xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10 
11 #define ICE_PF_RESET_WAIT_COUNT	300
12 #define ICE_MAX_NETLIST_SIZE	10
13 
14 static const char * const ice_link_mode_str_low[] = {
15 	[0] = "100BASE_TX",
16 	[1] = "100M_SGMII",
17 	[2] = "1000BASE_T",
18 	[3] = "1000BASE_SX",
19 	[4] = "1000BASE_LX",
20 	[5] = "1000BASE_KX",
21 	[6] = "1G_SGMII",
22 	[7] = "2500BASE_T",
23 	[8] = "2500BASE_X",
24 	[9] = "2500BASE_KX",
25 	[10] = "5GBASE_T",
26 	[11] = "5GBASE_KR",
27 	[12] = "10GBASE_T",
28 	[13] = "10G_SFI_DA",
29 	[14] = "10GBASE_SR",
30 	[15] = "10GBASE_LR",
31 	[16] = "10GBASE_KR_CR1",
32 	[17] = "10G_SFI_AOC_ACC",
33 	[18] = "10G_SFI_C2C",
34 	[19] = "25GBASE_T",
35 	[20] = "25GBASE_CR",
36 	[21] = "25GBASE_CR_S",
37 	[22] = "25GBASE_CR1",
38 	[23] = "25GBASE_SR",
39 	[24] = "25GBASE_LR",
40 	[25] = "25GBASE_KR",
41 	[26] = "25GBASE_KR_S",
42 	[27] = "25GBASE_KR1",
43 	[28] = "25G_AUI_AOC_ACC",
44 	[29] = "25G_AUI_C2C",
45 	[30] = "40GBASE_CR4",
46 	[31] = "40GBASE_SR4",
47 	[32] = "40GBASE_LR4",
48 	[33] = "40GBASE_KR4",
49 	[34] = "40G_XLAUI_AOC_ACC",
50 	[35] = "40G_XLAUI",
51 	[36] = "50GBASE_CR2",
52 	[37] = "50GBASE_SR2",
53 	[38] = "50GBASE_LR2",
54 	[39] = "50GBASE_KR2",
55 	[40] = "50G_LAUI2_AOC_ACC",
56 	[41] = "50G_LAUI2",
57 	[42] = "50G_AUI2_AOC_ACC",
58 	[43] = "50G_AUI2",
59 	[44] = "50GBASE_CP",
60 	[45] = "50GBASE_SR",
61 	[46] = "50GBASE_FR",
62 	[47] = "50GBASE_LR",
63 	[48] = "50GBASE_KR_PAM4",
64 	[49] = "50G_AUI1_AOC_ACC",
65 	[50] = "50G_AUI1",
66 	[51] = "100GBASE_CR4",
67 	[52] = "100GBASE_SR4",
68 	[53] = "100GBASE_LR4",
69 	[54] = "100GBASE_KR4",
70 	[55] = "100G_CAUI4_AOC_ACC",
71 	[56] = "100G_CAUI4",
72 	[57] = "100G_AUI4_AOC_ACC",
73 	[58] = "100G_AUI4",
74 	[59] = "100GBASE_CR_PAM4",
75 	[60] = "100GBASE_KR_PAM4",
76 	[61] = "100GBASE_CP2",
77 	[62] = "100GBASE_SR2",
78 	[63] = "100GBASE_DR",
79 };
80 
81 static const char * const ice_link_mode_str_high[] = {
82 	[0] = "100GBASE_KR2_PAM4",
83 	[1] = "100G_CAUI2_AOC_ACC",
84 	[2] = "100G_CAUI2",
85 	[3] = "100G_AUI2_AOC_ACC",
86 	[4] = "100G_AUI2",
87 };
88 
89 /**
90  * ice_dump_phy_type - helper function to dump phy_type
91  * @hw: pointer to the HW structure
92  * @low: 64 bit value for phy_type_low
93  * @high: 64 bit value for phy_type_high
94  * @prefix: prefix string to differentiate multiple dumps
95  */
96 static void
97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100 
101 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 		if (low & BIT_ULL(i))
103 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
104 				  prefix, i, ice_link_mode_str_low[i]);
105 	}
106 
107 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108 
109 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 		if (high & BIT_ULL(i))
111 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
112 				  prefix, i, ice_link_mode_str_high[i]);
113 	}
114 }
115 
116 /**
117  * ice_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the MAC type of the adapter based on the
121  * vendor ID and device ID stored in the HW structure.
122  */
123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 		return -ENODEV;
127 
128 	switch (hw->device_id) {
129 	case ICE_DEV_ID_E810C_BACKPLANE:
130 	case ICE_DEV_ID_E810C_QSFP:
131 	case ICE_DEV_ID_E810C_SFP:
132 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 	case ICE_DEV_ID_E810_XXV_QSFP:
134 	case ICE_DEV_ID_E810_XXV_SFP:
135 		hw->mac_type = ICE_MAC_E810;
136 		break;
137 	case ICE_DEV_ID_E823C_10G_BASE_T:
138 	case ICE_DEV_ID_E823C_BACKPLANE:
139 	case ICE_DEV_ID_E823C_QSFP:
140 	case ICE_DEV_ID_E823C_SFP:
141 	case ICE_DEV_ID_E823C_SGMII:
142 	case ICE_DEV_ID_E822C_10G_BASE_T:
143 	case ICE_DEV_ID_E822C_BACKPLANE:
144 	case ICE_DEV_ID_E822C_QSFP:
145 	case ICE_DEV_ID_E822C_SFP:
146 	case ICE_DEV_ID_E822C_SGMII:
147 	case ICE_DEV_ID_E822L_10G_BASE_T:
148 	case ICE_DEV_ID_E822L_BACKPLANE:
149 	case ICE_DEV_ID_E822L_SFP:
150 	case ICE_DEV_ID_E822L_SGMII:
151 	case ICE_DEV_ID_E823L_10G_BASE_T:
152 	case ICE_DEV_ID_E823L_1GBE:
153 	case ICE_DEV_ID_E823L_BACKPLANE:
154 	case ICE_DEV_ID_E823L_QSFP:
155 	case ICE_DEV_ID_E823L_SFP:
156 		hw->mac_type = ICE_MAC_GENERIC;
157 		break;
158 	case ICE_DEV_ID_E825C_BACKPLANE:
159 	case ICE_DEV_ID_E825C_QSFP:
160 	case ICE_DEV_ID_E825C_SFP:
161 	case ICE_DEV_ID_E825C_SGMII:
162 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 		break;
164 	case ICE_DEV_ID_E830CC_BACKPLANE:
165 	case ICE_DEV_ID_E830CC_QSFP56:
166 	case ICE_DEV_ID_E830CC_SFP:
167 	case ICE_DEV_ID_E830CC_SFP_DD:
168 	case ICE_DEV_ID_E830C_BACKPLANE:
169 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 	case ICE_DEV_ID_E830C_QSFP:
171 	case ICE_DEV_ID_E830_XXV_QSFP:
172 	case ICE_DEV_ID_E830C_SFP:
173 	case ICE_DEV_ID_E830_XXV_SFP:
174 	case ICE_DEV_ID_E835CC_BACKPLANE:
175 	case ICE_DEV_ID_E835CC_QSFP56:
176 	case ICE_DEV_ID_E835CC_SFP:
177 	case ICE_DEV_ID_E835C_BACKPLANE:
178 	case ICE_DEV_ID_E835C_QSFP:
179 	case ICE_DEV_ID_E835C_SFP:
180 	case ICE_DEV_ID_E835_L_BACKPLANE:
181 	case ICE_DEV_ID_E835_L_QSFP:
182 	case ICE_DEV_ID_E835_L_SFP:
183 		hw->mac_type = ICE_MAC_E830;
184 		break;
185 	default:
186 		hw->mac_type = ICE_MAC_UNKNOWN;
187 		break;
188 	}
189 
190 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 	return 0;
192 }
193 
194 /**
195  * ice_is_generic_mac - check if device's mac_type is generic
196  * @hw: pointer to the hardware structure
197  *
198  * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199  */
200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 	return (hw->mac_type == ICE_MAC_GENERIC ||
203 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205 
206 /**
207  * ice_is_pf_c827 - check if pf contains c827 phy
208  * @hw: pointer to the hw struct
209  *
210  * Return: true if the device has c827 phy.
211  */
212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 	struct ice_aqc_get_link_topo cmd = {};
215 	u8 node_part_number;
216 	u16 node_handle;
217 	int status;
218 
219 	if (hw->mac_type != ICE_MAC_E810)
220 		return false;
221 
222 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 		return true;
224 
225 	cmd.addr.topo_params.node_type_ctx =
226 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 	cmd.addr.topo_params.index = 0;
229 
230 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 					 &node_handle);
232 
233 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 		return false;
235 
236 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 		return true;
238 
239 	return false;
240 }
241 
242 /**
243  * ice_clear_pf_cfg - Clear PF configuration
244  * @hw: pointer to the hardware structure
245  *
246  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247  * configuration, flow director filters, etc.).
248  */
249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 	struct libie_aq_desc desc;
252 
253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254 
255 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257 
258 /**
259  * ice_aq_manage_mac_read - manage MAC address read command
260  * @hw: pointer to the HW struct
261  * @buf: a virtual buffer to hold the manage MAC read response
262  * @buf_size: Size of the virtual buffer
263  * @cd: pointer to command details structure or NULL
264  *
265  * This function is used to return per PF station MAC address (0x0107).
266  * NOTE: Upon successful completion of this command, MAC address information
267  * is returned in user specified buffer. Please interpret user specified
268  * buffer as "manage_mac_read" response.
269  * Response such as various MAC addresses are stored in HW struct (port.mac)
270  * ice_discover_dev_caps is expected to be called before this function is
271  * called.
272  */
273 static int
274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 		       struct ice_sq_cd *cd)
276 {
277 	struct ice_aqc_manage_mac_read_resp *resp;
278 	struct ice_aqc_manage_mac_read *cmd;
279 	struct libie_aq_desc desc;
280 	int status;
281 	u16 flags;
282 	u8 i;
283 
284 	cmd = libie_aq_raw(&desc);
285 
286 	if (buf_size < sizeof(*resp))
287 		return -EINVAL;
288 
289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290 
291 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 	if (status)
293 		return status;
294 
295 	resp = buf;
296 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297 
298 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 		return -EIO;
301 	}
302 
303 	/* A single port can report up to two (LAN and WoL) addresses */
304 	for (i = 0; i < cmd->num_addr; i++)
305 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 			ether_addr_copy(hw->port_info->mac.lan_addr,
307 					resp[i].mac_addr);
308 			ether_addr_copy(hw->port_info->mac.perm_addr,
309 					resp[i].mac_addr);
310 			break;
311 		}
312 
313 	return 0;
314 }
315 
316 /**
317  * ice_aq_get_phy_caps - returns PHY capabilities
318  * @pi: port information structure
319  * @qual_mods: report qualified modules
320  * @report_mode: report mode capabilities
321  * @pcaps: structure for PHY capabilities to be filled
322  * @cd: pointer to command details structure or NULL
323  *
324  * Returns the various PHY capabilities supported on the Port (0x0600)
325  */
326 int
327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 		    struct ice_aqc_get_phy_caps_data *pcaps,
329 		    struct ice_sq_cd *cd)
330 {
331 	struct ice_aqc_get_phy_caps *cmd;
332 	u16 pcaps_size = sizeof(*pcaps);
333 	struct libie_aq_desc desc;
334 	const char *prefix;
335 	struct ice_hw *hw;
336 	int status;
337 
338 	cmd = libie_aq_raw(&desc);
339 
340 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 		return -EINVAL;
342 	hw = pi->hw;
343 
344 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 	    !ice_fw_supports_report_dflt_cfg(hw))
346 		return -EINVAL;
347 
348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349 
350 	if (qual_mods)
351 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352 
353 	cmd->param0 |= cpu_to_le16(report_mode);
354 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355 
356 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357 
358 	switch (report_mode) {
359 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 		prefix = "phy_caps_media";
361 		break;
362 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 		prefix = "phy_caps_no_media";
364 		break;
365 	case ICE_AQC_REPORT_ACTIVE_CFG:
366 		prefix = "phy_caps_active";
367 		break;
368 	case ICE_AQC_REPORT_DFLT_CFG:
369 		prefix = "phy_caps_default";
370 		break;
371 	default:
372 		prefix = "phy_caps_invalid";
373 	}
374 
375 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 			  le64_to_cpu(pcaps->phy_type_high), prefix);
377 
378 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 		  prefix, report_mode);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 		  pcaps->low_power_ctrl_an);
383 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 		  pcaps->eee_cap);
385 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 		  pcaps->eeer_value);
387 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 		  pcaps->link_fec_options);
389 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 		  prefix, pcaps->module_compliance_enforcement);
391 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 		  prefix, pcaps->extended_compliance_code);
393 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 		  pcaps->module_type[0]);
395 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 		  pcaps->module_type[1]);
397 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 		  pcaps->module_type[2]);
399 
400 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 		       sizeof(pi->phy.link_info.module_type));
405 	}
406 
407 	return status;
408 }
409 
410 /**
411  * ice_aq_get_link_topo_handle - get link topology node return status
412  * @pi: port information structure
413  * @node_type: requested node type
414  * @cd: pointer to command details structure or NULL
415  *
416  * Get link topology node return status for specified node type (0x06E0)
417  *
418  * Node type cage can be used to determine if cage is present. If AQC
419  * returns error (ENOENT), then no cage present. If no cage present, then
420  * connection type is backplane or BASE-T.
421  */
422 static int
423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 			    struct ice_sq_cd *cd)
425 {
426 	struct ice_aqc_get_link_topo *cmd;
427 	struct libie_aq_desc desc;
428 
429 	cmd = libie_aq_raw(&desc);
430 
431 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432 
433 	cmd->addr.topo_params.node_type_ctx =
434 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436 
437 	/* set node type */
438 	cmd->addr.topo_params.node_type_ctx |=
439 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440 
441 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443 
444 /**
445  * ice_aq_get_netlist_node
446  * @hw: pointer to the hw struct
447  * @cmd: get_link_topo AQ structure
448  * @node_part_number: output node part number if node found
449  * @node_handle: output node handle parameter if node found
450  *
451  * Get netlist node handle.
452  */
453 int
454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 			u8 *node_part_number, u16 *node_handle)
456 {
457 	struct ice_aqc_get_link_topo *resp;
458 	struct libie_aq_desc desc;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 	resp = libie_aq_raw(&desc);
462 	*resp = *cmd;
463 
464 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 		return -EINTR;
466 
467 	if (node_handle)
468 		*node_handle = le16_to_cpu(resp->addr.handle);
469 	if (node_part_number)
470 		*node_part_number = resp->node_part_num;
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_find_netlist_node
477  * @hw: pointer to the hw struct
478  * @node_type: type of netlist node to look for
479  * @ctx: context of the search
480  * @node_part_number: node part number to look for
481  * @node_handle: output parameter if node found - optional
482  *
483  * Scan the netlist for a node handle of the given node type and part number.
484  *
485  * If node_handle is non-NULL it will be modified on function exit. It is only
486  * valid if the function returns zero, and should be ignored on any non-zero
487  * return value.
488  *
489  * Return:
490  * * 0 if the node is found,
491  * * -ENOENT if no handle was found,
492  * * negative error code on failure to access the AQ.
493  */
494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 				 u8 node_part_number, u16 *node_handle)
496 {
497 	u8 idx;
498 
499 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 		struct ice_aqc_get_link_topo cmd = {};
501 		u8 rec_node_part_number;
502 		int status;
503 
504 		cmd.addr.topo_params.node_type_ctx =
505 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 		cmd.addr.topo_params.index = idx;
508 
509 		status = ice_aq_get_netlist_node(hw, &cmd,
510 						 &rec_node_part_number,
511 						 node_handle);
512 		if (status)
513 			return status;
514 
515 		if (rec_node_part_number == node_part_number)
516 			return 0;
517 	}
518 
519 	return -ENOENT;
520 }
521 
522 /**
523  * ice_is_media_cage_present
524  * @pi: port information structure
525  *
526  * Returns true if media cage is present, else false. If no cage, then
527  * media type is backplane or BASE-T.
528  */
529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 	/* Node type cage can be used to determine if cage is present. If AQC
532 	 * returns error (ENOENT), then no cage present. If no cage present then
533 	 * connection type is backplane or BASE-T.
534 	 */
535 	return !ice_aq_get_link_topo_handle(pi,
536 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 					    NULL);
538 }
539 
540 /**
541  * ice_get_media_type - Gets media type
542  * @pi: port information structure
543  */
544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 	struct ice_link_status *hw_link_info;
547 
548 	if (!pi)
549 		return ICE_MEDIA_UNKNOWN;
550 
551 	hw_link_info = &pi->phy.link_info;
552 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 		/* If more than one media type is selected, report unknown */
554 		return ICE_MEDIA_UNKNOWN;
555 
556 	if (hw_link_info->phy_type_low) {
557 		/* 1G SGMII is a special case where some DA cable PHYs
558 		 * may show this as an option when it really shouldn't
559 		 * be since SGMII is meant to be between a MAC and a PHY
560 		 * in a backplane. Try to detect this case and handle it
561 		 */
562 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 			return ICE_MEDIA_DA;
568 
569 		switch (hw_link_info->phy_type_low) {
570 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 			return ICE_MEDIA_FIBER;
597 		case ICE_PHY_TYPE_LOW_100BASE_TX:
598 		case ICE_PHY_TYPE_LOW_1000BASE_T:
599 		case ICE_PHY_TYPE_LOW_2500BASE_T:
600 		case ICE_PHY_TYPE_LOW_5GBASE_T:
601 		case ICE_PHY_TYPE_LOW_10GBASE_T:
602 		case ICE_PHY_TYPE_LOW_25GBASE_T:
603 			return ICE_MEDIA_BASET;
604 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 			return ICE_MEDIA_DA;
615 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 		case ICE_PHY_TYPE_LOW_50G_AUI2:
619 		case ICE_PHY_TYPE_LOW_50G_AUI1:
620 		case ICE_PHY_TYPE_LOW_100G_AUI4:
621 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 			if (ice_is_media_cage_present(pi))
623 				return ICE_MEDIA_DA;
624 			fallthrough;
625 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 		case ICE_PHY_TYPE_LOW_2500BASE_X:
628 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 			return ICE_MEDIA_BACKPLANE;
639 		}
640 	} else {
641 		switch (hw_link_info->phy_type_high) {
642 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 			if (ice_is_media_cage_present(pi))
645 				return ICE_MEDIA_DA;
646 			fallthrough;
647 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 			return ICE_MEDIA_BACKPLANE;
649 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 			return ICE_MEDIA_FIBER;
652 		}
653 	}
654 	return ICE_MEDIA_UNKNOWN;
655 }
656 
657 /**
658  * ice_get_link_status_datalen
659  * @hw: pointer to the HW struct
660  *
661  * Returns datalength for the Get Link Status AQ command, which is bigger for
662  * newer adapter families handled by ice driver.
663  */
664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 	switch (hw->mac_type) {
667 	case ICE_MAC_E830:
668 		return ICE_AQC_LS_DATA_SIZE_V2;
669 	case ICE_MAC_E810:
670 	default:
671 		return ICE_AQC_LS_DATA_SIZE_V1;
672 	}
673 }
674 
675 /**
676  * ice_aq_get_link_info
677  * @pi: port information structure
678  * @ena_lse: enable/disable LinkStatusEvent reporting
679  * @link: pointer to link status structure - optional
680  * @cd: pointer to command details structure or NULL
681  *
682  * Get Link Status (0x607). Returns the link status of the adapter.
683  */
684 int
685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 		     struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 	struct ice_aqc_get_link_status_data link_data = { 0 };
689 	struct ice_aqc_get_link_status *resp;
690 	struct ice_link_status *li_old, *li;
691 	enum ice_media_type *hw_media_type;
692 	struct ice_fc_info *hw_fc_info;
693 	struct libie_aq_desc desc;
694 	bool tx_pause, rx_pause;
695 	struct ice_hw *hw;
696 	u16 cmd_flags;
697 	int status;
698 
699 	if (!pi)
700 		return -EINVAL;
701 	hw = pi->hw;
702 	li_old = &pi->phy.link_info_old;
703 	hw_media_type = &pi->phy.media_type;
704 	li = &pi->phy.link_info;
705 	hw_fc_info = &pi->fc;
706 
707 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 	resp = libie_aq_raw(&desc);
710 	resp->cmd_flags = cpu_to_le16(cmd_flags);
711 	resp->lport_num = pi->lport;
712 
713 	status = ice_aq_send_cmd(hw, &desc, &link_data,
714 				 ice_get_link_status_datalen(hw), cd);
715 	if (status)
716 		return status;
717 
718 	/* save off old link status information */
719 	*li_old = *li;
720 
721 	/* update current link status information */
722 	li->link_speed = le16_to_cpu(link_data.link_speed);
723 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 	*hw_media_type = ice_get_media_type(pi);
726 	li->link_info = link_data.link_info;
727 	li->link_cfg_err = link_data.link_cfg_err;
728 	li->an_info = link_data.an_info;
729 	li->ext_info = link_data.ext_info;
730 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 	li->topo_media_conflict = link_data.topo_media_conflict;
733 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 				      ICE_AQ_CFG_PACING_TYPE_M);
735 
736 	/* update fc info */
737 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 	if (tx_pause && rx_pause)
740 		hw_fc_info->current_mode = ICE_FC_FULL;
741 	else if (tx_pause)
742 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 	else if (rx_pause)
744 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 	else
746 		hw_fc_info->current_mode = ICE_FC_NONE;
747 
748 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749 
750 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
752 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
753 		  (unsigned long long)li->phy_type_low);
754 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
755 		  (unsigned long long)li->phy_type_high);
756 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
757 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
758 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
759 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
760 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
761 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
762 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
763 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
764 		  li->max_frame_size);
765 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
766 
767 	/* save link status information */
768 	if (link)
769 		*link = *li;
770 
771 	/* flag cleared so calling functions don't call AQ again */
772 	pi->phy.get_link_info = false;
773 
774 	return 0;
775 }
776 
777 /**
778  * ice_fill_tx_timer_and_fc_thresh
779  * @hw: pointer to the HW struct
780  * @cmd: pointer to MAC cfg structure
781  *
782  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783  * descriptor
784  */
785 static void
786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 				struct ice_aqc_set_mac_cfg *cmd)
788 {
789 	u32 val, fc_thres_m;
790 
791 	/* We read back the transmit timer and FC threshold value of
792 	 * LFC. Thus, we will use index =
793 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 	 *
795 	 * Also, because we are operating on transmit timer and FC
796 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 	 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800 
801 	if (hw->mac_type == ICE_MAC_E830) {
802 		/* Retrieve the transmit timer */
803 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 		cmd->tx_tmr_value =
805 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806 
807 		/* Retrieve the fc threshold */
808 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 	} else {
811 		/* Retrieve the transmit timer */
812 		val = rd32(hw,
813 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 		cmd->tx_tmr_value =
815 			le16_encode_bits(val,
816 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817 
818 		/* Retrieve the fc threshold */
819 		val = rd32(hw,
820 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 	}
823 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825 
826 /**
827  * ice_aq_set_mac_cfg
828  * @hw: pointer to the HW struct
829  * @max_frame_size: Maximum Frame Size to be supported
830  * @cd: pointer to command details structure or NULL
831  *
832  * Set MAC configuration (0x0603)
833  */
834 int
835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 	struct ice_aqc_set_mac_cfg *cmd;
838 	struct libie_aq_desc desc;
839 
840 	cmd = libie_aq_raw(&desc);
841 
842 	if (max_frame_size == 0)
843 		return -EINVAL;
844 
845 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846 
847 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
848 
849 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850 
851 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853 
854 /**
855  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856  * @hw: pointer to the HW struct
857  */
858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 	struct ice_switch_info *sw;
861 	int status;
862 
863 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 				       sizeof(*hw->switch_info), GFP_KERNEL);
865 	sw = hw->switch_info;
866 
867 	if (!sw)
868 		return -ENOMEM;
869 
870 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 	sw->prof_res_bm_init = 0;
872 
873 	/* Initialize recipe count with default recipes read from NVM */
874 	sw->recp_cnt = ICE_SW_LKUP_LAST;
875 
876 	status = ice_init_def_sw_recp(hw);
877 	if (status) {
878 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 		return status;
880 	}
881 	return 0;
882 }
883 
884 /**
885  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886  * @hw: pointer to the HW struct
887  */
888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 	struct ice_switch_info *sw = hw->switch_info;
891 	struct ice_vsi_list_map_info *v_pos_map;
892 	struct ice_vsi_list_map_info *v_tmp_map;
893 	struct ice_sw_recipe *recps;
894 	u8 i;
895 
896 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 				 list_entry) {
898 		list_del(&v_pos_map->list_entry);
899 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 	}
901 	recps = sw->recp_list;
902 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 		recps[i].root_rid = i;
904 
905 		if (recps[i].adv_rule) {
906 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908 
909 			mutex_destroy(&recps[i].filt_rule_lock);
910 			list_for_each_entry_safe(lst_itr, tmp_entry,
911 						 &recps[i].filt_rules,
912 						 list_entry) {
913 				list_del(&lst_itr->list_entry);
914 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 			}
917 		} else {
918 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919 
920 			mutex_destroy(&recps[i].filt_rule_lock);
921 			list_for_each_entry_safe(lst_itr, tmp_entry,
922 						 &recps[i].filt_rules,
923 						 list_entry) {
924 				list_del(&lst_itr->list_entry);
925 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 			}
927 		}
928 	}
929 	ice_rm_all_sw_replay_rule_info(hw);
930 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 	devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933 
934 /**
935  * ice_get_itr_intrl_gran
936  * @hw: pointer to the HW struct
937  *
938  * Determines the ITR/INTRL granularities based on the maximum aggregate
939  * bandwidth according to the device's configuration during power-on.
