1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 #include "ice_sriov.h" 9 10 /** 11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 13 * 14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 15 */ 16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 17 { 18 unsigned int offset, i; 19 20 mutex_lock(qs_cfg->qs_mutex); 21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 22 0, qs_cfg->q_count, 0); 23 if (offset >= qs_cfg->pf_map_size) { 24 mutex_unlock(qs_cfg->qs_mutex); 25 return -ENOMEM; 26 } 27 28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 29 for (i = 0; i < qs_cfg->q_count; i++) 30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 31 mutex_unlock(qs_cfg->qs_mutex); 32 33 return 0; 34 } 35 36 /** 37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 39 * 40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 41 */ 42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 43 { 44 unsigned int i, index = 0; 45 46 mutex_lock(qs_cfg->qs_mutex); 47 for (i = 0; i < qs_cfg->q_count; i++) { 48 index = find_next_zero_bit(qs_cfg->pf_map, 49 qs_cfg->pf_map_size, index); 50 if (index >= qs_cfg->pf_map_size) 51 goto err_scatter; 52 set_bit(index, qs_cfg->pf_map); 53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 54 } 55 mutex_unlock(qs_cfg->qs_mutex); 56 57 return 0; 58 err_scatter: 59 for (index = 0; index < i; index++) { 60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 62 } 63 mutex_unlock(qs_cfg->qs_mutex); 64 65 return -ENOMEM; 66 } 67 68 /** 69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 70 * @pf: the PF being configured 71 * @pf_q: the PF queue 72 * @ena: enable or disable state of the queue 73 * 74 * This routine will wait for the given Rx queue of the PF to reach the 75 * enabled or disabled state. 76 * Returns -ETIMEDOUT in case of failing to reach the requested state after 77 * multiple retries; else will return 0 in case of success. 78 */ 79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 80 { 81 int i; 82 83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 85 QRX_CTRL_QENA_STAT_M)) 86 return 0; 87 88 usleep_range(20, 40); 89 } 90 91 return -ETIMEDOUT; 92 } 93 94 /** 95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 96 * @vsi: the VSI being configured 97 * @v_idx: index of the vector in the VSI struct 98 * 99 * We allocate one q_vector and set default value for ITR setting associated 100 * with this q_vector. If allocation fails we return -ENOMEM. 101 */ 102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 103 { 104 struct ice_pf *pf = vsi->back; 105 struct ice_q_vector *q_vector; 106 int err; 107 108 /* allocate q_vector */ 109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); 110 if (!q_vector) 111 return -ENOMEM; 112 113 q_vector->vsi = vsi; 114 q_vector->v_idx = v_idx; 115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 117 q_vector->tx.itr_mode = ITR_DYNAMIC; 118 q_vector->rx.itr_mode = ITR_DYNAMIC; 119 q_vector->tx.type = ICE_TX_CONTAINER; 120 q_vector->rx.type = ICE_RX_CONTAINER; 121 q_vector->irq.index = -ENOENT; 122 123 if (vsi->type == ICE_VSI_VF) { 124 ice_calc_vf_reg_idx(vsi->vf, q_vector); 125 goto out; 126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { 127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); 128 129 if (ctrl_vsi) { 130 if (unlikely(!ctrl_vsi->q_vectors)) { 131 err = -ENOENT; 132 goto err_free_q_vector; 133 } 134 135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq; 136 goto skip_alloc; 137 } 138 } 139 140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); 141 if (q_vector->irq.index < 0) { 142 err = -ENOMEM; 143 goto err_free_q_vector; 144 } 145 146 skip_alloc: 147 q_vector->reg_idx = q_vector->irq.index; 148 q_vector->vf_reg_idx = q_vector->irq.index; 149 150 /* only set affinity_mask if the CPU is online */ 151 if (cpu_online(v_idx)) 152 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 153 154 /* This will not be called in the driver load path because the netdev 155 * will not be created yet. All other cases with register the NAPI 156 * handler here (i.e. resume, reset/rebuild, etc.) 157 */ 158 if (vsi->netdev) 159 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); 160 161 out: 162 /* tie q_vector and VSI together */ 163 vsi->q_vectors[v_idx] = q_vector; 164 165 return 0; 166 167 err_free_q_vector: 168 