xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	case ICE_DEV_ID_E825C_BACKPLANE:
158 	case ICE_DEV_ID_E825C_QSFP:
159 	case ICE_DEV_ID_E825C_SFP:
160 	case ICE_DEV_ID_E825C_SGMII:
161 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 		break;
163 	case ICE_DEV_ID_E830CC_BACKPLANE:
164 	case ICE_DEV_ID_E830CC_QSFP56:
165 	case ICE_DEV_ID_E830CC_SFP:
166 	case ICE_DEV_ID_E830CC_SFP_DD:
167 	case ICE_DEV_ID_E830C_BACKPLANE:
168 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
169 	case ICE_DEV_ID_E830C_QSFP:
170 	case ICE_DEV_ID_E830_XXV_QSFP:
171 	case ICE_DEV_ID_E830C_SFP:
172 	case ICE_DEV_ID_E830_XXV_SFP:
173 		hw->mac_type = ICE_MAC_E830;
174 		break;
175 	default:
176 		hw->mac_type = ICE_MAC_UNKNOWN;
177 		break;
178 	}
179 
180 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
181 	return 0;
182 }
183 
184 /**
185  * ice_is_generic_mac - check if device's mac_type is generic
186  * @hw: pointer to the hardware structure
187  *
188  * Return: true if mac_type is generic (with SBQ support), false if not
189  */
190 bool ice_is_generic_mac(struct ice_hw *hw)
191 {
192 	return (hw->mac_type == ICE_MAC_GENERIC ||
193 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
194 }
195 
196 /**
197  * ice_is_e810
198  * @hw: pointer to the hardware structure
199  *
200  * returns true if the device is E810 based, false if not.
201  */
202 bool ice_is_e810(struct ice_hw *hw)
203 {
204 	return hw->mac_type == ICE_MAC_E810;
205 }
206 
207 /**
208  * ice_is_e810t
209  * @hw: pointer to the hardware structure
210  *
211  * returns true if the device is E810T based, false if not.
212  */
213 bool ice_is_e810t(struct ice_hw *hw)
214 {
215 	switch (hw->device_id) {
216 	case ICE_DEV_ID_E810C_SFP:
217 		switch (hw->subsystem_device_id) {
218 		case ICE_SUBDEV_ID_E810T:
219 		case ICE_SUBDEV_ID_E810T2:
220 		case ICE_SUBDEV_ID_E810T3:
221 		case ICE_SUBDEV_ID_E810T4:
222 		case ICE_SUBDEV_ID_E810T6:
223 		case ICE_SUBDEV_ID_E810T7:
224 			return true;
225 		}
226 		break;
227 	case ICE_DEV_ID_E810C_QSFP:
228 		switch (hw->subsystem_device_id) {
229 		case ICE_SUBDEV_ID_E810T2:
230 		case ICE_SUBDEV_ID_E810T3:
231 		case ICE_SUBDEV_ID_E810T5:
232 			return true;
233 		}
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	return false;
240 }
241 
242 /**
243  * ice_is_e822 - Check if a device is E822 family device
244  * @hw: pointer to the hardware structure
245  *
246  * Return: true if the device is E822 based, false if not.
247  */
248 bool ice_is_e822(struct ice_hw *hw)
249 {
250 	switch (hw->device_id) {
251 	case ICE_DEV_ID_E822C_BACKPLANE:
252 	case ICE_DEV_ID_E822C_QSFP:
253 	case ICE_DEV_ID_E822C_SFP:
254 	case ICE_DEV_ID_E822C_10G_BASE_T:
255 	case ICE_DEV_ID_E822C_SGMII:
256 	case ICE_DEV_ID_E822L_BACKPLANE:
257 	case ICE_DEV_ID_E822L_SFP:
258 	case ICE_DEV_ID_E822L_10G_BASE_T:
259 	case ICE_DEV_ID_E822L_SGMII:
260 		return true;
261 	default:
262 		return false;
263 	}
264 }
265 
266 /**
267  * ice_is_e823
268  * @hw: pointer to the hardware structure
269  *
270  * returns true if the device is E823-L or E823-C based, false if not.
271  */
272 bool ice_is_e823(struct ice_hw *hw)
273 {
274 	switch (hw->device_id) {
275 	case ICE_DEV_ID_E823L_BACKPLANE:
276 	case ICE_DEV_ID_E823L_SFP:
277 	case ICE_DEV_ID_E823L_10G_BASE_T:
278 	case ICE_DEV_ID_E823L_1GBE:
279 	case ICE_DEV_ID_E823L_QSFP:
280 	case ICE_DEV_ID_E823C_BACKPLANE:
281 	case ICE_DEV_ID_E823C_QSFP:
282 	case ICE_DEV_ID_E823C_SFP:
283 	case ICE_DEV_ID_E823C_10G_BASE_T:
284 	case ICE_DEV_ID_E823C_SGMII:
285 		return true;
286 	default:
287 		return false;
288 	}
289 }
290 
291 /**
292  * ice_is_e825c - Check if a device is E825C family device
293  * @hw: pointer to the hardware structure
294  *
295  * Return: true if the device is E825-C based, false if not.
296  */
297 bool ice_is_e825c(struct ice_hw *hw)
298 {
299 	switch (hw->device_id) {
300 	case ICE_DEV_ID_E825C_BACKPLANE:
301 	case ICE_DEV_ID_E825C_QSFP:
302 	case ICE_DEV_ID_E825C_SFP:
303 	case ICE_DEV_ID_E825C_SGMII:
304 		return true;
305 	default:
306 		return false;
307 	}
308 }
309 
310 /**
311  * ice_clear_pf_cfg - Clear PF configuration
312  * @hw: pointer to the hardware structure
313  *
314  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
315  * configuration, flow director filters, etc.).
316  */
317 int ice_clear_pf_cfg(struct ice_hw *hw)
318 {
319 	struct ice_aq_desc desc;
320 
321 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
322 
323 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
324 }
325 
326 /**
327  * ice_aq_manage_mac_read - manage MAC address read command
328  * @hw: pointer to the HW struct
329  * @buf: a virtual buffer to hold the manage MAC read response
330  * @buf_size: Size of the virtual buffer
331  * @cd: pointer to command details structure or NULL
332  *
333  * This function is used to return per PF station MAC address (0x0107).
334  * NOTE: Upon successful completion of this command, MAC address information
335  * is returned in user specified buffer. Please interpret user specified
336  * buffer as "manage_mac_read" response.
337  * Response such as various MAC addresses are stored in HW struct (port.mac)
338  * ice_discover_dev_caps is expected to be called before this function is
339  * called.
340  */
341 static int
342 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
343 		       struct ice_sq_cd *cd)
344 {
345 	struct ice_aqc_manage_mac_read_resp *resp;
346 	struct ice_aqc_manage_mac_read *cmd;
347 	struct ice_aq_desc desc;
348 	int status;
349 	u16 flags;
350 	u8 i;
351 
352 	cmd = &desc.params.mac_read;
353 
354 	if (buf_size < sizeof(*resp))
355 		return -EINVAL;
356 
357 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
358 
359 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
360 	if (status)
361 		return status;
362 
363 	resp = buf;
364 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
365 
366 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
367 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
368 		return -EIO;
369 	}
370 
371 	/* A single port can report up to two (LAN and WoL) addresses */
372 	for (i = 0; i < cmd->num_addr; i++)
373 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
374 			ether_addr_copy(hw->port_info->mac.lan_addr,
375 					resp[i].mac_addr);
376 			ether_addr_copy(hw->port_info->mac.perm_addr,
377 					resp[i].mac_addr);
378 			break;
379 		}
380 
381 	return 0;
382 }
383 
384 /**
385  * ice_aq_get_phy_caps - returns PHY capabilities
386  * @pi: port information structure
387  * @qual_mods: report qualified modules
388  * @report_mode: report mode capabilities
389  * @pcaps: structure for PHY capabilities to be filled
390  * @cd: pointer to command details structure or NULL
391  *
392  * Returns the various PHY capabilities supported on the Port (0x0600)
393  */
394 int
395 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
396 		    struct ice_aqc_get_phy_caps_data *pcaps,
397 		    struct ice_sq_cd *cd)
398 {
399 	struct ice_aqc_get_phy_caps *cmd;
400 	u16 pcaps_size = sizeof(*pcaps);
401 	struct ice_aq_desc desc;
402 	const char *prefix;
403 	struct ice_hw *hw;
404 	int status;
405 
406 	cmd = &desc.params.get_phy;
407 
408 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
409 		return -EINVAL;
410 	hw = pi->hw;
411 
412 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
413 	    !ice_fw_supports_report_dflt_cfg(hw))
414 		return -EINVAL;
415 
416 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
417 
418 	if (qual_mods)
419 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
420 
421 	cmd->param0 |= cpu_to_le16(report_mode);
422 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
423 
424 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
425 
426 	switch (report_mode) {
427 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
428 		prefix = "phy_caps_media";
429 		break;
430 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
431 		prefix = "phy_caps_no_media";
432 		break;
433 	case ICE_AQC_REPORT_ACTIVE_CFG:
434 		prefix = "phy_caps_active";
435 		break;
436 	case ICE_AQC_REPORT_DFLT_CFG:
437 		prefix = "phy_caps_default";
438 		break;
439 	default:
440 		prefix = "phy_caps_invalid";
441 	}
442 
443 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
444 			  le64_to_cpu(pcaps->phy_type_high), prefix);
445 
446 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
447 		  prefix, report_mode);
448 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
449 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
450 		  pcaps->low_power_ctrl_an);
451 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
452 		  pcaps->eee_cap);
453 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
454 		  pcaps->eeer_value);
455 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
456 		  pcaps->link_fec_options);
457 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
458 		  prefix, pcaps->module_compliance_enforcement);
459 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
460 		  prefix, pcaps->extended_compliance_code);
461 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
462 		  pcaps->module_type[0]);
463 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
464 		  pcaps->module_type[1]);
465 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
466 		  pcaps->module_type[2]);
467 
468 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
469 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
470 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
471 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
472 		       sizeof(pi->phy.link_info.module_type));
473 	}
474 
475 	return status;
476 }
477 
478 /**
479  * ice_aq_get_link_topo_handle - get link topology node return status
480  * @pi: port information structure
481  * @node_type: requested node type
482  * @cd: pointer to command details structure or NULL
483  *
484  * Get link topology node return status for specified node type (0x06E0)
485  *
486  * Node type cage can be used to determine if cage is present. If AQC
487  * returns error (ENOENT), then no cage present. If no cage present, then
488  * connection type is backplane or BASE-T.
489  */
490 static int
491 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
492 			    struct ice_sq_cd *cd)
493 {
494 	struct ice_aqc_get_link_topo *cmd;
495 	struct ice_aq_desc desc;
496 
497 	cmd = &desc.params.get_link_topo;
498 
499 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
500 
501 	cmd->addr.topo_params.node_type_ctx =
502 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
503 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
504 
505 	/* set node type */
506 	cmd->addr.topo_params.node_type_ctx |=
507 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
508 
509 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
510 }
511 
512 /**
513  * ice_aq_get_netlist_node
514  * @hw: pointer to the hw struct
515  * @cmd: get_link_topo AQ structure
516  * @node_part_number: output node part number if node found
517  * @node_handle: output node handle parameter if node found
518  *
519  * Get netlist node handle.
520  */
521 int
522 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
523 			u8 *node_part_number, u16 *node_handle)
524 {
525 	struct ice_aq_desc desc;
526 
527 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
528 	desc.params.get_link_topo = *cmd;
529 
530 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
531 		return -EINTR;
532 
533 	if (node_handle)
534 		*node_handle =
535 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
536 	if (node_part_number)
537 		*node_part_number = desc.params.get_link_topo.node_part_num;
538 
539 	return 0;
540 }
541 
542 /**
543  * ice_find_netlist_node
544  * @hw: pointer to the hw struct
545  * @node_type: type of netlist node to look for
546  * @ctx: context of the search
547  * @node_part_number: node part number to look for
548  * @node_handle: output parameter if node found - optional
549  *
550  * Scan the netlist for a node handle of the given node type and part number.
551  *
552  * If node_handle is non-NULL it will be modified on function exit. It is only
553  * valid if the function returns zero, and should be ignored on any non-zero
554  * return value.
555  *
556  * Return:
557  * * 0 if the node is found,
558  * * -ENOENT if no handle was found,
559  * * negative error code on failure to access the AQ.
560  */
561 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
562 				 u8 node_part_number, u16 *node_handle)
563 {
564 	u8 idx;
565 
566 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
567 		struct ice_aqc_get_link_topo cmd = {};
568 		u8 rec_node_part_number;
569 		int status;
570 
571 		cmd.addr.topo_params.node_type_ctx =
572 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
573 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
574 		cmd.addr.topo_params.index = idx;
575 
576 		status = ice_aq_get_netlist_node(hw, &cmd,
577 						 &rec_node_part_number,
578 						 node_handle);
579 		if (status)
580 			return status;
581 
582 		if (rec_node_part_number == node_part_number)
583 			return 0;
584 	}
585 
586 	return -ENOENT;
587 }
588 
589 /**
590  * ice_is_media_cage_present
591  * @pi: port information structure
592  *
593  * Returns true if media cage is present, else false. If no cage, then
594  * media type is backplane or BASE-T.
595  */
596 static bool ice_is_media_cage_present(struct ice_port_info *pi)
597 {
598 	/* Node type cage can be used to determine if cage is present. If AQC
599 	 * returns error (ENOENT), then no cage present. If no cage present then
600 	 * connection type is backplane or BASE-T.
601 	 */
602 	return !ice_aq_get_link_topo_handle(pi,
603 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
604 					    NULL);
605 }
606 
607 /**
608  * ice_get_media_type - Gets media type
609  * @pi: port information structure
610  */
611 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
612 {
613 	struct ice_link_status *hw_link_info;
614 
615 	if (!pi)
616 		return ICE_MEDIA_UNKNOWN;
617 
618 	hw_link_info = &pi->phy.link_info;
619 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
620 		/* If more than one media type is selected, report unknown */
621 		return ICE_MEDIA_UNKNOWN;
622 
623 	if (hw_link_info->phy_type_low) {
624 		/* 1G SGMII is a special case where some DA cable PHYs
625 		 * may show this as an option when it really shouldn't
626 		 * be since SGMII is meant to be between a MAC and a PHY
627 		 * in a backplane. Try to detect this case and handle it
628 		 */
629 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
630 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
631 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
632 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
633 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
634 			return ICE_MEDIA_DA;
635 
636 		switch (hw_link_info->phy_type_low) {
637 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
638 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
639 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
640 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
641 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
642 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
643 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
644 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
645 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
646 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
647 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
648 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
649 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
650 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
651 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
652 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
653 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
654 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
655 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
656 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
657 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
658 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
659 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
660 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
661 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
662 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
663 			return ICE_MEDIA_FIBER;
664 		case ICE_PHY_TYPE_LOW_100BASE_TX:
665 		case ICE_PHY_TYPE_LOW_1000BASE_T:
666 		case ICE_PHY_TYPE_LOW_2500BASE_T:
667 		case ICE_PHY_TYPE_LOW_5GBASE_T:
668 		case ICE_PHY_TYPE_LOW_10GBASE_T:
669 		case ICE_PHY_TYPE_LOW_25GBASE_T:
670 			return ICE_MEDIA_BASET;
671 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
672 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
673 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
674 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
675 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
676 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
677 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
678 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
679 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
680 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
681 			return ICE_MEDIA_DA;
682 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
683 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
684 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
685 		case ICE_PHY_TYPE_LOW_50G_AUI2:
686 		case ICE_PHY_TYPE_LOW_50G_AUI1:
687 		case ICE_PHY_TYPE_LOW_100G_AUI4:
688 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
689 			if (ice_is_media_cage_present(pi))
690 				return ICE_MEDIA_DA;
691 			fallthrough;
692 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
693 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
694 		case ICE_PHY_TYPE_LOW_2500BASE_X:
695 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
696 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
697 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
698 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
699 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
700 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
701 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
702 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
703 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
704 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
705 			return ICE_MEDIA_BACKPLANE;
706 		}
707 	} else {
708 		switch (hw_link_info->phy_type_high) {
709 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
710 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
711 			if (ice_is_media_cage_present(pi))
712 				return ICE_MEDIA_DA;
713 			fallthrough;
714 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
715 			return ICE_MEDIA_BACKPLANE;
716 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
717 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
718 			return ICE_MEDIA_FIBER;
719 		}
720 	}
721 	return ICE_MEDIA_UNKNOWN;
722 }
723 
724 /**
725  * ice_get_link_status_datalen
726  * @hw: pointer to the HW struct
727  *
728  * Returns datalength for the Get Link Status AQ command, which is bigger for
729  * newer adapter families handled by ice driver.
730  */
731 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
732 {
733 	switch (hw->mac_type) {
734 	case ICE_MAC_E830:
735 		return ICE_AQC_LS_DATA_SIZE_V2;
736 	case ICE_MAC_E810:
737 	default:
738 		return ICE_AQC_LS_DATA_SIZE_V1;
739 	}
740 }
741 
742 /**
743  * ice_aq_get_link_info
744  * @pi: port information structure
745  * @ena_lse: enable/disable LinkStatusEvent reporting
746  * @link: pointer to link status structure - optional
747  * @cd: pointer to command details structure or NULL
748  *
749  * Get Link Status (0x607). Returns the link status of the adapter.
750  */
751 int
752 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
753 		     struct ice_link_status *link, struct ice_sq_cd *cd)
754 {
755 	struct ice_aqc_get_link_status_data link_data = { 0 };
756 	struct ice_aqc_get_link_status *resp;
757 	struct ice_link_status *li_old, *li;
758 	enum ice_media_type *hw_media_type;
759 	struct ice_fc_info *hw_fc_info;
760 	bool tx_pause, rx_pause;
761 	struct ice_aq_desc desc;
762 	struct ice_hw *hw;
763 	u16 cmd_flags;
764 	int status;
765 
766 	if (!pi)
767 		return -EINVAL;
768 	hw = pi->hw;
769 	li_old = &pi->phy.link_info_old;
770 	hw_media_type = &pi->phy.media_type;
771 	li = &pi->phy.link_info;
772 	hw_fc_info = &pi->fc;
773 
774 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
775 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
776 	resp = &desc.params.get_link_status;
777 	resp->cmd_flags = cpu_to_le16(cmd_flags);
778 	resp->lport_num = pi->lport;
779 
780 	status = ice_aq_send_cmd(hw, &desc, &link_data,
781 				 ice_get_link_status_datalen(hw), cd);
782 	if (status)
783 		return status;
784 
785 	/* save off old link status information */
786 	*li_old = *li;
787 
788 	/* update current link status information */
789 	li->link_speed = le16_to_cpu(link_data.link_speed);
790 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
791 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
792 	*hw_media_type = ice_get_media_type(pi);
793 	li->link_info = link_data.link_info;
794 	li->link_cfg_err = link_data.link_cfg_err;
795 	li->an_info = link_data.an_info;
796 	li->ext_info = link_data.ext_info;
797 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
798 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
799 	li->topo_media_conflict = link_data.topo_media_conflict;
800 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
801 				      ICE_AQ_CFG_PACING_TYPE_M);
802 
803 	/* update fc info */
804 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
805 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
806 	if (tx_pause && rx_pause)
807 		hw_fc_info->current_mode = ICE_FC_FULL;
808 	else if (tx_pause)
809 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
810 	else if (rx_pause)
811 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
812 	else
813 		hw_fc_info->current_mode = ICE_FC_NONE;
814 
815 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
816 
817 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
818 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
819 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
820 		  (unsigned long long)li->phy_type_low);
821 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
822 		  (unsigned long long)li->phy_type_high);
823 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
824 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
825 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
826 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
827 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
828 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
829 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
830 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
831 		  li->max_frame_size);
832 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
833 
834 	/* save link status information */
835 	if (link)
836 		*link = *li;
837 
838 	/* flag cleared so calling functions don't call AQ again */
839 	pi->phy.get_link_info = false;
840 
841 	return 0;
842 }
843 
844 /**
845  * ice_fill_tx_timer_and_fc_thresh
846  * @hw: pointer to the HW struct
847  * @cmd: pointer to MAC cfg structure
848  *
849  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
850  * descriptor
851  */
852 static void
853 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
854 				struct ice_aqc_set_mac_cfg *cmd)
855 {
856 	u32 val, fc_thres_m;
857 
858 	/* We read back the transmit timer and FC threshold value of
859 	 * LFC. Thus, we will use index =
860 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
861 	 *
862 	 * Also, because we are operating on transmit timer and FC
863 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
864 	 */
865 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
866 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
867 
868 	if (hw->mac_type == ICE_MAC_E830) {
869 		/* Retrieve the transmit timer */
870 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
871 		cmd->tx_tmr_value =
872 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
873 
874 		/* Retrieve the fc threshold */
875 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
876 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
877 	} else {
878 		/* Retrieve the transmit timer */
879 		val = rd32(hw,
880 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
881 		cmd->tx_tmr_value =
882 			le16_encode_bits(val,
883 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
884 
885 		/* Retrieve the fc threshold */
886 		val = rd32(hw,
887 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
888 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
889 	}
890 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
891 }
892 
893 /**
894  * ice_aq_set_mac_cfg
895  * @hw: pointer to the HW struct
896  * @max_frame_size: Maximum Frame Size to be supported
897  * @cd: pointer to command details structure or NULL
898  *
899  * Set MAC configuration (0x0603)
900  */
901 int
902 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
903 {
904 	struct ice_aqc_set_mac_cfg *cmd;
905 	struct ice_aq_desc desc;
906 
907 	cmd = &desc.params.set_mac_cfg;
908 
909 	if (max_frame_size == 0)
910 		return -EINVAL;
911 
912 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
913 
914 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
915 
916 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
917 
918 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
919 }
920 
921 /**
922  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
923  * @hw: pointer to the HW struct
924  */
925 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
926 {
927 	struct ice_switch_info *sw;
928 	int status;
929 
930 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
931 				       sizeof(*hw->switch_info), GFP_KERNEL);
932 	sw = hw->switch_info;
933 
934 	if (!sw)
935 		return -ENOMEM;
936 
937 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
938 	sw->prof_res_bm_init = 0;
939 
940 	/* Initialize recipe count with default recipes read from NVM */
941 	sw->recp_cnt = ICE_SW_LKUP_LAST;
942 
943 	status = ice_init_def_sw_recp(hw);
944 	if (status) {
945 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
946 		return status;
947 	}
948 	return 0;
949 }
950 
951 /**
952  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
953  * @hw: pointer to the HW struct
954  */
955 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
956 {
957 	struct ice_switch_info *sw = hw->switch_info;
958 	struct ice_vsi_list_map_info *v_pos_map;
959 	struct ice_vsi_list_map_info *v_tmp_map;
960 	struct ice_sw_recipe *recps;
961 	u8 i;
962 
963 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
964 				 list_entry) {
965 		list_del(&v_pos_map->list_entry);
966 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
967 	}
968 	recps = sw->recp_list;
969 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
970 		recps[i].root_rid = i;
971 
972 		if (recps[i].adv_rule) {
973 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
974 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
975 
976 			mutex_destroy(&recps[i].filt_rule_lock);
977 			list_for_each_entry_safe(lst_itr, tmp_entry,
978 						 &recps[i].filt_rules,
979 						 list_entry) {
980 				list_del(&lst_itr->list_entry);
981 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
982 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
983 			}
984 		} else {
985 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
986 
987 			mutex_destroy(&recps[i].filt_rule_lock);
988 			list_for_each_entry_safe(lst_itr, tmp_entry,
989 						 &recps[i].filt_rules,
990 						 list_entry) {
991 				list_del(&lst_itr->list_entry);
992 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
993 			}
994 		}
995 	}
996 	ice_rm_all_sw_replay_rule_info(hw);
997 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
998 	devm_kfree(ice_hw_to_dev(hw), sw);
999 }
1000 
1001 /**
1002  * ice_get_itr_intrl_gran
1003  * @hw: pointer to the HW struct
1004  *
1005  * Determines the ITR/INTRL granularities based on the maximum aggregate
1006  * bandwidth according to the device's configuration during power-on.