940  */
941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 				  rd32(hw, GL_PWR_MODE_CTL));
945 
946 	switch (max_agg_bw) {
947 	case ICE_MAX_AGG_BW_200G:
948 	case ICE_MAX_AGG_BW_100G:
949 	case ICE_MAX_AGG_BW_50G:
950 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 		break;
953 	case ICE_MAX_AGG_BW_25G:
954 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 		break;
957 	}
958 }
959 
960 /**
961  * ice_wait_for_fw - wait for full FW readiness
962  * @hw: pointer to the hardware structure
963  * @timeout: milliseconds that can elapse before timing out
964  *
965  * Return: 0 on success, -ETIMEDOUT on timeout.
966  */
967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 	int fw_loading;
970 	u32 elapsed = 0;
971 
972 	while (elapsed <= timeout) {
973 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974 
975 		/* firmware was not yet loaded, we have to wait more */
976 		if (fw_loading) {
977 			elapsed += 100;
978 			msleep(100);
979 			continue;
980 		}
981 		return 0;
982 	}
983 
984 	return -ETIMEDOUT;
985 }
986 
987 static int __fwlog_send_cmd(void *priv, struct libie_aq_desc *desc, void *buf,
988 			    u16 size)
989 {
990 	struct ice_hw *hw = priv;
991 
992 	return ice_aq_send_cmd(hw, desc, buf, size, NULL);
993 }
994 
995 static int __fwlog_init(struct ice_hw *hw)
996 {
997 	struct ice_pf *pf = hw->back;
998 	struct libie_fwlog_api api = {
999 		.pdev = pf->pdev,
1000 		.send_cmd = __fwlog_send_cmd,
1001 		.priv = hw,
1002 	};
1003 	int err;
1004 
1005 	/* only support fw log commands on PF 0 */
1006 	if (hw->bus.func)
1007 		return -EINVAL;
1008 
1009 	err = ice_debugfs_pf_init(pf);
1010 	if (err)
1011 		return err;
1012 
1013 	api.debugfs_root = pf->ice_debugfs_pf;
1014 
1015 	return libie_fwlog_init(&hw->fwlog, &api);
1016 }
1017 
1018 /**
1019  * ice_init_hw - main hardware initialization routine
1020  * @hw: pointer to the hardware structure
1021  */
1022 int ice_init_hw(struct ice_hw *hw)
1023 {
1024 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1025 	void *mac_buf __free(kfree) = NULL;
1026 	u16 mac_buf_len;
1027 	int status;
1028 
1029 	/* Set MAC type based on DeviceID */
1030 	status = ice_set_mac_type(hw);
1031 	if (status)
1032 		return status;
1033 
1034 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1035 
1036 	status = ice_reset(hw, ICE_RESET_PFR);
1037 	if (status)
1038 		return status;
1039 
1040 	ice_get_itr_intrl_gran(hw);
1041 
1042 	status = ice_create_all_ctrlq(hw);
1043 	if (status)
1044 		goto err_unroll_cqinit;
1045 
1046 	status = __fwlog_init(hw);
1047 	if (status)
1048 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1049 			  status);
1050 
1051 	status = ice_clear_pf_cfg(hw);
1052 	if (status)
1053 		goto err_unroll_cqinit;
1054 
1055 	/* Set bit to enable Flow Director filters */
1056 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1057 	INIT_LIST_HEAD(&hw->fdir_list_head);
1058 
1059 	ice_clear_pxe_mode(hw);
1060 
1061 	status = ice_init_nvm(hw);
1062 	if (status)
1063 		goto err_unroll_cqinit;
1064 
1065 	status = ice_get_caps(hw);
1066 	if (status)
1067 		goto err_unroll_cqinit;
1068 
1069 	if (!hw->port_info)
1070 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1071 					     sizeof(*hw->port_info),
1072 					     GFP_KERNEL);
1073 	if (!hw->port_info) {
1074 		status = -ENOMEM;
1075 		goto err_unroll_cqinit;
1076 	}
1077 
1078 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1079 	/* set the back pointer to HW */
1080 	hw->port_info->hw = hw;
1081 
1082 	/* Initialize port_info struct with switch configuration data */
1083 	status = ice_get_initial_sw_cfg(hw);
1084 	if (status)
1085 		goto err_unroll_alloc;
1086 
1087 	hw->evb_veb = true;
1088 
1089 	/* init xarray for identifying scheduling nodes uniquely */
1090 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1091 
1092 	/* Query the allocated resources for Tx scheduler */
1093 	status = ice_sched_query_res_alloc(hw);
1094 	if (status) {
1095 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1096 		goto err_unroll_alloc;
1097 	}
1098 	ice_sched_get_psm_clk_freq(hw);
1099 
1100 	/* Initialize port_info struct with scheduler data */
1101 	status = ice_sched_init_port(hw->port_info);
1102 	if (status)
1103 		goto err_unroll_sched;
1104 
1105 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1106 	if (!pcaps) {
1107 		status = -ENOMEM;
1108 		goto err_unroll_sched;
1109 	}
1110 
1111 	/* Initialize port_info struct with PHY capabilities */
1112 	status = ice_aq_get_phy_caps(hw->port_info, false,
1113 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1114 				     NULL);
1115 	if (status)
1116 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1117 			 status);
1118 
1119 	/* Initialize port_info struct with link information */
1120 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1121 	if (status)
1122 		goto err_unroll_sched;
1123 
1124 	/* need a valid SW entry point to build a Tx tree */
1125 	if (!hw->sw_entry_point_layer) {
1126 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1127 		status = -EIO;
1128 		goto err_unroll_sched;
1129 	}
1130 	INIT_LIST_HEAD(&hw->agg_list);
1131 	/* Initialize max burst size */
1132 	if (!hw->max_burst_size)
1133 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1134 
1135 	status = ice_init_fltr_mgmt_struct(hw);
1136 	if (status)
1137 		goto err_unroll_sched;
1138 
1139 	/* Get MAC information */
1140 	/* A single port can report up to two (LAN and WoL) addresses */
1141 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1142 			  GFP_KERNEL);
1143 	if (!mac_buf) {
1144 		status = -ENOMEM;
1145 		goto err_unroll_fltr_mgmt_struct;
1146 	}
1147 
1148 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1149 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1150 
1151 	if (status)
1152 		goto err_unroll_fltr_mgmt_struct;
1153 	/* enable jumbo frame support at MAC level */
1154 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1155 	if (status)
1156 		goto err_unroll_fltr_mgmt_struct;
1157 	/* Obtain counter base index which would be used by flow director */
1158 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1159 	if (status)
1160 		goto err_unroll_fltr_mgmt_struct;
1161 	status = ice_init_hw_tbls(hw);
1162 	if (status)
1163 		goto err_unroll_fltr_mgmt_struct;
1164 	mutex_init(&hw->tnl_lock);
1165 	ice_init_chk_recipe_reuse_support(hw);
1166 
1167 	/* Some cards require longer initialization times
1168 	 * due to necessity of loading FW from an external source.
1169 	 * This can take even half a minute.
1170 	 */
1171 	if (ice_is_pf_c827(hw)) {
1172 		status = ice_wait_for_fw(hw, 30000);
1173 		if (status) {
1174 			dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1175 			goto err_unroll_fltr_mgmt_struct;
1176 		}
1177 	}
1178 
1179 	hw->lane_num = ice_get_phy_lane_number(hw);
1180 
1181 	return 0;
1182 err_unroll_fltr_mgmt_struct:
1183 	ice_cleanup_fltr_mgmt_struct(hw);
1184 err_unroll_sched:
1185 	ice_sched_cleanup_all(hw);
1186 err_unroll_alloc:
1187 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1188 err_unroll_cqinit:
1189 	ice_destroy_all_ctrlq(hw);
1190 	return status;
1191 }
1192 
1193 static void __fwlog_deinit(struct ice_hw *hw)
1194 {
1195 	/* only support fw log commands on PF 0 */
1196 	if (hw->bus.func)
1197 		return;
1198 
1199 	ice_debugfs_pf_deinit(hw->back);
1200 	libie_fwlog_deinit(&hw->fwlog);
1201 }
1202 
1203 /**
1204  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1205  * @hw: pointer to the hardware structure
1206  *
1207  * This should be called only during nominal operation, not as a result of
1208  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1209  * applicable initializations if it fails for any reason.
1210  */
1211 void ice_deinit_hw(struct ice_hw *hw)
1212 {
1213 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1214 	ice_cleanup_fltr_mgmt_struct(hw);
1215 
1216 	ice_sched_cleanup_all(hw);
1217 	ice_sched_clear_agg(hw);
1218 	ice_free_seg(hw);
1219 	ice_free_hw_tbls(hw);
1220 	mutex_destroy(&hw->tnl_lock);
1221 	__fwlog_deinit(hw);
1222 	ice_destroy_all_ctrlq(hw);
1223 
1224 	/* Clear VSI contexts if not already cleared */
1225 	ice_clear_all_vsi_ctx(hw);
1226 }
1227 
1228 /**
1229  * ice_check_reset - Check to see if a global reset is complete
1230  * @hw: pointer to the hardware structure
1231  */
1232 int ice_check_reset(struct ice_hw *hw)
1233 {
1234 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1235 
1236 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1237 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1238 	 * Add 1sec for outstanding AQ commands that can take a long time.
1239 	 */
1240 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1241 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1242 
1243 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1244 		mdelay(100);
1245 		reg = rd32(hw, GLGEN_RSTAT);
1246 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1247 			break;
1248 	}
1249 
1250 	if (cnt == grst_timeout) {
1251 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1252 		return -EIO;
1253 	}
1254 
1255 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1256 				 GLNVM_ULD_PCIER_DONE_1_M |\
1257 				 GLNVM_ULD_CORER_DONE_M |\
1258 				 GLNVM_ULD_GLOBR_DONE_M |\
1259 				 GLNVM_ULD_POR_DONE_M |\
1260 				 GLNVM_ULD_POR_DONE_1_M |\
1261 				 GLNVM_ULD_PCIER_DONE_2_M)
1262 
1263 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1264 					  GLNVM_ULD_PE_DONE_M : 0);
1265 
1266 	/* Device is Active; check Global Reset processes are done */
1267 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1268 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1269 		if (reg == uld_mask) {
1270 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1271 			break;
1272 		}
1273 		mdelay(10);
1274 	}
1275 
1276 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1277 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1278 			  reg);
1279 		return -EIO;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 /**
1286  * ice_pf_reset - Reset the PF
1287  * @hw: pointer to the hardware structure
1288  *
1289  * If a global reset has been triggered, this function checks
1290  * for its completion and then issues the PF reset
1291  */
1292 static int ice_pf_reset(struct ice_hw *hw)
1293 {
1294 	u32 cnt, reg;
1295 
1296 	/* If at function entry a global reset was already in progress, i.e.
1297 	 * state is not 'device active' or any of the reset done bits are not
1298 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1299 	 * global reset is done.
1300 	 */
1301 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1302 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1303 		/* poll on global reset currently in progress until done */
1304 		if (ice_check_reset(hw))
1305 			return -EIO;
1306 
1307 		return 0;
1308 	}
1309 
1310 	/* Reset the PF */
1311 	reg = rd32(hw, PFGEN_CTRL);
1312 
1313 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1314 
1315 	/* Wait for the PFR to complete. The wait time is the global config lock
1316 	 * timeout plus the PFR timeout which will account for a possible reset
1317 	 * that is occurring during a download package operation.
1318 	 */
1319 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1320 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1321 		reg = rd32(hw, PFGEN_CTRL);
1322 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1323 			break;
1324 
1325 		mdelay(1);
1326 	}
1327 
1328 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1329 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1330 		return -EIO;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * ice_reset - Perform different types of reset
1338  * @hw: pointer to the hardware structure
1339  * @req: reset request
1340  *
1341  * This function triggers a reset as specified by the req parameter.
1342  *
1343  * Note:
1344  * If anything other than a PF reset is triggered, PXE mode is restored.
1345  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1346  * interface has been restored in the rebuild flow.
1347  */
1348 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1349 {
1350 	u32 val = 0;
1351 
1352 	switch (req) {
1353 	case ICE_RESET_PFR:
1354 		return ice_pf_reset(hw);
1355 	case ICE_RESET_CORER:
1356 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1357 		val = GLGEN_RTRIG_CORER_M;
1358 		break;
1359 	case ICE_RESET_GLOBR:
1360 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1361 		val = GLGEN_RTRIG_GLOBR_M;
1362 		break;
1363 	default:
1364 		return -EINVAL;
1365 	}
1366 
1367 	val |= rd32(hw, GLGEN_RTRIG);
1368 	wr32(hw, GLGEN_RTRIG, val);
1369 	ice_flush(hw);
1370 
1371 	/* wait for the FW to be ready */
1372 	return ice_check_reset(hw);
1373 }
1374 
1375 /**
1376  * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1377  * @hw: pointer to the hardware structure
1378  * @rxq_ctx: pointer to the packed Rx queue context
1379  * @rxq_index: the index of the Rx queue
1380  */
1381 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1382 				   const ice_rxq_ctx_buf_t *rxq_ctx,
1383 				   u32 rxq_index)
1384 {
1385 	/* Copy each dword separately to HW */
1386 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1387 		u32 ctx = ((const u32 *)rxq_ctx)[i];
1388 
1389 		wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1390 
1391 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1392 	}
1393 }
1394 
1395 /**
1396  * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1397  * @hw: pointer to the hardware structure
1398  * @rxq_ctx: pointer to the packed Rx queue context
1399  * @rxq_index: the index of the Rx queue
1400  */
1401 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1402 				     ice_rxq_ctx_buf_t *rxq_ctx,
1403 				     u32 rxq_index)
1404 {
1405 	u32 *ctx = (u32 *)rxq_ctx;
1406 
1407 	/* Copy each dword separately from HW */
1408 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1409 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1410 
1411 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1412 	}
1413 }
1414 
1415 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1416 	PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1417 
1418 /* LAN Rx Queue Context */
1419 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1420 				 /* Field		Width	LSB */
1421 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1422 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1423 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1424 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1425 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1426 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1427 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1428 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1429 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1430 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1431 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1432 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1433 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1434 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1435 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1436 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1437 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1438 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1439 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1440 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1441 };
1442 
1443 /**
1444  * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1445  * @ctx: the Rx queue context to pack
1446  * @buf: the HW buffer to pack into
1447  *
1448  * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1449  * bit-packed HW layout.
1450  */
1451 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1452 			     ice_rxq_ctx_buf_t *buf)
1453 {
1454 	pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1455 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1456 }
1457 
1458 /**
1459  * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1460  * @buf: the HW buffer to unpack from
1461  * @ctx: the Rx queue context to unpack
1462  *
1463  * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1464  * structure.
1465  */
1466 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1467 			       struct ice_rlan_ctx *ctx)
1468 {
1469 	unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1470 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1471 }
1472 
1473 /**
1474  * ice_write_rxq_ctx - Write Rx Queue context to hardware
1475  * @hw: pointer to the hardware structure
1476  * @rlan_ctx: pointer to the unpacked Rx queue context
1477  * @rxq_index: the index of the Rx queue
1478  *
1479  * Pack the sparse Rx Queue context into dense hardware format and write it
1480  * into the HW register space.
1481  *
1482  * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1483  */
1484 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1485 		      u32 rxq_index)
1486 {
1487 	ice_rxq_ctx_buf_t buf = {};
1488 
1489 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1490 		return -EINVAL;
1491 
1492 	ice_pack_rxq_ctx(rlan_ctx, &buf);
1493 	ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * ice_read_rxq_ctx - Read Rx queue context from HW
1500  * @hw: pointer to the hardware structure
1501  * @rlan_ctx: pointer to the Rx queue context
1502  * @rxq_index: the index of the Rx queue
1503  *
1504  * Read the Rx queue context from the hardware registers, and unpack it into
1505  * the sparse Rx queue context structure.
1506  *
1507  * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1508  */
1509 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1510 		     u32 rxq_index)
1511 {
1512 	ice_rxq_ctx_buf_t buf = {};
1513 
1514 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1515 		return -EINVAL;
1516 
1517 	ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1518 	ice_unpack_rxq_ctx(&buf, rlan_ctx);
1519 
1520 	return 0;
1521 }
1522 
1523 /* LAN Tx Queue Context */
1524 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1525 				    /* Field			Width	LSB */
1526 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1527 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1528 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1529 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1530 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1531 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1532 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1533 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1534 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1535 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1536 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1537 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1538 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1539 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1540 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1541 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1542 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1543 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1544 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1545 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1546 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1547 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1548 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1549 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1550 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1551 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1552 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1553 };
1554 
1555 /**
1556  * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1557  * @ctx: the Tx queue context to pack
1558  * @buf: the Admin Queue HW buffer to pack into
1559  *
1560  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1561  * bit-packed Admin Queue layout.
1562  */
1563 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1564 {
1565 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1566 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1567 }
1568 
1569 /**
1570  * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1571  * @ctx: the Tx queue context to pack
1572  * @buf: the HW buffer to pack into
1573  *
1574  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1575  * bit-packed HW layout, including the internal data portion.
1576  */
1577 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1578 				  ice_txq_ctx_buf_full_t *buf)
1579 {
1580 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1581 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1582 }
1583 
1584 /**
1585  * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1586  * @buf: the HW buffer to unpack from
1587  * @ctx: the Tx queue context to unpack
1588  *
1589  * Unpack the Tx queue context from the HW buffer (including the full internal
1590  * state) into the CPU-friendly structure.
1591  */
1592 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1593 				    struct ice_tlan_ctx *ctx)
1594 {
1595 	unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1596 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1597 }
1598 
1599 /**
1600  * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1601  * @hw: pointer to the hardware structure
1602  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1603  * @txq_index: the index of the Tx queue
1604  *
1605  * Copy Tx Queue context from HW register space to dense structure
1606  */
1607 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1608 				     ice_txq_ctx_buf_full_t *txq_ctx,
1609 				     u32 txq_index)
1610 {
1611 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1612 	u32 *ctx = (u32 *)txq_ctx;
1613 	u32 txq_base, reg;
1614 
1615 	/* Get Tx queue base within card space */
1616 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1617 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1618 
1619 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1620 			 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1621 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1622 			 txq_base + txq_index) |
1623 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1624 
1625 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1626 	 * context interface concurrently.
1627 	 */
1628 	spin_lock(&pf->adapter->txq_ctx_lock);
1629 
1630 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1631 	ice_flush(hw);
1632 
1633 	/* Copy each dword separately from HW */
1634 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1635 		*ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1636 
1637 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1638 	}
1639 
1640 	spin_unlock(&pf->adapter->txq_ctx_lock);
1641 }
1642 
1643 /**
1644  * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1645  * @hw: pointer to the hardware structure
1646  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1647  * @txq_index: the index of the Tx queue
1648  */
1649 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1650 				   const ice_txq_ctx_buf_full_t *txq_ctx,
1651 				   u32 txq_index)
1652 {
1653 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1654 	u32 txq_base, reg;
1655 
1656 	/* Get Tx queue base within card space */
1657 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1658 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1659 
1660 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1661 			 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1662 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1663 			 txq_base + txq_index) |
1664 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1665 
1666 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1667 	 * context interface concurrently.
1668 	 */
1669 	spin_lock(&pf->adapter->txq_ctx_lock);
1670 
1671 	/* Copy each dword separately to HW */
1672 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1673 		u32 ctx = ((const u32 *)txq_ctx)[i];
1674 
1675 		wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1676 
1677 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1678 	}
1679 
1680 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1681 	ice_flush(hw);
1682 
1683 	spin_unlock(&pf->adapter->txq_ctx_lock);
1684 }
1685 
1686 /**
1687  * ice_read_txq_ctx - Read Tx queue context from HW
1688  * @hw: pointer to the hardware structure
1689  * @tlan_ctx: pointer to the Tx queue context
1690  * @txq_index: the index of the Tx queue
1691  *
1692  * Read the Tx queue context from the HW registers, then unpack it into the
1693  * ice_tlan_ctx structure for use.
1694  *
1695  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1696  */
1697 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1698 		     u32 txq_index)
1699 {
1700 	ice_txq_ctx_buf_full_t buf = {};
1701 
1702 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1703 		return -EINVAL;
1704 
1705 	ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1706 	ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1707 
1708 	return 0;
1709 }
1710 
1711 /**
1712  * ice_write_txq_ctx - Write Tx queue context to HW
1713  * @hw: pointer to the hardware structure
1714  * @tlan_ctx: pointer to the Tx queue context
1715  * @txq_index: the index of the Tx queue
1716  *
1717  * Pack the Tx queue context into the dense HW layout, then write it into the
1718  * HW registers.
