1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <net/xdp_sock_drv.h> 5 #include "ice_base.h" 6 #include "ice_lib.h" 7 #include "ice_dcb_lib.h" 8 9 /** 10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI 11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment 12 * 13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 14 */ 15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) 16 { 17 unsigned int offset, i; 18 19 mutex_lock(qs_cfg->qs_mutex); 20 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 21 0, qs_cfg->q_count, 0); 22 if (offset >= qs_cfg->pf_map_size) { 23 mutex_unlock(qs_cfg->qs_mutex); 24 return -ENOMEM; 25 } 26 27 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); 28 for (i = 0; i < qs_cfg->q_count; i++) 29 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); 30 mutex_unlock(qs_cfg->qs_mutex); 31 32 return 0; 33 } 34 35 /** 36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI 37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 38 * 39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 40 */ 41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) 42 { 43 unsigned int i, index = 0; 44 45 mutex_lock(qs_cfg->qs_mutex); 46 for (i = 0; i < qs_cfg->q_count; i++) { 47 index = find_next_zero_bit(qs_cfg->pf_map, 48 qs_cfg->pf_map_size, index); 49 if (index >= qs_cfg->pf_map_size) 50 goto err_scatter; 51 set_bit(index, qs_cfg->pf_map); 52 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; 53 } 54 mutex_unlock(qs_cfg->qs_mutex); 55 56 return 0; 57 err_scatter: 58 for (index = 0; index < i; index++) { 59 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); 60 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; 61 } 62 mutex_unlock(qs_cfg->qs_mutex); 63 64 return -ENOMEM; 65 } 66 67 /** 68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 69 * @pf: the PF being configured 70 * @pf_q: the PF queue 71 * @ena: enable or disable state of the queue 72 * 73 * This routine will wait for the given Rx queue of the PF to reach the 74 * enabled or disabled state. 75 * Returns -ETIMEDOUT in case of failing to reach the requested state after 76 * multiple retries; else will return 0 in case of success. 77 */ 78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) 79 { 80 int i; 81 82 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { 83 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & 84 QRX_CTRL_QENA_STAT_M)) 85 return 0; 86 87 usleep_range(20, 40); 88 } 89 90 return -ETIMEDOUT; 91 } 92 93 /** 94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 95 * @vsi: the VSI being configured 96 * @v_idx: index of the vector in the VSI struct 97 * 98 * We allocate one q_vector and set default value for ITR setting associated 99 * with this q_vector. If allocation fails we return -ENOMEM. 100 */ 101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) 102 { 103 struct ice_pf *pf = vsi->back; 104 struct ice_q_vector *q_vector; 105 106 /* allocate q_vector */ 107 q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), 108 GFP_KERNEL); 109 if (!q_vector) 110 return -ENOMEM; 111 112 q_vector->vsi = vsi; 113 q_vector->v_idx = v_idx; 114 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; 115 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; 116 q_vector->tx.itr_mode = ITR_DYNAMIC; 117 q_vector->rx.itr_mode = ITR_DYNAMIC; 118 119 if (vsi->type == ICE_VSI_VF) 120 goto out; 121 /* only set affinity_mask if the CPU is online */ 122 if (cpu_online(v_idx)) 123 cpumask_set_cpu(v_idx, &q_vector->affinity_mask); 124 125 /* This will not be called in the driver load path because the netdev 126 * will not be created yet. All other cases with register the NAPI 127 * handler here (i.e. resume, reset/rebuild, etc.) 128 */ 129 if (vsi->netdev) 130 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, 131 NAPI_POLL_WEIGHT); 132 133 out: 134 /* tie q_vector and VSI together */ 135 vsi->q_vectors[v_idx] = q_vector; 136 137 return 0; 138 } 139 140 /** 141 * ice_free_q_vector - Free memory allocated for a specific interrupt vector 142 * @vsi: VSI having the memory freed 143 * @v_idx: index of the vector to be freed 144 */ 145 