869 4870 if (!ice_is_vsi_valid(hw, vsi_handle)) 4871 return -EINVAL; 4872 4873 buf_size = struct_size(buf, rdma_qsets, num_qsets); 4874 buf = kzalloc(buf_size, GFP_KERNEL); 4875 if (!buf) 4876 return -ENOMEM; 4877 mutex_lock(&pi->sched_lock); 4878 4879 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4880 ICE_SCHED_NODE_OWNER_RDMA); 4881 if (!parent) { 4882 ret = -EINVAL; 4883 goto rdma_error_exit; 4884 } 4885 buf->parent_teid = parent->info.node_teid; 4886 node.parent_teid = parent->info.node_teid; 4887 4888 buf->num_qsets = cpu_to_le16(num_qsets); 4889 for (i = 0; i < num_qsets; i++) { 4890 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]); 4891 buf->rdma_qsets[i].info.valid_sections = 4892 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4893 ICE_AQC_ELEM_VALID_EIR; 4894 buf->rdma_qsets[i].info.generic = 0; 4895 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx = 4896 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4897 buf->rdma_qsets[i].info.cir_bw.bw_alloc = 4898 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4899 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx = 4900 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4901 buf->rdma_qsets[i].info.eir_bw.bw_alloc = 4902 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4903 } 4904 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL); 4905 if (ret) { 4906 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n"); 4907 goto rdma_error_exit; 4908 } 4909 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4910 for (i = 0; i < num_qsets; i++) { 4911 node.node_teid = buf->rdma_qsets[i].qset_teid; 4912 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, 4913 &node, NULL); 4914 if (ret) 4915 break; 4916 qset_teid[i] = le32_to_cpu(node.node_teid); 4917 } 4918 rdma_error_exit: 4919 mutex_unlock(&pi->sched_lock); 4920 kfree(buf); 4921 return ret; 4922 } 4923 4924 /** 4925 * ice_dis_vsi_rdma_qset - free RDMA resources 4926 * @pi: port_info struct 4927 * @count: number of RDMA Qsets to free 4928 * @qset_teid: TEID of Qset node 4929 * @q_id: list of queue IDs being disabled 4930 */ 4931 int 4932 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid, 4933 u16 *q_id) 4934 { 4935 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1); 4936 u16 qg_size = __struct_size(qg_list); 4937 struct ice_hw *hw; 4938 int status = 0; 4939 int i; 4940 4941 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4942 return -EIO; 4943 4944 hw = pi->hw; 4945 4946 mutex_lock(&pi->sched_lock); 4947 4948 for (i = 0; i < count; i++) { 4949 struct ice_sched_node *node; 4950 4951 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]); 4952 if (!node) 4953 continue; 4954 4955 qg_list->parent_teid = node->info.parent_teid; 4956 qg_list->num_qs = 1; 4957 qg_list->q_id[0] = 4958 cpu_to_le16(q_id[i] | 4959 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET); 4960 4961 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size, 4962 ICE_NO_RESET, 0, NULL); 4963 if (status) 4964 break; 4965 4966 ice_free_sched_node(pi, node); 4967 } 4968 4969 mutex_unlock(&pi->sched_lock); 4970 return status; 4971 } 4972 4973 /** 4974 * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements 4975 * @hw: pointer to the HW struct 4976 * @dpll_idx: index of dpll to be measured 4977 * @meas: array to be filled with results 4978 * @meas_num: max number of results array can hold 4979 * 4980 * Get CGU measurements (0x0C59) of phase and frequency offsets for input 4981 * pins on given dpll. 4982 * 4983 * Return: 0 on success or negative value on failure. 4984 */ 4985 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx, 4986 struct ice_cgu_input_measure *meas, 4987 u16 meas_num) 4988 { 4989 struct ice_aqc_get_cgu_input_measure *cmd; 4990 struct ice_aq_desc desc; 4991 4992 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure); 4993 cmd = &desc.params.get_cgu_input_measure; 4994 cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M; 4995 4996 return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL); 4997 } 4998 4999 /** 5000 * ice_aq_get_cgu_abilities - get cgu abilities 5001 * @hw: pointer to the HW struct 5002 * @abilities: CGU abilities 5003 * 5004 * Get CGU abilities (0x0C61) 5005 * Return: 0 on success or negative value on failure. 5006 */ 5007 int 5008 ice_aq_get_cgu_abilities(struct ice_hw *hw, 5009 struct ice_aqc_get_cgu_abilities *abilities) 5010 { 5011 struct ice_aq_desc desc; 5012 5013 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities); 5014 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL); 5015 } 5016 5017 /** 5018 * ice_aq_set_input_pin_cfg - set input pin config 5019 * @hw: pointer to the HW struct 5020 * @input_idx: Input index 5021 * @flags1: Input flags 5022 * @flags2: Input flags 5023 * @freq: Frequency in Hz 5024 * @phase_delay: Delay in ps 5025 * 5026 * Set CGU input config (0x0C62) 5027 * Return: 0 on success or negative value on failure. 