1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice_common.h" 5 #include "ice_sched.h" 6 #include "ice_adminq_cmd.h" 7 #include "ice_flow.h" 8 9 #define ICE_PF_RESET_WAIT_COUNT 300 10 11 /** 12 * ice_set_mac_type - Sets MAC type 13 * @hw: pointer to the HW structure 14 * 15 * This function sets the MAC type of the adapter based on the 16 * vendor ID and device ID stored in the HW structure. 17 */ 18 static int ice_set_mac_type(struct ice_hw *hw) 19 { 20 if (hw->vendor_id != PCI_VENDOR_ID_INTEL) 21 return -ENODEV; 22 23 switch (hw->device_id) { 24 case ICE_DEV_ID_E810C_BACKPLANE: 25 case ICE_DEV_ID_E810C_QSFP: 26 case ICE_DEV_ID_E810C_SFP: 27 case ICE_DEV_ID_E810_XXV_BACKPLANE: 28 case ICE_DEV_ID_E810_XXV_QSFP: 29 case ICE_DEV_ID_E810_XXV_SFP: 30 hw->mac_type = ICE_MAC_E810; 31 break; 32 case ICE_DEV_ID_E823C_10G_BASE_T: 33 case ICE_DEV_ID_E823C_BACKPLANE: 34 case ICE_DEV_ID_E823C_QSFP: 35 case ICE_DEV_ID_E823C_SFP: 36 case ICE_DEV_ID_E823C_SGMII: 37 case ICE_DEV_ID_E822C_10G_BASE_T: 38 case ICE_DEV_ID_E822C_BACKPLANE: 39 case ICE_DEV_ID_E822C_QSFP: 40 case ICE_DEV_ID_E822C_SFP: 41 case ICE_DEV_ID_E822C_SGMII: 42 case ICE_DEV_ID_E822L_10G_BASE_T: 43 case ICE_DEV_ID_E822L_BACKPLANE: 44 case ICE_DEV_ID_E822L_SFP: 45 case ICE_DEV_ID_E822L_SGMII: 46 case ICE_DEV_ID_E823L_10G_BASE_T: 47 case ICE_DEV_ID_E823L_1GBE: 48 case ICE_DEV_ID_E823L_BACKPLANE: 49 case ICE_DEV_ID_E823L_QSFP: 50 case ICE_DEV_ID_E823L_SFP: 51 hw->mac_type = ICE_MAC_GENERIC; 52 break; 53 default: 54 hw->mac_type = ICE_MAC_UNKNOWN; 55 break; 56 } 57 58 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type); 59 return 0; 60 } 61 62 /** 63 * ice_is_e810 64 * @hw: pointer to the hardware structure 65 * 66 * returns true if the device is E810 based, false if not. 67 */ 68 bool ice_is_e810(struct ice_hw *hw) 69 { 70 return hw->mac_type == ICE_MAC_E810; 71 } 72 73 /** 74 * ice_is_e810t 75 * @hw: pointer to the hardware structure 76 * 77 * returns true if the device is E810T based, false if not. 78 */ 79 bool ice_is_e810t(struct ice_hw *hw) 80 { 81 switch (hw->device_id) { 82 case ICE_DEV_ID_E810C_SFP: 83 if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T || 84 hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2) 85 return true; 86 break; 87 default: 88 break; 89 } 90 91 return false; 92 } 93 94 /** 95 * ice_clear_pf_cfg - Clear PF configuration 96 * @hw: pointer to the hardware structure 97 * 98 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port 99 * configuration, flow director filters, etc.). 100 */ 101 int ice_clear_pf_cfg(struct ice_hw *hw) 102 { 103 struct ice_aq_desc desc; 104 105 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); 106 107 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 108 } 109 110 /** 111 * ice_aq_manage_mac_read - manage MAC address read command 112 * @hw: pointer to the HW struct 113 * @buf: a virtual buffer to hold the manage MAC read response 114 * @buf_size: Size of the virtual buffer 115 * @cd: pointer to command details structure or NULL 116 * 117 * This function is used to return per PF station MAC address (0x0107). 118 * NOTE: Upon successful completion of this command, MAC address information 119 * is returned in user specified buffer. Please interpret user specified 120 * buffer as "manage_mac_read" response. 121 * Response such as various MAC addresses are stored in HW struct (port.mac) 122 * ice_discover_dev_caps is expected to be called before this function is 123 * called. 124 */ 125 static int 126 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, 127 struct ice_sq_cd *cd) 128 { 129 struct ice_aqc_manage_mac_read_resp *resp; 130 struct ice_aqc_manage_mac_read *cmd; 131 struct ice_aq_desc desc; 132 int status; 133 u16 flags; 134 u8 i; 135 136 cmd = &desc.params.mac_read; 137 138 if (buf_size < sizeof(*resp)) 139 return -EINVAL; 140 141 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); 142 143 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 144 if (status) 145 return status; 146 147 resp = buf; 148 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; 149 150 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { 151 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); 152 return -EIO; 153 } 154 155 /* A single port can report up to two (LAN and WoL) addresses */ 156 for (i = 0; i < cmd->num_addr; i++) 157 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { 158 ether_addr_copy(hw->port_info->mac.lan_addr, 159 resp[i].mac_addr); 160 ether_addr_copy(hw->port_info->mac.perm_addr, 161 resp[i].mac_addr); 162 break; 163 } 164 165 return 0; 166 } 167 168 /** 169 * ice_aq_get_phy_caps - returns PHY capabilities 170 * @pi: port information structure 171 * @qual_mods: report qualified modules 172 * @report_mode: report mode capabilities 173 * @pcaps: structure for PHY capabilities to be filled 174 * @cd: pointer to command details structure or NULL 175 * 176 * Returns the various PHY capabilities supported on the Port (0x0600) 177 */ 178 int 179 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, 180 struct ice_aqc_get_phy_caps_data *pcaps, 181 struct ice_sq_cd *cd) 182 { 183 struct ice_aqc_get_phy_caps *cmd; 184 u16 pcaps_size = sizeof(*pcaps); 185 struct ice_aq_desc desc; 186 struct ice_hw *hw; 187 int status; 188 189 cmd = &desc.params.get_phy; 190 191 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) 192 return -EINVAL; 193 hw = pi->hw; 194 195 if (report_mode == ICE_AQC_REPORT_DFLT_CFG && 196 !ice_fw_supports_report_dflt_cfg(hw)) 197 return -EINVAL; 198 199 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); 200 201 if (qual_mods) 202 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); 203 204 cmd->param0 |= cpu_to_le16(report_mode); 205 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd); 206 207 ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n", 208 report_mode); 209 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 210 (unsigned long long)le64_to_cpu(pcaps->phy_type_low)); 211 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 212 (unsigned long long)le64_to_cpu(pcaps->phy_type_high)); 213 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps); 214 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", 215 pcaps->low_power_ctrl_an); 216 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap); 217 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", 218 pcaps->eeer_value); 219 ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n", 220 pcaps->link_fec_options); 221 ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n", 222 pcaps->module_compliance_enforcement); 223 ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n", 224 pcaps->extended_compliance_code); 225 ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n", 226 pcaps->module_type[0]); 227 ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n", 228 pcaps->module_type[1]); 229 ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n", 230 pcaps->module_type[2]); 231 232 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) { 233 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 234 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 235 memcpy(pi->phy.link_info.module_type, &pcaps->module_type, 236 sizeof(pi->phy.link_info.module_type)); 237 } 238 239 return status; 240 } 241 242 /** 243 * ice_aq_get_link_topo_handle - get link topology node return status 244 * @pi: port information structure 245 * @node_type: requested node type 246 * @cd: pointer to command details structure or NULL 247 * 248 * Get link topology node return status for specified node type (0x06E0) 249 * 250 * Node type cage can be used to determine if cage is present. If AQC 251 * returns error (ENOENT), then no cage present. If no cage present, then 252 * connection type is backplane or BASE-T. 253 */ 254 static int 255 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type, 256 struct ice_sq_cd *cd) 257 { 258 struct ice_aqc_get_link_topo *cmd; 259 struct ice_aq_desc desc; 260 261 cmd = &desc.params.get_link_topo; 262 263 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo); 264 265 cmd->addr.topo_params.node_type_ctx = 266 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT << 267 ICE_AQC_LINK_TOPO_NODE_CTX_S); 268 269 /* set node type */ 270 cmd->addr.topo_params.node_type_ctx |= 271 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type); 272 273 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 274 } 275 276 /** 277 * ice_is_media_cage_present 278 * @pi: port information structure 279 * 280 * Returns true if media cage is present, else false. If no cage, then 281 * media type is backplane or BASE-T. 282 */ 283 static bool ice_is_media_cage_present(struct ice_port_info *pi) 284 { 285 /* Node type cage can be used to determine if cage is present. If AQC 286 * returns error (ENOENT), then no cage present. If no cage present then 287 * connection type is backplane or BASE-T. 288 */ 289 return !ice_aq_get_link_topo_handle(pi, 290 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE, 291 NULL); 292 } 293 294 /** 295 * ice_get_media_type - Gets media type 296 * @pi: port information structure 297 */ 298 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) 299 { 300 struct ice_link_status *hw_link_info; 301 302 if (!pi) 303 return ICE_MEDIA_UNKNOWN; 304 305 hw_link_info = &pi->phy.link_info; 306 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 307 /* If more than one media type is selected, report unknown */ 308 return ICE_MEDIA_UNKNOWN; 309 310 if (hw_link_info->phy_type_low) { 311 /* 1G SGMII is a special case where some DA cable PHYs 312 * may show this as an option when it really shouldn't 313 * be since SGMII is meant to be between a MAC and a PHY 314 * in a backplane. Try to detect this case and handle it 315 */ 316 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII && 317 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 318 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || 319 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] == 320 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) 321 return ICE_MEDIA_DA; 322 323 switch (hw_link_info->phy_type_low) { 324 case ICE_PHY_TYPE_LOW_1000BASE_SX: 325 case ICE_PHY_TYPE_LOW_1000BASE_LX: 326 case ICE_PHY_TYPE_LOW_10GBASE_SR: 327 case ICE_PHY_TYPE_LOW_10GBASE_LR: 328 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 329 case ICE_PHY_TYPE_LOW_25GBASE_SR: 330 case ICE_PHY_TYPE_LOW_25GBASE_LR: 331 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 332 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 333 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 334 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 335 case ICE_PHY_TYPE_LOW_50GBASE_SR: 336 case ICE_PHY_TYPE_LOW_50GBASE_FR: 337 case ICE_PHY_TYPE_LOW_50GBASE_LR: 338 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 339 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 340 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 341 case ICE_PHY_TYPE_LOW_100GBASE_DR: 342 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 343 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 344 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 345 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 346 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 347 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 348 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 349 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 350 return ICE_MEDIA_FIBER; 351 case ICE_PHY_TYPE_LOW_100BASE_TX: 352 case ICE_PHY_TYPE_LOW_1000BASE_T: 353 case ICE_PHY_TYPE_LOW_2500BASE_T: 354 case ICE_PHY_TYPE_LOW_5GBASE_T: 355 case ICE_PHY_TYPE_LOW_10GBASE_T: 356 case ICE_PHY_TYPE_LOW_25GBASE_T: 357 return ICE_MEDIA_BASET; 358 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 359 case ICE_PHY_TYPE_LOW_25GBASE_CR: 360 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 361 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 362 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 363 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 364 case ICE_PHY_TYPE_LOW_50GBASE_CP: 365 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 366 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 367 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 368 return ICE_MEDIA_DA; 369 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 370 case ICE_PHY_TYPE_LOW_40G_XLAUI: 371 case ICE_PHY_TYPE_LOW_50G_LAUI2: 372 case ICE_PHY_TYPE_LOW_50G_AUI2: 373 case ICE_PHY_TYPE_LOW_50G_AUI1: 374 case ICE_PHY_TYPE_LOW_100G_AUI4: 375 case ICE_PHY_TYPE_LOW_100G_CAUI4: 376 if (ice_is_media_cage_present(pi)) 377 return ICE_MEDIA_DA; 378 fallthrough; 379 case ICE_PHY_TYPE_LOW_1000BASE_KX: 380 case ICE_PHY_TYPE_LOW_2500BASE_KX: 381 case ICE_PHY_TYPE_LOW_2500BASE_X: 382 case ICE_PHY_TYPE_LOW_5GBASE_KR: 383 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 384 case ICE_PHY_TYPE_LOW_25GBASE_KR: 385 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 386 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 387 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 388 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 389 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 390 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 391 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 392 return ICE_MEDIA_BACKPLANE; 393 } 394 } else { 395 switch (hw_link_info->phy_type_high) { 396 case ICE_PHY_TYPE_HIGH_100G_AUI2: 397 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 398 if (ice_is_media_cage_present(pi)) 399 return ICE_MEDIA_DA; 400 fallthrough; 401 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 402 return ICE_MEDIA_BACKPLANE; 403 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 404 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 405 return ICE_MEDIA_FIBER; 406 } 407 } 408 return ICE_MEDIA_UNKNOWN; 409 } 410 411 /** 412 * ice_aq_get_link_info 413 * @pi: port information structure 414 * @ena_lse: enable/disable LinkStatusEvent reporting 415 * @link: pointer to link status structure - optional 416 * @cd: pointer to command details structure or NULL 417 * 418 * Get Link Status (0x607). Returns the link status of the adapter. 419 */ 420 int 421 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, 422 struct ice_link_status *link, struct ice_sq_cd *cd) 423 { 424 struct ice_aqc_get_link_status_data link_data = { 0 }; 425 struct ice_aqc_get_link_status *resp; 426 struct ice_link_status *li_old, *li; 427 enum ice_media_type *hw_media_type; 428 struct ice_fc_info *hw_fc_info; 429 bool tx_pause, rx_pause; 430 struct ice_aq_desc desc; 431 struct ice_hw *hw; 432 u16 cmd_flags; 433 int status; 434 435 if (!pi) 436 return -EINVAL; 437 hw = pi->hw; 438 li_old = &pi->phy.link_info_old; 439 hw_media_type = &pi->phy.media_type; 440 li = &pi->phy.link_info; 441 hw_fc_info = &pi->fc; 442 443 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); 444 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; 445 resp = &desc.params.get_link_status; 446 resp->cmd_flags = cpu_to_le16(cmd_flags); 447 resp->lport_num = pi->lport; 448 449 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd); 450 451 if (status) 452 return status; 453 454 /* save off old link status information */ 455 *li_old = *li; 456 457 /* update current link status information */ 458 li->link_speed = le16_to_cpu(link_data.link_speed); 459 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 460 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 461 *hw_media_type = ice_get_media_type(pi); 462 li->link_info = link_data.link_info; 463 li->link_cfg_err = link_data.link_cfg_err; 464 li->an_info = link_data.an_info; 465 li->ext_info = link_data.ext_info; 466 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 467 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK; 468 li->topo_media_conflict = link_data.topo_media_conflict; 469 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M | 470 ICE_AQ_CFG_PACING_TYPE_M); 471 472 /* update fc info */ 473 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); 474 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); 475 if (tx_pause && rx_pause) 476 hw_fc_info->current_mode = ICE_FC_FULL; 477 else if (tx_pause) 478 hw_fc_info->current_mode = ICE_FC_TX_PAUSE; 479 else if (rx_pause) 480 hw_fc_info->current_mode = ICE_FC_RX_PAUSE; 481 else 482 hw_fc_info->current_mode = ICE_FC_NONE; 483 484 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); 485 486 ice_debug(hw, ICE_DBG_LINK, "get link info\n"); 487 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed); 488 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 489 (unsigned long long)li->phy_type_low); 490 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 491 (unsigned long long)li->phy_type_high); 492 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type); 493 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info); 494 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err); 495 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info); 496 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info); 497 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info); 498 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena); 499 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n", 500 li->max_frame_size); 501 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing); 502 503 /* save link status information */ 504 if (link) 505 *link = *li; 506 507 /* flag cleared so calling functions don't call AQ again */ 508 pi->phy.get_link_info = false; 509 510 return 0; 511 } 512 513 /** 514 * ice_fill_tx_timer_and_fc_thresh 515 * @hw: pointer to the HW struct 516 * @cmd: pointer to MAC cfg structure 517 * 518 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command 519 * descriptor 520 */ 521 static void 522 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw, 523 struct ice_aqc_set_mac_cfg *cmd) 524 { 525 u16 fc_thres_val, tx_timer_val; 526 u32 val; 527 528 /* We read back the transmit timer and FC threshold value of 529 * LFC. Thus, we will use index = 530 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX. 531 * 532 * Also, because we are operating on transmit timer and FC 533 * threshold of LFC, we don't turn on any bit in tx_tmr_priority 534 */ 535 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX 536 537 /* Retrieve the transmit timer */ 538 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC)); 539 tx_timer_val = val & 540 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M; 541 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val); 542 543 /* Retrieve the FC threshold */ 544 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC)); 545 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M; 546 547 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val); 548 } 549 550 /** 551 * ice_aq_set_mac_cfg 552 * @hw: pointer to the HW struct 553 * @max_frame_size: Maximum Frame Size to be supported 554 * @cd: pointer to command details structure or NULL 555 * 556 * Set MAC configuration (0x0603) 557 */ 558 int 559 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd) 560 { 561 struct ice_aqc_set_mac_cfg *cmd; 562 struct ice_aq_desc desc; 563 564 cmd = &desc.params.set_mac_cfg; 565 566 if (max_frame_size == 0) 567 return -EINVAL; 568 569 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg); 570 571 cmd->max_frame_size = cpu_to_le16(max_frame_size); 572 573 ice_fill_tx_timer_and_fc_thresh(hw, cmd); 574 575 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 576 } 577 578 /** 579 * ice_init_fltr_mgmt_struct - initializes filter management list and locks 580 * @hw: pointer to the HW struct 581 */ 582 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw) 583 { 584 struct ice_switch_info *sw; 585 int status; 586 587 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), 588 sizeof(*hw->switch_info), GFP_KERNEL); 589 sw = hw->switch_info; 590 591 if (!sw) 592 return -ENOMEM; 593 594 INIT_LIST_HEAD(&sw->vsi_list_map_head); 595 sw->prof_res_bm_init = 0; 596 597 status = ice_init_def_sw_recp(hw); 598 if (status) { 599 devm_kfree(ice_hw_to_dev(hw), hw->switch_info); 600 return status; 601 } 602 return 0; 603 } 604 605 /** 606 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks 607 * @hw: pointer to the HW struct 608 */ 609 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) 610 { 611 struct ice_switch_info *sw = hw->switch_info; 612 struct ice_vsi_list_map_info *v_pos_map; 613 struct ice_vsi_list_map_info *v_tmp_map; 614 struct ice_sw_recipe *recps; 615 u8 i; 616 617 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, 618 list_entry) { 619 list_del(&v_pos_map->list_entry); 620 devm_kfree(ice_hw_to_dev(hw), v_pos_map); 621 } 622 recps = sw->recp_list; 623 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { 624 struct ice_recp_grp_entry *rg_entry, *tmprg_entry; 625 626 recps[i].root_rid = i; 627 list_for_each_entry_safe(rg_entry, tmprg_entry, 628 &recps[i].rg_list, l_entry) { 629 list_del(&rg_entry->l_entry); 630 devm_kfree(ice_hw_to_dev(hw), rg_entry); 631 } 632 633 if (recps[i].adv_rule) { 634 struct ice_adv_fltr_mgmt_list_entry *tmp_entry; 635 struct ice_adv_fltr_mgmt_list_entry *lst_itr; 636 637 mutex_destroy(&recps[i].filt_rule_lock); 638 list_for_each_entry_safe(lst_itr, tmp_entry, 639 &recps[i].filt_rules, 640 list_entry) { 641 list_del(&lst_itr->list_entry); 642 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); 643 devm_kfree(ice_hw_to_dev(hw), lst_itr); 644 } 645 } else { 646 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; 647 648 mutex_destroy(&recps[i].filt_rule_lock); 649 list_for_each_entry_safe(lst_itr, tmp_entry, 650 &recps[i].filt_rules, 651 list_entry) { 652 list_del(&lst_itr->list_entry); 653 devm_kfree(ice_hw_to_dev(hw), lst_itr); 654 } 655 } 656 if (recps[i].root_buf) 657 devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf); 658 } 659 ice_rm_all_sw_replay_rule_info(hw); 660 devm_kfree(ice_hw_to_dev(hw), sw->recp_list); 661 devm_kfree(ice_hw_to_dev(hw), sw); 662 } 663 664 /** 665 * ice_get_fw_log_cfg - get FW logging configuration 666 * @hw: pointer to the HW struct 667 */ 668 static int ice_get_fw_log_cfg(struct ice_hw *hw) 669 { 670 struct ice_aq_desc desc; 671 __le16 *config; 672 int status; 673 u16 size; 674 675 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX; 676 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL); 677 if (!config) 678 return -ENOMEM; 679 680 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info); 681 682 status = ice_aq_send_cmd(hw, &desc, config, size, NULL); 683 if (!status) { 684 u16 i; 685 686 /* Save FW logging information into the HW structure */ 687 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { 688 u16 v, m, flgs; 689 690 v = le16_to_cpu(config[i]); 691 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; 692 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S; 693 694 if (m < ICE_AQC_FW_LOG_ID_MAX) 695 hw->fw_log.evnts[m].cur = flgs; 696 } 697 } 698 699 devm_kfree(ice_hw_to_dev(hw), config); 700 701 return status; 702 } 703 704 /** 705 * ice_cfg_fw_log - configure FW logging 706 * @hw: pointer to the HW struct 707 * @enable: enable certain FW logging events if true, disable all if false 708 * 709 * This function enables/disables the FW logging via Rx CQ events and a UART 710 * port based on predetermined configurations. FW logging via the Rx CQ can be 711 * enabled/disabled for individual PF's. However, FW logging via the UART can 712 * only be enabled/disabled for all PFs on the same device. 