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) 146 { 147 struct ice_q_vector *q_vector; 148 struct ice_pf *pf = vsi->back; 149 struct ice_ring *ring; 150 struct device *dev; 151 152 dev = ice_pf_to_dev(pf); 153 if (!vsi->q_vectors[v_idx]) { 154 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); 155 return; 156 } 157 q_vector = vsi->q_vectors[v_idx]; 158 159 ice_for_each_ring(ring, q_vector->tx) 160 ring->q_vector = NULL; 161 ice_for_each_ring(ring, q_vector->rx) 162 ring->q_vector = NULL; 163 164 /* only VSI with an associated netdev is set up with NAPI */ 165 if (vsi->netdev) 166 netif_napi_del(&q_vector->napi); 167 168 devm_kfree(dev, q_vector); 169 vsi->q_vectors[v_idx] = NULL; 170 } 171 172 /** 173 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set 174 * @hw: board specific structure 175 */ 176 static void ice_cfg_itr_gran(struct ice_hw *hw) 177 { 178 u32 regval = rd32(hw, GLINT_CTL); 179 180 /* no need to update global register if ITR gran is already set */ 181 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && 182 (((regval & GLINT_CTL_ITR_GRAN_200_M) >> 183 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && 184 (((regval & GLINT_CTL_ITR_GRAN_100_M) >> 185 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && 186 (((regval & GLINT_CTL_ITR_GRAN_50_M) >> 187 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && 188 (((regval & GLINT_CTL_ITR_GRAN_25_M) >> 189 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) 190 return; 191 192 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & 193 GLINT_CTL_ITR_GRAN_200_M) | 194 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & 195 GLINT_CTL_ITR_GRAN_100_M) | 196 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & 197 GLINT_CTL_ITR_GRAN_50_M) | 198 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & 199 GLINT_CTL_ITR_GRAN_25_M); 200 wr32(hw, GLINT_CTL, regval); 201 } 202 203 /** 204 * ice_calc_q_handle - calculate the queue handle 205 * @vsi: VSI that ring belongs to 206 * @ring: ring to get the absolute queue index 207 * @tc: traffic class number 208 */ 209 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc) 210 { 211 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); 212 213 /* Idea here for calculation is that we subtract the number of queue 214 * count from TC that ring belongs to from it's absolute queue index 215 * and as a result we get the queue's index within TC. 216 */ 217 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; 218 } 219 220 /** 221 * ice_eswitch_calc_q_handle 222 * @ring: pointer to ring which unique index is needed 223 * 224 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev 225 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it 226 * here by finding index in vsi->tx_rings of this ring. 227 * 228 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, 229 * because VSI is get from ring->vsi, so it has to be present in this VSI. 230 */ 231 static u16 ice_eswitch_calc_q_handle(struct ice_ring *ring) 232 { 233 struct ice_vsi *vsi = ring->vsi; 234 int i; 235 236 ice_for_each_txq(vsi, i) { 237 if (vsi->tx_rings[i] == ring) 238 return i; 239 } 240 241 return ICE_INVAL_Q_INDEX; 242 } 243 244 /** 245 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring 246 * @ring: The Tx ring to configure 247 * 248 * This enables/disables XPS for a given Tx descriptor ring 249 * based on the TCs enabled for the VSI that ring belongs to. 250 */ 251 static void ice_cfg_xps_tx_ring(struct ice_ring *ring) 252 { 253 if (!ring->q_vector || !ring->netdev) 254 return; 255 256 /* We only initialize XPS once, so as not to overwrite user settings */ 257 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) 258 return; 259 260 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, 261 ring->q_index); 262 } 263 264 /** 265 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance 266 * @ring: The Tx ring to configure 267 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized 268 * @pf_q: queue index in the PF space 269 * 270 * Configure the Tx descriptor ring in TLAN context. 