kfree(q_vector); 169 170 return err; 171 } 172 173 /** 174 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 175 * @vsi: VSI having the memory freed 176 * @v_idx: index of the vector to be freed 177 */ 178 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 179 { 180 struct ice_q_vector *q_vector; 181 struct ice_pf *pf = vsi->back; 182 struct ice_tx_ring *tx_ring; 183 struct ice_rx_ring *rx_ring; 184 struct device *dev; 185 186 dev = ice_pf_to_dev(pf); 187 if (!vsi->q_vectors[v_idx]) { 188 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 189 return; 190 } 191 q_vector = vsi->q_vectors[v_idx]; 192 193 ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx) 194 tx_ring->q_vector = NULL; 195 196 ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx) 197 rx_ring->q_vector = NULL; 198 199 /* only VSI with an associated netdev is set up with NAPI */ 200 if (vsi->netdev) 201 netif_napi_del(&q_vector->napi); 202 203 /* release MSIX interrupt if q_vector had interrupt allocated */ 204 if (q_vector->irq.index < 0) 205 goto free_q_vector; 206 207 /* only free last VF ctrl vsi interrupt */ 208 if (vsi->type == ICE_VSI_CTRL && vsi->vf && 209 ice_get_vf_ctrl_vsi(pf, vsi)) 210 goto free_q_vector; 211 212 ice_free_irq(pf, q_vector->irq); 213 214 free_q_vector: 215 kfree(q_vector); 216 vsi->q_vectors[v_idx] = NULL; 217 } 218 219 /** 220 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 221 * @hw: board specific structure 222 */ 223 static void ice_cfg_itr_gran(struct ice_hw *hw) 224 { 225 u32 regval = rd32(hw, GLINT_CTL); 226 227 /* no need to update global register if ITR gran is already set */ 228 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 229 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) && 230 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) && 231 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) && 232 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US)) 233 return; 234 235 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) | 236 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) | 237 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) | 238 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US); 239 wr32(hw, GLINT_CTL, regval); 240 } 241 242 /** 243 * ice_calc_txq_handle - calculate the queue handle 244 * @vsi: VSI that ring belongs to 245 * @ring: ring to get the absolute queue index 246 * @tc: traffic class number 247 */ 248 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) 249 { 250 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 251 252 if (ring->ch) 253 return ring->q_index - ring->ch->base_q; 254 255 /* Idea here for calculation is that we subtract the number of queue 256 * count from TC that ring belongs to from it's absolute queue index 257 * and as a result we get the queue's index within TC. 258 */ 259 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 260 } 261 262 /** 263 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 264 * @ring: The Tx ring to configure 265 * 266 * This enables/disables XPS for a given Tx descriptor ring 267 * based on the TCs enabled for the VSI that ring belongs to. 268 */ 269 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) 270 { 271 if (!ring->q_vector || !ring->netdev) 272 return; 273 274 /* We only initialize XPS once, so as not to overwrite user settings */ 275 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 276 return; 277 278 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 279 ring->q_index); 280 } 281 282 /** 283 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 284 * @ring: The Tx ring to configure 285 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 286 * @pf_q: queue index in the PF space 287 * 288 * Configure the Tx descriptor ring in TLAN context. 