1007  */
1008 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1009 {
1010 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1011 				  rd32(hw, GL_PWR_MODE_CTL));
1012 
1013 	switch (max_agg_bw) {
1014 	case ICE_MAX_AGG_BW_200G:
1015 	case ICE_MAX_AGG_BW_100G:
1016 	case ICE_MAX_AGG_BW_50G:
1017 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1018 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1019 		break;
1020 	case ICE_MAX_AGG_BW_25G:
1021 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1022 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1023 		break;
1024 	}
1025 }
1026 
1027 /**
1028  * ice_init_hw - main hardware initialization routine
1029  * @hw: pointer to the hardware structure
1030  */
1031 int ice_init_hw(struct ice_hw *hw)
1032 {
1033 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1034 	void *mac_buf __free(kfree) = NULL;
1035 	u16 mac_buf_len;
1036 	int status;
1037 
1038 	/* Set MAC type based on DeviceID */
1039 	status = ice_set_mac_type(hw);
1040 	if (status)
1041 		return status;
1042 
1043 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1044 
1045 	status = ice_reset(hw, ICE_RESET_PFR);
1046 	if (status)
1047 		return status;
1048 
1049 	ice_get_itr_intrl_gran(hw);
1050 
1051 	status = ice_create_all_ctrlq(hw);
1052 	if (status)
1053 		goto err_unroll_cqinit;
1054 
1055 	status = ice_fwlog_init(hw);
1056 	if (status)
1057 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1058 			  status);
1059 
1060 	status = ice_clear_pf_cfg(hw);
1061 	if (status)
1062 		goto err_unroll_cqinit;
1063 
1064 	/* Set bit to enable Flow Director filters */
1065 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1066 	INIT_LIST_HEAD(&hw->fdir_list_head);
1067 
1068 	ice_clear_pxe_mode(hw);
1069 
1070 	status = ice_init_nvm(hw);
1071 	if (status)
1072 		goto err_unroll_cqinit;
1073 
1074 	status = ice_get_caps(hw);
1075 	if (status)
1076 		goto err_unroll_cqinit;
1077 
1078 	if (!hw->port_info)
1079 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1080 					     sizeof(*hw->port_info),
1081 					     GFP_KERNEL);
1082 	if (!hw->port_info) {
1083 		status = -ENOMEM;
1084 		goto err_unroll_cqinit;
1085 	}
1086 
1087 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1088 	/* set the back pointer to HW */
1089 	hw->port_info->hw = hw;
1090 
1091 	/* Initialize port_info struct with switch configuration data */
1092 	status = ice_get_initial_sw_cfg(hw);
1093 	if (status)
1094 		goto err_unroll_alloc;
1095 
1096 	hw->evb_veb = true;
1097 
1098 	/* init xarray for identifying scheduling nodes uniquely */
1099 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1100 
1101 	/* Query the allocated resources for Tx scheduler */
1102 	status = ice_sched_query_res_alloc(hw);
1103 	if (status) {
1104 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1105 		goto err_unroll_alloc;
1106 	}
1107 	ice_sched_get_psm_clk_freq(hw);
1108 
1109 	/* Initialize port_info struct with scheduler data */
1110 	status = ice_sched_init_port(hw->port_info);
1111 	if (status)
1112 		goto err_unroll_sched;
1113 
1114 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1115 	if (!pcaps) {
1116 		status = -ENOMEM;
1117 		goto err_unroll_sched;
1118 	}
1119 
1120 	/* Initialize port_info struct with PHY capabilities */
1121 	status = ice_aq_get_phy_caps(hw->port_info, false,
1122 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1123 				     NULL);
1124 	if (status)
1125 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1126 			 status);
1127 
1128 	/* Initialize port_info struct with link information */
1129 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1130 	if (status)
1131 		goto err_unroll_sched;
1132 
1133 	/* need a valid SW entry point to build a Tx tree */
1134 	if (!hw->sw_entry_point_layer) {
1135 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1136 		status = -EIO;
1137 		goto err_unroll_sched;
1138 	}
1139 	INIT_LIST_HEAD(&hw->agg_list);
1140 	/* Initialize max burst size */
1141 	if (!hw->max_burst_size)
1142 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1143 
1144 	status = ice_init_fltr_mgmt_struct(hw);
1145 	if (status)
1146 		goto err_unroll_sched;
1147 
1148 	/* Get MAC information */
1149 	/* A single port can report up to two (LAN and WoL) addresses */
1150 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1151 			  GFP_KERNEL);
1152 	if (!mac_buf) {
1153 		status = -ENOMEM;
1154 		goto err_unroll_fltr_mgmt_struct;
1155 	}
1156 
1157 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1158 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1159 
1160 	if (status)
1161 		goto err_unroll_fltr_mgmt_struct;
1162 	/* enable jumbo frame support at MAC level */
1163 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1164 	if (status)
1165 		goto err_unroll_fltr_mgmt_struct;
1166 	/* Obtain counter base index which would be used by flow director */
1167 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1168 	if (status)
1169 		goto err_unroll_fltr_mgmt_struct;
1170 	status = ice_init_hw_tbls(hw);
1171 	if (status)
1172 		goto err_unroll_fltr_mgmt_struct;
1173 	mutex_init(&hw->tnl_lock);
1174 	ice_init_chk_recipe_reuse_support(hw);
1175 
1176 	return 0;
1177 
1178 err_unroll_fltr_mgmt_struct:
1179 	ice_cleanup_fltr_mgmt_struct(hw);
1180 err_unroll_sched:
1181 	ice_sched_cleanup_all(hw);
1182 err_unroll_alloc:
1183 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1184 err_unroll_cqinit:
1185 	ice_destroy_all_ctrlq(hw);
1186 	return status;
1187 }
1188 
1189 /**
1190  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1191  * @hw: pointer to the hardware structure
1192  *
1193  * This should be called only during nominal operation, not as a result of
1194  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1195  * applicable initializations if it fails for any reason.
1196  */
1197 void ice_deinit_hw(struct ice_hw *hw)
1198 {
1199 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1200 	ice_cleanup_fltr_mgmt_struct(hw);
1201 
1202 	ice_sched_cleanup_all(hw);
1203 	ice_sched_clear_agg(hw);
1204 	ice_free_seg(hw);
1205 	ice_free_hw_tbls(hw);
1206 	mutex_destroy(&hw->tnl_lock);
1207 
1208 	ice_fwlog_deinit(hw);
1209 	ice_destroy_all_ctrlq(hw);
1210 
1211 	/* Clear VSI contexts if not already cleared */
1212 	ice_clear_all_vsi_ctx(hw);
1213 }
1214 
1215 /**
1216  * ice_check_reset - Check to see if a global reset is complete
1217  * @hw: pointer to the hardware structure
1218  */
1219 int ice_check_reset(struct ice_hw *hw)
1220 {
1221 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1222 
1223 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1224 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1225 	 * Add 1sec for outstanding AQ commands that can take a long time.
1226 	 */
1227 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1228 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1229 
1230 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1231 		mdelay(100);
1232 		reg = rd32(hw, GLGEN_RSTAT);
1233 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1234 			break;
1235 	}
1236 
1237 	if (cnt == grst_timeout) {
1238 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1239 		return -EIO;
1240 	}
1241 
1242 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1243 				 GLNVM_ULD_PCIER_DONE_1_M |\
1244 				 GLNVM_ULD_CORER_DONE_M |\
1245 				 GLNVM_ULD_GLOBR_DONE_M |\
1246 				 GLNVM_ULD_POR_DONE_M |\
1247 				 GLNVM_ULD_POR_DONE_1_M |\
1248 				 GLNVM_ULD_PCIER_DONE_2_M)
1249 
1250 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1251 					  GLNVM_ULD_PE_DONE_M : 0);
1252 
1253 	/* Device is Active; check Global Reset processes are done */
1254 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1255 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1256 		if (reg == uld_mask) {
1257 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1258 			break;
1259 		}
1260 		mdelay(10);
1261 	}
1262 
1263 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1264 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1265 			  reg);
1266 		return -EIO;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * ice_pf_reset - Reset the PF
1274  * @hw: pointer to the hardware structure
1275  *
1276  * If a global reset has been triggered, this function checks
1277  * for its completion and then issues the PF reset
1278  */
1279 static int ice_pf_reset(struct ice_hw *hw)
1280 {
1281 	u32 cnt, reg;
1282 
1283 	/* If at function entry a global reset was already in progress, i.e.
1284 	 * state is not 'device active' or any of the reset done bits are not
1285 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1286 	 * global reset is done.
1287 	 */
1288 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1289 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1290 		/* poll on global reset currently in progress until done */
1291 		if (ice_check_reset(hw))
1292 			return -EIO;
1293 
1294 		return 0;
1295 	}
1296 
1297 	/* Reset the PF */
1298 	reg = rd32(hw, PFGEN_CTRL);
1299 
1300 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1301 
1302 	/* Wait for the PFR to complete. The wait time is the global config lock
1303 	 * timeout plus the PFR timeout which will account for a possible reset
1304 	 * that is occurring during a download package operation.
1305 	 */
1306 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1307 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1308 		reg = rd32(hw, PFGEN_CTRL);
1309 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1310 			break;
1311 
1312 		mdelay(1);
1313 	}
1314 
1315 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1316 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1317 		return -EIO;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  * ice_reset - Perform different types of reset
1325  * @hw: pointer to the hardware structure
1326  * @req: reset request
1327  *
1328  * This function triggers a reset as specified by the req parameter.
1329  *
1330  * Note:
1331  * If anything other than a PF reset is triggered, PXE mode is restored.
1332  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1333  * interface has been restored in the rebuild flow.
1334  */
1335 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1336 {
1337 	u32 val = 0;
1338 
1339 	switch (req) {
1340 	case ICE_RESET_PFR:
1341 		return ice_pf_reset(hw);
1342 	case ICE_RESET_CORER:
1343 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1344 		val = GLGEN_RTRIG_CORER_M;
1345 		break;
1346 	case ICE_RESET_GLOBR:
1347 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1348 		val = GLGEN_RTRIG_GLOBR_M;
1349 		break;
1350 	default:
1351 		return -EINVAL;
1352 	}
1353 
1354 	val |= rd32(hw, GLGEN_RTRIG);
1355 	wr32(hw, GLGEN_RTRIG, val);
1356 	ice_flush(hw);
1357 
1358 	/* wait for the FW to be ready */
1359 	return ice_check_reset(hw);
1360 }
1361 
1362 /**
1363  * ice_copy_rxq_ctx_to_hw
1364  * @hw: pointer to the hardware structure
1365  * @ice_rxq_ctx: pointer to the rxq context
1366  * @rxq_index: the index of the Rx queue
1367  *
1368  * Copies rxq context from dense structure to HW register space
1369  */
1370 static int
1371 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1372 {
1373 	u8 i;
1374 
1375 	if (!ice_rxq_ctx)
1376 		return -EINVAL;
1377 
1378 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1379 		return -EINVAL;
1380 
1381 	/* Copy each dword separately to HW */
1382 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1383 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1384 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1385 
1386 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1387 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 /* LAN Rx Queue Context */
1394 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1395 	/* Field		Width	LSB */
1396 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1397 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1398 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1399 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1400 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1401 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1402 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1403 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1404 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1405 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1406 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1407 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1408 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1409 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1410 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1411 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1412 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1413 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1414 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1415 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1416 	{ 0 }
1417 };
1418 
1419 /**
1420  * ice_write_rxq_ctx
1421  * @hw: pointer to the hardware structure
1422  * @rlan_ctx: pointer to the rxq context
1423  * @rxq_index: the index of the Rx queue
1424  *
1425  * Converts rxq context from sparse to dense structure and then writes
1426  * it to HW register space and enables the hardware to prefetch descriptors
1427  * instead of only fetching them on demand
1428  */
1429 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1430 		      u32 rxq_index)
1431 {
1432 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1433 
1434 	if (!rlan_ctx)
1435 		return -EINVAL;
1436 
1437 	rlan_ctx->prefena = 1;
1438 
1439 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1440 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1441 }
1442 
1443 /* LAN Tx Queue Context */
1444 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1445 				    /* Field			Width	LSB */
1446 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1447 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1448 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1449 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1450 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1451 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1452 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1453 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1454 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1455 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1456 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1457 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1458 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1459 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1460 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1461 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1462 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1463 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1464 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1465 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1466 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1467 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1468 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1469 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1470 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1471 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1472 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1473 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1474 	{ 0 }
1475 };
1476 
1477 /* Sideband Queue command wrappers */
1478 
1479 /**
1480  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1481  * @hw: pointer to the HW struct
1482  * @desc: descriptor describing the command
1483  * @buf: buffer to use for indirect commands (NULL for direct commands)
1484  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1485  * @cd: pointer to command details structure
1486  */
1487 static int
1488 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1489 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1490 {
1491 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1492 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1493 }
1494 
1495 /**
1496  * ice_sbq_rw_reg - Fill Sideband Queue command
1497  * @hw: pointer to the HW struct
1498  * @in: message info to be filled in descriptor
1499  * @flags: control queue descriptor flags
1500  */
1501 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1502 {
1503 	struct ice_sbq_cmd_desc desc = {0};
1504 	struct ice_sbq_msg_req msg = {0};
1505 	u16 msg_len;
1506 	int status;
1507 
1508 	msg_len = sizeof(msg);
1509 
1510 	msg.dest_dev = in->dest_dev;
1511 	msg.opcode = in->opcode;
1512 	msg.flags = ICE_SBQ_MSG_FLAGS;
1513 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1514 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1515 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1516 
1517 	if (in->opcode)
1518 		msg.data = cpu_to_le32(in->data);
1519 	else
1520 		/* data read comes back in completion, so shorten the struct by
1521 		 * sizeof(msg.data)
1522 		 */
1523 		msg_len -= sizeof(msg.data);
1524 
1525 	desc.flags = cpu_to_le16(flags);
1526 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1527 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1528 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1529 	if (!status && !in->opcode)
1530 		in->data = le32_to_cpu
1531 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1532 	return status;
1533 }
1534 
1535 /* FW Admin Queue command wrappers */
1536 
1537 /* Software lock/mutex that is meant to be held while the Global Config Lock
1538  * in firmware is acquired by the software to prevent most (but not all) types
1539  * of AQ commands from being sent to FW
1540  */
1541 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1542 
1543 /**
1544  * ice_should_retry_sq_send_cmd
1545  * @opcode: AQ opcode
1546  *
1547  * Decide if we should retry the send command routine for the ATQ, depending
1548  * on the opcode.
1549  */
1550 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1551 {
1552 	switch (opcode) {
1553 	case ice_aqc_opc_get_link_topo:
1554 	case ice_aqc_opc_lldp_stop:
1555 	case ice_aqc_opc_lldp_start:
1556 	case ice_aqc_opc_lldp_filter_ctrl:
1557 		return true;
1558 	}
1559 
1560 	return false;
1561 }
1562 
1563 /**
1564  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1565  * @hw: pointer to the HW struct
1566  * @cq: pointer to the specific Control queue
1567  * @desc: prefilled descriptor describing the command
1568  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1569  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1570  * @cd: pointer to command details structure
1571  *
1572  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1573  * Queue if the EBUSY AQ error is returned.
