xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision ea52a0b58e41c3b2b9e97ff13fe0da9c9e430ea8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 
9 /**
10  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12  *
13  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14  */
15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 	unsigned int offset, i;
18 
19 	mutex_lock(qs_cfg->qs_mutex);
20 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 					    0, qs_cfg->q_count, 0);
22 	if (offset >= qs_cfg->pf_map_size) {
23 		mutex_unlock(qs_cfg->qs_mutex);
24 		return -ENOMEM;
25 	}
26 
27 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 	for (i = 0; i < qs_cfg->q_count; i++)
29 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 	mutex_unlock(qs_cfg->qs_mutex);
31 
32 	return 0;
33 }
34 
35 /**
36  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38  *
39  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40  */
41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 	unsigned int i, index = 0;
44 
45 	mutex_lock(qs_cfg->qs_mutex);
46 	for (i = 0; i < qs_cfg->q_count; i++) {
47 		index = find_next_zero_bit(qs_cfg->pf_map,
48 					   qs_cfg->pf_map_size, index);
49 		if (index >= qs_cfg->pf_map_size)
50 			goto err_scatter;
51 		set_bit(index, qs_cfg->pf_map);
52 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 	}
54 	mutex_unlock(qs_cfg->qs_mutex);
55 
56 	return 0;
57 err_scatter:
58 	for (index = 0; index < i; index++) {
59 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 	}
62 	mutex_unlock(qs_cfg->qs_mutex);
63 
64 	return -ENOMEM;
65 }
66 
67 /**
68  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69  * @pf: the PF being configured
70  * @pf_q: the PF queue
71  * @ena: enable or disable state of the queue
72  *
73  * This routine will wait for the given Rx queue of the PF to reach the
74  * enabled or disabled state.
75  * Returns -ETIMEDOUT in case of failing to reach the requested state after
76  * multiple retries; else will return 0 in case of success.
77  */
78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 	int i;
81 
82 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 			      QRX_CTRL_QENA_STAT_M))
85 			return 0;
86 
87 		usleep_range(20, 40);
88 	}
89 
90 	return -ETIMEDOUT;
91 }
92 
93 /**
94  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95  * @vsi: the VSI being configured
96  * @v_idx: index of the vector in the VSI struct
97  *
98  * We allocate one q_vector and set default value for ITR setting associated
99  * with this q_vector. If allocation fails we return -ENOMEM.
100  */
101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 	struct ice_pf *pf = vsi->back;
104 	struct ice_q_vector *q_vector;
105 
106 	/* allocate q_vector */
107 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 				GFP_KERNEL);
109 	if (!q_vector)
110 		return -ENOMEM;
111 
112 	q_vector->vsi = vsi;
113 	q_vector->v_idx = v_idx;
114 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 	q_vector->tx.itr_mode = ITR_DYNAMIC;
117 	q_vector->rx.itr_mode = ITR_DYNAMIC;
118 
119 	if (vsi->type == ICE_VSI_VF)
120 		goto out;
121 	/* only set affinity_mask if the CPU is online */
122 	if (cpu_online(v_idx))
123 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
124 
125 	/* This will not be called in the driver load path because the netdev
126 	 * will not be created yet. All other cases with register the NAPI
127 	 * handler here (i.e. resume, reset/rebuild, etc.)