289 */ 290 static void 291 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 292 { 293 struct ice_vsi *vsi = ring->vsi; 294 struct ice_hw *hw = &vsi->back->hw; 295 296 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 297 298 tlan_ctx->port_num = vsi->port_info->lport; 299 300 /* Transmit Queue Length */ 301 tlan_ctx->qlen = ring->count; 302 303 ice_set_cgd_num(tlan_ctx, ring->dcb_tc); 304 305 /* PF number */ 306 tlan_ctx->pf_num = hw->pf_id; 307 308 /* queue belongs to a specific VSI type 309 * VF / VM index should be programmed per vmvf_type setting: 310 * for vmvf_type = VF, it is VF number between 0-256 311 * for vmvf_type = VM, it is VM number between 0-767 312 * for PF or EMP this field should be set to zero 313 */ 314 switch (vsi->type) { 315 case ICE_VSI_LB: 316 case ICE_VSI_CTRL: 317 case ICE_VSI_PF: 318 if (ring->ch) 319 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 320 else 321 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 322 break; 323 case ICE_VSI_VF: 324 /* Firmware expects vmvf_num to be absolute VF ID */ 325 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; 326 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 327 break; 328 case ICE_VSI_SF: 329 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 330 break; 331 default: 332 return; 333 } 334 335 /* make sure the context is associated with the right VSI */ 336 if (ring->ch) 337 tlan_ctx->src_vsi = ring->ch->vsi_num; 338 else 339 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 340 341 /* Restrict Tx timestamps to the PF VSI */ 342 switch (vsi->type) { 343 case ICE_VSI_PF: 344 tlan_ctx->tsyn_ena = 1; 345 break; 346 default: 347 break; 348 } 349 350 tlan_ctx->quanta_prof_idx = ring->quanta_prof_id; 351 352 tlan_ctx->tso_ena = ICE_TX_LEGACY; 353 tlan_ctx->tso_qnum = pf_q; 354 355 /* Legacy or Advanced Host Interface: 356 * 0: Advanced Host Interface 357 * 1: Legacy Host Interface 358 */ 359 tlan_ctx->legacy_int = ICE_TX_LEGACY; 360 } 361 362 /** 363 * ice_rx_offset - Return expected offset into page to access data 364 * @rx_ring: Ring we are requesting offset of 365 * 366 * Returns the offset value for ring into the data buffer. 367 */ 368 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) 369 { 370 if (ice_ring_uses_build_skb(rx_ring)) 371 return ICE_SKB_PAD; 372 return 0; 373 } 374 375 /** 376 * ice_setup_rx_ctx - Configure a receive ring context 377 * @ring: The Rx ring to configure 378 * 379 * Configure the Rx descriptor ring in RLAN context. 380 */ 381 static int ice_setup_rx_ctx(struct ice_rx_ring *ring) 382 { 383 struct ice_vsi *vsi = ring->vsi; 384 u32 rxdid = ICE_RXDID_FLEX_NIC; 385 struct ice_rlan_ctx rlan_ctx; 386 struct ice_hw *hw; 387 u16 pf_q; 388 int err; 389 390 hw = &vsi->back->hw; 391 392 /* what is Rx queue number in global space of 2K Rx queues */ 393 pf_q = vsi->rxq_map[ring->q_index]; 394 395 /* clear the context structure first */ 396 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 397 398 /* Receive Queue Base Address. 399 * Indicates the starting address of the descriptor queue defined in 400 * 128 Byte units. 401 */ 402 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; 403 404 rlan_ctx.qlen = ring->count; 405 406 /* Receive Packet Data Buffer Size. 407 * The Packet Data Buffer Size is defined in 128 byte units. 408 */ 409 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len, 410 BIT_ULL(ICE_RLAN_CTX_DBUF_S)); 411 412 /* use 32 byte descriptors */ 413 rlan_ctx.dsize = 1; 414 415 /* Strip the Ethernet CRC bytes before the packet is posted to host 416 * memory. 417 */ 418 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); 419 420 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor 421 * and it needs to remain 1 for non-DVM capable configurations to not 422 * break backward compatibility for VF drivers. Setting this field to 0 423 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND 424 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to 425 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will 426 * check for the tag 427 */ 428 if (ice_is_dvm_ena(hw)) 429 if (vsi->type == ICE_VSI_VF && 430 ice_vf_is_port_vlan_ena(vsi->vf)) 431 rlan_ctx.l2tsel = 1; 432 else 433 rlan_ctx.l2tsel = 0; 434 else 435 rlan_ctx.l2tsel = 1; 436 437 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 438 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 439 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 440 441 /* This controls whether VLAN is stripped from inner headers 442 * The VLAN in the inner L2 header is stripped to the receive 443 * descriptor if enabled by this flag. 444 */ 445 rlan_ctx.showiv = 0; 446 447 /* Max packet size for this queue - must not be set to a larger value 448 * than 5 x DBUF 449 */ 450 rlan_ctx.rxmax = min_t(u32, ring->max_frame, 451 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len); 452 453 /* Rx queue threshold in units of 64 */ 