1574  */
1575 static int
1576 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1577 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1578 		      struct ice_sq_cd *cd)
1579 {
1580 	struct ice_aq_desc desc_cpy;
1581 	bool is_cmd_for_retry;
1582 	u8 idx = 0;
1583 	u16 opcode;
1584 	int status;
1585 
1586 	opcode = le16_to_cpu(desc->opcode);
1587 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1588 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1589 
1590 	if (is_cmd_for_retry) {
1591 		/* All retryable cmds are direct, without buf. */
1592 		WARN_ON(buf);
1593 
1594 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1595 	}
1596 
1597 	do {
1598 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1599 
1600 		if (!is_cmd_for_retry || !status ||
1601 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1602 			break;
1603 
1604 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1605 
1606 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1607 
1608 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1609 
1610 	return status;
1611 }
1612 
1613 /**
1614  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1615  * @hw: pointer to the HW struct
1616  * @desc: descriptor describing the command
1617  * @buf: buffer to use for indirect commands (NULL for direct commands)
1618  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1619  * @cd: pointer to command details structure
1620  *
1621  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1622  */
1623 int
1624 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1625 		u16 buf_size, struct ice_sq_cd *cd)
1626 {
1627 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1628 	bool lock_acquired = false;
1629 	int status;
1630 
1631 	/* When a package download is in process (i.e. when the firmware's
1632 	 * Global Configuration Lock resource is held), only the Download
1633 	 * Package, Get Version, Get Package Info List, Upload Section,
1634 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1635 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1636 	 * Recipes to Profile Association, and Release Resource (with resource
1637 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1638 	 * must block until the package download completes and the Global Config
1639 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1640 	 */
1641 	switch (le16_to_cpu(desc->opcode)) {
1642 	case ice_aqc_opc_download_pkg:
1643 	case ice_aqc_opc_get_pkg_info_list:
1644 	case ice_aqc_opc_get_ver:
1645 	case ice_aqc_opc_upload_section:
1646 	case ice_aqc_opc_update_pkg:
1647 	case ice_aqc_opc_set_port_params:
1648 	case ice_aqc_opc_get_vlan_mode_parameters:
1649 	case ice_aqc_opc_set_vlan_mode_parameters:
1650 	case ice_aqc_opc_set_tx_topo:
1651 	case ice_aqc_opc_get_tx_topo:
1652 	case ice_aqc_opc_add_recipe:
1653 	case ice_aqc_opc_recipe_to_profile:
1654 	case ice_aqc_opc_get_recipe:
1655 	case ice_aqc_opc_get_recipe_to_profile:
1656 		break;
1657 	case ice_aqc_opc_release_res:
1658 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1659 			break;
1660 		fallthrough;
1661 	default:
1662 		mutex_lock(&ice_global_cfg_lock_sw);
1663 		lock_acquired = true;
1664 		break;
1665 	}
1666 
1667 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1668 	if (lock_acquired)
1669 		mutex_unlock(&ice_global_cfg_lock_sw);
1670 
1671 	return status;
1672 }
1673 
1674 /**
1675  * ice_aq_get_fw_ver
1676  * @hw: pointer to the HW struct
1677  * @cd: pointer to command details structure or NULL
1678  *
1679  * Get the firmware version (0x0001) from the admin queue commands
1680  */
1681 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1682 {
1683 	struct ice_aqc_get_ver *resp;
1684 	struct ice_aq_desc desc;
1685 	int status;
1686 
1687 	resp = &desc.params.get_ver;
1688 
1689 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1690 
1691 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1692 
1693 	if (!status) {
1694 		hw->fw_branch = resp->fw_branch;
1695 		hw->fw_maj_ver = resp->fw_major;
1696 		hw->fw_min_ver = resp->fw_minor;
1697 		hw->fw_patch = resp->fw_patch;
1698 		hw->fw_build = le32_to_cpu(resp->fw_build);
1699 		hw->api_branch = resp->api_branch;
1700 		hw->api_maj_ver = resp->api_major;
1701 		hw->api_min_ver = resp->api_minor;
1702 		hw->api_patch = resp->api_patch;
1703 	}
1704 
1705 	return status;
1706 }
1707 
1708 /**
1709  * ice_aq_send_driver_ver
1710  * @hw: pointer to the HW struct
1711  * @dv: driver's major, minor version
1712  * @cd: pointer to command details structure or NULL
1713  *
1714  * Send the driver version (0x0002) to the firmware
1715  */
1716 int
1717 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1718 		       struct ice_sq_cd *cd)
1719 {
1720 	struct ice_aqc_driver_ver *cmd;
1721 	struct ice_aq_desc desc;
1722 	u16 len;
1723 
1724 	cmd = &desc.params.driver_ver;
1725 
1726 	if (!dv)
1727 		return -EINVAL;
1728 
1729 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1730 
1731 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1732 	cmd->major_ver = dv->major_ver;
1733 	cmd->minor_ver = dv->minor_ver;
1734 	cmd->build_ver = dv->build_ver;
1735 	cmd->subbuild_ver = dv->subbuild_ver;
1736 
1737 	len = 0;
1738 	while (len < sizeof(dv->driver_string) &&
1739 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1740 		len++;
1741 
1742 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1743 }
1744 
1745 /**
1746  * ice_aq_q_shutdown
1747  * @hw: pointer to the HW struct
1748  * @unloading: is the driver unloading itself
1749  *
1750  * Tell the Firmware that we're shutting down the AdminQ and whether
1751  * or not the driver is unloading as well (0x0003).
1752  */
1753 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1754 {
1755 	struct ice_aqc_q_shutdown *cmd;
1756 	struct ice_aq_desc desc;
1757 
1758 	cmd = &desc.params.q_shutdown;
1759 
1760 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1761 
1762 	if (unloading)
1763 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1764 
1765 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1766 }
1767 
1768 /**
1769  * ice_aq_req_res
1770  * @hw: pointer to the HW struct
1771  * @res: resource ID
1772  * @access: access type
1773  * @sdp_number: resource number
1774  * @timeout: the maximum time in ms that the driver may hold the resource
1775  * @cd: pointer to command details structure or NULL
1776  *
1777  * Requests common resource using the admin queue commands (0x0008).
1778  * When attempting to acquire the Global Config Lock, the driver can
1779  * learn of three states:
1780  *  1) 0 -         acquired lock, and can perform download package
1781  *  2) -EIO -      did not get lock, driver should fail to load
1782  *  3) -EALREADY - did not get lock, but another driver has
1783  *                 successfully downloaded the package; the driver does
1784  *                 not have to download the package and can continue
1785  *                 loading
1786  *
1787  * Note that if the caller is in an acquire lock, perform action, release lock
1788  * phase of operation, it is possible that the FW may detect a timeout and issue
1789  * a CORER. In this case, the driver will receive a CORER interrupt and will
1790  * have to determine its cause. The calling thread that is handling this flow
1791  * will likely get an error propagated back to it indicating the Download
1792  * Package, Update Package or the Release Resource AQ commands timed out.
1793  */
1794 static int
1795 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1796 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1797 	       struct ice_sq_cd *cd)
1798 {
1799 	struct ice_aqc_req_res *cmd_resp;
1800 	struct ice_aq_desc desc;
1801 	int status;
1802 
1803 	cmd_resp = &desc.params.res_owner;
1804 
1805 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1806 
1807 	cmd_resp->res_id = cpu_to_le16(res);
1808 	cmd_resp->access_type = cpu_to_le16(access);
1809 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1810 	cmd_resp->timeout = cpu_to_le32(*timeout);
1811 	*timeout = 0;
1812 
1813 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1814 
1815 	/* The completion specifies the maximum time in ms that the driver
1816 	 * may hold the resource in the Timeout field.
1817 	 */
1818 
1819 	/* Global config lock response utilizes an additional status field.
1820 	 *
1821 	 * If the Global config lock resource is held by some other driver, the
1822 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1823 	 * and the timeout field indicates the maximum time the current owner
1824 	 * of the resource has to free it.
1825 	 */
1826 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1827 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1828 			*timeout = le32_to_cpu(cmd_resp->timeout);
1829 			return 0;
1830 		} else if (le16_to_cpu(cmd_resp->status) ==
1831 			   ICE_AQ_RES_GLBL_IN_PROG) {
1832 			*timeout = le32_to_cpu(cmd_resp->timeout);
1833 			return -EIO;
1834 		} else if (le16_to_cpu(cmd_resp->status) ==
1835 			   ICE_AQ_RES_GLBL_DONE) {
1836 			return -EALREADY;
1837 		}
1838 
1839 		/* invalid FW response, force a timeout immediately */
1840 		*timeout = 0;
1841 		return -EIO;
1842 	}
1843 
1844 	/* If the resource is held by some other driver, the command completes
1845 	 * with a busy return value and the timeout field indicates the maximum
1846 	 * time the current owner of the resource has to free it.
1847 	 */
1848 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1849 		*timeout = le32_to_cpu(cmd_resp->timeout);
1850 
1851 	return status;
1852 }
1853 
1854 /**
1855  * ice_aq_release_res
1856  * @hw: pointer to the HW struct
1857  * @res: resource ID
1858  * @sdp_number: resource number
1859  * @cd: pointer to command details structure or NULL
1860  *
1861  * release common resource using the admin queue commands (0x0009)
1862  */
1863 static int
1864 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1865 		   struct ice_sq_cd *cd)
1866 {
1867 	struct ice_aqc_req_res *cmd;
1868 	struct ice_aq_desc desc;
1869 
1870 	cmd = &desc.params.res_owner;
1871 
1872 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1873 
1874 	cmd->res_id = cpu_to_le16(res);
1875 	cmd->res_number = cpu_to_le32(sdp_number);
1876 
1877 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1878 }
1879 
1880 /**
1881  * ice_acquire_res
1882  * @hw: pointer to the HW structure
1883  * @res: resource ID
1884  * @access: access type (read or write)
1885  * @timeout: timeout in milliseconds
1886  *
1887  * This function will attempt to acquire the ownership of a resource.
1888  */
1889 int
1890 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1891 		enum ice_aq_res_access_type access, u32 timeout)
1892 {
1893 #define ICE_RES_POLLING_DELAY_MS	10
1894 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1895 	u32 time_left = timeout;
1896 	int status;
1897 
1898 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1899 
1900 	/* A return code of -EALREADY means that another driver has
1901 	 * previously acquired the resource and performed any necessary updates;
1902 	 * in this case the caller does not obtain the resource and has no
1903 	 * further work to do.
1904 	 */
1905 	if (status == -EALREADY)
1906 		goto ice_acquire_res_exit;
1907 
1908 	if (status)
1909 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1910 
1911 	/* If necessary, poll until the current lock owner timeouts */
1912 	timeout = time_left;
1913 	while (status && timeout && time_left) {
1914 		mdelay(delay);
1915 		timeout = (timeout > delay) ? timeout - delay : 0;
1916 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1917 
1918 		if (status == -EALREADY)
1919 			/* lock free, but no work to do */
1920 			break;
1921 
1922 		if (!status)
1923 			/* lock acquired */
1924 			break;
1925 	}
1926 	if (status && status != -EALREADY)
1927 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1928 
1929 ice_acquire_res_exit:
1930 	if (status == -EALREADY) {
1931 		if (access == ICE_RES_WRITE)
1932 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1933 		else
1934 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1935 	}
1936 	return status;
1937 }
1938 
1939 /**
1940  * ice_release_res
1941  * @hw: pointer to the HW structure
1942  * @res: resource ID
1943  *
1944  * This function will release a resource using the proper Admin Command.
1945  */
1946 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1947 {
1948 	unsigned long timeout;
1949 	int status;
1950 
1951 	/* there are some rare cases when trying to release the resource
1952 	 * results in an admin queue timeout, so handle them correctly
1953 	 */
1954 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1955 	do {
1956 		status = ice_aq_release_res(hw, res, 0, NULL);
1957 		if (status != -EIO)
1958 			break;
1959 		usleep_range(1000, 2000);
1960 	} while (time_before(jiffies, timeout));
1961 }
1962 
1963 /**
1964  * ice_aq_alloc_free_res - command to allocate/free resources
1965  * @hw: pointer to the HW struct
1966  * @buf: Indirect buffer to hold data parameters and response
1967  * @buf_size: size of buffer for indirect commands
1968  * @opc: pass in the command opcode
1969  *
1970  * Helper function to allocate/free resources using the admin queue commands
1971  */
1972 int ice_aq_alloc_free_res(struct ice_hw *hw,
1973 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1974 			  enum ice_adminq_opc opc)
1975 {
1976 	struct ice_aqc_alloc_free_res_cmd *cmd;
1977 	struct ice_aq_desc desc;
1978 
1979 	cmd = &desc.params.sw_res_ctrl;
1980 
1981 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1982 		return -EINVAL;
1983 
1984 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1985 
1986 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1987 
1988 	cmd->num_entries = cpu_to_le16(1);
1989 
1990 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1991 }
1992 
1993 /**
1994  * ice_alloc_hw_res - allocate resource
1995  * @hw: pointer to the HW struct
1996  * @type: type of resource
1997  * @num: number of resources to allocate
1998  * @btm: allocate from bottom
1999  * @res: pointer to array that will receive the resources
2000  */
2001 int
2002 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2003 {
2004 	struct ice_aqc_alloc_free_res_elem *buf;
2005 	u16 buf_len;
2006 	int status;
2007 
2008 	buf_len = struct_size(buf, elem, num);
2009 	buf = kzalloc(buf_len, GFP_KERNEL);
2010 	if (!buf)
2011 		return -ENOMEM;
2012 
2013 	/* Prepare buffer to allocate resource. */
2014 	buf->num_elems = cpu_to_le16(num);
2015 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2016 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2017 	if (btm)
2018 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2019 
2020 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2021 	if (status)
2022 		goto ice_alloc_res_exit;
2023 
2024 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2025 
2026 ice_alloc_res_exit:
2027 	kfree(buf);
2028 	return status;
2029 }
2030 
2031 /**
2032  * ice_free_hw_res - free allocated HW resource
2033  * @hw: pointer to the HW struct
2034  * @type: type of resource to free
2035  * @num: number of resources
2036  * @res: pointer to array that contains the resources to free
2037  */
2038 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2039 {
2040 	struct ice_aqc_alloc_free_res_elem *buf;
2041 	u16 buf_len;
2042 	int status;
2043 
2044 	buf_len = struct_size(buf, elem, num);
2045 	buf = kzalloc(buf_len, GFP_KERNEL);
2046 	if (!buf)
2047 		return -ENOMEM;
2048 
2049 	/* Prepare buffer to free resource. */
2050 	buf->num_elems = cpu_to_le16(num);
2051 	buf->res_type = cpu_to_le16(type);
2052 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2053 
2054 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2055 	if (status)
2056 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2057 
2058 	kfree(buf);
2059 	return status;
2060 }
2061 
2062 /**
2063  * ice_get_num_per_func - determine number of resources per PF
2064  * @hw: pointer to the HW structure
2065  * @max: value to be evenly split between each PF
2066  *
2067  * Determine the number of valid functions by going through the bitmap returned
2068  * from parsing capabilities and use this to calculate the number of resources
2069  * per PF based on the max value passed in.
2070  */
2071 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2072 {
2073 	u8 funcs;
2074 
2075 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2076 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2077 			 ICE_CAPS_VALID_FUNCS_M);
2078 
2079 	if (!funcs)
2080 		return 0;
2081 
2082 	return max / funcs;
2083 }
2084 
2085 /**
2086  * ice_parse_common_caps - parse common device/function capabilities
2087  * @hw: pointer to the HW struct
2088  * @caps: pointer to common capabilities structure
2089  * @elem: the capability element to parse
2090  * @prefix: message prefix for tracing capabilities
2091  *
2092  * Given a capability element, extract relevant details into the common
2093  * capability structure.
2094  *
2095  * Returns: true if the capability matches one of the common capability ids,
2096  * false otherwise.
2097  */
2098 static bool
2099 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2100 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2101 {
2102 	u32 logical_id = le32_to_cpu(elem->logical_id);
2103 	u32 phys_id = le32_to_cpu(elem->phys_id);
2104 	u32 number = le32_to_cpu(elem->number);
2105 	u16 cap = le16_to_cpu(elem->cap);
2106 	bool found = true;
2107 
2108 	switch (cap) {
2109 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2110 		caps->valid_functions = number;
2111 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2112 			  caps->valid_functions);
2113 		break;
2114 	case ICE_AQC_CAPS_SRIOV:
2115 		caps->sr_iov_1_1 = (number == 1);
2116 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2117 			  caps->sr_iov_1_1);
2118 		break;
2119 	case ICE_AQC_CAPS_DCB:
2120 		caps->dcb = (number == 1);
2121 		caps->active_tc_bitmap = logical_id;
2122 		caps->maxtc = phys_id;
2123 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2124 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2125 			  caps->active_tc_bitmap);
2126 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2127 		break;
2128 	case ICE_AQC_CAPS_RSS:
2129 		caps->rss_table_size = number;
2130 		caps->rss_table_entry_width = logical_id;
2131 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2132 			  caps->rss_table_size);
2133 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2134 			  caps->rss_table_entry_width);
2135 		break;
2136 	case ICE_AQC_CAPS_RXQS:
2137 		caps->num_rxq = number;
2138 		caps->rxq_first_id = phys_id;
2139 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2140 			  caps->num_rxq);
2141 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2142 			  caps->rxq_first_id);
2143 		break;
2144 	case ICE_AQC_CAPS_TXQS:
2145 		caps->num_txq = number;
2146 		caps->txq_first_id = phys_id;
2147 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2148 			  caps->num_txq);
2149 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2150 			  caps->txq_first_id);
2151 		break;
2152 	case ICE_AQC_CAPS_MSIX:
2153 		caps->num_msix_vectors = number;
2154 		caps->msix_vector_first_id = phys_id;
2155 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2156 			  caps->num_msix_vectors);
2157 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2158 			  caps->msix_vector_first_id);
2159 		break;
2160 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2161 		caps->nvm_update_pending_nvm = true;
2162 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2163 		break;
2164 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2165 		caps->nvm_update_pending_orom = true;
2166 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2167 		break;
2168 	case ICE_AQC_CAPS_PENDING_NET_VER:
2169 		caps->nvm_update_pending_netlist = true;
2170 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2171 		break;
2172 	case ICE_AQC_CAPS_NVM_MGMT:
2173 		caps->nvm_unified_update =
2174 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2175 			true : false;
2176 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2177 			  caps->nvm_unified_update);
2178 		break;
2179 	case ICE_AQC_CAPS_RDMA:
2180 		caps->rdma = (number == 1);
2181 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2182 		break;
2183 	case ICE_AQC_CAPS_MAX_MTU:
2184 		caps->max_mtu = number;
2185 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2186 			  prefix, caps->max_mtu);
2187 		break;
2188 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2189 		caps->pcie_reset_avoidance = (number > 0);
2190 		ice_debug(hw, ICE_DBG_INIT,
2191 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2192 			  caps->pcie_reset_avoidance);
2193 		break;
2194 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2195 		caps->reset_restrict_support = (number == 1);
2196 		ice_debug(hw, ICE_DBG_INIT,
2197 			  "%s: reset_restrict_support = %d\n", prefix,
2198 			  caps->reset_restrict_support);
2199 		break;
2200 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2201 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2202 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2203 			  prefix, caps->roce_lag);
2204 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2205 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2206 			  prefix, caps->sriov_lag);
2207 		break;
2208 	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2209 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2210 		break;
2211 	default:
2212 		/* Not one of the recognized common capabilities */
2213 		found = false;
2214 	}
2215 
2216 	return found;
2217 }
2218 
2219 /**
2220  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2221  * @hw: pointer to the HW structure
2222  * @caps: pointer to capabilities structure to fix
2223  *
2224  * Re-calculate the capabilities that are dependent on the number of physical
2225  * ports; i.e. some features are not supported or function differently on
2226  * devices with more than 4 ports.
2227  */
2228 static void
2229 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2230 {
2231 	/* This assumes device capabilities are always scanned before function
2232 	 * capabilities during the initialization flow.
2233 	 */
2234 	if (hw->dev_caps.num_funcs > 4) {
2235 		/* Max 4 TCs per port */
2236 		caps->maxtc = 4;
2237 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2238 			  caps->maxtc);
2239 		if (caps->rdma) {
2240 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2241 			caps->rdma = 0;
2242 		}
2243 
2244 		/* print message only when processing device capabilities
2245 		 * during initialization.
2246 		 */
2247 		if (caps == &hw->dev_caps.common_cap)
2248 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2249 	}
2250 }
2251 
2252 /**
2253  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2254  * @hw: pointer to the HW struct
2255  * @func_p: pointer to function capabilities structure
2256  * @cap: pointer to the capability element to parse
2257  *
2258  * Extract function capabilities for ICE_AQC_CAPS_VF.
2259  */
2260 static void
2261 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2262 		       struct ice_aqc_list_caps_elem *cap)
2263 {
2264 	u32 logical_id = le32_to_cpu(cap->logical_id);
2265 	u32 number = le32_to_cpu(cap->number);
2266 
2267 	func_p->num_allocd_vfs = number;
2268 	func_p->vf_base_id = logical_id;
2269 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2270 		  func_p->num_allocd_vfs);
2271 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2272 		  func_p->vf_base_id);
2273 }
2274 
2275 /**
2276  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2277  * @hw: pointer to the HW struct
2278  * @func_p: pointer to function capabilities structure
2279  * @cap: pointer to the capability element to parse
2280  *
2281  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2282  */
2283 static void
2284 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2285 			struct ice_aqc_list_caps_elem *cap)
2286 {
2287 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2288 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2289 		  le32_to_cpu(cap->number));
2290 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2291 		  func_p->guar_num_vsi);
2292 }
2293 
2294 /**
2295  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2296  * @hw: pointer to the HW struct
2297  * @func_p: pointer to function capabilities structure
2298  * @cap: pointer to the capability element to parse
2299  *
2300  * Extract function capabilities for ICE_AQC_CAPS_1588.
2301  */
2302 static void
2303 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2304 			 struct ice_aqc_list_caps_elem *cap)
2305 {
2306 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2307 	u32 number = le32_to_cpu(cap->number);
2308 
2309 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2310 	func_p->common_cap.ieee_1588 = info->ena;
2311 
2312 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2313 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2314 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2315 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2316 
2317 	if (!ice_is_e825c(hw)) {
2318 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2319 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2320 	} else {
2321 		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2322 		info->clk_src = ICE_CLK_SRC_TCXO;
2323 	}
2324 
2325 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2326 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2327 	} else {
2328 		/* Unknown clock frequency, so assume a (probably incorrect)
2329 		 * default to avoid out-of-bounds look ups of frequency
2330 		 * related information.
2331 		 */
2332 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2333 			  info->clk_freq);
2334 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2335 	}
2336 
2337 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2338 		  func_p->common_cap.ieee_1588);
2339 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2340 		  info->src_tmr_owned);
2341 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2342 		  info->tmr_ena);
2343 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2344 		  info->tmr_index_owned);
2345 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2346 		  info->tmr_index_assoc);
2347 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2348 		  info->clk_freq);
2349 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2350 		  info->clk_src);
2351 }
2352 
2353 /**
2354  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2355  * @hw: pointer to the HW struct
2356  * @func_p: pointer to function capabilities structure
2357  *
2358  * Extract function capabilities for ICE_AQC_CAPS_FD.