5028 */ 5029 int 5030 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2, 5031 u32 freq, s32 phase_delay) 5032 { 5033 struct ice_aqc_set_cgu_input_config *cmd; 5034 struct ice_aq_desc desc; 5035 5036 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config); 5037 cmd = &desc.params.set_cgu_input_config; 5038 cmd->input_idx = input_idx; 5039 cmd->flags1 = flags1; 5040 cmd->flags2 = flags2; 5041 cmd->freq = cpu_to_le32(freq); 5042 cmd->phase_delay = cpu_to_le32(phase_delay); 5043 5044 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5045 } 5046 5047 /** 5048 * ice_aq_get_input_pin_cfg - get input pin config 5049 * @hw: pointer to the HW struct 5050 * @input_idx: Input index 5051 * @status: Pin status 5052 * @type: Pin type 5053 * @flags1: Input flags 5054 * @flags2: Input flags 5055 * @freq: Frequency in Hz 5056 * @phase_delay: Delay in ps 5057 * 5058 * Get CGU input config (0x0C63) 5059 * Return: 0 on success or negative value on failure. 5060 */ 5061 int 5062 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type, 5063 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay) 5064 { 5065 struct ice_aqc_get_cgu_input_config *cmd; 5066 struct ice_aq_desc desc; 5067 int ret; 5068 5069 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config); 5070 cmd = &desc.params.get_cgu_input_config; 5071 cmd->input_idx = input_idx; 5072 5073 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5074 if (!ret) { 5075 if (status) 5076 *status = cmd->status; 5077 if (type) 5078 *type = cmd->type; 5079 if (flags1) 5080 *flags1 = cmd->flags1; 5081 if (flags2) 5082 *flags2 = cmd->flags2; 5083 if (freq) 5084 *freq = le32_to_cpu(cmd->freq); 5085 if (phase_delay) 5086 *phase_delay = le32_to_cpu(cmd->phase_delay); 5087 } 5088 5089 return ret; 5090 } 5091 5092 /** 5093 * ice_aq_set_output_pin_cfg - set output pin config 5094 * @hw: pointer to the HW struct 5095 * @output_idx: Output index 5096 * @flags: Output flags 5097 * @src_sel: Index of DPLL block 5098 * @freq: Output frequency 5099 * @phase_delay: Output phase compensation 5100 * 5101 * Set CGU output config (0x0C64) 5102 * Return: 0 on success or negative value on failure. 5103 */ 5104 int 5105 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags, 5106 u8 src_sel, u32 freq, s32 phase_delay) 5107 { 5108 struct ice_aqc_set_cgu_output_config *cmd; 5109 struct ice_aq_desc desc; 5110 5111 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config); 5112 cmd = &desc.params.set_cgu_output_config; 5113 cmd->output_idx = output_idx; 5114 cmd->flags = flags; 5115 cmd->src_sel = src_sel; 5116 cmd->freq = cpu_to_le32(freq); 5117 cmd->phase_delay = cpu_to_le32(phase_delay); 5118 5119 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5120 } 5121 5122 /** 5123 * ice_aq_get_output_pin_cfg - get output pin config 5124 * @hw: pointer to the HW struct 5125 * @output_idx: Output index 5126 * @flags: Output flags 5127 * @src_sel: Internal DPLL source 5128 * @freq: Output frequency 5129 * @src_freq: Source frequency 5130 * 5131 * Get CGU output config (0x0C65) 5132 * Return: 0 on success or negative value on failure. 5133 */ 5134 int 5135 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags, 5136 u8 *src_sel, u32 *freq, u32 *src_freq) 5137 { 5138 struct ice_aqc_get_cgu_output_config *cmd; 5139 struct ice_aq_desc desc; 5140 int ret; 5141 5142 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config); 5143 cmd = &desc.params.get_cgu_output_config; 5144 cmd->output_idx = output_idx; 5145 5146 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5147 if (!ret) { 5148 if (flags) 5149 *flags = cmd->flags; 5150 if (src_sel) 5151 *src_sel = cmd->src_sel; 5152 if (freq) 5153 *freq = le32_to_cpu(cmd->freq); 5154 if (src_freq) 5155 *src_freq = le32_to_cpu(cmd->src_freq); 5156 } 5157 5158 return ret; 5159 } 5160 5161 /** 5162 * ice_aq_get_cgu_dpll_status - get dpll status 5163 * @hw: pointer to the HW struct 5164 * @dpll_num: DPLL index 5165 * @ref_state: Reference clock state 5166 * @config: current DPLL config 5167 * @dpll_state: current DPLL state 5168 * @phase_offset: Phase offset in ns 5169 * @eec_mode: EEC_mode 5170 * 5171 * Get CGU DPLL status (0x0C66) 5172 * Return: 0 on success or negative value on failure. 5173 */ 5174 int 5175 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state, 5176 u8 *dpll_state, u8 *config, s64 *phase_offset, 5177 u8 *eec_mode) 5178 { 5179 struct ice_aqc_get_cgu_dpll_status *cmd; 5180 struct ice_aq_desc desc; 5181 int status; 5182 5183 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status); 5184 cmd = &desc.params.get_cgu_dpll_status; 5185 cmd->dpll_num = dpll_num; 5186 5187 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5188 if (!status) { 5189 *ref_state = cmd->ref_state; 5190 *dpll_state = cmd->dpll_state; 5191 *config = cmd->config; 5192 *phase_offset = le32_to_cpu(cmd->phase_offset_h); 5193 *phase_offset <<= 32; 5194 *phase_offset += le32_to_cpu(cmd->phase_offset_l); 5195 *phase_offset = sign_extend64(*phase_offset, 47); 5196 *eec_mode = cmd->eec_mode; 5197 } 5198 5199 return status; 5200 } 5201 5202 /** 5203 * ice_aq_set_cgu_dpll_config - set dpll config 5204 * @hw: pointer to the HW struct 5205 * @dpll_num: DPLL index 5206 * @ref_state: Reference clock state 5207 * @config: DPLL config 5208 * @eec_mode: EEC mode 5209 * 5210 * Set CGU DPLL config (0x0C67) 5211 * Return: 0 on success or negative value on failure. 