454 rlan_ctx.lrxqthresh = 1; 455 456 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi 457 * metadata and flags to allow redirecting to PR netdev 458 */ 459 if (ice_is_eswitch_mode_switchdev(vsi->back)) { 460 ring->flags |= ICE_RX_FLAGS_MULTIDEV; 461 rxdid = ICE_RXDID_FLEX_NIC_2; 462 } 463 464 /* Enable Flexible Descriptors in the queue context which 465 * allows this driver to select a specific receive descriptor format 466 * increasing context priority to pick up profile ID; default is 0x01; 467 * setting to 0x03 to ensure profile is programming if prev context is 468 * of same priority 469 */ 470 if (vsi->type != ICE_VSI_VF) 471 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 472 else 473 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 474 false); 475 476 /* Absolute queue number out of 2K needs to be passed */ 477 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 478 if (err) { 479 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 480 pf_q, err); 481 return -EIO; 482 } 483 484 if (vsi->type == ICE_VSI_VF) 485 return 0; 486 487 /* configure Rx buffer alignment */ 488 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 489 ice_clear_ring_build_skb_ena(ring); 490 else 491 ice_set_ring_build_skb_ena(ring); 492 493 ring->rx_offset = ice_rx_offset(ring); 494 495 /* init queue specific tail register */ 496 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 497 writel(0, ring->tail); 498 499 return 0; 500 } 501 502 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring) 503 { 504 void *ctx_ptr = &ring->pkt_ctx; 505 struct xsk_cb_desc desc = {}; 506 507 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff); 508 desc.src = &ctx_ptr; 509 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) - 510 sizeof(struct xdp_buff); 511 desc.bytes = sizeof(ctx_ptr); 512 xsk_pool_fill_cb(ring->xsk_pool, &desc); 513 } 514 515 /** 516 * ice_get_frame_sz - calculate xdp_buff::frame_sz 517 * @rx_ring: the ring being configured 518 * 519 * Return frame size based on underlying PAGE_SIZE 520 */ 521 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring) 522 { 523 unsigned int frame_sz; 524 525 #if (PAGE_SIZE >= 8192) 526 frame_sz = rx_ring->rx_buf_len; 527 #else 528 frame_sz = ice_rx_pg_size(rx_ring) / 2; 529 #endif 530 531 return frame_sz; 532 } 533 534 /** 535 * ice_vsi_cfg_rxq - Configure an Rx queue 536 * @ring: the ring being configured 537 * 538 * Return 0 on success and a negative value on error. 539 */ 540 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) 541 { 542 struct device *dev = ice_pf_to_dev(ring->vsi->back); 543 u32 num_bufs = ICE_RX_DESC_UNUSED(ring); 544 int err; 545 546 if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) { 547 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 548 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 549 ring->q_index, 550 ring->q_vector->napi.napi_id, 551 ring->rx_buf_len); 552 if (err) 553 return err; 554 } 555 556 ice_rx_xsk_pool(ring); 557 if (ring->xsk_pool) { 558 xdp_rxq_info_unreg(&ring->xdp_rxq); 559 560 ring->rx_buf_len = 561 xsk_pool_get_rx_frame_size(ring->xsk_pool); 562 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 563 ring->q_index, 564 ring->q_vector->napi.napi_id, 565 ring->rx_buf_len); 566 if (err) 567 return err; 568 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 569 MEM_TYPE_XSK_BUFF_POOL, 570 NULL); 571 if (err) 572 return err; 573 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 574 ice_xsk_pool_fill_cb(ring); 575 576 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 577 ring->q_index); 578 } else { 579 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) { 580 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 581 ring->q_index, 582 ring->q_vector->napi.napi_id, 583 ring->rx_buf_len); 584 if (err) 585 return err; 586 } 587 588 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 589 MEM_TYPE_PAGE_SHARED, 590 NULL); 591 if (err) 592 return err; 593 } 594 } 595 596 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq); 597 ring->xdp.data = NULL; 598 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx; 599 err = ice_setup_rx_ctx(ring); 600 if (err) { 601 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 602 ring->q_index, err); 603 return err; 604 } 605 606 if (ring->xsk_pool) { 607 bool ok; 608 609 