271 */ 272 static void 273 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) 274 { 275 struct ice_vsi *vsi = ring->vsi; 276 struct ice_hw *hw = &vsi->back->hw; 277 278 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; 279 280 tlan_ctx->port_num = vsi->port_info->lport; 281 282 /* Transmit Queue Length */ 283 tlan_ctx->qlen = ring->count; 284 285 ice_set_cgd_num(tlan_ctx, ring); 286 287 /* PF number */ 288 tlan_ctx->pf_num = hw->pf_id; 289 290 /* queue belongs to a specific VSI type 291 * VF / VM index should be programmed per vmvf_type setting: 292 * for vmvf_type = VF, it is VF number between 0-256 293 * for vmvf_type = VM, it is VM number between 0-767 294 * for PF or EMP this field should be set to zero 295 */ 296 switch (vsi->type) { 297 case ICE_VSI_LB: 298 case ICE_VSI_CTRL: 299 case ICE_VSI_PF: 300 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; 301 break; 302 case ICE_VSI_VF: 303 /* Firmware expects vmvf_num to be absolute VF ID */ 304 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; 305 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; 306 break; 307 case ICE_VSI_SWITCHDEV_CTRL: 308 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; 309 break; 310 default: 311 return; 312 } 313 314 /* make sure the context is associated with the right VSI */ 315 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); 316 317 /* Restrict Tx timestamps to the PF VSI */ 318 switch (vsi->type) { 319 case ICE_VSI_PF: 320 tlan_ctx->tsyn_ena = 1; 321 break; 322 default: 323 break; 324 } 325 326 tlan_ctx->tso_ena = ICE_TX_LEGACY; 327 tlan_ctx->tso_qnum = pf_q; 328 329 /* Legacy or Advanced Host Interface: 330 * 0: Advanced Host Interface 331 * 1: Legacy Host Interface 332 */ 333 tlan_ctx->legacy_int = ICE_TX_LEGACY; 334 } 335 336 /** 337 * ice_rx_offset - Return expected offset into page to access data 338 * @rx_ring: Ring we are requesting offset of 339 * 340 * Returns the offset value for ring into the data buffer. 341 */ 342 static unsigned int ice_rx_offset(struct ice_ring *rx_ring) 343 { 344 if (ice_ring_uses_build_skb(rx_ring)) 345 return ICE_SKB_PAD; 346 else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) 347 return XDP_PACKET_HEADROOM; 348 349 return 0; 350 } 351 352 /** 353 * ice_setup_rx_ctx - Configure a receive ring context 354 * @ring: The Rx ring to configure 355 * 356 * Configure the Rx descriptor ring in RLAN context. 357 */ 358 static int ice_setup_rx_ctx(struct ice_ring *ring) 359 { 360 int chain_len = ICE_MAX_CHAINED_RX_BUFS; 361 struct ice_vsi *vsi = ring->vsi; 362 u32 rxdid = ICE_RXDID_FLEX_NIC; 363 struct ice_rlan_ctx rlan_ctx; 364 struct ice_hw *hw; 365 u16 pf_q; 366 int err; 367 368 hw = &vsi->back->hw; 369 370 /* what is Rx queue number in global space of 2K Rx queues */ 371 pf_q = vsi->rxq_map[ring->q_index]; 372 373 /* clear the context structure first */ 374 memset(&rlan_ctx, 0, sizeof(rlan_ctx)); 375 376 /* Receive Queue Base Address. 377 * Indicates the starting address of the descriptor queue defined in 378 * 128 Byte units. 379 */ 380 rlan_ctx.base = ring->dma >> 7; 381 382 rlan_ctx.qlen = ring->count; 383 384 /* Receive Packet Data Buffer Size. 385 * The Packet Data Buffer Size is defined in 128 byte units. 386 */ 387 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; 388 389 /* use 32 byte descriptors */ 390 rlan_ctx.dsize = 1; 391 392 /* Strip the Ethernet CRC bytes before the packet is posted to host 393 * memory. 394 */ 395 rlan_ctx.crcstrip = 1; 396 397 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ 398 rlan_ctx.l2tsel = 1; 399 400 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; 401 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; 402 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; 403 404 /* This controls whether VLAN is stripped from inner headers 405 * The VLAN in the inner L2 header is stripped to the receive 406 * descriptor if enabled by this flag. 407 */ 408 rlan_ctx.showiv = 0; 409 410 /* For AF_XDP ZC, we disallow packets to span on 411 * multiple buffers, thus letting us skip that 412 * handling in the fast-path. 413 */ 414 if (ring->xsk_pool) 415 chain_len = 1; 416 /* Max packet size for this queue - must not be set to a