2359  */
2360 static void
2361 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2362 {
2363 	u32 reg_val, gsize, bsize;
2364 
2365 	reg_val = rd32(hw, GLQF_FD_SIZE);
2366 	switch (hw->mac_type) {
2367 	case ICE_MAC_E830:
2368 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2369 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2370 		break;
2371 	case ICE_MAC_E810:
2372 	default:
2373 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2374 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2375 	}
2376 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2377 	func_p->fd_fltr_best_effort = bsize;
2378 
2379 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2380 		  func_p->fd_fltr_guar);
2381 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2382 		  func_p->fd_fltr_best_effort);
2383 }
2384 
2385 /**
2386  * ice_parse_func_caps - Parse function capabilities
2387  * @hw: pointer to the HW struct
2388  * @func_p: pointer to function capabilities structure
2389  * @buf: buffer containing the function capability records
2390  * @cap_count: the number of capabilities
2391  *
2392  * Helper function to parse function (0x000A) capabilities list. For
2393  * capabilities shared between device and function, this relies on
2394  * ice_parse_common_caps.
2395  *
2396  * Loop through the list of provided capabilities and extract the relevant
2397  * data into the function capabilities structured.
2398  */
2399 static void
2400 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2401 		    void *buf, u32 cap_count)
2402 {
2403 	struct ice_aqc_list_caps_elem *cap_resp;
2404 	u32 i;
2405 
2406 	cap_resp = buf;
2407 
2408 	memset(func_p, 0, sizeof(*func_p));
2409 
2410 	for (i = 0; i < cap_count; i++) {
2411 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2412 		bool found;
2413 
2414 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2415 					      &cap_resp[i], "func caps");
2416 
2417 		switch (cap) {
2418 		case ICE_AQC_CAPS_VF:
2419 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2420 			break;
2421 		case ICE_AQC_CAPS_VSI:
2422 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2423 			break;
2424 		case ICE_AQC_CAPS_1588:
2425 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2426 			break;
2427 		case ICE_AQC_CAPS_FD:
2428 			ice_parse_fdir_func_caps(hw, func_p);
2429 			break;
2430 		default:
2431 			/* Don't list common capabilities as unknown */
2432 			if (!found)
2433 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2434 					  i, cap);
2435 			break;
2436 		}
2437 	}
2438 
2439 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2440 }
2441 
2442 /**
2443  * ice_func_id_to_logical_id - map from function id to logical pf id
2444  * @active_function_bitmap: active function bitmap
2445  * @pf_id: function number of device
2446  *
2447  * Return: logical PF ID.
2448  */
2449 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2450 {
2451 	u8 logical_id = 0;
2452 	u8 i;
2453 
2454 	for (i = 0; i < pf_id; i++)
2455 		if (active_function_bitmap & BIT(i))
2456 			logical_id++;
2457 
2458 	return logical_id;
2459 }
2460 
2461 /**
2462  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2463  * @hw: pointer to the HW struct
2464  * @dev_p: pointer to device capabilities structure
2465  * @cap: capability element to parse
2466  *
2467  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2468  */
2469 static void
2470 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2471 			      struct ice_aqc_list_caps_elem *cap)
2472 {
2473 	u32 number = le32_to_cpu(cap->number);
2474 
2475 	dev_p->num_funcs = hweight32(number);
2476 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2477 		  dev_p->num_funcs);
2478 
2479 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2480 }
2481 
2482 /**
2483  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2484  * @hw: pointer to the HW struct
2485  * @dev_p: pointer to device capabilities structure
2486  * @cap: capability element to parse
2487  *
2488  * Parse ICE_AQC_CAPS_VF for device capabilities.
2489  */
2490 static void
2491 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2492 		      struct ice_aqc_list_caps_elem *cap)
2493 {
2494 	u32 number = le32_to_cpu(cap->number);
2495 
2496 	dev_p->num_vfs_exposed = number;
2497 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2498 		  dev_p->num_vfs_exposed);
2499 }
2500 
2501 /**
2502  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2503  * @hw: pointer to the HW struct
2504  * @dev_p: pointer to device capabilities structure
2505  * @cap: capability element to parse
2506  *
2507  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2508  */
2509 static void
2510 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2511 		       struct ice_aqc_list_caps_elem *cap)
2512 {
2513 	u32 number = le32_to_cpu(cap->number);
2514 
2515 	dev_p->num_vsi_allocd_to_host = number;
2516 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2517 		  dev_p->num_vsi_allocd_to_host);
2518 }
2519 
2520 /**
2521  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2522  * @hw: pointer to the HW struct
2523  * @dev_p: pointer to device capabilities structure
2524  * @cap: capability element to parse
2525  *
2526  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2527  */
2528 static void
2529 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2530 			struct ice_aqc_list_caps_elem *cap)
2531 {
2532 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2533 	u32 logical_id = le32_to_cpu(cap->logical_id);
2534 	u32 phys_id = le32_to_cpu(cap->phys_id);
2535 	u32 number = le32_to_cpu(cap->number);
2536 
2537 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2538 	dev_p->common_cap.ieee_1588 = info->ena;
2539 
2540 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2541 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2542 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2543 
2544 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2545 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2546 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2547 
2548 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2549 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2550 
2551 	info->ena_ports = logical_id;
2552 	info->tmr_own_map = phys_id;
2553 
2554 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2555 		  dev_p->common_cap.ieee_1588);
2556 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2557 		  info->tmr0_owner);
2558 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2559 		  info->tmr0_owned);
2560 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2561 		  info->tmr0_ena);
2562 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2563 		  info->tmr1_owner);
2564 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2565 		  info->tmr1_owned);
2566 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2567 		  info->tmr1_ena);
2568 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2569 		  info->ts_ll_read);
2570 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2571 		  info->ts_ll_int_read);
2572 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2573 		  info->ena_ports);
2574 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2575 		  info->tmr_own_map);
2576 }
2577 
2578 /**
2579  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2580  * @hw: pointer to the HW struct
2581  * @dev_p: pointer to device capabilities structure
2582  * @cap: capability element to parse
2583  *
2584  * Parse ICE_AQC_CAPS_FD for device capabilities.
2585  */
2586 static void
2587 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2588 			struct ice_aqc_list_caps_elem *cap)
2589 {
2590 	u32 number = le32_to_cpu(cap->number);
2591 
2592 	dev_p->num_flow_director_fltr = number;
2593 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2594 		  dev_p->num_flow_director_fltr);
2595 }
2596 
2597 /**
2598  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2599  * @hw: pointer to the HW struct
2600  * @dev_p: pointer to device capabilities structure
2601  * @cap: capability element to parse
2602  *
2603  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2604  * enabled sensors.
2605  */
2606 static void
2607 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2608 			     struct ice_aqc_list_caps_elem *cap)
2609 {
2610 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2611 
2612 	ice_debug(hw, ICE_DBG_INIT,
2613 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2614 		  dev_p->supported_sensors);
2615 }
2616 
2617 /**
2618  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2619  * @hw: pointer to the HW struct
2620  * @dev_p: pointer to device capabilities structure
2621  * @cap: capability element to parse
2622  *
2623  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2624  */
2625 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2626 					struct ice_hw_dev_caps *dev_p,
2627 					struct ice_aqc_list_caps_elem *cap)
2628 {
2629 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2630 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2631 
2632 	dev_info(ice_hw_to_dev(hw),
2633 		 "PF is configured in %s mode with IP instance ID %d\n",
2634 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2635 		 "primary" : "secondary", dev_p->nac_topo.id);
2636 
2637 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2638 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2639 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2640 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2641 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2642 		  dev_p->nac_topo.id);
2643 }
2644 
2645 /**
2646  * ice_parse_dev_caps - Parse device capabilities
2647  * @hw: pointer to the HW struct
2648  * @dev_p: pointer to device capabilities structure
2649  * @buf: buffer containing the device capability records
2650  * @cap_count: the number of capabilities
2651  *
2652  * Helper device to parse device (0x000B) capabilities list. For
2653  * capabilities shared between device and function, this relies on
2654  * ice_parse_common_caps.
2655  *
2656  * Loop through the list of provided capabilities and extract the relevant
2657  * data into the device capabilities structured.
2658  */
2659 static void
2660 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2661 		   void *buf, u32 cap_count)
2662 {
2663 	struct ice_aqc_list_caps_elem *cap_resp;
2664 	u32 i;
2665 
2666 	cap_resp = buf;
2667 
2668 	memset(dev_p, 0, sizeof(*dev_p));
2669 
2670 	for (i = 0; i < cap_count; i++) {
2671 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2672 		bool found;
2673 
2674 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2675 					      &cap_resp[i], "dev caps");
2676 
2677 		switch (cap) {
2678 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2679 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2680 			break;
2681 		case ICE_AQC_CAPS_VF:
2682 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2683 			break;
2684 		case ICE_AQC_CAPS_VSI:
2685 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2686 			break;
2687 		case ICE_AQC_CAPS_1588:
2688 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2689 			break;
2690 		case ICE_AQC_CAPS_FD:
2691 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2692 			break;
2693 		case ICE_AQC_CAPS_SENSOR_READING:
2694 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2695 			break;
2696 		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2697 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2698 			break;
2699 		default:
2700 			/* Don't list common capabilities as unknown */
2701 			if (!found)
2702 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2703 					  i, cap);
2704 			break;
2705 		}
2706 	}
2707 
2708 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2709 }
2710 
2711 /**
2712  * ice_is_pf_c827 - check if pf contains c827 phy
2713  * @hw: pointer to the hw struct
2714  */
2715 bool ice_is_pf_c827(struct ice_hw *hw)
2716 {
2717 	struct ice_aqc_get_link_topo cmd = {};
2718 	u8 node_part_number;
2719 	u16 node_handle;
2720 	int status;
2721 
2722 	if (hw->mac_type != ICE_MAC_E810)
2723 		return false;
2724 
2725 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2726 		return true;
2727 
2728 	cmd.addr.topo_params.node_type_ctx =
2729 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2730 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2731 	cmd.addr.topo_params.index = 0;
2732 
2733 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2734 					 &node_handle);
2735 
2736 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2737 		return false;
2738 
2739 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2740 		return true;
2741 
2742 	return false;
2743 }
2744 
2745 /**
2746  * ice_is_phy_rclk_in_netlist
2747  * @hw: pointer to the hw struct
2748  *
2749  * Check if the PHY Recovered Clock device is present in the netlist
2750  */
2751 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2752 {
2753 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2754 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2755 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2756 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2757 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2758 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2759 		return false;
2760 
2761 	return true;
2762 }
2763 
2764 /**
2765  * ice_is_clock_mux_in_netlist
2766  * @hw: pointer to the hw struct
2767  *
2768  * Check if the Clock Multiplexer device is present in the netlist
2769  */
2770 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2771 {
2772 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2773 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2774 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2775 				  NULL))
2776 		return false;
2777 
2778 	return true;
2779 }
2780 
2781 /**
2782  * ice_is_cgu_in_netlist - check for CGU presence
2783  * @hw: pointer to the hw struct
2784  *
2785  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2786  * Save the CGU part number in the hw structure for later use.
2787  * Return:
2788  * * true - cgu is present
2789  * * false - cgu is not present
2790  */
2791 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2792 {
2793 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2794 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2795 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2796 				   NULL)) {
2797 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2798 		return true;
2799 	} else if (!ice_find_netlist_node(hw,
2800 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2801 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2802 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2803 					  NULL)) {
2804 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2805 		return true;
2806 	}
2807 
2808 	return false;
2809 }
2810 
2811 /**
2812  * ice_is_gps_in_netlist
2813  * @hw: pointer to the hw struct
2814  *
2815  * Check if the GPS generic device is present in the netlist
2816  */
2817 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2818 {
2819 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2820 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2821 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2822 		return false;
2823 
2824 	return true;
2825 }
2826 
2827 /**
2828  * ice_aq_list_caps - query function/device capabilities
2829  * @hw: pointer to the HW struct
2830  * @buf: a buffer to hold the capabilities
2831  * @buf_size: size of the buffer
2832  * @cap_count: if not NULL, set to the number of capabilities reported
2833  * @opc: capabilities type to discover, device or function
2834  * @cd: pointer to command details structure or NULL
2835  *
2836  * Get the function (0x000A) or device (0x000B) capabilities description from
2837  * firmware and store it in the buffer.
2838  *
2839  * If the cap_count pointer is not NULL, then it is set to the number of
2840  * capabilities firmware will report. Note that if the buffer size is too
2841  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2842  * cap_count will still be updated in this case. It is recommended that the
2843  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2844  * firmware could return) to avoid this.
2845  */
2846 int
2847 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2848 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2849 {
2850 	struct ice_aqc_list_caps *cmd;
2851 	struct ice_aq_desc desc;
2852 	int status;
2853 
2854 	cmd = &desc.params.get_cap;
2855 
2856 	if (opc != ice_aqc_opc_list_func_caps &&
2857 	    opc != ice_aqc_opc_list_dev_caps)
2858 		return -EINVAL;
2859 
2860 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2861 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2862 
2863 	if (cap_count)
2864 		*cap_count = le32_to_cpu(cmd->count);
2865 
2866 	return status;
2867 }
2868 
2869 /**
2870  * ice_discover_dev_caps - Read and extract device capabilities
2871  * @hw: pointer to the hardware structure
2872  * @dev_caps: pointer to device capabilities structure
2873  *
2874  * Read the device capabilities and extract them into the dev_caps structure
2875  * for later use.
2876  */
2877 int
2878 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2879 {
2880 	u32 cap_count = 0;
2881 	void *cbuf;
2882 	int status;
2883 
2884 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2885 	if (!cbuf)
2886 		return -ENOMEM;
2887 
2888 	/* Although the driver doesn't know the number of capabilities the
2889 	 * device will return, we can simply send a 4KB buffer, the maximum
2890 	 * possible size that firmware can return.
2891 	 */
2892 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2893 
2894 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2895 				  ice_aqc_opc_list_dev_caps, NULL);
2896 	if (!status)
2897 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2898 	kfree(cbuf);
2899 
2900 	return status;
2901 }
2902 
2903 /**
2904  * ice_discover_func_caps - Read and extract function capabilities
2905  * @hw: pointer to the hardware structure
2906  * @func_caps: pointer to function capabilities structure
2907  *
2908  * Read the function capabilities and extract them into the func_caps structure
2909  * for later use.
2910  */
2911 static int
2912 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2913 {
2914 	u32 cap_count = 0;
2915 	void *cbuf;
2916 	int status;
2917 
2918 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2919 	if (!cbuf)
2920 		return -ENOMEM;
2921 
2922 	/* Although the driver doesn't know the number of capabilities the
2923 	 * device will return, we can simply send a 4KB buffer, the maximum
2924 	 * possible size that firmware can return.
2925 	 */
2926 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2927 
2928 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2929 				  ice_aqc_opc_list_func_caps, NULL);
2930 	if (!status)
2931 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2932 	kfree(cbuf);
2933 
2934 	return status;
2935 }
2936 
2937 /**
2938  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2939  * @hw: pointer to the hardware structure
2940  */
2941 void ice_set_safe_mode_caps(struct ice_hw *hw)
2942 {
2943 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2944 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2945 	struct ice_hw_common_caps cached_caps;
2946 	u32 num_funcs;
2947 
2948 	/* cache some func_caps values that should be restored after memset */
2949 	cached_caps = func_caps->common_cap;
2950 
2951 	/* unset func capabilities */
2952 	memset(func_caps, 0, sizeof(*func_caps));
2953 
2954 #define ICE_RESTORE_FUNC_CAP(name) \
2955 	func_caps->common_cap.name = cached_caps.name
2956 
2957 	/* restore cached values */
2958 	ICE_RESTORE_FUNC_CAP(valid_functions);
2959 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2960 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2961 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2962 	ICE_RESTORE_FUNC_CAP(max_mtu);
2963 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2964 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2965 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2966 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2967 
2968 	/* one Tx and one Rx queue in safe mode */
2969 	func_caps->common_cap.num_rxq = 1;
2970 	func_caps->common_cap.num_txq = 1;
2971 
2972 	/* two MSIX vectors, one for traffic and one for misc causes */
2973 	func_caps->common_cap.num_msix_vectors = 2;
2974 	func_caps->guar_num_vsi = 1;
2975 
2976 	/* cache some dev_caps values that should be restored after memset */
2977 	cached_caps = dev_caps->common_cap;
2978 	num_funcs = dev_caps->num_funcs;
2979 
2980 	/* unset dev capabilities */
2981 	memset(dev_caps, 0, sizeof(*dev_caps));
2982 
2983 #define ICE_RESTORE_DEV_CAP(name) \
2984 	dev_caps->common_cap.name = cached_caps.name
2985 
2986 	/* restore cached values */
2987 	ICE_RESTORE_DEV_CAP(valid_functions);
2988 	ICE_RESTORE_DEV_CAP(txq_first_id);
2989 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2990 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2991 	ICE_RESTORE_DEV_CAP(max_mtu);
2992 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2993 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2994 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2995 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2996 	dev_caps->num_funcs = num_funcs;
2997 
2998 	/* one Tx and one Rx queue per function in safe mode */
2999 	dev_caps->common_cap.num_rxq = num_funcs;
3000 	dev_caps->common_cap.num_txq = num_funcs;
3001 
3002 	/* two MSIX vectors per function */
3003 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3004 }
3005 
3006 /**
3007  * ice_get_caps - get info about the HW
3008  * @hw: pointer to the hardware structure
3009  */
3010 int ice_get_caps(struct ice_hw *hw)
3011 {
3012 	int status;
3013 
3014 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3015 	if (status)
3016 		return status;
3017 
3018 	return ice_discover_func_caps(hw, &hw->func_caps);
3019 }
3020 
3021 /**
3022  * ice_aq_manage_mac_write - manage MAC address write command
3023  * @hw: pointer to the HW struct
3024  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3025  * @flags: flags to control write behavior
3026  * @cd: pointer to command details structure or NULL
3027  *
3028  * This function is used to write MAC address to the NVM (0x0108).
3029  */
3030 int
3031 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3032 			struct ice_sq_cd *cd)
3033 {
3034 	struct ice_aqc_manage_mac_write *cmd;
3035 	struct ice_aq_desc desc;
3036 
3037 	cmd = &desc.params.mac_write;
3038 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3039 
3040 	cmd->flags = flags;
3041 	ether_addr_copy(cmd->mac_addr, mac_addr);
3042 
3043 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3044 }
3045 
3046 /**
3047  * ice_aq_clear_pxe_mode
3048  * @hw: pointer to the HW struct
3049  *
3050  * Tell the firmware that the driver is taking over from PXE (0x0110).
3051  */
3052 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3053 {
3054 	struct ice_aq_desc desc;
3055 
3056 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3057 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3058 
3059 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3060 }
3061 
3062 /**
3063  * ice_clear_pxe_mode - clear pxe operations mode
3064  * @hw: pointer to the HW struct
3065  *
3066  * Make sure all PXE mode settings are cleared, including things
3067  * like descriptor fetch/write-back mode.
3068  */
3069 void ice_clear_pxe_mode(struct ice_hw *hw)
3070 {
3071 	if (ice_check_sq_alive(hw, &hw->adminq))
3072 		ice_aq_clear_pxe_mode(hw);
3073 }
3074 
3075 /**
3076  * ice_aq_set_port_params - set physical port parameters.
3077  * @pi: pointer to the port info struct
3078  * @double_vlan: if set double VLAN is enabled
3079  * @cd: pointer to command details structure or NULL
3080  *
3081  * Set Physical port parameters (0x0203)
3082  */
3083 int
3084 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3085 		       struct ice_sq_cd *cd)
3086 
3087 {
3088 	struct ice_aqc_set_port_params *cmd;
3089 	struct ice_hw *hw = pi->hw;
3090 	struct ice_aq_desc desc;
3091 	u16 cmd_flags = 0;
3092 
3093 	cmd = &desc.params.set_port_params;
3094 
3095 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3096 	if (double_vlan)
3097 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3098 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3099 
3100 	cmd->local_fwd_mode = pi->local_fwd_mode |
3101 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3102 
3103 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3104 }
3105 
3106 /**
3107  * ice_is_100m_speed_supported
3108  * @hw: pointer to the HW struct
3109  *
3110  * returns true if 100M speeds are supported by the device,
3111  * false otherwise.
3112  */
3113 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3114 {
3115 	switch (hw->device_id) {
3116 	case ICE_DEV_ID_E822C_SGMII:
3117 	case ICE_DEV_ID_E822L_SGMII:
3118 	case ICE_DEV_ID_E823L_1GBE:
3119 	case ICE_DEV_ID_E823C_SGMII:
3120 		return true;
3121 	default:
3122 		return false;
3123 	}
3124 }
3125 
3126 /**
3127  * ice_get_link_speed_based_on_phy_type - returns link speed
3128  * @phy_type_low: lower part of phy_type
3129  * @phy_type_high: higher part of phy_type
3130  *
3131  * This helper function will convert an entry in PHY type structure
3132  * [phy_type_low, phy_type_high] to its corresponding link speed.