713 * 714 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in 715 * hw->fw_log need to be set accordingly, e.g. based on user-provided input, 716 * before initializing the device. 717 * 718 * When re/configuring FW logging, callers need to update the "cfg" elements of 719 * the hw->fw_log.evnts array with the desired logging event configurations for 720 * modules of interest. When disabling FW logging completely, the callers can 721 * just pass false in the "enable" parameter. On completion, the function will 722 * update the "cur" element of the hw->fw_log.evnts array with the resulting 723 * logging event configurations of the modules that are being re/configured. FW 724 * logging modules that are not part of a reconfiguration operation retain their 725 * previous states. 726 * 727 * Before resetting the device, it is recommended that the driver disables FW 728 * logging before shutting down the control queue. When disabling FW logging 729 * ("enable" = false), the latest configurations of FW logging events stored in 730 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after 731 * a device reset. 732 * 733 * When enabling FW logging to emit log messages via the Rx CQ during the 734 * device's initialization phase, a mechanism alternative to interrupt handlers 735 * needs to be used to extract FW log messages from the Rx CQ periodically and 736 * to prevent the Rx CQ from being full and stalling other types of control 737 * messages from FW to SW. Interrupts are typically disabled during the device's 738 * initialization phase. 739 */ 740 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable) 741 { 742 struct ice_aqc_fw_logging *cmd; 743 u16 i, chgs = 0, len = 0; 744 struct ice_aq_desc desc; 745 __le16 *data = NULL; 746 u8 actv_evnts = 0; 747 void *buf = NULL; 748 int status = 0; 749 750 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en) 751 return 0; 752 753 /* Disable FW logging only when the control queue is still responsive */ 754 if (!enable && 755 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq))) 756 return 0; 757 758 /* Get current FW log settings */ 759 status = ice_get_fw_log_cfg(hw); 760 if (status) 761 return status; 762 763 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging); 764 cmd = &desc.params.fw_logging; 765 766 /* Indicate which controls are valid */ 767 if (hw->fw_log.cq_en) 768 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID; 769 770 if (hw->fw_log.uart_en) 771 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID; 772 773 if (enable) { 774 /* Fill in an array of entries with FW logging modules and 775 * logging events being reconfigured. 776 */ 777 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { 778 u16 val; 779 780 /* Keep track of enabled event types */ 781 actv_evnts |= hw->fw_log.evnts[i].cfg; 782 783 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur) 784 continue; 785 786 if (!data) { 787 data = devm_kcalloc(ice_hw_to_dev(hw), 788 ICE_AQC_FW_LOG_ID_MAX, 789 sizeof(*data), 790 GFP_KERNEL); 791 if (!data) 792 return -ENOMEM; 793 } 794 795 val = i << ICE_AQC_FW_LOG_ID_S; 796 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S; 797 data[chgs++] = cpu_to_le16(val); 798 } 799 800 /* Only enable FW logging if at least one module is specified. 801 * If FW logging is currently enabled but all modules are not 802 * enabled to emit log messages, disable FW logging altogether. 803 */ 804 if (actv_evnts) { 805 /* Leave if there is effectively no change */ 806 if (!chgs) 807 goto out; 808 809 if (hw->fw_log.cq_en) 810 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN; 811 812 if (hw->fw_log.uart_en) 813 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN; 814 815 buf = data; 816 len = sizeof(*data) * chgs; 817 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 818 } 819 } 820 821 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL); 822 if (!status) { 823 /* Update the current configuration to reflect events enabled. 824 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW 825 * logging mode is enabled for the device. They do not reflect 826 * actual modules being enabled to emit log messages. So, their 827 * values remain unchanged even when all modules are disabled. 828 */ 829 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX; 830 831 hw->fw_log.actv_evnts = actv_evnts; 832 for (i = 0; i < cnt; i++) { 833 u16 v, m; 834 835 if (!enable) { 836 /* When disabling all FW logging events as part 837 * of device's de-initialization, the original 838 * configurations are retained, and can be used 839 * to reconfigure FW logging later if the device 840 * is re-initialized. 841 */ 842 hw->fw_log.evnts[i].cur = 0; 843 continue; 844 } 845 846 v = le16_to_cpu(data[i]); 847 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; 848 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg; 849 } 850 } 851 852 out: 853 if (data) 854 devm_kfree(ice_hw_to_dev(hw), data); 855 856 return status; 857 } 858 859 /** 860 * ice_output_fw_log 861 * @hw: pointer to the HW struct 862 * @desc: pointer to the AQ message descriptor 863 * @buf: pointer to the buffer accompanying the AQ message 864 * 865 * Formats a FW Log message and outputs it via the standard driver logs. 866 */ 867 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf) 868 { 869 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n"); 870 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf, 871 le16_to_cpu(desc->datalen)); 872 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n"); 873 } 874 875 /** 876 * ice_get_itr_intrl_gran 877 * @hw: pointer to the HW struct 878 * 879 * Determines the ITR/INTRL granularities based on the maximum aggregate 880 * bandwidth according to the device's configuration during power-on. 881 */ 882 static void ice_get_itr_intrl_gran(struct ice_hw *hw) 883 { 884 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) & 885 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >> 886 GL_PWR_MODE_CTL_CAR_MAX_BW_S; 887 888 switch (max_agg_bw) { 889 case ICE_MAX_AGG_BW_200G: 890 case ICE_MAX_AGG_BW_100G: 891 case ICE_MAX_AGG_BW_50G: 892 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; 893 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; 894 break; 895 case ICE_MAX_AGG_BW_25G: 896 hw->itr_gran = ICE_ITR_GRAN_MAX_25; 897 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; 898 break; 899 } 900 } 901 902 /** 903 * ice_init_hw - main hardware initialization routine 904 * @hw: pointer to the hardware structure 905 */ 906 int ice_init_hw(struct ice_hw *hw) 907 { 908 struct ice_aqc_get_phy_caps_data *pcaps; 909 u16 mac_buf_len; 910 void *mac_buf; 911 int status; 912 913 /* Set MAC type based on DeviceID */ 914 status = ice_set_mac_type(hw); 915 if (status) 916 return status; 917 918 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & 919 PF_FUNC_RID_FUNC_NUM_M) >> 920 PF_FUNC_RID_FUNC_NUM_S; 921 922 status = ice_reset(hw, ICE_RESET_PFR); 923 if (status) 924 return status; 925 926 ice_get_itr_intrl_gran(hw); 927 928 status = ice_create_all_ctrlq(hw); 929 if (status) 930 goto err_unroll_cqinit; 931 932 /* Enable FW logging. Not fatal if this fails. */ 933 status = ice_cfg_fw_log(hw, true); 934 if (status) 935 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n"); 936 937 status = ice_clear_pf_cfg(hw); 938 if (status) 939 goto err_unroll_cqinit; 940 941 /* Set bit to enable Flow Director filters */ 942 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 943 INIT_LIST_HEAD(&hw->fdir_list_head); 944 945 ice_clear_pxe_mode(hw); 946 947 status = ice_init_nvm(hw); 948 if (status) 949 goto err_unroll_cqinit; 950 951 status = ice_get_caps(hw); 952 if (status) 953 goto err_unroll_cqinit; 954 955 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), 956 sizeof(*hw->port_info), GFP_KERNEL); 957 if (!hw->port_info) { 958 status = -ENOMEM; 959 goto err_unroll_cqinit; 960 } 961 962 /* set the back pointer to HW */ 963 hw->port_info->hw = hw; 964 965 /* Initialize port_info struct with switch configuration data */ 966 status = ice_get_initial_sw_cfg(hw); 967 if (status) 968 goto err_unroll_alloc; 969 970 hw->evb_veb = true; 971 972 /* Query the allocated resources for Tx scheduler */ 973 status = ice_sched_query_res_alloc(hw); 974 if (status) { 975 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n"); 976 goto err_unroll_alloc; 977 } 978 ice_sched_get_psm_clk_freq(hw); 979 980 /* Initialize port_info struct with scheduler data */ 981 status = ice_sched_init_port(hw->port_info); 982 if (status) 983 goto err_unroll_sched; 984 985 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 986 if (!pcaps) { 987 status = -ENOMEM; 988 goto err_unroll_sched; 989 } 990 991 /* Initialize port_info struct with PHY capabilities */ 992 status = ice_aq_get_phy_caps(hw->port_info, false, 993 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, 994 NULL); 995 devm_kfree(ice_hw_to_dev(hw), pcaps); 996 if (status) 997 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n", 998 status); 999 1000 /* Initialize port_info struct with link information */ 1001 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); 1002 if (status) 1003 goto err_unroll_sched; 1004 1005 /* need a valid SW entry point to build a Tx tree */ 1006 if (!hw->sw_entry_point_layer) { 1007 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); 1008 status = -EIO; 1009 goto err_unroll_sched; 1010 } 1011 INIT_LIST_HEAD(&hw->agg_list); 1012 /* Initialize max burst size */ 1013 if (!hw->max_burst_size) 1014 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE); 1015 1016 status = ice_init_fltr_mgmt_struct(hw); 1017 if (status) 1018 goto err_unroll_sched; 1019 1020 /* Get MAC information */ 1021 /* A single port can report up to two (LAN and WoL) addresses */ 1022 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, 1023 sizeof(struct ice_aqc_manage_mac_read_resp), 1024 GFP_KERNEL); 1025 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); 1026 1027 if (!mac_buf) { 1028 status = -ENOMEM; 1029 goto err_unroll_fltr_mgmt_struct; 1030 } 1031 1032 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); 1033 devm_kfree(ice_hw_to_dev(hw), mac_buf); 1034 1035 if (status) 1036 goto err_unroll_fltr_mgmt_struct; 1037 /* enable jumbo frame support at MAC level */ 1038 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 1039 if (status) 1040 goto err_unroll_fltr_mgmt_struct; 1041 /* Obtain counter base index which would be used by flow director */ 1042 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base); 1043 if (status) 1044 goto err_unroll_fltr_mgmt_struct; 1045 status = ice_init_hw_tbls(hw); 1046 if (status) 1047 goto err_unroll_fltr_mgmt_struct; 1048 mutex_init(&hw->tnl_lock); 1049 return 0; 1050 1051 err_unroll_fltr_mgmt_struct: 1052 ice_cleanup_fltr_mgmt_struct(hw); 1053 err_unroll_sched: 1054 ice_sched_cleanup_all(hw); 1055 err_unroll_alloc: 1056 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 1057 err_unroll_cqinit: 1058 ice_destroy_all_ctrlq(hw); 1059 return status; 1060 } 1061 1062 /** 1063 * ice_deinit_hw - unroll initialization operations done by ice_init_hw 1064 * @hw: pointer to the hardware structure 1065 * 1066 * This should be called only during nominal operation, not as a result of 1067 * ice_init_hw() failing since ice_init_hw() will take care of unrolling 1068 * applicable initializations if it fails for any reason. 1069 */ 1070 void ice_deinit_hw(struct ice_hw *hw) 1071 { 1072 ice_free_fd_res_cntr(hw, hw->fd_ctr_base); 1073 ice_cleanup_fltr_mgmt_struct(hw); 1074 1075 ice_sched_cleanup_all(hw); 1076 ice_sched_clear_agg(hw); 1077 ice_free_seg(hw); 1078 ice_free_hw_tbls(hw); 1079 mutex_destroy(&hw->tnl_lock); 1080 1081 if (hw->port_info) { 1082 devm_kfree(ice_hw_to_dev(hw), hw->port_info); 1083 hw->port_info = NULL; 1084 } 1085 1086 /* Attempt to disable FW logging before shutting down control queues */ 1087 ice_cfg_fw_log(hw, false); 1088 ice_destroy_all_ctrlq(hw); 1089 1090 /* Clear VSI contexts if not already cleared */ 1091 ice_clear_all_vsi_ctx(hw); 1092 } 1093 1094 /** 1095 * ice_check_reset - Check to see if a global reset is complete 1096 * @hw: pointer to the hardware structure 1097 */ 1098 int ice_check_reset(struct ice_hw *hw) 1099 { 1100 u32 cnt, reg = 0, grst_timeout, uld_mask; 1101 1102 /* Poll for Device Active state in case a recent CORER, GLOBR, 1103 * or EMPR has occurred. The grst delay value is in 100ms units. 1104 * Add 1sec for outstanding AQ commands that can take a long time. 1105 */ 1106 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> 1107 GLGEN_RSTCTL_GRSTDEL_S) + 10; 1108 1109 for (cnt = 0; cnt < grst_timeout; cnt++) { 1110 mdelay(100); 1111 reg = rd32(hw, GLGEN_RSTAT); 1112 if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) 1113 break; 1114 } 1115 1116 if (cnt == grst_timeout) { 1117 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n"); 1118 return -EIO; 1119 } 1120 1121 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\ 1122 GLNVM_ULD_PCIER_DONE_1_M |\ 1123 GLNVM_ULD_CORER_DONE_M |\ 1124 GLNVM_ULD_GLOBR_DONE_M |\ 1125 GLNVM_ULD_POR_DONE_M |\ 1126 GLNVM_ULD_POR_DONE_1_M |\ 1127 GLNVM_ULD_PCIER_DONE_2_M) 1128 1129 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ? 1130 GLNVM_ULD_PE_DONE_M : 0); 1131 1132 /* Device is Active; check Global Reset processes are done */ 1133 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { 1134 reg = rd32(hw, GLNVM_ULD) & uld_mask; 1135 if (reg == uld_mask) { 1136 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt); 1137 break; 1138 } 1139 mdelay(10); 1140 } 1141 1142 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1143 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", 1144 reg); 1145 return -EIO; 1146 } 1147 1148 return 0; 1149 } 1150 1151 /** 1152 * ice_pf_reset - Reset the PF 1153 * @hw: pointer to the hardware structure 1154 * 1155 * If a global reset has been triggered, this function checks 1156 * for its completion and then issues the PF reset 1157 */ 1158 static int ice_pf_reset(struct ice_hw *hw) 1159 { 1160 u32 cnt, reg; 1161 1162 /* If at function entry a global reset was already in progress, i.e. 1163 * state is not 'device active' or any of the reset done bits are not 1164 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the 1165 * global reset is done. 1166 */ 1167 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || 1168 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { 1169 /* poll on global reset currently in progress until done */ 1170 if (ice_check_reset(hw)) 1171 return -EIO; 1172 1173 return 0; 1174 } 1175 1176 /* Reset the PF */ 1177 reg = rd32(hw, PFGEN_CTRL); 1178 1179 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); 1180 1181 /* Wait for the PFR to complete. The wait time is the global config lock 1182 * timeout plus the PFR timeout which will account for a possible reset 1183 * that is occurring during a download package operation. 1184 */ 1185 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT + 1186 ICE_PF_RESET_WAIT_COUNT; cnt++) { 1187 reg = rd32(hw, PFGEN_CTRL); 1188 if (!(reg & PFGEN_CTRL_PFSWR_M)) 1189 break; 1190 1191 mdelay(1); 1192 } 1193 1194 if (cnt == ICE_PF_RESET_WAIT_COUNT) { 1195 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n"); 1196 return -EIO; 1197 } 1198 1199 return 0; 1200 } 1201 1202 /** 1203 * ice_reset - Perform different types of reset 1204 * @hw: pointer to the hardware structure 1205 * @req: reset request 1206 * 1207 * This function triggers a reset as specified by the req parameter. 1208 * 1209 * Note: 1210 * If anything other than a PF reset is triggered, PXE mode is restored. 