128 	 */
129 	if (vsi->netdev)
130 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
131 			       NAPI_POLL_WEIGHT);
132 
133 out:
134 	/* tie q_vector and VSI together */
135 	vsi->q_vectors[v_idx] = q_vector;
136 
137 	return 0;
138 }
139 
140 /**
141  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
142  * @vsi: VSI having the memory freed
143  * @v_idx: index of the vector to be freed
144  */
145 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
146 {
147 	struct ice_q_vector *q_vector;
148 	struct ice_pf *pf = vsi->back;
149 	struct ice_ring *ring;
150 	struct device *dev;
151 
152 	dev = ice_pf_to_dev(pf);
153 	if (!vsi->q_vectors[v_idx]) {
154 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
155 		return;
156 	}
157 	q_vector = vsi->q_vectors[v_idx];
158 
159 	ice_for_each_ring(ring, q_vector->tx)
160 		ring->q_vector = NULL;
161 	ice_for_each_ring(ring, q_vector->rx)
162 		ring->q_vector = NULL;
163 
164 	/* only VSI with an associated netdev is set up with NAPI */
165 	if (vsi->netdev)
166 		netif_napi_del(&q_vector->napi);
167 
168 	devm_kfree(dev, q_vector);
169 	vsi->q_vectors[v_idx] = NULL;
170 }
171 
172 /**
173  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
174  * @hw: board specific structure
175  */
176 static void ice_cfg_itr_gran(struct ice_hw *hw)
177 {
178 	u32 regval = rd32(hw, GLINT_CTL);
179 
180 	/* no need to update global register if ITR gran is already set */
181 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
182 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
183 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
184 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
185 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
186 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
187 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
188 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
189 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
190 		return;
191 
192 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
193 		  GLINT_CTL_ITR_GRAN_200_M) |
194 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
195 		  GLINT_CTL_ITR_GRAN_100_M) |
196 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
197 		  GLINT_CTL_ITR_GRAN_50_M) |
198 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
199 		  GLINT_CTL_ITR_GRAN_25_M);
200 	wr32(hw, GLINT_CTL, regval);
201 }
202 
203 /**
204  * ice_calc_q_handle - calculate the queue handle
205  * @vsi: VSI that ring belongs to
206  * @ring: ring to get the absolute queue index
207  * @tc: traffic class number
208  */
209 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
210 {
211 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
212 
213 	/* Idea here for calculation is that we subtract the number of queue
214 	 * count from TC that ring belongs to from it's absolute queue index
215 	 * and as a result we get the queue's index within TC.
216 	 */
217 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
218 }
219 
220 /**
221  * ice_eswitch_calc_q_handle
222  * @ring: pointer to ring which unique index is needed
223  *
224  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
225  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
226  * here by finding index in vsi->tx_rings of this ring.
227  *
228  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
229  * because VSI is get from ring->vsi, so it has to be present in this VSI.
230  */
231 static u16 ice_eswitch_calc_q_handle(struct ice_ring *ring)
232 {
233 	struct ice_vsi *vsi = ring->vsi;
234 	int i;
235 
236 	ice_for_each_txq(vsi, i) {
237 		if (vsi->tx_rings[i] == ring)
238 			return i;
239 	}
240 
241 	return ICE_INVAL_Q_INDEX;
242 }
243 
244 /**
245  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
246  * @ring: The Tx ring to configure
247  *
248  * This enables/disables XPS for a given Tx descriptor ring
249  * based on the TCs enabled for the VSI that ring belongs to.
250  */
251 static void ice_cfg_xps_tx_ring(struct ice_ring *ring)
252 {
253 	if (!ring->q_vector || !ring->netdev)
254 		return;
255 
256 	/* We only initialize XPS once, so as not to overwrite user settings */
257 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
258 		return;
259 
260 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
261 			    ring->q_index);
262 }
263 
264 /**
265  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
266  * @ring: The Tx ring to configure
267  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
268  * @pf_q: queue index in the PF space
269  *
270  * Configure the Tx descriptor ring in TLAN context.