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 610 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 611 num_bufs, ring->q_index); 612 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 613 614 return 0; 615 } 616 617 ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs); 618 if (!ok) { 619 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 620 621 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 622 ring->q_index, pf_q); 623 } 624 625 return 0; 626 } 627 628 ice_alloc_rx_bufs(ring, num_bufs); 629 630 return 0; 631 } 632 633 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 634 { 635 if (q_idx >= vsi->num_rxq) 636 return -EINVAL; 637 638 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 639 } 640 641 /** 642 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 643 * @vsi: VSI 644 * @ring: Rx ring to configure 645 * 646 * Determine the maximum frame size and Rx buffer length to use for a PF VSI. 647 * Set these in the associated Rx ring structure. 648 */ 649 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring) 650 { 651 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 652 ring->max_frame = ICE_MAX_FRAME_LEGACY_RX; 653 ring->rx_buf_len = ICE_RXBUF_1664; 654 #if (PAGE_SIZE < 8192) 655 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 656 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 657 ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 658 ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 659 #endif 660 } else { 661 ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 662 ring->rx_buf_len = ICE_RXBUF_3072; 663 } 664 } 665 666 /** 667 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 668 * @vsi: the VSI being configured 669 * 670 * Return 0 on success and a negative value on error 671 * Configure the Rx VSI for operation. 672 */ 673 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 674 { 675 u16 i; 676 677 /* set up individual rings */ 678 ice_for_each_rxq(vsi, i) { 679 struct ice_rx_ring *ring = vsi->rx_rings[i]; 680 int err; 681 682 if (vsi->type != ICE_VSI_VF) 683 ice_vsi_cfg_frame_size(vsi, ring); 684 685 err = ice_vsi_cfg_rxq(ring); 686 if (err) 687 return err; 688 } 689 690 return 0; 691 } 692 693 /** 694 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 695 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 696 * 697 * This function first tries to find contiguous space. If it is not successful, 698 * it tries with the scatter approach. 699 * 700 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 701 */ 702 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 703 { 704 int ret = 0; 705 706 ret = __ice_vsi_get_qs_contig(qs_cfg); 707 if (ret) { 708 /* contig failed, so try with scatter approach */ 709 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 710 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 711 qs_cfg->scatter_count); 712 ret = __ice_vsi_get_qs_sc(qs_cfg); 713 } 714 return ret; 715 } 716 717 /** 718 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 719 * @vsi: the VSI being configured 720 * @ena: start or stop the Rx ring 721 * @rxq_idx: 0-based Rx queue index for the VSI passed in 722 * @wait: wait or don't wait for configuration to finish in hardware 723 * 724 * Return 0 on success and negative on error. 725 */ 726 int 727 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 728 { 729 int pf_q = vsi->rxq_map[rxq_idx]; 730 struct ice_pf *pf = vsi->back; 731 struct ice_hw *hw = &pf->hw; 732 u32 rx_reg; 733 734 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 735 736 /* Skip if the queue is already in the requested state */ 737 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 738 return 0; 739 740 /* turn on/off the queue */ 741 if (ena) 742 rx_reg |= QRX_CTRL_QENA_REQ_M; 743 else 744 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 745 wr32(hw, QRX_CTRL(pf_q), rx_reg); 746 747 if (!wait) 748 return 0; 749 750 ice_flush(hw); 751 return ice_pf_rxq_wait(pf, pf_q, ena); 752 } 753 754 /** 755 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 756 * @vsi: the VSI being configured 757 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 758 * @rxq_idx: 0-based Rx queue index for the VSI passed in 759 * 760 * This routine will wait for the given Rx queue of the VSI to reach the 761 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 762 * the requested state after multiple retries; else will return 0 in case of 763 * success. 