1211 * This has to be cleared using ice_clear_pxe_mode again, once the AQ 1212 * interface has been restored in the rebuild flow. 1213 */ 1214 int ice_reset(struct ice_hw *hw, enum ice_reset_req req) 1215 { 1216 u32 val = 0; 1217 1218 switch (req) { 1219 case ICE_RESET_PFR: 1220 return ice_pf_reset(hw); 1221 case ICE_RESET_CORER: 1222 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); 1223 val = GLGEN_RTRIG_CORER_M; 1224 break; 1225 case ICE_RESET_GLOBR: 1226 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); 1227 val = GLGEN_RTRIG_GLOBR_M; 1228 break; 1229 default: 1230 return -EINVAL; 1231 } 1232 1233 val |= rd32(hw, GLGEN_RTRIG); 1234 wr32(hw, GLGEN_RTRIG, val); 1235 ice_flush(hw); 1236 1237 /* wait for the FW to be ready */ 1238 return ice_check_reset(hw); 1239 } 1240 1241 /** 1242 * ice_copy_rxq_ctx_to_hw 1243 * @hw: pointer to the hardware structure 1244 * @ice_rxq_ctx: pointer to the rxq context 1245 * @rxq_index: the index of the Rx queue 1246 * 1247 * Copies rxq context from dense structure to HW register space 1248 */ 1249 static int 1250 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) 1251 { 1252 u8 i; 1253 1254 if (!ice_rxq_ctx) 1255 return -EINVAL; 1256 1257 if (rxq_index > QRX_CTRL_MAX_INDEX) 1258 return -EINVAL; 1259 1260 /* Copy each dword separately to HW */ 1261 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { 1262 wr32(hw, QRX_CONTEXT(i, rxq_index), 1263 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1264 1265 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, 1266 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); 1267 } 1268 1269 return 0; 1270 } 1271 1272 /* LAN Rx Queue Context */ 1273 static const struct ice_ctx_ele ice_rlan_ctx_info[] = { 1274 /* Field Width LSB */ 1275 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), 1276 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), 1277 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), 1278 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), 1279 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), 1280 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), 1281 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), 1282 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), 1283 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), 1284 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), 1285 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), 1286 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), 1287 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), 1288 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), 1289 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), 1290 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), 1291 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), 1292 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), 1293 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), 1294 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201), 1295 { 0 } 1296 }; 1297 1298 /** 1299 * ice_write_rxq_ctx 1300 * @hw: pointer to the hardware structure 1301 * @rlan_ctx: pointer to the rxq context 1302 * @rxq_index: the index of the Rx queue 1303 * 1304 * Converts rxq context from sparse to dense structure and then writes 1305 * it to HW register space and enables the hardware to prefetch descriptors 1306 * instead of only fetching them on demand 1307 */ 1308 int 1309 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, 1310 u32 rxq_index) 1311 { 1312 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; 1313 1314 if (!rlan_ctx) 1315 return -EINVAL; 1316 1317 rlan_ctx->prefena = 1; 1318 1319 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); 1320 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); 1321 } 1322 1323 /* LAN Tx Queue Context */ 1324 const struct ice_ctx_ele ice_tlan_ctx_info[] = { 1325 /* Field Width LSB */ 1326 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), 1327 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), 1328 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), 1329 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), 1330 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), 1331 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), 1332 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), 1333 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), 1334 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91), 1335 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), 1336 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), 1337 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), 1338 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), 1339 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), 1340 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), 1341 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), 1342 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), 1343 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), 1344 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), 1345 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), 1346 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), 1347 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), 1348 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), 1349 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), 1350 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), 1351 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), 1352 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), 1353 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171), 1354 { 0 } 1355 }; 1356 1357 /* Sideband Queue command wrappers */ 1358 1359 /** 1360 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue 1361 * @hw: pointer to the HW struct 1362 * @desc: descriptor describing the command 1363 * @buf: buffer to use for indirect commands (NULL for direct commands) 1364 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1365 * @cd: pointer to command details structure 1366 */ 1367 static int 1368 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc, 1369 void *buf, u16 buf_size, struct ice_sq_cd *cd) 1370 { 1371 return ice_sq_send_cmd(hw, ice_get_sbq(hw), 1372 (struct ice_aq_desc *)desc, buf, buf_size, cd); 1373 } 1374 1375 /** 1376 * ice_sbq_rw_reg - Fill Sideband Queue command 1377 * @hw: pointer to the HW struct 1378 * @in: message info to be filled in descriptor 1379 */ 1380 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in) 1381 { 1382 struct ice_sbq_cmd_desc desc = {0}; 1383 struct ice_sbq_msg_req msg = {0}; 1384 u16 msg_len; 1385 int status; 1386 1387 msg_len = sizeof(msg); 1388 1389 msg.dest_dev = in->dest_dev; 1390 msg.opcode = in->opcode; 1391 msg.flags = ICE_SBQ_MSG_FLAGS; 1392 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE; 1393 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low); 1394 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high); 1395 1396 if (in->opcode) 1397 msg.data = cpu_to_le32(in->data); 1398 else 1399 /* data read comes back in completion, so shorten the struct by 1400 * sizeof(msg.data) 1401 */ 1402 msg_len -= sizeof(msg.data); 1403 1404 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD); 1405 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req); 1406 desc.param0.cmd_len = cpu_to_le16(msg_len); 1407 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL); 1408 if (!status && !in->opcode) 1409 in->data = le32_to_cpu 1410 (((struct ice_sbq_msg_cmpl *)&msg)->data); 1411 return status; 1412 } 1413 1414 /* FW Admin Queue command wrappers */ 1415 1416 /* Software lock/mutex that is meant to be held while the Global Config Lock 1417 * in firmware is acquired by the software to prevent most (but not all) types 1418 * of AQ commands from being sent to FW 1419 */ 1420 DEFINE_MUTEX(ice_global_cfg_lock_sw); 1421 1422 /** 1423 * ice_should_retry_sq_send_cmd 1424 * @opcode: AQ opcode 1425 * 1426 * Decide if we should retry the send command routine for the ATQ, depending 1427 * on the opcode. 1428 */ 1429 static bool ice_should_retry_sq_send_cmd(u16 opcode) 1430 { 1431 switch (opcode) { 1432 case ice_aqc_opc_get_link_topo: 1433 case ice_aqc_opc_lldp_stop: 1434 case ice_aqc_opc_lldp_start: 1435 case ice_aqc_opc_lldp_filter_ctrl: 1436 return true; 1437 } 1438 1439 return false; 1440 } 1441 1442 /** 1443 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ) 1444 * @hw: pointer to the HW struct 1445 * @cq: pointer to the specific Control queue 1446 * @desc: prefilled descriptor describing the command 1447 * @buf: buffer to use for indirect commands (or NULL for direct commands) 1448 * @buf_size: size of buffer for indirect commands (or 0 for direct commands) 1449 * @cd: pointer to command details structure 1450 * 1451 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin 1452 * Queue if the EBUSY AQ error is returned. 1453 */ 1454 static int 1455 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq, 1456 struct ice_aq_desc *desc, void *buf, u16 buf_size, 1457 struct ice_sq_cd *cd) 1458 { 1459 struct ice_aq_desc desc_cpy; 1460 bool is_cmd_for_retry; 1461 u8 *buf_cpy = NULL; 1462 u8 idx = 0; 1463 u16 opcode; 1464 int status; 1465 1466 opcode = le16_to_cpu(desc->opcode); 1467 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode); 1468 memset(&desc_cpy, 0, sizeof(desc_cpy)); 1469 1470 if (is_cmd_for_retry) { 1471 if (buf) { 1472 buf_cpy = kzalloc(buf_size, GFP_KERNEL); 1473 if (!buf_cpy) 1474 return -ENOMEM; 1475 } 1476 1477 memcpy(&desc_cpy, desc, sizeof(desc_cpy)); 1478 } 1479 1480 do { 1481 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd); 1482 1483 if (!is_cmd_for_retry || !status || 1484 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY) 1485 break; 1486 1487 if (buf_cpy) 1488 memcpy(buf, buf_cpy, buf_size); 1489 1490 memcpy(desc, &desc_cpy, sizeof(desc_cpy)); 1491 1492 mdelay(ICE_SQ_SEND_DELAY_TIME_MS); 1493 1494 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE); 1495 1496 kfree(buf_cpy); 1497 1498 return status; 1499 } 1500 1501 /** 1502 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue 1503 * @hw: pointer to the HW struct 1504 * @desc: descriptor describing the command 1505 * @buf: buffer to use for indirect commands (NULL for direct commands) 1506 * @buf_size: size of buffer for indirect commands (0 for direct commands) 1507 * @cd: pointer to command details structure 1508 * 1509 * Helper function to send FW Admin Queue commands to the FW Admin Queue. 1510 */ 1511 int 1512 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, 1513 u16 buf_size, struct ice_sq_cd *cd) 1514 { 1515 struct ice_aqc_req_res *cmd = &desc->params.res_owner; 1516 bool lock_acquired = false; 1517 int status; 1518 1519 /* When a package download is in process (i.e. when the firmware's 1520 * Global Configuration Lock resource is held), only the Download 1521 * Package, Get Version, Get Package Info List, Upload Section, 1522 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters, 1523 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get 1524 * Recipes to Profile Association, and Release Resource (with resource 1525 * ID set to Global Config Lock) AdminQ commands are allowed; all others 1526 * must block until the package download completes and the Global Config 1527 * Lock is released. See also ice_acquire_global_cfg_lock(). 1528 */ 1529 switch (le16_to_cpu(desc->opcode)) { 1530 case ice_aqc_opc_download_pkg: 1531 case ice_aqc_opc_get_pkg_info_list: 1532 case ice_aqc_opc_get_ver: 1533 case ice_aqc_opc_upload_section: 1534 case ice_aqc_opc_update_pkg: 1535 case ice_aqc_opc_set_port_params: 1536 case ice_aqc_opc_get_vlan_mode_parameters: 1537 case ice_aqc_opc_set_vlan_mode_parameters: 1538 case ice_aqc_opc_add_recipe: 1539 case ice_aqc_opc_recipe_to_profile: 1540 case ice_aqc_opc_get_recipe: 1541 case ice_aqc_opc_get_recipe_to_profile: 1542 break; 1543 case ice_aqc_opc_release_res: 1544 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK) 1545 break; 1546 fallthrough; 1547 default: 1548 mutex_lock(&ice_global_cfg_lock_sw); 1549 lock_acquired = true; 1550 break; 1551 } 1552 1553 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd); 1554 if (lock_acquired) 1555 mutex_unlock(&ice_global_cfg_lock_sw); 1556 1557 return status; 1558 } 1559 1560 /** 1561 * ice_aq_get_fw_ver 1562 * @hw: pointer to the HW struct 1563 * @cd: pointer to command details structure or NULL 1564 * 1565 * Get the firmware version (0x0001) from the admin queue commands 1566 */ 1567 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) 1568 { 1569 struct ice_aqc_get_ver *resp; 1570 struct ice_aq_desc desc; 1571 int status; 1572 1573 resp = &desc.params.get_ver; 1574 1575 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); 1576 1577 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1578 1579 if (!status) { 1580 hw->fw_branch = resp->fw_branch; 1581 hw->fw_maj_ver = resp->fw_major; 1582 hw->fw_min_ver = resp->fw_minor; 1583 hw->fw_patch = resp->fw_patch; 1584 hw->fw_build = le32_to_cpu(resp->fw_build); 1585 hw->api_branch = resp->api_branch; 1586 hw->api_maj_ver = resp->api_major; 1587 hw->api_min_ver = resp->api_minor; 1588 hw->api_patch = resp->api_patch; 1589 } 1590 1591 return status; 1592 } 1593 1594 /** 1595 * ice_aq_send_driver_ver 1596 * @hw: pointer to the HW struct 1597 * @dv: driver's major, minor version 1598 * @cd: pointer to command details structure or NULL 1599 * 1600 * Send the driver version (0x0002) to the firmware 1601 */ 1602 int 1603 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv, 1604 struct ice_sq_cd *cd) 1605 { 1606 struct ice_aqc_driver_ver *cmd; 1607 struct ice_aq_desc desc; 1608 u16 len; 1609 1610 cmd = &desc.params.driver_ver; 1611 1612 if (!dv) 1613 return -EINVAL; 1614 1615 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver); 1616 1617 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1618 cmd->major_ver = dv->major_ver; 1619 cmd->minor_ver = dv->minor_ver; 1620 cmd->build_ver = dv->build_ver; 1621 cmd->subbuild_ver = dv->subbuild_ver; 1622 1623 len = 0; 1624 while (len < sizeof(dv->driver_string) && 1625 isascii(dv->driver_string[len]) && dv->driver_string[len]) 1626 len++; 1627 1628 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd); 1629 } 1630 1631 /** 1632 * ice_aq_q_shutdown 1633 * @hw: pointer to the HW struct 1634 * @unloading: is the driver unloading itself 1635 * 1636 * Tell the Firmware that we're shutting down the AdminQ and whether 1637 * or not the driver is unloading as well (0x0003). 1638 */ 1639 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) 1640 { 1641 struct ice_aqc_q_shutdown *cmd; 1642 struct ice_aq_desc desc; 1643 1644 cmd = &desc.params.q_shutdown; 1645 1646 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); 1647 1648 if (unloading) 1649 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING; 1650 1651 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 1652 } 1653 1654 /** 1655 * ice_aq_req_res 1656 * @hw: pointer to the HW struct 1657 * @res: resource ID 1658 * @access: access type 1659 * @sdp_number: resource number 1660 * @timeout: the maximum time in ms that the driver may hold the resource 1661 * @cd: pointer to command details structure or NULL 1662 * 1663 * Requests common resource using the admin queue commands (0x0008). 1664 * When attempting to acquire the Global Config Lock, the driver can 1665 * learn of three states: 1666 * 1) 0 - acquired lock, and can perform download package 1667 * 2) -EIO - did not get lock, driver should fail to load 1668 * 3) -EALREADY - did not get lock, but another driver has 1669 * successfully downloaded the package; the driver does 1670 * not have to download the package and can continue 1671 * loading 1672 * 1673 * Note that if the caller is in an acquire lock, perform action, release lock 1674 * phase of operation, it is possible that the FW may detect a timeout and issue 1675 * a CORER. In this case, the driver will receive a CORER interrupt and will 1676 * have to determine its cause. The calling thread that is handling this flow 1677 * will likely get an error propagated back to it indicating the Download 1678 * Package, Update Package or the Release Resource AQ commands timed out. 1679 */ 1680 static int 1681 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1682 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, 1683 struct ice_sq_cd *cd) 1684 { 1685 struct ice_aqc_req_res *cmd_resp; 1686 struct ice_aq_desc desc; 1687 int status; 1688 1689 cmd_resp = &desc.params.res_owner; 1690 1691 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); 1692 1693 cmd_resp->res_id = cpu_to_le16(res); 1694 cmd_resp->access_type = cpu_to_le16(access); 1695 cmd_resp->res_number = cpu_to_le32(sdp_number); 1696 cmd_resp->timeout = cpu_to_le32(*timeout); 1697 *timeout = 0; 1698 1699 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1700 1701 /* The completion specifies the maximum time in ms that the driver 1702 * may hold the resource in the Timeout field. 1703 */ 1704 1705 /* Global config lock response utilizes an additional status field. 1706 * 1707 * If the Global config lock resource is held by some other driver, the 1708 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field 1709 * and the timeout field indicates the maximum time the current owner 1710 * of the resource has to free it. 1711 */ 1712 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { 1713 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { 1714 *timeout = le32_to_cpu(cmd_resp->timeout); 1715 return 0; 1716 } else if (le16_to_cpu(cmd_resp->status) == 1717 ICE_AQ_RES_GLBL_IN_PROG) { 1718 *timeout = le32_to_cpu(cmd_resp->timeout); 1719 return -EIO; 1720 } else if (le16_to_cpu(cmd_resp->status) == 1721 ICE_AQ_RES_GLBL_DONE) { 1722 return -EALREADY; 1723 } 1724 1725 /* invalid FW response, force a timeout immediately */ 1726 *timeout = 0; 1727 return -EIO; 1728 } 1729 1730 /* If the resource is held by some other driver, the command completes 1731 * with a busy return value and the timeout field indicates the maximum 1732 * time the current owner of the resource has to free it. 1733 */ 1734 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) 1735 *timeout = le32_to_cpu(cmd_resp->timeout); 1736 1737 return status; 1738 } 1739 1740 /** 1741 * ice_aq_release_res 1742 * @hw: pointer to the HW struct 1743 * @res: resource ID 1744 * @sdp_number: resource number 1745 * @cd: pointer to command details structure or NULL 1746 * 1747 * release common resource using the admin queue commands (0x0009) 1748 */ 1749 static int 1750 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, 1751 struct ice_sq_cd *cd) 1752 { 1753 struct ice_aqc_req_res *cmd; 1754 struct ice_aq_desc desc; 1755 1756 cmd = &desc.params.res_owner; 1757 1758 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); 1759 1760 cmd->res_id = cpu_to_le16(res); 1761 cmd->res_number = cpu_to_le32(sdp_number); 1762 1763 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 1764 } 1765 1766 /** 1767 * ice_acquire_res 1768 * @hw: pointer to the HW structure 1769 * @res: resource ID 1770 * @access: access type (read or write) 1771 * @timeout: timeout in milliseconds 1772 * 1773 * This function will attempt to acquire the ownership of a resource. 1774 */ 1775 int 1776 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, 1777 enum ice_aq_res_access_type access, u32 timeout) 1778 { 1779 #define ICE_RES_POLLING_DELAY_MS 10 1780 u32 delay = ICE_RES_POLLING_DELAY_MS; 1781 u32 time_left = timeout; 1782 int status; 1783 1784 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1785 1786 /* A return code of -EALREADY means that another driver has 1787 * previously acquired the resource and performed any necessary updates; 1788 * in this case the caller does not obtain the resource and has no 1789 * further work to do. 1790 */ 1791 if (status == -EALREADY) 1792 goto ice_acquire_res_exit; 1793 1794 if (status) 1795 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access); 1796 1797 /* If necessary, poll until the current lock owner timeouts */ 1798 timeout = time_left; 1799 while (status && timeout && time_left) { 1800 mdelay(delay); 1801 timeout = (timeout > delay) ? timeout - delay : 0; 1802 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); 1803 1804 if (status == -EALREADY) 1805 /* lock free, but no work to do */ 1806 break; 1807 1808 if (!status) 1809 /* lock acquired */ 1810 break; 1811 } 1812 if (status && status != -EALREADY) 1813 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); 1814 1815 ice_acquire_res_exit: 1816 if (status == -EALREADY) { 1817 if (access == ICE_RES_WRITE) 1818 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n"); 1819 else 1820 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n"); 1821 } 1822 return status; 1823 } 1824 1825 /** 1826 * ice_release_res 1827 * @hw: pointer to the HW structure 1828 * @res: resource ID 1829 * 1830 * This function will release a resource using the proper Admin Command. 