3133  * Note: In the structure of [phy_type_low, phy_type_high], there should
3134  * be one bit set, as this function will convert one PHY type to its
3135  * speed.
3136  *
3137  * Return:
3138  * * PHY speed for recognized PHY type
3139  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3140  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3141  */
3142 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3143 {
3144 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3145 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3146 
3147 	switch (phy_type_low) {
3148 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3149 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3150 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3151 		break;
3152 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3153 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3154 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3155 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3156 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3157 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3158 		break;
3159 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3160 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3161 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3162 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3163 		break;
3164 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3165 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3166 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3167 		break;
3168 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3169 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3170 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3171 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3172 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3173 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3174 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3175 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3176 		break;
3177 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3178 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3179 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3180 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3181 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3182 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3183 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3184 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3185 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3186 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3187 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3188 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3189 		break;
3190 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3191 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3192 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3193 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3194 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3195 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3196 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3197 		break;
3198 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3199 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3200 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3201 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3202 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3203 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3204 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3205 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3206 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3207 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3208 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3209 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3210 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3211 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3212 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3213 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3214 		break;
3215 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3216 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3217 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3218 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3219 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3220 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3221 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3222 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3223 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3224 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3225 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3226 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3227 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3228 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3229 		break;
3230 	default:
3231 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3232 		break;
3233 	}
3234 
3235 	switch (phy_type_high) {
3236 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3237 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3238 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3239 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3240 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3241 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3242 		break;
3243 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3244 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3245 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3246 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3247 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3248 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3249 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3250 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3251 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3252 		break;
3253 	default:
3254 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3255 		break;
3256 	}
3257 
3258 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3259 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3260 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3261 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3262 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3263 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3264 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3265 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3266 		return speed_phy_type_low;
3267 	else
3268 		return speed_phy_type_high;
3269 }
3270 
3271 /**
3272  * ice_update_phy_type
3273  * @phy_type_low: pointer to the lower part of phy_type
3274  * @phy_type_high: pointer to the higher part of phy_type
3275  * @link_speeds_bitmap: targeted link speeds bitmap
3276  *
3277  * Note: For the link_speeds_bitmap structure, you can check it at
3278  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3279  * link_speeds_bitmap include multiple speeds.
3280  *
3281  * Each entry in this [phy_type_low, phy_type_high] structure will
3282  * present a certain link speed. This helper function will turn on bits
3283  * in [phy_type_low, phy_type_high] structure based on the value of
3284  * link_speeds_bitmap input parameter.
3285  */
3286 void
3287 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3288 		    u16 link_speeds_bitmap)
3289 {
3290 	u64 pt_high;
3291 	u64 pt_low;
3292 	int index;
3293 	u16 speed;
3294 
3295 	/* We first check with low part of phy_type */
3296 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3297 		pt_low = BIT_ULL(index);
3298 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3299 
3300 		if (link_speeds_bitmap & speed)
3301 			*phy_type_low |= BIT_ULL(index);
3302 	}
3303 
3304 	/* We then check with high part of phy_type */
3305 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3306 		pt_high = BIT_ULL(index);
3307 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3308 
3309 		if (link_speeds_bitmap & speed)
3310 			*phy_type_high |= BIT_ULL(index);
3311 	}
3312 }
3313 
3314 /**
3315  * ice_aq_set_phy_cfg
3316  * @hw: pointer to the HW struct
3317  * @pi: port info structure of the interested logical port
3318  * @cfg: structure with PHY configuration data to be set
3319  * @cd: pointer to command details structure or NULL
3320  *
3321  * Set the various PHY configuration parameters supported on the Port.
3322  * One or more of the Set PHY config parameters may be ignored in an MFP
3323  * mode as the PF may not have the privilege to set some of the PHY Config
3324  * parameters. This status will be indicated by the command response (0x0601).
3325  */
3326 int
3327 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3328 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3329 {
3330 	struct ice_aq_desc desc;
3331 	int status;
3332 
3333 	if (!cfg)
3334 		return -EINVAL;
3335 
3336 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3337 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3338 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3339 			  cfg->caps);
3340 
3341 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3342 	}
3343 
3344 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3345 	desc.params.set_phy.lport_num = pi->lport;
3346 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3347 
3348 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3349 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3350 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3351 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3352 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3353 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3354 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3355 		  cfg->low_power_ctrl_an);
3356 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3357 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3358 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3359 		  cfg->link_fec_opt);
3360 
3361 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3362 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3363 		status = 0;
3364 
3365 	if (!status)
3366 		pi->phy.curr_user_phy_cfg = *cfg;
3367 
3368 	return status;
3369 }
3370 
3371 /**
3372  * ice_update_link_info - update status of the HW network link
3373  * @pi: port info structure of the interested logical port
3374  */
3375 int ice_update_link_info(struct ice_port_info *pi)
3376 {
3377 	struct ice_link_status *li;
3378 	int status;
3379 
3380 	if (!pi)
3381 		return -EINVAL;
3382 
3383 	li = &pi->phy.link_info;
3384 
3385 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3386 	if (status)
3387 		return status;
3388 
3389 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3390 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3391 
3392 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3393 		if (!pcaps)
3394 			return -ENOMEM;
3395 
3396 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3397 					     pcaps, NULL);
3398 	}
3399 
3400 	return status;
3401 }
3402 
3403 /**
3404  * ice_aq_get_phy_equalization - function to read serdes equaliser
3405  * value from firmware using admin queue command.
3406  * @hw: pointer to the HW struct
3407  * @data_in: represents the serdes equalization parameter requested
3408  * @op_code: represents the serdes number and flag to represent tx or rx
3409  * @serdes_num: represents the serdes number
3410  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3411  *
3412  * Return: non-zero status on error and 0 on success.
3413  */
3414 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3415 				u8 serdes_num, int *output)
3416 {
3417 	struct ice_aqc_dnl_call_command *cmd;
3418 	struct ice_aqc_dnl_call buf = {};
3419 	struct ice_aq_desc desc;
3420 	int err;
3421 
3422 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3423 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3424 		cpu_to_le16(op_code | (serdes_num & 0xF));
3425 	cmd = &desc.params.dnl_call;
3426 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3427 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3428 				  ICE_AQ_FLAG_RD |
3429 				  ICE_AQ_FLAG_SI);
3430 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3431 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3432 
3433 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3434 			      NULL);
3435 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3436 
3437 	return err;
3438 }
3439 
3440 #define FEC_REG_PORT(port) {	\
3441 	FEC_CORR_LOW_REG_PORT##port,		\
3442 	FEC_CORR_HIGH_REG_PORT##port,	\
3443 	FEC_UNCORR_LOW_REG_PORT##port,	\
3444 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3445 }
3446 
3447 static const u32 fec_reg[][ICE_FEC_MAX] = {
3448 	FEC_REG_PORT(0),
3449 	FEC_REG_PORT(1),
3450 	FEC_REG_PORT(2),
3451 	FEC_REG_PORT(3)
3452 };
3453 
3454 /**
3455  * ice_aq_get_fec_stats - reads fec stats from phy
3456  * @hw: pointer to the HW struct
3457  * @pcs_quad: represents pcsquad of user input serdes
3458  * @pcs_port: represents the pcs port number part of above pcs quad
3459  * @fec_type: represents FEC stats type
3460  * @output: pointer to the caller-supplied buffer to return requested fec stats
3461  *
3462  * Return: non-zero status on error and 0 on success.
3463  */
3464 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3465 			 enum ice_fec_stats_types fec_type, u32 *output)
3466 {
3467 	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3468 	struct ice_sbq_msg_input msg = {};
3469 	u32 receiver_id, reg_offset;
3470 	int err;
3471 
3472 	if (pcs_port > 3)
3473 		return -EINVAL;
3474 
3475 	reg_offset = fec_reg[pcs_port][fec_type];
3476 
3477 	if (pcs_quad == 0)
3478 		receiver_id = FEC_RECEIVER_ID_PCS0;
3479 	else if (pcs_quad == 1)
3480 		receiver_id = FEC_RECEIVER_ID_PCS1;
3481 	else
3482 		return -EINVAL;
3483 
3484 	msg.msg_addr_low = lower_16_bits(reg_offset);
3485 	msg.msg_addr_high = receiver_id;
3486 	msg.opcode = ice_sbq_msg_rd;
3487 	msg.dest_dev = rmn_0;
3488 
3489 	err = ice_sbq_rw_reg(hw, &msg, flag);
3490 	if (err)
3491 		return err;
3492 
3493 	*output = msg.data;
3494 	return 0;
3495 }
3496 
3497 /**
3498  * ice_cache_phy_user_req
3499  * @pi: port information structure
3500  * @cache_data: PHY logging data
3501  * @cache_mode: PHY logging mode
3502  *
3503  * Log the user request on (FC, FEC, SPEED) for later use.
3504  */
3505 static void
3506 ice_cache_phy_user_req(struct ice_port_info *pi,
3507 		       struct ice_phy_cache_mode_data cache_data,
3508 		       enum ice_phy_cache_mode cache_mode)
3509 {
3510 	if (!pi)
3511 		return;
3512 
3513 	switch (cache_mode) {
3514 	case ICE_FC_MODE:
3515 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3516 		break;
3517 	case ICE_SPEED_MODE:
3518 		pi->phy.curr_user_speed_req =
3519 			cache_data.data.curr_user_speed_req;
3520 		break;
3521 	case ICE_FEC_MODE:
3522 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3523 		break;
3524 	default:
3525 		break;
3526 	}
3527 }
3528 
3529 /**
3530  * ice_caps_to_fc_mode
3531  * @caps: PHY capabilities
3532  *
3533  * Convert PHY FC capabilities to ice FC mode
3534  */
3535 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3536 {
3537 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3538 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3539 		return ICE_FC_FULL;
3540 
3541 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3542 		return ICE_FC_TX_PAUSE;
3543 
3544 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3545 		return ICE_FC_RX_PAUSE;
3546 
3547 	return ICE_FC_NONE;
3548 }
3549 
3550 /**
3551  * ice_caps_to_fec_mode
3552  * @caps: PHY capabilities
3553  * @fec_options: Link FEC options
3554  *
3555  * Convert PHY FEC capabilities to ice FEC mode
3556  */
3557 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3558 {
3559 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3560 		return ICE_FEC_AUTO;
3561 
3562 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3563 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3564 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3565 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3566 		return ICE_FEC_BASER;
3567 
3568 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3569 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3570 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3571 		return ICE_FEC_RS;
3572 
3573 	return ICE_FEC_NONE;
3574 }
3575 
3576 /**
3577  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3578  * @pi: port information structure
3579  * @cfg: PHY configuration data to set FC mode
3580  * @req_mode: FC mode to configure
3581  */
3582 int
3583 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3584 	       enum ice_fc_mode req_mode)
3585 {
3586 	struct ice_phy_cache_mode_data cache_data;
3587 	u8 pause_mask = 0x0;
3588 
3589 	if (!pi || !cfg)
3590 		return -EINVAL;
3591 
3592 	switch (req_mode) {
3593 	case ICE_FC_FULL:
3594 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3595 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3596 		break;
3597 	case ICE_FC_RX_PAUSE:
3598 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3599 		break;
3600 	case ICE_FC_TX_PAUSE:
3601 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3602 		break;
3603 	default:
3604 		break;
3605 	}
3606 
3607 	/* clear the old pause settings */
3608 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3609 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3610 
3611 	/* set the new capabilities */
3612 	cfg->caps |= pause_mask;
3613 
3614 	/* Cache user FC request */
3615 	cache_data.data.curr_user_fc_req = req_mode;
3616 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3617 
3618 	return 0;
3619 }
3620 
3621 /**
3622  * ice_set_fc
3623  * @pi: port information structure
3624  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3625  * @ena_auto_link_update: enable automatic link update
3626  *
3627  * Set the requested flow control mode.
3628  */
3629 int
3630 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3631 {
3632 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3633 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3634 	struct ice_hw *hw;
3635 	int status;
3636 
3637 	if (!pi || !aq_failures)
3638 		return -EINVAL;
3639 
3640 	*aq_failures = 0;
3641 	hw = pi->hw;
3642 
3643 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3644 	if (!pcaps)
3645 		return -ENOMEM;
3646 
3647 	/* Get the current PHY config */
3648 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3649 				     pcaps, NULL);
3650 	if (status) {
3651 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3652 		goto out;
3653 	}
3654 
3655 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3656 
3657 	/* Configure the set PHY data */
3658 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3659 	if (status)
3660 		goto out;
3661 
3662 	/* If the capabilities have changed, then set the new config */
3663 	if (cfg.caps != pcaps->caps) {
3664 		int retry_count, retry_max = 10;
3665 
3666 		/* Auto restart link so settings take effect */
3667 		if (ena_auto_link_update)
3668 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3669 
3670 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3671 		if (status) {
3672 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3673 			goto out;
3674 		}
3675 
3676 		/* Update the link info
3677 		 * It sometimes takes a really long time for link to
3678 		 * come back from the atomic reset. Thus, we wait a
3679 		 * little bit.
3680 		 */
3681 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3682 			status = ice_update_link_info(pi);
3683 
3684 			if (!status)
3685 				break;
3686 
3687 			mdelay(100);
3688 		}
3689 
3690 		if (status)
3691 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3692 	}
3693 
3694 out:
3695 	return status;
3696 }
3697 
3698 /**
3699  * ice_phy_caps_equals_cfg
3700  * @phy_caps: PHY capabilities
3701  * @phy_cfg: PHY configuration
3702  *
3703  * Helper function to determine if PHY capabilities matches PHY
3704  * configuration
3705  */
3706 bool
3707 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3708 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3709 {
3710 	u8 caps_mask, cfg_mask;
3711 
3712 	if (!phy_caps || !phy_cfg)
3713 		return false;
3714 
3715 	/* These bits are not common between capabilities and configuration.
3716 	 * Do not use them to determine equality.
3717 	 */
3718 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3719 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3720 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3721 
3722 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3723 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3724 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3725 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3726 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3727 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3728 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3729 		return false;
3730 
3731 	return true;
3732 }
3733 
3734 /**
3735  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3736  * @pi: port information structure
3737  * @caps: PHY ability structure to copy date from
3738  * @cfg: PHY configuration structure to copy data to
3739  *
3740  * Helper function to copy AQC PHY get ability data to PHY set configuration
3741  * data structure
3742  */
3743 void
3744 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3745 			 struct ice_aqc_get_phy_caps_data *caps,
3746 			 struct ice_aqc_set_phy_cfg_data *cfg)
3747 {
3748 	if (!pi || !caps || !cfg)
3749 		return;
3750 
3751 	memset(cfg, 0, sizeof(*cfg));
3752 	cfg->phy_type_low = caps->phy_type_low;
3753 	cfg->phy_type_high = caps->phy_type_high;
3754 	cfg->caps = caps->caps;
3755 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3756 	cfg->eee_cap = caps->eee_cap;
3757 	cfg->eeer_value = caps->eeer_value;
3758 	cfg->link_fec_opt = caps->link_fec_options;
3759 	cfg->module_compliance_enforcement =
3760 		caps->module_compliance_enforcement;
3761 }
3762 
3763 /**
3764  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3765  * @pi: port information structure
3766  * @cfg: PHY configuration data to set FEC mode
3767  * @fec: FEC mode to configure
3768  */
3769 int
3770 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3771 		enum ice_fec_mode fec)
3772 {
3773 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3774 	struct ice_hw *hw;
3775 	int status;
3776 
3777 	if (!pi || !cfg)
3778 		return -EINVAL;
3779 
3780 	hw = pi->hw;
3781 
3782 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3783 	if (!pcaps)
3784 		return -ENOMEM;
3785 
3786 	status = ice_aq_get_phy_caps(pi, false,
3787 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3788 				      ICE_AQC_REPORT_DFLT_CFG :
3789 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3790 	if (status)
3791 		goto out;
3792 
3793 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3794 	cfg->link_fec_opt = pcaps->link_fec_options;
3795 
3796 	switch (fec) {
3797 	case ICE_FEC_BASER:
3798 		/* Clear RS bits, and AND BASE-R ability
3799 		 * bits and OR request bits.
3800 		 */
3801 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3802 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3803 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3804 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3805 		break;
3806 	case ICE_FEC_RS:
3807 		/* Clear BASE-R bits, and AND RS ability
3808 		 * bits and OR request bits.
3809 		 */
3810 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3811 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3812 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3813 		break;
3814 	case ICE_FEC_NONE:
3815 		/* Clear all FEC option bits. */
3816 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3817 		break;
3818 	case ICE_FEC_AUTO:
3819 		/* AND auto FEC bit, and all caps bits. */
3820 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3821 		cfg->link_fec_opt |= pcaps->link_fec_options;
3822 		break;
3823 	default:
3824 		status = -EINVAL;
3825 		break;
3826 	}
3827 
3828 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3829 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3830 		struct ice_link_default_override_tlv tlv = { 0 };
3831 
3832 		status = ice_get_link_default_override(&tlv, pi);
3833 		if (status)
3834 			goto out;
3835 
3836 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3837 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3838 			cfg->link_fec_opt = tlv.fec_options;
3839 	}
3840 
3841 out:
3842 	return status;
3843 }
3844 
3845 /**
3846  * ice_get_link_status - get status of the HW network link
3847  * @pi: port information structure
3848  * @link_up: pointer to bool (true/false = linkup/linkdown)
3849  *
3850  * Variable link_up is true if link is up, false if link is down.
3851  * The variable link_up is invalid if status is non zero. As a
3852  * result of this call, link status reporting becomes enabled
3853  */
3854 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3855 {
3856 	struct ice_phy_info *phy_info;
3857 	int status = 0;
3858 
3859 	if (!pi || !link_up)
3860 		return -EINVAL;
3861 
3862 	phy_info = &pi->phy;
3863 
3864 	if (phy_info->get_link_info) {
3865 		status = ice_update_link_info(pi);
3866 
3867 		if (status)
3868 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3869 				  status);
3870 	}
3871 
3872 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3873 
3874 	return status;
3875 }
3876 
3877 /**
3878  * ice_aq_set_link_restart_an
3879  * @pi: pointer to the port information structure
3880  * @ena_link: if true: enable link, if false: disable link
3881  * @cd: pointer to command details structure or NULL
3882  *
3883  * Sets up the link and restarts the Auto-Negotiation over the link.
3884  */
3885 int
3886 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3887 			   struct ice_sq_cd *cd)
3888 {
3889 	struct ice_aqc_restart_an *cmd;
3890 	struct ice_aq_desc desc;
3891 
3892 	cmd = &desc.params.restart_an;
3893 
3894 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3895 
3896 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3897 	cmd->lport_num = pi->lport;
3898 	if (ena_link)
3899 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3900 	else
3901 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3902 
3903 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3904 }
3905 
3906 /**
3907  * ice_aq_set_event_mask
3908  * @hw: pointer to the HW struct
3909  * @port_num: port number of the physical function
3910  * @mask: event mask to be set
3911  * @cd: pointer to command details structure or NULL
3912  *
3913  * Set event mask (0x0613)
3914  */
3915 int
3916 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3917 		      struct ice_sq_cd *cd)
3918 {
3919 	struct ice_aqc_set_event_mask *cmd;
3920 	struct ice_aq_desc desc;
3921 
3922 	cmd = &desc.params.set_event_mask;
3923 
3924 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3925 
3926 	cmd->lport_num = port_num;
3927 
3928 	cmd->event_mask = cpu_to_le16(mask);
3929 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3930 }
3931 
3932 /**
3933  * ice_aq_set_mac_loopback
3934  * @hw: pointer to the HW struct
3935  * @ena_lpbk: Enable or Disable loopback
3936  * @cd: pointer to command details structure or NULL
3937  *
3938  * Enable/disable loopback on a given port
3939  */
3940 int
3941 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3942 {
3943 	struct ice_aqc_set_mac_lb *cmd;
3944 	struct ice_aq_desc desc;
3945 
3946 	cmd = &desc.params.set_mac_lb;
3947 
3948 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3949 	if (ena_lpbk)
3950 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3951 
3952 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3953 }
3954 
3955 /**
3956  * ice_aq_set_port_id_led
3957  * @pi: pointer to the port information
3958  * @is_orig_mode: is this LED set to original mode (by the net-list)
3959  * @cd: pointer to command details structure or NULL
3960  *
3961  * Set LED value for the given port (0x06e9)
3962  */
3963 int
3964 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3965 		       struct ice_sq_cd *cd)
3966 {
3967 	struct ice_aqc_set_port_id_led *cmd;
3968 	struct ice_hw *hw = pi->hw;
3969 	struct ice_aq_desc desc;
3970 
3971 	cmd = &desc.params.set_port_id_led;
3972 
3973 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3974 
3975 	if (is_orig_mode)
3976 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3977 	else
3978 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3979 
3980 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3981 }
3982 
3983 /**
3984  * ice_aq_get_port_options
3985  * @hw: pointer to the HW struct
3986  * @options: buffer for the resultant port options
3987  * @option_count: input - size of the buffer in port options structures,
3988  *                output - number of returned port options
3989  * @lport: logical port to call the command with (optional)
3990  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3991  *               when PF owns more than 1 port it must be true
3992  * @active_option_idx: index of active port option in returned buffer
3993  * @active_option_valid: active option in returned buffer is valid
3994  * @pending_option_idx: index of pending port option in returned buffer
3995  * @pending_option_valid: pending option in returned buffer is valid
3996  *
3997  * Calls Get Port Options AQC (0x06ea) and verifies result.