1719  *
1720  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1721  */
1722 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1723 		      u32 txq_index)
1724 {
1725 	ice_txq_ctx_buf_full_t buf = {};
1726 
1727 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1728 		return -EINVAL;
1729 
1730 	ice_pack_txq_ctx_full(tlan_ctx, &buf);
1731 	ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1732 
1733 	return 0;
1734 }
1735 
1736 /* Tx time Queue Context */
1737 static const struct packed_field_u8 ice_txtime_ctx_fields[] = {
1738 				    /* Field			Width	LSB */
1739 	ICE_CTX_STORE(ice_txtime_ctx, base,			57,	0),
1740 	ICE_CTX_STORE(ice_txtime_ctx, pf_num,			3,	57),
1741 	ICE_CTX_STORE(ice_txtime_ctx, vmvf_num,			10,	60),
1742 	ICE_CTX_STORE(ice_txtime_ctx, vmvf_type,		2,	70),
1743 	ICE_CTX_STORE(ice_txtime_ctx, src_vsi,			10,	72),
1744 	ICE_CTX_STORE(ice_txtime_ctx, cpuid,			8,	82),
1745 	ICE_CTX_STORE(ice_txtime_ctx, tphrd_desc,		1,	90),
1746 	ICE_CTX_STORE(ice_txtime_ctx, qlen,			13,	91),
1747 	ICE_CTX_STORE(ice_txtime_ctx, timer_num,		1,	104),
1748 	ICE_CTX_STORE(ice_txtime_ctx, txtime_ena_q,		1,	105),
1749 	ICE_CTX_STORE(ice_txtime_ctx, drbell_mode_32,		1,	106),
1750 	ICE_CTX_STORE(ice_txtime_ctx, ts_res,			4,	107),
1751 	ICE_CTX_STORE(ice_txtime_ctx, ts_round_type,		2,	111),
1752 	ICE_CTX_STORE(ice_txtime_ctx, ts_pacing_slot,		3,	113),
1753 	ICE_CTX_STORE(ice_txtime_ctx, merging_ena,		1,	116),
1754 	ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_prof_id,		4,	117),
1755 	ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_cache_line_aln_thld, 4,	121),
1756 	ICE_CTX_STORE(ice_txtime_ctx, tx_pipe_delay_mode,	1,	125),
1757 };
1758 
1759 /**
1760  * ice_pack_txtime_ctx - pack Tx time queue context into a HW buffer
1761  * @ctx: the Tx time queue context to pack
1762  * @buf: the HW buffer to pack into
1763  *
1764  * Pack the Tx time queue context from the CPU-friendly unpacked buffer into
1765  * its bit-packed HW layout.
1766  */
1767 void ice_pack_txtime_ctx(const struct ice_txtime_ctx *ctx,
1768 			 ice_txtime_ctx_buf_t *buf)
1769 {
1770 	pack_fields(buf, sizeof(*buf), ctx, ice_txtime_ctx_fields,
1771 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1772 }
1773 
1774 /* Sideband Queue command wrappers */
1775 
1776 /**
1777  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1778  * @hw: pointer to the HW struct
1779  * @desc: descriptor describing the command
1780  * @buf: buffer to use for indirect commands (NULL for direct commands)
1781  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1782  * @cd: pointer to command details structure
1783  */
1784 static int
1785 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1786 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1787 {
1788 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1789 			       (struct libie_aq_desc *)desc, buf, buf_size, cd);
1790 }
1791 
1792 /**
1793  * ice_sbq_rw_reg - Fill Sideband Queue command
1794  * @hw: pointer to the HW struct
1795  * @in: message info to be filled in descriptor
1796  * @flags: control queue descriptor flags
1797  */
1798 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1799 {
1800 	struct ice_sbq_cmd_desc desc = {0};
1801 	struct ice_sbq_msg_req msg = {0};
1802 	u16 msg_len;
1803 	int status;
1804 
1805 	msg_len = sizeof(msg);
1806 
1807 	msg.dest_dev = in->dest_dev;
1808 	msg.opcode = in->opcode;
1809 	msg.flags = ICE_SBQ_MSG_FLAGS;
1810 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1811 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1812 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1813 
1814 	if (in->opcode)
1815 		msg.data = cpu_to_le32(in->data);
1816 	else
1817 		/* data read comes back in completion, so shorten the struct by
1818 		 * sizeof(msg.data)
1819 		 */
1820 		msg_len -= sizeof(msg.data);
1821 
1822 	desc.flags = cpu_to_le16(flags);
1823 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1824 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1825 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1826 	if (!status && !in->opcode)
1827 		in->data = le32_to_cpu
1828 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1829 	return status;
1830 }
1831 
1832 /* FW Admin Queue command wrappers */
1833 
1834 /* Software lock/mutex that is meant to be held while the Global Config Lock
1835  * in firmware is acquired by the software to prevent most (but not all) types
1836  * of AQ commands from being sent to FW
1837  */
1838 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1839 
1840 /**
1841  * ice_should_retry_sq_send_cmd
1842  * @opcode: AQ opcode
1843  *
1844  * Decide if we should retry the send command routine for the ATQ, depending
1845  * on the opcode.
1846  */
1847 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1848 {
1849 	switch (opcode) {
1850 	case ice_aqc_opc_get_link_topo:
1851 	case ice_aqc_opc_lldp_stop:
1852 	case ice_aqc_opc_lldp_start:
1853 	case ice_aqc_opc_lldp_filter_ctrl:
1854 		return true;
1855 	}
1856 
1857 	return false;
1858 }
1859 
1860 /**
1861  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1862  * @hw: pointer to the HW struct
1863  * @cq: pointer to the specific Control queue
1864  * @desc: prefilled descriptor describing the command
1865  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1866  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1867  * @cd: pointer to command details structure
1868  *
1869  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1870  * Queue if the EBUSY AQ error is returned.
1871  */
1872 static int
1873 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1874 		      struct libie_aq_desc *desc, void *buf, u16 buf_size,
1875 		      struct ice_sq_cd *cd)
1876 {
1877 	struct libie_aq_desc desc_cpy;
1878 	bool is_cmd_for_retry;
1879 	u8 idx = 0;
1880 	u16 opcode;
1881 	int status;
1882 
1883 	opcode = le16_to_cpu(desc->opcode);
1884 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1885 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1886 
1887 	if (is_cmd_for_retry) {
1888 		/* All retryable cmds are direct, without buf. */
1889 		WARN_ON(buf);
1890 
1891 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1892 	}
1893 
1894 	do {
1895 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1896 
1897 		if (!is_cmd_for_retry || !status ||
1898 		    hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1899 			break;
1900 
1901 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1902 
1903 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1904 
1905 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1906 
1907 	return status;
1908 }
1909 
1910 /**
1911  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1912  * @hw: pointer to the HW struct
1913  * @desc: descriptor describing the command
1914  * @buf: buffer to use for indirect commands (NULL for direct commands)
1915  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1916  * @cd: pointer to command details structure
1917  *
1918  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1919  */
1920 int
1921 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1922 		u16 buf_size, struct ice_sq_cd *cd)
1923 {
1924 	struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1925 	bool lock_acquired = false;
1926 	int status;
1927 
1928 	/* When a package download is in process (i.e. when the firmware's
1929 	 * Global Configuration Lock resource is held), only the Download
1930 	 * Package, Get Version, Get Package Info List, Upload Section,
1931 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1932 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1933 	 * Recipes to Profile Association, and Release Resource (with resource
1934 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1935 	 * must block until the package download completes and the Global Config
1936 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1937 	 */
1938 	switch (le16_to_cpu(desc->opcode)) {
1939 	case ice_aqc_opc_download_pkg:
1940 	case ice_aqc_opc_get_pkg_info_list:
1941 	case ice_aqc_opc_get_ver:
1942 	case ice_aqc_opc_upload_section:
1943 	case ice_aqc_opc_update_pkg:
1944 	case ice_aqc_opc_set_port_params:
1945 	case ice_aqc_opc_get_vlan_mode_parameters:
1946 	case ice_aqc_opc_set_vlan_mode_parameters:
1947 	case ice_aqc_opc_set_tx_topo:
1948 	case ice_aqc_opc_get_tx_topo:
1949 	case ice_aqc_opc_add_recipe:
1950 	case ice_aqc_opc_recipe_to_profile:
1951 	case ice_aqc_opc_get_recipe:
1952 	case ice_aqc_opc_get_recipe_to_profile:
1953 		break;
1954 	case ice_aqc_opc_release_res:
1955 		if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1956 			break;
1957 		fallthrough;
1958 	default:
1959 		mutex_lock(&ice_global_cfg_lock_sw);
1960 		lock_acquired = true;
1961 		break;
1962 	}
1963 
1964 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1965 	if (lock_acquired)
1966 		mutex_unlock(&ice_global_cfg_lock_sw);
1967 
1968 	return status;
1969 }
1970 
1971 /**
1972  * ice_aq_get_fw_ver
1973  * @hw: pointer to the HW struct
1974  * @cd: pointer to command details structure or NULL
1975  *
1976  * Get the firmware version (0x0001) from the admin queue commands
1977  */
1978 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1979 {
1980 	struct libie_aqc_get_ver *resp;
1981 	struct libie_aq_desc desc;
1982 	int status;
1983 
1984 	resp = &desc.params.get_ver;
1985 
1986 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1987 
1988 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1989 
1990 	if (!status) {
1991 		hw->fw_branch = resp->fw_branch;
1992 		hw->fw_maj_ver = resp->fw_major;
1993 		hw->fw_min_ver = resp->fw_minor;
1994 		hw->fw_patch = resp->fw_patch;
1995 		hw->fw_build = le32_to_cpu(resp->fw_build);
1996 		hw->api_branch = resp->api_branch;
1997 		hw->api_maj_ver = resp->api_major;
1998 		hw->api_min_ver = resp->api_minor;
1999 		hw->api_patch = resp->api_patch;
2000 	}
2001 
2002 	return status;
2003 }
2004 
2005 /**
2006  * ice_aq_send_driver_ver
2007  * @hw: pointer to the HW struct
2008  * @dv: driver's major, minor version
2009  * @cd: pointer to command details structure or NULL
2010  *
2011  * Send the driver version (0x0002) to the firmware
2012  */
2013 int
2014 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
2015 		       struct ice_sq_cd *cd)
2016 {
2017 	struct libie_aqc_driver_ver *cmd;
2018 	struct libie_aq_desc desc;
2019 	u16 len;
2020 
2021 	cmd = &desc.params.driver_ver;
2022 
2023 	if (!dv)
2024 		return -EINVAL;
2025 
2026 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
2027 
2028 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2029 	cmd->major_ver = dv->major_ver;
2030 	cmd->minor_ver = dv->minor_ver;
2031 	cmd->build_ver = dv->build_ver;
2032 	cmd->subbuild_ver = dv->subbuild_ver;
2033 
2034 	len = 0;
2035 	while (len < sizeof(dv->driver_string) &&
2036 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
2037 		len++;
2038 
2039 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
2040 }
2041 
2042 /**
2043  * ice_aq_q_shutdown
2044  * @hw: pointer to the HW struct
2045  * @unloading: is the driver unloading itself
2046  *
2047  * Tell the Firmware that we're shutting down the AdminQ and whether
2048  * or not the driver is unloading as well (0x0003).
2049  */
2050 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
2051 {
2052 	struct ice_aqc_q_shutdown *cmd;
2053 	struct libie_aq_desc desc;
2054 
2055 	cmd = libie_aq_raw(&desc);
2056 
2057 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
2058 
2059 	if (unloading)
2060 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
2061 
2062 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2063 }
2064 
2065 /**
2066  * ice_aq_req_res
2067  * @hw: pointer to the HW struct
2068  * @res: resource ID
2069  * @access: access type
2070  * @sdp_number: resource number
2071  * @timeout: the maximum time in ms that the driver may hold the resource
2072  * @cd: pointer to command details structure or NULL
2073  *
2074  * Requests common resource using the admin queue commands (0x0008).
2075  * When attempting to acquire the Global Config Lock, the driver can
2076  * learn of three states:
2077  *  1) 0 -         acquired lock, and can perform download package
2078  *  2) -EIO -      did not get lock, driver should fail to load
2079  *  3) -EALREADY - did not get lock, but another driver has
2080  *                 successfully downloaded the package; the driver does
2081  *                 not have to download the package and can continue
2082  *                 loading
2083  *
2084  * Note that if the caller is in an acquire lock, perform action, release lock
2085  * phase of operation, it is possible that the FW may detect a timeout and issue
2086  * a CORER. In this case, the driver will receive a CORER interrupt and will
2087  * have to determine its cause. The calling thread that is handling this flow
2088  * will likely get an error propagated back to it indicating the Download
2089  * Package, Update Package or the Release Resource AQ commands timed out.
2090  */
2091 static int
2092 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2093 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2094 	       struct ice_sq_cd *cd)
2095 {
2096 	struct libie_aqc_req_res *cmd_resp;
2097 	struct libie_aq_desc desc;
2098 	int status;
2099 
2100 	cmd_resp = &desc.params.res_owner;
2101 
2102 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2103 
2104 	cmd_resp->res_id = cpu_to_le16(res);
2105 	cmd_resp->access_type = cpu_to_le16(access);
2106 	cmd_resp->res_number = cpu_to_le32(sdp_number);
2107 	cmd_resp->timeout = cpu_to_le32(*timeout);
2108 	*timeout = 0;
2109 
2110 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2111 
2112 	/* The completion specifies the maximum time in ms that the driver
2113 	 * may hold the resource in the Timeout field.
2114 	 */
2115 
2116 	/* Global config lock response utilizes an additional status field.
2117 	 *
2118 	 * If the Global config lock resource is held by some other driver, the
2119 	 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2120 	 * and the timeout field indicates the maximum time the current owner
2121 	 * of the resource has to free it.
2122 	 */
2123 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2124 		if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2125 			*timeout = le32_to_cpu(cmd_resp->timeout);
2126 			return 0;
2127 		} else if (le16_to_cpu(cmd_resp->status) ==
2128 			   LIBIE_AQ_RES_GLBL_IN_PROG) {
2129 			*timeout = le32_to_cpu(cmd_resp->timeout);
2130 			return -EIO;
2131 		} else if (le16_to_cpu(cmd_resp->status) ==
2132 			   LIBIE_AQ_RES_GLBL_DONE) {
2133 			return -EALREADY;
2134 		}
2135 
2136 		/* invalid FW response, force a timeout immediately */
2137 		*timeout = 0;
2138 		return -EIO;
2139 	}
2140 
2141 	/* If the resource is held by some other driver, the command completes
2142 	 * with a busy return value and the timeout field indicates the maximum
2143 	 * time the current owner of the resource has to free it.
2144 	 */
2145 	if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2146 		*timeout = le32_to_cpu(cmd_resp->timeout);
2147 
2148 	return status;
2149 }
2150 
2151 /**
2152  * ice_aq_release_res
2153  * @hw: pointer to the HW struct
2154  * @res: resource ID
2155  * @sdp_number: resource number
2156  * @cd: pointer to command details structure or NULL
2157  *
2158  * release common resource using the admin queue commands (0x0009)
2159  */
2160 static int
2161 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2162 		   struct ice_sq_cd *cd)
2163 {
2164 	struct libie_aqc_req_res *cmd;
2165 	struct libie_aq_desc desc;
2166 
2167 	cmd = &desc.params.res_owner;
2168 
2169 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2170 
2171 	cmd->res_id = cpu_to_le16(res);
2172 	cmd->res_number = cpu_to_le32(sdp_number);
2173 
2174 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2175 }
2176 
2177 /**
2178  * ice_acquire_res
2179  * @hw: pointer to the HW structure
2180  * @res: resource ID
2181  * @access: access type (read or write)
2182  * @timeout: timeout in milliseconds
2183  *
2184  * This function will attempt to acquire the ownership of a resource.
2185  */
2186 int
2187 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2188 		enum ice_aq_res_access_type access, u32 timeout)
2189 {
2190 #define ICE_RES_POLLING_DELAY_MS	10
2191 	u32 delay = ICE_RES_POLLING_DELAY_MS;
2192 	u32 time_left = timeout;
2193 	int status;
2194 
2195 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2196 
2197 	/* A return code of -EALREADY means that another driver has
2198 	 * previously acquired the resource and performed any necessary updates;
2199 	 * in this case the caller does not obtain the resource and has no
2200 	 * further work to do.
2201 	 */
2202 	if (status == -EALREADY)
2203 		goto ice_acquire_res_exit;
2204 
2205 	if (status)
2206 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2207 
2208 	/* If necessary, poll until the current lock owner timeouts */
2209 	timeout = time_left;
2210 	while (status && timeout && time_left) {
2211 		mdelay(delay);
2212 		timeout = (timeout > delay) ? timeout - delay : 0;
2213 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2214 
2215 		if (status == -EALREADY)
2216 			/* lock free, but no work to do */
2217 			break;
2218 
2219 		if (!status)
2220 			/* lock acquired */
2221 			break;
2222 	}
2223 	if (status && status != -EALREADY)
2224 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2225 
2226 ice_acquire_res_exit:
2227 	if (status == -EALREADY) {
2228 		if (access == ICE_RES_WRITE)
2229 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2230 		else
2231 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2232 	}
2233 	return status;
2234 }
2235 
2236 /**
2237  * ice_release_res
2238  * @hw: pointer to the HW structure
2239  * @res: resource ID
2240  *
2241  * This function will release a resource using the proper Admin Command.
2242  */
2243 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2244 {
2245 	unsigned long timeout;
2246 	int status;
2247 
2248 	/* there are some rare cases when trying to release the resource
2249 	 * results in an admin queue timeout, so handle them correctly
2250 	 */
2251 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2252 	do {
2253 		status = ice_aq_release_res(hw, res, 0, NULL);
2254 		if (status != -EIO)
2255 			break;
2256 		usleep_range(1000, 2000);
2257 	} while (time_before(jiffies, timeout));
2258 }
2259 
2260 /**
2261  * ice_aq_alloc_free_res - command to allocate/free resources
2262  * @hw: pointer to the HW struct
2263  * @buf: Indirect buffer to hold data parameters and response
2264  * @buf_size: size of buffer for indirect commands
2265  * @opc: pass in the command opcode
2266  *
2267  * Helper function to allocate/free resources using the admin queue commands
2268  */
2269 int ice_aq_alloc_free_res(struct ice_hw *hw,
2270 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2271 			  enum ice_adminq_opc opc)
2272 {
2273 	struct ice_aqc_alloc_free_res_cmd *cmd;
2274 	struct libie_aq_desc desc;
2275 
2276 	cmd = libie_aq_raw(&desc);
2277 
2278 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2279 		return -EINVAL;
2280 
2281 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2282 
2283 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2284 
2285 	cmd->num_entries = cpu_to_le16(1);
2286 
2287 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2288 }
2289 
2290 /**
2291  * ice_alloc_hw_res - allocate resource
2292  * @hw: pointer to the HW struct
2293  * @type: type of resource
2294  * @num: number of resources to allocate
2295  * @btm: allocate from bottom
2296  * @res: pointer to array that will receive the resources
2297  */
2298 int
2299 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2300 {
2301 	struct ice_aqc_alloc_free_res_elem *buf;
2302 	u16 buf_len;
2303 	int status;
2304 
2305 	buf_len = struct_size(buf, elem, num);
2306 	buf = kzalloc(buf_len, GFP_KERNEL);
2307 	if (!buf)
2308 		return -ENOMEM;
2309 
2310 	/* Prepare buffer to allocate resource. */
2311 	buf->num_elems = cpu_to_le16(num);
2312 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2313 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2314 	if (btm)
2315 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2316 
2317 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2318 	if (status)
2319 		goto ice_alloc_res_exit;
2320 
2321 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2322 
2323 ice_alloc_res_exit:
2324 	kfree(buf);
2325 	return status;
2326 }
2327 
2328 /**
2329  * ice_free_hw_res - free allocated HW resource
2330  * @hw: pointer to the HW struct
2331  * @type: type of resource to free
2332  * @num: number of resources
2333  * @res: pointer to array that contains the resources to free
2334  */
2335 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2336 {
2337 	struct ice_aqc_alloc_free_res_elem *buf;
2338 	u16 buf_len;
2339 	int status;
2340 
2341 	buf_len = struct_size(buf, elem, num);
2342 	buf = kzalloc(buf_len, GFP_KERNEL);
2343 	if (!buf)
2344 		return -ENOMEM;
2345 
2346 	/* Prepare buffer to free resource. */
2347 	buf->num_elems = cpu_to_le16(num);
2348 	buf->res_type = cpu_to_le16(type);
2349 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2350 
2351 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2352 	if (status)
2353 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2354 
2355 	kfree(buf);
2356 	return status;
2357 }
2358 
2359 /**
2360  * ice_get_num_per_func - determine number of resources per PF
2361  * @hw: pointer to the HW structure
2362  * @max: value to be evenly split between each PF
2363  *
2364  * Determine the number of valid functions by going through the bitmap returned
2365  * from parsing capabilities and use this to calculate the number of resources
2366  * per PF based on the max value passed in.
2367  */
2368 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2369 {
2370 	u8 funcs;
2371 
2372 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2373 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2374 			 ICE_CAPS_VALID_FUNCS_M);
2375 
2376 	if (!funcs)
2377 		return 0;
2378 
2379 	return max / funcs;
2380 }
2381 
2382 /**
2383  * ice_parse_common_caps - parse common device/function capabilities
2384  * @hw: pointer to the HW struct
2385  * @caps: pointer to common capabilities structure
2386  * @elem: the capability element to parse
2387  * @prefix: message prefix for tracing capabilities
2388  *
2389  * Given a capability element, extract relevant details into the common
2390  * capability structure.
2391  *
2392  * Returns: true if the capability matches one of the common capability ids,
2393  * false otherwise.