1831 */ 1832 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) 1833 { 1834 u32 total_delay = 0; 1835 int status; 1836 1837 status = ice_aq_release_res(hw, res, 0, NULL); 1838 1839 /* there are some rare cases when trying to release the resource 1840 * results in an admin queue timeout, so handle them correctly 1841 */ 1842 while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) { 1843 mdelay(1); 1844 status = ice_aq_release_res(hw, res, 0, NULL); 1845 total_delay++; 1846 } 1847 } 1848 1849 /** 1850 * ice_aq_alloc_free_res - command to allocate/free resources 1851 * @hw: pointer to the HW struct 1852 * @num_entries: number of resource entries in buffer 1853 * @buf: Indirect buffer to hold data parameters and response 1854 * @buf_size: size of buffer for indirect commands 1855 * @opc: pass in the command opcode 1856 * @cd: pointer to command details structure or NULL 1857 * 1858 * Helper function to allocate/free resources using the admin queue commands 1859 */ 1860 int 1861 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries, 1862 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, 1863 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 1864 { 1865 struct ice_aqc_alloc_free_res_cmd *cmd; 1866 struct ice_aq_desc desc; 1867 1868 cmd = &desc.params.sw_res_ctrl; 1869 1870 if (!buf) 1871 return -EINVAL; 1872 1873 if (buf_size < flex_array_size(buf, elem, num_entries)) 1874 return -EINVAL; 1875 1876 ice_fill_dflt_direct_cmd_desc(&desc, opc); 1877 1878 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 1879 1880 cmd->num_entries = cpu_to_le16(num_entries); 1881 1882 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 1883 } 1884 1885 /** 1886 * ice_alloc_hw_res - allocate resource 1887 * @hw: pointer to the HW struct 1888 * @type: type of resource 1889 * @num: number of resources to allocate 1890 * @btm: allocate from bottom 1891 * @res: pointer to array that will receive the resources 1892 */ 1893 int 1894 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res) 1895 { 1896 struct ice_aqc_alloc_free_res_elem *buf; 1897 u16 buf_len; 1898 int status; 1899 1900 buf_len = struct_size(buf, elem, num); 1901 buf = kzalloc(buf_len, GFP_KERNEL); 1902 if (!buf) 1903 return -ENOMEM; 1904 1905 /* Prepare buffer to allocate resource. */ 1906 buf->num_elems = cpu_to_le16(num); 1907 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED | 1908 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX); 1909 if (btm) 1910 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM); 1911 1912 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, 1913 ice_aqc_opc_alloc_res, NULL); 1914 if (status) 1915 goto ice_alloc_res_exit; 1916 1917 memcpy(res, buf->elem, sizeof(*buf->elem) * num); 1918 1919 ice_alloc_res_exit: 1920 kfree(buf); 1921 return status; 1922 } 1923 1924 /** 1925 * ice_free_hw_res - free allocated HW resource 1926 * @hw: pointer to the HW struct 1927 * @type: type of resource to free 1928 * @num: number of resources 1929 * @res: pointer to array that contains the resources to free 1930 */ 1931 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res) 1932 { 1933 struct ice_aqc_alloc_free_res_elem *buf; 1934 u16 buf_len; 1935 int status; 1936 1937 buf_len = struct_size(buf, elem, num); 1938 buf = kzalloc(buf_len, GFP_KERNEL); 1939 if (!buf) 1940 return -ENOMEM; 1941 1942 /* Prepare buffer to free resource. */ 1943 buf->num_elems = cpu_to_le16(num); 1944 buf->res_type = cpu_to_le16(type); 1945 memcpy(buf->elem, res, sizeof(*buf->elem) * num); 1946 1947 status = ice_aq_alloc_free_res(hw, num, buf, buf_len, 1948 ice_aqc_opc_free_res, NULL); 1949 if (status) 1950 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); 1951 1952 kfree(buf); 1953 return status; 1954 } 1955 1956 /** 1957 * ice_get_num_per_func - determine number of resources per PF 1958 * @hw: pointer to the HW structure 1959 * @max: value to be evenly split between each PF 1960 * 1961 * Determine the number of valid functions by going through the bitmap returned 1962 * from parsing capabilities and use this to calculate the number of resources 1963 * per PF based on the max value passed in. 1964 */ 1965 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max) 1966 { 1967 u8 funcs; 1968 1969 #define ICE_CAPS_VALID_FUNCS_M 0xFF 1970 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 1971 ICE_CAPS_VALID_FUNCS_M); 1972 1973 if (!funcs) 1974 return 0; 1975 1976 return max / funcs; 1977 } 1978 1979 /** 1980 * ice_parse_common_caps - parse common device/function capabilities 1981 * @hw: pointer to the HW struct 1982 * @caps: pointer to common capabilities structure 1983 * @elem: the capability element to parse 1984 * @prefix: message prefix for tracing capabilities 1985 * 1986 * Given a capability element, extract relevant details into the common 1987 * capability structure. 1988 * 1989 * Returns: true if the capability matches one of the common capability ids, 1990 * false otherwise. 1991 */ 1992 static bool 1993 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps, 1994 struct ice_aqc_list_caps_elem *elem, const char *prefix) 1995 { 1996 u32 logical_id = le32_to_cpu(elem->logical_id); 1997 u32 phys_id = le32_to_cpu(elem->phys_id); 1998 u32 number = le32_to_cpu(elem->number); 1999 u16 cap = le16_to_cpu(elem->cap); 2000 bool found = true; 2001 2002 switch (cap) { 2003 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2004 caps->valid_functions = number; 2005 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix, 2006 caps->valid_functions); 2007 break; 2008 case ICE_AQC_CAPS_SRIOV: 2009 caps->sr_iov_1_1 = (number == 1); 2010 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix, 2011 caps->sr_iov_1_1); 2012 break; 2013 case ICE_AQC_CAPS_DCB: 2014 caps->dcb = (number == 1); 2015 caps->active_tc_bitmap = logical_id; 2016 caps->maxtc = phys_id; 2017 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb); 2018 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix, 2019 caps->active_tc_bitmap); 2020 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc); 2021 break; 2022 case ICE_AQC_CAPS_RSS: 2023 caps->rss_table_size = number; 2024 caps->rss_table_entry_width = logical_id; 2025 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix, 2026 caps->rss_table_size); 2027 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix, 2028 caps->rss_table_entry_width); 2029 break; 2030 case ICE_AQC_CAPS_RXQS: 2031 caps->num_rxq = number; 2032 caps->rxq_first_id = phys_id; 2033 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix, 2034 caps->num_rxq); 2035 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix, 2036 caps->rxq_first_id); 2037 break; 2038 case ICE_AQC_CAPS_TXQS: 2039 caps->num_txq = number; 2040 caps->txq_first_id = phys_id; 2041 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix, 2042 caps->num_txq); 2043 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix, 2044 caps->txq_first_id); 2045 break; 2046 case ICE_AQC_CAPS_MSIX: 2047 caps->num_msix_vectors = number; 2048 caps->msix_vector_first_id = phys_id; 2049 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix, 2050 caps->num_msix_vectors); 2051 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix, 2052 caps->msix_vector_first_id); 2053 break; 2054 case ICE_AQC_CAPS_PENDING_NVM_VER: 2055 caps->nvm_update_pending_nvm = true; 2056 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix); 2057 break; 2058 case ICE_AQC_CAPS_PENDING_OROM_VER: 2059 caps->nvm_update_pending_orom = true; 2060 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix); 2061 break; 2062 case ICE_AQC_CAPS_PENDING_NET_VER: 2063 caps->nvm_update_pending_netlist = true; 2064 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix); 2065 break; 2066 case ICE_AQC_CAPS_NVM_MGMT: 2067 caps->nvm_unified_update = 2068 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ? 2069 true : false; 2070 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix, 2071 caps->nvm_unified_update); 2072 break; 2073 case ICE_AQC_CAPS_RDMA: 2074 caps->rdma = (number == 1); 2075 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma); 2076 break; 2077 case ICE_AQC_CAPS_MAX_MTU: 2078 caps->max_mtu = number; 2079 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n", 2080 prefix, caps->max_mtu); 2081 break; 2082 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE: 2083 caps->pcie_reset_avoidance = (number > 0); 2084 ice_debug(hw, ICE_DBG_INIT, 2085 "%s: pcie_reset_avoidance = %d\n", prefix, 2086 caps->pcie_reset_avoidance); 2087 break; 2088 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT: 2089 caps->reset_restrict_support = (number == 1); 2090 ice_debug(hw, ICE_DBG_INIT, 2091 "%s: reset_restrict_support = %d\n", prefix, 2092 caps->reset_restrict_support); 2093 break; 2094 default: 2095 /* Not one of the recognized common capabilities */ 2096 found = false; 2097 } 2098 2099 return found; 2100 } 2101 2102 /** 2103 * ice_recalc_port_limited_caps - Recalculate port limited capabilities 2104 * @hw: pointer to the HW structure 2105 * @caps: pointer to capabilities structure to fix 2106 * 2107 * Re-calculate the capabilities that are dependent on the number of physical 2108 * ports; i.e. some features are not supported or function differently on 2109 * devices with more than 4 ports. 2110 */ 2111 static void 2112 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps) 2113 { 2114 /* This assumes device capabilities are always scanned before function 2115 * capabilities during the initialization flow. 2116 */ 2117 if (hw->dev_caps.num_funcs > 4) { 2118 /* Max 4 TCs per port */ 2119 caps->maxtc = 4; 2120 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n", 2121 caps->maxtc); 2122 if (caps->rdma) { 2123 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n"); 2124 caps->rdma = 0; 2125 } 2126 2127 /* print message only when processing device capabilities 2128 * during initialization. 2129 */ 2130 if (caps == &hw->dev_caps.common_cap) 2131 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n"); 2132 } 2133 } 2134 2135 /** 2136 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps 2137 * @hw: pointer to the HW struct 2138 * @func_p: pointer to function capabilities structure 2139 * @cap: pointer to the capability element to parse 2140 * 2141 * Extract function capabilities for ICE_AQC_CAPS_VF. 2142 */ 2143 static void 2144 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2145 struct ice_aqc_list_caps_elem *cap) 2146 { 2147 u32 logical_id = le32_to_cpu(cap->logical_id); 2148 u32 number = le32_to_cpu(cap->number); 2149 2150 func_p->num_allocd_vfs = number; 2151 func_p->vf_base_id = logical_id; 2152 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n", 2153 func_p->num_allocd_vfs); 2154 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n", 2155 func_p->vf_base_id); 2156 } 2157 2158 /** 2159 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps 2160 * @hw: pointer to the HW struct 2161 * @func_p: pointer to function capabilities structure 2162 * @cap: pointer to the capability element to parse 2163 * 2164 * Extract function capabilities for ICE_AQC_CAPS_VSI. 2165 */ 2166 static void 2167 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2168 struct ice_aqc_list_caps_elem *cap) 2169 { 2170 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI); 2171 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n", 2172 le32_to_cpu(cap->number)); 2173 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n", 2174 func_p->guar_num_vsi); 2175 } 2176 2177 /** 2178 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps 2179 * @hw: pointer to the HW struct 2180 * @func_p: pointer to function capabilities structure 2181 * @cap: pointer to the capability element to parse 2182 * 2183 * Extract function capabilities for ICE_AQC_CAPS_1588. 2184 */ 2185 static void 2186 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2187 struct ice_aqc_list_caps_elem *cap) 2188 { 2189 struct ice_ts_func_info *info = &func_p->ts_func_info; 2190 u32 number = le32_to_cpu(cap->number); 2191 2192 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0); 2193 func_p->common_cap.ieee_1588 = info->ena; 2194 2195 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0); 2196 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0); 2197 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0); 2198 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0); 2199 2200 info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S; 2201 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0); 2202 2203 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) { 2204 info->time_ref = (enum ice_time_ref_freq)info->clk_freq; 2205 } else { 2206 /* Unknown clock frequency, so assume a (probably incorrect) 2207 * default to avoid out-of-bounds look ups of frequency 2208 * related information. 2209 */ 2210 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n", 2211 info->clk_freq); 2212 info->time_ref = ICE_TIME_REF_FREQ_25_000; 2213 } 2214 2215 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n", 2216 func_p->common_cap.ieee_1588); 2217 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n", 2218 info->src_tmr_owned); 2219 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n", 2220 info->tmr_ena); 2221 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n", 2222 info->tmr_index_owned); 2223 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n", 2224 info->tmr_index_assoc); 2225 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n", 2226 info->clk_freq); 2227 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n", 2228 info->clk_src); 2229 } 2230 2231 /** 2232 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps 2233 * @hw: pointer to the HW struct 2234 * @func_p: pointer to function capabilities structure 2235 * 2236 * Extract function capabilities for ICE_AQC_CAPS_FD. 2237 */ 2238 static void 2239 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p) 2240 { 2241 u32 reg_val, val; 2242 2243 reg_val = rd32(hw, GLQF_FD_SIZE); 2244 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >> 2245 GLQF_FD_SIZE_FD_GSIZE_S; 2246 func_p->fd_fltr_guar = 2247 ice_get_num_per_func(hw, val); 2248 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >> 2249 GLQF_FD_SIZE_FD_BSIZE_S; 2250 func_p->fd_fltr_best_effort = val; 2251 2252 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n", 2253 func_p->fd_fltr_guar); 2254 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n", 2255 func_p->fd_fltr_best_effort); 2256 } 2257 2258 /** 2259 * ice_parse_func_caps - Parse function capabilities 2260 * @hw: pointer to the HW struct 2261 * @func_p: pointer to function capabilities structure 2262 * @buf: buffer containing the function capability records 2263 * @cap_count: the number of capabilities 2264 * 2265 * Helper function to parse function (0x000A) capabilities list. For 2266 * capabilities shared between device and function, this relies on 2267 * ice_parse_common_caps. 2268 * 2269 * Loop through the list of provided capabilities and extract the relevant 2270 * data into the function capabilities structured. 2271 */ 2272 static void 2273 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p, 2274 void *buf, u32 cap_count) 2275 { 2276 struct ice_aqc_list_caps_elem *cap_resp; 2277 u32 i; 2278 2279 cap_resp = buf; 2280 2281 memset(func_p, 0, sizeof(*func_p)); 2282 2283 for (i = 0; i < cap_count; i++) { 2284 u16 cap = le16_to_cpu(cap_resp[i].cap); 2285 bool found; 2286 2287 found = ice_parse_common_caps(hw, &func_p->common_cap, 2288 &cap_resp[i], "func caps"); 2289 2290 switch (cap) { 2291 case ICE_AQC_CAPS_VF: 2292 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]); 2293 break; 2294 case ICE_AQC_CAPS_VSI: 2295 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); 2296 break; 2297 case ICE_AQC_CAPS_1588: 2298 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]); 2299 break; 2300 case ICE_AQC_CAPS_FD: 2301 ice_parse_fdir_func_caps(hw, func_p); 2302 break; 2303 default: 2304 /* Don't list common capabilities as unknown */ 2305 if (!found) 2306 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n", 2307 i, cap); 2308 break; 2309 } 2310 } 2311 2312 ice_recalc_port_limited_caps(hw, &func_p->common_cap); 2313 } 2314 2315 /** 2316 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps 2317 * @hw: pointer to the HW struct 2318 * @dev_p: pointer to device capabilities structure 2319 * @cap: capability element to parse 2320 * 2321 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities. 2322 */ 2323 static void 2324 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2325 struct ice_aqc_list_caps_elem *cap) 2326 { 2327 u32 number = le32_to_cpu(cap->number); 2328 2329 dev_p->num_funcs = hweight32(number); 2330 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n", 2331 dev_p->num_funcs); 2332 } 2333 2334 /** 2335 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps 2336 * @hw: pointer to the HW struct 2337 * @dev_p: pointer to device capabilities structure 2338 * @cap: capability element to parse 2339 * 2340 * Parse ICE_AQC_CAPS_VF for device capabilities. 2341 */ 2342 static void 2343 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2344 struct ice_aqc_list_caps_elem *cap) 2345 { 2346 u32 number = le32_to_cpu(cap->number); 2347 2348 dev_p->num_vfs_exposed = number; 2349 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n", 2350 dev_p->num_vfs_exposed); 2351 } 2352 2353 /** 2354 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps 2355 * @hw: pointer to the HW struct 2356 * @dev_p: pointer to device capabilities structure 2357 * @cap: capability element to parse 2358 * 2359 * Parse ICE_AQC_CAPS_VSI for device capabilities. 2360 */ 2361 static void 2362 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2363 struct ice_aqc_list_caps_elem *cap) 2364 { 2365 u32 number = le32_to_cpu(cap->number); 2366 2367 dev_p->num_vsi_allocd_to_host = number; 2368 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n", 2369 dev_p->num_vsi_allocd_to_host); 2370 } 2371 2372 /** 2373 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps 2374 * @hw: pointer to the HW struct 2375 * @dev_p: pointer to device capabilities structure 2376 * @cap: capability element to parse 2377 * 2378 * Parse ICE_AQC_CAPS_1588 for device capabilities. 2379 */ 2380 static void 2381 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2382 struct ice_aqc_list_caps_elem *cap) 2383 { 2384 struct ice_ts_dev_info *info = &dev_p->ts_dev_info; 2385 u32 logical_id = le32_to_cpu(cap->logical_id); 2386 u32 phys_id = le32_to_cpu(cap->phys_id); 2387 u32 number = le32_to_cpu(cap->number); 2388 2389 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0); 2390 dev_p->common_cap.ieee_1588 = info->ena; 2391 2392 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M; 2393 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0); 2394 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0); 2395 2396 info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S; 2397 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0); 2398 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0); 2399 2400 info->ena_ports = logical_id; 2401 info->tmr_own_map = phys_id; 2402 2403 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n", 2404 dev_p->common_cap.ieee_1588); 2405 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n", 2406 info->tmr0_owner); 2407 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n", 2408 info->tmr0_owned); 2409 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n", 2410 info->tmr0_ena); 2411 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n", 2412 info->tmr1_owner); 2413 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n", 2414 info->tmr1_owned); 2415 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n", 2416 info->tmr1_ena); 2417 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n", 2418 info->ena_ports); 2419 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n", 2420 info->tmr_own_map); 2421 } 2422 2423 /** 2424 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps 2425 * @hw: pointer to the HW struct 2426 * @dev_p: pointer to device capabilities structure 2427 * @cap: capability element to parse 2428 * 2429 * Parse ICE_AQC_CAPS_FD for device capabilities. 2430 */ 2431 static void 2432 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2433 struct ice_aqc_list_caps_elem *cap) 2434 { 2435 u32 number = le32_to_cpu(cap->number); 2436 2437 dev_p->num_flow_director_fltr = number; 2438 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n", 2439 dev_p->num_flow_director_fltr); 2440 } 2441 2442 /** 2443 * ice_parse_dev_caps - Parse device capabilities 2444 * @hw: pointer to the HW struct 2445 * @dev_p: pointer to device capabilities structure 2446 * @buf: buffer containing the device capability records 2447 * @cap_count: the number of capabilities 2448 * 2449 * Helper device to parse device (0x000B) capabilities list. For 2450 * capabilities shared between device and function, this relies on 2451 * ice_parse_common_caps. 2452 * 2453 * Loop through the list of provided capabilities and extract the relevant 2454 * data into the device capabilities structured. 2455 */ 2456 static void 2457 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p, 2458 void *buf, u32 cap_count) 2459 { 2460 struct ice_aqc_list_caps_elem *cap_resp; 2461 u32 i; 2462 2463 cap_resp = buf; 2464 2465 memset(dev_p, 0, sizeof(*dev_p)); 2466 2467 for (i = 0; i < cap_count; i++) { 2468 u16 cap = le16_to_cpu(cap_resp[i].cap); 2469 bool found; 2470 2471 found = ice_parse_common_caps(hw, &dev_p->common_cap, 2472 &cap_resp[i], "dev caps"); 2473 2474 switch (cap) { 2475 case ICE_AQC_CAPS_VALID_FUNCTIONS: 2476 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]); 2477 break; 2478 case ICE_AQC_CAPS_VF: 2479 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); 2480 break; 2481 case ICE_AQC_CAPS_VSI: 2482 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); 2483 break; 2484 case ICE_AQC_CAPS_1588: 2485 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]); 2486 break; 2487 case ICE_AQC_CAPS_FD: 2488 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); 2489 break; 2490 default: 2491 /* Don't list common capabilities as unknown */ 2492 if (!found) 2493 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n", 2494 i, cap); 2495 break; 2496 } 2497 } 2498 2499 ice_recalc_port_limited_caps(hw, &dev_p->common_cap); 2500 } 2501 2502 /** 2503 * ice_aq_list_caps - query function/device capabilities 2504 * @hw: pointer to the HW struct 2505 * @buf: a buffer to hold the capabilities 2506 * @buf_size: size of the buffer 2507 * @cap_count: if not NULL, set to the number of capabilities reported 2508 * @opc: capabilities type to discover, device or function 2509 * @cd: pointer to command details structure or NULL 2510 * 2511 * Get the function (0x000A) or device (0x000B) capabilities description from 2512 * firmware and store it in the buffer. 