5212 */ 5213 int 5214 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state, 5215 u8 config, u8 eec_mode) 5216 { 5217 struct ice_aqc_set_cgu_dpll_config *cmd; 5218 struct ice_aq_desc desc; 5219 5220 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config); 5221 cmd = &desc.params.set_cgu_dpll_config; 5222 cmd->dpll_num = dpll_num; 5223 cmd->ref_state = ref_state; 5224 cmd->config = config; 5225 cmd->eec_mode = eec_mode; 5226 5227 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5228 } 5229 5230 /** 5231 * ice_aq_set_cgu_ref_prio - set input reference priority 5232 * @hw: pointer to the HW struct 5233 * @dpll_num: DPLL index 5234 * @ref_idx: Reference pin index 5235 * @ref_priority: Reference input priority 5236 * 5237 * Set CGU reference priority (0x0C68) 5238 * Return: 0 on success or negative value on failure. 5239 */ 5240 int 5241 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx, 5242 u8 ref_priority) 5243 { 5244 struct ice_aqc_set_cgu_ref_prio *cmd; 5245 struct ice_aq_desc desc; 5246 5247 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio); 5248 cmd = &desc.params.set_cgu_ref_prio; 5249 cmd->dpll_num = dpll_num; 5250 cmd->ref_idx = ref_idx; 5251 cmd->ref_priority = ref_priority; 5252 5253 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5254 } 5255 5256 /** 5257 * ice_aq_get_cgu_ref_prio - get input reference priority 5258 * @hw: pointer to the HW struct 5259 * @dpll_num: DPLL index 5260 * @ref_idx: Reference pin index 5261 * @ref_prio: Reference input priority 5262 * 5263 * Get CGU reference priority (0x0C69) 5264 * Return: 0 on success or negative value on failure. 5265 */ 5266 int 5267 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx, 5268 u8 *ref_prio) 5269 { 5270 struct ice_aqc_get_cgu_ref_prio *cmd; 5271 struct ice_aq_desc desc; 5272 int status; 5273 5274 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio); 5275 cmd = &desc.params.get_cgu_ref_prio; 5276 cmd->dpll_num = dpll_num; 5277 cmd->ref_idx = ref_idx; 5278 5279 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5280 if (!status) 5281 *ref_prio = cmd->ref_priority; 5282 5283 return status; 5284 } 5285 5286 /** 5287 * ice_aq_get_cgu_info - get cgu info 5288 * @hw: pointer to the HW struct 5289 * @cgu_id: CGU ID 5290 * @cgu_cfg_ver: CGU config version 5291 * @cgu_fw_ver: CGU firmware version 5292 * 5293 * Get CGU info (0x0C6A) 5294 * Return: 0 on success or negative value on failure. 5295 */ 5296 int 5297 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver, 5298 u32 *cgu_fw_ver) 5299 { 5300 struct ice_aqc_get_cgu_info *cmd; 5301 struct ice_aq_desc desc; 5302 int status; 5303 5304 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info); 5305 cmd = &desc.params.get_cgu_info; 5306 5307 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5308 if (!status) { 5309 *cgu_id = le32_to_cpu(cmd->cgu_id); 5310 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver); 5311 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver); 5312 } 5313 5314 return status; 5315 } 5316 5317 /** 5318 * ice_aq_set_phy_rec_clk_out - set RCLK phy out 5319 * @hw: pointer to the HW struct 5320 * @phy_output: PHY reference clock output pin 5321 * @enable: GPIO state to be applied 5322 * @freq: PHY output frequency 5323 * 5324 * Set phy recovered clock as reference (0x0630) 5325 * Return: 0 on success or negative value on failure. 5326 */ 5327 int 5328 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable, 5329 u32 *freq) 5330 { 5331 struct ice_aqc_set_phy_rec_clk_out *cmd; 5332 struct ice_aq_desc desc; 5333 int status; 5334 5335 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out); 5336 cmd = &desc.params.set_phy_rec_clk_out; 5337 cmd->phy_output = phy_output; 5338 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT; 5339 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN; 5340 cmd->freq = cpu_to_le32(*freq); 5341 5342 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5343 if (!status) 5344 *freq = le32_to_cpu(cmd->freq); 5345 5346 return status; 5347 } 5348 5349 /** 5350 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info 5351 * @hw: pointer to the HW struct 5352 * @phy_output: PHY reference clock output pin 5353 * @port_num: Port number 5354 * @flags: PHY flags 5355 * @node_handle: PHY output frequency 5356 * 5357 * Get PHY recovered clock output info (0x0631) 5358 * Return: 0 on success or negative value on failure. 