271  */
272 static void
273 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
274 {
275 	struct ice_vsi *vsi = ring->vsi;
276 	struct ice_hw *hw = &vsi->back->hw;
277 
278 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
279 
280 	tlan_ctx->port_num = vsi->port_info->lport;
281 
282 	/* Transmit Queue Length */
283 	tlan_ctx->qlen = ring->count;
284 
285 	ice_set_cgd_num(tlan_ctx, ring);
286 
287 	/* PF number */
288 	tlan_ctx->pf_num = hw->pf_id;
289 
290 	/* queue belongs to a specific VSI type
291 	 * VF / VM index should be programmed per vmvf_type setting:
292 	 * for vmvf_type = VF, it is VF number between 0-256
293 	 * for vmvf_type = VM, it is VM number between 0-767
294 	 * for PF or EMP this field should be set to zero
295 	 */
296 	switch (vsi->type) {
297 	case ICE_VSI_LB:
298 	case ICE_VSI_CTRL:
299 	case ICE_VSI_PF:
300 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
301 		break;
302 	case ICE_VSI_VF:
303 		/* Firmware expects vmvf_num to be absolute VF ID */
304 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
305 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
306 		break;
307 	case ICE_VSI_SWITCHDEV_CTRL:
308 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
309 		break;
310 	default:
311 		return;
312 	}
313 
314 	/* make sure the context is associated with the right VSI */
315 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
316 
317 	/* Restrict Tx timestamps to the PF VSI */
318 	switch (vsi->type) {
319 	case ICE_VSI_PF:
320 		tlan_ctx->tsyn_ena = 1;
321 		break;
322 	default:
323 		break;
324 	}
325 
326 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
327 	tlan_ctx->tso_qnum = pf_q;
328 
329 	/* Legacy or Advanced Host Interface:
330 	 * 0: Advanced Host Interface
331 	 * 1: Legacy Host Interface
332 	 */
333 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
334 }
335 
336 /**
337  * ice_rx_offset - Return expected offset into page to access data
338  * @rx_ring: Ring we are requesting offset of
339  *
340  * Returns the offset value for ring into the data buffer.
341  */
342 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
343 {
344 	if (ice_ring_uses_build_skb(rx_ring))
345 		return ICE_SKB_PAD;
346 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
347 		return XDP_PACKET_HEADROOM;
348 
349 	return 0;
350 }
351 
352 /**
353  * ice_setup_rx_ctx - Configure a receive ring context
354  * @ring: The Rx ring to configure
355  *
356  * Configure the Rx descriptor ring in RLAN context.
357  */
358 static int ice_setup_rx_ctx(struct ice_ring *ring)
359 {
360 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
361 	struct ice_vsi *vsi = ring->vsi;
362 	u32 rxdid = ICE_RXDID_FLEX_NIC;
363 	struct ice_rlan_ctx rlan_ctx;
364 	struct ice_hw *hw;
365 	u16 pf_q;
366 	int err;
367 
368 	hw = &vsi->back->hw;
369 
370 	/* what is Rx queue number in global space of 2K Rx queues */
371 	pf_q = vsi->rxq_map[ring->q_index];
372 
373 	/* clear the context structure first */
374 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
375 
376 	/* Receive Queue Base Address.
377 	 * Indicates the starting address of the descriptor queue defined in
378 	 * 128 Byte units.
379 	 */
380 	rlan_ctx.base = ring->dma >> 7;
381 
382 	rlan_ctx.qlen = ring->count;
383 
384 	/* Receive Packet Data Buffer Size.
385 	 * The Packet Data Buffer Size is defined in 128 byte units.
386 	 */
387 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
388 
389 	/* use 32 byte descriptors */
390 	rlan_ctx.dsize = 1;
391 
392 	/* Strip the Ethernet CRC bytes before the packet is posted to host
393 	 * memory.
394 	 */
395 	rlan_ctx.crcstrip = 1;
396 
397 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
398 	rlan_ctx.l2tsel = 1;
399 
400 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
401 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
402 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
403 
404 	/* This controls whether VLAN is stripped from inner headers
405 	 * The VLAN in the inner L2 header is stripped to the receive
406 	 * descriptor if enabled by this flag.
407 	 */
408 	rlan_ctx.showiv = 0;
409 
410 	/* For AF_XDP ZC, we disallow packets to span on
411 	 * multiple buffers, thus letting us skip that
412 	 * handling in the fast-path.