2513 * 2514 * If the cap_count pointer is not NULL, then it is set to the number of 2515 * capabilities firmware will report. Note that if the buffer size is too 2516 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The 2517 * cap_count will still be updated in this case. It is recommended that the 2518 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that 2519 * firmware could return) to avoid this. 2520 */ 2521 int 2522 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, 2523 enum ice_adminq_opc opc, struct ice_sq_cd *cd) 2524 { 2525 struct ice_aqc_list_caps *cmd; 2526 struct ice_aq_desc desc; 2527 int status; 2528 2529 cmd = &desc.params.get_cap; 2530 2531 if (opc != ice_aqc_opc_list_func_caps && 2532 opc != ice_aqc_opc_list_dev_caps) 2533 return -EINVAL; 2534 2535 ice_fill_dflt_direct_cmd_desc(&desc, opc); 2536 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 2537 2538 if (cap_count) 2539 *cap_count = le32_to_cpu(cmd->count); 2540 2541 return status; 2542 } 2543 2544 /** 2545 * ice_discover_dev_caps - Read and extract device capabilities 2546 * @hw: pointer to the hardware structure 2547 * @dev_caps: pointer to device capabilities structure 2548 * 2549 * Read the device capabilities and extract them into the dev_caps structure 2550 * for later use. 2551 */ 2552 int 2553 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps) 2554 { 2555 u32 cap_count = 0; 2556 void *cbuf; 2557 int status; 2558 2559 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2560 if (!cbuf) 2561 return -ENOMEM; 2562 2563 /* Although the driver doesn't know the number of capabilities the 2564 * device will return, we can simply send a 4KB buffer, the maximum 2565 * possible size that firmware can return. 2566 */ 2567 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2568 2569 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2570 ice_aqc_opc_list_dev_caps, NULL); 2571 if (!status) 2572 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count); 2573 kfree(cbuf); 2574 2575 return status; 2576 } 2577 2578 /** 2579 * ice_discover_func_caps - Read and extract function capabilities 2580 * @hw: pointer to the hardware structure 2581 * @func_caps: pointer to function capabilities structure 2582 * 2583 * Read the function capabilities and extract them into the func_caps structure 2584 * for later use. 2585 */ 2586 static int 2587 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps) 2588 { 2589 u32 cap_count = 0; 2590 void *cbuf; 2591 int status; 2592 2593 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); 2594 if (!cbuf) 2595 return -ENOMEM; 2596 2597 /* Although the driver doesn't know the number of capabilities the 2598 * device will return, we can simply send a 4KB buffer, the maximum 2599 * possible size that firmware can return. 2600 */ 2601 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem); 2602 2603 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count, 2604 ice_aqc_opc_list_func_caps, NULL); 2605 if (!status) 2606 ice_parse_func_caps(hw, func_caps, cbuf, cap_count); 2607 kfree(cbuf); 2608 2609 return status; 2610 } 2611 2612 /** 2613 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode 2614 * @hw: pointer to the hardware structure 2615 */ 2616 void ice_set_safe_mode_caps(struct ice_hw *hw) 2617 { 2618 struct ice_hw_func_caps *func_caps = &hw->func_caps; 2619 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps; 2620 struct ice_hw_common_caps cached_caps; 2621 u32 num_funcs; 2622 2623 /* cache some func_caps values that should be restored after memset */ 2624 cached_caps = func_caps->common_cap; 2625 2626 /* unset func capabilities */ 2627 memset(func_caps, 0, sizeof(*func_caps)); 2628 2629 #define ICE_RESTORE_FUNC_CAP(name) \ 2630 func_caps->common_cap.name = cached_caps.name 2631 2632 /* restore cached values */ 2633 ICE_RESTORE_FUNC_CAP(valid_functions); 2634 ICE_RESTORE_FUNC_CAP(txq_first_id); 2635 ICE_RESTORE_FUNC_CAP(rxq_first_id); 2636 ICE_RESTORE_FUNC_CAP(msix_vector_first_id); 2637 ICE_RESTORE_FUNC_CAP(max_mtu); 2638 ICE_RESTORE_FUNC_CAP(nvm_unified_update); 2639 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm); 2640 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom); 2641 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist); 2642 2643 /* one Tx and one Rx queue in safe mode */ 2644 func_caps->common_cap.num_rxq = 1; 2645 func_caps->common_cap.num_txq = 1; 2646 2647 /* two MSIX vectors, one for traffic and one for misc causes */ 2648 func_caps->common_cap.num_msix_vectors = 2; 2649 func_caps->guar_num_vsi = 1; 2650 2651 /* cache some dev_caps values that should be restored after memset */ 2652 cached_caps = dev_caps->common_cap; 2653 num_funcs = dev_caps->num_funcs; 2654 2655 /* unset dev capabilities */ 2656 memset(dev_caps, 0, sizeof(*dev_caps)); 2657 2658 #define ICE_RESTORE_DEV_CAP(name) \ 2659 dev_caps->common_cap.name = cached_caps.name 2660 2661 /* restore cached values */ 2662 ICE_RESTORE_DEV_CAP(valid_functions); 2663 ICE_RESTORE_DEV_CAP(txq_first_id); 2664 ICE_RESTORE_DEV_CAP(rxq_first_id); 2665 ICE_RESTORE_DEV_CAP(msix_vector_first_id); 2666 ICE_RESTORE_DEV_CAP(max_mtu); 2667 ICE_RESTORE_DEV_CAP(nvm_unified_update); 2668 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm); 2669 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom); 2670 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist); 2671 dev_caps->num_funcs = num_funcs; 2672 2673 /* one Tx and one Rx queue per function in safe mode */ 2674 dev_caps->common_cap.num_rxq = num_funcs; 2675 dev_caps->common_cap.num_txq = num_funcs; 2676 2677 /* two MSIX vectors per function */ 2678 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs; 2679 } 2680 2681 /** 2682 * ice_get_caps - get info about the HW 2683 * @hw: pointer to the hardware structure 2684 */ 2685 int ice_get_caps(struct ice_hw *hw) 2686 { 2687 int status; 2688 2689 status = ice_discover_dev_caps(hw, &hw->dev_caps); 2690 if (status) 2691 return status; 2692 2693 return ice_discover_func_caps(hw, &hw->func_caps); 2694 } 2695 2696 /** 2697 * ice_aq_manage_mac_write - manage MAC address write command 2698 * @hw: pointer to the HW struct 2699 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address 2700 * @flags: flags to control write behavior 2701 * @cd: pointer to command details structure or NULL 2702 * 2703 * This function is used to write MAC address to the NVM (0x0108). 2704 */ 2705 int 2706 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags, 2707 struct ice_sq_cd *cd) 2708 { 2709 struct ice_aqc_manage_mac_write *cmd; 2710 struct ice_aq_desc desc; 2711 2712 cmd = &desc.params.mac_write; 2713 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); 2714 2715 cmd->flags = flags; 2716 ether_addr_copy(cmd->mac_addr, mac_addr); 2717 2718 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2719 } 2720 2721 /** 2722 * ice_aq_clear_pxe_mode 2723 * @hw: pointer to the HW struct 2724 * 2725 * Tell the firmware that the driver is taking over from PXE (0x0110). 2726 */ 2727 static int ice_aq_clear_pxe_mode(struct ice_hw *hw) 2728 { 2729 struct ice_aq_desc desc; 2730 2731 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); 2732 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; 2733 2734 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 2735 } 2736 2737 /** 2738 * ice_clear_pxe_mode - clear pxe operations mode 2739 * @hw: pointer to the HW struct 2740 * 2741 * Make sure all PXE mode settings are cleared, including things 2742 * like descriptor fetch/write-back mode. 2743 */ 2744 void ice_clear_pxe_mode(struct ice_hw *hw) 2745 { 2746 if (ice_check_sq_alive(hw, &hw->adminq)) 2747 ice_aq_clear_pxe_mode(hw); 2748 } 2749 2750 /** 2751 * ice_aq_set_port_params - set physical port parameters. 2752 * @pi: pointer to the port info struct 2753 * @double_vlan: if set double VLAN is enabled 2754 * @cd: pointer to command details structure or NULL 2755 * 2756 * Set Physical port parameters (0x0203) 2757 */ 2758 int 2759 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan, 2760 struct ice_sq_cd *cd) 2761 2762 { 2763 struct ice_aqc_set_port_params *cmd; 2764 struct ice_hw *hw = pi->hw; 2765 struct ice_aq_desc desc; 2766 u16 cmd_flags = 0; 2767 2768 cmd = &desc.params.set_port_params; 2769 2770 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params); 2771 if (double_vlan) 2772 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA; 2773 cmd->cmd_flags = cpu_to_le16(cmd_flags); 2774 2775 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 2776 } 2777 2778 /** 2779 * ice_get_link_speed_based_on_phy_type - returns link speed 2780 * @phy_type_low: lower part of phy_type 2781 * @phy_type_high: higher part of phy_type 2782 * 2783 * This helper function will convert an entry in PHY type structure 2784 * [phy_type_low, phy_type_high] to its corresponding link speed. 2785 * Note: In the structure of [phy_type_low, phy_type_high], there should 2786 * be one bit set, as this function will convert one PHY type to its 2787 * speed. 2788 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned 2789 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned 2790 */ 2791 static u16 2792 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high) 2793 { 2794 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 2795 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 2796 2797 switch (phy_type_low) { 2798 case ICE_PHY_TYPE_LOW_100BASE_TX: 2799 case ICE_PHY_TYPE_LOW_100M_SGMII: 2800 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; 2801 break; 2802 case ICE_PHY_TYPE_LOW_1000BASE_T: 2803 case ICE_PHY_TYPE_LOW_1000BASE_SX: 2804 case ICE_PHY_TYPE_LOW_1000BASE_LX: 2805 case ICE_PHY_TYPE_LOW_1000BASE_KX: 2806 case ICE_PHY_TYPE_LOW_1G_SGMII: 2807 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; 2808 break; 2809 case ICE_PHY_TYPE_LOW_2500BASE_T: 2810 case ICE_PHY_TYPE_LOW_2500BASE_X: 2811 case ICE_PHY_TYPE_LOW_2500BASE_KX: 2812 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; 2813 break; 2814 case ICE_PHY_TYPE_LOW_5GBASE_T: 2815 case ICE_PHY_TYPE_LOW_5GBASE_KR: 2816 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; 2817 break; 2818 case ICE_PHY_TYPE_LOW_10GBASE_T: 2819 case ICE_PHY_TYPE_LOW_10G_SFI_DA: 2820 case ICE_PHY_TYPE_LOW_10GBASE_SR: 2821 case ICE_PHY_TYPE_LOW_10GBASE_LR: 2822 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: 2823 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 2824 case ICE_PHY_TYPE_LOW_10G_SFI_C2C: 2825 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; 2826 break; 2827 case ICE_PHY_TYPE_LOW_25GBASE_T: 2828 case ICE_PHY_TYPE_LOW_25GBASE_CR: 2829 case ICE_PHY_TYPE_LOW_25GBASE_CR_S: 2830 case ICE_PHY_TYPE_LOW_25GBASE_CR1: 2831 case ICE_PHY_TYPE_LOW_25GBASE_SR: 2832 case ICE_PHY_TYPE_LOW_25GBASE_LR: 2833 case ICE_PHY_TYPE_LOW_25GBASE_KR: 2834 case ICE_PHY_TYPE_LOW_25GBASE_KR_S: 2835 case ICE_PHY_TYPE_LOW_25GBASE_KR1: 2836 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 2837 case ICE_PHY_TYPE_LOW_25G_AUI_C2C: 2838 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; 2839 break; 2840 case ICE_PHY_TYPE_LOW_40GBASE_CR4: 2841 case ICE_PHY_TYPE_LOW_40GBASE_SR4: 2842 case ICE_PHY_TYPE_LOW_40GBASE_LR4: 2843 case ICE_PHY_TYPE_LOW_40GBASE_KR4: 2844 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: 2845 case ICE_PHY_TYPE_LOW_40G_XLAUI: 2846 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; 2847 break; 2848 case ICE_PHY_TYPE_LOW_50GBASE_CR2: 2849 case ICE_PHY_TYPE_LOW_50GBASE_SR2: 2850 case ICE_PHY_TYPE_LOW_50GBASE_LR2: 2851 case ICE_PHY_TYPE_LOW_50GBASE_KR2: 2852 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC: 2853 case ICE_PHY_TYPE_LOW_50G_LAUI2: 2854 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC: 2855 case ICE_PHY_TYPE_LOW_50G_AUI2: 2856 case ICE_PHY_TYPE_LOW_50GBASE_CP: 2857 case ICE_PHY_TYPE_LOW_50GBASE_SR: 2858 case ICE_PHY_TYPE_LOW_50GBASE_FR: 2859 case ICE_PHY_TYPE_LOW_50GBASE_LR: 2860 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4: 2861 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC: 2862 case ICE_PHY_TYPE_LOW_50G_AUI1: 2863 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB; 2864 break; 2865 case ICE_PHY_TYPE_LOW_100GBASE_CR4: 2866 case ICE_PHY_TYPE_LOW_100GBASE_SR4: 2867 case ICE_PHY_TYPE_LOW_100GBASE_LR4: 2868 case ICE_PHY_TYPE_LOW_100GBASE_KR4: 2869 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC: 2870 case ICE_PHY_TYPE_LOW_100G_CAUI4: 2871 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC: 2872 case ICE_PHY_TYPE_LOW_100G_AUI4: 2873 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4: 2874 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4: 2875 case ICE_PHY_TYPE_LOW_100GBASE_CP2: 2876 case ICE_PHY_TYPE_LOW_100GBASE_SR2: 2877 case ICE_PHY_TYPE_LOW_100GBASE_DR: 2878 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB; 2879 break; 2880 default: 2881 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; 2882 break; 2883 } 2884 2885 switch (phy_type_high) { 2886 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4: 2887 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC: 2888 case ICE_PHY_TYPE_HIGH_100G_CAUI2: 2889 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC: 2890 case ICE_PHY_TYPE_HIGH_100G_AUI2: 2891 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB; 2892 break; 2893 default: 2894 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN; 2895 break; 2896 } 2897 2898 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN && 2899 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 2900 return ICE_AQ_LINK_SPEED_UNKNOWN; 2901 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 2902 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN) 2903 return ICE_AQ_LINK_SPEED_UNKNOWN; 2904 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN && 2905 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN) 2906 return speed_phy_type_low; 2907 else 2908 return speed_phy_type_high; 2909 } 2910 2911 /** 2912 * ice_update_phy_type 2913 * @phy_type_low: pointer to the lower part of phy_type 2914 * @phy_type_high: pointer to the higher part of phy_type 2915 * @link_speeds_bitmap: targeted link speeds bitmap 2916 * 2917 * Note: For the link_speeds_bitmap structure, you can check it at 2918 * [ice_aqc_get_link_status->link_speed]. Caller can pass in 2919 * link_speeds_bitmap include multiple speeds. 2920 * 2921 * Each entry in this [phy_type_low, phy_type_high] structure will 2922 * present a certain link speed. This helper function will turn on bits 2923 * in [phy_type_low, phy_type_high] structure based on the value of 2924 * link_speeds_bitmap input parameter. 2925 */ 2926 void 2927 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high, 2928 u16 link_speeds_bitmap) 2929 { 2930 u64 pt_high; 2931 u64 pt_low; 2932 int index; 2933 u16 speed; 2934 2935 /* We first check with low part of phy_type */ 2936 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { 2937 pt_low = BIT_ULL(index); 2938 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0); 2939 2940 if (link_speeds_bitmap & speed) 2941 *phy_type_low |= BIT_ULL(index); 2942 } 2943 2944 /* We then check with high part of phy_type */ 2945 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) { 2946 pt_high = BIT_ULL(index); 2947 speed = ice_get_link_speed_based_on_phy_type(0, pt_high); 2948 2949 if (link_speeds_bitmap & speed) 2950 *phy_type_high |= BIT_ULL(index); 2951 } 2952 } 2953 2954 /** 2955 * ice_aq_set_phy_cfg 2956 * @hw: pointer to the HW struct 2957 * @pi: port info structure of the interested logical port 2958 * @cfg: structure with PHY configuration data to be set 2959 * @cd: pointer to command details structure or NULL 2960 * 2961 * Set the various PHY configuration parameters supported on the Port. 2962 * One or more of the Set PHY config parameters may be ignored in an MFP 2963 * mode as the PF may not have the privilege to set some of the PHY Config 2964 * parameters. This status will be indicated by the command response (0x0601). 2965 */ 2966 int 2967 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi, 2968 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) 2969 { 2970 struct ice_aq_desc desc; 2971 int status; 2972 2973 if (!cfg) 2974 return -EINVAL; 2975 2976 /* Ensure that only valid bits of cfg->caps can be turned on. */ 2977 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) { 2978 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n", 2979 cfg->caps); 2980 2981 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK; 2982 } 2983 2984 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); 2985 desc.params.set_phy.lport_num = pi->lport; 2986 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 2987 2988 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n"); 2989 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n", 2990 (unsigned long long)le64_to_cpu(cfg->phy_type_low)); 2991 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n", 2992 (unsigned long long)le64_to_cpu(cfg->phy_type_high)); 2993 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps); 2994 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n", 2995 cfg->low_power_ctrl_an); 2996 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap); 2997 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value); 2998 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n", 2999 cfg->link_fec_opt); 3000 3001 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); 3002 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3003 status = 0; 3004 3005 if (!status) 3006 pi->phy.curr_user_phy_cfg = *cfg; 3007 3008 return status; 3009 } 3010 3011 /** 3012 * ice_update_link_info - update status of the HW network link 3013 * @pi: port info structure of the interested logical port 3014 */ 3015 int ice_update_link_info(struct ice_port_info *pi) 3016 { 3017 struct ice_link_status *li; 3018 int status; 3019 3020 if (!pi) 3021 return -EINVAL; 3022 3023 li = &pi->phy.link_info; 3024 3025 status = ice_aq_get_link_info(pi, true, NULL, NULL); 3026 if (status) 3027 return status; 3028 3029 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) { 3030 struct ice_aqc_get_phy_caps_data *pcaps; 3031 struct ice_hw *hw; 3032 3033 hw = pi->hw; 3034 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), 3035 GFP_KERNEL); 3036 if (!pcaps) 3037 return -ENOMEM; 3038 3039 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 3040 pcaps, NULL); 3041 3042 devm_kfree(ice_hw_to_dev(hw), pcaps); 3043 } 3044 3045 return status; 3046 } 3047 3048 /** 3049 * ice_cache_phy_user_req 3050 * @pi: port information structure 3051 * @cache_data: PHY logging data 3052 * @cache_mode: PHY logging mode 3053 * 3054 * Log the user request on (FC, FEC, SPEED) for later use. 3055 */ 3056 static void 3057 ice_cache_phy_user_req(struct ice_port_info *pi, 3058 struct ice_phy_cache_mode_data cache_data, 3059 enum ice_phy_cache_mode cache_mode) 3060 { 3061 if (!pi) 3062 return; 3063 3064 switch (cache_mode) { 3065 case ICE_FC_MODE: 3066 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req; 3067 break; 3068 case ICE_SPEED_MODE: 3069 pi->phy.curr_user_speed_req = 3070 cache_data.data.curr_user_speed_req; 3071 break; 3072 case ICE_FEC_MODE: 3073 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req; 3074 break; 3075 default: 3076 break; 3077 } 3078 } 3079 3080 /** 3081 * ice_caps_to_fc_mode 3082 * @caps: PHY capabilities 3083 * 3084 * Convert PHY FC capabilities to ice FC mode 3085 */ 3086 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps) 3087 { 3088 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE && 3089 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3090 return ICE_FC_FULL; 3091 3092 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) 3093 return ICE_FC_TX_PAUSE; 3094 3095 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) 3096 return ICE_FC_RX_PAUSE; 3097 3098 return ICE_FC_NONE; 3099 } 3100 3101 /** 3102 * ice_caps_to_fec_mode 3103 * @caps: PHY capabilities 3104 * @fec_options: Link FEC options 3105 * 3106 * Convert PHY FEC capabilities to ice FEC mode 3107 */ 3108 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options) 3109 { 3110 if (caps & ICE_AQC_PHY_EN_AUTO_FEC) 3111 return ICE_FEC_AUTO; 3112 3113 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3114 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3115 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN | 3116 ICE_AQC_PHY_FEC_25G_KR_REQ)) 