5359 */ 5360 int 5361 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num, 5362 u8 *flags, u16 *node_handle) 5363 { 5364 struct ice_aqc_get_phy_rec_clk_out *cmd; 5365 struct ice_aq_desc desc; 5366 int status; 5367 5368 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out); 5369 cmd = &desc.params.get_phy_rec_clk_out; 5370 cmd->phy_output = *phy_output; 5371 5372 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5373 if (!status) { 5374 *phy_output = cmd->phy_output; 5375 if (port_num) 5376 *port_num = cmd->port_num; 5377 if (flags) 5378 *flags = cmd->flags; 5379 if (node_handle) 5380 *node_handle = le16_to_cpu(cmd->node_handle); 5381 } 5382 5383 return status; 5384 } 5385 5386 /** 5387 * ice_aq_get_sensor_reading 5388 * @hw: pointer to the HW struct 5389 * @data: pointer to data to be read from the sensor 5390 * 5391 * Get sensor reading (0x0632) 5392 */ 5393 int ice_aq_get_sensor_reading(struct ice_hw *hw, 5394 struct ice_aqc_get_sensor_reading_resp *data) 5395 { 5396 struct ice_aqc_get_sensor_reading *cmd; 5397 struct ice_aq_desc desc; 5398 int status; 5399 5400 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading); 5401 cmd = &desc.params.get_sensor_reading; 5402 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0 5403 #define ICE_INTERNAL_TEMP_SENSOR 0 5404 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR; 5405 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT; 5406 5407 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5408 if (!status) 5409 memcpy(data, &desc.params.get_sensor_reading_resp, 5410 sizeof(*data)); 5411 5412 return status; 5413 } 5414 5415 /** 5416 * ice_replay_pre_init - replay pre initialization 5417 * @hw: pointer to the HW struct 5418 * 5419 * Initializes required config data for VSI, FD, ACL, and RSS before replay. 5420 */ 5421 static int ice_replay_pre_init(struct ice_hw *hw) 5422 { 5423 struct ice_switch_info *sw = hw->switch_info; 5424 u8 i; 5425 5426 /* Delete old entries from replay filter list head if there is any */ 5427 ice_rm_all_sw_replay_rule_info(hw); 5428 /* In start of replay, move entries into replay_rules list, it 5429 * will allow adding rules entries back to filt_rules list, 5430 * which is operational list. 5431 */ 5432 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 5433 list_replace_init(&sw->recp_list[i].filt_rules, 5434 &sw->recp_list[i].filt_replay_rules); 5435 ice_sched_replay_agg_vsi_preinit(hw); 5436 5437 return 0; 5438 } 5439 5440 /** 5441 * ice_replay_vsi - replay VSI configuration 5442 * @hw: pointer to the HW struct 5443 * @vsi_handle: driver VSI handle 5444 * 5445 * Restore all VSI configuration after reset. It is required to call this 5446 * function with main VSI first. 5447 */ 5448 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) 5449 { 5450 int status; 5451 5452 if (!ice_is_vsi_valid(hw, vsi_handle)) 5453 return -EINVAL; 5454 5455 /* Replay pre-initialization if there is any */ 5456 if (vsi_handle == ICE_MAIN_VSI_HANDLE) { 5457 status = ice_replay_pre_init(hw); 5458 if (status) 5459 return status; 5460 } 5461 /* Replay per VSI all RSS configurations */ 5462 status = ice_replay_rss_cfg(hw, vsi_handle); 5463 if (status) 5464 return status; 5465 /* Replay per VSI all filters */ 5466 status = ice_replay_vsi_all_fltr(hw, vsi_handle); 5467 if (!status) 5468 status = ice_replay_vsi_agg(hw, vsi_handle); 5469 return status; 5470 } 5471 5472 /** 5473 * ice_replay_post - post replay configuration cleanup 5474 * @hw: pointer to the HW struct 5475 * 5476 * Post replay cleanup. 5477 */ 5478 void ice_replay_post(struct ice_hw *hw) 5479 { 5480 /* Delete old entries from replay filter list head */ 5481 ice_rm_all_sw_replay_rule_info(hw); 5482 ice_sched_replay_agg(hw); 5483 } 5484 5485 /** 5486 * ice_stat_update40 - read 40 bit stat from the chip and update stat values 5487 * @hw: ptr to the hardware info 5488 * @reg: offset of 64 bit HW register to read from 5489 * @prev_stat_loaded: bool to specify if previous stats are loaded 5490 * @prev_stat: ptr to previous loaded stat value 5491 * @cur_stat: ptr to current stat value 5492 */ 5493 void 5494 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 5495 u64 *prev_stat, u64 *cur_stat) 5496 { 5497 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1); 5498 5499 /* device stats are not reset at PFR, they likely will not be zeroed 5500 * when the driver starts. Thus, save the value from the first read 5501 * without adding to the statistic value so that we report stats which 5502 * count up from zero. 5503 */ 5504 if (!prev_stat_loaded) { 5505 *prev_stat = new_data; 5506 return; 5507 } 5508 5509 /* Calculate the difference between the new and old values, and then 5510 * add it to the software stat value. 5511 */ 5512 if (new_data >= *prev_stat) 5513 *cur_stat += new_data - *prev_stat; 5514 else 5515 /* to manage the potential roll-over */ 5516 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat; 5517 5518 /* Update the previously stored value to prepare for next read */ 5519 *prev_stat = new_data; 5520 } 5521 5522 /** 5523 * ice_stat_update32 - read 32 bit stat from the chip and update stat values 5524 * @hw: ptr to the hardware info 5525 * @reg: offset of HW register to read from 5526 * @prev_stat_loaded: bool to specify if previous stats are loaded 5527 * @prev_stat: ptr to previous loaded stat value 5528 * @cur_stat: ptr to current stat value 5529 */ 5530 void 5531 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 5532 u64 *prev_stat, u64 *cur_stat) 5533 { 5534 u32 new_data; 5535 5536 new_data = rd32(hw, reg); 5537 5538 /* device stats are not reset at PFR, they likely will not be zeroed 5539 * when the driver starts. Thus, save the value from the first read 5540 * without adding to the statistic value so that we report stats which 5541 * count up from zero. 5542 */ 5543 if (!prev_stat_loaded) { 5544 *prev_stat = new_data; 5545 return; 5546 } 5547 5548 /* Calculate the difference between the new and old values, and then 5549 * add it to the software stat value. 