3998  */
3999 int
4000 ice_aq_get_port_options(struct ice_hw *hw,
4001 			struct ice_aqc_get_port_options_elem *options,
4002 			u8 *option_count, u8 lport, bool lport_valid,
4003 			u8 *active_option_idx, bool *active_option_valid,
4004 			u8 *pending_option_idx, bool *pending_option_valid)
4005 {
4006 	struct ice_aqc_get_port_options *cmd;
4007 	struct ice_aq_desc desc;
4008 	int status;
4009 	u8 i;
4010 
4011 	/* options buffer shall be able to hold max returned options */
4012 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4013 		return -EINVAL;
4014 
4015 	cmd = &desc.params.get_port_options;
4016 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4017 
4018 	if (lport_valid)
4019 		cmd->lport_num = lport;
4020 	cmd->lport_num_valid = lport_valid;
4021 
4022 	status = ice_aq_send_cmd(hw, &desc, options,
4023 				 *option_count * sizeof(*options), NULL);
4024 	if (status)
4025 		return status;
4026 
4027 	/* verify direct FW response & set output parameters */
4028 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4029 				  cmd->port_options_count);
4030 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4031 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4032 					 cmd->port_options);
4033 	if (*active_option_valid) {
4034 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4035 					       cmd->port_options);
4036 		if (*active_option_idx > (*option_count - 1))
4037 			return -EIO;
4038 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4039 			  *active_option_idx);
4040 	}
4041 
4042 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4043 					  cmd->pending_port_option_status);
4044 	if (*pending_option_valid) {
4045 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4046 						cmd->pending_port_option_status);
4047 		if (*pending_option_idx > (*option_count - 1))
4048 			return -EIO;
4049 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4050 			  *pending_option_idx);
4051 	}
4052 
4053 	/* mask output options fields */
4054 	for (i = 0; i < *option_count; i++) {
4055 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4056 					   options[i].pmd);
4057 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4058 						      options[i].max_lane_speed);
4059 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4060 			  options[i].pmd, options[i].max_lane_speed);
4061 	}
4062 
4063 	return 0;
4064 }
4065 
4066 /**
4067  * ice_aq_set_port_option
4068  * @hw: pointer to the HW struct
4069  * @lport: logical port to call the command with
4070  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4071  *               when PF owns more than 1 port it must be true
4072  * @new_option: new port option to be written
4073  *
4074  * Calls Set Port Options AQC (0x06eb).
4075  */
4076 int
4077 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4078 		       u8 new_option)
4079 {
4080 	struct ice_aqc_set_port_option *cmd;
4081 	struct ice_aq_desc desc;
4082 
4083 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4084 		return -EINVAL;
4085 
4086 	cmd = &desc.params.set_port_option;
4087 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4088 
4089 	if (lport_valid)
4090 		cmd->lport_num = lport;
4091 
4092 	cmd->lport_num_valid = lport_valid;
4093 	cmd->selected_port_option = new_option;
4094 
4095 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4096 }
4097 
4098 /**
4099  * ice_aq_sff_eeprom
4100  * @hw: pointer to the HW struct
4101  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4102  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4103  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4104  * @page: QSFP page
4105  * @set_page: set or ignore the page
4106  * @data: pointer to data buffer to be read/written to the I2C device.
4107  * @length: 1-16 for read, 1 for write.
4108  * @write: 0 read, 1 for write.
4109  * @cd: pointer to command details structure or NULL
4110  *
4111  * Read/Write SFF EEPROM (0x06EE)
4112  */
4113 int
4114 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4115 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4116 		  bool write, struct ice_sq_cd *cd)
4117 {
4118 	struct ice_aqc_sff_eeprom *cmd;
4119 	struct ice_aq_desc desc;
4120 	u16 i2c_bus_addr;
4121 	int status;
4122 
4123 	if (!data || (mem_addr & 0xff00))
4124 		return -EINVAL;
4125 
4126 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4127 	cmd = &desc.params.read_write_sff_param;
4128 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4129 	cmd->lport_num = (u8)(lport & 0xff);
4130 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4131 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4132 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4133 	if (write)
4134 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4135 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4136 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4137 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4138 
4139 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4140 	return status;
4141 }
4142 
4143 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4144 {
4145 	switch (type) {
4146 	case ICE_LUT_VSI:
4147 		return ICE_LUT_VSI_SIZE;
4148 	case ICE_LUT_GLOBAL:
4149 		return ICE_LUT_GLOBAL_SIZE;
4150 	case ICE_LUT_PF:
4151 		return ICE_LUT_PF_SIZE;
4152 	}
4153 	WARN_ONCE(1, "incorrect type passed");
4154 	return ICE_LUT_VSI_SIZE;
4155 }
4156 
4157 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4158 {
4159 	switch (size) {
4160 	case ICE_LUT_VSI_SIZE:
4161 		return ICE_AQC_LUT_SIZE_SMALL;
4162 	case ICE_LUT_GLOBAL_SIZE:
4163 		return ICE_AQC_LUT_SIZE_512;
4164 	case ICE_LUT_PF_SIZE:
4165 		return ICE_AQC_LUT_SIZE_2K;
4166 	}
4167 	WARN_ONCE(1, "incorrect size passed");
4168 	return 0;
4169 }
4170 
4171 /**
4172  * __ice_aq_get_set_rss_lut
4173  * @hw: pointer to the hardware structure
4174  * @params: RSS LUT parameters
4175  * @set: set true to set the table, false to get the table
4176  *
4177  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4178  */
4179 static int
4180 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4181 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4182 {
4183 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4184 	enum ice_lut_type lut_type = params->lut_type;
4185 	struct ice_aqc_get_set_rss_lut *desc_params;
4186 	enum ice_aqc_lut_flags flags;
4187 	enum ice_lut_size lut_size;
4188 	struct ice_aq_desc desc;
4189 	u8 *lut = params->lut;
4190 
4191 
4192 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4193 		return -EINVAL;
4194 
4195 	lut_size = ice_lut_type_to_size(lut_type);
4196 	if (lut_size > params->lut_size)
4197 		return -EINVAL;
4198 	else if (set && lut_size != params->lut_size)
4199 		return -EINVAL;
4200 
4201 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4202 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4203 	if (set)
4204 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4205 
4206 	desc_params = &desc.params.get_set_rss_lut;
4207 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4208 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4209 
4210 	if (lut_type == ICE_LUT_GLOBAL)
4211 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4212 					  params->global_lut_id);
4213 
4214 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4215 	desc_params->flags = cpu_to_le16(flags);
4216 
4217 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4218 }
4219 
4220 /**
4221  * ice_aq_get_rss_lut
4222  * @hw: pointer to the hardware structure
4223  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4224  *
4225  * get the RSS lookup table, PF or VSI type
4226  */
4227 int
4228 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4229 {
4230 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4231 }
4232 
4233 /**
4234  * ice_aq_set_rss_lut
4235  * @hw: pointer to the hardware structure
4236  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4237  *
4238  * set the RSS lookup table, PF or VSI type
4239  */
4240 int
4241 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4242 {
4243 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4244 }
4245 
4246 /**
4247  * __ice_aq_get_set_rss_key
4248  * @hw: pointer to the HW struct
4249  * @vsi_id: VSI FW index
4250  * @key: pointer to key info struct
4251  * @set: set true to set the key, false to get the key
4252  *
4253  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4254  */
4255 static int
4256 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4257 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4258 {
4259 	struct ice_aqc_get_set_rss_key *desc_params;
4260 	u16 key_size = sizeof(*key);
4261 	struct ice_aq_desc desc;
4262 
4263 	if (set) {
4264 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4265 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4266 	} else {
4267 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4268 	}
4269 
4270 	desc_params = &desc.params.get_set_rss_key;
4271 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4272 
4273 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4274 }
4275 
4276 /**
4277  * ice_aq_get_rss_key
4278  * @hw: pointer to the HW struct
4279  * @vsi_handle: software VSI handle
4280  * @key: pointer to key info struct
4281  *
4282  * get the RSS key per VSI
4283  */
4284 int
4285 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4286 		   struct ice_aqc_get_set_rss_keys *key)
4287 {
4288 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4289 		return -EINVAL;
4290 
4291 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4292 					key, false);
4293 }
4294 
4295 /**
4296  * ice_aq_set_rss_key
4297  * @hw: pointer to the HW struct
4298  * @vsi_handle: software VSI handle
4299  * @keys: pointer to key info struct
4300  *
4301  * set the RSS key per VSI
4302  */
4303 int
4304 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4305 		   struct ice_aqc_get_set_rss_keys *keys)
4306 {
4307 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4308 		return -EINVAL;
4309 
4310 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4311 					keys, true);
4312 }
4313 
4314 /**
4315  * ice_aq_add_lan_txq
4316  * @hw: pointer to the hardware structure
4317  * @num_qgrps: Number of added queue groups
4318  * @qg_list: list of queue groups to be added
4319  * @buf_size: size of buffer for indirect command
4320  * @cd: pointer to command details structure or NULL
4321  *
4322  * Add Tx LAN queue (0x0C30)
4323  *
4324  * NOTE:
4325  * Prior to calling add Tx LAN queue:
4326  * Initialize the following as part of the Tx queue context:
4327  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4328  * Cache profile and Packet shaper profile.
4329  *
4330  * After add Tx LAN queue AQ command is completed:
4331  * Interrupts should be associated with specific queues,
4332  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4333  * flow.
4334  */
4335 static int
4336 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4337 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4338 		   struct ice_sq_cd *cd)
4339 {
4340 	struct ice_aqc_add_tx_qgrp *list;
4341 	struct ice_aqc_add_txqs *cmd;
4342 	struct ice_aq_desc desc;
4343 	u16 i, sum_size = 0;
4344 
4345 	cmd = &desc.params.add_txqs;
4346 
4347 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4348 
4349 	if (!qg_list)
4350 		return -EINVAL;
4351 
4352 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4353 		return -EINVAL;
4354 
4355 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4356 		sum_size += struct_size(list, txqs, list->num_txqs);
4357 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4358 						      list->num_txqs);
4359 	}
4360 
4361 	if (buf_size != sum_size)
4362 		return -EINVAL;
4363 
4364 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4365 
4366 	cmd->num_qgrps = num_qgrps;
4367 
4368 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4369 }
4370 
4371 /**
4372  * ice_aq_dis_lan_txq
4373  * @hw: pointer to the hardware structure
4374  * @num_qgrps: number of groups in the list
4375  * @qg_list: the list of groups to disable
4376  * @buf_size: the total size of the qg_list buffer in bytes
4377  * @rst_src: if called due to reset, specifies the reset source
4378  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4379  * @cd: pointer to command details structure or NULL
4380  *
4381  * Disable LAN Tx queue (0x0C31)
4382  */
4383 static int
4384 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4385 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4386 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4387 		   struct ice_sq_cd *cd)
4388 {
4389 	struct ice_aqc_dis_txq_item *item;
4390 	struct ice_aqc_dis_txqs *cmd;
4391 	struct ice_aq_desc desc;
4392 	u16 vmvf_and_timeout;
4393 	u16 i, sz = 0;
4394 	int status;
4395 
4396 	cmd = &desc.params.dis_txqs;
4397 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4398 
4399 	/* qg_list can be NULL only in VM/VF reset flow */
4400 	if (!qg_list && !rst_src)
4401 		return -EINVAL;
4402 
4403 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4404 		return -EINVAL;
4405 
4406 	cmd->num_entries = num_qgrps;
4407 
4408 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4409 
4410 	switch (rst_src) {
4411 	case ICE_VM_RESET:
4412 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4413 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4414 		break;
4415 	case ICE_VF_RESET:
4416 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4417 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4418 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4419 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4420 		break;
4421 	case ICE_NO_RESET:
4422 	default:
4423 		break;
4424 	}
4425 
4426 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4427 
4428 	/* flush pipe on time out */
4429 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4430 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4431 	if (!qg_list)
4432 		goto do_aq;
4433 
4434 	/* set RD bit to indicate that command buffer is provided by the driver
4435 	 * and it needs to be read by the firmware
4436 	 */
4437 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4438 
4439 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4440 		u16 item_size = struct_size(item, q_id, item->num_qs);
4441 
4442 		/* If the num of queues is even, add 2 bytes of padding */
4443 		if ((item->num_qs % 2) == 0)
4444 			item_size += 2;
4445 
4446 		sz += item_size;
4447 
4448 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4449 	}
4450 
4451 	if (buf_size != sz)
4452 		return -EINVAL;
4453 
4454 do_aq:
4455 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4456 	if (status) {
4457 		if (!qg_list)
4458 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4459 				  vmvf_num, hw->adminq.sq_last_status);
4460 		else
4461 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4462 				  le16_to_cpu(qg_list[0].q_id[0]),
4463 				  hw->adminq.sq_last_status);
4464 	}
4465 	return status;
4466 }
4467 
4468 /**
4469  * ice_aq_cfg_lan_txq
4470  * @hw: pointer to the hardware structure
4471  * @buf: buffer for command
4472  * @buf_size: size of buffer in bytes
4473  * @num_qs: number of queues being configured
4474  * @oldport: origination lport
4475  * @newport: destination lport
4476  * @cd: pointer to command details structure or NULL
4477  *
4478  * Move/Configure LAN Tx queue (0x0C32)
4479  *
4480  * There is a better AQ command to use for moving nodes, so only coding
4481  * this one for configuring the node.
4482  */
4483 int
4484 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4485 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4486 		   struct ice_sq_cd *cd)
4487 {
4488 	struct ice_aqc_cfg_txqs *cmd;
4489 	struct ice_aq_desc desc;
4490 	int status;
4491 
4492 	cmd = &desc.params.cfg_txqs;
4493 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4494 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4495 
4496 	if (!buf)
4497 		return -EINVAL;
4498 
4499 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4500 	cmd->num_qs = num_qs;
4501 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4502 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4503 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4504 	cmd->blocked_cgds = 0;
4505 
4506 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4507 	if (status)
4508 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4509 			  hw->adminq.sq_last_status);
4510 	return status;
4511 }
4512 
4513 /**
4514  * ice_aq_add_rdma_qsets
4515  * @hw: pointer to the hardware structure
4516  * @num_qset_grps: Number of RDMA Qset groups
4517  * @qset_list: list of Qset groups to be added
4518  * @buf_size: size of buffer for indirect command
4519  * @cd: pointer to command details structure or NULL
4520  *
4521  * Add Tx RDMA Qsets (0x0C33)
4522  */
4523 static int
4524 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4525 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4526 		      u16 buf_size, struct ice_sq_cd *cd)
4527 {
4528 	struct ice_aqc_add_rdma_qset_data *list;
4529 	struct ice_aqc_add_rdma_qset *cmd;
4530 	struct ice_aq_desc desc;
4531 	u16 i, sum_size = 0;
4532 
4533 	cmd = &desc.params.add_rdma_qset;
4534 
4535 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4536 
4537 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4538 		return -EINVAL;
4539 
4540 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4541 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4542 
4543 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4544 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4545 							     num_qsets);
4546 	}
4547 
4548 	if (buf_size != sum_size)
4549 		return -EINVAL;
4550 
4551 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4552 
4553 	cmd->num_qset_grps = num_qset_grps;
4554 
4555 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4556 }
4557 
4558 /* End of FW Admin Queue command wrappers */
4559 
4560 /**
4561  * ice_pack_ctx_byte - write a byte to a packed context structure
4562  * @src_ctx: unpacked source context structure
4563  * @dest_ctx: packed destination context data
4564  * @ce_info: context element description
4565  */
4566 static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4567 			      const struct ice_ctx_ele *ce_info)
4568 {
4569 	u8 src_byte, dest_byte, mask;
4570 	u8 *from, *dest;
4571 	u16 shift_width;
4572 
4573 	/* copy from the next struct field */
4574 	from = src_ctx + ce_info->offset;
4575 
4576 	/* prepare the bits and mask */
4577 	shift_width = ce_info->lsb % 8;
4578 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4579 
4580 	src_byte = *from;
4581 	src_byte <<= shift_width;
4582 	src_byte &= mask;
4583 
4584 	/* get the current bits from the target bit string */
4585 	dest = dest_ctx + (ce_info->lsb / 8);
4586 
4587 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4588 
4589 	dest_byte &= ~mask;	/* get the bits not changing */
4590 	dest_byte |= src_byte;	/* add in the new bits */
4591 
4592 	/* put it all back */
4593 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4594 }
4595 
4596 /**
4597  * ice_pack_ctx_word - write a word to a packed context structure
4598  * @src_ctx: unpacked source context structure
4599  * @dest_ctx: packed destination context data
4600  * @ce_info: context element description
4601  */
4602 static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4603 			      const struct ice_ctx_ele *ce_info)
4604 {
4605 	u16 src_word, mask;
4606 	__le16 dest_word;
4607 	u8 *from, *dest;
4608 	u16 shift_width;
4609 
4610 	/* copy from the next struct field */
4611 	from = src_ctx + ce_info->offset;
4612 
4613 	/* prepare the bits and mask */
4614 	shift_width = ce_info->lsb % 8;
4615 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4616 
4617 	/* don't swizzle the bits until after the mask because the mask bits
4618 	 * will be in a different bit position on big endian machines
4619 	 */
4620 	src_word = *(u16 *)from;
4621 	src_word <<= shift_width;
4622 	src_word &= mask;
4623 
4624 	/* get the current bits from the target bit string */
4625 	dest = dest_ctx + (ce_info->lsb / 8);
4626 
4627 	memcpy(&dest_word, dest, sizeof(dest_word));
4628 
4629 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4630 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4631 
4632 	/* put it all back */
4633 	memcpy(dest, &dest_word, sizeof(dest_word));
4634 }
4635 
4636 /**
4637  * ice_pack_ctx_dword - write a dword to a packed context structure
4638  * @src_ctx: unpacked source context structure
4639  * @dest_ctx: packed destination context data
4640  * @ce_info: context element description
4641  */
4642 static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4643 			       const struct ice_ctx_ele *ce_info)
4644 {
4645 	u32 src_dword, mask;
4646 	__le32 dest_dword;
4647 	u8 *from, *dest;
4648 	u16 shift_width;
4649 
4650 	/* copy from the next struct field */
4651 	from = src_ctx + ce_info->offset;
4652 
4653 	/* prepare the bits and mask */
4654 	shift_width = ce_info->lsb % 8;
4655 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4656 
4657 	/* don't swizzle the bits until after the mask because the mask bits
4658 	 * will be in a different bit position on big endian machines
4659 	 */
4660 	src_dword = *(u32 *)from;
4661 	src_dword <<= shift_width;
4662 	src_dword &= mask;
4663 
4664 	/* get the current bits from the target bit string */
4665 	dest = dest_ctx + (ce_info->lsb / 8);
4666 
4667 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4668 
4669 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4670 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4671 
4672 	/* put it all back */
4673 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4674 }
4675 
4676 /**
4677  * ice_pack_ctx_qword - write a qword to a packed context structure
4678  * @src_ctx: unpacked source context structure
4679  * @dest_ctx: packed destination context data
4680  * @ce_info: context element description
4681  */
4682 static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4683 			       const struct ice_ctx_ele *ce_info)
4684 {
4685 	u64 src_qword, mask;
4686 	__le64 dest_qword;
4687 	u8 *from, *dest;
4688 	u16 shift_width;
4689 
4690 	/* copy from the next struct field */
4691 	from = src_ctx + ce_info->offset;
4692 
4693 	/* prepare the bits and mask */
4694 	shift_width = ce_info->lsb % 8;
4695 	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4696 
4697 	/* don't swizzle the bits until after the mask because the mask bits
4698 	 * will be in a different bit position on big endian machines
4699 	 */
4700 	src_qword = *(u64 *)from;
4701 	src_qword <<= shift_width;
4702 	src_qword &= mask;
4703 
4704 	/* get the current bits from the target bit string */
4705 	dest = dest_ctx + (ce_info->lsb / 8);
4706 
4707 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4708 
4709 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4710 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4711 
4712 	/* put it all back */
4713 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4714 }
4715 
4716 /**
4717  * ice_set_ctx - set context bits in packed structure
4718  * @hw: pointer to the hardware structure
4719  * @src_ctx:  pointer to a generic non-packed context structure
4720  * @dest_ctx: pointer to memory for the packed structure
4721  * @ce_info: List of Rx context elements
4722  */
4723 int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4724 		const struct ice_ctx_ele *ce_info)
4725 {
4726 	int f;
4727 
4728 	for (f = 0; ce_info[f].width; f++) {
4729 		/* We have to deal with each element of the FW response
4730 		 * using the correct size so that we are correct regardless
4731 		 * of the endianness of the machine.