2394  */
2395 static bool
2396 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2397 		      struct libie_aqc_list_caps_elem *elem, const char *prefix)
2398 {
2399 	u32 logical_id = le32_to_cpu(elem->logical_id);
2400 	u32 phys_id = le32_to_cpu(elem->phys_id);
2401 	u32 number = le32_to_cpu(elem->number);
2402 	u16 cap = le16_to_cpu(elem->cap);
2403 	bool found = true;
2404 
2405 	switch (cap) {
2406 	case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2407 		caps->valid_functions = number;
2408 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2409 			  caps->valid_functions);
2410 		break;
2411 	case LIBIE_AQC_CAPS_SRIOV:
2412 		caps->sr_iov_1_1 = (number == 1);
2413 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2414 			  caps->sr_iov_1_1);
2415 		break;
2416 	case LIBIE_AQC_CAPS_DCB:
2417 		caps->dcb = (number == 1);
2418 		caps->active_tc_bitmap = logical_id;
2419 		caps->maxtc = phys_id;
2420 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2421 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2422 			  caps->active_tc_bitmap);
2423 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2424 		break;
2425 	case LIBIE_AQC_CAPS_RSS:
2426 		caps->rss_table_size = number;
2427 		caps->rss_table_entry_width = logical_id;
2428 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2429 			  caps->rss_table_size);
2430 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2431 			  caps->rss_table_entry_width);
2432 		break;
2433 	case LIBIE_AQC_CAPS_RXQS:
2434 		caps->num_rxq = number;
2435 		caps->rxq_first_id = phys_id;
2436 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2437 			  caps->num_rxq);
2438 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2439 			  caps->rxq_first_id);
2440 		break;
2441 	case LIBIE_AQC_CAPS_TXQS:
2442 		caps->num_txq = number;
2443 		caps->txq_first_id = phys_id;
2444 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2445 			  caps->num_txq);
2446 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2447 			  caps->txq_first_id);
2448 		break;
2449 	case LIBIE_AQC_CAPS_MSIX:
2450 		caps->num_msix_vectors = number;
2451 		caps->msix_vector_first_id = phys_id;
2452 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2453 			  caps->num_msix_vectors);
2454 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2455 			  caps->msix_vector_first_id);
2456 		break;
2457 	case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2458 		caps->nvm_update_pending_nvm = true;
2459 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2460 		break;
2461 	case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2462 		caps->nvm_update_pending_orom = true;
2463 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2464 		break;
2465 	case LIBIE_AQC_CAPS_PENDING_NET_VER:
2466 		caps->nvm_update_pending_netlist = true;
2467 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2468 		break;
2469 	case LIBIE_AQC_CAPS_NVM_MGMT:
2470 		caps->nvm_unified_update =
2471 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2472 			true : false;
2473 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2474 			  caps->nvm_unified_update);
2475 		break;
2476 	case LIBIE_AQC_CAPS_RDMA:
2477 		if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2478 			caps->rdma = (number == 1);
2479 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2480 		break;
2481 	case LIBIE_AQC_CAPS_MAX_MTU:
2482 		caps->max_mtu = number;
2483 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2484 			  prefix, caps->max_mtu);
2485 		break;
2486 	case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2487 		caps->pcie_reset_avoidance = (number > 0);
2488 		ice_debug(hw, ICE_DBG_INIT,
2489 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2490 			  caps->pcie_reset_avoidance);
2491 		break;
2492 	case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2493 		caps->reset_restrict_support = (number == 1);
2494 		ice_debug(hw, ICE_DBG_INIT,
2495 			  "%s: reset_restrict_support = %d\n", prefix,
2496 			  caps->reset_restrict_support);
2497 		break;
2498 	case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2499 		caps->roce_lag = number & LIBIE_AQC_BIT_ROCEV2_LAG;
2500 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2501 			  prefix, caps->roce_lag);
2502 		caps->sriov_lag = number & LIBIE_AQC_BIT_SRIOV_LAG;
2503 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2504 			  prefix, caps->sriov_lag);
2505 		caps->sriov_aa_lag = number & LIBIE_AQC_BIT_SRIOV_AA_LAG;
2506 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_aa_lag = %u\n",
2507 			  prefix, caps->sriov_aa_lag);
2508 		break;
2509 	case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2510 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2511 		break;
2512 	default:
2513 		/* Not one of the recognized common capabilities */
2514 		found = false;
2515 	}
2516 
2517 	return found;
2518 }
2519 
2520 /**
2521  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2522  * @hw: pointer to the HW structure
2523  * @caps: pointer to capabilities structure to fix
2524  *
2525  * Re-calculate the capabilities that are dependent on the number of physical
2526  * ports; i.e. some features are not supported or function differently on
2527  * devices with more than 4 ports.
2528  */
2529 static void
2530 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2531 {
2532 	/* This assumes device capabilities are always scanned before function
2533 	 * capabilities during the initialization flow.
2534 	 */
2535 	if (hw->dev_caps.num_funcs > 4) {
2536 		/* Max 4 TCs per port */
2537 		caps->maxtc = 4;
2538 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2539 			  caps->maxtc);
2540 		if (caps->rdma) {
2541 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2542 			caps->rdma = 0;
2543 		}
2544 
2545 		/* print message only when processing device capabilities
2546 		 * during initialization.
2547 		 */
2548 		if (caps == &hw->dev_caps.common_cap)
2549 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2550 	}
2551 }
2552 
2553 /**
2554  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2555  * @hw: pointer to the HW struct
2556  * @func_p: pointer to function capabilities structure
2557  * @cap: pointer to the capability element to parse
2558  *
2559  * Extract function capabilities for ICE_AQC_CAPS_VF.
2560  */
2561 static void
2562 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2563 		       struct libie_aqc_list_caps_elem *cap)
2564 {
2565 	u32 logical_id = le32_to_cpu(cap->logical_id);
2566 	u32 number = le32_to_cpu(cap->number);
2567 
2568 	func_p->num_allocd_vfs = number;
2569 	func_p->vf_base_id = logical_id;
2570 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2571 		  func_p->num_allocd_vfs);
2572 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2573 		  func_p->vf_base_id);
2574 }
2575 
2576 /**
2577  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2578  * @hw: pointer to the HW struct
2579  * @func_p: pointer to function capabilities structure
2580  * @cap: pointer to the capability element to parse
2581  *
2582  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2583  */
2584 static void
2585 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2586 			struct libie_aqc_list_caps_elem *cap)
2587 {
2588 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2589 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2590 		  le32_to_cpu(cap->number));
2591 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2592 		  func_p->guar_num_vsi);
2593 }
2594 
2595 /**
2596  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2597  * @hw: pointer to the HW struct
2598  * @func_p: pointer to function capabilities structure
2599  * @cap: pointer to the capability element to parse
2600  *
2601  * Extract function capabilities for ICE_AQC_CAPS_1588.
2602  */
2603 static void
2604 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2605 			 struct libie_aqc_list_caps_elem *cap)
2606 {
2607 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2608 	u32 number = le32_to_cpu(cap->number);
2609 
2610 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2611 	func_p->common_cap.ieee_1588 = info->ena;
2612 
2613 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2614 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2615 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2616 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2617 
2618 	if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2619 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2620 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2621 	} else {
2622 		info->clk_freq = ICE_TSPLL_FREQ_156_250;
2623 		info->clk_src = ICE_CLK_SRC_TIME_REF;
2624 	}
2625 
2626 	if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2627 		info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2628 	} else {
2629 		/* Unknown clock frequency, so assume a (probably incorrect)
2630 		 * default to avoid out-of-bounds look ups of frequency
2631 		 * related information.
2632 		 */
2633 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2634 			  info->clk_freq);
2635 		info->time_ref = ICE_TSPLL_FREQ_25_000;
2636 	}
2637 
2638 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2639 		  func_p->common_cap.ieee_1588);
2640 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2641 		  info->src_tmr_owned);
2642 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2643 		  info->tmr_ena);
2644 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2645 		  info->tmr_index_owned);
2646 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2647 		  info->tmr_index_assoc);
2648 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2649 		  info->clk_freq);
2650 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2651 		  info->clk_src);
2652 }
2653 
2654 /**
2655  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2656  * @hw: pointer to the HW struct
2657  * @func_p: pointer to function capabilities structure
2658  *
2659  * Extract function capabilities for ICE_AQC_CAPS_FD.
2660  */
2661 static void
2662 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2663 {
2664 	u32 reg_val, gsize, bsize;
2665 
2666 	reg_val = rd32(hw, GLQF_FD_SIZE);
2667 	switch (hw->mac_type) {
2668 	case ICE_MAC_E830:
2669 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2670 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2671 		break;
2672 	case ICE_MAC_E810:
2673 	default:
2674 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2675 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2676 	}
2677 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2678 	func_p->fd_fltr_best_effort = bsize;
2679 
2680 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2681 		  func_p->fd_fltr_guar);
2682 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2683 		  func_p->fd_fltr_best_effort);
2684 }
2685 
2686 /**
2687  * ice_parse_func_caps - Parse function capabilities
2688  * @hw: pointer to the HW struct
2689  * @func_p: pointer to function capabilities structure
2690  * @buf: buffer containing the function capability records
2691  * @cap_count: the number of capabilities
2692  *
2693  * Helper function to parse function (0x000A) capabilities list. For
2694  * capabilities shared between device and function, this relies on
2695  * ice_parse_common_caps.
2696  *
2697  * Loop through the list of provided capabilities and extract the relevant
2698  * data into the function capabilities structured.
2699  */
2700 static void
2701 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2702 		    void *buf, u32 cap_count)
2703 {
2704 	struct libie_aqc_list_caps_elem *cap_resp;
2705 	u32 i;
2706 
2707 	cap_resp = buf;
2708 
2709 	memset(func_p, 0, sizeof(*func_p));
2710 
2711 	for (i = 0; i < cap_count; i++) {
2712 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2713 		bool found;
2714 
2715 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2716 					      &cap_resp[i], "func caps");
2717 
2718 		switch (cap) {
2719 		case LIBIE_AQC_CAPS_VF:
2720 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2721 			break;
2722 		case LIBIE_AQC_CAPS_VSI:
2723 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2724 			break;
2725 		case LIBIE_AQC_CAPS_1588:
2726 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2727 			break;
2728 		case LIBIE_AQC_CAPS_FD:
2729 			ice_parse_fdir_func_caps(hw, func_p);
2730 			break;
2731 		default:
2732 			/* Don't list common capabilities as unknown */
2733 			if (!found)
2734 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2735 					  i, cap);
2736 			break;
2737 		}
2738 	}
2739 
2740 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2741 }
2742 
2743 /**
2744  * ice_func_id_to_logical_id - map from function id to logical pf id
2745  * @active_function_bitmap: active function bitmap
2746  * @pf_id: function number of device
2747  *
2748  * Return: logical PF ID.
2749  */
2750 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2751 {
2752 	u8 logical_id = 0;
2753 	u8 i;
2754 
2755 	for (i = 0; i < pf_id; i++)
2756 		if (active_function_bitmap & BIT(i))
2757 			logical_id++;
2758 
2759 	return logical_id;
2760 }
2761 
2762 /**
2763  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2764  * @hw: pointer to the HW struct
2765  * @dev_p: pointer to device capabilities structure
2766  * @cap: capability element to parse
2767  *
2768  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2769  */
2770 static void
2771 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2772 			      struct libie_aqc_list_caps_elem *cap)
2773 {
2774 	u32 number = le32_to_cpu(cap->number);
2775 
2776 	dev_p->num_funcs = hweight32(number);
2777 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2778 		  dev_p->num_funcs);
2779 
2780 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2781 }
2782 
2783 /**
2784  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2785  * @hw: pointer to the HW struct
2786  * @dev_p: pointer to device capabilities structure
2787  * @cap: capability element to parse
2788  *
2789  * Parse ICE_AQC_CAPS_VF for device capabilities.
2790  */
2791 static void
2792 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2793 		      struct libie_aqc_list_caps_elem *cap)
2794 {
2795 	u32 number = le32_to_cpu(cap->number);
2796 
2797 	dev_p->num_vfs_exposed = number;
2798 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2799 		  dev_p->num_vfs_exposed);
2800 }
2801 
2802 /**
2803  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2804  * @hw: pointer to the HW struct
2805  * @dev_p: pointer to device capabilities structure
2806  * @cap: capability element to parse
2807  *
2808  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2809  */
2810 static void
2811 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2812 		       struct libie_aqc_list_caps_elem *cap)
2813 {
2814 	u32 number = le32_to_cpu(cap->number);
2815 
2816 	dev_p->num_vsi_allocd_to_host = number;
2817 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2818 		  dev_p->num_vsi_allocd_to_host);
2819 }
2820 
2821 /**
2822  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2823  * @hw: pointer to the HW struct
2824  * @dev_p: pointer to device capabilities structure
2825  * @cap: capability element to parse
2826  *
2827  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2828  */
2829 static void
2830 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2831 			struct libie_aqc_list_caps_elem *cap)
2832 {
2833 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2834 	u32 logical_id = le32_to_cpu(cap->logical_id);
2835 	u32 phys_id = le32_to_cpu(cap->phys_id);
2836 	u32 number = le32_to_cpu(cap->number);
2837 
2838 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2839 	dev_p->common_cap.ieee_1588 = info->ena;
2840 
2841 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2842 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2843 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2844 
2845 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2846 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2847 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2848 
2849 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2850 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2851 	info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2852 
2853 	info->ena_ports = logical_id;
2854 	info->tmr_own_map = phys_id;
2855 
2856 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2857 		  dev_p->common_cap.ieee_1588);
2858 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2859 		  info->tmr0_owner);
2860 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2861 		  info->tmr0_owned);
2862 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2863 		  info->tmr0_ena);
2864 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2865 		  info->tmr1_owner);
2866 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2867 		  info->tmr1_owned);
2868 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2869 		  info->tmr1_ena);
2870 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2871 		  info->ts_ll_read);
2872 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2873 		  info->ts_ll_int_read);
2874 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2875 		  info->ll_phy_tmr_update);
2876 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2877 		  info->ena_ports);
2878 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2879 		  info->tmr_own_map);
2880 }
2881 
2882 /**
2883  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2884  * @hw: pointer to the HW struct
2885  * @dev_p: pointer to device capabilities structure
2886  * @cap: capability element to parse
2887  *
2888  * Parse ICE_AQC_CAPS_FD for device capabilities.
2889  */
2890 static void
2891 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2892 			struct libie_aqc_list_caps_elem *cap)
2893 {
2894 	u32 number = le32_to_cpu(cap->number);
2895 
2896 	dev_p->num_flow_director_fltr = number;
2897 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2898 		  dev_p->num_flow_director_fltr);
2899 }
2900 
2901 /**
2902  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2903  * @hw: pointer to the HW struct
2904  * @dev_p: pointer to device capabilities structure
2905  * @cap: capability element to parse
2906  *
2907  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2908  * enabled sensors.
2909  */
2910 static void
2911 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2912 			     struct libie_aqc_list_caps_elem *cap)
2913 {
2914 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2915 
2916 	ice_debug(hw, ICE_DBG_INIT,
2917 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2918 		  dev_p->supported_sensors);
2919 }
2920 
2921 /**
2922  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2923  * @hw: pointer to the HW struct
2924  * @dev_p: pointer to device capabilities structure
2925  * @cap: capability element to parse
2926  *
2927  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2928  */
2929 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2930 					struct ice_hw_dev_caps *dev_p,
2931 					struct libie_aqc_list_caps_elem *cap)
2932 {
2933 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2934 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2935 
2936 	dev_info(ice_hw_to_dev(hw),
2937 		 "PF is configured in %s mode with IP instance ID %d\n",
2938 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2939 		 "primary" : "secondary", dev_p->nac_topo.id);
2940 
2941 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2942 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2943 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2944 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2945 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2946 		  dev_p->nac_topo.id);
2947 }
2948 
2949 /**
2950  * ice_parse_dev_caps - Parse device capabilities
2951  * @hw: pointer to the HW struct
2952  * @dev_p: pointer to device capabilities structure
2953  * @buf: buffer containing the device capability records
2954  * @cap_count: the number of capabilities
2955  *
2956  * Helper device to parse device (0x000B) capabilities list. For
2957  * capabilities shared between device and function, this relies on
2958  * ice_parse_common_caps.
2959  *
2960  * Loop through the list of provided capabilities and extract the relevant
2961  * data into the device capabilities structured.
2962  */
2963 static void
2964 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2965 		   void *buf, u32 cap_count)
2966 {
2967 	struct libie_aqc_list_caps_elem *cap_resp;
2968 	u32 i;
2969 
2970 	cap_resp = buf;
2971 
2972 	memset(dev_p, 0, sizeof(*dev_p));
2973 
2974 	for (i = 0; i < cap_count; i++) {
2975 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2976 		bool found;
2977 
2978 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2979 					      &cap_resp[i], "dev caps");
2980 
2981 		switch (cap) {
2982 		case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2983 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2984 			break;
2985 		case LIBIE_AQC_CAPS_VF:
2986 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2987 			break;
2988 		case LIBIE_AQC_CAPS_VSI:
2989 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2990 			break;
2991 		case LIBIE_AQC_CAPS_1588:
2992 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2993 			break;
2994 		case LIBIE_AQC_CAPS_FD:
2995 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2996 			break;
2997 		case LIBIE_AQC_CAPS_SENSOR_READING:
2998 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2999 			break;
3000 		case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
3001 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
3002 			break;
3003 		default:
3004 			/* Don't list common capabilities as unknown */
3005 			if (!found)
3006 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
3007 					  i, cap);
3008 			break;
3009 		}
3010 	}
3011 
3012 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
3013 }
3014 
3015 /**
3016  * ice_is_phy_rclk_in_netlist
3017  * @hw: pointer to the hw struct
3018  *
3019  * Check if the PHY Recovered Clock device is present in the netlist
3020  */
3021 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
3022 {
3023 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3024 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3025 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
3026 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3027 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3028 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
3029 		return false;
3030 
3031 	return true;
3032 }
3033 
3034 /**
3035  * ice_is_clock_mux_in_netlist
3036  * @hw: pointer to the hw struct
3037  *
3038  * Check if the Clock Multiplexer device is present in the netlist
3039  */
3040 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
3041 {
3042 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
3043 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3044 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
3045 				  NULL))
3046 		return false;
3047 
3048 	return true;
3049 }
3050 
3051 /**
3052  * ice_is_cgu_in_netlist - check for CGU presence
3053  * @hw: pointer to the hw struct
3054  *
3055  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
3056  * Save the CGU part number in the hw structure for later use.
3057  * Return:
3058  * * true - cgu is present
3059  * * false - cgu is not present
3060  */
3061 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
3062 {
3063 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3064 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3065 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
3066 				   NULL)) {
3067 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
3068 		return true;
3069 	} else if (!ice_find_netlist_node(hw,
3070 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3071 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3072 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
3073 					  NULL)) {
3074 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
3075 		return true;
3076 	}
3077 
3078 	return false;
3079 }
3080 
3081 /**
3082  * ice_is_gps_in_netlist
3083  * @hw: pointer to the hw struct
3084  *
3085  * Check if the GPS generic device is present in the netlist
3086  */
3087 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3088 {
3089 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3090 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3091 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3092 		return false;
3093 
3094 	return true;
3095 }
3096 
3097 /**
3098  * ice_aq_list_caps - query function/device capabilities
3099  * @hw: pointer to the HW struct
3100  * @buf: a buffer to hold the capabilities
3101  * @buf_size: size of the buffer
3102  * @cap_count: if not NULL, set to the number of capabilities reported
3103  * @opc: capabilities type to discover, device or function
3104  * @cd: pointer to command details structure or NULL
3105  *
3106  * Get the function (0x000A) or device (0x000B) capabilities description from
3107  * firmware and store it in the buffer.
3108  *
3109  * If the cap_count pointer is not NULL, then it is set to the number of
3110  * capabilities firmware will report. Note that if the buffer size is too
3111  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3112  * cap_count will still be updated in this case. It is recommended that the
3113  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3114  * firmware could return) to avoid this.
3115  */
3116 int
3117 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3118 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3119 {
3120 	struct libie_aqc_list_caps *cmd;
3121 	struct libie_aq_desc desc;
3122 	int status;
3123 
3124 	cmd = &desc.params.get_cap;
3125 
3126 	if (opc != ice_aqc_opc_list_func_caps &&
3127 	    opc != ice_aqc_opc_list_dev_caps)
3128 		return -EINVAL;
3129 
3130 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
3131 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3132 
3133 	if (cap_count)
3134 		*cap_count = le32_to_cpu(cmd->count);
3135 
3136 	return status;
3137 }
3138 
3139 /**
3140  * ice_discover_dev_caps - Read and extract device capabilities
3141  * @hw: pointer to the hardware structure
3142  * @dev_caps: pointer to device capabilities structure
3143  *
3144  * Read the device capabilities and extract them into the dev_caps structure
3145  * for later use.
3146  */
3147 int
3148 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3149 {
3150 	u32 cap_count = 0;
3151 	void *cbuf;
3152 	int status;
3153 
3154 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3155 	if (!cbuf)
3156 		return -ENOMEM;
3157 
3158 	/* Although the driver doesn't know the number of capabilities the
3159 	 * device will return, we can simply send a 4KB buffer, the maximum
3160 	 * possible size that firmware can return.
3161 	 */
3162 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3163 
3164 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3165 				  ice_aqc_opc_list_dev_caps, NULL);
3166 	if (!status)
3167 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3168 	kfree(cbuf);
3169 
3170 	return status;
3171 }
3172 
3173 /**
3174  * ice_discover_func_caps - Read and extract function capabilities
3175  * @hw: pointer to the hardware structure
3176  * @func_caps: pointer to function capabilities structure
3177  *
3178  * Read the function capabilities and extract them into the func_caps structure
3179  * for later use.
3180  */
3181 static int
3182 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3183 {
3184 	u32 cap_count = 0;
3185 	void *cbuf;
3186 	int status;
3187 
3188 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3189 	if (!cbuf)
3190 		return -ENOMEM;
3191 
3192 	/* Although the driver doesn't know the number of capabilities the
3193 	 * device will return, we can simply send a 4KB buffer, the maximum
3194 	 * possible size that firmware can return.
3195 	 */
3196 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3197 
3198 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3199 				  ice_aqc_opc_list_func_caps, NULL);
3200 	if (!status)
3201 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3202 	kfree(cbuf);
3203 
3204 	return status;
3205 }
3206 
3207 /**
3208  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3209  * @hw: pointer to the hardware structure
3210  */
3211 void ice_set_safe_mode_caps(struct ice_hw *hw)
3212 {
3213 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
3214 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3215 	struct ice_hw_common_caps cached_caps;
3216 	u32 num_funcs;
3217 
3218 	/* cache some func_caps values that should be restored after memset */
3219 	cached_caps = func_caps->common_cap;
3220 
3221 	/* unset func capabilities */
3222 	memset(func_caps, 0, sizeof(*func_caps));
3223 
3224 #define ICE_RESTORE_FUNC_CAP(name) \
3225 	func_caps->common_cap.name = cached_caps.name
3226 
3227 	/* restore cached values */
3228 	ICE_RESTORE_FUNC_CAP(valid_functions);
3229 	ICE_RESTORE_FUNC_CAP(txq_first_id);
3230 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
3231 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3232 	ICE_RESTORE_FUNC_CAP(max_mtu);
3233 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3234 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3235 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3236 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3237 
3238 	/* one Tx and one Rx queue in safe mode */
3239 	func_caps->common_cap.num_rxq = 1;
3240 	func_caps->common_cap.num_txq = 1;
3241 
3242 	/* two MSIX vectors, one for traffic and one for misc causes */
3243 	func_caps->common_cap.num_msix_vectors = 2;
3244 	func_caps->guar_num_vsi = 1;
3245 
3246 	/* cache some dev_caps values that should be restored after memset */
3247 	cached_caps = dev_caps->common_cap;
3248 	num_funcs = dev_caps->num_funcs;
3249 
3250 	/* unset dev capabilities */
3251 	memset(dev_caps, 0, sizeof(*dev_caps));
3252 
3253 #define ICE_RESTORE_DEV_CAP(name) \
3254 	dev_caps->common_cap.name = cached_caps.name
3255 
3256 	/* restore cached values */
3257 	ICE_RESTORE_DEV_CAP(valid_functions);
3258 	ICE_RESTORE_DEV_CAP(txq_first_id);
3259 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3260 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3261 	ICE_RESTORE_DEV_CAP(max_mtu);
3262 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3263 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3264 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3265 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3266 	dev_caps->num_funcs = num_funcs;
3267 
3268 	/* one Tx and one Rx queue per function in safe mode */
3269 	dev_caps->common_cap.num_rxq = num_funcs;
3270 	dev_caps->common_cap.num_txq = num_funcs;
3271 
3272 	/* two MSIX vectors per function */
3273 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3274 }
3275 
3276 /**
3277  * ice_get_caps - get info about the HW
3278  * @hw: pointer to the hardware structure
3279  */
3280 int ice_get_caps(struct ice_hw *hw)
3281 {
3282 	int status;
3283 
3284 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3285 	if (status)
3286 		return status;
3287 
3288 	return ice_discover_func_caps(hw, &hw->func_caps);
3289 }
3290 
3291 /**
3292  * ice_aq_manage_mac_write - manage MAC address write command
3293  * @hw: pointer to the HW struct
3294  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3295  * @flags: flags to control write behavior
3296  * @cd: pointer to command details structure or NULL
3297  *
3298  * This function is used to write MAC address to the NVM (0x0108).