5550 */ 5551 if (new_data >= *prev_stat) 5552 *cur_stat += new_data - *prev_stat; 5553 else 5554 /* to manage the potential roll-over */ 5555 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat; 5556 5557 /* Update the previously stored value to prepare for next read */ 5558 *prev_stat = new_data; 5559 } 5560 5561 /** 5562 * ice_sched_query_elem - query element information from HW 5563 * @hw: pointer to the HW struct 5564 * @node_teid: node TEID to be queried 5565 * @buf: buffer to element information 5566 * 5567 * This function queries HW element information 5568 */ 5569 int 5570 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, 5571 struct ice_aqc_txsched_elem_data *buf) 5572 { 5573 u16 buf_size, num_elem_ret = 0; 5574 int status; 5575 5576 buf_size = sizeof(*buf); 5577 memset(buf, 0, buf_size); 5578 buf->node_teid = cpu_to_le32(node_teid); 5579 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, 5580 NULL); 5581 if (status || num_elem_ret != 1) 5582 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); 5583 return status; 5584 } 5585 5586 /** 5587 * ice_aq_read_i2c 5588 * @hw: pointer to the hw struct 5589 * @topo_addr: topology address for a device to communicate with 5590 * @bus_addr: 7-bit I2C bus address 5591 * @addr: I2C memory address (I2C offset) with up to 16 bits 5592 * @params: I2C parameters: bit [7] - Repeated start, 5593 * bits [6:5] data offset size, 5594 * bit [4] - I2C address type, 5595 * bits [3:0] - data size to read (0-16 bytes) 5596 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device 5597 * @cd: pointer to command details structure or NULL 5598 * 5599 * Read I2C (0x06E2) 5600 */ 5601 int 5602 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr, 5603 u16 bus_addr, __le16 addr, u8 params, u8 *data, 5604 struct ice_sq_cd *cd) 5605 { 5606 struct ice_aq_desc desc = { 0 }; 5607 struct ice_aqc_i2c *cmd; 5608 u8 data_size; 5609 int status; 5610 5611 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c); 5612 cmd = &desc.params.read_write_i2c; 5613 5614 if (!data) 5615 return -EINVAL; 5616 5617 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params); 5618 5619 cmd->i2c_bus_addr = cpu_to_le16(bus_addr); 5620 cmd->topo_addr = topo_addr; 5621 cmd->i2c_params = params; 5622 cmd->i2c_addr = addr; 5623 5624 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5625 if (!status) { 5626 struct ice_aqc_read_i2c_resp *resp; 5627 u8 i; 5628 5629 resp = &desc.params.read_i2c_resp; 5630 for (i = 0; i < data_size; i++) { 5631 *data = resp->i2c_data[i]; 5632 data++; 5633 } 5634 } 5635 5636 return status; 5637 } 5638 5639 /** 5640 * ice_aq_write_i2c 5641 * @hw: pointer to the hw struct 5642 * @topo_addr: topology address for a device to communicate with 5643 * @bus_addr: 7-bit I2C bus address 5644 * @addr: I2C memory address (I2C offset) with up to 16 bits 5645 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes) 5646 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device 5647 * @cd: pointer to command details structure or NULL 5648 * 5649 * Write I2C (0x06E3) 5650 * 5651 * * Return: 5652 * * 0 - Successful write to the i2c device 5653 * * -EINVAL - Data size greater than 4 bytes 5654 * * -EIO - FW error 5655 */ 5656 int 5657 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr, 5658 u16 bus_addr, __le16 addr, u8 params, const u8 *data, 5659 struct ice_sq_cd *cd) 5660 { 5661 struct ice_aq_desc desc = { 0 }; 5662 struct ice_aqc_i2c *cmd; 5663 u8 data_size; 5664 5665 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c); 5666 cmd = &desc.params.read_write_i2c; 5667 5668 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params); 5669 5670 /* data_size limited to 4 */ 5671 if (data_size > 4) 5672 return -EINVAL; 5673 5674 cmd->i2c_bus_addr = cpu_to_le16(bus_addr); 5675 cmd->topo_addr = topo_addr; 5676 cmd->i2c_params = params; 5677 cmd->i2c_addr = addr; 5678 5679 memcpy(cmd->i2c_data, data, data_size); 5680 5681 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5682 } 5683 5684 /** 5685 * ice_get_pca9575_handle - find and return the PCA9575 controller 5686 * @hw: pointer to the hw struct 5687 * @pca9575_handle: GPIO controller's handle 5688 * 5689 * Find and return the GPIO controller's handle in the netlist. 5690 * When found - the value will be cached in the hw structure and following calls 5691 * will return cached value. 5692 * 5693 * Return: 0 on success, -ENXIO when there's no PCA9575 present. 