4732 		 */
4733 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4734 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4735 				  f, ce_info[f].width, ce_info[f].size_of);
4736 			continue;
4737 		}
4738 		switch (ce_info[f].size_of) {
4739 		case sizeof(u8):
4740 			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4741 			break;
4742 		case sizeof(u16):
4743 			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4744 			break;
4745 		case sizeof(u32):
4746 			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4747 			break;
4748 		case sizeof(u64):
4749 			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4750 			break;
4751 		default:
4752 			return -EINVAL;
4753 		}
4754 	}
4755 
4756 	return 0;
4757 }
4758 
4759 /**
4760  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4761  * @hw: pointer to the HW struct
4762  * @vsi_handle: software VSI handle
4763  * @tc: TC number
4764  * @q_handle: software queue handle
4765  */
4766 struct ice_q_ctx *
4767 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4768 {
4769 	struct ice_vsi_ctx *vsi;
4770 	struct ice_q_ctx *q_ctx;
4771 
4772 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4773 	if (!vsi)
4774 		return NULL;
4775 	if (q_handle >= vsi->num_lan_q_entries[tc])
4776 		return NULL;
4777 	if (!vsi->lan_q_ctx[tc])
4778 		return NULL;
4779 	q_ctx = vsi->lan_q_ctx[tc];
4780 	return &q_ctx[q_handle];
4781 }
4782 
4783 /**
4784  * ice_ena_vsi_txq
4785  * @pi: port information structure
4786  * @vsi_handle: software VSI handle
4787  * @tc: TC number
4788  * @q_handle: software queue handle
4789  * @num_qgrps: Number of added queue groups
4790  * @buf: list of queue groups to be added
4791  * @buf_size: size of buffer for indirect command
4792  * @cd: pointer to command details structure or NULL
4793  *
4794  * This function adds one LAN queue
4795  */
4796 int
4797 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4798 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4799 		struct ice_sq_cd *cd)
4800 {
4801 	struct ice_aqc_txsched_elem_data node = { 0 };
4802 	struct ice_sched_node *parent;
4803 	struct ice_q_ctx *q_ctx;
4804 	struct ice_hw *hw;
4805 	int status;
4806 
4807 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4808 		return -EIO;
4809 
4810 	if (num_qgrps > 1 || buf->num_txqs > 1)
4811 		return -ENOSPC;
4812 
4813 	hw = pi->hw;
4814 
4815 	if (!ice_is_vsi_valid(hw, vsi_handle))
4816 		return -EINVAL;
4817 
4818 	mutex_lock(&pi->sched_lock);
4819 
4820 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4821 	if (!q_ctx) {
4822 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4823 			  q_handle);
4824 		status = -EINVAL;
4825 		goto ena_txq_exit;
4826 	}
4827 
4828 	/* find a parent node */
4829 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4830 					    ICE_SCHED_NODE_OWNER_LAN);
4831 	if (!parent) {
4832 		status = -EINVAL;
4833 		goto ena_txq_exit;
4834 	}
4835 
4836 	buf->parent_teid = parent->info.node_teid;
4837 	node.parent_teid = parent->info.node_teid;
4838 	/* Mark that the values in the "generic" section as valid. The default
4839 	 * value in the "generic" section is zero. This means that :
4840 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4841 	 * - 0 priority among siblings, indicated by Bit 1-3.
4842 	 * - WFQ, indicated by Bit 4.
4843 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4844 	 * Bit 5-6.
4845 	 * - Bit 7 is reserved.
4846 	 * Without setting the generic section as valid in valid_sections, the
4847 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4848 	 */
4849 	buf->txqs[0].info.valid_sections =
4850 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4851 		ICE_AQC_ELEM_VALID_EIR;
4852 	buf->txqs[0].info.generic = 0;
4853 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4854 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4855 	buf->txqs[0].info.cir_bw.bw_alloc =
4856 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4857 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4858 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4859 	buf->txqs[0].info.eir_bw.bw_alloc =
4860 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4861 
4862 	/* add the LAN queue */
4863 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4864 	if (status) {
4865 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4866 			  le16_to_cpu(buf->txqs[0].txq_id),
4867 			  hw->adminq.sq_last_status);
4868 		goto ena_txq_exit;
4869 	}
4870 
4871 	node.node_teid = buf->txqs[0].q_teid;
4872 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4873 	q_ctx->q_handle = q_handle;
4874 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4875 
4876 	/* add a leaf node into scheduler tree queue layer */
4877 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4878 	if (!status)
4879 		status = ice_sched_replay_q_bw(pi, q_ctx);
4880 
4881 ena_txq_exit:
4882 	mutex_unlock(&pi->sched_lock);
4883 	return status;
4884 }
4885 
4886 /**
4887  * ice_dis_vsi_txq
4888  * @pi: port information structure
4889  * @vsi_handle: software VSI handle
4890  * @tc: TC number
4891  * @num_queues: number of queues
4892  * @q_handles: pointer to software queue handle array
4893  * @q_ids: pointer to the q_id array
4894  * @q_teids: pointer to queue node teids
4895  * @rst_src: if called due to reset, specifies the reset source
4896  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4897  * @cd: pointer to command details structure or NULL
4898  *
4899  * This function removes queues and their corresponding nodes in SW DB
4900  */
4901 int
4902 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4903 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4904 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4905 		struct ice_sq_cd *cd)
4906 {
4907 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4908 	u16 i, buf_size = __struct_size(qg_list);
4909 	struct ice_q_ctx *q_ctx;
4910 	int status = -ENOENT;
4911 	struct ice_hw *hw;
4912 
4913 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4914 		return -EIO;
4915 
4916 	hw = pi->hw;
4917 
4918 	if (!num_queues) {
4919 		/* if queue is disabled already yet the disable queue command
4920 		 * has to be sent to complete the VF reset, then call
4921 		 * ice_aq_dis_lan_txq without any queue information
4922 		 */
4923 		if (rst_src)
4924 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4925 						  vmvf_num, NULL);
4926 		return -EIO;
4927 	}
4928 
4929 	mutex_lock(&pi->sched_lock);
4930 
4931 	for (i = 0; i < num_queues; i++) {
4932 		struct ice_sched_node *node;
4933 
4934 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4935 		if (!node)
4936 			continue;
4937 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4938 		if (!q_ctx) {
4939 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4940 				  q_handles[i]);
4941 			continue;
4942 		}
4943 		if (q_ctx->q_handle != q_handles[i]) {
4944 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4945 				  q_ctx->q_handle, q_handles[i]);
4946 			continue;
4947 		}
4948 		qg_list->parent_teid = node->info.parent_teid;
4949 		qg_list->num_qs = 1;
4950 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4951 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4952 					    vmvf_num, cd);
4953 
4954 		if (status)
4955 			break;
4956 		ice_free_sched_node(pi, node);
4957 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4958 		q_ctx->q_teid = ICE_INVAL_TEID;
4959 	}
4960 	mutex_unlock(&pi->sched_lock);
4961 	return status;
4962 }
4963 
4964 /**
4965  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4966  * @pi: port information structure
4967  * @vsi_handle: software VSI handle
4968  * @tc_bitmap: TC bitmap
4969  * @maxqs: max queues array per TC
4970  * @owner: LAN or RDMA
4971  *
4972  * This function adds/updates the VSI queues per TC.
4973  */
4974 static int
4975 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4976 	       u16 *maxqs, u8 owner)
4977 {
4978 	int status = 0;
4979 	u8 i;
4980 
4981 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4982 		return -EIO;
4983 
4984 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4985 		return -EINVAL;
4986 
4987 	mutex_lock(&pi->sched_lock);
4988 
4989 	ice_for_each_traffic_class(i) {
4990 		/* configuration is possible only if TC node is present */
4991 		if (!ice_sched_get_tc_node(pi, i))
4992 			continue;
4993 
4994 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4995 					   ice_is_tc_ena(tc_bitmap, i));
4996 		if (status)
4997 			break;
4998 	}
4999 
5000 	mutex_unlock(&pi->sched_lock);
5001 	return status;
5002 }
5003 
5004 /**
5005  * ice_cfg_vsi_lan - configure VSI LAN queues
5006  * @pi: port information structure
5007  * @vsi_handle: software VSI handle
5008  * @tc_bitmap: TC bitmap
5009  * @max_lanqs: max LAN queues array per TC
5010  *
5011  * This function adds/updates the VSI LAN queues per TC.
5012  */
5013 int
5014 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5015 		u16 *max_lanqs)
5016 {
5017 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5018 			      ICE_SCHED_NODE_OWNER_LAN);
5019 }
5020 
5021 /**
5022  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5023  * @pi: port information structure
5024  * @vsi_handle: software VSI handle
5025  * @tc_bitmap: TC bitmap
5026  * @max_rdmaqs: max RDMA queues array per TC
5027  *
5028  * This function adds/updates the VSI RDMA queues per TC.
5029  */
5030 int
5031 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5032 		 u16 *max_rdmaqs)
5033 {
5034 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5035 			      ICE_SCHED_NODE_OWNER_RDMA);
5036 }
5037 
5038 /**
5039  * ice_ena_vsi_rdma_qset
5040  * @pi: port information structure
5041  * @vsi_handle: software VSI handle
5042  * @tc: TC number
5043  * @rdma_qset: pointer to RDMA Qset
5044  * @num_qsets: number of RDMA Qsets
5045  * @qset_teid: pointer to Qset node TEIDs
5046  *
5047  * This function adds RDMA Qset
5048  */
5049 int
5050 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5051 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5052 {
5053 	struct ice_aqc_txsched_elem_data node = { 0 };
5054 	struct ice_aqc_add_rdma_qset_data *buf;
5055 	struct ice_sched_node *parent;
5056 	struct ice_hw *hw;
5057 	u16 i, buf_size;
5058 	int ret;
5059 
5060 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5061 		return -EIO;
5062 	hw = pi->hw;
5063 
5064 	if (!ice_is_vsi_valid(hw, vsi_handle))
5065 		return -EINVAL;
5066 
5067 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5068 	buf = kzalloc(buf_size, GFP_KERNEL);
5069 	if (!buf)
5070 		return -ENOMEM;
5071 	mutex_lock(&pi->sched_lock);
5072 
5073 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5074 					    ICE_SCHED_NODE_OWNER_RDMA);
5075 	if (!parent) {
5076 		ret = -EINVAL;
5077 		goto rdma_error_exit;
5078 	}
5079 	buf->parent_teid = parent->info.node_teid;
5080 	node.parent_teid = parent->info.node_teid;
5081 
5082 	buf->num_qsets = cpu_to_le16(num_qsets);
5083 	for (i = 0; i < num_qsets; i++) {
5084 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5085 		buf->rdma_qsets[i].info.valid_sections =
5086 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5087 			ICE_AQC_ELEM_VALID_EIR;
5088 		buf->rdma_qsets[i].info.generic = 0;
5089 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5090 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5091 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5092 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5093 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5094 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5095 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5096 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5097 	}
5098 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5099 	if (ret) {
5100 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5101 		goto rdma_error_exit;
5102 	}
5103 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5104 	for (i = 0; i < num_qsets; i++) {
5105 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5106 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5107 					 &node, NULL);
5108 		if (ret)
5109 			break;
5110 		qset_teid[i] = le32_to_cpu(node.node_teid);
5111 	}
5112 rdma_error_exit:
5113 	mutex_unlock(&pi->sched_lock);
5114 	kfree(buf);
5115 	return ret;
5116 }
5117 
5118 /**
5119  * ice_dis_vsi_rdma_qset - free RDMA resources
5120  * @pi: port_info struct
5121  * @count: number of RDMA Qsets to free
5122  * @qset_teid: TEID of Qset node
5123  * @q_id: list of queue IDs being disabled
5124  */
5125 int
5126 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5127 		      u16 *q_id)
5128 {
5129 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5130 	u16 qg_size = __struct_size(qg_list);
5131 	struct ice_hw *hw;
5132 	int status = 0;
5133 	int i;
5134 
5135 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5136 		return -EIO;
5137 
5138 	hw = pi->hw;
5139 
5140 	mutex_lock(&pi->sched_lock);
5141 
5142 	for (i = 0; i < count; i++) {
5143 		struct ice_sched_node *node;
5144 
5145 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5146 		if (!node)
5147 			continue;
5148 
5149 		qg_list->parent_teid = node->info.parent_teid;
5150 		qg_list->num_qs = 1;
5151 		qg_list->q_id[0] =
5152 			cpu_to_le16(q_id[i] |
5153 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5154 
5155 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5156 					    ICE_NO_RESET, 0, NULL);
5157 		if (status)
5158 			break;
5159 
5160 		ice_free_sched_node(pi, node);
5161 	}
5162 
5163 	mutex_unlock(&pi->sched_lock);
5164 	return status;
5165 }
5166 
5167 /**
5168  * ice_aq_get_cgu_abilities - get cgu abilities
5169  * @hw: pointer to the HW struct
5170  * @abilities: CGU abilities
5171  *
5172  * Get CGU abilities (0x0C61)
5173  * Return: 0 on success or negative value on failure.
5174  */
5175 int
5176 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5177 			 struct ice_aqc_get_cgu_abilities *abilities)
5178 {
5179 	struct ice_aq_desc desc;
5180 
5181 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5182 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5183 }
5184 
5185 /**
5186  * ice_aq_set_input_pin_cfg - set input pin config
5187  * @hw: pointer to the HW struct
5188  * @input_idx: Input index
5189  * @flags1: Input flags
5190  * @flags2: Input flags
5191  * @freq: Frequency in Hz
5192  * @phase_delay: Delay in ps
5193  *
5194  * Set CGU input config (0x0C62)
5195  * Return: 0 on success or negative value on failure.
5196  */
5197 int
5198 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5199 			 u32 freq, s32 phase_delay)
5200 {
5201 	struct ice_aqc_set_cgu_input_config *cmd;
5202 	struct ice_aq_desc desc;
5203 
5204 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5205 	cmd = &desc.params.set_cgu_input_config;
5206 	cmd->input_idx = input_idx;
5207 	cmd->flags1 = flags1;
5208 	cmd->flags2 = flags2;
5209 	cmd->freq = cpu_to_le32(freq);
5210 	cmd->phase_delay = cpu_to_le32(phase_delay);
5211 
5212 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5213 }
5214 
5215 /**
5216  * ice_aq_get_input_pin_cfg - get input pin config
5217  * @hw: pointer to the HW struct
5218  * @input_idx: Input index
5219  * @status: Pin status
5220  * @type: Pin type
5221  * @flags1: Input flags
5222  * @flags2: Input flags
5223  * @freq: Frequency in Hz
5224  * @phase_delay: Delay in ps
5225  *
5226  * Get CGU input config (0x0C63)
5227  * Return: 0 on success or negative value on failure.
5228  */
5229 int
5230 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5231 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5232 {
5233 	struct ice_aqc_get_cgu_input_config *cmd;
5234 	struct ice_aq_desc desc;
5235 	int ret;
5236 
5237 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5238 	cmd = &desc.params.get_cgu_input_config;
5239 	cmd->input_idx = input_idx;
5240 
5241 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5242 	if (!ret) {
5243 		if (status)
5244 			*status = cmd->status;
5245 		if (type)
5246 			*type = cmd->type;
5247 		if (flags1)
5248 			*flags1 = cmd->flags1;
5249 		if (flags2)
5250 			*flags2 = cmd->flags2;
5251 		if (freq)
5252 			*freq = le32_to_cpu(cmd->freq);
5253 		if (phase_delay)
5254 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5255 	}
5256 
5257 	return ret;
5258 }
5259 
5260 /**
5261  * ice_aq_set_output_pin_cfg - set output pin config
5262  * @hw: pointer to the HW struct
5263  * @output_idx: Output index
5264  * @flags: Output flags
5265  * @src_sel: Index of DPLL block
5266  * @freq: Output frequency
5267  * @phase_delay: Output phase compensation
5268  *
5269  * Set CGU output config (0x0C64)
5270  * Return: 0 on success or negative value on failure.
5271  */
5272 int
5273 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5274 			  u8 src_sel, u32 freq, s32 phase_delay)
5275 {
5276 	struct ice_aqc_set_cgu_output_config *cmd;
5277 	struct ice_aq_desc desc;
5278 
5279 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5280 	cmd = &desc.params.set_cgu_output_config;
5281 	cmd->output_idx = output_idx;
5282 	cmd->flags = flags;
5283 	cmd->src_sel = src_sel;
5284 	cmd->freq = cpu_to_le32(freq);
5285 	cmd->phase_delay = cpu_to_le32(phase_delay);
5286 
5287 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5288 }
5289 
5290 /**
5291  * ice_aq_get_output_pin_cfg - get output pin config
5292  * @hw: pointer to the HW struct
5293  * @output_idx: Output index
5294  * @flags: Output flags
5295  * @src_sel: Internal DPLL source
5296  * @freq: Output frequency
5297  * @src_freq: Source frequency
5298  *
5299  * Get CGU output config (0x0C65)
5300  * Return: 0 on success or negative value on failure.
5301  */
5302 int
5303 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5304 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5305 {
5306 	struct ice_aqc_get_cgu_output_config *cmd;
5307 	struct ice_aq_desc desc;
5308 	int ret;
5309 
5310 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5311 	cmd = &desc.params.get_cgu_output_config;
5312 	cmd->output_idx = output_idx;
5313 
5314 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5315 	if (!ret) {
5316 		if (flags)
5317 			*flags = cmd->flags;
5318 		if (src_sel)
5319 			*src_sel = cmd->src_sel;
5320 		if (freq)
5321 			*freq = le32_to_cpu(cmd->freq);
5322 		if (src_freq)
5323 			*src_freq = le32_to_cpu(cmd->src_freq);
5324 	}
5325 
5326 	return ret;
5327 }
5328 
5329 /**
5330  * ice_aq_get_cgu_dpll_status - get dpll status
5331  * @hw: pointer to the HW struct
5332  * @dpll_num: DPLL index
5333  * @ref_state: Reference clock state
5334  * @config: current DPLL config
5335  * @dpll_state: current DPLL state
5336  * @phase_offset: Phase offset in ns
5337  * @eec_mode: EEC_mode
5338  *
5339  * Get CGU DPLL status (0x0C66)
5340  * Return: 0 on success or negative value on failure.
5341  */
5342 int
5343 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5344 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5345 			   u8 *eec_mode)
5346 {
5347 	struct ice_aqc_get_cgu_dpll_status *cmd;
5348 	struct ice_aq_desc desc;
5349 	int status;
5350 
5351 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5352 	cmd = &desc.params.get_cgu_dpll_status;
5353 	cmd->dpll_num = dpll_num;
5354 
5355 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5356 	if (!status) {
5357 		*ref_state = cmd->ref_state;
5358 		*dpll_state = cmd->dpll_state;
5359 		*config = cmd->config;
5360 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5361 		*phase_offset <<= 32;
5362 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5363 		*phase_offset = sign_extend64(*phase_offset, 47);
5364 		*eec_mode = cmd->eec_mode;
5365 	}
5366 
5367 	return status;
5368 }
5369 
5370 /**
5371  * ice_aq_set_cgu_dpll_config - set dpll config
5372  * @hw: pointer to the HW struct
5373  * @dpll_num: DPLL index
5374  * @ref_state: Reference clock state
5375  * @config: DPLL config
5376  * @eec_mode: EEC mode
5377  *
5378  * Set CGU DPLL config (0x0C67)
5379  * Return: 0 on success or negative value on failure.
5380  */
5381 int
5382 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5383 			   u8 config, u8 eec_mode)
5384 {
5385 	struct ice_aqc_set_cgu_dpll_config *cmd;
5386 	struct ice_aq_desc desc;
5387 
5388 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5389 	cmd = &desc.params.set_cgu_dpll_config;
5390 	cmd->dpll_num = dpll_num;
5391 	cmd->ref_state = ref_state;
5392 	cmd->config = config;
5393 	cmd->eec_mode = eec_mode;
5394 
5395 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5396 }
5397 
5398 /**
5399  * ice_aq_set_cgu_ref_prio - set input reference priority
5400  * @hw: pointer to the HW struct
5401  * @dpll_num: DPLL index
5402  * @ref_idx: Reference pin index
5403  * @ref_priority: Reference input priority
5404  *
5405  * Set CGU reference priority (0x0C68)
5406  * Return: 0 on success or negative value on failure.
5407  */
5408 int
5409 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5410 			u8 ref_priority)
5411 {
5412 	struct ice_aqc_set_cgu_ref_prio *cmd;
5413 	struct ice_aq_desc desc;
5414 
5415 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5416 	cmd = &desc.params.set_cgu_ref_prio;
5417 	cmd->dpll_num = dpll_num;
5418 	cmd->ref_idx = ref_idx;
5419 	cmd->ref_priority = ref_priority;
5420 
5421 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5422 }
5423 
5424 /**
5425  * ice_aq_get_cgu_ref_prio - get input reference priority
5426  * @hw: pointer to the HW struct
5427  * @dpll_num: DPLL index
5428  * @ref_idx: Reference pin index
5429  * @ref_prio: Reference input priority
5430  *
5431  * Get CGU reference priority (0x0C69)
5432  * Return: 0 on success or negative value on failure.