larger value 417 * than 5 x DBUF 418 */ 419 rlan_ctx.rxmax = min_t(u32, vsi->max_frame, 420 chain_len * ring->rx_buf_len); 421 422 /* Rx queue threshold in units of 64 */ 423 rlan_ctx.lrxqthresh = 1; 424 425 /* Enable Flexible Descriptors in the queue context which 426 * allows this driver to select a specific receive descriptor format 427 * increasing context priority to pick up profile ID; default is 0x01; 428 * setting to 0x03 to ensure profile is programming if prev context is 429 * of same priority 430 */ 431 if (vsi->type != ICE_VSI_VF) 432 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); 433 else 434 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, 435 false); 436 437 /* Absolute queue number out of 2K needs to be passed */ 438 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); 439 if (err) { 440 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", 441 pf_q, err); 442 return -EIO; 443 } 444 445 if (vsi->type == ICE_VSI_VF) 446 return 0; 447 448 /* configure Rx buffer alignment */ 449 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 450 ice_clear_ring_build_skb_ena(ring); 451 else 452 ice_set_ring_build_skb_ena(ring); 453 454 ring->rx_offset = ice_rx_offset(ring); 455 456 /* init queue specific tail register */ 457 ring->tail = hw->hw_addr + QRX_TAIL(pf_q); 458 writel(0, ring->tail); 459 460 return 0; 461 } 462 463 /** 464 * ice_vsi_cfg_rxq - Configure an Rx queue 465 * @ring: the ring being configured 466 * 467 * Return 0 on success and a negative value on error. 468 */ 469 int ice_vsi_cfg_rxq(struct ice_ring *ring) 470 { 471 struct device *dev = ice_pf_to_dev(ring->vsi->back); 472 u16 num_bufs = ICE_DESC_UNUSED(ring); 473 int err; 474 475 ring->rx_buf_len = ring->vsi->rx_buf_len; 476 477 if (ring->vsi->type == ICE_VSI_PF) { 478 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 479 /* coverity[check_return] */ 480 xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, 481 ring->q_index, ring->q_vector->napi.napi_id); 482 483 ring->xsk_pool = ice_xsk_pool(ring); 484 if (ring->xsk_pool) { 485 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 486 487 ring->rx_buf_len = 488 xsk_pool_get_rx_frame_size(ring->xsk_pool); 489 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 490 MEM_TYPE_XSK_BUFF_POOL, 491 NULL); 492 if (err) 493 return err; 494 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 495 496 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 497 ring->q_index); 498 } else { 499 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) 500 /* coverity[check_return] */ 501 xdp_rxq_info_reg(&ring->xdp_rxq, 502 ring->netdev, 503 ring->q_index, ring->q_vector->napi.napi_id); 504 505 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 506 MEM_TYPE_PAGE_SHARED, 507 NULL); 508 if (err) 509 return err; 510 } 511 } 512 513 err = ice_setup_rx_ctx(ring); 514 if (err) { 515 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 516 ring->q_index, err); 517 return err; 518 } 519 520 if (ring->xsk_pool) { 521 bool ok; 522 523 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { 524 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", 525 num_bufs, ring->q_index); 526 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); 527 528 return 0; 529 } 530 531 ok = ice_alloc_rx_bufs_zc(ring, num_bufs); 532 if (!ok) { 533 u16 pf_q = ring->vsi->rxq_map[ring->q_index]; 534 535 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", 536 ring->q_index, pf_q); 537 } 538 539 return 0; 540 } 541 542 ice_alloc_rx_bufs(ring, num_bufs); 543 544 return 0; 545 } 546 547 /** 548 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI 549 * @qs_cfg: gathered variables needed for pf->vsi queues assignment 550 * 551 * This function first tries to find contiguous space. If it is not successful, 552 * it tries with the scatter approach. 