764 */ 765 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 766 { 767 int pf_q = vsi->rxq_map[rxq_idx]; 768 struct ice_pf *pf = vsi->back; 769 770 return ice_pf_rxq_wait(pf, pf_q, ena); 771 } 772 773 /** 774 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 775 * @vsi: the VSI being configured 776 * 777 * We allocate one q_vector per queue interrupt. If allocation fails we 778 * return -ENOMEM. 779 */ 780 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 781 { 782 struct device *dev = ice_pf_to_dev(vsi->back); 783 u16 v_idx; 784 int err; 785 786 if (vsi->q_vectors[0]) { 787 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 788 return -EEXIST; 789 } 790 791 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 792 err = ice_vsi_alloc_q_vector(vsi, v_idx); 793 if (err) 794 goto err_out; 795 } 796 797 return 0; 798 799 err_out: 800 while (v_idx--) 801 ice_free_q_vector(vsi, v_idx); 802 803 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 804 vsi->num_q_vectors, vsi->vsi_num, err); 805 vsi->num_q_vectors = 0; 806 return err; 807 } 808 809 /** 810 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 811 * @vsi: the VSI being configured 812 * 813 * This function maps descriptor rings to the queue-specific vectors allotted 814 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 815 * and Rx rings to the vector as "efficiently" as possible. 816 */ 817 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 818 { 819 int q_vectors = vsi->num_q_vectors; 820 u16 tx_rings_rem, rx_rings_rem; 821 int v_id; 822 823 /* initially assigning remaining rings count to VSIs num queue value */ 824 tx_rings_rem = vsi->num_txq; 825 rx_rings_rem = vsi->num_rxq; 826 827 for (v_id = 0; v_id < q_vectors; v_id++) { 828 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 829 u8 tx_rings_per_v, rx_rings_per_v; 830 u16 q_id, q_base; 831 832 /* Tx rings mapping to vector */ 833 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 834 q_vectors - v_id); 835 q_vector->num_ring_tx = tx_rings_per_v; 836 q_vector->tx.tx_ring = NULL; 837 q_vector->tx.itr_idx = ICE_TX_ITR; 838 q_base = vsi->num_txq - tx_rings_rem; 839 840 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 841 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; 842 843 tx_ring->q_vector = q_vector; 844 tx_ring->next = q_vector->tx.tx_ring; 845 q_vector->tx.tx_ring = tx_ring; 846 } 847 tx_rings_rem -= tx_rings_per_v; 848 849 /* Rx rings mapping to vector */ 850 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 851 q_vectors - v_id); 852 q_vector->num_ring_rx = rx_rings_per_v; 853 q_vector->rx.rx_ring = NULL; 854 q_vector->rx.itr_idx = ICE_RX_ITR; 855 q_base = vsi->num_rxq - rx_rings_rem; 856 857 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 858 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; 859 860 rx_ring->q_vector = q_vector; 861 rx_ring->next = q_vector->rx.rx_ring; 862 q_vector->rx.rx_ring = rx_ring; 863 } 864 rx_rings_rem -= rx_rings_per_v; 865 } 866 867 if (ice_is_xdp_ena_vsi(vsi)) 868 ice_map_xdp_rings(vsi); 869 } 870 871 /** 872 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 873 * @vsi: the VSI having memory freed 874 */ 875 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 876 { 877 int v_idx; 878 879 ice_for_each_q_vector(vsi, v_idx) 880 ice_free_q_vector(vsi, v_idx); 881 882 vsi->num_q_vectors = 0; 883 } 884 885 /** 886 * ice_vsi_cfg_txq - Configure single Tx queue 887 * @vsi: the VSI that queue belongs to 888 * @ring: Tx ring to be configured 889 * @qg_buf: queue group buffer 890 */ 891 static int 892 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, 893 struct ice_aqc_add_tx_qgrp *qg_buf) 894 { 895 u8 buf_len = struct_size(qg_buf, txqs, 1); 896 struct ice_tlan_ctx tlan_ctx = { 0 }; 897 struct ice_aqc_add_txqs_perq *txq; 898 struct ice_channel *ch = ring->ch; 899 struct ice_pf *pf = vsi->back; 900 struct ice_hw *hw = &pf->hw; 901 int status; 902 u16 pf_q; 903 u8 tc; 904 905 /* Configure XPS */ 906 ice_cfg_xps_tx_ring(ring); 907 908 pf_q = ring->reg_idx; 909 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 910 /* copy context contents into the qg_buf */ 911 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 912 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 913 ice_tlan_ctx_info); 914 915 /* init queue specific tail reg. It is referred as 916 * transmit comm scheduler queue doorbell. 