5433  */
5434 int
5435 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5436 			u8 *ref_prio)
5437 {
5438 	struct ice_aqc_get_cgu_ref_prio *cmd;
5439 	struct ice_aq_desc desc;
5440 	int status;
5441 
5442 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5443 	cmd = &desc.params.get_cgu_ref_prio;
5444 	cmd->dpll_num = dpll_num;
5445 	cmd->ref_idx = ref_idx;
5446 
5447 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5448 	if (!status)
5449 		*ref_prio = cmd->ref_priority;
5450 
5451 	return status;
5452 }
5453 
5454 /**
5455  * ice_aq_get_cgu_info - get cgu info
5456  * @hw: pointer to the HW struct
5457  * @cgu_id: CGU ID
5458  * @cgu_cfg_ver: CGU config version
5459  * @cgu_fw_ver: CGU firmware version
5460  *
5461  * Get CGU info (0x0C6A)
5462  * Return: 0 on success or negative value on failure.
5463  */
5464 int
5465 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5466 		    u32 *cgu_fw_ver)
5467 {
5468 	struct ice_aqc_get_cgu_info *cmd;
5469 	struct ice_aq_desc desc;
5470 	int status;
5471 
5472 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5473 	cmd = &desc.params.get_cgu_info;
5474 
5475 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5476 	if (!status) {
5477 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5478 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5479 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5480 	}
5481 
5482 	return status;
5483 }
5484 
5485 /**
5486  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5487  * @hw: pointer to the HW struct
5488  * @phy_output: PHY reference clock output pin
5489  * @enable: GPIO state to be applied
5490  * @freq: PHY output frequency
5491  *
5492  * Set phy recovered clock as reference (0x0630)
5493  * Return: 0 on success or negative value on failure.
5494  */
5495 int
5496 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5497 			   u32 *freq)
5498 {
5499 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5500 	struct ice_aq_desc desc;
5501 	int status;
5502 
5503 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5504 	cmd = &desc.params.set_phy_rec_clk_out;
5505 	cmd->phy_output = phy_output;
5506 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5507 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5508 	cmd->freq = cpu_to_le32(*freq);
5509 
5510 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5511 	if (!status)
5512 		*freq = le32_to_cpu(cmd->freq);
5513 
5514 	return status;
5515 }
5516 
5517 /**
5518  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5519  * @hw: pointer to the HW struct
5520  * @phy_output: PHY reference clock output pin
5521  * @port_num: Port number
5522  * @flags: PHY flags
5523  * @node_handle: PHY output frequency
5524  *
5525  * Get PHY recovered clock output info (0x0631)
5526  * Return: 0 on success or negative value on failure.
5527  */
5528 int
5529 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5530 			   u8 *flags, u16 *node_handle)
5531 {
5532 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5533 	struct ice_aq_desc desc;
5534 	int status;
5535 
5536 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5537 	cmd = &desc.params.get_phy_rec_clk_out;
5538 	cmd->phy_output = *phy_output;
5539 
5540 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5541 	if (!status) {
5542 		*phy_output = cmd->phy_output;
5543 		if (port_num)
5544 			*port_num = cmd->port_num;
5545 		if (flags)
5546 			*flags = cmd->flags;
5547 		if (node_handle)
5548 			*node_handle = le16_to_cpu(cmd->node_handle);
5549 	}
5550 
5551 	return status;
5552 }
5553 
5554 /**
5555  * ice_aq_get_sensor_reading
5556  * @hw: pointer to the HW struct
5557  * @data: pointer to data to be read from the sensor
5558  *
5559  * Get sensor reading (0x0632)
5560  */
5561 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5562 			      struct ice_aqc_get_sensor_reading_resp *data)
5563 {
5564 	struct ice_aqc_get_sensor_reading *cmd;
5565 	struct ice_aq_desc desc;
5566 	int status;
5567 
5568 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5569 	cmd = &desc.params.get_sensor_reading;
5570 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5571 #define ICE_INTERNAL_TEMP_SENSOR	0
5572 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5573 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5574 
5575 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5576 	if (!status)
5577 		memcpy(data, &desc.params.get_sensor_reading_resp,
5578 		       sizeof(*data));
5579 
5580 	return status;
5581 }
5582 
5583 /**
5584  * ice_replay_pre_init - replay pre initialization
5585  * @hw: pointer to the HW struct
5586  *
5587  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5588  */
5589 static int ice_replay_pre_init(struct ice_hw *hw)
5590 {
5591 	struct ice_switch_info *sw = hw->switch_info;
5592 	u8 i;
5593 
5594 	/* Delete old entries from replay filter list head if there is any */
5595 	ice_rm_all_sw_replay_rule_info(hw);
5596 	/* In start of replay, move entries into replay_rules list, it
5597 	 * will allow adding rules entries back to filt_rules list,
5598 	 * which is operational list.
5599 	 */
5600 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5601 		list_replace_init(&sw->recp_list[i].filt_rules,
5602 				  &sw->recp_list[i].filt_replay_rules);
5603 	ice_sched_replay_agg_vsi_preinit(hw);
5604 
5605 	return 0;
5606 }
5607 
5608 /**
5609  * ice_replay_vsi - replay VSI configuration
5610  * @hw: pointer to the HW struct
5611  * @vsi_handle: driver VSI handle
5612  *
5613  * Restore all VSI configuration after reset. It is required to call this
5614  * function with main VSI first.
5615  */
5616 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5617 {
5618 	int status;
5619 
5620 	if (!ice_is_vsi_valid(hw, vsi_handle))
5621 		return -EINVAL;
5622 
5623 	/* Replay pre-initialization if there is any */
5624 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5625 		status = ice_replay_pre_init(hw);
5626 		if (status)
5627 			return status;
5628 	}
5629 	/* Replay per VSI all RSS configurations */
5630 	status = ice_replay_rss_cfg(hw, vsi_handle);
5631 	if (status)
5632 		return status;
5633 	/* Replay per VSI all filters */
5634 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5635 	if (!status)
5636 		status = ice_replay_vsi_agg(hw, vsi_handle);
5637 	return status;
5638 }
5639 
5640 /**
5641  * ice_replay_post - post replay configuration cleanup
5642  * @hw: pointer to the HW struct
5643  *
5644  * Post replay cleanup.
5645  */
5646 void ice_replay_post(struct ice_hw *hw)
5647 {
5648 	/* Delete old entries from replay filter list head */
5649 	ice_rm_all_sw_replay_rule_info(hw);
5650 	ice_sched_replay_agg(hw);
5651 }
5652 
5653 /**
5654  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5655  * @hw: ptr to the hardware info
5656  * @reg: offset of 64 bit HW register to read from
5657  * @prev_stat_loaded: bool to specify if previous stats are loaded
5658  * @prev_stat: ptr to previous loaded stat value
5659  * @cur_stat: ptr to current stat value
5660  */
5661 void
5662 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5663 		  u64 *prev_stat, u64 *cur_stat)
5664 {
5665 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5666 
5667 	/* device stats are not reset at PFR, they likely will not be zeroed
5668 	 * when the driver starts. Thus, save the value from the first read
5669 	 * without adding to the statistic value so that we report stats which
5670 	 * count up from zero.
5671 	 */
5672 	if (!prev_stat_loaded) {
5673 		*prev_stat = new_data;
5674 		return;
5675 	}
5676 
5677 	/* Calculate the difference between the new and old values, and then
5678 	 * add it to the software stat value.
5679 	 */
5680 	if (new_data >= *prev_stat)
5681 		*cur_stat += new_data - *prev_stat;
5682 	else
5683 		/* to manage the potential roll-over */
5684 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5685 
5686 	/* Update the previously stored value to prepare for next read */
5687 	*prev_stat = new_data;
5688 }
5689 
5690 /**
5691  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5692  * @hw: ptr to the hardware info
5693  * @reg: offset of HW register to read from
5694  * @prev_stat_loaded: bool to specify if previous stats are loaded
5695  * @prev_stat: ptr to previous loaded stat value
5696  * @cur_stat: ptr to current stat value
5697  */
5698 void
5699 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5700 		  u64 *prev_stat, u64 *cur_stat)
5701 {
5702 	u32 new_data;
5703 
5704 	new_data = rd32(hw, reg);
5705 
5706 	/* device stats are not reset at PFR, they likely will not be zeroed
5707 	 * when the driver starts. Thus, save the value from the first read
5708 	 * without adding to the statistic value so that we report stats which
5709 	 * count up from zero.
5710 	 */
5711 	if (!prev_stat_loaded) {
5712 		*prev_stat = new_data;
5713 		return;
5714 	}
5715 
5716 	/* Calculate the difference between the new and old values, and then
5717 	 * add it to the software stat value.
5718 	 */
5719 	if (new_data >= *prev_stat)
5720 		*cur_stat += new_data - *prev_stat;
5721 	else
5722 		/* to manage the potential roll-over */
5723 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5724 
5725 	/* Update the previously stored value to prepare for next read */
5726 	*prev_stat = new_data;
5727 }
5728 
5729 /**
5730  * ice_sched_query_elem - query element information from HW
5731  * @hw: pointer to the HW struct
5732  * @node_teid: node TEID to be queried
5733  * @buf: buffer to element information
5734  *
5735  * This function queries HW element information
5736  */
5737 int
5738 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5739 		     struct ice_aqc_txsched_elem_data *buf)
5740 {
5741 	u16 buf_size, num_elem_ret = 0;
5742 	int status;
5743 
5744 	buf_size = sizeof(*buf);
5745 	memset(buf, 0, buf_size);
5746 	buf->node_teid = cpu_to_le32(node_teid);
5747 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5748 					  NULL);
5749 	if (status || num_elem_ret != 1)
5750 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5751 	return status;
5752 }
5753 
5754 /**
5755  * ice_aq_read_i2c
5756  * @hw: pointer to the hw struct
5757  * @topo_addr: topology address for a device to communicate with
5758  * @bus_addr: 7-bit I2C bus address
5759  * @addr: I2C memory address (I2C offset) with up to 16 bits
5760  * @params: I2C parameters: bit [7] - Repeated start,
5761  *			    bits [6:5] data offset size,
5762  *			    bit [4] - I2C address type,
5763  *			    bits [3:0] - data size to read (0-16 bytes)
5764  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5765  * @cd: pointer to command details structure or NULL
5766  *
5767  * Read I2C (0x06E2)
5768  */
5769 int
5770 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5771 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5772 		struct ice_sq_cd *cd)
5773 {
5774 	struct ice_aq_desc desc = { 0 };
5775 	struct ice_aqc_i2c *cmd;
5776 	u8 data_size;
5777 	int status;
5778 
5779 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5780 	cmd = &desc.params.read_write_i2c;
5781 
5782 	if (!data)
5783 		return -EINVAL;
5784 
5785 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5786 
5787 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5788 	cmd->topo_addr = topo_addr;
5789 	cmd->i2c_params = params;
5790 	cmd->i2c_addr = addr;
5791 
5792 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5793 	if (!status) {
5794 		struct ice_aqc_read_i2c_resp *resp;
5795 		u8 i;
5796 
5797 		resp = &desc.params.read_i2c_resp;
5798 		for (i = 0; i < data_size; i++) {
5799 			*data = resp->i2c_data[i];
5800 			data++;
5801 		}
5802 	}
5803 
5804 	return status;
5805 }
5806 
5807 /**
5808  * ice_aq_write_i2c
5809  * @hw: pointer to the hw struct
5810  * @topo_addr: topology address for a device to communicate with
5811  * @bus_addr: 7-bit I2C bus address
5812  * @addr: I2C memory address (I2C offset) with up to 16 bits
5813  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5814  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5815  * @cd: pointer to command details structure or NULL
5816  *
5817  * Write I2C (0x06E3)
5818  *
5819  * * Return:
5820  * * 0             - Successful write to the i2c device
5821  * * -EINVAL       - Data size greater than 4 bytes
5822  * * -EIO          - FW error
5823  */
5824 int
5825 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5826 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5827 		 struct ice_sq_cd *cd)
5828 {
5829 	struct ice_aq_desc desc = { 0 };
5830 	struct ice_aqc_i2c *cmd;
5831 	u8 data_size;
5832 
5833 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5834 	cmd = &desc.params.read_write_i2c;
5835 
5836 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5837 
5838 	/* data_size limited to 4 */
5839 	if (data_size > 4)
5840 		return -EINVAL;
5841 
5842 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5843 	cmd->topo_addr = topo_addr;
5844 	cmd->i2c_params = params;
5845 	cmd->i2c_addr = addr;
5846 
5847 	memcpy(cmd->i2c_data, data, data_size);
5848 
5849 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5850 }
5851 
5852 /**
5853  * ice_aq_set_gpio
5854  * @hw: pointer to the hw struct
5855  * @gpio_ctrl_handle: GPIO controller node handle
5856  * @pin_idx: IO Number of the GPIO that needs to be set
5857  * @value: SW provide IO value to set in the LSB
5858  * @cd: pointer to command details structure or NULL
5859  *
5860  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5861  */
5862 int
5863 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5864 		struct ice_sq_cd *cd)
5865 {
5866 	struct ice_aqc_gpio *cmd;
5867 	struct ice_aq_desc desc;
5868 
5869 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5870 	cmd = &desc.params.read_write_gpio;
5871 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5872 	cmd->gpio_num = pin_idx;
5873 	cmd->gpio_val = value ? 1 : 0;
5874 
5875 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5876 }
5877 
5878 /**
5879  * ice_aq_get_gpio
5880  * @hw: pointer to the hw struct
5881  * @gpio_ctrl_handle: GPIO controller node handle
5882  * @pin_idx: IO Number of the GPIO that needs to be set
5883  * @value: IO value read
5884  * @cd: pointer to command details structure or NULL
5885  *
5886  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5887  * the topology
5888  */
5889 int
5890 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5891 		bool *value, struct ice_sq_cd *cd)
5892 {
5893 	struct ice_aqc_gpio *cmd;
5894 	struct ice_aq_desc desc;
5895 	int status;
5896 
5897 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5898 	cmd = &desc.params.read_write_gpio;
5899 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5900 	cmd->gpio_num = pin_idx;
5901 
5902 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5903 	if (status)
5904 		return status;
5905 
5906 	*value = !!cmd->gpio_val;
5907 	return 0;
5908 }
5909 
5910 /**
5911  * ice_is_fw_api_min_ver
5912  * @hw: pointer to the hardware structure
5913  * @maj: major version
5914  * @min: minor version
5915  * @patch: patch version
5916  *
5917  * Checks if the firmware API is minimum version
5918  */
5919 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5920 {
5921 	if (hw->api_maj_ver == maj) {
5922 		if (hw->api_min_ver > min)
5923 			return true;
5924 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5925 			return true;
5926 	} else if (hw->api_maj_ver > maj) {
5927 		return true;
5928 	}
5929 
5930 	return false;
5931 }
5932 
5933 /**
5934  * ice_fw_supports_link_override
5935  * @hw: pointer to the hardware structure
5936  *
5937  * Checks if the firmware supports link override
5938  */
5939 bool ice_fw_supports_link_override(struct ice_hw *hw)
5940 {
5941 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5942 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5943 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5944 }
5945 
5946 /**
5947  * ice_get_link_default_override
5948  * @ldo: pointer to the link default override struct
5949  * @pi: pointer to the port info struct
5950  *
5951  * Gets the link default override for a port
5952  */
5953 int
5954 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5955 			      struct ice_port_info *pi)
5956 {
5957 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5958 	struct ice_hw *hw = pi->hw;
5959 	int status;
5960 
5961 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5962 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5963 	if (status) {
5964 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5965 		return status;
5966 	}
5967 
5968 	/* Each port has its own config; calculate for our port */
5969 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5970 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5971 
5972 	/* link options first */
5973 	status = ice_read_sr_word(hw, tlv_start, &buf);
5974 	if (status) {
5975 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5976 		return status;
5977 	}
5978 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5979 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5980 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5981 
5982 	/* link PHY config */
5983 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5984 	status = ice_read_sr_word(hw, offset, &buf);
5985 	if (status) {
5986 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5987 		return status;
5988 	}
5989 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5990 
5991 	/* PHY types low */
5992 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5993 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5994 		status = ice_read_sr_word(hw, (offset + i), &buf);
5995 		if (status) {
5996 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5997 			return status;
5998 		}
5999 		/* shift 16 bits at a time to fill 64 bits */
6000 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6001 	}
6002 
6003 	/* PHY types high */
6004 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6005 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6006 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6007 		status = ice_read_sr_word(hw, (offset + i), &buf);
6008 		if (status) {
6009 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6010 			return status;
6011 		}
6012 		/* shift 16 bits at a time to fill 64 bits */
6013 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6014 	}
6015 
6016 	return status;
6017 }
6018 
6019 /**
6020  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6021  * @caps: get PHY capability data
6022  */
6023 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6024 {
6025 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6026 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6027 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6028 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6029 		return true;
6030 
6031 	return false;
6032 }
6033 
6034 /**
6035  * ice_aq_set_lldp_mib - Set the LLDP MIB
6036  * @hw: pointer to the HW struct
6037  * @mib_type: Local, Remote or both Local and Remote MIBs
6038  * @buf: pointer to the caller-supplied buffer to store the MIB block
6039  * @buf_size: size of the buffer (in bytes)
6040  * @cd: pointer to command details structure or NULL
6041  *
6042  * Set the LLDP MIB. (0x0A08)
6043  */
6044 int
6045 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6046 		    struct ice_sq_cd *cd)
6047 {
6048 	struct ice_aqc_lldp_set_local_mib *cmd;
6049 	struct ice_aq_desc desc;
6050 
6051 	cmd = &desc.params.lldp_set_mib;
6052 
6053 	if (buf_size == 0 || !buf)
6054 		return -EINVAL;
6055 
6056 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6057 
6058 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6059 	desc.datalen = cpu_to_le16(buf_size);
6060 
6061 	cmd->type = mib_type;
6062 	cmd->length = cpu_to_le16(buf_size);
6063 
6064 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6065 }
6066 
6067 /**
6068  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6069  * @hw: pointer to HW struct
6070  */
6071 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6072 {
6073 	if (hw->mac_type != ICE_MAC_E810)
6074 		return false;
6075 
6076 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6077 				     ICE_FW_API_LLDP_FLTR_MIN,
6078 				     ICE_FW_API_LLDP_FLTR_PATCH);
6079 }
6080 
6081 /**
6082  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6083  * @hw: pointer to HW struct
6084  * @vsi_num: absolute HW index for VSI
6085  * @add: boolean for if adding or removing a filter
6086  */
6087 int
6088 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6089 {
6090 	struct ice_aqc_lldp_filter_ctrl *cmd;
6091 	struct ice_aq_desc desc;
6092 
6093 	cmd = &desc.params.lldp_filter_ctrl;
6094 
6095 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6096 
6097 	if (add)
6098 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6099 	else
6100 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6101 
6102 	cmd->vsi_num = cpu_to_le16(vsi_num);
6103 
6104 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6105 }
6106 
6107 /**
6108  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6109  * @hw: pointer to HW struct
6110  */
6111 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6112 {
6113 	struct ice_aq_desc desc;
6114 
6115 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6116 
6117 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6118 }
6119 
6120 /**
6121  * ice_fw_supports_report_dflt_cfg
6122  * @hw: pointer to the hardware structure
6123  *
6124  * Checks if the firmware supports report default configuration
6125  */
6126 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6127 {
6128 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6129 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6130 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6131 }
6132 
6133 /* each of the indexes into the following array match the speed of a return
6134  * value from the list of AQ returned speeds like the range:
6135  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6136  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6137  * array. The array is defined as 15 elements long because the link_speed
6138  * returned by the firmware is a 16 bit * value, but is indexed
6139  * by [fls(speed) - 1]
6140  */
6141 static const u32 ice_aq_to_link_speed[] = {
6142 	SPEED_10,	/* BIT(0) */
6143 	SPEED_100,
6144 	SPEED_1000,
6145 	SPEED_2500,
6146 	SPEED_5000,
6147 	SPEED_10000,
6148 	SPEED_20000,
6149 	SPEED_25000,
6150 	SPEED_40000,
6151 	SPEED_50000,
6152 	SPEED_100000,	/* BIT(10) */
6153 	SPEED_200000,
6154 };
6155 
6156 /**
6157  * ice_get_link_speed - get integer speed from table
6158  * @index: array index from fls(aq speed) - 1
6159  *
6160  * Returns: u32 value containing integer speed
6161  */
6162 u32 ice_get_link_speed(u16 index)
6163 {
6164 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6165 		return 0;
6166 
6167 	return ice_aq_to_link_speed[index];
6168 }
6169