3299  */
3300 int
3301 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3302 			struct ice_sq_cd *cd)
3303 {
3304 	struct ice_aqc_manage_mac_write *cmd;
3305 	struct libie_aq_desc desc;
3306 
3307 	cmd = libie_aq_raw(&desc);
3308 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3309 
3310 	cmd->flags = flags;
3311 	ether_addr_copy(cmd->mac_addr, mac_addr);
3312 
3313 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3314 }
3315 
3316 /**
3317  * ice_aq_clear_pxe_mode
3318  * @hw: pointer to the HW struct
3319  *
3320  * Tell the firmware that the driver is taking over from PXE (0x0110).
3321  */
3322 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3323 {
3324 	struct ice_aqc_clear_pxe *cmd;
3325 	struct libie_aq_desc desc;
3326 
3327 	cmd = libie_aq_raw(&desc);
3328 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3329 	cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3330 
3331 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3332 }
3333 
3334 /**
3335  * ice_clear_pxe_mode - clear pxe operations mode
3336  * @hw: pointer to the HW struct
3337  *
3338  * Make sure all PXE mode settings are cleared, including things
3339  * like descriptor fetch/write-back mode.
3340  */
3341 void ice_clear_pxe_mode(struct ice_hw *hw)
3342 {
3343 	if (ice_check_sq_alive(hw, &hw->adminq))
3344 		ice_aq_clear_pxe_mode(hw);
3345 }
3346 
3347 /**
3348  * ice_aq_set_port_params - set physical port parameters.
3349  * @pi: pointer to the port info struct
3350  * @double_vlan: if set double VLAN is enabled
3351  * @cd: pointer to command details structure or NULL
3352  *
3353  * Set Physical port parameters (0x0203)
3354  */
3355 int
3356 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3357 		       struct ice_sq_cd *cd)
3358 
3359 {
3360 	struct ice_aqc_set_port_params *cmd;
3361 	struct ice_hw *hw = pi->hw;
3362 	struct libie_aq_desc desc;
3363 	u16 cmd_flags = 0;
3364 
3365 	cmd = libie_aq_raw(&desc);
3366 
3367 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3368 	if (double_vlan)
3369 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3370 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3371 
3372 	cmd->local_fwd_mode = pi->local_fwd_mode |
3373 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3374 
3375 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3376 }
3377 
3378 /**
3379  * ice_is_100m_speed_supported
3380  * @hw: pointer to the HW struct
3381  *
3382  * returns true if 100M speeds are supported by the device,
3383  * false otherwise.
3384  */
3385 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3386 {
3387 	switch (hw->device_id) {
3388 	case ICE_DEV_ID_E822C_SGMII:
3389 	case ICE_DEV_ID_E822L_SGMII:
3390 	case ICE_DEV_ID_E823L_1GBE:
3391 	case ICE_DEV_ID_E823C_SGMII:
3392 		return true;
3393 	default:
3394 		return false;
3395 	}
3396 }
3397 
3398 /**
3399  * ice_get_link_speed_based_on_phy_type - returns link speed
3400  * @phy_type_low: lower part of phy_type
3401  * @phy_type_high: higher part of phy_type
3402  *
3403  * This helper function will convert an entry in PHY type structure
3404  * [phy_type_low, phy_type_high] to its corresponding link speed.
3405  * Note: In the structure of [phy_type_low, phy_type_high], there should
3406  * be one bit set, as this function will convert one PHY type to its
3407  * speed.
3408  *
3409  * Return:
3410  * * PHY speed for recognized PHY type
3411  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3412  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3413  */
3414 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3415 {
3416 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3417 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3418 
3419 	switch (phy_type_low) {
3420 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3421 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3422 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3423 		break;
3424 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3425 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3426 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3427 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3428 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3429 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3430 		break;
3431 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3432 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3433 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3434 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3435 		break;
3436 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3437 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3438 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3439 		break;
3440 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3441 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3442 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3443 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3444 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3445 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3446 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3447 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3448 		break;
3449 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3450 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3451 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3452 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3453 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3454 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3455 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3456 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3457 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3458 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3459 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3460 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3461 		break;
3462 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3463 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3464 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3465 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3466 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3467 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3468 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3469 		break;
3470 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3471 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3472 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3473 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3474 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3475 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3476 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3477 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3478 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3479 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3480 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3481 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3482 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3483 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3484 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3485 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3486 		break;
3487 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3488 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3489 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3490 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3491 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3492 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3493 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3494 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3495 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3496 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3497 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3498 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3499 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3500 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3501 		break;
3502 	default:
3503 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3504 		break;
3505 	}
3506 
3507 	switch (phy_type_high) {
3508 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3509 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3510 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3511 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3512 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3513 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3514 		break;
3515 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3516 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3517 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3518 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3519 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3520 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3521 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3522 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3523 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3524 		break;
3525 	default:
3526 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3527 		break;
3528 	}
3529 
3530 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3531 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3532 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3533 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3534 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3535 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3536 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3537 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3538 		return speed_phy_type_low;
3539 	else
3540 		return speed_phy_type_high;
3541 }
3542 
3543 /**
3544  * ice_update_phy_type
3545  * @phy_type_low: pointer to the lower part of phy_type
3546  * @phy_type_high: pointer to the higher part of phy_type
3547  * @link_speeds_bitmap: targeted link speeds bitmap
3548  *
3549  * Note: For the link_speeds_bitmap structure, you can check it at
3550  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3551  * link_speeds_bitmap include multiple speeds.
3552  *
3553  * Each entry in this [phy_type_low, phy_type_high] structure will
3554  * present a certain link speed. This helper function will turn on bits
3555  * in [phy_type_low, phy_type_high] structure based on the value of
3556  * link_speeds_bitmap input parameter.
3557  */
3558 void
3559 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3560 		    u16 link_speeds_bitmap)
3561 {
3562 	u64 pt_high;
3563 	u64 pt_low;
3564 	int index;
3565 	u16 speed;
3566 
3567 	/* We first check with low part of phy_type */
3568 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3569 		pt_low = BIT_ULL(index);
3570 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3571 
3572 		if (link_speeds_bitmap & speed)
3573 			*phy_type_low |= BIT_ULL(index);
3574 	}
3575 
3576 	/* We then check with high part of phy_type */
3577 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3578 		pt_high = BIT_ULL(index);
3579 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3580 
3581 		if (link_speeds_bitmap & speed)
3582 			*phy_type_high |= BIT_ULL(index);
3583 	}
3584 }
3585 
3586 /**
3587  * ice_aq_set_phy_cfg
3588  * @hw: pointer to the HW struct
3589  * @pi: port info structure of the interested logical port
3590  * @cfg: structure with PHY configuration data to be set
3591  * @cd: pointer to command details structure or NULL
3592  *
3593  * Set the various PHY configuration parameters supported on the Port.
3594  * One or more of the Set PHY config parameters may be ignored in an MFP
3595  * mode as the PF may not have the privilege to set some of the PHY Config
3596  * parameters. This status will be indicated by the command response (0x0601).
3597  */
3598 int
3599 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3600 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3601 {
3602 	struct ice_aqc_set_phy_cfg *cmd;
3603 	struct libie_aq_desc desc;
3604 	int status;
3605 
3606 	if (!cfg)
3607 		return -EINVAL;
3608 
3609 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3610 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3611 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3612 			  cfg->caps);
3613 
3614 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3615 	}
3616 
3617 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3618 	cmd = libie_aq_raw(&desc);
3619 	cmd->lport_num = pi->lport;
3620 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3621 
3622 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3623 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3624 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3625 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3626 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3627 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3628 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3629 		  cfg->low_power_ctrl_an);
3630 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3631 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3632 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3633 		  cfg->link_fec_opt);
3634 
3635 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3636 	if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3637 		status = 0;
3638 
3639 	if (!status)
3640 		pi->phy.curr_user_phy_cfg = *cfg;
3641 
3642 	return status;
3643 }
3644 
3645 /**
3646  * ice_update_link_info - update status of the HW network link
3647  * @pi: port info structure of the interested logical port
3648  */
3649 int ice_update_link_info(struct ice_port_info *pi)
3650 {
3651 	struct ice_link_status *li;
3652 	int status;
3653 
3654 	if (!pi)
3655 		return -EINVAL;
3656 
3657 	li = &pi->phy.link_info;
3658 
3659 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3660 	if (status)
3661 		return status;
3662 
3663 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3664 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3665 
3666 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3667 		if (!pcaps)
3668 			return -ENOMEM;
3669 
3670 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3671 					     pcaps, NULL);
3672 	}
3673 
3674 	return status;
3675 }
3676 
3677 /**
3678  * ice_aq_get_phy_equalization - function to read serdes equaliser
3679  * value from firmware using admin queue command.
3680  * @hw: pointer to the HW struct
3681  * @data_in: represents the serdes equalization parameter requested
3682  * @op_code: represents the serdes number and flag to represent tx or rx
3683  * @serdes_num: represents the serdes number
3684  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3685  *
3686  * Return: non-zero status on error and 0 on success.
3687  */
3688 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3689 				u8 serdes_num, int *output)
3690 {
3691 	struct ice_aqc_dnl_call_command *cmd;
3692 	struct ice_aqc_dnl_call buf = {};
3693 	struct libie_aq_desc desc;
3694 	int err;
3695 
3696 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3697 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3698 		cpu_to_le16(op_code | (serdes_num & 0xF));
3699 	cmd = libie_aq_raw(&desc);
3700 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3701 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3702 				  LIBIE_AQ_FLAG_RD |
3703 				  LIBIE_AQ_FLAG_SI);
3704 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3705 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3706 
3707 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3708 			      NULL);
3709 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3710 
3711 	return err;
3712 }
3713 
3714 #define FEC_REG_PORT(port) {	\
3715 	FEC_CORR_LOW_REG_PORT##port,		\
3716 	FEC_CORR_HIGH_REG_PORT##port,	\
3717 	FEC_UNCORR_LOW_REG_PORT##port,	\
3718 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3719 }
3720 
3721 static const u32 fec_reg[][ICE_FEC_MAX] = {
3722 	FEC_REG_PORT(0),
3723 	FEC_REG_PORT(1),
3724 	FEC_REG_PORT(2),
3725 	FEC_REG_PORT(3)
3726 };
3727 
3728 /**
3729  * ice_aq_get_fec_stats - reads fec stats from phy
3730  * @hw: pointer to the HW struct
3731  * @pcs_quad: represents pcsquad of user input serdes
3732  * @pcs_port: represents the pcs port number part of above pcs quad
3733  * @fec_type: represents FEC stats type
3734  * @output: pointer to the caller-supplied buffer to return requested fec stats
3735  *
3736  * Return: non-zero status on error and 0 on success.
3737  */
3738 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3739 			 enum ice_fec_stats_types fec_type, u32 *output)
3740 {
3741 	u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3742 	struct ice_sbq_msg_input msg = {};
3743 	u32 receiver_id, reg_offset;
3744 	int err;
3745 
3746 	if (pcs_port > 3)
3747 		return -EINVAL;
3748 
3749 	reg_offset = fec_reg[pcs_port][fec_type];
3750 
3751 	if (pcs_quad == 0)
3752 		receiver_id = FEC_RECEIVER_ID_PCS0;
3753 	else if (pcs_quad == 1)
3754 		receiver_id = FEC_RECEIVER_ID_PCS1;
3755 	else
3756 		return -EINVAL;
3757 
3758 	msg.msg_addr_low = lower_16_bits(reg_offset);
3759 	msg.msg_addr_high = receiver_id;
3760 	msg.opcode = ice_sbq_msg_rd;
3761 	msg.dest_dev = ice_sbq_dev_phy_0;
3762 
3763 	err = ice_sbq_rw_reg(hw, &msg, flag);
3764 	if (err)
3765 		return err;
3766 
3767 	*output = msg.data;
3768 	return 0;
3769 }
3770 
3771 /**
3772  * ice_cache_phy_user_req
3773  * @pi: port information structure
3774  * @cache_data: PHY logging data
3775  * @cache_mode: PHY logging mode
3776  *
3777  * Log the user request on (FC, FEC, SPEED) for later use.
3778  */
3779 static void
3780 ice_cache_phy_user_req(struct ice_port_info *pi,
3781 		       struct ice_phy_cache_mode_data cache_data,
3782 		       enum ice_phy_cache_mode cache_mode)
3783 {
3784 	if (!pi)
3785 		return;
3786 
3787 	switch (cache_mode) {
3788 	case ICE_FC_MODE:
3789 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3790 		break;
3791 	case ICE_SPEED_MODE:
3792 		pi->phy.curr_user_speed_req =
3793 			cache_data.data.curr_user_speed_req;
3794 		break;
3795 	case ICE_FEC_MODE:
3796 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3797 		break;
3798 	default:
3799 		break;
3800 	}
3801 }
3802 
3803 /**
3804  * ice_caps_to_fc_mode
3805  * @caps: PHY capabilities
3806  *
3807  * Convert PHY FC capabilities to ice FC mode
3808  */
3809 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3810 {
3811 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3812 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3813 		return ICE_FC_FULL;
3814 
3815 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3816 		return ICE_FC_TX_PAUSE;
3817 
3818 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3819 		return ICE_FC_RX_PAUSE;
3820 
3821 	return ICE_FC_NONE;
3822 }
3823 
3824 /**
3825  * ice_caps_to_fec_mode
3826  * @caps: PHY capabilities
3827  * @fec_options: Link FEC options
3828  *
3829  * Convert PHY FEC capabilities to ice FEC mode
3830  */
3831 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3832 {
3833 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3834 		return ICE_FEC_AUTO;
3835 
3836 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3837 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3838 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3839 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3840 		return ICE_FEC_BASER;
3841 
3842 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3843 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3844 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3845 		return ICE_FEC_RS;
3846 
3847 	return ICE_FEC_NONE;
3848 }
3849 
3850 /**
3851  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3852  * @pi: port information structure
3853  * @cfg: PHY configuration data to set FC mode
3854  * @req_mode: FC mode to configure
3855  */
3856 int
3857 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3858 	       enum ice_fc_mode req_mode)
3859 {
3860 	struct ice_phy_cache_mode_data cache_data;
3861 	u8 pause_mask = 0x0;
3862 
3863 	if (!pi || !cfg)
3864 		return -EINVAL;
3865 
3866 	switch (req_mode) {
3867 	case ICE_FC_FULL:
3868 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3869 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3870 		break;
3871 	case ICE_FC_RX_PAUSE:
3872 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3873 		break;
3874 	case ICE_FC_TX_PAUSE:
3875 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3876 		break;
3877 	default:
3878 		break;
3879 	}
3880 
3881 	/* clear the old pause settings */
3882 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3883 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3884 
3885 	/* set the new capabilities */
3886 	cfg->caps |= pause_mask;
3887 
3888 	/* Cache user FC request */
3889 	cache_data.data.curr_user_fc_req = req_mode;
3890 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3891 
3892 	return 0;
3893 }
3894 
3895 /**
3896  * ice_set_fc
3897  * @pi: port information structure
3898  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3899  * @ena_auto_link_update: enable automatic link update
3900  *
3901  * Set the requested flow control mode.
3902  */
3903 int
3904 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3905 {
3906 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3907 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3908 	struct ice_hw *hw;
3909 	int status;
3910 
3911 	if (!pi || !aq_failures)
3912 		return -EINVAL;
3913 
3914 	*aq_failures = 0;
3915 	hw = pi->hw;
3916 
3917 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3918 	if (!pcaps)
3919 		return -ENOMEM;
3920 
3921 	/* Get the current PHY config */
3922 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3923 				     pcaps, NULL);
3924 	if (status) {
3925 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3926 		goto out;
3927 	}
3928 
3929 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3930 
3931 	/* Configure the set PHY data */
3932 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3933 	if (status)
3934 		goto out;
3935 
3936 	/* If the capabilities have changed, then set the new config */
3937 	if (cfg.caps != pcaps->caps) {
3938 		int retry_count, retry_max = 10;
3939 
3940 		/* Auto restart link so settings take effect */
3941 		if (ena_auto_link_update)
3942 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3943 
3944 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3945 		if (status) {
3946 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3947 			goto out;
3948 		}
3949 
3950 		/* Update the link info
3951 		 * It sometimes takes a really long time for link to
3952 		 * come back from the atomic reset. Thus, we wait a
3953 		 * little bit.
3954 		 */
3955 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3956 			status = ice_update_link_info(pi);
3957 
3958 			if (!status)
3959 				break;
3960 
3961 			mdelay(100);
3962 		}
3963 
3964 		if (status)
3965 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3966 	}
3967 
3968 out:
3969 	return status;
3970 }
3971 
3972 /**
3973  * ice_phy_caps_equals_cfg
3974  * @phy_caps: PHY capabilities
3975  * @phy_cfg: PHY configuration
3976  *
3977  * Helper function to determine if PHY capabilities matches PHY
3978  * configuration
3979  */
3980 bool
3981 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3982 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3983 {
3984 	u8 caps_mask, cfg_mask;
3985 
3986 	if (!phy_caps || !phy_cfg)
3987 		return false;
3988 
3989 	/* These bits are not common between capabilities and configuration.
3990 	 * Do not use them to determine equality.
3991 	 */
3992 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3993 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3994 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3995 
3996 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3997 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3998 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3999 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
4000 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
4001 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
4002 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
4003 		return false;
4004 
4005 	return true;
4006 }
4007 
4008 /**
4009  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
4010  * @pi: port information structure
4011  * @caps: PHY ability structure to copy date from
4012  * @cfg: PHY configuration structure to copy data to
4013  *
4014  * Helper function to copy AQC PHY get ability data to PHY set configuration
4015  * data structure
4016  */
4017 void
4018 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
4019 			 struct ice_aqc_get_phy_caps_data *caps,
4020 			 struct ice_aqc_set_phy_cfg_data *cfg)
4021 {
4022 	if (!pi || !caps || !cfg)
4023 		return;
4024 
4025 	memset(cfg, 0, sizeof(*cfg));
4026 	cfg->phy_type_low = caps->phy_type_low;
4027 	cfg->phy_type_high = caps->phy_type_high;
4028 	cfg->caps = caps->caps;
4029 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
4030 	cfg->eee_cap = caps->eee_cap;
4031 	cfg->eeer_value = caps->eeer_value;
4032 	cfg->link_fec_opt = caps->link_fec_options;
4033 	cfg->module_compliance_enforcement =
4034 		caps->module_compliance_enforcement;
4035 }
4036 
4037 /**
4038  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
4039  * @pi: port information structure
4040  * @cfg: PHY configuration data to set FEC mode
4041  * @fec: FEC mode to configure
4042  */
4043 int
4044 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
4045 		enum ice_fec_mode fec)
4046 {
4047 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
4048 	struct ice_hw *hw;
4049 	int status;
4050 
4051 	if (!pi || !cfg)
4052 		return -EINVAL;
4053 
4054 	hw = pi->hw;
4055 
4056 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
4057 	if (!pcaps)
4058 		return -ENOMEM;
4059 
4060 	status = ice_aq_get_phy_caps(pi, false,
4061 				     (ice_fw_supports_report_dflt_cfg(hw) ?
4062 				      ICE_AQC_REPORT_DFLT_CFG :
4063 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
4064 	if (status)
4065 		goto out;
4066 
4067 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
4068 	cfg->link_fec_opt = pcaps->link_fec_options;
4069 
4070 	switch (fec) {
4071 	case ICE_FEC_BASER:
4072 		/* Clear RS bits, and AND BASE-R ability
4073 		 * bits and OR request bits.
4074 		 */
4075 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
4076 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
4077 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4078 			ICE_AQC_PHY_FEC_25G_KR_REQ;
4079 		break;
4080 	case ICE_FEC_RS:
4081 		/* Clear BASE-R bits, and AND RS ability
4082 		 * bits and OR request bits.
4083 		 */
4084 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4085 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4086 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4087 		break;
4088 	case ICE_FEC_NONE:
4089 		/* Clear all FEC option bits. */
4090 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4091 		break;
4092 	case ICE_FEC_AUTO:
4093 		/* AND auto FEC bit, and all caps bits. */
4094 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4095 		cfg->link_fec_opt |= pcaps->link_fec_options;
4096 		break;
4097 	default:
4098 		status = -EINVAL;
4099 		break;
4100 	}
4101 
4102 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4103 	    !ice_fw_supports_report_dflt_cfg(hw)) {
4104 		struct ice_link_default_override_tlv tlv = { 0 };
4105 
4106 		status = ice_get_link_default_override(&tlv, pi);
4107 		if (status)
4108 			goto out;
4109 
4110 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4111 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
4112 			cfg->link_fec_opt = tlv.fec_options;
4113 	}
4114 
4115 out:
4116 	return status;
4117 }
4118 
4119 /**
4120  * ice_get_link_status - get status of the HW network link
4121  * @pi: port information structure
4122  * @link_up: pointer to bool (true/false = linkup/linkdown)
4123  *
4124  * Variable link_up is true if link is up, false if link is down.
4125  * The variable link_up is invalid if status is non zero. As a
4126  * result of this call, link status reporting becomes enabled
4127  */
4128 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4129 {
4130 	struct ice_phy_info *phy_info;
4131 	int status = 0;
4132 
4133 	if (!pi || !link_up)
4134 		return -EINVAL;
4135 
4136 	phy_info = &pi->phy;
4137 
4138 	if (phy_info->get_link_info) {
4139 		status = ice_update_link_info(pi);
4140 
4141 		if (status)
4142 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4143 				  status);
4144 	}
4145 
4146 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4147 
4148 	return status;
4149 }
4150 
4151 /**
4152  * ice_aq_set_link_restart_an
4153  * @pi: pointer to the port information structure
4154  * @ena_link: if true: enable link, if false: disable link
4155  * @cd: pointer to command details structure or NULL
4156  *
4157  * Sets up the link and restarts the Auto-Negotiation over the link.