553 * 554 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap 555 */ 556 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) 557 { 558 int ret = 0; 559 560 ret = __ice_vsi_get_qs_contig(qs_cfg); 561 if (ret) { 562 /* contig failed, so try with scatter approach */ 563 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; 564 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, 565 qs_cfg->scatter_count); 566 ret = __ice_vsi_get_qs_sc(qs_cfg); 567 } 568 return ret; 569 } 570 571 /** 572 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait 573 * @vsi: the VSI being configured 574 * @ena: start or stop the Rx ring 575 * @rxq_idx: 0-based Rx queue index for the VSI passed in 576 * @wait: wait or don't wait for configuration to finish in hardware 577 * 578 * Return 0 on success and negative on error. 579 */ 580 int 581 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) 582 { 583 int pf_q = vsi->rxq_map[rxq_idx]; 584 struct ice_pf *pf = vsi->back; 585 struct ice_hw *hw = &pf->hw; 586 u32 rx_reg; 587 588 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 589 590 /* Skip if the queue is already in the requested state */ 591 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) 592 return 0; 593 594 /* turn on/off the queue */ 595 if (ena) 596 rx_reg |= QRX_CTRL_QENA_REQ_M; 597 else 598 rx_reg &= ~QRX_CTRL_QENA_REQ_M; 599 wr32(hw, QRX_CTRL(pf_q), rx_reg); 600 601 if (!wait) 602 return 0; 603 604 ice_flush(hw); 605 return ice_pf_rxq_wait(pf, pf_q, ena); 606 } 607 608 /** 609 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started 610 * @vsi: the VSI being configured 611 * @ena: true/false to verify Rx ring has been enabled/disabled respectively 612 * @rxq_idx: 0-based Rx queue index for the VSI passed in 613 * 614 * This routine will wait for the given Rx queue of the VSI to reach the 615 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach 616 * the requested state after multiple retries; else will return 0 in case of 617 * success. 618 */ 619 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) 620 { 621 int pf_q = vsi->rxq_map[rxq_idx]; 622 struct ice_pf *pf = vsi->back; 623 624 return ice_pf_rxq_wait(pf, pf_q, ena); 625 } 626 627 /** 628 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 629 * @vsi: the VSI being configured 630 * 631 * We allocate one q_vector per queue interrupt. If allocation fails we 632 * return -ENOMEM. 633 */ 634 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) 635 { 636 struct device *dev = ice_pf_to_dev(vsi->back); 637 u16 v_idx; 638 int err; 639 640 if (vsi->q_vectors[0]) { 641 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); 642 return -EEXIST; 643 } 644 645 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { 646 err = ice_vsi_alloc_q_vector(vsi, v_idx); 647 if (err) 648 goto err_out; 649 } 650 651 return 0; 652 653 err_out: 654 while (v_idx--) 655 ice_free_q_vector(vsi, v_idx); 656 657 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", 658 vsi->num_q_vectors, vsi->vsi_num, err); 659 vsi->num_q_vectors = 0; 660 return err; 661 } 662 663 /** 664 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors 665 * @vsi: the VSI being configured 666 * 667 * This function maps descriptor rings to the queue-specific vectors allotted 668 * through the MSI-X enabling code. On a constrained vector budget, we map Tx 669 * and Rx rings to the vector as "efficiently" as possible. 670 */ 671 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) 672 { 673 int q_vectors = vsi->num_q_vectors; 674 u16 tx_rings_rem, rx_rings_rem; 675 int v_id; 676 677 /* initially assigning remaining rings count to VSIs num queue value */ 678 tx_rings_rem = vsi->num_txq; 679 rx_rings_rem = vsi->num_rxq; 680 681 for (v_id = 0; v_id < q_vectors; v_id++) { 682 struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; 683 u8 tx_rings_per_v, rx_rings_per_v; 684 u16 q_id, q_base; 685 686 /* Tx rings mapping to vector */ 687 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, 688 q_vectors - v_id); 689 q_vector->num_ring_tx = tx_rings_per_v; 690 q_vector->tx.ring = NULL; 691 q_vector->tx.itr_idx = ICE_TX_ITR; 692 q_base = vsi->num_txq - tx_rings_rem; 693 694 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { 695 struct ice_ring *tx_ring = vsi->tx_rings[q_id]; 696 697 tx_ring->q_vector = q_vector; 698 tx_ring->next = q_vector->tx.ring; 699 q_vector->tx.ring = tx_ring; 700 } 701 tx_rings_rem -= tx_rings_per_v; 702 703 /* Rx rings mapping to vector */ 704 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, 705 q_vectors - v_id); 706 q_vector->num_ring_rx = rx_rings_per_v; 707 q_vector->rx.ring = NULL; 708 q_vector->rx.itr_idx = ICE_RX_ITR; 709 q_base = vsi->num_rxq - rx_rings_rem; 710 711 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { 712 struct ice_ring *rx_ring = vsi->rx_rings[q_id]; 713 714 rx_ring->q_vector = q_vector; 715 rx_ring->next = q_vector->rx.ring; 716 q_vector->rx.ring = rx_ring; 717 } 718 rx_rings_rem -= rx_rings_per_v; 719 } 720 } 721 722 /** 723 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors 724 * @vsi: the VSI having memory freed 725 */ 726 void ice_vsi_free_q_vectors(struct ice_vsi *vsi) 727 { 728 int v_idx; 729 730 ice_for_each_q_vector(vsi, v_idx) 731 ice_free_q_vector(vsi, v_idx); 732 } 733 734 /** 735 * ice_vsi_cfg_txq - Configure single Tx queue 736 * @vsi: the VSI that queue belongs to 737 * @ring: Tx ring to be configured 738 * @qg_buf: queue group buffer 739 */ 740 int 741 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, 742 struct ice_aqc_add_tx_qgrp *qg_buf) 743 { 744 u8 buf_len = struct_size(qg_buf, txqs, 1); 745 struct ice_tlan_ctx tlan_ctx = { 0 }; 746 struct ice_aqc_add_txqs_perq *txq; 747 struct ice_pf *pf = vsi->back; 748 struct ice_hw *hw = &pf->hw; 749 enum ice_status status; 750 u16 pf_q; 751 u8 tc; 752 753 /* Configure XPS */ 754 ice_cfg_xps_tx_ring(ring); 755 756 pf_q = ring->reg_idx; 757 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); 758 /* copy context contents into the qg_buf */ 759 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); 760 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, 761 ice_tlan_ctx_info); 762 763 /* init queue specific tail reg. It is referred as 764 * transmit comm scheduler queue doorbell. 765 */ 766 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); 767 768 if (IS_ENABLED(CONFIG_DCB)) 769 tc = ring->dcb_tc; 770 else 771 tc = 0; 772 773 /* Add unique software queue handle of the Tx queue per 774 * TC into the VSI Tx ring 775 */ 776 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 777 ring->q_handle = ice_eswitch_calc_q_handle(ring); 778 779 if (ring->q_handle == ICE_INVAL_Q_INDEX) 780 return -ENODEV; 781 } else { 782 ring->q_handle = ice_calc_q_handle(vsi, ring, tc); 783 } 784 785 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle, 786 1, qg_buf, buf_len, NULL); 787 if (status) { 788 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n", 789 ice_stat_str(status)); 790 return -ENODEV; 791 } 792 793 /* Add Tx Queue TEID into the VSI Tx ring from the 794 * response. This will complete configuring and 795 * enabling the queue. 796 */ 797 txq = &qg_buf->txqs[0]; 798 if (pf_q == le16_to_cpu(txq->txq_id)) 799 ring->txq_teid = le32_to_cpu(txq->q_teid); 800 801 return 0; 802 } 803 804 /** 805 * ice_cfg_itr - configure the initial interrupt throttle values 806 * @hw: pointer to the HW structure 807 * @q_vector: interrupt vector that's being configured 808 * 809 * Configure interrupt throttling values for the ring containers that are 810 * associated with the interrupt vector passed in. 811 */ 812 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) 813 { 814 ice_cfg_itr_gran(hw); 815 816 if (q_vector->num_ring_rx) 817 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); 818 819 if (q_vector->num_ring_tx) 820 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); 821 822 ice_write_intrl(q_vector, q_vector->intrl); 823 } 824 825 /** 826 * ice_cfg_txq_interrupt - configure interrupt on Tx queue 827 * @vsi: the VSI being configured 828 * @txq: Tx queue being mapped to MSI-X vector 829 * @msix_idx: MSI-X vector index within the function 830 * @itr_idx: ITR index of the interrupt cause 831 * 832 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector 833 * within the function space. 