413 	 */
414 	if (ring->xsk_pool)
415 		chain_len = 1;
416 	/* Max packet size for this queue - must not be set to a larger value
417 	 * than 5 x DBUF
418 	 */
419 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
420 			       chain_len * ring->rx_buf_len);
421 
422 	/* Rx queue threshold in units of 64 */
423 	rlan_ctx.lrxqthresh = 1;
424 
425 	/* Enable Flexible Descriptors in the queue context which
426 	 * allows this driver to select a specific receive descriptor format
427 	 * increasing context priority to pick up profile ID; default is 0x01;
428 	 * setting to 0x03 to ensure profile is programming if prev context is
429 	 * of same priority
430 	 */
431 	if (vsi->type != ICE_VSI_VF)
432 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
433 	else
434 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
435 					false);
436 
437 	/* Absolute queue number out of 2K needs to be passed */
438 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
439 	if (err) {
440 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
441 			pf_q, err);
442 		return -EIO;
443 	}
444 
445 	if (vsi->type == ICE_VSI_VF)
446 		return 0;
447 
448 	/* configure Rx buffer alignment */
449 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
450 		ice_clear_ring_build_skb_ena(ring);
451 	else
452 		ice_set_ring_build_skb_ena(ring);
453 
454 	ring->rx_offset = ice_rx_offset(ring);
455 
456 	/* init queue specific tail register */
457 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
458 	writel(0, ring->tail);
459 
460 	return 0;
461 }
462 
463 /**
464  * ice_vsi_cfg_rxq - Configure an Rx queue
465  * @ring: the ring being configured
466  *
467  * Return 0 on success and a negative value on error.
468  */
469 int ice_vsi_cfg_rxq(struct ice_ring *ring)
470 {
471 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
472 	u16 num_bufs = ICE_DESC_UNUSED(ring);
473 	int err;
474 
475 	ring->rx_buf_len = ring->vsi->rx_buf_len;
476 
477 	if (ring->vsi->type == ICE_VSI_PF) {
478 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
479 			/* coverity[check_return] */
480 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
481 					 ring->q_index, ring->q_vector->napi.napi_id);
482 
483 		ring->xsk_pool = ice_xsk_pool(ring);
484 		if (ring->xsk_pool) {
485 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
486 
487 			ring->rx_buf_len =
488 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
489 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
490 							 MEM_TYPE_XSK_BUFF_POOL,
491 							 NULL);
492 			if (err)
493 				return err;
494 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
495 
496 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
497 				 ring->q_index);
498 		} else {
499 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
500 				/* coverity[check_return] */
501 				xdp_rxq_info_reg(&ring->xdp_rxq,
502 						 ring->netdev,
503 						 ring->q_index, ring->q_vector->napi.napi_id);
504 
505 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
506 							 MEM_TYPE_PAGE_SHARED,
507 							 NULL);
508 			if (err)
509 				return err;
510 		}
511 	}
512 
513 	err = ice_setup_rx_ctx(ring);
514 	if (err) {
515 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
516 			ring->q_index, err);
517 		return err;
518 	}
519 
520 	if (ring->xsk_pool) {
521 		bool ok;
522 
523 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
524 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
525 				 num_bufs, ring->q_index);
526 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
527 
528 			return 0;
529 		}
530 
531 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
532 		if (!ok) {
533 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
534 
535 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
536 				 ring->q_index, pf_q);
537 		}
538 
539 		return 0;
540 	}
541 
542 	ice_alloc_rx_bufs(ring, num_bufs);
543 
544 	return 0;
545 }
546 
547 /**
548  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
549  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
550  *
551  * This function first tries to find contiguous space. If it is not successful,
552  * it tries with the scatter approach.
553  *
554  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
555  */
556 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
557 {
558 	int ret = 0;
559 
560 	ret = __ice_vsi_get_qs_contig(qs_cfg);
561 	if (ret) {
562 		/* contig failed, so try with scatter approach */
563 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
564 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
565 					qs_cfg->scatter_count);
566 		ret = __ice_vsi_get_qs_sc(qs_cfg);
567 	}
568 	return ret;
569 }
570 
571 /**
572  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
573  * @vsi: the VSI being configured
574  * @ena: start or stop the Rx ring
575  * @rxq_idx: 0-based Rx queue index for the VSI passed in
576  * @wait: wait or don't wait for configuration to finish in hardware
577  *
578  * Return 0 on success and negative on error.