3117 return ICE_FEC_BASER; 3118 3119 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3120 ICE_AQC_PHY_FEC_25G_RS_544_REQ | 3121 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)) 3122 return ICE_FEC_RS; 3123 3124 return ICE_FEC_NONE; 3125 } 3126 3127 /** 3128 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode 3129 * @pi: port information structure 3130 * @cfg: PHY configuration data to set FC mode 3131 * @req_mode: FC mode to configure 3132 */ 3133 int 3134 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3135 enum ice_fc_mode req_mode) 3136 { 3137 struct ice_phy_cache_mode_data cache_data; 3138 u8 pause_mask = 0x0; 3139 3140 if (!pi || !cfg) 3141 return -EINVAL; 3142 3143 switch (req_mode) { 3144 case ICE_FC_FULL: 3145 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3146 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3147 break; 3148 case ICE_FC_RX_PAUSE: 3149 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; 3150 break; 3151 case ICE_FC_TX_PAUSE: 3152 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; 3153 break; 3154 default: 3155 break; 3156 } 3157 3158 /* clear the old pause settings */ 3159 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | 3160 ICE_AQC_PHY_EN_RX_LINK_PAUSE); 3161 3162 /* set the new capabilities */ 3163 cfg->caps |= pause_mask; 3164 3165 /* Cache user FC request */ 3166 cache_data.data.curr_user_fc_req = req_mode; 3167 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE); 3168 3169 return 0; 3170 } 3171 3172 /** 3173 * ice_set_fc 3174 * @pi: port information structure 3175 * @aq_failures: pointer to status code, specific to ice_set_fc routine 3176 * @ena_auto_link_update: enable automatic link update 3177 * 3178 * Set the requested flow control mode. 3179 */ 3180 int 3181 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) 3182 { 3183 struct ice_aqc_set_phy_cfg_data cfg = { 0 }; 3184 struct ice_aqc_get_phy_caps_data *pcaps; 3185 struct ice_hw *hw; 3186 int status; 3187 3188 if (!pi || !aq_failures) 3189 return -EINVAL; 3190 3191 *aq_failures = 0; 3192 hw = pi->hw; 3193 3194 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); 3195 if (!pcaps) 3196 return -ENOMEM; 3197 3198 /* Get the current PHY config */ 3199 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, 3200 pcaps, NULL); 3201 if (status) { 3202 *aq_failures = ICE_SET_FC_AQ_FAIL_GET; 3203 goto out; 3204 } 3205 3206 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg); 3207 3208 /* Configure the set PHY data */ 3209 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode); 3210 if (status) 3211 goto out; 3212 3213 /* If the capabilities have changed, then set the new config */ 3214 if (cfg.caps != pcaps->caps) { 3215 int retry_count, retry_max = 10; 3216 3217 /* Auto restart link so settings take effect */ 3218 if (ena_auto_link_update) 3219 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3220 3221 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL); 3222 if (status) { 3223 *aq_failures = ICE_SET_FC_AQ_FAIL_SET; 3224 goto out; 3225 } 3226 3227 /* Update the link info 3228 * It sometimes takes a really long time for link to 3229 * come back from the atomic reset. Thus, we wait a 3230 * little bit. 3231 */ 3232 for (retry_count = 0; retry_count < retry_max; retry_count++) { 3233 status = ice_update_link_info(pi); 3234 3235 if (!status) 3236 break; 3237 3238 mdelay(100); 3239 } 3240 3241 if (status) 3242 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; 3243 } 3244 3245 out: 3246 devm_kfree(ice_hw_to_dev(hw), pcaps); 3247 return status; 3248 } 3249 3250 /** 3251 * ice_phy_caps_equals_cfg 3252 * @phy_caps: PHY capabilities 3253 * @phy_cfg: PHY configuration 3254 * 3255 * Helper function to determine if PHY capabilities matches PHY 3256 * configuration 3257 */ 3258 bool 3259 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps, 3260 struct ice_aqc_set_phy_cfg_data *phy_cfg) 3261 { 3262 u8 caps_mask, cfg_mask; 3263 3264 if (!phy_caps || !phy_cfg) 3265 return false; 3266 3267 /* These bits are not common between capabilities and configuration. 3268 * Do not use them to determine equality. 3269 */ 3270 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE | 3271 ICE_AQC_GET_PHY_EN_MOD_QUAL); 3272 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 3273 3274 if (phy_caps->phy_type_low != phy_cfg->phy_type_low || 3275 phy_caps->phy_type_high != phy_cfg->phy_type_high || 3276 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) || 3277 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an || 3278 phy_caps->eee_cap != phy_cfg->eee_cap || 3279 phy_caps->eeer_value != phy_cfg->eeer_value || 3280 phy_caps->link_fec_options != phy_cfg->link_fec_opt) 3281 return false; 3282 3283 return true; 3284 } 3285 3286 /** 3287 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 3288 * @pi: port information structure 3289 * @caps: PHY ability structure to copy date from 3290 * @cfg: PHY configuration structure to copy data to 3291 * 3292 * Helper function to copy AQC PHY get ability data to PHY set configuration 3293 * data structure 3294 */ 3295 void 3296 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi, 3297 struct ice_aqc_get_phy_caps_data *caps, 3298 struct ice_aqc_set_phy_cfg_data *cfg) 3299 { 3300 if (!pi || !caps || !cfg) 3301 return; 3302 3303 memset(cfg, 0, sizeof(*cfg)); 3304 cfg->phy_type_low = caps->phy_type_low; 3305 cfg->phy_type_high = caps->phy_type_high; 3306 cfg->caps = caps->caps; 3307 cfg->low_power_ctrl_an = caps->low_power_ctrl_an; 3308 cfg->eee_cap = caps->eee_cap; 3309 cfg->eeer_value = caps->eeer_value; 3310 cfg->link_fec_opt = caps->link_fec_options; 3311 cfg->module_compliance_enforcement = 3312 caps->module_compliance_enforcement; 3313 } 3314 3315 /** 3316 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode 3317 * @pi: port information structure 3318 * @cfg: PHY configuration data to set FEC mode 3319 * @fec: FEC mode to configure 3320 */ 3321 int 3322 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg, 3323 enum ice_fec_mode fec) 3324 { 3325 struct ice_aqc_get_phy_caps_data *pcaps; 3326 struct ice_hw *hw; 3327 int status; 3328 3329 if (!pi || !cfg) 3330 return -EINVAL; 3331 3332 hw = pi->hw; 3333 3334 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 3335 if (!pcaps) 3336 return -ENOMEM; 3337 3338 status = ice_aq_get_phy_caps(pi, false, 3339 (ice_fw_supports_report_dflt_cfg(hw) ? 3340 ICE_AQC_REPORT_DFLT_CFG : 3341 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL); 3342 if (status) 3343 goto out; 3344 3345 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 3346 cfg->link_fec_opt = pcaps->link_fec_options; 3347 3348 switch (fec) { 3349 case ICE_FEC_BASER: 3350 /* Clear RS bits, and AND BASE-R ability 3351 * bits and OR request bits. 3352 */ 3353 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN | 3354 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN; 3355 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ | 3356 ICE_AQC_PHY_FEC_25G_KR_REQ; 3357 break; 3358 case ICE_FEC_RS: 3359 /* Clear BASE-R bits, and AND RS ability 3360 * bits and OR request bits. 3361 */ 3362 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN; 3363 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ | 3364 ICE_AQC_PHY_FEC_25G_RS_544_REQ; 3365 break; 3366 case ICE_FEC_NONE: 3367 /* Clear all FEC option bits. */ 3368 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK; 3369 break; 3370 case ICE_FEC_AUTO: 3371 /* AND auto FEC bit, and all caps bits. */ 3372 cfg->caps &= ICE_AQC_PHY_CAPS_MASK; 3373 cfg->link_fec_opt |= pcaps->link_fec_options; 3374 break; 3375 default: 3376 status = -EINVAL; 3377 break; 3378 } 3379 3380 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) && 3381 !ice_fw_supports_report_dflt_cfg(hw)) { 3382 struct ice_link_default_override_tlv tlv; 3383 3384 if (ice_get_link_default_override(&tlv, pi)) 3385 goto out; 3386 3387 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) && 3388 (tlv.options & ICE_LINK_OVERRIDE_EN)) 3389 cfg->link_fec_opt = tlv.fec_options; 3390 } 3391 3392 out: 3393 kfree(pcaps); 3394 3395 return status; 3396 } 3397 3398 /** 3399 * ice_get_link_status - get status of the HW network link 3400 * @pi: port information structure 3401 * @link_up: pointer to bool (true/false = linkup/linkdown) 3402 * 3403 * Variable link_up is true if link is up, false if link is down. 3404 * The variable link_up is invalid if status is non zero. As a 3405 * result of this call, link status reporting becomes enabled 3406 */ 3407 int ice_get_link_status(struct ice_port_info *pi, bool *link_up) 3408 { 3409 struct ice_phy_info *phy_info; 3410 int status = 0; 3411 3412 if (!pi || !link_up) 3413 return -EINVAL; 3414 3415 phy_info = &pi->phy; 3416 3417 if (phy_info->get_link_info) { 3418 status = ice_update_link_info(pi); 3419 3420 if (status) 3421 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n", 3422 status); 3423 } 3424 3425 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; 3426 3427 return status; 3428 } 3429 3430 /** 3431 * ice_aq_set_link_restart_an 3432 * @pi: pointer to the port information structure 3433 * @ena_link: if true: enable link, if false: disable link 3434 * @cd: pointer to command details structure or NULL 3435 * 3436 * Sets up the link and restarts the Auto-Negotiation over the link. 3437 */ 3438 int 3439 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, 3440 struct ice_sq_cd *cd) 3441 { 3442 struct ice_aqc_restart_an *cmd; 3443 struct ice_aq_desc desc; 3444 3445 cmd = &desc.params.restart_an; 3446 3447 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); 3448 3449 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; 3450 cmd->lport_num = pi->lport; 3451 if (ena_link) 3452 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; 3453 else 3454 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; 3455 3456 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); 3457 } 3458 3459 /** 3460 * ice_aq_set_event_mask 3461 * @hw: pointer to the HW struct 3462 * @port_num: port number of the physical function 3463 * @mask: event mask to be set 3464 * @cd: pointer to command details structure or NULL 3465 * 3466 * Set event mask (0x0613) 3467 */ 3468 int 3469 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, 3470 struct ice_sq_cd *cd) 3471 { 3472 struct ice_aqc_set_event_mask *cmd; 3473 struct ice_aq_desc desc; 3474 3475 cmd = &desc.params.set_event_mask; 3476 3477 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask); 3478 3479 cmd->lport_num = port_num; 3480 3481 cmd->event_mask = cpu_to_le16(mask); 3482 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3483 } 3484 3485 /** 3486 * ice_aq_set_mac_loopback 3487 * @hw: pointer to the HW struct 3488 * @ena_lpbk: Enable or Disable loopback 3489 * @cd: pointer to command details structure or NULL 3490 * 3491 * Enable/disable loopback on a given port 3492 */ 3493 int 3494 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd) 3495 { 3496 struct ice_aqc_set_mac_lb *cmd; 3497 struct ice_aq_desc desc; 3498 3499 cmd = &desc.params.set_mac_lb; 3500 3501 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb); 3502 if (ena_lpbk) 3503 cmd->lb_mode = ICE_AQ_MAC_LB_EN; 3504 3505 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3506 } 3507 3508 /** 3509 * ice_aq_set_port_id_led 3510 * @pi: pointer to the port information 3511 * @is_orig_mode: is this LED set to original mode (by the net-list) 3512 * @cd: pointer to command details structure or NULL 3513 * 3514 * Set LED value for the given port (0x06e9) 3515 */ 3516 int 3517 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode, 3518 struct ice_sq_cd *cd) 3519 { 3520 struct ice_aqc_set_port_id_led *cmd; 3521 struct ice_hw *hw = pi->hw; 3522 struct ice_aq_desc desc; 3523 3524 cmd = &desc.params.set_port_id_led; 3525 3526 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led); 3527 3528 if (is_orig_mode) 3529 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG; 3530 else 3531 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK; 3532 3533 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 3534 } 3535 3536 /** 3537 * ice_aq_sff_eeprom 3538 * @hw: pointer to the HW struct 3539 * @lport: bits [7:0] = logical port, bit [8] = logical port valid 3540 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default) 3541 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding. 3542 * @page: QSFP page 3543 * @set_page: set or ignore the page 3544 * @data: pointer to data buffer to be read/written to the I2C device. 3545 * @length: 1-16 for read, 1 for write. 3546 * @write: 0 read, 1 for write. 3547 * @cd: pointer to command details structure or NULL 3548 * 3549 * Read/Write SFF EEPROM (0x06EE) 3550 */ 3551 int 3552 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr, 3553 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length, 3554 bool write, struct ice_sq_cd *cd) 3555 { 3556 struct ice_aqc_sff_eeprom *cmd; 3557 struct ice_aq_desc desc; 3558 int status; 3559 3560 if (!data || (mem_addr & 0xff00)) 3561 return -EINVAL; 3562 3563 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom); 3564 cmd = &desc.params.read_write_sff_param; 3565 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD); 3566 cmd->lport_num = (u8)(lport & 0xff); 3567 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01); 3568 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) & 3569 ICE_AQC_SFF_I2CBUS_7BIT_M) | 3570 ((set_page << 3571 ICE_AQC_SFF_SET_EEPROM_PAGE_S) & 3572 ICE_AQC_SFF_SET_EEPROM_PAGE_M)); 3573 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff); 3574 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S); 3575 if (write) 3576 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE); 3577 3578 status = ice_aq_send_cmd(hw, &desc, data, length, cd); 3579 return status; 3580 } 3581 3582 /** 3583 * __ice_aq_get_set_rss_lut 3584 * @hw: pointer to the hardware structure 3585 * @params: RSS LUT parameters 3586 * @set: set true to set the table, false to get the table 3587 * 3588 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table 3589 */ 3590 static int 3591 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set) 3592 { 3593 u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle; 3594 struct ice_aqc_get_set_rss_lut *cmd_resp; 3595 struct ice_aq_desc desc; 3596 int status; 3597 u8 *lut; 3598 3599 if (!params) 3600 return -EINVAL; 3601 3602 vsi_handle = params->vsi_handle; 3603 lut = params->lut; 3604 3605 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) 3606 return -EINVAL; 3607 3608 lut_size = params->lut_size; 3609 lut_type = params->lut_type; 3610 glob_lut_idx = params->global_lut_id; 3611 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); 3612 3613 cmd_resp = &desc.params.get_set_rss_lut; 3614 3615 if (set) { 3616 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut); 3617 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3618 } else { 3619 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut); 3620 } 3621 3622 cmd_resp->vsi_id = cpu_to_le16(((vsi_id << 3623 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) & 3624 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) | 3625 ICE_AQC_GSET_RSS_LUT_VSI_VALID); 3626 3627 switch (lut_type) { 3628 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI: 3629 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF: 3630 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL: 3631 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) & 3632 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M); 3633 break; 3634 default: 3635 status = -EINVAL; 3636 goto ice_aq_get_set_rss_lut_exit; 3637 } 3638 3639 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) { 3640 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) & 3641 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M); 3642 3643 if (!set) 3644 goto ice_aq_get_set_rss_lut_send; 3645 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { 3646 if (!set) 3647 goto ice_aq_get_set_rss_lut_send; 3648 } else { 3649 goto ice_aq_get_set_rss_lut_send; 3650 } 3651 3652 /* LUT size is only valid for Global and PF table types */ 3653 switch (lut_size) { 3654 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128: 3655 break; 3656 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512: 3657 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG << 3658 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 3659 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 3660 break; 3661 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K: 3662 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { 3663 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG << 3664 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & 3665 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; 3666 break; 3667 } 3668 fallthrough; 3669 default: 3670 status = -EINVAL; 3671 goto ice_aq_get_set_rss_lut_exit; 3672 } 3673 3674 ice_aq_get_set_rss_lut_send: 3675 cmd_resp->flags = cpu_to_le16(flags); 3676 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); 3677 3678 ice_aq_get_set_rss_lut_exit: 3679 return status; 3680 } 3681 3682 /** 3683 * ice_aq_get_rss_lut 3684 * @hw: pointer to the hardware structure 3685 * @get_params: RSS LUT parameters used to specify which RSS LUT to get 3686 * 3687 * get the RSS lookup table, PF or VSI type 3688 */ 3689 int 3690 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params) 3691 { 3692 return __ice_aq_get_set_rss_lut(hw, get_params, false); 3693 } 3694 3695 /** 3696 * ice_aq_set_rss_lut 3697 * @hw: pointer to the hardware structure 3698 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT 3699 * 3700 * set the RSS lookup table, PF or VSI type 3701 */ 3702 int 3703 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params) 3704 { 3705 return __ice_aq_get_set_rss_lut(hw, set_params, true); 3706 } 3707 3708 /** 3709 * __ice_aq_get_set_rss_key 3710 * @hw: pointer to the HW struct 3711 * @vsi_id: VSI FW index 3712 * @key: pointer to key info struct 3713 * @set: set true to set the key, false to get the key 3714 * 3715 * get (0x0B04) or set (0x0B02) the RSS key per VSI 3716 */ 3717 static int 3718 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, 3719 struct ice_aqc_get_set_rss_keys *key, bool set) 3720 { 3721 struct ice_aqc_get_set_rss_key *cmd_resp; 3722 u16 key_size = sizeof(*key); 3723 struct ice_aq_desc desc; 3724 3725 cmd_resp = &desc.params.get_set_rss_key; 3726 3727 if (set) { 3728 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); 3729 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3730 } else { 3731 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); 3732 } 3733 3734 cmd_resp->vsi_id = cpu_to_le16(((vsi_id << 3735 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) & 3736 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) | 3737 ICE_AQC_GSET_RSS_KEY_VSI_VALID); 3738 3739 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); 3740 } 3741 3742 /** 3743 * ice_aq_get_rss_key 3744 * @hw: pointer to the HW struct 3745 * @vsi_handle: software VSI handle 3746 * @key: pointer to key info struct 3747 * 3748 * get the RSS key per VSI 3749 */ 3750 int 3751 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, 3752 struct ice_aqc_get_set_rss_keys *key) 3753 { 3754 if (!ice_is_vsi_valid(hw, vsi_handle) || !key) 3755 return -EINVAL; 3756 3757 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 3758 key, false); 3759 } 3760 3761 /** 3762 * ice_aq_set_rss_key 3763 * @hw: pointer to the HW struct 3764 * @vsi_handle: software VSI handle 3765 * @keys: pointer to key info struct 3766 * 3767 * set the RSS key per VSI 3768 */ 3769 int 3770 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, 3771 struct ice_aqc_get_set_rss_keys *keys) 3772 { 3773 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) 3774 return -EINVAL; 3775 3776 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), 3777 keys, true); 3778 } 3779 3780 /** 3781 * ice_aq_add_lan_txq 3782 * @hw: pointer to the hardware structure 3783 * @num_qgrps: Number of added queue groups 3784 * @qg_list: list of queue groups to be added 3785 * @buf_size: size of buffer for indirect command 3786 * @cd: pointer to command details structure or NULL 3787 * 3788 * Add Tx LAN queue (0x0C30) 3789 * 3790 * NOTE: 3791 * Prior to calling add Tx LAN queue: 3792 * Initialize the following as part of the Tx queue context: 3793 * Completion queue ID if the queue uses Completion queue, Quanta profile, 3794 * Cache profile and Packet shaper profile. 