4158  */
4159 int
4160 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4161 			   struct ice_sq_cd *cd)
4162 {
4163 	struct ice_aqc_restart_an *cmd;
4164 	struct libie_aq_desc desc;
4165 
4166 	cmd = libie_aq_raw(&desc);
4167 
4168 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4169 
4170 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4171 	cmd->lport_num = pi->lport;
4172 	if (ena_link)
4173 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4174 	else
4175 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4176 
4177 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4178 }
4179 
4180 /**
4181  * ice_aq_set_event_mask
4182  * @hw: pointer to the HW struct
4183  * @port_num: port number of the physical function
4184  * @mask: event mask to be set
4185  * @cd: pointer to command details structure or NULL
4186  *
4187  * Set event mask (0x0613)
4188  */
4189 int
4190 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4191 		      struct ice_sq_cd *cd)
4192 {
4193 	struct ice_aqc_set_event_mask *cmd;
4194 	struct libie_aq_desc desc;
4195 
4196 	cmd = libie_aq_raw(&desc);
4197 
4198 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4199 
4200 	cmd->lport_num = port_num;
4201 
4202 	cmd->event_mask = cpu_to_le16(mask);
4203 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4204 }
4205 
4206 /**
4207  * ice_aq_set_mac_loopback
4208  * @hw: pointer to the HW struct
4209  * @ena_lpbk: Enable or Disable loopback
4210  * @cd: pointer to command details structure or NULL
4211  *
4212  * Enable/disable loopback on a given port
4213  */
4214 int
4215 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4216 {
4217 	struct ice_aqc_set_mac_lb *cmd;
4218 	struct libie_aq_desc desc;
4219 
4220 	cmd = libie_aq_raw(&desc);
4221 
4222 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4223 	if (ena_lpbk)
4224 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4225 
4226 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4227 }
4228 
4229 /**
4230  * ice_aq_set_port_id_led
4231  * @pi: pointer to the port information
4232  * @is_orig_mode: is this LED set to original mode (by the net-list)
4233  * @cd: pointer to command details structure or NULL
4234  *
4235  * Set LED value for the given port (0x06e9)
4236  */
4237 int
4238 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4239 		       struct ice_sq_cd *cd)
4240 {
4241 	struct ice_aqc_set_port_id_led *cmd;
4242 	struct ice_hw *hw = pi->hw;
4243 	struct libie_aq_desc desc;
4244 
4245 	cmd = libie_aq_raw(&desc);
4246 
4247 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4248 
4249 	if (is_orig_mode)
4250 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4251 	else
4252 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4253 
4254 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4255 }
4256 
4257 /**
4258  * ice_aq_get_port_options
4259  * @hw: pointer to the HW struct
4260  * @options: buffer for the resultant port options
4261  * @option_count: input - size of the buffer in port options structures,
4262  *                output - number of returned port options
4263  * @lport: logical port to call the command with (optional)
4264  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4265  *               when PF owns more than 1 port it must be true
4266  * @active_option_idx: index of active port option in returned buffer
4267  * @active_option_valid: active option in returned buffer is valid
4268  * @pending_option_idx: index of pending port option in returned buffer
4269  * @pending_option_valid: pending option in returned buffer is valid
4270  *
4271  * Calls Get Port Options AQC (0x06ea) and verifies result.
4272  */
4273 int
4274 ice_aq_get_port_options(struct ice_hw *hw,
4275 			struct ice_aqc_get_port_options_elem *options,
4276 			u8 *option_count, u8 lport, bool lport_valid,
4277 			u8 *active_option_idx, bool *active_option_valid,
4278 			u8 *pending_option_idx, bool *pending_option_valid)
4279 {
4280 	struct ice_aqc_get_port_options *cmd;
4281 	struct libie_aq_desc desc;
4282 	int status;
4283 	u8 i;
4284 
4285 	/* options buffer shall be able to hold max returned options */
4286 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4287 		return -EINVAL;
4288 
4289 	cmd = libie_aq_raw(&desc);
4290 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4291 
4292 	if (lport_valid)
4293 		cmd->lport_num = lport;
4294 	cmd->lport_num_valid = lport_valid;
4295 
4296 	status = ice_aq_send_cmd(hw, &desc, options,
4297 				 *option_count * sizeof(*options), NULL);
4298 	if (status)
4299 		return status;
4300 
4301 	/* verify direct FW response & set output parameters */
4302 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4303 				  cmd->port_options_count);
4304 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4305 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4306 					 cmd->port_options);
4307 	if (*active_option_valid) {
4308 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4309 					       cmd->port_options);
4310 		if (*active_option_idx > (*option_count - 1))
4311 			return -EIO;
4312 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4313 			  *active_option_idx);
4314 	}
4315 
4316 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4317 					  cmd->pending_port_option_status);
4318 	if (*pending_option_valid) {
4319 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4320 						cmd->pending_port_option_status);
4321 		if (*pending_option_idx > (*option_count - 1))
4322 			return -EIO;
4323 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4324 			  *pending_option_idx);
4325 	}
4326 
4327 	/* mask output options fields */
4328 	for (i = 0; i < *option_count; i++) {
4329 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4330 					   options[i].pmd);
4331 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4332 						      options[i].max_lane_speed);
4333 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4334 			  options[i].pmd, options[i].max_lane_speed);
4335 	}
4336 
4337 	return 0;
4338 }
4339 
4340 /**
4341  * ice_aq_set_port_option
4342  * @hw: pointer to the HW struct
4343  * @lport: logical port to call the command with
4344  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4345  *               when PF owns more than 1 port it must be true
4346  * @new_option: new port option to be written
4347  *
4348  * Calls Set Port Options AQC (0x06eb).
4349  */
4350 int
4351 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4352 		       u8 new_option)
4353 {
4354 	struct ice_aqc_set_port_option *cmd;
4355 	struct libie_aq_desc desc;
4356 
4357 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4358 		return -EINVAL;
4359 
4360 	cmd = libie_aq_raw(&desc);
4361 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4362 
4363 	if (lport_valid)
4364 		cmd->lport_num = lport;
4365 
4366 	cmd->lport_num_valid = lport_valid;
4367 	cmd->selected_port_option = new_option;
4368 
4369 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4370 }
4371 
4372 /**
4373  * ice_get_phy_lane_number - Get PHY lane number for current adapter
4374  * @hw: pointer to the hw struct
4375  *
4376  * Return: PHY lane number on success, negative error code otherwise.
4377  */
4378 int ice_get_phy_lane_number(struct ice_hw *hw)
4379 {
4380 	struct ice_aqc_get_port_options_elem *options;
4381 	unsigned int lport = 0;
4382 	unsigned int lane;
4383 	int err;
4384 
4385 	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4386 	if (!options)
4387 		return -ENOMEM;
4388 
4389 	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4390 		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4391 		u8 speed, active_idx, pending_idx;
4392 		bool active_valid, pending_valid;
4393 
4394 		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4395 					      true, &active_idx, &active_valid,
4396 					      &pending_idx, &pending_valid);
4397 		if (err)
4398 			goto err;
4399 
4400 		if (!active_valid)
4401 			continue;
4402 
4403 		speed = options[active_idx].max_lane_speed;
4404 		/* If we don't get speed for this lane, it's unoccupied */
4405 		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4406 			continue;
4407 
4408 		if (hw->pf_id == lport) {
4409 			if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4410 			    ice_is_dual(hw) && !ice_is_primary(hw))
4411 				lane += ICE_PORTS_PER_QUAD;
4412 			kfree(options);
4413 			return lane;
4414 		}
4415 		lport++;
4416 	}
4417 
4418 	/* PHY lane not found */
4419 	err = -ENXIO;
4420 err:
4421 	kfree(options);
4422 	return err;
4423 }
4424 
4425 /**
4426  * ice_aq_sff_eeprom
4427  * @hw: pointer to the HW struct
4428  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4429  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4430  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4431  * @page: QSFP page
4432  * @set_page: set or ignore the page
4433  * @data: pointer to data buffer to be read/written to the I2C device.
4434  * @length: 1-16 for read, 1 for write.
4435  * @write: 0 read, 1 for write.
4436  * @cd: pointer to command details structure or NULL
4437  *
4438  * Read/Write SFF EEPROM (0x06EE)
4439  */
4440 int
4441 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4442 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4443 		  bool write, struct ice_sq_cd *cd)
4444 {
4445 	struct ice_aqc_sff_eeprom *cmd;
4446 	struct libie_aq_desc desc;
4447 	u16 i2c_bus_addr;
4448 	int status;
4449 
4450 	if (!data || (mem_addr & 0xff00))
4451 		return -EINVAL;
4452 
4453 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4454 	cmd = libie_aq_raw(&desc);
4455 	desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4456 	cmd->lport_num = (u8)(lport & 0xff);
4457 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4458 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4459 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4460 	if (write)
4461 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4462 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4463 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4464 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4465 
4466 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4467 	return status;
4468 }
4469 
4470 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4471 {
4472 	switch (type) {
4473 	case ICE_LUT_VSI:
4474 		return ICE_LUT_VSI_SIZE;
4475 	case ICE_LUT_GLOBAL:
4476 		return ICE_LUT_GLOBAL_SIZE;
4477 	case ICE_LUT_PF:
4478 		return ICE_LUT_PF_SIZE;
4479 	}
4480 	WARN_ONCE(1, "incorrect type passed");
4481 	return ICE_LUT_VSI_SIZE;
4482 }
4483 
4484 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4485 {
4486 	switch (size) {
4487 	case ICE_LUT_VSI_SIZE:
4488 		return ICE_AQC_LUT_SIZE_SMALL;
4489 	case ICE_LUT_GLOBAL_SIZE:
4490 		return ICE_AQC_LUT_SIZE_512;
4491 	case ICE_LUT_PF_SIZE:
4492 		return ICE_AQC_LUT_SIZE_2K;
4493 	}
4494 	WARN_ONCE(1, "incorrect size passed");
4495 	return 0;
4496 }
4497 
4498 /**
4499  * __ice_aq_get_set_rss_lut
4500  * @hw: pointer to the hardware structure
4501  * @params: RSS LUT parameters
4502  * @set: set true to set the table, false to get the table
4503  *
4504  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4505  */
4506 static int
4507 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4508 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4509 {
4510 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4511 	enum ice_lut_type lut_type = params->lut_type;
4512 	struct ice_aqc_get_set_rss_lut *desc_params;
4513 	enum ice_aqc_lut_flags flags;
4514 	enum ice_lut_size lut_size;
4515 	struct libie_aq_desc desc;
4516 	u8 *lut = params->lut;
4517 
4518 
4519 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4520 		return -EINVAL;
4521 
4522 	lut_size = ice_lut_type_to_size(lut_type);
4523 	if (lut_size > params->lut_size)
4524 		return -EINVAL;
4525 	else if (set && lut_size != params->lut_size)
4526 		return -EINVAL;
4527 
4528 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4529 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4530 	if (set)
4531 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4532 
4533 	desc_params = libie_aq_raw(&desc);
4534 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4535 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4536 
4537 	if (lut_type == ICE_LUT_GLOBAL)
4538 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4539 					  params->global_lut_id);
4540 
4541 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4542 	desc_params->flags = cpu_to_le16(flags);
4543 
4544 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4545 }
4546 
4547 /**
4548  * ice_aq_get_rss_lut
4549  * @hw: pointer to the hardware structure
4550  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4551  *
4552  * get the RSS lookup table, PF or VSI type
4553  */
4554 int
4555 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4556 {
4557 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4558 }
4559 
4560 /**
4561  * ice_aq_set_rss_lut
4562  * @hw: pointer to the hardware structure
4563  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4564  *
4565  * set the RSS lookup table, PF or VSI type
4566  */
4567 int
4568 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4569 {
4570 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4571 }
4572 
4573 /**
4574  * __ice_aq_get_set_rss_key
4575  * @hw: pointer to the HW struct
4576  * @vsi_id: VSI FW index
4577  * @key: pointer to key info struct
4578  * @set: set true to set the key, false to get the key
4579  *
4580  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4581  */
4582 static int
4583 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4584 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4585 {
4586 	struct ice_aqc_get_set_rss_key *desc_params;
4587 	u16 key_size = sizeof(*key);
4588 	struct libie_aq_desc desc;
4589 
4590 	if (set) {
4591 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4592 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4593 	} else {
4594 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4595 	}
4596 
4597 	desc_params = libie_aq_raw(&desc);
4598 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4599 
4600 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4601 }
4602 
4603 /**
4604  * ice_aq_get_rss_key
4605  * @hw: pointer to the HW struct
4606  * @vsi_handle: software VSI handle
4607  * @key: pointer to key info struct
4608  *
4609  * get the RSS key per VSI
4610  */
4611 int
4612 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4613 		   struct ice_aqc_get_set_rss_keys *key)
4614 {
4615 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4616 		return -EINVAL;
4617 
4618 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4619 					key, false);
4620 }
4621 
4622 /**
4623  * ice_aq_set_rss_key
4624  * @hw: pointer to the HW struct
4625  * @vsi_handle: software VSI handle
4626  * @keys: pointer to key info struct
4627  *
4628  * set the RSS key per VSI
4629  */
4630 int
4631 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4632 		   struct ice_aqc_get_set_rss_keys *keys)
4633 {
4634 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4635 		return -EINVAL;
4636 
4637 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4638 					keys, true);
4639 }
4640 
4641 /**
4642  * ice_aq_add_lan_txq
4643  * @hw: pointer to the hardware structure
4644  * @num_qgrps: Number of added queue groups
4645  * @qg_list: list of queue groups to be added
4646  * @buf_size: size of buffer for indirect command
4647  * @cd: pointer to command details structure or NULL
4648  *
4649  * Add Tx LAN queue (0x0C30)
4650  *
4651  * NOTE:
4652  * Prior to calling add Tx LAN queue:
4653  * Initialize the following as part of the Tx queue context:
4654  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4655  * Cache profile and Packet shaper profile.
4656  *
4657  * After add Tx LAN queue AQ command is completed:
4658  * Interrupts should be associated with specific queues,
4659  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4660  * flow.
4661  */
4662 static int
4663 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4664 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4665 		   struct ice_sq_cd *cd)
4666 {
4667 	struct ice_aqc_add_tx_qgrp *list;
4668 	struct ice_aqc_add_txqs *cmd;
4669 	struct libie_aq_desc desc;
4670 	u16 i, sum_size = 0;
4671 
4672 	cmd = libie_aq_raw(&desc);
4673 
4674 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4675 
4676 	if (!qg_list)
4677 		return -EINVAL;
4678 
4679 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4680 		return -EINVAL;
4681 
4682 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4683 		sum_size += struct_size(list, txqs, list->num_txqs);
4684 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4685 						      list->num_txqs);
4686 	}
4687 
4688 	if (buf_size != sum_size)
4689 		return -EINVAL;
4690 
4691 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4692 
4693 	cmd->num_qgrps = num_qgrps;
4694 
4695 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4696 }
4697 
4698 /**
4699  * ice_aq_dis_lan_txq
4700  * @hw: pointer to the hardware structure
4701  * @num_qgrps: number of groups in the list
4702  * @qg_list: the list of groups to disable
4703  * @buf_size: the total size of the qg_list buffer in bytes
4704  * @rst_src: if called due to reset, specifies the reset source
4705  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4706  * @cd: pointer to command details structure or NULL
4707  *
4708  * Disable LAN Tx queue (0x0C31)
4709  */
4710 static int
4711 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4712 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4713 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4714 		   struct ice_sq_cd *cd)
4715 {
4716 	struct ice_aqc_dis_txq_item *item;
4717 	struct ice_aqc_dis_txqs *cmd;
4718 	struct libie_aq_desc desc;
4719 	u16 vmvf_and_timeout;
4720 	u16 i, sz = 0;
4721 	int status;
4722 
4723 	cmd = libie_aq_raw(&desc);
4724 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4725 
4726 	/* qg_list can be NULL only in VM/VF reset flow */
4727 	if (!qg_list && !rst_src)
4728 		return -EINVAL;
4729 
4730 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4731 		return -EINVAL;
4732 
4733 	cmd->num_entries = num_qgrps;
4734 
4735 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4736 
4737 	switch (rst_src) {
4738 	case ICE_VM_RESET:
4739 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4740 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4741 		break;
4742 	case ICE_VF_RESET:
4743 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4744 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4745 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4746 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4747 		break;
4748 	case ICE_NO_RESET:
4749 	default:
4750 		break;
4751 	}
4752 
4753 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4754 
4755 	/* flush pipe on time out */
4756 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4757 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4758 	if (!qg_list)
4759 		goto do_aq;
4760 
4761 	/* set RD bit to indicate that command buffer is provided by the driver
4762 	 * and it needs to be read by the firmware
4763 	 */
4764 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4765 
4766 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4767 		u16 item_size = struct_size(item, q_id, item->num_qs);
4768 
4769 		/* If the num of queues is even, add 2 bytes of padding */
4770 		if ((item->num_qs % 2) == 0)
4771 			item_size += 2;
4772 
4773 		sz += item_size;
4774 
4775 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4776 	}
4777 
4778 	if (buf_size != sz)
4779 		return -EINVAL;
4780 
4781 do_aq:
4782 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4783 	if (status) {
4784 		if (!qg_list)
4785 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4786 				  vmvf_num, hw->adminq.sq_last_status);
4787 		else
4788 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4789 				  le16_to_cpu(qg_list[0].q_id[0]),
4790 				  hw->adminq.sq_last_status);
4791 	}
4792 	return status;
4793 }
4794 
4795 /**
4796  * ice_aq_cfg_lan_txq - send AQ command 0x0C32 to FW
4797  * @hw: pointer to the hardware structure
4798  * @buf: buffer for command
4799  * @buf_size: size of buffer in bytes
4800  * @num_qs: number of queues being configured
4801  * @oldport: origination lport
4802  * @newport: destination lport
4803  * @mode: cmd_type for move to use
4804  * @cd: pointer to command details structure or NULL
4805  *
4806  * Move/Configure LAN Tx queue (0x0C32)
4807  *
4808  * Return: Zero on success, associated error code on failure.
4809  */
4810 int
4811 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4812 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4813 		   u8 mode, struct ice_sq_cd *cd)
4814 {
4815 	struct ice_aqc_cfg_txqs *cmd;
4816 	struct libie_aq_desc desc;
4817 	int status;
4818 
4819 	cmd = libie_aq_raw(&desc);
4820 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4821 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4822 
4823 	if (!buf)
4824 		return -EINVAL;
4825 
4826 	cmd->cmd_type = mode;
4827 	cmd->num_qs = num_qs;
4828 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4829 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4830 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_MODE_M,
4831 					 ICE_AQC_Q_CFG_MODE_KEEP_OWN);
4832 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4833 	cmd->blocked_cgds = 0;
4834 
4835 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4836 	if (status)
4837 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4838 			  hw->adminq.sq_last_status);
4839 	return status;
4840 }
4841 
4842 /**
4843  * ice_aq_add_rdma_qsets
4844  * @hw: pointer to the hardware structure
4845  * @num_qset_grps: Number of RDMA Qset groups
4846  * @qset_list: list of Qset groups to be added
4847  * @buf_size: size of buffer for indirect command
4848  * @cd: pointer to command details structure or NULL
4849  *
4850  * Add Tx RDMA Qsets (0x0C33)
4851  */
4852 static int
4853 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4854 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4855 		      u16 buf_size, struct ice_sq_cd *cd)
4856 {
4857 	struct ice_aqc_add_rdma_qset_data *list;
4858 	struct ice_aqc_add_rdma_qset *cmd;
4859 	struct libie_aq_desc desc;
4860 	u16 i, sum_size = 0;
4861 
4862 	cmd = libie_aq_raw(&desc);
4863 
4864 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4865 
4866 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4867 		return -EINVAL;
4868 
4869 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4870 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4871 
4872 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4873 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4874 							     num_qsets);
4875 	}
4876 
4877 	if (buf_size != sum_size)
4878 		return -EINVAL;
4879 
4880 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4881 
4882 	cmd->num_qset_grps = num_qset_grps;
4883 
4884 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4885 }
4886 
4887 /**
4888  * ice_aq_set_txtimeq - set Tx time queues
4889  * @hw: pointer to the hardware structure
4890  * @txtimeq: first Tx time queue id to configure
4891  * @q_count: number of queues to configure
4892  * @txtime_qg: queue group to be set
4893  * @buf_size: size of buffer for indirect command
4894  * @cd: pointer to command details structure or NULL
4895  *
4896  * Set Tx Time queue (0x0C35)
4897  * Return: 0 on success or negative value on failure.
4898  */
4899 int
4900 ice_aq_set_txtimeq(struct ice_hw *hw, u16 txtimeq, u8 q_count,
4901 		   struct ice_aqc_set_txtime_qgrp *txtime_qg, u16 buf_size,
4902 		   struct ice_sq_cd *cd)
4903 {
4904 	struct ice_aqc_set_txtimeqs *cmd;
4905 	struct libie_aq_desc desc;
4906 	u16 size;
4907 
4908 	if (!txtime_qg || txtimeq > ICE_TXTIME_MAX_QUEUE ||
4909 	    q_count < 1 || q_count > ICE_SET_TXTIME_MAX_Q_AMOUNT)
4910 		return -EINVAL;
4911 
4912 	size = struct_size(txtime_qg, txtimeqs, q_count);
4913 	if (buf_size != size)
4914 		return -EINVAL;
4915 
4916 	cmd = libie_aq_raw(&desc);
4917 
4918 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_txtimeqs);
4919 
4920 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4921 
4922 	cmd->q_id = cpu_to_le16(txtimeq);
4923 	cmd->q_amount = cpu_to_le16(q_count);
4924 	return ice_aq_send_cmd(hw, &desc, txtime_qg, buf_size, cd);
4925 }
4926 
4927 /* End of FW Admin Queue command wrappers */
4928 
4929 /**
4930  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4931  * @hw: pointer to the HW struct
4932  * @vsi_handle: software VSI handle
4933  * @tc: TC number
4934  * @q_handle: software queue handle
4935  */
4936 struct ice_q_ctx *
4937 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4938 {
4939 	struct ice_vsi_ctx *vsi;
4940 	struct ice_q_ctx *q_ctx;
4941 
4942 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4943 	if (!vsi)
4944 		return NULL;
4945 	if (q_handle >= vsi->num_lan_q_entries[tc])
4946 		return NULL;
4947 	if (!vsi->lan_q_ctx[tc])
4948 		return NULL;
4949 	q_ctx = vsi->lan_q_ctx[tc];
4950 	return &q_ctx[q_handle];
4951 }
4952 
4953 /**
4954  * ice_ena_vsi_txq
4955  * @pi: port information structure
4956  * @vsi_handle: software VSI handle
4957  * @tc: TC number
4958  * @q_handle: software queue handle
4959  * @num_qgrps: Number of added queue groups
4960  * @buf: list of queue groups to be added
4961  * @buf_size: size of buffer for indirect command
4962  * @cd: pointer to command details structure or NULL
4963  *
4964  * This function adds one LAN queue
4965  */
4966 int
4967 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4968 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4969 		struct ice_sq_cd *cd)
4970 {
4971 	struct ice_aqc_txsched_elem_data node = { 0 };
4972 	struct ice_sched_node *parent;
4973 	struct ice_q_ctx *q_ctx;
4974 	struct ice_hw *hw;
4975 	int status;
4976 
4977 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4978 		return -EIO;
4979 
4980 	if (num_qgrps > 1 || buf->num_txqs > 1)
4981 		return -ENOSPC;
4982 
4983 	hw = pi->hw;
4984 
4985 	if (!ice_is_vsi_valid(hw, vsi_handle))
4986 		return -EINVAL;
4987 
4988 	mutex_lock(&pi->sched_lock);
4989 
4990 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4991 	if (!q_ctx) {
4992 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4993 			  q_handle);
4994 		status = -EINVAL;
4995 		goto ena_txq_exit;
4996 	}
4997 
4998 	/* find a parent node */
4999 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5000 					    ICE_SCHED_NODE_OWNER_LAN);
5001 	if (!parent) {
5002 		status = -EINVAL;
5003 		goto ena_txq_exit;
5004 	}
5005 
5006 	buf->parent_teid = parent->info.node_teid;
5007 	node.parent_teid = parent->info.node_teid;
5008 	/* Mark that the values in the "generic" section as valid. The default
5009 	 * value in the "generic" section is zero. This means that :
5010 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5011 	 * - 0 priority among siblings, indicated by Bit 1-3.