579  */
580 int
581 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
582 {
583 	int pf_q = vsi->rxq_map[rxq_idx];
584 	struct ice_pf *pf = vsi->back;
585 	struct ice_hw *hw = &pf->hw;
586 	u32 rx_reg;
587 
588 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
589 
590 	/* Skip if the queue is already in the requested state */
591 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
592 		return 0;
593 
594 	/* turn on/off the queue */
595 	if (ena)
596 		rx_reg |= QRX_CTRL_QENA_REQ_M;
597 	else
598 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
599 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
600 
601 	if (!wait)
602 		return 0;
603 
604 	ice_flush(hw);
605 	return ice_pf_rxq_wait(pf, pf_q, ena);
606 }
607 
608 /**
609  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
610  * @vsi: the VSI being configured
611  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
612  * @rxq_idx: 0-based Rx queue index for the VSI passed in
613  *
614  * This routine will wait for the given Rx queue of the VSI to reach the
615  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
616  * the requested state after multiple retries; else will return 0 in case of
617  * success.
618  */
619 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
620 {
621 	int pf_q = vsi->rxq_map[rxq_idx];
622 	struct ice_pf *pf = vsi->back;
623 
624 	return ice_pf_rxq_wait(pf, pf_q, ena);
625 }
626 
627 /**
628  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
629  * @vsi: the VSI being configured
630  *
631  * We allocate one q_vector per queue interrupt. If allocation fails we
632  * return -ENOMEM.
633  */
634 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
635 {
636 	struct device *dev = ice_pf_to_dev(vsi->back);
637 	u16 v_idx;
638 	int err;
639 
640 	if (vsi->q_vectors[0]) {
641 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
642 		return -EEXIST;
643 	}
644 
645 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
646 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
647 		if (err)
648 			goto err_out;
649 	}
650 
651 	return 0;
652 
653 err_out:
654 	while (v_idx--)
655 		ice_free_q_vector(vsi, v_idx);
656 
657 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
658 		vsi->num_q_vectors, vsi->vsi_num, err);
659 	vsi->num_q_vectors = 0;
660 	return err;
661 }
662 
663 /**
664  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
665  * @vsi: the VSI being configured
666  *
667  * This function maps descriptor rings to the queue-specific vectors allotted
668  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
669  * and Rx rings to the vector as "efficiently" as possible.
670  */
671 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
672 {
673 	int q_vectors = vsi->num_q_vectors;
674 	u16 tx_rings_rem, rx_rings_rem;
675 	int v_id;
676 
677 	/* initially assigning remaining rings count to VSIs num queue value */
678 	tx_rings_rem = vsi->num_txq;
679 	rx_rings_rem = vsi->num_rxq;
680 
681 	for (v_id = 0; v_id < q_vectors; v_id++) {
682 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
683 		u8 tx_rings_per_v, rx_rings_per_v;
684 		u16 q_id, q_base;
685 
686 		/* Tx rings mapping to vector */
687 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
688 						  q_vectors - v_id);
689 		q_vector->num_ring_tx = tx_rings_per_v;
690 		q_vector->tx.ring = NULL;
691 		q_vector->tx.itr_idx = ICE_TX_ITR;
692 		q_base = vsi->num_txq - tx_rings_rem;
693 
694 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
695 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
696 
697 			tx_ring->q_vector = q_vector;
698 			tx_ring->next = q_vector->tx.ring;
699 			q_vector->tx.ring = tx_ring;
700 		}
701 		tx_rings_rem -= tx_rings_per_v;
702 
703 		/* Rx rings mapping to vector */
704 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
705 						  q_vectors - v_id);