834 */ 835 void 836 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) 837 { 838 struct ice_pf *pf = vsi->back; 839 struct ice_hw *hw = &pf->hw; 840 u32 val; 841 842 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; 843 844 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | 845 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); 846 847 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); 848 if (ice_is_xdp_ena_vsi(vsi)) { 849 u32 xdp_txq = txq + vsi->num_xdp_txq; 850 851 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 852 val); 853 } 854 ice_flush(hw); 855 } 856 857 /** 858 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue 859 * @vsi: the VSI being configured 860 * @rxq: Rx queue being mapped to MSI-X vector 861 * @msix_idx: MSI-X vector index within the function 862 * @itr_idx: ITR index of the interrupt cause 863 * 864 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector 865 * within the function space. 866 */ 867 void 868 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) 869 { 870 struct ice_pf *pf = vsi->back; 871 struct ice_hw *hw = &pf->hw; 872 u32 val; 873 874 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; 875 876 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | 877 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); 878 879 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); 880 881 ice_flush(hw); 882 } 883 884 /** 885 * ice_trigger_sw_intr - trigger a software interrupt 886 * @hw: pointer to the HW structure 887 * @q_vector: interrupt vector to trigger the software interrupt for 888 */ 889 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) 890 { 891 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 892 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | 893 GLINT_DYN_CTL_SWINT_TRIG_M | 894 GLINT_DYN_CTL_INTENA_M); 895 } 896 897 /** 898 * ice_vsi_stop_tx_ring - Disable single Tx ring 899 * @vsi: the VSI being configured 900 * @rst_src: reset source 901 * @rel_vmvf_num: Relative ID of VF/VM 902 * @ring: Tx ring to be stopped 903 * @txq_meta: Meta data of Tx ring to be stopped 904 */ 905 int 906 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 907 u16 rel_vmvf_num, struct ice_ring *ring, 908 struct ice_txq_meta *txq_meta) 909 { 910 struct ice_pf *pf = vsi->back; 911 struct ice_q_vector *q_vector; 912 struct ice_hw *hw = &pf->hw; 913 enum ice_status status; 914 u32 val; 915 916 /* clear cause_ena bit for disabled queues */ 917 val = rd32(hw, QINT_TQCTL(ring->reg_idx)); 918 val &= ~QINT_TQCTL_CAUSE_ENA_M; 919 wr32(hw, QINT_TQCTL(ring->reg_idx), val); 920 921 /* software is expected to wait for 100 ns */ 922 ndelay(100); 923 924 /* trigger a software interrupt for the vector 925 * associated to the queue to schedule NAPI handler 926 */ 927 q_vector = ring->q_vector; 928 if (q_vector) 929 ice_trigger_sw_intr(hw, q_vector); 930 931 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, 932 txq_meta->tc, 1, &txq_meta->q_handle, 933 &txq_meta->q_id, &txq_meta->q_teid, rst_src, 934 rel_vmvf_num, NULL); 935 936 /* if the disable queue command was exercised during an 937 * active reset flow, ICE_ERR_RESET_ONGOING is returned. 938 * This is not an error as the reset operation disables 939 * queues at the hardware level anyway. 940 */ 941 if (status == ICE_ERR_RESET_ONGOING) { 942 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); 943 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 944 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); 945 } else if (status) { 946 dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n", 947 ice_stat_str(status)); 948 return -ENODEV; 949 } 950 951 return 0; 952 } 953 954 /** 955 * ice_fill_txq_meta - Prepare the Tx queue's meta data 956 * @vsi: VSI that ring belongs to 957 * @ring: ring that txq_meta will be based on 958 * @txq_meta: a helper struct that wraps Tx queue's information 959 * 960 * Set up a helper struct that will contain all the necessary fields that 961 * are needed for stopping Tx queue 962 */ 963 void 964 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring, 965 struct ice_txq_meta *txq_meta) 966 { 967 u8 tc; 968 969 if (IS_ENABLED(CONFIG_DCB)) 970 tc = ring->dcb_tc; 971 else 972 tc = 0; 973 974 txq_meta->q_id = ring->reg_idx; 975 txq_meta->q_teid = ring->txq_teid; 976 txq_meta->q_handle = ring->q_handle; 977 txq_meta->vsi_idx = vsi->idx; 978 txq_meta->tc = tc; 979 } 980