5012 	 * - WFQ, indicated by Bit 4.
5013 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5014 	 * Bit 5-6.
5015 	 * - Bit 7 is reserved.
5016 	 * Without setting the generic section as valid in valid_sections, the
5017 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5018 	 */
5019 	buf->txqs[0].info.valid_sections =
5020 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5021 		ICE_AQC_ELEM_VALID_EIR;
5022 	buf->txqs[0].info.generic = 0;
5023 	buf->txqs[0].info.cir_bw.bw_profile_idx =
5024 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5025 	buf->txqs[0].info.cir_bw.bw_alloc =
5026 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5027 	buf->txqs[0].info.eir_bw.bw_profile_idx =
5028 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5029 	buf->txqs[0].info.eir_bw.bw_alloc =
5030 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5031 
5032 	/* add the LAN queue */
5033 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5034 	if (status) {
5035 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5036 			  le16_to_cpu(buf->txqs[0].txq_id),
5037 			  hw->adminq.sq_last_status);
5038 		goto ena_txq_exit;
5039 	}
5040 
5041 	node.node_teid = buf->txqs[0].q_teid;
5042 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5043 	q_ctx->q_handle = q_handle;
5044 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
5045 
5046 	/* add a leaf node into scheduler tree queue layer */
5047 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5048 	if (!status)
5049 		status = ice_sched_replay_q_bw(pi, q_ctx);
5050 
5051 ena_txq_exit:
5052 	mutex_unlock(&pi->sched_lock);
5053 	return status;
5054 }
5055 
5056 /**
5057  * ice_dis_vsi_txq
5058  * @pi: port information structure
5059  * @vsi_handle: software VSI handle
5060  * @tc: TC number
5061  * @num_queues: number of queues
5062  * @q_handles: pointer to software queue handle array
5063  * @q_ids: pointer to the q_id array
5064  * @q_teids: pointer to queue node teids
5065  * @rst_src: if called due to reset, specifies the reset source
5066  * @vmvf_num: the relative VM or VF number that is undergoing the reset
5067  * @cd: pointer to command details structure or NULL
5068  *
5069  * This function removes queues and their corresponding nodes in SW DB
5070  */
5071 int
5072 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5073 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
5074 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
5075 		struct ice_sq_cd *cd)
5076 {
5077 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5078 	u16 i, buf_size = __struct_size(qg_list);
5079 	struct ice_q_ctx *q_ctx;
5080 	int status = -ENOENT;
5081 	struct ice_hw *hw;
5082 
5083 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5084 		return -EIO;
5085 
5086 	hw = pi->hw;
5087 
5088 	if (!num_queues) {
5089 		/* if queue is disabled already yet the disable queue command
5090 		 * has to be sent to complete the VF reset, then call
5091 		 * ice_aq_dis_lan_txq without any queue information
5092 		 */
5093 		if (rst_src)
5094 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5095 						  vmvf_num, NULL);
5096 		return -EIO;
5097 	}
5098 
5099 	mutex_lock(&pi->sched_lock);
5100 
5101 	for (i = 0; i < num_queues; i++) {
5102 		struct ice_sched_node *node;
5103 
5104 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5105 		if (!node)
5106 			continue;
5107 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5108 		if (!q_ctx) {
5109 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5110 				  q_handles[i]);
5111 			continue;
5112 		}
5113 		if (q_ctx->q_handle != q_handles[i]) {
5114 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5115 				  q_ctx->q_handle, q_handles[i]);
5116 			continue;
5117 		}
5118 		qg_list->parent_teid = node->info.parent_teid;
5119 		qg_list->num_qs = 1;
5120 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5121 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5122 					    vmvf_num, cd);
5123 
5124 		if (status)
5125 			break;
5126 		ice_free_sched_node(pi, node);
5127 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5128 		q_ctx->q_teid = ICE_INVAL_TEID;
5129 	}
5130 	mutex_unlock(&pi->sched_lock);
5131 	return status;
5132 }
5133 
5134 /**
5135  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5136  * @pi: port information structure
5137  * @vsi_handle: software VSI handle
5138  * @tc_bitmap: TC bitmap
5139  * @maxqs: max queues array per TC
5140  * @owner: LAN or RDMA
5141  *
5142  * This function adds/updates the VSI queues per TC.
5143  */
5144 static int
5145 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5146 	       u16 *maxqs, u8 owner)
5147 {
5148 	int status = 0;
5149 	u8 i;
5150 
5151 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5152 		return -EIO;
5153 
5154 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5155 		return -EINVAL;
5156 
5157 	mutex_lock(&pi->sched_lock);
5158 
5159 	ice_for_each_traffic_class(i) {
5160 		/* configuration is possible only if TC node is present */
5161 		if (!ice_sched_get_tc_node(pi, i))
5162 			continue;
5163 
5164 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5165 					   ice_is_tc_ena(tc_bitmap, i));
5166 		if (status)
5167 			break;
5168 	}
5169 
5170 	mutex_unlock(&pi->sched_lock);
5171 	return status;
5172 }
5173 
5174 /**
5175  * ice_cfg_vsi_lan - configure VSI LAN queues
5176  * @pi: port information structure
5177  * @vsi_handle: software VSI handle
5178  * @tc_bitmap: TC bitmap
5179  * @max_lanqs: max LAN queues array per TC
5180  *
5181  * This function adds/updates the VSI LAN queues per TC.
5182  */
5183 int
5184 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5185 		u16 *max_lanqs)
5186 {
5187 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5188 			      ICE_SCHED_NODE_OWNER_LAN);
5189 }
5190 
5191 /**
5192  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5193  * @pi: port information structure
5194  * @vsi_handle: software VSI handle
5195  * @tc_bitmap: TC bitmap
5196  * @max_rdmaqs: max RDMA queues array per TC
5197  *
5198  * This function adds/updates the VSI RDMA queues per TC.
5199  */
5200 int
5201 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5202 		 u16 *max_rdmaqs)
5203 {
5204 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5205 			      ICE_SCHED_NODE_OWNER_RDMA);
5206 }
5207 
5208 /**
5209  * ice_ena_vsi_rdma_qset
5210  * @pi: port information structure
5211  * @vsi_handle: software VSI handle
5212  * @tc: TC number
5213  * @rdma_qset: pointer to RDMA Qset
5214  * @num_qsets: number of RDMA Qsets
5215  * @qset_teid: pointer to Qset node TEIDs
5216  *
5217  * This function adds RDMA Qset
5218  */
5219 int
5220 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5221 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5222 {
5223 	struct ice_aqc_txsched_elem_data node = { 0 };
5224 	struct ice_aqc_add_rdma_qset_data *buf;
5225 	struct ice_sched_node *parent;
5226 	struct ice_hw *hw;
5227 	u16 i, buf_size;
5228 	int ret;
5229 
5230 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5231 		return -EIO;
5232 	hw = pi->hw;
5233 
5234 	if (!ice_is_vsi_valid(hw, vsi_handle))
5235 		return -EINVAL;
5236 
5237 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5238 	buf = kzalloc(buf_size, GFP_KERNEL);
5239 	if (!buf)
5240 		return -ENOMEM;
5241 	mutex_lock(&pi->sched_lock);
5242 
5243 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5244 					    ICE_SCHED_NODE_OWNER_RDMA);
5245 	if (!parent) {
5246 		ret = -EINVAL;
5247 		goto rdma_error_exit;
5248 	}
5249 	buf->parent_teid = parent->info.node_teid;
5250 	node.parent_teid = parent->info.node_teid;
5251 
5252 	buf->num_qsets = cpu_to_le16(num_qsets);
5253 	for (i = 0; i < num_qsets; i++) {
5254 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5255 		buf->rdma_qsets[i].info.valid_sections =
5256 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5257 			ICE_AQC_ELEM_VALID_EIR;
5258 		buf->rdma_qsets[i].info.generic = 0;
5259 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5260 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5261 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5262 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5263 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5264 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5265 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5266 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5267 	}
5268 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5269 	if (ret) {
5270 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5271 		goto rdma_error_exit;
5272 	}
5273 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5274 	for (i = 0; i < num_qsets; i++) {
5275 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5276 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5277 					 &node, NULL);
5278 		if (ret)
5279 			break;
5280 		qset_teid[i] = le32_to_cpu(node.node_teid);
5281 	}
5282 rdma_error_exit:
5283 	mutex_unlock(&pi->sched_lock);
5284 	kfree(buf);
5285 	return ret;
5286 }
5287 
5288 /**
5289  * ice_dis_vsi_rdma_qset - free RDMA resources
5290  * @pi: port_info struct
5291  * @count: number of RDMA Qsets to free
5292  * @qset_teid: TEID of Qset node
5293  * @q_id: list of queue IDs being disabled
5294  */
5295 int
5296 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5297 		      u16 *q_id)
5298 {
5299 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5300 	u16 qg_size = __struct_size(qg_list);
5301 	struct ice_hw *hw;
5302 	int status = 0;
5303 	int i;
5304 
5305 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5306 		return -EIO;
5307 
5308 	hw = pi->hw;
5309 
5310 	mutex_lock(&pi->sched_lock);
5311 
5312 	for (i = 0; i < count; i++) {
5313 		struct ice_sched_node *node;
5314 
5315 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5316 		if (!node)
5317 			continue;
5318 
5319 		qg_list->parent_teid = node->info.parent_teid;
5320 		qg_list->num_qs = 1;
5321 		qg_list->q_id[0] =
5322 			cpu_to_le16(q_id[i] |
5323 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5324 
5325 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5326 					    ICE_NO_RESET, 0, NULL);
5327 		if (status)
5328 			break;
5329 
5330 		ice_free_sched_node(pi, node);
5331 	}
5332 
5333 	mutex_unlock(&pi->sched_lock);
5334 	return status;
5335 }
5336 
5337 /**
5338  * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5339  * @hw: pointer to the HW struct
5340  * @dpll_idx: index of dpll to be measured
5341  * @meas: array to be filled with results
5342  * @meas_num: max number of results array can hold
5343  *
5344  * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5345  * pins on given dpll.
5346  *
5347  * Return: 0 on success or negative value on failure.
5348  */
5349 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5350 				     struct ice_cgu_input_measure *meas,
5351 				     u16 meas_num)
5352 {
5353 	struct ice_aqc_get_cgu_input_measure *cmd;
5354 	struct libie_aq_desc desc;
5355 
5356 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5357 	cmd = libie_aq_raw(&desc);
5358 	cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5359 
5360 	return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5361 }
5362 
5363 /**
5364  * ice_aq_get_cgu_abilities - get cgu abilities
5365  * @hw: pointer to the HW struct
5366  * @abilities: CGU abilities
5367  *
5368  * Get CGU abilities (0x0C61)
5369  * Return: 0 on success or negative value on failure.
5370  */
5371 int
5372 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5373 			 struct ice_aqc_get_cgu_abilities *abilities)
5374 {
5375 	struct libie_aq_desc desc;
5376 
5377 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5378 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5379 }
5380 
5381 /**
5382  * ice_aq_set_input_pin_cfg - set input pin config
5383  * @hw: pointer to the HW struct
5384  * @input_idx: Input index
5385  * @flags1: Input flags
5386  * @flags2: Input flags
5387  * @freq: Frequency in Hz
5388  * @phase_delay: Delay in ps
5389  *
5390  * Set CGU input config (0x0C62)
5391  * Return: 0 on success or negative value on failure.
5392  */
5393 int
5394 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5395 			 u32 freq, s32 phase_delay)
5396 {
5397 	struct ice_aqc_set_cgu_input_config *cmd;
5398 	struct libie_aq_desc desc;
5399 
5400 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5401 	cmd = libie_aq_raw(&desc);
5402 	cmd->input_idx = input_idx;
5403 	cmd->flags1 = flags1;
5404 	cmd->flags2 = flags2;
5405 	cmd->freq = cpu_to_le32(freq);
5406 	cmd->phase_delay = cpu_to_le32(phase_delay);
5407 
5408 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5409 }
5410 
5411 /**
5412  * ice_aq_get_input_pin_cfg - get input pin config
5413  * @hw: pointer to the HW struct
5414  * @input_idx: Input index
5415  * @status: Pin status
5416  * @type: Pin type
5417  * @flags1: Input flags
5418  * @flags2: Input flags
5419  * @freq: Frequency in Hz
5420  * @phase_delay: Delay in ps
5421  *
5422  * Get CGU input config (0x0C63)
5423  * Return: 0 on success or negative value on failure.
5424  */
5425 int
5426 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5427 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5428 {
5429 	struct ice_aqc_get_cgu_input_config *cmd;
5430 	struct libie_aq_desc desc;
5431 	int ret;
5432 
5433 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5434 	cmd = libie_aq_raw(&desc);
5435 	cmd->input_idx = input_idx;
5436 
5437 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5438 	if (!ret) {
5439 		if (status)
5440 			*status = cmd->status;
5441 		if (type)
5442 			*type = cmd->type;
5443 		if (flags1)
5444 			*flags1 = cmd->flags1;
5445 		if (flags2)
5446 			*flags2 = cmd->flags2;
5447 		if (freq)
5448 			*freq = le32_to_cpu(cmd->freq);
5449 		if (phase_delay)
5450 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5451 	}
5452 
5453 	return ret;
5454 }
5455 
5456 /**
5457  * ice_aq_set_output_pin_cfg - set output pin config
5458  * @hw: pointer to the HW struct
5459  * @output_idx: Output index
5460  * @flags: Output flags
5461  * @src_sel: Index of DPLL block
5462  * @freq: Output frequency
5463  * @phase_delay: Output phase compensation
5464  *
5465  * Set CGU output config (0x0C64)
5466  * Return: 0 on success or negative value on failure.
5467  */
5468 int
5469 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5470 			  u8 src_sel, u32 freq, s32 phase_delay)
5471 {
5472 	struct ice_aqc_set_cgu_output_config *cmd;
5473 	struct libie_aq_desc desc;
5474 
5475 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5476 	cmd = libie_aq_raw(&desc);
5477 	cmd->output_idx = output_idx;
5478 	cmd->flags = flags;
5479 	cmd->src_sel = src_sel;
5480 	cmd->freq = cpu_to_le32(freq);
5481 	cmd->phase_delay = cpu_to_le32(phase_delay);
5482 
5483 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5484 }
5485 
5486 /**
5487  * ice_aq_get_output_pin_cfg - get output pin config
5488  * @hw: pointer to the HW struct
5489  * @output_idx: Output index
5490  * @flags: Output flags
5491  * @src_sel: Internal DPLL source
5492  * @freq: Output frequency
5493  * @src_freq: Source frequency
5494  *
5495  * Get CGU output config (0x0C65)
5496  * Return: 0 on success or negative value on failure.
5497  */
5498 int
5499 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5500 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5501 {
5502 	struct ice_aqc_get_cgu_output_config *cmd;
5503 	struct libie_aq_desc desc;
5504 	int ret;
5505 
5506 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5507 	cmd = libie_aq_raw(&desc);
5508 	cmd->output_idx = output_idx;
5509 
5510 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5511 	if (!ret) {
5512 		if (flags)
5513 			*flags = cmd->flags;
5514 		if (src_sel)
5515 			*src_sel = cmd->src_sel;
5516 		if (freq)
5517 			*freq = le32_to_cpu(cmd->freq);
5518 		if (src_freq)
5519 			*src_freq = le32_to_cpu(cmd->src_freq);
5520 	}
5521 
5522 	return ret;
5523 }
5524 
5525 /**
5526  * ice_aq_get_cgu_dpll_status - get dpll status
5527  * @hw: pointer to the HW struct
5528  * @dpll_num: DPLL index
5529  * @ref_state: Reference clock state
5530  * @config: current DPLL config
5531  * @dpll_state: current DPLL state
5532  * @phase_offset: Phase offset in ns
5533  * @eec_mode: EEC_mode
5534  *
5535  * Get CGU DPLL status (0x0C66)
5536  * Return: 0 on success or negative value on failure.
5537  */
5538 int
5539 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5540 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5541 			   u8 *eec_mode)
5542 {
5543 	struct ice_aqc_get_cgu_dpll_status *cmd;
5544 	struct libie_aq_desc desc;
5545 	int status;
5546 
5547 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5548 	cmd = libie_aq_raw(&desc);
5549 	cmd->dpll_num = dpll_num;
5550 
5551 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5552 	if (!status) {
5553 		*ref_state = cmd->ref_state;
5554 		*dpll_state = cmd->dpll_state;
5555 		*config = cmd->config;
5556 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5557 		*phase_offset <<= 32;
5558 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5559 		*phase_offset = sign_extend64(*phase_offset, 47);
5560 		*eec_mode = cmd->eec_mode;
5561 	}
5562 
5563 	return status;
5564 }
5565 
5566 /**
5567  * ice_aq_set_cgu_dpll_config - set dpll config
5568  * @hw: pointer to the HW struct
5569  * @dpll_num: DPLL index
5570  * @ref_state: Reference clock state
5571  * @config: DPLL config
5572  * @eec_mode: EEC mode
5573  *
5574  * Set CGU DPLL config (0x0C67)
5575  * Return: 0 on success or negative value on failure.
5576  */
5577 int
5578 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5579 			   u8 config, u8 eec_mode)
5580 {
5581 	struct ice_aqc_set_cgu_dpll_config *cmd;
5582 	struct libie_aq_desc desc;
5583 
5584 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5585 	cmd = libie_aq_raw(&desc);
5586 	cmd->dpll_num = dpll_num;
5587 	cmd->ref_state = ref_state;
5588 	cmd->config = config;
5589 	cmd->eec_mode = eec_mode;
5590 
5591 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5592 }
5593 
5594 /**
5595  * ice_aq_set_cgu_ref_prio - set input reference priority
5596  * @hw: pointer to the HW struct
5597  * @dpll_num: DPLL index
5598  * @ref_idx: Reference pin index
5599  * @ref_priority: Reference input priority
5600  *
5601  * Set CGU reference priority (0x0C68)
5602  * Return: 0 on success or negative value on failure.
5603  */
5604 int
5605 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5606 			u8 ref_priority)
5607 {
5608 	struct ice_aqc_set_cgu_ref_prio *cmd;
5609 	struct libie_aq_desc desc;
5610 
5611 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5612 	cmd = libie_aq_raw(&desc);
5613 	cmd->dpll_num = dpll_num;
5614 	cmd->ref_idx = ref_idx;
5615 	cmd->ref_priority = ref_priority;
5616 
5617 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5618 }
5619 
5620 /**
5621  * ice_aq_get_cgu_ref_prio - get input reference priority
5622  * @hw: pointer to the HW struct
5623  * @dpll_num: DPLL index
5624  * @ref_idx: Reference pin index
5625  * @ref_prio: Reference input priority
5626  *
5627  * Get CGU reference priority (0x0C69)
5628  * Return: 0 on success or negative value on failure.
5629  */
5630 int
5631 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5632 			u8 *ref_prio)
5633 {
5634 	struct ice_aqc_get_cgu_ref_prio *cmd;
5635 	struct libie_aq_desc desc;
5636 	int status;
5637 
5638 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5639 	cmd = libie_aq_raw(&desc);
5640 	cmd->dpll_num = dpll_num;
5641 	cmd->ref_idx = ref_idx;
5642 
5643 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5644 	if (!status)
5645 		*ref_prio = cmd->ref_priority;
5646 
5647 	return status;
5648 }
5649 
5650 /**
5651  * ice_aq_get_cgu_info - get cgu info
5652  * @hw: pointer to the HW struct
5653  * @cgu_id: CGU ID
5654  * @cgu_cfg_ver: CGU config version
5655  * @cgu_fw_ver: CGU firmware version
5656  *
5657  * Get CGU info (0x0C6A)
5658  * Return: 0 on success or negative value on failure.
5659  */
5660 int
5661 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5662 		    u32 *cgu_fw_ver)
5663 {
5664 	struct ice_aqc_get_cgu_info *cmd;
5665 	struct libie_aq_desc desc;
5666 	int status;
5667 
5668 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5669 	cmd = libie_aq_raw(&desc);
5670 
5671 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5672 	if (!status) {
5673 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5674 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5675 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5676 	}
5677 
5678 	return status;
5679 }
5680 
5681 /**
5682  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5683  * @hw: pointer to the HW struct
5684  * @phy_output: PHY reference clock output pin
5685  * @enable: GPIO state to be applied
5686  * @freq: PHY output frequency
5687  *
5688  * Set phy recovered clock as reference (0x0630)
5689  * Return: 0 on success or negative value on failure.
5690  */
5691 int
5692 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5693 			   u32 *freq)
5694 {
5695 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5696 	struct libie_aq_desc desc;
5697 	int status;
5698 
5699 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5700 	cmd = libie_aq_raw(&desc);
5701 	cmd->phy_output = phy_output;
5702 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5703 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5704 	cmd->freq = cpu_to_le32(*freq);
5705 
5706 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5707 	if (!status)
5708 		*freq = le32_to_cpu(cmd->freq);
5709 
5710 	return status;
5711 }
5712 
5713 /**
5714  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5715  * @hw: pointer to the HW struct
5716  * @phy_output: PHY reference clock output pin
5717  * @port_num: Port number
5718  * @flags: PHY flags
5719  * @node_handle: PHY output frequency
5720  *
5721  * Get PHY recovered clock output info (0x0631)
5722  * Return: 0 on success or negative value on failure.