3795 * 3796 * After add Tx LAN queue AQ command is completed: 3797 * Interrupts should be associated with specific queues, 3798 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue 3799 * flow. 3800 */ 3801 static int 3802 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, 3803 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, 3804 struct ice_sq_cd *cd) 3805 { 3806 struct ice_aqc_add_tx_qgrp *list; 3807 struct ice_aqc_add_txqs *cmd; 3808 struct ice_aq_desc desc; 3809 u16 i, sum_size = 0; 3810 3811 cmd = &desc.params.add_txqs; 3812 3813 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); 3814 3815 if (!qg_list) 3816 return -EINVAL; 3817 3818 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 3819 return -EINVAL; 3820 3821 for (i = 0, list = qg_list; i < num_qgrps; i++) { 3822 sum_size += struct_size(list, txqs, list->num_txqs); 3823 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs + 3824 list->num_txqs); 3825 } 3826 3827 if (buf_size != sum_size) 3828 return -EINVAL; 3829 3830 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3831 3832 cmd->num_qgrps = num_qgrps; 3833 3834 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 3835 } 3836 3837 /** 3838 * ice_aq_dis_lan_txq 3839 * @hw: pointer to the hardware structure 3840 * @num_qgrps: number of groups in the list 3841 * @qg_list: the list of groups to disable 3842 * @buf_size: the total size of the qg_list buffer in bytes 3843 * @rst_src: if called due to reset, specifies the reset source 3844 * @vmvf_num: the relative VM or VF number that is undergoing the reset 3845 * @cd: pointer to command details structure or NULL 3846 * 3847 * Disable LAN Tx queue (0x0C31) 3848 */ 3849 static int 3850 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, 3851 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, 3852 enum ice_disq_rst_src rst_src, u16 vmvf_num, 3853 struct ice_sq_cd *cd) 3854 { 3855 struct ice_aqc_dis_txq_item *item; 3856 struct ice_aqc_dis_txqs *cmd; 3857 struct ice_aq_desc desc; 3858 u16 i, sz = 0; 3859 int status; 3860 3861 cmd = &desc.params.dis_txqs; 3862 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); 3863 3864 /* qg_list can be NULL only in VM/VF reset flow */ 3865 if (!qg_list && !rst_src) 3866 return -EINVAL; 3867 3868 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) 3869 return -EINVAL; 3870 3871 cmd->num_entries = num_qgrps; 3872 3873 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) & 3874 ICE_AQC_Q_DIS_TIMEOUT_M); 3875 3876 switch (rst_src) { 3877 case ICE_VM_RESET: 3878 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; 3879 cmd->vmvf_and_timeout |= 3880 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M); 3881 break; 3882 case ICE_VF_RESET: 3883 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; 3884 /* In this case, FW expects vmvf_num to be absolute VF ID */ 3885 cmd->vmvf_and_timeout |= 3886 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) & 3887 ICE_AQC_Q_DIS_VMVF_NUM_M); 3888 break; 3889 case ICE_NO_RESET: 3890 default: 3891 break; 3892 } 3893 3894 /* flush pipe on time out */ 3895 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE; 3896 /* If no queue group info, we are in a reset flow. Issue the AQ */ 3897 if (!qg_list) 3898 goto do_aq; 3899 3900 /* set RD bit to indicate that command buffer is provided by the driver 3901 * and it needs to be read by the firmware 3902 */ 3903 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3904 3905 for (i = 0, item = qg_list; i < num_qgrps; i++) { 3906 u16 item_size = struct_size(item, q_id, item->num_qs); 3907 3908 /* If the num of queues is even, add 2 bytes of padding */ 3909 if ((item->num_qs % 2) == 0) 3910 item_size += 2; 3911 3912 sz += item_size; 3913 3914 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size); 3915 } 3916 3917 if (buf_size != sz) 3918 return -EINVAL; 3919 3920 do_aq: 3921 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); 3922 if (status) { 3923 if (!qg_list) 3924 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n", 3925 vmvf_num, hw->adminq.sq_last_status); 3926 else 3927 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n", 3928 le16_to_cpu(qg_list[0].q_id[0]), 3929 hw->adminq.sq_last_status); 3930 } 3931 return status; 3932 } 3933 3934 /** 3935 * ice_aq_add_rdma_qsets 3936 * @hw: pointer to the hardware structure 3937 * @num_qset_grps: Number of RDMA Qset groups 3938 * @qset_list: list of Qset groups to be added 3939 * @buf_size: size of buffer for indirect command 3940 * @cd: pointer to command details structure or NULL 3941 * 3942 * Add Tx RDMA Qsets (0x0C33) 3943 */ 3944 static int 3945 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps, 3946 struct ice_aqc_add_rdma_qset_data *qset_list, 3947 u16 buf_size, struct ice_sq_cd *cd) 3948 { 3949 struct ice_aqc_add_rdma_qset_data *list; 3950 struct ice_aqc_add_rdma_qset *cmd; 3951 struct ice_aq_desc desc; 3952 u16 i, sum_size = 0; 3953 3954 cmd = &desc.params.add_rdma_qset; 3955 3956 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset); 3957 3958 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS) 3959 return -EINVAL; 3960 3961 for (i = 0, list = qset_list; i < num_qset_grps; i++) { 3962 u16 num_qsets = le16_to_cpu(list->num_qsets); 3963 3964 sum_size += struct_size(list, rdma_qsets, num_qsets); 3965 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets + 3966 num_qsets); 3967 } 3968 3969 if (buf_size != sum_size) 3970 return -EINVAL; 3971 3972 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); 3973 3974 cmd->num_qset_grps = num_qset_grps; 3975 3976 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd); 3977 } 3978 3979 /* End of FW Admin Queue command wrappers */ 3980 3981 /** 3982 * ice_write_byte - write a byte to a packed context structure 3983 * @src_ctx: the context structure to read from 3984 * @dest_ctx: the context to be written to 3985 * @ce_info: a description of the struct to be filled 3986 */ 3987 static void 3988 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 3989 { 3990 u8 src_byte, dest_byte, mask; 3991 u8 *from, *dest; 3992 u16 shift_width; 3993 3994 /* copy from the next struct field */ 3995 from = src_ctx + ce_info->offset; 3996 3997 /* prepare the bits and mask */ 3998 shift_width = ce_info->lsb % 8; 3999 mask = (u8)(BIT(ce_info->width) - 1); 4000 4001 src_byte = *from; 4002 src_byte &= mask; 4003 4004 /* shift to correct alignment */ 4005 mask <<= shift_width; 4006 src_byte <<= shift_width; 4007 4008 /* get the current bits from the target bit string */ 4009 dest = dest_ctx + (ce_info->lsb / 8); 4010 4011 memcpy(&dest_byte, dest, sizeof(dest_byte)); 4012 4013 dest_byte &= ~mask; /* get the bits not changing */ 4014 dest_byte |= src_byte; /* add in the new bits */ 4015 4016 /* put it all back */ 4017 memcpy(dest, &dest_byte, sizeof(dest_byte)); 4018 } 4019 4020 /** 4021 * ice_write_word - write a word to a packed context structure 4022 * @src_ctx: the context structure to read from 4023 * @dest_ctx: the context to be written to 4024 * @ce_info: a description of the struct to be filled 4025 */ 4026 static void 4027 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4028 { 4029 u16 src_word, mask; 4030 __le16 dest_word; 4031 u8 *from, *dest; 4032 u16 shift_width; 4033 4034 /* copy from the next struct field */ 4035 from = src_ctx + ce_info->offset; 4036 4037 /* prepare the bits and mask */ 4038 shift_width = ce_info->lsb % 8; 4039 mask = BIT(ce_info->width) - 1; 4040 4041 /* don't swizzle the bits until after the mask because the mask bits 4042 * will be in a different bit position on big endian machines 4043 */ 4044 src_word = *(u16 *)from; 4045 src_word &= mask; 4046 4047 /* shift to correct alignment */ 4048 mask <<= shift_width; 4049 src_word <<= shift_width; 4050 4051 /* get the current bits from the target bit string */ 4052 dest = dest_ctx + (ce_info->lsb / 8); 4053 4054 memcpy(&dest_word, dest, sizeof(dest_word)); 4055 4056 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ 4057 dest_word |= cpu_to_le16(src_word); /* add in the new bits */ 4058 4059 /* put it all back */ 4060 memcpy(dest, &dest_word, sizeof(dest_word)); 4061 } 4062 4063 /** 4064 * ice_write_dword - write a dword to a packed context structure 4065 * @src_ctx: the context structure to read from 4066 * @dest_ctx: the context to be written to 4067 * @ce_info: a description of the struct to be filled 4068 */ 4069 static void 4070 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4071 { 4072 u32 src_dword, mask; 4073 __le32 dest_dword; 4074 u8 *from, *dest; 4075 u16 shift_width; 4076 4077 /* copy from the next struct field */ 4078 from = src_ctx + ce_info->offset; 4079 4080 /* prepare the bits and mask */ 4081 shift_width = ce_info->lsb % 8; 4082 4083 /* if the field width is exactly 32 on an x86 machine, then the shift 4084 * operation will not work because the SHL instructions count is masked 4085 * to 5 bits so the shift will do nothing 4086 */ 4087 if (ce_info->width < 32) 4088 mask = BIT(ce_info->width) - 1; 4089 else 4090 mask = (u32)~0; 4091 4092 /* don't swizzle the bits until after the mask because the mask bits 4093 * will be in a different bit position on big endian machines 4094 */ 4095 src_dword = *(u32 *)from; 4096 src_dword &= mask; 4097 4098 /* shift to correct alignment */ 4099 mask <<= shift_width; 4100 src_dword <<= shift_width; 4101 4102 /* get the current bits from the target bit string */ 4103 dest = dest_ctx + (ce_info->lsb / 8); 4104 4105 memcpy(&dest_dword, dest, sizeof(dest_dword)); 4106 4107 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ 4108 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ 4109 4110 /* put it all back */ 4111 memcpy(dest, &dest_dword, sizeof(dest_dword)); 4112 } 4113 4114 /** 4115 * ice_write_qword - write a qword to a packed context structure 4116 * @src_ctx: the context structure to read from 4117 * @dest_ctx: the context to be written to 4118 * @ce_info: a description of the struct to be filled 4119 */ 4120 static void 4121 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) 4122 { 4123 u64 src_qword, mask; 4124 __le64 dest_qword; 4125 u8 *from, *dest; 4126 u16 shift_width; 4127 4128 /* copy from the next struct field */ 4129 from = src_ctx + ce_info->offset; 4130 4131 /* prepare the bits and mask */ 4132 shift_width = ce_info->lsb % 8; 4133 4134 /* if the field width is exactly 64 on an x86 machine, then the shift 4135 * operation will not work because the SHL instructions count is masked 4136 * to 6 bits so the shift will do nothing 4137 */ 4138 if (ce_info->width < 64) 4139 mask = BIT_ULL(ce_info->width) - 1; 4140 else 4141 mask = (u64)~0; 4142 4143 /* don't swizzle the bits until after the mask because the mask bits 4144 * will be in a different bit position on big endian machines 4145 */ 4146 src_qword = *(u64 *)from; 4147 src_qword &= mask; 4148 4149 /* shift to correct alignment */ 4150 mask <<= shift_width; 4151 src_qword <<= shift_width; 4152 4153 /* get the current bits from the target bit string */ 4154 dest = dest_ctx + (ce_info->lsb / 8); 4155 4156 memcpy(&dest_qword, dest, sizeof(dest_qword)); 4157 4158 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ 4159 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ 4160 4161 /* put it all back */ 4162 memcpy(dest, &dest_qword, sizeof(dest_qword)); 4163 } 4164 4165 /** 4166 * ice_set_ctx - set context bits in packed structure 4167 * @hw: pointer to the hardware structure 4168 * @src_ctx: pointer to a generic non-packed context structure 4169 * @dest_ctx: pointer to memory for the packed structure 4170 * @ce_info: a description of the structure to be transformed 4171 */ 4172 int 4173 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx, 4174 const struct ice_ctx_ele *ce_info) 4175 { 4176 int f; 4177 4178 for (f = 0; ce_info[f].width; f++) { 4179 /* We have to deal with each element of the FW response 4180 * using the correct size so that we are correct regardless 4181 * of the endianness of the machine. 4182 */ 4183 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) { 4184 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n", 4185 f, ce_info[f].width, ce_info[f].size_of); 4186 continue; 4187 } 4188 switch (ce_info[f].size_of) { 4189 case sizeof(u8): 4190 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); 4191 break; 4192 case sizeof(u16): 4193 ice_write_word(src_ctx, dest_ctx, &ce_info[f]); 4194 break; 4195 case sizeof(u32): 4196 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); 4197 break; 4198 case sizeof(u64): 4199 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); 4200 break; 4201 default: 4202 return -EINVAL; 4203 } 4204 } 4205 4206 return 0; 4207 } 4208 4209 /** 4210 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC 4211 * @hw: pointer to the HW struct 4212 * @vsi_handle: software VSI handle 4213 * @tc: TC number 4214 * @q_handle: software queue handle 4215 */ 4216 struct ice_q_ctx * 4217 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle) 4218 { 4219 struct ice_vsi_ctx *vsi; 4220 struct ice_q_ctx *q_ctx; 4221 4222 vsi = ice_get_vsi_ctx(hw, vsi_handle); 4223 if (!vsi) 4224 return NULL; 4225 if (q_handle >= vsi->num_lan_q_entries[tc]) 4226 return NULL; 4227 if (!vsi->lan_q_ctx[tc]) 4228 return NULL; 4229 q_ctx = vsi->lan_q_ctx[tc]; 4230 return &q_ctx[q_handle]; 4231 } 4232 4233 /** 4234 * ice_ena_vsi_txq 4235 * @pi: port information structure 4236 * @vsi_handle: software VSI handle 4237 * @tc: TC number 4238 * @q_handle: software queue handle 4239 * @num_qgrps: Number of added queue groups 4240 * @buf: list of queue groups to be added 4241 * @buf_size: size of buffer for indirect command 4242 * @cd: pointer to command details structure or NULL 4243 * 4244 * This function adds one LAN queue 4245 */ 4246 int 4247 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, 4248 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, 4249 struct ice_sq_cd *cd) 4250 { 4251 struct ice_aqc_txsched_elem_data node = { 0 }; 4252 struct ice_sched_node *parent; 4253 struct ice_q_ctx *q_ctx; 4254 struct ice_hw *hw; 4255 int status; 4256 4257 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4258 return -EIO; 4259 4260 if (num_qgrps > 1 || buf->num_txqs > 1) 4261 return -ENOSPC; 4262 4263 hw = pi->hw; 4264 4265 if (!ice_is_vsi_valid(hw, vsi_handle)) 4266 return -EINVAL; 4267 4268 mutex_lock(&pi->sched_lock); 4269 4270 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle); 4271 if (!q_ctx) { 4272 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n", 4273 q_handle); 4274 status = -EINVAL; 4275 goto ena_txq_exit; 4276 } 4277 4278 /* find a parent node */ 4279 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4280 ICE_SCHED_NODE_OWNER_LAN); 4281 if (!parent) { 4282 status = -EINVAL; 4283 goto ena_txq_exit; 4284 } 4285 4286 buf->parent_teid = parent->info.node_teid; 4287 node.parent_teid = parent->info.node_teid; 4288 /* Mark that the values in the "generic" section as valid. The default 4289 * value in the "generic" section is zero. This means that : 4290 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. 4291 * - 0 priority among siblings, indicated by Bit 1-3. 4292 * - WFQ, indicated by Bit 4. 4293 * - 0 Adjustment value is used in PSM credit update flow, indicated by 4294 * Bit 5-6. 4295 * - Bit 7 is reserved. 4296 * Without setting the generic section as valid in valid_sections, the 4297 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL. 4298 */ 4299 buf->txqs[0].info.valid_sections = 4300 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4301 ICE_AQC_ELEM_VALID_EIR; 4302 buf->txqs[0].info.generic = 0; 4303 buf->txqs[0].info.cir_bw.bw_profile_idx = 4304 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4305 buf->txqs[0].info.cir_bw.bw_alloc = 4306 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4307 buf->txqs[0].info.eir_bw.bw_profile_idx = 4308 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4309 buf->txqs[0].info.eir_bw.bw_alloc = 4310 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4311 4312 /* add the LAN queue */ 4313 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); 4314 if (status) { 4315 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n", 4316 le16_to_cpu(buf->txqs[0].txq_id), 4317 hw->adminq.sq_last_status); 4318 goto ena_txq_exit; 4319 } 4320 4321 node.node_teid = buf->txqs[0].q_teid; 4322 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4323 q_ctx->q_handle = q_handle; 4324 q_ctx->q_teid = le32_to_cpu(node.node_teid); 4325 4326 /* add a leaf node into scheduler tree queue layer */ 4327 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node); 4328 if (!status) 4329 status = ice_sched_replay_q_bw(pi, q_ctx); 4330 4331 ena_txq_exit: 4332 mutex_unlock(&pi->sched_lock); 4333 return status; 4334 } 4335 4336 /** 4337 * ice_dis_vsi_txq 4338 * @pi: port information structure 4339 * @vsi_handle: software VSI handle 4340 * @tc: TC number 4341 * @num_queues: number of queues 4342 * @q_handles: pointer to software queue handle array 4343 * @q_ids: pointer to the q_id array 4344 * @q_teids: pointer to queue node teids 4345 * @rst_src: if called due to reset, specifies the reset source 4346 * @vmvf_num: the relative VM or VF number that is undergoing the reset 4347 * @cd: pointer to command details structure or NULL 4348 * 4349 * This function removes queues and their corresponding nodes in SW DB 4350 */ 4351 int 4352 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues, 4353 u16 *q_handles, u16 *q_ids, u32 *q_teids, 4354 enum ice_disq_rst_src rst_src, u16 vmvf_num, 4355 struct ice_sq_cd *cd) 4356 { 4357 struct ice_aqc_dis_txq_item *qg_list; 4358 struct ice_q_ctx *q_ctx; 4359 int status = -ENOENT; 4360 struct ice_hw *hw; 4361 u16 i, buf_size; 4362 4363 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4364 return -EIO; 4365 4366 hw = pi->hw; 4367 4368 if (!num_queues) { 4369 /* if queue is disabled already yet the disable queue command 4370 * has to be sent to complete the VF reset, then call 4371 * ice_aq_dis_lan_txq without any queue information 4372 */ 4373 if (rst_src) 4374 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src, 4375 vmvf_num, NULL); 4376 return -EIO; 4377 } 4378 4379 buf_size = struct_size(qg_list, q_id, 1); 4380 qg_list = kzalloc(buf_size, GFP_KERNEL); 4381 if (!qg_list) 4382 return -ENOMEM; 4383 4384 mutex_lock(&pi->sched_lock); 4385 4386 for (i = 0; i < num_queues; i++) { 4387 struct ice_sched_node *node; 4388 4389 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); 4390 if (!node) 4391 continue; 4392 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]); 4393 if (!q_ctx) { 4394 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n", 4395 q_handles[i]); 4396 continue; 4397 } 4398 if (q_ctx->q_handle != q_handles[i]) { 4399 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n", 4400 q_ctx->q_handle, q_handles[i]); 4401 continue; 4402 } 4403 qg_list->parent_teid = node->info.parent_teid; 4404 qg_list->num_qs = 1; 4405 qg_list->q_id[0] = cpu_to_le16(q_ids[i]); 4406 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src, 4407 vmvf_num, cd); 4408 4409 if (status) 4410 break; 4411 ice_free_sched_node(pi, node); 4412 q_ctx->q_handle = ICE_INVAL_Q_HANDLE; 4413 } 4414 mutex_unlock(&pi->sched_lock); 4415 kfree(qg_list); 4416 return status; 4417 } 4418 4419 /** 4420 * ice_cfg_vsi_qs - configure the new/existing VSI queues 4421 * @pi: port information structure 4422 * @vsi_handle: software VSI handle 4423 * @tc_bitmap: TC bitmap 4424 * @maxqs: max queues array per TC 4425 * @owner: LAN or RDMA 4426 * 4427 * This function adds/updates the VSI queues per TC. 4428 */ 4429 static int 4430 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4431 u16 *maxqs, u8 owner) 4432 { 4433 int status = 0; 4434 u8 i; 4435 4436 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4437 return -EIO; 4438 4439 if (!ice_is_vsi_valid(pi->hw, vsi_handle)) 4440 return -EINVAL; 4441 4442 mutex_lock(&pi->sched_lock); 4443 4444 ice_for_each_traffic_class(i) { 4445 /* configuration is possible only if TC node is present */ 4446 if (!ice_sched_get_tc_node(pi, i)) 4447 continue; 4448 4449 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, 4450 ice_is_tc_ena(tc_bitmap, i)); 4451 if (status) 4452 break; 4453 } 4454 4455 mutex_unlock(&pi->sched_lock); 4456 return status; 4457 } 4458 4459 /** 4460 * ice_cfg_vsi_lan - configure VSI LAN queues 4461 * @pi: port information structure 4462 * @vsi_handle: software VSI handle 4463 * @tc_bitmap: TC bitmap 4464 * @max_lanqs: max LAN queues array per TC 4465 * 4466 * This function adds/updates the VSI LAN queues per TC. 4467 */ 4468 int 4469 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, 4470 u16 *max_lanqs) 4471 { 4472 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, 4473 ICE_SCHED_NODE_OWNER_LAN); 4474 } 4475 4476 /** 4477 * ice_cfg_vsi_rdma - configure the VSI RDMA queues 