5694 */ 5695 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle) 5696 { 5697 struct ice_aqc_get_link_topo *cmd; 5698 struct ice_aq_desc desc; 5699 int err; 5700 u8 idx; 5701 5702 /* If handle was read previously return cached value */ 5703 if (hw->io_expander_handle) { 5704 *pca9575_handle = hw->io_expander_handle; 5705 return 0; 5706 } 5707 5708 #define SW_PCA9575_SFP_TOPO_IDX 2 5709 #define SW_PCA9575_QSFP_TOPO_IDX 1 5710 5711 /* Check if the SW IO expander controlling SMA exists in the netlist. */ 5712 if (hw->device_id == ICE_DEV_ID_E810C_SFP) 5713 idx = SW_PCA9575_SFP_TOPO_IDX; 5714 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP) 5715 idx = SW_PCA9575_QSFP_TOPO_IDX; 5716 else 5717 return -ENXIO; 5718 5719 /* If handle was not detected read it from the netlist */ 5720 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 5721 cmd = &desc.params.get_link_topo; 5722 cmd->addr.topo_params.node_type_ctx = 5723 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL; 5724 cmd->addr.topo_params.index = idx; 5725 5726 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5727 if (err) 5728 return -ENXIO; 5729 5730 /* Verify if we found the right IO expander type */ 5731 if (desc.params.get_link_topo.node_part_num != 5732 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575) 5733 return -ENXIO; 5734 5735 /* If present save the handle and return it */ 5736 hw->io_expander_handle = 5737 le16_to_cpu(desc.params.get_link_topo.addr.handle); 5738 *pca9575_handle = hw->io_expander_handle; 5739 5740 return 0; 5741 } 5742 5743 /** 5744 * ice_read_pca9575_reg - read the register from the PCA9575 controller 5745 * @hw: pointer to the hw struct 5746 * @offset: GPIO controller register offset 5747 * @data: pointer to data to be read from the GPIO controller 5748 * 5749 * Return: 0 on success, negative error code otherwise. 5750 */ 5751 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data) 5752 { 5753 struct ice_aqc_link_topo_addr link_topo; 5754 __le16 addr; 5755 u16 handle; 5756 int err; 5757 5758 memset(&link_topo, 0, sizeof(link_topo)); 5759 5760 err = ice_get_pca9575_handle(hw, &handle); 5761 if (err) 5762 return err; 5763 5764 link_topo.handle = cpu_to_le16(handle); 5765 link_topo.topo_params.node_type_ctx = 5766 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, 5767 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED); 5768 5769 addr = cpu_to_le16((u16)offset); 5770 5771 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL); 5772 } 5773 5774 /** 5775 * ice_aq_set_gpio 5776 * @hw: pointer to the hw struct 5777 * @gpio_ctrl_handle: GPIO controller node handle 5778 * @pin_idx: IO Number of the GPIO that needs to be set 5779 * @value: SW provide IO value to set in the LSB 5780 * @cd: pointer to command details structure or NULL 5781 * 5782 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology 5783 */ 5784 int 5785 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value, 5786 struct ice_sq_cd *cd) 5787 { 5788 struct ice_aqc_gpio *cmd; 5789 struct ice_aq_desc desc; 5790 5791 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio); 5792 cmd = &desc.params.read_write_gpio; 5793 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 5794 cmd->gpio_num = pin_idx; 5795 cmd->gpio_val = value ? 1 : 0; 5796 5797 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5798 } 5799 5800 /** 5801 * ice_aq_get_gpio 5802 * @hw: pointer to the hw struct 5803 * @gpio_ctrl_handle: GPIO controller node handle 5804 * @pin_idx: IO Number of the GPIO that needs to be set 5805 * @value: IO value read 5806 * @cd: pointer to command details structure or NULL 5807 * 5808 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of 5809 * the topology 5810 */ 5811 int 5812 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, 5813 bool *value, struct ice_sq_cd *cd) 5814 { 5815 struct ice_aqc_gpio *cmd; 5816 struct ice_aq_desc desc; 5817 int status; 5818 5819 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio); 5820 cmd = &desc.params.read_write_gpio; 5821 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 5822 cmd->gpio_num = pin_idx; 5823 5824 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 5825 if (status) 5826 return status; 5827 5828 *value = !!cmd->gpio_val; 5829 return 0; 5830 } 5831 5832 /** 5833 * ice_is_fw_api_min_ver 5834 * @hw: pointer to the hardware structure 5835 * @maj: major version 5836 * @min: minor version 5837 * @patch: patch version 5838 * 5839 * Checks if the firmware API is minimum version 5840 */ 5841 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch) 5842 { 5843 if (hw->api_maj_ver == maj) { 5844 if (hw->api_min_ver > min) 5845 return true; 5846 if (hw->api_min_ver == min && hw->api_patch >= patch) 5847 return true; 5848 } else if (hw->api_maj_ver > maj) { 5849 return true; 5850 } 5851 5852 return false; 5853 } 5854 5855 /** 5856 * ice_fw_supports_link_override 5857 * @hw: pointer to the hardware structure 5858 * 5859 * Checks if the firmware supports link override 5860 */ 5861 bool ice_fw_supports_link_override(struct ice_hw *hw) 5862 { 5863 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ, 5864 