706 		q_vector->num_ring_rx = rx_rings_per_v;
707 		q_vector->rx.ring = NULL;
708 		q_vector->rx.itr_idx = ICE_RX_ITR;
709 		q_base = vsi->num_rxq - rx_rings_rem;
710 
711 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
712 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
713 
714 			rx_ring->q_vector = q_vector;
715 			rx_ring->next = q_vector->rx.ring;
716 			q_vector->rx.ring = rx_ring;
717 		}
718 		rx_rings_rem -= rx_rings_per_v;
719 	}
720 }
721 
722 /**
723  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
724  * @vsi: the VSI having memory freed
725  */
726 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
727 {
728 	int v_idx;
729 
730 	ice_for_each_q_vector(vsi, v_idx)
731 		ice_free_q_vector(vsi, v_idx);
732 }
733 
734 /**
735  * ice_vsi_cfg_txq - Configure single Tx queue
736  * @vsi: the VSI that queue belongs to
737  * @ring: Tx ring to be configured
738  * @qg_buf: queue group buffer
739  */
740 int
741 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
742 		struct ice_aqc_add_tx_qgrp *qg_buf)
743 {
744 	u8 buf_len = struct_size(qg_buf, txqs, 1);
745 	struct ice_tlan_ctx tlan_ctx = { 0 };
746 	struct ice_aqc_add_txqs_perq *txq;
747 	struct ice_pf *pf = vsi->back;
748 	struct ice_hw *hw = &pf->hw;
749 	enum ice_status status;
750 	u16 pf_q;
751 	u8 tc;
752 
753 	/* Configure XPS */
754 	ice_cfg_xps_tx_ring(ring);
755 
756 	pf_q = ring->reg_idx;
757 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
758 	/* copy context contents into the qg_buf */
759 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
760 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
761 		    ice_tlan_ctx_info);
762 
763 	/* init queue specific tail reg. It is referred as
764 	 * transmit comm scheduler queue doorbell.
765 	 */
766 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
767 
768 	if (IS_ENABLED(CONFIG_DCB))
769 		tc = ring->dcb_tc;
770 	else
771 		tc = 0;
772 
773 	/* Add unique software queue handle of the Tx queue per
774 	 * TC into the VSI Tx ring
775 	 */
776 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
777 		ring->q_handle = ice_eswitch_calc_q_handle(ring);
778 
779 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
780 			return -ENODEV;
781 	} else {
782 		ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
783 	}
784 
785 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
786 				 1, qg_buf, buf_len, NULL);
787 	if (status) {
788 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
789 			ice_stat_str(status));
790 		return -ENODEV;
791 	}
792 
793 	/* Add Tx Queue TEID into the VSI Tx ring from the
794 	 * response. This will complete configuring and
795 	 * enabling the queue.
796 	 */
797 	txq = &qg_buf->txqs[0];
798 	if (pf_q == le16_to_cpu(txq->txq_id))
799 		ring->txq_teid = le32_to_cpu(txq->q_teid);
800 
801 	return 0;
802 }
803 
804 /**
805  * ice_cfg_itr - configure the initial interrupt throttle values
806  * @hw: pointer to the HW structure
807  * @q_vector: interrupt vector that's being configured
808  *
809  * Configure interrupt throttling values for the ring containers that are
810  * associated with the interrupt vector passed in.
811  */
812 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
813 {
814 	ice_cfg_itr_gran(hw);
815 
816 	if (q_vector->num_ring_rx)
817 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
818 
819 	if (q_vector->num_ring_tx)
820 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
821 
822 	ice_write_intrl(q_vector, q_vector->intrl);
823 }
824 
825 /**
826  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
827  * @vsi: the VSI being configured
828  * @txq: Tx queue being mapped to MSI-X vector
829  * @msix_idx: MSI-X vector index within the function
830  * @itr_idx: ITR index of the interrupt cause
831  *
832  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
833  * within the function space.