917 */ 918 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 919 920 if (IS_ENABLED(CONFIG_DCB)) 921 tc = ring->dcb_tc; 922 else 923 tc = 0; 924 925 /* Add unique software queue handle of the Tx queue per 926 * TC into the VSI Tx ring 927 */ 928 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); 929 930 if (ch) 931 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, 932 ring->q_handle, 1, qg_buf, buf_len, 933 NULL); 934 else 935 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, 936 ring->q_handle, 1, qg_buf, buf_len, 937 NULL); 938 if (status) { 939 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", 940 status); 941 return status; 942 } 943 944 /* Add Tx Queue TEID into the VSI Tx ring from the 945 * response. This will complete configuring and 946 * enabling the queue. 947 */ 948 txq = &qg_buf->txqs[0]; 949 if (pf_q == le16_to_cpu(txq->txq_id)) 950 ring->txq_teid = le32_to_cpu(txq->q_teid); 951 952 return 0; 953 } 954 955 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, 956 u16 q_idx) 957 { 958 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 959 960 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 961 return -EINVAL; 962 963 qg_buf->num_txqs = 1; 964 965 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 966 } 967 968 /** 969 * ice_vsi_cfg_txqs - Configure the VSI for Tx 970 * @vsi: the VSI being configured 971 * @rings: Tx ring array to be configured 972 * @count: number of Tx ring array elements 973 * 974 * Return 0 on success and a negative value on error 975 * Configure the Tx VSI for operation. 976 */ 977 static int 978 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count) 979 { 980 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1); 981 int err = 0; 982 u16 q_idx; 983 984 qg_buf->num_txqs = 1; 985 986 for (q_idx = 0; q_idx < count; q_idx++) { 987 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 988 if (err) 989 break; 990 } 991 992 return err; 993 } 994 995 /** 996 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 997 * @vsi: the VSI being configured 998 * 999 * Return 0 on success and a negative value on error 1000 * Configure the Tx VSI for operation. 1001 */ 1002 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1003 { 1004 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1005 } 1006 1007 /** 1008 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1009 * @vsi: the VSI being configured 1010 * 1011 * Return 0 on success and a negative value on error 1012 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1013 */ 1014 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1015 { 1016 int ret; 1017 int i; 1018 1019 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1020 if (ret) 1021 return ret; 1022 1023 ice_for_each_rxq(vsi, i) 1024 ice_tx_xsk_pool(vsi, i); 1025 1026 return 0; 1027 } 1028 1029 /** 1030 * ice_cfg_itr - configure the initial interrupt throttle values 1031 * @hw: pointer to the HW structure 1032 * @q_vector: interrupt vector that's being configured 1033 * 1034 * Configure interrupt throttling values for the ring containers that are 1035 * associated with the interrupt vector passed in. 1036 */ 1037 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 1038 { 1039 ice_cfg_itr_gran(hw); 1040 1041 if (q_vector->num_ring_rx) 1042 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 1043 1044 if (q_vector->num_ring_tx) 1045 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 1046 1047 ice_write_intrl(q_vector, q_vector->intrl); 1048 } 1049 1050 /** 1051 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 1052 * @vsi: the VSI being configured 1053 * @txq: Tx queue being mapped to MSI-X vector 1054 * @msix_idx: MSI-X vector index within the function 1055 * @itr_idx: ITR index of the interrupt cause 1056 * 1057 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 1058 * within the function space. 