5723  */
5724 int
5725 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5726 			   u8 *flags, u16 *node_handle)
5727 {
5728 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5729 	struct libie_aq_desc desc;
5730 	int status;
5731 
5732 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5733 	cmd = libie_aq_raw(&desc);
5734 	cmd->phy_output = *phy_output;
5735 
5736 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5737 	if (!status) {
5738 		*phy_output = cmd->phy_output;
5739 		if (port_num)
5740 			*port_num = cmd->port_num;
5741 		if (flags)
5742 			*flags = cmd->flags;
5743 		if (node_handle)
5744 			*node_handle = le16_to_cpu(cmd->node_handle);
5745 	}
5746 
5747 	return status;
5748 }
5749 
5750 /**
5751  * ice_aq_get_sensor_reading
5752  * @hw: pointer to the HW struct
5753  * @data: pointer to data to be read from the sensor
5754  *
5755  * Get sensor reading (0x0632)
5756  */
5757 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5758 			      struct ice_aqc_get_sensor_reading_resp *data)
5759 {
5760 	struct ice_aqc_get_sensor_reading *cmd;
5761 	struct libie_aq_desc desc;
5762 	int status;
5763 
5764 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5765 	cmd = libie_aq_raw(&desc);
5766 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5767 #define ICE_INTERNAL_TEMP_SENSOR	0
5768 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5769 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5770 
5771 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5772 	if (!status)
5773 		memcpy(data, &desc.params.raw,
5774 		       sizeof(*data));
5775 
5776 	return status;
5777 }
5778 
5779 /**
5780  * ice_replay_pre_init - replay pre initialization
5781  * @hw: pointer to the HW struct
5782  *
5783  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5784  */
5785 static int ice_replay_pre_init(struct ice_hw *hw)
5786 {
5787 	struct ice_switch_info *sw = hw->switch_info;
5788 	u8 i;
5789 
5790 	/* Delete old entries from replay filter list head if there is any */
5791 	ice_rm_all_sw_replay_rule_info(hw);
5792 	/* In start of replay, move entries into replay_rules list, it
5793 	 * will allow adding rules entries back to filt_rules list,
5794 	 * which is operational list.
5795 	 */
5796 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5797 		list_replace_init(&sw->recp_list[i].filt_rules,
5798 				  &sw->recp_list[i].filt_replay_rules);
5799 	ice_sched_replay_agg_vsi_preinit(hw);
5800 
5801 	return 0;
5802 }
5803 
5804 /**
5805  * ice_replay_vsi - replay VSI configuration
5806  * @hw: pointer to the HW struct
5807  * @vsi_handle: driver VSI handle
5808  *
5809  * Restore all VSI configuration after reset. It is required to call this
5810  * function with main VSI first.
5811  */
5812 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5813 {
5814 	int status;
5815 
5816 	if (!ice_is_vsi_valid(hw, vsi_handle))
5817 		return -EINVAL;
5818 
5819 	/* Replay pre-initialization if there is any */
5820 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5821 		status = ice_replay_pre_init(hw);
5822 		if (status)
5823 			return status;
5824 	}
5825 	/* Replay per VSI all RSS configurations */
5826 	status = ice_replay_rss_cfg(hw, vsi_handle);
5827 	if (status)
5828 		return status;
5829 	/* Replay per VSI all filters */
5830 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5831 	if (!status)
5832 		status = ice_replay_vsi_agg(hw, vsi_handle);
5833 	return status;
5834 }
5835 
5836 /**
5837  * ice_replay_post - post replay configuration cleanup
5838  * @hw: pointer to the HW struct
5839  *
5840  * Post replay cleanup.
5841  */
5842 void ice_replay_post(struct ice_hw *hw)
5843 {
5844 	/* Delete old entries from replay filter list head */
5845 	ice_rm_all_sw_replay_rule_info(hw);
5846 	ice_sched_replay_agg(hw);
5847 }
5848 
5849 /**
5850  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5851  * @hw: ptr to the hardware info
5852  * @reg: offset of 64 bit HW register to read from
5853  * @prev_stat_loaded: bool to specify if previous stats are loaded
5854  * @prev_stat: ptr to previous loaded stat value
5855  * @cur_stat: ptr to current stat value
5856  */
5857 void
5858 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5859 		  u64 *prev_stat, u64 *cur_stat)
5860 {
5861 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5862 
5863 	/* device stats are not reset at PFR, they likely will not be zeroed
5864 	 * when the driver starts. Thus, save the value from the first read
5865 	 * without adding to the statistic value so that we report stats which
5866 	 * count up from zero.
5867 	 */
5868 	if (!prev_stat_loaded) {
5869 		*prev_stat = new_data;
5870 		return;
5871 	}
5872 
5873 	/* Calculate the difference between the new and old values, and then
5874 	 * add it to the software stat value.
5875 	 */
5876 	if (new_data >= *prev_stat)
5877 		*cur_stat += new_data - *prev_stat;
5878 	else
5879 		/* to manage the potential roll-over */
5880 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5881 
5882 	/* Update the previously stored value to prepare for next read */
5883 	*prev_stat = new_data;
5884 }
5885 
5886 /**
5887  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5888  * @hw: ptr to the hardware info
5889  * @reg: offset of HW register to read from
5890  * @prev_stat_loaded: bool to specify if previous stats are loaded
5891  * @prev_stat: ptr to previous loaded stat value
5892  * @cur_stat: ptr to current stat value
5893  */
5894 void
5895 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5896 		  u64 *prev_stat, u64 *cur_stat)
5897 {
5898 	u32 new_data;
5899 
5900 	new_data = rd32(hw, reg);
5901 
5902 	/* device stats are not reset at PFR, they likely will not be zeroed
5903 	 * when the driver starts. Thus, save the value from the first read
5904 	 * without adding to the statistic value so that we report stats which
5905 	 * count up from zero.
5906 	 */
5907 	if (!prev_stat_loaded) {
5908 		*prev_stat = new_data;
5909 		return;
5910 	}
5911 
5912 	/* Calculate the difference between the new and old values, and then
5913 	 * add it to the software stat value.
5914 	 */
5915 	if (new_data >= *prev_stat)
5916 		*cur_stat += new_data - *prev_stat;
5917 	else
5918 		/* to manage the potential roll-over */
5919 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5920 
5921 	/* Update the previously stored value to prepare for next read */
5922 	*prev_stat = new_data;
5923 }
5924 
5925 /**
5926  * ice_sched_query_elem - query element information from HW
5927  * @hw: pointer to the HW struct
5928  * @node_teid: node TEID to be queried
5929  * @buf: buffer to element information
5930  *
5931  * This function queries HW element information
5932  */
5933 int
5934 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5935 		     struct ice_aqc_txsched_elem_data *buf)
5936 {
5937 	u16 buf_size, num_elem_ret = 0;
5938 	int status;
5939 
5940 	buf_size = sizeof(*buf);
5941 	memset(buf, 0, buf_size);
5942 	buf->node_teid = cpu_to_le32(node_teid);
5943 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5944 					  NULL);
5945 	if (status || num_elem_ret != 1)
5946 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5947 	return status;
5948 }
5949 
5950 /**
5951  * ice_aq_read_i2c
5952  * @hw: pointer to the hw struct
5953  * @topo_addr: topology address for a device to communicate with
5954  * @bus_addr: 7-bit I2C bus address
5955  * @addr: I2C memory address (I2C offset) with up to 16 bits
5956  * @params: I2C parameters: bit [7] - Repeated start,
5957  *			    bits [6:5] data offset size,
5958  *			    bit [4] - I2C address type,
5959  *			    bits [3:0] - data size to read (0-16 bytes)
5960  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5961  * @cd: pointer to command details structure or NULL
5962  *
5963  * Read I2C (0x06E2)
5964  */
5965 int
5966 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5967 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5968 		struct ice_sq_cd *cd)
5969 {
5970 	struct libie_aq_desc desc = { 0 };
5971 	struct ice_aqc_i2c *cmd;
5972 	u8 data_size;
5973 	int status;
5974 
5975 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5976 	cmd = libie_aq_raw(&desc);
5977 
5978 	if (!data)
5979 		return -EINVAL;
5980 
5981 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5982 
5983 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5984 	cmd->topo_addr = topo_addr;
5985 	cmd->i2c_params = params;
5986 	cmd->i2c_addr = addr;
5987 
5988 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5989 	if (!status) {
5990 		struct ice_aqc_read_i2c_resp *resp;
5991 		u8 i;
5992 
5993 		resp = libie_aq_raw(&desc);
5994 		for (i = 0; i < data_size; i++) {
5995 			*data = resp->i2c_data[i];
5996 			data++;
5997 		}
5998 	}
5999 
6000 	return status;
6001 }
6002 
6003 /**
6004  * ice_aq_write_i2c
6005  * @hw: pointer to the hw struct
6006  * @topo_addr: topology address for a device to communicate with
6007  * @bus_addr: 7-bit I2C bus address
6008  * @addr: I2C memory address (I2C offset) with up to 16 bits
6009  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6010  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6011  * @cd: pointer to command details structure or NULL
6012  *
6013  * Write I2C (0x06E3)
6014  *
6015  * * Return:
6016  * * 0             - Successful write to the i2c device
6017  * * -EINVAL       - Data size greater than 4 bytes
6018  * * -EIO          - FW error
6019  */
6020 int
6021 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6022 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6023 		 struct ice_sq_cd *cd)
6024 {
6025 	struct libie_aq_desc desc = { 0 };
6026 	struct ice_aqc_i2c *cmd;
6027 	u8 data_size;
6028 
6029 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6030 	cmd = libie_aq_raw(&desc);
6031 
6032 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
6033 
6034 	/* data_size limited to 4 */
6035 	if (data_size > 4)
6036 		return -EINVAL;
6037 
6038 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
6039 	cmd->topo_addr = topo_addr;
6040 	cmd->i2c_params = params;
6041 	cmd->i2c_addr = addr;
6042 
6043 	memcpy(cmd->i2c_data, data, data_size);
6044 
6045 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6046 }
6047 
6048 /**
6049  * ice_get_pca9575_handle - find and return the PCA9575 controller
6050  * @hw: pointer to the hw struct
6051  * @pca9575_handle: GPIO controller's handle
6052  *
6053  * Find and return the GPIO controller's handle in the netlist.
6054  * When found - the value will be cached in the hw structure and following calls
6055  * will return cached value.
6056  *
6057  * Return: 0 on success, -ENXIO when there's no PCA9575 present.
6058  */
6059 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
6060 {
6061 	struct ice_aqc_get_link_topo *cmd;
6062 	struct libie_aq_desc desc;
6063 	int err;
6064 	u8 idx;
6065 
6066 	/* If handle was read previously return cached value */
6067 	if (hw->io_expander_handle) {
6068 		*pca9575_handle = hw->io_expander_handle;
6069 		return 0;
6070 	}
6071 
6072 #define SW_PCA9575_SFP_TOPO_IDX		2
6073 #define SW_PCA9575_QSFP_TOPO_IDX	1
6074 
6075 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
6076 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
6077 		idx = SW_PCA9575_SFP_TOPO_IDX;
6078 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
6079 		idx = SW_PCA9575_QSFP_TOPO_IDX;
6080 	else
6081 		return -ENXIO;
6082 
6083 	/* If handle was not detected read it from the netlist */
6084 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
6085 	cmd = libie_aq_raw(&desc);
6086 	cmd->addr.topo_params.node_type_ctx =
6087 		ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
6088 	cmd->addr.topo_params.index = idx;
6089 
6090 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6091 	if (err)
6092 		return -ENXIO;
6093 
6094 	/* Verify if we found the right IO expander type */
6095 	if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
6096 		return -ENXIO;
6097 
6098 	/* If present save the handle and return it */
6099 	hw->io_expander_handle =
6100 		le16_to_cpu(cmd->addr.handle);
6101 	*pca9575_handle = hw->io_expander_handle;
6102 
6103 	return 0;
6104 }
6105 
6106 /**
6107  * ice_read_pca9575_reg - read the register from the PCA9575 controller
6108  * @hw: pointer to the hw struct
6109  * @offset: GPIO controller register offset
6110  * @data: pointer to data to be read from the GPIO controller
6111  *
6112  * Return: 0 on success, negative error code otherwise.
6113  */
6114 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
6115 {
6116 	struct ice_aqc_link_topo_addr link_topo;
6117 	__le16 addr;
6118 	u16 handle;
6119 	int err;
6120 
6121 	memset(&link_topo, 0, sizeof(link_topo));
6122 
6123 	err = ice_get_pca9575_handle(hw, &handle);
6124 	if (err)
6125 		return err;
6126 
6127 	link_topo.handle = cpu_to_le16(handle);
6128 	link_topo.topo_params.node_type_ctx =
6129 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6130 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6131 
6132 	addr = cpu_to_le16((u16)offset);
6133 
6134 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6135 }
6136 
6137 /**
6138  * ice_aq_set_gpio
6139  * @hw: pointer to the hw struct
6140  * @gpio_ctrl_handle: GPIO controller node handle
6141  * @pin_idx: IO Number of the GPIO that needs to be set
6142  * @value: SW provide IO value to set in the LSB
6143  * @cd: pointer to command details structure or NULL
6144  *
6145  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6146  */
6147 int
6148 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6149 		struct ice_sq_cd *cd)
6150 {
6151 	struct libie_aq_desc desc;
6152 	struct ice_aqc_gpio *cmd;
6153 
6154 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6155 	cmd = libie_aq_raw(&desc);
6156 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6157 	cmd->gpio_num = pin_idx;
6158 	cmd->gpio_val = value ? 1 : 0;
6159 
6160 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6161 }
6162 
6163 /**
6164  * ice_aq_get_gpio
6165  * @hw: pointer to the hw struct
6166  * @gpio_ctrl_handle: GPIO controller node handle
6167  * @pin_idx: IO Number of the GPIO that needs to be set
6168  * @value: IO value read
6169  * @cd: pointer to command details structure or NULL
6170  *
6171  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6172  * the topology
6173  */
6174 int
6175 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6176 		bool *value, struct ice_sq_cd *cd)
6177 {
6178 	struct libie_aq_desc desc;
6179 	struct ice_aqc_gpio *cmd;
6180 	int status;
6181 
6182 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6183 	cmd = libie_aq_raw(&desc);
6184 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6185 	cmd->gpio_num = pin_idx;
6186 
6187 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6188 	if (status)
6189 		return status;
6190 
6191 	*value = !!cmd->gpio_val;
6192 	return 0;
6193 }
6194 
6195 /**
6196  * ice_is_fw_api_min_ver
6197  * @hw: pointer to the hardware structure
6198  * @maj: major version
6199  * @min: minor version
6200  * @patch: patch version
6201  *
6202  * Checks if the firmware API is minimum version
6203  */
6204 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6205 {
6206 	if (hw->api_maj_ver == maj) {
6207 		if (hw->api_min_ver > min)
6208 			return true;
6209 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6210 			return true;
6211 	} else if (hw->api_maj_ver > maj) {
6212 		return true;
6213 	}
6214 
6215 	return false;
6216 }
6217 
6218 /**
6219  * ice_fw_supports_link_override
6220  * @hw: pointer to the hardware structure
6221  *
6222  * Checks if the firmware supports link override
6223  */
6224 bool ice_fw_supports_link_override(struct ice_hw *hw)
6225 {
6226 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6227 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6228 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6229 }
6230 
6231 /**
6232  * ice_get_link_default_override
6233  * @ldo: pointer to the link default override struct
6234  * @pi: pointer to the port info struct
6235  *
6236  * Gets the link default override for a port
6237  */
6238 int
6239 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6240 			      struct ice_port_info *pi)
6241 {
6242 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6243 	struct ice_hw *hw = pi->hw;
6244 	int status;
6245 
6246 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6247 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6248 	if (status) {
6249 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6250 		return status;
6251 	}
6252 
6253 	/* Each port has its own config; calculate for our port */
6254 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6255 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6256 
6257 	/* link options first */
6258 	status = ice_read_sr_word(hw, tlv_start, &buf);
6259 	if (status) {
6260 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6261 		return status;
6262 	}
6263 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6264 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6265 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6266 
6267 	/* link PHY config */
6268 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6269 	status = ice_read_sr_word(hw, offset, &buf);
6270 	if (status) {
6271 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6272 		return status;
6273 	}
6274 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6275 
6276 	/* PHY types low */
6277 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6278 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6279 		status = ice_read_sr_word(hw, (offset + i), &buf);
6280 		if (status) {
6281 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6282 			return status;
6283 		}
6284 		/* shift 16 bits at a time to fill 64 bits */
6285 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6286 	}
6287 
6288 	/* PHY types high */
6289 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6290 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6291 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6292 		status = ice_read_sr_word(hw, (offset + i), &buf);
6293 		if (status) {
6294 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6295 			return status;
6296 		}
6297 		/* shift 16 bits at a time to fill 64 bits */
6298 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6299 	}
6300 
6301 	return status;
6302 }
6303 
6304 /**
6305  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6306  * @caps: get PHY capability data
6307  */
6308 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6309 {
6310 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6311 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6312 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6313 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6314 		return true;
6315 
6316 	return false;
6317 }
6318 
6319 /**
6320  * ice_is_fw_health_report_supported - checks if firmware supports health events
6321  * @hw: pointer to the hardware structure
6322  *
6323  * Return: true if firmware supports health status reports,
6324  * false otherwise
6325  */
6326 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6327 {
6328 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6329 				     ICE_FW_API_HEALTH_REPORT_MIN,
6330 				     ICE_FW_API_HEALTH_REPORT_PATCH);
6331 }
6332 
6333 /**
6334  * ice_aq_set_health_status_cfg - Configure FW health events
6335  * @hw: pointer to the HW struct
6336  * @event_source: type of diagnostic events to enable
6337  *
6338  * Configure the health status event types that the firmware will send to this
6339  * PF. The supported event types are: PF-specific, all PFs, and global.
6340  *
6341  * Return: 0 on success, negative error code otherwise.
6342  */
6343 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6344 {
6345 	struct ice_aqc_set_health_status_cfg *cmd;
6346 	struct libie_aq_desc desc;
6347 
6348 	cmd = libie_aq_raw(&desc);
6349 
6350 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6351 
6352 	cmd->event_source = event_source;
6353 
6354 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6355 }
6356 
6357 /**
6358  * ice_aq_set_lldp_mib - Set the LLDP MIB
6359  * @hw: pointer to the HW struct
6360  * @mib_type: Local, Remote or both Local and Remote MIBs
6361  * @buf: pointer to the caller-supplied buffer to store the MIB block
6362  * @buf_size: size of the buffer (in bytes)
6363  * @cd: pointer to command details structure or NULL
6364  *
6365  * Set the LLDP MIB. (0x0A08)
6366  */
6367 int
6368 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6369 		    struct ice_sq_cd *cd)
6370 {
6371 	struct ice_aqc_lldp_set_local_mib *cmd;
6372 	struct libie_aq_desc desc;
6373 
6374 	cmd = libie_aq_raw(&desc);
6375 
6376 	if (buf_size == 0 || !buf)
6377 		return -EINVAL;
6378 
6379 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6380 
6381 	desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6382 	desc.datalen = cpu_to_le16(buf_size);
6383 
6384 	cmd->type = mib_type;
6385 	cmd->length = cpu_to_le16(buf_size);
6386 
6387 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6388 }
6389 
6390 /**
6391  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6392  * @hw: pointer to HW struct
6393  */
6394 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6395 {
6396 	if (hw->mac_type != ICE_MAC_E810)
6397 		return false;
6398 
6399 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6400 				     ICE_FW_API_LLDP_FLTR_MIN,
6401 				     ICE_FW_API_LLDP_FLTR_PATCH);
6402 }
6403 
6404 /**
6405  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6406  * @hw: pointer to HW struct
6407  * @vsi: VSI to add the filter to
6408  * @add: boolean for if adding or removing a filter
6409  *
6410  * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6411  *	   with this HW or VSI, otherwise an error corresponding to
6412  *	   the AQ transaction result.
6413  */
6414 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6415 {
6416 	struct ice_aqc_lldp_filter_ctrl *cmd;
6417 	struct libie_aq_desc desc;
6418 
6419 	if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6420 		return -EOPNOTSUPP;
6421 
6422 	cmd = libie_aq_raw(&desc);
6423 
6424 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6425 
6426 	if (add)
6427 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6428 	else
6429 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6430 
6431 	cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6432 
6433 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6434 }
6435 
6436 /**
6437  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6438  * @hw: pointer to HW struct
6439  */
6440 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6441 {
6442 	struct libie_aq_desc desc;
6443 
6444 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6445 
6446 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6447 }
6448 
6449 /**
6450  * ice_fw_supports_report_dflt_cfg
6451  * @hw: pointer to the hardware structure
6452  *
6453  * Checks if the firmware supports report default configuration
6454  */
6455 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6456 {
6457 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6458 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6459 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6460 }
6461 
6462 /* each of the indexes into the following array match the speed of a return
6463  * value from the list of AQ returned speeds like the range:
6464  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6465  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6466  * array. The array is defined as 15 elements long because the link_speed
6467  * returned by the firmware is a 16 bit * value, but is indexed
6468  * by [fls(speed) - 1]
6469  */
6470 static const u32 ice_aq_to_link_speed[] = {
6471 	SPEED_10,	/* BIT(0) */
6472 	SPEED_100,
6473 	SPEED_1000,
6474 	SPEED_2500,
6475 	SPEED_5000,
6476 	SPEED_10000,
6477 	SPEED_20000,
6478 	SPEED_25000,
6479 	SPEED_40000,
6480 	SPEED_50000,
6481 	SPEED_100000,	/* BIT(10) */
6482 	SPEED_200000,
6483 };
6484 
6485 /**
6486  * ice_get_link_speed - get integer speed from table
6487  * @index: array index from fls(aq speed) - 1
6488  *
6489  * Returns: u32 value containing integer speed
6490  */
6491 u32 ice_get_link_speed(u16 index)
6492 {
6493 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6494 		return 0;
6495 
6496 	return ice_aq_to_link_speed[index];
6497 }
6498 
6499 /**
6500  * ice_read_cgu_reg - Read a CGU register
6501  * @hw: Pointer to the HW struct
6502  * @addr: Register address to read
6503  * @val: Storage for register value read
6504  *
6505  * Read the contents of a register of the Clock Generation Unit. Only
6506  * applicable to E82X devices.
6507  *
6508  * Return: 0 on success, other error codes when failed to read from CGU.
6509  */
6510 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6511 {
6512 	struct ice_sbq_msg_input cgu_msg = {
6513 		.opcode = ice_sbq_msg_rd,
6514 		.dest_dev = ice_sbq_dev_cgu,
6515 		.msg_addr_low = addr
6516 	};
6517 	int err;
6518 
6519 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6520 	if (err) {
6521 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6522 			  addr, err);
6523 		return err;
6524 	}
6525 
6526 	*val = cgu_msg.data;
6527 
6528 	return 0;
6529 }
6530 
6531 /**
6532  * ice_write_cgu_reg - Write a CGU register
6533  * @hw: Pointer to the HW struct
6534  * @addr: Register address to write
6535  * @val: Value to write into the register
6536  *
6537  * Write the specified value to a register of the Clock Generation Unit. Only
6538  * applicable to E82X devices.
6539  *
6540  * Return: 0 on success, other error codes when failed to write to CGU.
6541  */
6542 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6543 {
6544 	struct ice_sbq_msg_input cgu_msg = {
6545 		.opcode = ice_sbq_msg_wr,
6546 		.dest_dev = ice_sbq_dev_cgu,
6547 		.msg_addr_low = addr,
6548 		.data = val
6549 	};
6550 	int err;
6551 
6552 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6553 	if (err)
6554 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6555 			  addr, err);
6556 
6557 	return err;
6558 }
6559