834  */
835 void
836 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
837 {
838 	struct ice_pf *pf = vsi->back;
839 	struct ice_hw *hw = &pf->hw;
840 	u32 val;
841 
842 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
843 
844 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
845 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
846 
847 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
848 	if (ice_is_xdp_ena_vsi(vsi)) {
849 		u32 xdp_txq = txq + vsi->num_xdp_txq;
850 
851 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
852 		     val);
853 	}
854 	ice_flush(hw);
855 }
856 
857 /**
858  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
859  * @vsi: the VSI being configured
860  * @rxq: Rx queue being mapped to MSI-X vector
861  * @msix_idx: MSI-X vector index within the function
862  * @itr_idx: ITR index of the interrupt cause
863  *
864  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
865  * within the function space.
866  */
867 void
868 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
869 {
870 	struct ice_pf *pf = vsi->back;
871 	struct ice_hw *hw = &pf->hw;
872 	u32 val;
873 
874 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
875 
876 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
877 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
878 
879 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
880 
881 	ice_flush(hw);
882 }
883 
884 /**
885  * ice_trigger_sw_intr - trigger a software interrupt
886  * @hw: pointer to the HW structure
887  * @q_vector: interrupt vector to trigger the software interrupt for
888  */
889 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
890 {
891 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
892 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
893 	     GLINT_DYN_CTL_SWINT_TRIG_M |
894 	     GLINT_DYN_CTL_INTENA_M);
895 }
896 
897 /**
898  * ice_vsi_stop_tx_ring - Disable single Tx ring
899  * @vsi: the VSI being configured
900  * @rst_src: reset source
901  * @rel_vmvf_num: Relative ID of VF/VM
902  * @ring: Tx ring to be stopped
903  * @txq_meta: Meta data of Tx ring to be stopped
904  */
905 int
906 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
907 		     u16 rel_vmvf_num, struct ice_ring *ring,
908 		     struct ice_txq_meta *txq_meta)
909 {
910 	struct ice_pf *pf = vsi->back;
911 	struct ice_q_vector *q_vector;
912 	struct ice_hw *hw = &pf->hw;
913 	enum ice_status status;
914 	u32 val;
915 
916 	/* clear cause_ena bit for disabled queues */
917 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
918 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
919 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
920 
921 	/* software is expected to wait for 100 ns */
922 	ndelay(100);
923 
924 	/* trigger a software interrupt for the vector
925 	 * associated to the queue to schedule NAPI handler
926 	 */
927 	q_vector = ring->q_vector;
928 	if (q_vector)
929 		ice_trigger_sw_intr(hw, q_vector);
930 
931 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
932 				 txq_meta->tc, 1, &txq_meta->q_handle,
933 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
934 				 rel_vmvf_num, NULL);
935 
936 	/* if the disable queue command was exercised during an
937 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
938 	 * This is not an error as the reset operation disables
939 	 * queues at the hardware level anyway.
940 	 */
941 	if (status == ICE_ERR_RESET_ONGOING) {
942 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
943 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
944 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
945 	} else if (status) {
946 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
947 			ice_stat_str(status));
948 		return -ENODEV;
949 	}
950 
951 	return 0;
952 }
953 
954 /**
955  * ice_fill_txq_meta - Prepare the Tx queue's meta data
956  * @vsi: VSI that ring belongs to
957  * @ring: ring that txq_meta will be based on
958  * @txq_meta: a helper struct that wraps Tx queue's information
959  *
960  * Set up a helper struct that will contain all the necessary fields that
961  * are needed for stopping Tx queue
962  */
963 void
964 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
965 		  struct ice_txq_meta *txq_meta)
966 {
967 	u8 tc;
968 
969 	if (IS_ENABLED(CONFIG_DCB))
970 		tc = ring->dcb_tc;
971 	else
972 		tc = 0;
973 
974 	txq_meta->q_id = ring->reg_idx;
975 	txq_meta->q_teid = ring->txq_teid;
976 	txq_meta->q_handle = ring->q_handle;
977 	txq_meta->vsi_idx = vsi->idx;
978 	txq_meta->tc = tc;
979 }
980