1059 */ 1060 void 1061 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 1062 { 1063 struct ice_pf *pf = vsi->back; 1064 struct ice_hw *hw = &pf->hw; 1065 u32 val; 1066 1067 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx); 1068 1069 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 1070 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx); 1071 1072 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 1073 if (ice_is_xdp_ena_vsi(vsi)) { 1074 u32 xdp_txq = txq + vsi->num_xdp_txq; 1075 1076 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 1077 val); 1078 } 1079 ice_flush(hw); 1080 } 1081 1082 /** 1083 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 1084 * @vsi: the VSI being configured 1085 * @rxq: Rx queue being mapped to MSI-X vector 1086 * @msix_idx: MSI-X vector index within the function 1087 * @itr_idx: ITR index of the interrupt cause 1088 * 1089 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 1090 * within the function space. 1091 */ 1092 void 1093 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 1094 { 1095 struct ice_pf *pf = vsi->back; 1096 struct ice_hw *hw = &pf->hw; 1097 u32 val; 1098 1099 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx); 1100 1101 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 1102 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx); 1103 1104 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 1105 1106 ice_flush(hw); 1107 } 1108 1109 /** 1110 * ice_trigger_sw_intr - trigger a software interrupt 1111 * @hw: pointer to the HW structure 1112 * @q_vector: interrupt vector to trigger the software interrupt for 1113 */ 1114 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector) 1115 { 1116 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 1117 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 1118 GLINT_DYN_CTL_SWINT_TRIG_M | 1119 GLINT_DYN_CTL_INTENA_M); 1120 } 1121 1122 /** 1123 * ice_vsi_stop_tx_ring - Disable single Tx ring 1124 * @vsi: the VSI being configured 1125 * @rst_src: reset source 1126 * @rel_vmvf_num: Relative ID of VF/VM 1127 * @ring: Tx ring to be stopped 1128 * @txq_meta: Meta data of Tx ring to be stopped 1129 */ 1130 int 1131 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1132 u16 rel_vmvf_num, struct ice_tx_ring *ring, 1133 struct ice_txq_meta *txq_meta) 1134 { 1135 struct ice_pf *pf = vsi->back; 1136 struct ice_q_vector *q_vector; 1137 struct ice_hw *hw = &pf->hw; 1138 int status; 1139 u32 val; 1140 1141 /* clear cause_ena bit for disabled queues */ 1142 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 1143 val &= ~QINT_TQCTL_CAUSE_ENA_M; 1144 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 1145 1146 /* software is expected to wait for 100 ns */ 1147 ndelay(100); 1148 1149 /* trigger a software interrupt for the vector 1150 * associated to the queue to schedule NAPI handler 1151 */ 1152 q_vector = ring->q_vector; 1153 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) 1154 ice_trigger_sw_intr(hw, q_vector); 1155 1156 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 1157 txq_meta->tc, 1, &txq_meta->q_handle, 1158 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 1159 rel_vmvf_num, NULL); 1160 1161 /* if the disable queue command was exercised during an 1162 * active reset flow, -EBUSY is returned. 1163 * This is not an error as the reset operation disables 1164 * queues at the hardware level anyway. 1165 */ 1166 if (status == -EBUSY) { 1167 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 1168 } else if (status == -ENOENT) { 1169 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 1170 } else if (status) { 1171 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", 1172 status); 1173 return status; 1174 } 1175 1176 return 0; 1177 } 1178 1179 /** 1180 * ice_fill_txq_meta - Prepare the Tx queue's meta data 1181 * @vsi: VSI that ring belongs to 1182 * @ring: ring that txq_meta will be based on 1183 * @txq_meta: a helper struct that wraps Tx queue's information 1184 * 1185 * Set up a helper struct that will contain all the necessary fields that 1186 * are needed for stopping Tx queue 1187 */ 1188 void 1189 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring, 1190 struct ice_txq_meta *txq_meta) 1191 { 1192 struct ice_channel *ch = ring->ch; 1193 u8 tc; 1194 1195 if (IS_ENABLED(CONFIG_DCB)) 1196 tc = ring->dcb_tc; 1197 else 1198 tc = 0; 1199 1200 txq_meta->q_id = ring->reg_idx; 1201 txq_meta->q_teid = ring->txq_teid; 1202 txq_meta->q_handle = ring->q_handle; 1203 if (ch) { 1204 txq_meta->vsi_idx = ch->ch_vsi->idx; 1205 txq_meta->tc = 0; 1206 } else { 1207 txq_meta->vsi_idx = vsi->idx; 1208 txq_meta->tc = tc; 1209 } 1210 } 1211