4478 * @pi: port information structure 4479 * @vsi_handle: software VSI handle 4480 * @tc_bitmap: TC bitmap 4481 * @max_rdmaqs: max RDMA queues array per TC 4482 * 4483 * This function adds/updates the VSI RDMA queues per TC. 4484 */ 4485 int 4486 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap, 4487 u16 *max_rdmaqs) 4488 { 4489 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs, 4490 ICE_SCHED_NODE_OWNER_RDMA); 4491 } 4492 4493 /** 4494 * ice_ena_vsi_rdma_qset 4495 * @pi: port information structure 4496 * @vsi_handle: software VSI handle 4497 * @tc: TC number 4498 * @rdma_qset: pointer to RDMA Qset 4499 * @num_qsets: number of RDMA Qsets 4500 * @qset_teid: pointer to Qset node TEIDs 4501 * 4502 * This function adds RDMA Qset 4503 */ 4504 int 4505 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc, 4506 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid) 4507 { 4508 struct ice_aqc_txsched_elem_data node = { 0 }; 4509 struct ice_aqc_add_rdma_qset_data *buf; 4510 struct ice_sched_node *parent; 4511 struct ice_hw *hw; 4512 u16 i, buf_size; 4513 int ret; 4514 4515 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4516 return -EIO; 4517 hw = pi->hw; 4518 4519 if (!ice_is_vsi_valid(hw, vsi_handle)) 4520 return -EINVAL; 4521 4522 buf_size = struct_size(buf, rdma_qsets, num_qsets); 4523 buf = kzalloc(buf_size, GFP_KERNEL); 4524 if (!buf) 4525 return -ENOMEM; 4526 mutex_lock(&pi->sched_lock); 4527 4528 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, 4529 ICE_SCHED_NODE_OWNER_RDMA); 4530 if (!parent) { 4531 ret = -EINVAL; 4532 goto rdma_error_exit; 4533 } 4534 buf->parent_teid = parent->info.node_teid; 4535 node.parent_teid = parent->info.node_teid; 4536 4537 buf->num_qsets = cpu_to_le16(num_qsets); 4538 for (i = 0; i < num_qsets; i++) { 4539 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]); 4540 buf->rdma_qsets[i].info.valid_sections = 4541 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | 4542 ICE_AQC_ELEM_VALID_EIR; 4543 buf->rdma_qsets[i].info.generic = 0; 4544 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx = 4545 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4546 buf->rdma_qsets[i].info.cir_bw.bw_alloc = 4547 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4548 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx = 4549 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); 4550 buf->rdma_qsets[i].info.eir_bw.bw_alloc = 4551 cpu_to_le16(ICE_SCHED_DFLT_BW_WT); 4552 } 4553 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL); 4554 if (ret) { 4555 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n"); 4556 goto rdma_error_exit; 4557 } 4558 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; 4559 for (i = 0; i < num_qsets; i++) { 4560 node.node_teid = buf->rdma_qsets[i].qset_teid; 4561 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, 4562 &node); 4563 if (ret) 4564 break; 4565 qset_teid[i] = le32_to_cpu(node.node_teid); 4566 } 4567 rdma_error_exit: 4568 mutex_unlock(&pi->sched_lock); 4569 kfree(buf); 4570 return ret; 4571 } 4572 4573 /** 4574 * ice_dis_vsi_rdma_qset - free RDMA resources 4575 * @pi: port_info struct 4576 * @count: number of RDMA Qsets to free 4577 * @qset_teid: TEID of Qset node 4578 * @q_id: list of queue IDs being disabled 4579 */ 4580 int 4581 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid, 4582 u16 *q_id) 4583 { 4584 struct ice_aqc_dis_txq_item *qg_list; 4585 struct ice_hw *hw; 4586 int status = 0; 4587 u16 qg_size; 4588 int i; 4589 4590 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) 4591 return -EIO; 4592 4593 hw = pi->hw; 4594 4595 qg_size = struct_size(qg_list, q_id, 1); 4596 qg_list = kzalloc(qg_size, GFP_KERNEL); 4597 if (!qg_list) 4598 return -ENOMEM; 4599 4600 mutex_lock(&pi->sched_lock); 4601 4602 for (i = 0; i < count; i++) { 4603 struct ice_sched_node *node; 4604 4605 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]); 4606 if (!node) 4607 continue; 4608 4609 qg_list->parent_teid = node->info.parent_teid; 4610 qg_list->num_qs = 1; 4611 qg_list->q_id[0] = 4612 cpu_to_le16(q_id[i] | 4613 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET); 4614 4615 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size, 4616 ICE_NO_RESET, 0, NULL); 4617 if (status) 4618 break; 4619 4620 ice_free_sched_node(pi, node); 4621 } 4622 4623 mutex_unlock(&pi->sched_lock); 4624 kfree(qg_list); 4625 return status; 4626 } 4627 4628 /** 4629 * ice_replay_pre_init - replay pre initialization 4630 * @hw: pointer to the HW struct 4631 * 4632 * Initializes required config data for VSI, FD, ACL, and RSS before replay. 4633 */ 4634 static int ice_replay_pre_init(struct ice_hw *hw) 4635 { 4636 struct ice_switch_info *sw = hw->switch_info; 4637 u8 i; 4638 4639 /* Delete old entries from replay filter list head if there is any */ 4640 ice_rm_all_sw_replay_rule_info(hw); 4641 /* In start of replay, move entries into replay_rules list, it 4642 * will allow adding rules entries back to filt_rules list, 4643 * which is operational list. 4644 */ 4645 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 4646 list_replace_init(&sw->recp_list[i].filt_rules, 4647 &sw->recp_list[i].filt_replay_rules); 4648 ice_sched_replay_agg_vsi_preinit(hw); 4649 4650 return 0; 4651 } 4652 4653 /** 4654 * ice_replay_vsi - replay VSI configuration 4655 * @hw: pointer to the HW struct 4656 * @vsi_handle: driver VSI handle 4657 * 4658 * Restore all VSI configuration after reset. It is required to call this 4659 * function with main VSI first. 4660 */ 4661 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) 4662 { 4663 int status; 4664 4665 if (!ice_is_vsi_valid(hw, vsi_handle)) 4666 return -EINVAL; 4667 4668 /* Replay pre-initialization if there is any */ 4669 if (vsi_handle == ICE_MAIN_VSI_HANDLE) { 4670 status = ice_replay_pre_init(hw); 4671 if (status) 4672 return status; 4673 } 4674 /* Replay per VSI all RSS configurations */ 4675 status = ice_replay_rss_cfg(hw, vsi_handle); 4676 if (status) 4677 return status; 4678 /* Replay per VSI all filters */ 4679 status = ice_replay_vsi_all_fltr(hw, vsi_handle); 4680 if (!status) 4681 status = ice_replay_vsi_agg(hw, vsi_handle); 4682 return status; 4683 } 4684 4685 /** 4686 * ice_replay_post - post replay configuration cleanup 4687 * @hw: pointer to the HW struct 4688 * 4689 * Post replay cleanup. 4690 */ 4691 void ice_replay_post(struct ice_hw *hw) 4692 { 4693 /* Delete old entries from replay filter list head */ 4694 ice_rm_all_sw_replay_rule_info(hw); 4695 ice_sched_replay_agg(hw); 4696 } 4697 4698 /** 4699 * ice_stat_update40 - read 40 bit stat from the chip and update stat values 4700 * @hw: ptr to the hardware info 4701 * @reg: offset of 64 bit HW register to read from 4702 * @prev_stat_loaded: bool to specify if previous stats are loaded 4703 * @prev_stat: ptr to previous loaded stat value 4704 * @cur_stat: ptr to current stat value 4705 */ 4706 void 4707 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 4708 u64 *prev_stat, u64 *cur_stat) 4709 { 4710 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1); 4711 4712 /* device stats are not reset at PFR, they likely will not be zeroed 4713 * when the driver starts. Thus, save the value from the first read 4714 * without adding to the statistic value so that we report stats which 4715 * count up from zero. 4716 */ 4717 if (!prev_stat_loaded) { 4718 *prev_stat = new_data; 4719 return; 4720 } 4721 4722 /* Calculate the difference between the new and old values, and then 4723 * add it to the software stat value. 4724 */ 4725 if (new_data >= *prev_stat) 4726 *cur_stat += new_data - *prev_stat; 4727 else 4728 /* to manage the potential roll-over */ 4729 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat; 4730 4731 /* Update the previously stored value to prepare for next read */ 4732 *prev_stat = new_data; 4733 } 4734 4735 /** 4736 * ice_stat_update32 - read 32 bit stat from the chip and update stat values 4737 * @hw: ptr to the hardware info 4738 * @reg: offset of HW register to read from 4739 * @prev_stat_loaded: bool to specify if previous stats are loaded 4740 * @prev_stat: ptr to previous loaded stat value 4741 * @cur_stat: ptr to current stat value 4742 */ 4743 void 4744 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, 4745 u64 *prev_stat, u64 *cur_stat) 4746 { 4747 u32 new_data; 4748 4749 new_data = rd32(hw, reg); 4750 4751 /* device stats are not reset at PFR, they likely will not be zeroed 4752 * when the driver starts. Thus, save the value from the first read 4753 * without adding to the statistic value so that we report stats which 4754 * count up from zero. 4755 */ 4756 if (!prev_stat_loaded) { 4757 *prev_stat = new_data; 4758 return; 4759 } 4760 4761 /* Calculate the difference between the new and old values, and then 4762 * add it to the software stat value. 4763 */ 4764 if (new_data >= *prev_stat) 4765 *cur_stat += new_data - *prev_stat; 4766 else 4767 /* to manage the potential roll-over */ 4768 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat; 4769 4770 /* Update the previously stored value to prepare for next read */ 4771 *prev_stat = new_data; 4772 } 4773 4774 /** 4775 * ice_sched_query_elem - query element information from HW 4776 * @hw: pointer to the HW struct 4777 * @node_teid: node TEID to be queried 4778 * @buf: buffer to element information 4779 * 4780 * This function queries HW element information 4781 */ 4782 int 4783 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid, 4784 struct ice_aqc_txsched_elem_data *buf) 4785 { 4786 u16 buf_size, num_elem_ret = 0; 4787 int status; 4788 4789 buf_size = sizeof(*buf); 4790 memset(buf, 0, buf_size); 4791 buf->node_teid = cpu_to_le32(node_teid); 4792 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret, 4793 NULL); 4794 if (status || num_elem_ret != 1) 4795 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n"); 4796 return status; 4797 } 4798 4799 /** 4800 * ice_aq_set_driver_param - Set driver parameter to share via firmware 4801 * @hw: pointer to the HW struct 4802 * @idx: parameter index to set 4803 * @value: the value to set the parameter to 4804 * @cd: pointer to command details structure or NULL 4805 * 4806 * Set the value of one of the software defined parameters. All PFs connected 4807 * to this device can read the value using ice_aq_get_driver_param. 4808 * 4809 * Note that firmware provides no synchronization or locking, and will not 4810 * save the parameter value during a device reset. It is expected that 4811 * a single PF will write the parameter value, while all other PFs will only 4812 * read it. 4813 */ 4814 int 4815 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx, 4816 u32 value, struct ice_sq_cd *cd) 4817 { 4818 struct ice_aqc_driver_shared_params *cmd; 4819 struct ice_aq_desc desc; 4820 4821 if (idx >= ICE_AQC_DRIVER_PARAM_MAX) 4822 return -EIO; 4823 4824 cmd = &desc.params.drv_shared_params; 4825 4826 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params); 4827 4828 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET; 4829 cmd->param_indx = idx; 4830 cmd->param_val = cpu_to_le32(value); 4831 4832 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 4833 } 4834 4835 /** 4836 * ice_aq_get_driver_param - Get driver parameter shared via firmware 4837 * @hw: pointer to the HW struct 4838 * @idx: parameter index to set 4839 * @value: storage to return the shared parameter 4840 * @cd: pointer to command details structure or NULL 4841 * 4842 * Get the value of one of the software defined parameters. 4843 * 4844 * Note that firmware provides no synchronization or locking. It is expected 4845 * that only a single PF will write a given parameter. 4846 */ 4847 int 4848 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx, 4849 u32 *value, struct ice_sq_cd *cd) 4850 { 4851 struct ice_aqc_driver_shared_params *cmd; 4852 struct ice_aq_desc desc; 4853 int status; 4854 4855 if (idx >= ICE_AQC_DRIVER_PARAM_MAX) 4856 return -EIO; 4857 4858 cmd = &desc.params.drv_shared_params; 4859 4860 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params); 4861 4862 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET; 4863 cmd->param_indx = idx; 4864 4865 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 4866 if (status) 4867 return status; 4868 4869 *value = le32_to_cpu(cmd->param_val); 4870 4871 return 0; 4872 } 4873 4874 /** 4875 * ice_aq_set_gpio 4876 * @hw: pointer to the hw struct 4877 * @gpio_ctrl_handle: GPIO controller node handle 4878 * @pin_idx: IO Number of the GPIO that needs to be set 4879 * @value: SW provide IO value to set in the LSB 4880 * @cd: pointer to command details structure or NULL 4881 * 4882 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology 4883 */ 4884 int 4885 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value, 4886 struct ice_sq_cd *cd) 4887 { 4888 struct ice_aqc_gpio *cmd; 4889 struct ice_aq_desc desc; 4890 4891 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio); 4892 cmd = &desc.params.read_write_gpio; 4893 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 4894 cmd->gpio_num = pin_idx; 4895 cmd->gpio_val = value ? 1 : 0; 4896 4897 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 4898 } 4899 4900 /** 4901 * ice_aq_get_gpio 4902 * @hw: pointer to the hw struct 4903 * @gpio_ctrl_handle: GPIO controller node handle 4904 * @pin_idx: IO Number of the GPIO that needs to be set 4905 * @value: IO value read 4906 * @cd: pointer to command details structure or NULL 4907 * 4908 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of 4909 * the topology 4910 */ 4911 int 4912 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, 4913 bool *value, struct ice_sq_cd *cd) 4914 { 4915 struct ice_aqc_gpio *cmd; 4916 struct ice_aq_desc desc; 4917 int status; 4918 4919 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio); 4920 cmd = &desc.params.read_write_gpio; 4921 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle); 4922 cmd->gpio_num = pin_idx; 4923 4924 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); 4925 if (status) 4926 return status; 4927 4928 *value = !!cmd->gpio_val; 4929 return 0; 4930 } 4931 4932 /** 4933 * ice_fw_supports_link_override 4934 * @hw: pointer to the hardware structure 4935 * 4936 * Checks if the firmware supports link override 4937 */ 4938 bool ice_fw_supports_link_override(struct ice_hw *hw) 4939 { 4940 if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) { 4941 if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN) 4942 return true; 4943 if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN && 4944 hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH) 4945 return true; 4946 } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) { 4947 return true; 4948 } 4949 4950 return false; 4951 } 4952 4953 /** 4954 * ice_get_link_default_override 4955 * @ldo: pointer to the link default override struct 4956 * @pi: pointer to the port info struct 4957 * 4958 * Gets the link default override for a port 4959 */ 4960 int 4961 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo, 4962 struct ice_port_info *pi) 4963 { 4964 u16 i, tlv, tlv_len, tlv_start, buf, offset; 4965 struct ice_hw *hw = pi->hw; 4966 int status; 4967 4968 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len, 4969 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR); 4970 if (status) { 4971 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n"); 4972 return status; 4973 } 4974 4975 /* Each port has its own config; calculate for our port */ 4976 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS + 4977 ICE_SR_PFA_LINK_OVERRIDE_OFFSET; 4978 4979 /* link options first */ 4980 status = ice_read_sr_word(hw, tlv_start, &buf); 4981 if (status) { 4982 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 4983 return status; 4984 } 4985 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M; 4986 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >> 4987 ICE_LINK_OVERRIDE_PHY_CFG_S; 4988 4989 /* link PHY config */ 4990 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET; 4991 status = ice_read_sr_word(hw, offset, &buf); 4992 if (status) { 4993 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n"); 4994 return status; 4995 } 4996 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M; 4997 4998 /* PHY types low */ 4999 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET; 5000 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5001 status = ice_read_sr_word(hw, (offset + i), &buf); 5002 if (status) { 5003 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5004 return status; 5005 } 5006 /* shift 16 bits at a time to fill 64 bits */ 5007 ldo->phy_type_low |= ((u64)buf << (i * 16)); 5008 } 5009 5010 /* PHY types high */ 5011 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET + 5012 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; 5013 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) { 5014 status = ice_read_sr_word(hw, (offset + i), &buf); 5015 if (status) { 5016 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n"); 5017 return status; 5018 } 5019 /* shift 16 bits at a time to fill 64 bits */ 5020 ldo->phy_type_high |= ((u64)buf << (i * 16)); 5021 } 5022 5023 return status; 5024 } 5025 5026 /** 5027 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled 5028 * @caps: get PHY capability data 5029 */ 5030 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps) 5031 { 5032 if (caps->caps & ICE_AQC_PHY_AN_MODE || 5033 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 | 5034 ICE_AQC_PHY_AN_EN_CLAUSE73 | 5035 ICE_AQC_PHY_AN_EN_CLAUSE37)) 5036 return true; 5037 5038 return false; 5039 } 5040 5041 /** 5042 * ice_aq_set_lldp_mib - Set the LLDP MIB 5043 * @hw: pointer to the HW struct 5044 * @mib_type: Local, Remote or both Local and Remote MIBs 5045 * @buf: pointer to the caller-supplied buffer to store the MIB block 5046 * @buf_size: size of the buffer (in bytes) 5047 * @cd: pointer to command details structure or NULL 5048 * 5049 * Set the LLDP MIB. (0x0A08) 5050 */ 5051 int 5052 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size, 5053 struct ice_sq_cd *cd) 5054 { 5055 struct ice_aqc_lldp_set_local_mib *cmd; 5056 struct ice_aq_desc desc; 5057 5058 cmd = &desc.params.lldp_set_mib; 5059 5060 if (buf_size == 0 || !buf) 5061 return -EINVAL; 5062 5063 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib); 5064 5065 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD); 5066 desc.datalen = cpu_to_le16(buf_size); 5067 5068 cmd->type = mib_type; 5069 cmd->length = cpu_to_le16(buf_size); 5070 5071 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); 5072 } 5073 5074 /** 5075 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl 5076 * @hw: pointer to HW struct 5077 */ 5078 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw) 5079 { 5080 if (hw->mac_type != ICE_MAC_E810) 5081 return false; 5082 5083 if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) { 5084 if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN) 5085 return true; 5086 if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN && 5087 hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH) 5088 return true; 5089 } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) { 5090 return true; 5091 } 5092 return false; 5093 } 5094 5095 /** 5096 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter 5097 * @hw: pointer to HW struct 5098 * @vsi_num: absolute HW index for VSI 5099 * @add: boolean for if adding or removing a filter 5100 */ 5101 int 5102 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add) 5103 { 5104 struct ice_aqc_lldp_filter_ctrl *cmd; 5105 struct ice_aq_desc desc; 5106 5107 cmd = &desc.params.lldp_filter_ctrl; 5108 5109 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl); 5110 5111 if (add) 5112 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD; 5113 else 5114 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE; 5115 5116 cmd->vsi_num = cpu_to_le16(vsi_num); 5117 5118 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); 5119 } 5120 5121 /** 5122 * ice_fw_supports_report_dflt_cfg 5123 * @hw: pointer to the hardware structure 5124 * 5125 * Checks if the firmware supports report default configuration 5126 */ 5127 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw) 5128 { 5129 if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) { 5130 if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN) 5131 return true; 5132 if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN && 5133 hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH) 5134 return true; 5135 } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) { 5136 return true; 5137 } 5138 return false; 5139 } 5140