ICE_FW_API_LINK_OVERRIDE_MIN, 5865 ICE_FW_API_LINK_OVERRIDE_PATCH); 5866 } 5867 5868 /** 5869 * ice_get_link_default_override 5870 * @ldo: pointer to the link default override struct 5871 * @pi: pointer to the port info struct 5872 * 5873 * Gets the link default override for a port 5874 */ 5875 int 5876 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo, 5877 struct ice_port_info *pi) 5878 { 5879 u16 i, tlv, tlv_len, tlv_start, buf, offset; 5880 struct ice_hw *hw = pi->hw; 5881 int status; 5882 5883 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len, 5884 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR); 5885 if (status) { 5886 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n"); 5887 return status; 5888 } 5889 5890 /* Each port has its own config; calculate for our port */ 5891 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS + 5892 ICE_SR_PFA_LINK_OVERRIDE_OFFSET; 5893 5894 /* link options first */ 5895 status = ice_read_sr_word(hw, tlv_start, &buf); 5896 if (status) { 5897 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5898 return status; 5899 } 5900 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf); 5901 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >> 5902 ICE_LINK_OVERRIDE_PHY_CFG_S; 5903 5904 /* link PHY config */ 5905 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET; 5906 status = ice_read_sr_word(hw, offset, &buf); 5907 if (status) { 5908 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n"); 5909 return status; 5910 } 5911 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M; 5912 5913 /* PHY types low */ 5914 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET; 5915 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5916 status = ice_read_sr_word(hw, (offset + i), &buf); 5917 if (status) { 5918 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5919 return status; 5920 } 5921 /* shift 16 bits at a time to fill 64 bits */ 5922 ldo->phy_type_low |= ((u64)buf << (i * 16)); 5923 } 5924 5925 /* PHY types high */ 5926 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET + 5927 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; 5928 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5929 status = ice_read_sr_word(hw, (offset + i), &buf); 5930 if (status) { 5931 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5932 return status; 5933 } 5934 /* shift 16 bits at a time to fill 64 bits */ 5935 ldo->phy_type_high |= ((u64)buf << (i * 16)); 5936 } 5937 5938 return status; 5939 } 5940 5941 /** 5942 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled 5943 * @caps: get PHY capability data 5944 */ 5945 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps) 5946 { 5947 if (caps->caps & ICE_AQC_PHY_AN_MODE || 5948 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 | 5949 ICE_AQC_PHY_AN_EN_CLAUSE73 | 5950 ICE_AQC_PHY_AN_EN_CLAUSE37)) 5951 return true; 5952 5953 return false; 5954 } 5955 5956 /** 5957 * ice_is_fw_health_report_supported - checks if firmware supports health events 5958 * @hw: pointer to the hardware structure 5959 * 5960 * Return: true if firmware supports health status reports, 5961 * false otherwise 5962 */ 5963 bool ice_is_fw_health_report_supported(struct ice_hw *hw) 5964 { 5965 return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ, 5966 ICE_FW_API_HEALTH_REPORT_MIN, 5967 ICE_FW_API_HEALTH_REPORT_PATCH); 5968 } 5969 5970 /** 5971 * ice_aq_set_health_status_cfg - Configure FW health events 5972 * @hw: pointer to the HW struct 5973 * @event_source: type of diagnostic events to enable 5974 * 5975 * Configure the health status event types that the firmware will send to this 5976 * PF. The supported event types are: PF-specific, all PFs, and global. 5977 * 5978 * Return: 0 on success, negative error code otherwise. 5979 */ 5980 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source) 5981 { 5982 struct ice_aqc_set_health_status_cfg *cmd; 5983 struct ice_aq_desc desc; 5984 5985 cmd = &desc.params.set_health_status_cfg; 5986 5987 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg); 5988 5989 cmd->event_source = event_source; 5990 5991 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5992 } 5993 5994 /** 5995 * ice_aq_set_lldp_mib - Set the LLDP MIB 5996 * @hw: pointer to the HW struct 5997 * @mib_type: Local, Remote or both Local and Remote MIBs 5998 * @buf: pointer to the caller-supplied buffer to store the MIB block 5999 * @buf_size: size of the buffer (in bytes) 6000 * @cd: pointer to command details structure or NULL 6001 * 6002 * Set the LLDP MIB. (0x0A08) 6003 */ 6004 int 6005 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size, 6006 struct ice_sq_cd *cd) 6007 { 6008 struct ice_aqc_lldp_set_local_mib *cmd; 6009 struct ice_aq_desc desc; 6010 6011 cmd = &desc.params.lldp_set_mib; 6012 6013 if (buf_size == 0 || !buf) 6014 return -EINVAL; 6015 6016 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib); 6017 6018 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD); 6019 desc.datalen = cpu_to_le16(buf_size); 6020 6021 cmd->type = mib_type; 6022 cmd->length = cpu_to_le16(buf_size); 6023 6024 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 6025 } 6026 6027 /** 6028 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl 6029 * @hw: pointer to HW struct 6030 */ 6031 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw) 6032 { 6033 if (hw->mac_type != ICE_MAC_E810) 6034 return false; 6035 6036 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ, 6037 ICE_FW_API_LLDP_FLTR_MIN, 6038 ICE_FW_API_LLDP_FLTR_PATCH); 6039 } 6040 6041 /** 6042 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter 6043 * @hw: pointer to HW struct 6044 * @vsi: VSI to add the filter to 6045 * @add: boolean for if adding or removing a filter 6046 * 6047 * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed 6048 * with this HW or VSI, otherwise an error corresponding to 6049 * the AQ transaction result. 6050 */ 6051 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add) 6052 { 6053 struct ice_aqc_lldp_filter_ctrl *cmd; 6054 struct ice_aq_desc desc; 6055 6056 if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw)) 6057 return -EOPNOTSUPP; 6058 6059 cmd = &desc.params.lldp_filter_ctrl; 6060 6061 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl); 6062 6063 if (add) 6064 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD; 6065 else 6066 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE; 6067 6068 cmd->vsi_num = cpu_to_le16(vsi->vsi_num); 6069 6070 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 6071 } 6072 6073 /** 6074 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request 6075 * @hw: pointer to HW struct 6076 */ 6077 int ice_lldp_execute_pending_mib(struct ice_hw *hw) 6078 { 6079 struct ice_aq_desc desc; 6080 6081 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib); 6082 6083 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 6084 } 6085 6086 /** 6087 * ice_fw_supports_report_dflt_cfg 6088 * @hw: pointer to the hardware structure 6089 * 6090 * Checks if the firmware supports report default configuration 6091 */ 6092 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw) 6093 { 6094 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ, 6095 ICE_FW_API_REPORT_DFLT_CFG_MIN, 6096 ICE_FW_API_REPORT_DFLT_CFG_PATCH); 6097 } 6098 6099 /* each of the indexes into the following array match the speed of a return 6100 * value from the list of AQ returned speeds like the range: 6101 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding 6102 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this 6103 * array. The array is defined as 15 elements long because the link_speed 6104 * returned by the firmware is a 16 bit * value, but is indexed 6105 * by [fls(speed) - 1] 6106 */ 6107 static const u32 ice_aq_to_link_speed[] = { 6108 SPEED_10, /* BIT(0) */ 6109 SPEED_100, 6110 SPEED_1000, 6111 SPEED_2500, 6112 SPEED_5000, 6113 SPEED_10000, 6114 SPEED_20000, 6115 SPEED_25000, 6116 SPEED_40000, 6117 SPEED_50000, 6118 SPEED_100000, /* BIT(10) */ 6119 SPEED_200000, 6120 }; 6121 6122 /** 6123 * ice_get_link_speed - get integer speed from table 6124 * @index: array index from fls(aq speed) - 1 6125 * 6126 * Returns: u32 value containing integer speed 6127 */ 6128 u32 ice_get_link_speed(u16 index) 6129 { 6130 if (index >= ARRAY_SIZE(ice_aq_to_link_speed)) 6131 return 0; 6132 6133 return ice_aq_to_link_speed[index]; 6134 } 6135 6136 /** 6137 * ice_read_cgu_reg - Read a CGU register 6138 * @hw: Pointer to the HW struct 6139 * @addr: Register address to read 6140 * @val: Storage for register value read 6141 * 6142 * Read the contents of a register of the Clock Generation Unit. Only 6143 * applicable to E82X devices. 6144 * 6145 * Return: 0 on success, other error codes when failed to read from CGU. 6146 */ 6147 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val) 6148 { 6149 struct ice_sbq_msg_input cgu_msg = { 6150 .opcode = ice_sbq_msg_rd, 6151 .dest_dev = ice_sbq_dev_cgu, 6152 .msg_addr_low = addr 6153 }; 6154 int err; 6155 6156 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD); 6157 if (err) { 6158 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n", 6159 addr, err); 6160 return err; 6161 } 6162 6163 *val = cgu_msg.data; 6164 6165 return 0; 6166 } 6167 6168 /** 6169 * ice_write_cgu_reg - Write a CGU register 6170 * @hw: Pointer to the HW struct 6171 * @addr: Register address to write 6172 * @val: Value to write into the register 6173 * 6174 * Write the specified value to a register of the Clock Generation Unit. Only 6175 * applicable to E82X devices. 6176 * 6177 * Return: 0 on success, other error codes when failed to write to CGU. 6178 */ 6179 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val) 6180 { 6181 struct ice_sbq_msg_input cgu_msg = { 6182 .opcode = ice_sbq_msg_wr, 6183 .dest_dev = ice_sbq_dev_cgu, 6184 .msg_addr_low = addr, 6185 .data = val 6186 }; 6187 int err; 6188 6189 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD); 6190 if (err) 6191 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n", 6192 addr, err); 6193 6194 return err; 6195 } 6196